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Abstract

Modern software development approaches promote automated testing as key concepts for qualitycontrol. During development software changes are continuously integrated to the mainline code-base requiring test suites to be reviewed. With the growing nature of codebases and the recentmonorepo trend the industry has implemented solutions for incremental software building andtesting. These solutions work well for unit tests that have a limited set of dependencies but fallshort of integration test scenarios where large parts of the codebase are dependent upon. In thisthesis we survey theoretical research that uses code coverage data for test case selection. Usingthese methods we extend the existing model of build systems with coverage concepts and imple-ment this in a modern build system called Bazel. Additionally we propose a generalization of thecode coverage algorithm as information coverage that further reduces the need to execute inte-gration tests. Finally we research the efficiency of our methods in a real industry setting and findthat we can reduce test case selection rates by 62% using code coverage based selection and 73%using information coverage based selection.
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Chapter 1

Introduction

1.1. Motivation

During the life-cycle of a software system the set of features it must support is likely to grow. Re-search has shown that a developer should receive feedback about the correctness of his changesas soon as possible (Hans Dockter, 2019). Known as the developer feedback cycle, this is measuredas the time between a developer making a change to the codebase and receiving feedback aboutthe correctness of that change. The shorter the feedback cycle is the more productive a developercan be. The ideal length of this feedback cycle is therefore zero seconds. However, in practice,this is not possible, forcing the industry to find a balance between the feedback duration and theamount of correctness it guarantees. The industry has found that a feedback cycle of 10 minutesis acceptable (Bell, 2001). This allows the developer to remain focused on the task at hand and notbe fatigued by context switching to other tasks. This allows him to easily recall the context of thechange and fix any issues that may arise.
Modern software engineering methodologies such as agile development (Fowler, Highsmith, etal., 2001) and DevOps (Ebert, Gallardo, Hernantes, & Serrano, 2016) promote the use of softwaredefined test scenarios (Meszaros, Smith, & Andrea, 2003) that describe the expected behavior ofthe software to validate its correctness. Typically these automated test cases are validated againstsoftware changes by a continuous integration (CI) system. This system closes the developer feed-back cycle by providing test results to the developer. Referred to as regression testing, this processultimately raises a significant challenge when software changes occur more frequently than a CIsystem can validate them. Evidently, with a growing set of features that a software system mustsupport, the set of test scenarios also grows and the time required to validate them increases.
Another important insight from the industry is that reducing codebase complexity reduces devel-oper cognitive load which in turn can increase their output (Potvin & Levenberg, 2016). One waythe industry is reducing codebase complexity is by using a monorepo (Brousse, 2019; Brito, Terra,& Valente, 2018) instead of a polyrepo codebase. A monorepo is a single repository that containsall the code a company owns or operates. This differs from a polyrepo setup where the code isdistributed in many separate repositories. Monorepos remove the need for context switching be-tween different repositories, simplify dependency management and enable better code sharing,improved collaboration and discoverability. Another way the industry is reducing codebase com-plexity is by employing trunk based development (Henderson, 2017). Trunk based developmentpushes engineers to always work on the same version of the codebase, the trunk, as the rest ofthe company. This means that they should keep their changes as small as possible and integratethem as soon as possible. Even though these practices are meant to boost developer productivitythey work adversely with regards to the feedback cycle of the CI system. Trunk based developmentincreases the frequency of CI runs whereas a monorepo increases the size of a single CI run.
Modern build systems, such as Bazel (Bazel, 2015), have been specifically designed to solve thisproblem by only building changed parts of a codebase. Their incremental nature decorrelates CIduration with the overall size of the codebase, allowing small software changes to integrate effi-ciently into a large codebase. The fundamental principle behind these build systems is the repre-sentation of the build process as a directed acyclic graph (DAG), comprising interconnected buildactions and their dependencies. These actions only require re-execution when their dependencieschange. Notably, the dependencies of these actions extend beyond codebase files and can includethe output values generated by other actions. Consequently, any code modification efficiently tra-verses the build graph, ensuring minimal re-execution of build actions, this is referred to as build
minimality (Mokhov, Mitchell, & Peyton Jones, 2018).
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This dependency graph algorithm also works well for unit-tests that are defined on specific partsof the codebase. When defined properly, unit-tests only depend on parts of the codebase that theyare actually testing. By only recompiling tested components when they change and subsequentlyonly retesting the compiled binary when compilation resulted in a change, the test duration willdepend less on the overall size of the codebase.
Unit-tests, however, come with certain drawbacks. They validate that individual components of thesystem keep working but they do not guarantee that the components remain compatible or con-firm the continued functionality of the final software product. Unit tests can also be time consumingto maintain because they often test internal aspects of the system, which may undergo revisionsor reconsiderations at any given time.
A different kind of quality control that circumvents the aforementioned limitations is integrationtesting. As opposed to unit-tests, integration-tests run after integrating various or all software com-ponents into the final product. These tests often simulate real user interactions and describe theexpected behavior of the application. They are therefore less likely to change due to internal refac-toring and are also easier to define by describing actual user behavior.
A field where integration tests are already being favored over unit tests are low-code platforms(Overeem et al., 2022). These platforms represents a notable industry trend that further elevatesthe level of abstraction in software systems. The philosophy of low-code platforms is to enable nontechnical individuals to build software products without programming knowledge. Commonly re-ferred to as citizen developers, they are domain experts in the specific products they are building.As such, they require a functional and thoroughly tested application to meet the unique require-ments of their respective fields. However, the technical nature of unit testing, combined with theintricate internal workings of low-code platforms, often renders the creation of unit tests unfeasibleor even impossible within these platforms that intentionally conceal their internal complexities.
The drawback of integration-tests, however, is that executing them can be time consuming. More-over, the incremental graph-based build will haveminimal impact on these tests since a big portionof the codebase is part of the test dependencies via the integrated product. Consequently, integra-tion tests tend to run more frequently and require a longer execution time than unit tests. As aresult of these factors, the feedback cycle for integration tests is often significantly longer thanthat of unit tests. Therefore, unit tests currently remain the preferred method of testing in theindustry.
To address the benefits of integration testing and the growing demand for them in the context oflow-code platforms, we research a possible solution to the limitations of incremental build graphs.Known in the literature as test case selection, this field aims to reduce the number of test sce-narios that have to be executed after a software change while still guaranteeing program correct-ness. A notable test case selection method is Code-Coverage based test selection as introducedby (Rothermel, 1996) and applied by (Beszédes et al., 2012). Code coverage of a test scenario isdefined as the code that was executed during the test execution. We believe that the technologicaladvances of build systems nowmake it more manageable to implement this test selection methodin such away that can benefit the industry for both unit-test and integration-test selection. By lever-aging Code-Coverage data, we can significantly reduce the dependencies of a test, limiting them toonly the subset of code that was covered during a previous execution. This allows us to reduce theamount of tests that have to be executed after a software change, which improves the minimalityof build systems and ultimately accelerate the developer feedback cycle.
Software testing often relies on more than just source code. Test scenarios may involve interact-ing with databases that already contain pre-existing data, but only where a subset of that data isloaded during test execution. Similar to code coverage, only changes made to this specific subsetof the database have the potential to impact test results. We propose a reinterpretation of theCode-Coverage algorithm and introduce a novel approach called the Data-Coverage algorithm. We
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refer to the combined Code-Coverage and Data-Coverage algorithms as the Information-Coveragealgorithm. The Information-Coverage algorithm encompasses both the traditional tracking of codechanges and the consideration of changes in the covered subset of data. By integrating these twoinstances of coverage, we aim to create a more powerful and effective approach for test selection.Furthermore, we explore the possibility of other instances of Information-Coverage beyond Codeand Data. We seek to identify additional forms of information that can be leveraged for test selec-tion. This work will contribute to a more comprehensive understanding of Information-Coverageand its potential applications in software building and testing.

1.2. Research Questions

The problem that we are trying to solve is the same Test Case Selection Problem that Rothermeland Harrold introduced. From their work we distil definition 1. In section 5.1. we use this definitionin combination with the build system model from section 4.2.1. to formally define how code cov-erage based test selection can be incorporated into the generic build system model. These modelenhancements enable us to implement code coverage based test selection in modern build sys-tems.
Definition 1 (Test Case Selection Problem)
Given: A program P , modified version of P , P ′, test suite T and results T (P ) = {(t, v) | t ∈ T, v = t(P )}.
Problem: find a subset T ′ ⊆ T such that any change in ∆(T (P ), T (P ′)) is also found by T ′(P ′).
Note: T (P ) represents a set of test cases (t) and their outcomes (v). Here v represents the test verdict:
pass or fail. T (P ′) \ T (P ) will contain all tests whose outcomes would be different when T was executed
on P ′. Therefore T ′(P ′)must be a superset of T (P ′) \ T (P ).

To verify that our contributions solve the test case selection problem for integration test scenariosusing coverage information we formulate the following research questions:
1. How effective is Code-Coverage based test selection on integration-test scenarios?

To answer this, we will enhance the build system model with coverage data and implementa prototype of this in an existing build system. Using this implementation we will conductexperiments on an existing codebase where we compare test case selection rates against theprevious build graph baseline.
2. Can we generalize to Information-Coverage and does it improve our efficiency?

On top of the prototype from question one, we will implement another variation of informa-tion coverage in the form of data coverage of a database snapshot. With this implementationwe will also conduct experiments, and compare those to the results from question one.
3. Do our methods yield good enough results for the industry towards changing its testing strategy?

By analyzing the results from the previous questions we will get an understanding of howcodebase size and changeset size relate to the amount of tests that are being selected. Usingthis information we can determine the scalability of a test suite of integration tests.

1.3. Contributions

In this thesis we will contribute the following: By extending the existing formal build systemmodelwith new concepts we add support for code coverage based test selection. We also contribute aproof of concept that implements these model enhancements in a state of the art build system.
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Using this prototype we conduct various experiments to prove that ourmodel enhancements workand measure their benefits. Our experiments are performed on a real world industry system thatis in active development. With this method we try to bridge the gap that exists in this field be-tween academia and the industry. Additionally, we generalize the concept of code coverage basedselection to information coverage based selection. This new form of coverage tracking allows theencompassing of other types of changes such as data changes into the build analysis. Using this wefurther reduce test case selection rate. We even find that traditional code coverage based selectionis insufficient to measure and detect all changes to a modern codebase. Because of this our gen-eralization to information coverage is required for a sound and complete application of coveragebased test selection.

1.4. Structure of this Thesis

The rest of this thesis starts off by giving background information about various core concepts thatthis work evolves around such as: software testing, code coverage and continuous integration.Chapter 3 follows with related work about different test selection methods and software testingapproaches. Chapter 4 goes in depth about build systems and the concept of content hashes andMerkle Trees that our work heavily depends on. Our problem statement is formally presented inchapter 5 where we also describe the research method for each research question. In chapter 6we extend the build system model from chapter 4 with additional concepts to facilitate coveragebased selection. Details about the prototype that we build are given in chapter 7 where we finishwith some limitations. Our results are finally presented in chapter 8 and we conclude this work inchapter 9 by answering our research questions. Some ideas for future work are given after that.
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Chapter 2

Background

Software testing has been around since the early days of software engineering. C.Baker’s review(Baker, 1957) of "Digital computer programming" (McCracken, 1957) is the first to distinguish testingand debugging as two separate phases. He defines software testing as "the process of making sure
that the program solves the problem it is intended to solve"whereas debugging is "the process ofmaking
sure that the program does what the coder meant to do". Contrary to these definitions, in modern daysoftware development, testing solutions are being deployed to catch newly introduced bugs onexisting functionality. Referred to as regression testing, this process often involves the executionof a set of automated test scenarios that describe the expected behavior of the software. One of thepioneers in this field was William Elmendorf, who in 1967, while working at IBM labs, formalized astructured approach to software testing in "Evaluation of the Functional Testing of Control Programs"(W. Elmendorf, 1967). Not much later, (Dijkstra et al., 1970) is famously quoted for "Program testing
can be used to show the presence of bugs, but never to show their absence!".
As software systems continued to expand, their test-suites were also expanding and required toconstantly validate new software modifications. Consequently, research began emerging on thetopic of test case selection. The goal of this research was to reduce the amount of required tests tovalidate a softwaremodification to a feasible amount while still guaranteeing program correctness.According to (Yoo & Harman, 2012), one of the earliest documented approaches in this field was by(Fischer, 1977) who formulated the test case selection problem as an Integer Programming opti-mization function. Recent industry best practices even require every small code modification to bevalidated for correctness as soon as possible. This process is referred to as continuous integration(CI) which further emphasizes the need for efficient test case selection.
Continuous integration is often performed by so called build systems. These systems are respon-sible for ’building’ the software by compiling source code and packaging the final product. Mostof the time these systems are also responsible for executing the test scenarios, only resulting in asuccessful build when the tests succeed. The industry has developed various build systems suchas Make (Feldman, 1979) and Bazel (Bazel, 2015). These generic build systems model the buildprocess in a dependency graph which we will describe more in depth later. Thanks to this graphthey already perform some form of test case selection by only executing tests that depend on themodified code.
Various test case selection approaches use some form of tracing during test execution to measurethe runtime behavior of a test. An important concept here is code coverage, which measures thesubset of code that was executed during a test. An early academic mention of code coverage isby Elmendorf (W. R. Elmendorf, 1969), who talks about using branch coverage for testing operat-ing systems. (Piwowarski, Ohba, & Caruso, 1993) describe how code coveragemeasurements wereperformed at IBM in the late 1960s. They describe how, initially, a hardware tool was used to mea-sure statement and branch coverage. In the late 1970s, however, a software team proved that asoftware tool could achieve the same results at a fraction of the costs.
In 1996 Rothermel et al. (Rothermel, 1996; Rothermel & Harrold, 1997) suggested techniques fortest case selection using code coverage traces. They found that determining fault revealing test casesthat were affected by a code change is NP-hard. As evidence they showed that a code modificationcould cause a program to run forever. Analogous to the halting problem, which is known to be NP-hard, this proved that determining the effects of a code modification to test cases is also NP-hard.Because of this there is no effective procedure that precisely identifies the fault-revealing tests.
Going further, Rothermel et al. determined that in order to be fault-revealing a test case should be
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modification-revealing but unfortunately this remained NP-hard to solve. They did however findthat a test case could only be modification-revealing if and only if it is modification-traversing. Thisresults in the following subset relations:
faultrevealing ⊆ modificationrevealing ⊆ modificationtraversing (2.1)

To efficiently determinemodification-traversing test cases Rothermel andHarrold used code cover-age traces of a previous test execution. Namely, given a test case, they tried to find the intersectionbetween the code modification and the code coverage trace. if this turned out to be non-empty,the test case was modification-traversing and had the be selected for retesting. They proved thatthis heuristic is safe under the Controlled Regression Testing Assumption which reads:

Definition 2 (Controlled-Regression-Testing Assumption) When program P is tested with test t,
all factors that might influence the output of P, except for the code in P, are kept constant with respect
to their states when P was tested with t.

Surprisingly however the concept of code coverage based test selection remains scarcely used inthe industry. According to a literature review by Ali et al. (Ali et al., 2019) this is due to the terminol-ogy differences between industry and academia, making it difficult for practitioners to know whatto look for in academic literature. Additionally, many empirical studies are conducted in controlledexperimental environments that differ greatly from the complexity of an industrial context. Finally,according to Engström and Runeson (Engström& Runeson, 2010), the existing industry evaluationsare also hard to compare due to the many differences in context.
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Chapter 3

Related Work

In a recent publication Ivanković et al. from Google, (Ivanković, Petrović, Just, & Fraser, 2019) de-scribe their coverage collection system that operates on a immense industry scale. Built upon theirinternal build system Blaze (Henderson, 2017), which is open sourced as Bazel (Bazel, 2015), thispluggable system is capable of collecting coverage information from any programming language(of which they have implemented seven). The collected line coverage information is then used togive developers insights during their workflows of authoring changelists (code modifications) andreviewing such changelists. Interestingly, the authors state that coverage collection is only enabledfor unit-tests since line coverage is not the best suited coveragemeasure for integration scenarios.Another thing to note about their publication is the issues they encounter when enabling cover-age collection. Mainly due to additional overhead imposed by instrumentation, the tests are morelikely to timeout or surface other kinds of issues. Therefore they only execute code-coverage afterexecuting the unit-tests normally. In their work Ivanković et al. never mention using the coverageinformation for test case selection.

3.1. Test Selection Approaches

The 2012 survey by Yoo et al. (Yoo & Harman, 2012) recognized 12 different test case selectionapproaches ranging from Control and Data Flow Graph walk algorithms to Symbolic Execution.While certain techniques only consider the static information available, most methods use someform of tracing during execution of the baseline program. After applying a change to the baselineprogram the selection algorithm will find the intersection between the baseline traces and thechangeset. When this intersection is non-empty a test is labeled asmodification traversing and hasto be selected again. The work of Yoo et al. categorized the different testing techniques into threedistinct categories: test case minimization, which tries to find the minimal set of tests to cover aspecific programmodification, test case prioritization, which tries to prioritize certain test scenariosover others by for example running fast failing tests first, and our most relevant category, test caseselection, which tries to find all relevant tests for a programmodification ultimately being the onlysafe category.
Another survey by Mukherjee et al. (Mukherjee & Patnaik, 2021) focuses on test case prioritization.They studied 90 different papers on the subject and found many code coverage based techniques.They however also conclude that collecting code coverage is tedious and costly in many cases. Thisemphasises the importance of our research. A publication by Elbaum et al. (Elbaum, Rothermel, &Penix, 2014) combines test case selection and prioritization but also explicitly states that they donot rely on coverage information. Their reasoning here is that code coverage information quicklybecomes inaccurate when a codebase changes frequently (Elbaum, Gable, & Rothermel, 2001).
A radically different approach was researched by Elsner et al. (Elsner, Hauer, Pretschner, & Reimer,2021). They applied machine learning (ML) and investigated to what extent Version Control System(VCS) data, such as authors and changed files, and historical CI information, such as failed tests,would suffice for test case selection. With different unsafe approximation approaches they man-aged to achieve 90% accuracy with a time savings of 84%. Their reasoning for only looking at thesedata sources was that this information is readily available in current industry deployed pipelines (asopposed to code coverage data). Interestingly, they also found out that traditional heuristic basedapproaches often outperform complex machine learning models.
Even though static analysis methods such as symbolic execution can theoretically reduce the set ofdependencies of a test case they are infeasible to deploy at scale on integration-tests. Additionally,
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modern build systems allow for more aggressive dependency pruning after executing a test bycollecting runtime data, such as code coverage, to do so. Since we are looking for a safe algorithm,that finds every tests for which the verdict may have changed, we narrow down the set of testcase selection methods to those that collect runtime coverage information such as traces or hitlocations.
Although path coverage methods as described by Schalkwijk et al. (Schalkwijk, 2011) are theoreti-cally more precise than the Rothermel-Harrold algorithm, Schalkwijk concludes that this is actuallyvery synthetic and unlikely to occur in real world applications. The added overhead of trackingpaths instead of hit locations does not outweight this theoretical benefit.

3.2. Live Unit Testing

Live unit-testing, or continuous testing solutions (Joe Morris, 2017) have faced the same challengeof test suites becoming too large with respect to the change frequency. The goal of these solutionsis to display up-to-date test results while a programmer is working in an Integrated DevelopmentEnvironment (IDE). Especially useful when applying Test Driven Development (TDD), they shareour goal of reducing the feedback duration for an engineer to increase productivity. Not so sur-prisingly they also explored the use of code coverage information for test selection. Interestingly,Greg Young, the author of Mighty Moose (Young, 2012), states that code coverage is not a good so-lution for the problem as it describes the last run, which may have nothing to do with the currentrun. We believe that the controlled regression testing assumption from Rothermel et al. (definition2) resolves this problem and can be applied to software testing.

3.3. Potential Applications

The generic dependency coverage information that is produced and stored in the enhanced buildsystemmodel (see 7.8.3.) could also be applied to various other testing practices. We explore someof these in this section.

3.3.1. Similarity based test prioritization

As described in Neto et al. (de Oliveira Neto, Ahmad, Leifler, Sandahl, & Enoiu, 2018), similaritybased test selection tries to find aminimal set of tests that cover the set of code changes. It achievesthis by removing test cases that only cover code that was already covered by other tests, ultimatelyreducing redundancy in test scenarios. This is an efficientmethod to speed up the feedback processfor the software engineer because it makes sure that tests that likely have the same result as othertests are dropped. We should note that this method is not safe because tests with overlappingcoverage may assert different aspects of the program. Yoo et al. referred to this concept as testcase minimization. Our model enhancements add generic code coverage data per test to the buildsystem. This information can also be used to implement similarity based test selection.
A challenge would be to adapt the build system to support it since build systems are generallydesigned to (incrementally) build everything that may produce different outputs, rather than asubset. Similarity based test selection can also be interpreted as a test case prioritization algorithm.Where traditional testing would sequentially test each program component, using similarity basedschedulingwould cover all parts of a codemodification before proceedingwith other test scenarios.This has the same benefit of speeding up the feedback cycle but also remains safe since other testsare still executed later.
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3.3.2. Mutation testing

Another interesting topic of research ismutation testing (Petrović& Ivanković, 2018; Petrovic, Ivankovic,Kurtz, Ammann, & Just, 2018). Mutation testing takes a program and generatively inserts modifica-tions in the program that are meant to break it. This gives a very good indication about the qualityof a test suite by validating how good it is in detecting these faults. Often this is considered a betterindicator of test suite quality than code coverage since covering a line does not imply that it is beingasserted. The downsides of mutation testing however are that there are often a lot of mutationsto consider, it is unclear which mutations are applicable for a change and which tests should beexecuted to traverse a mutant (Ojdanić, 2022). Using the coverage information that is available inour new model the set of mutants can be reduced to the change affecting mutants that only haveto validate against change traversing test cases. Next to code coverage this could be a valuableindicator of the test suite health with regards to a contributed code change.
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Chapter 4

Preliminaries

In this chapter we will describe the formalities around a build system. We require these definitionsto derive our own enhanced model that includes the possibility to perform code coverage basedtest selection. We will first introduce the concept of hashing because we heavily depend on it.

4.1. Hashing & Content Addressable Systems

Various technologies use hashing algorithms to compute a compact representation of a piece ofdata. Referred to as a hash or digest, the output values of these algorithms are designed to be aunique, fixed length sequence of bytes for each piece of arbitrary input data. Hashes can then beused to validate the integrity of a piece of data, by recomputing its hash, to check of a piece of datahas changed or as a cache key to store the data in a so called Content Addressable Storage (CAS).

4.1.1. Merkle Trees

More complex datastructures that are comprised of hashes exist. A notable variant is a MerkleTree (Merkle, 1979) which, instead of representing a single piece of data, can represent a tree ofdata. Merkle Trees achieve this by representing each node in the tree as a list of its child trees andleaf nodes, identified by their hashes. Stored under their hash in a CAS, they allows to recursivelyresolve any child nodes of a given root Merkle Tree node. A folder structure could, for example, berepresented as this:
root/
index.txt
a/
file1.txt
file2.txt

b/
file.zip

// This structure is then represented as the following three merkle tree nodes, which
themselves are stored under their own hash in a CAS

// root
hash(index.txt) index.txt
hash(a) a
hash(b) b

// a
hash(file1.txt) file1.txt
hash(file2.txt) file2.txt

// b
hash(file.zip) file.zip

Awidely adopted tool that extensively uses hashing is the Git version control system (VCS). It storeseach revision of a software system in a Merlke Tree format which allows to reuse most Merkle Treenodes between revisions. This results in a compact representation and these different revisions
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are also very fast in comparing and determining the changed set of files. Only Merkle Tree nodesfor which the hash has changed must be recursively considered.

4.2. Build Systems

Build systems à la Carte (Mokhov et al., 2018) formalizes the core of build systems and dependencygraphs. They describe build systems as tools that automate the execution of repeatable tasks atscale from individual users to large organizations. In their paper they classify and categorize fourdifferent build systems by distilling a set of common properties and their different approaches.Surprisingly they also describe Excel as a build system in disguise. They argue that each individualcell is a target that can depended upon by other cells. The authors describe an abstract model todescribe any build system and provide a concrete implementation of this model in Haskell. Forclarity we will repeat the necessary parts of the model here, and later expand on this model withour own contributions.

4.2.1. Build System Model

At the core of any build system there are keys and values. The goal of the system is to respondto build requests by bringing the corresponding values of requested keys up to date. In softwarebuild systems these keys and values represent the filesystem. A build request could for exampletry to build main.exe. The build system is then expected to provide a value by writing the main.exefile to the filesystem.
To achieve this, build systemsmodel the build execution as a set of tasks. These tasks describe howto compute one or multiple values for a given key. Depending on the type of build system thesedescriptions could already contain a static list of dependencies to other values. Other systemsallow dynamic dependencies to be resolved during the execution of a task. Another way that werefer to task dependencies is as input values. Because input values of a task are possibly computedas output values of other tasks this system forms a Directed Acyclic Graph (DAG) of tasks connectedby values. When a task initially defines a static set of dependencies but dynamically reduces thesize of this set during execution, this is referred to as dependency graph pruning. An example of adependency graph for program main.exe is given below.
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value

task

util.c

task2

util.h

task1

main.c

util.o

task3

main.o

main.exe

To be more efficient, build systems often perform up to date checks on values. This allows them toskip the execution of a task, when it is sure that the value will not change, resulting in incremental
builds (Maudoux & Mens, 2018). Most often this is done by first bringing the present set of depen-dencies up to date and then validating that the existing value was computed with this same set ofdependencies. In other words, none of the dependencies changed since last computing the value.Most build systems implement this by tracing modification timestamps or content hashes of de-pendencies when a task is executed. The paper refers to these traces as verifying traces becausethey are used to verify that the existing dependency values have not changed since a previous exe-cution of the task. Verifying traces therefore are additional metadata that a build system producesto improve its efficiency. A schematic example of such trace is given below.

verifying trace

dep value 1

task

value hash(dep1)

dep value 2

hash(dep2)

The benefit of using content hashes over modification timestamps is that they are possibly lessvolatile. When a task is retrigged due to dependency changes it may very well produce the exactsame result. A requirement for this to function properly is that the task produces their values de-terministically. When a build system only executes tasks when their dependencies have changed
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the build system is minimal. (Mokhov et al., 2018) define the notion of build system minimality as:

Definition 3 (Minimality of a Build System) A build system is minimal if it executes tasks at most
once per build, and only if they transitively depend on inputs that changed since the previous build.

Another way build systems are speeding up builds is by caching output values of tasks in a separatecache. Caching builds (Maudoux & Mens, 2018) are achieved by extending on the model of veri-fying traces and adding the actual output values to the traces of a task execution. The cache thenallows for lookups of task output values given the hashes of the task dependencies. This cache isoften keyed by another hash of all the combined task dependency hashes. Referred to as construc-
tive traces, because they facilitate reconstructing the value, these traces can be shared betweenmultiple build invocations at different moments in time. This cache allows to easily switch betweendifferent versions of a codebasewithout having to execute otherwise invalidated tasks again.Whenthis cache is stored in a shared network location it facilitates distributed builds and sharing buildresults between many developers. This is often referred to as a remote cache. Again we give aschematic representation of a constructive trace below.

cache

constructive trace

key

dep value 1

task

hash(dep1)

dep value 2

hash(dep2)value

When regarding the execution of a test scenario as a build system task, and the test result as a buildsystem value, we can use the previously described concepts of up-to-date checks, dependencygraph pruning and caching to reduce the amount of tests that need to be selected after a softwarechange.
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Chapter 5

Research Method

5.1. Problem Statement

Let us recall the definitions for the Test Case Selection Problem and Minimality of a Build System.
Definition 1 (Test Case Selection Problem)
Given: A program P , modified version of P , P ′, test suite T and results T (P ) = {(t, v) | t ∈ T, v = t(P )}.
Problem: find a subset T ′ ⊆ T such that any change in ∆(T (P ), T (P ′)) is also found by T ′(P ′).
Note: T (P ) represents a set of test cases (t) and their outcomes (v). T (P ′) \ T (P ) will contain all tests
whose outcomes would be different when T was executed on P ′. Hence T ′(P ′) ⊇ T (P ′) \ T (P ).

Definition 3 (Minimality of a Build System) A build system is minimal if it executes tasks at most
once per build, and only if they transitively depend on inputs that changed since the previous build.

As introduced by Rothermel and Harrold, the Test Case Selection Problem from definition 1 re-quires that testing P ′ with T ′ will execute at least all test cases in T of which the outcomes havechanged since T (P ). When interpreting the execution of a test scenario as a build system task wecan read the Test Case Selection Problem as trying to optimize our minimality function from defi-nition 3 for a test task. It is worthwhile to point out that the output value of a test task representsa verdict if the task succeeds or fails. The test task itself is not responsible for building program P ,it only verifies test t against program P . Because this process may be computationally expensivewe seek ways to improve minimality. Given the definition of Minimality, the subset of required testtasks can be reduced by reducing the set of inputs to these tasks. We formalize this in the followingdefinitions:
Definition 4 (Build Task Minimality)
Given: a task, t, its inputs I and its output o
Problem: Find a subset of I , I ′, used by t to compute o such that t(I) = o = t(I ′)

When a build task verifies a test scenario, t, on P we consider program P an input of test task t.The test selection problem can then be answered for each individual test case as:
Definition 5 (Test Task Minimality By Program Coverage)
Given: a test task t, a program P , its modification∆(P, P ′), test task inputs P ⊂ It and a used subset of
inputs, I ′t ⊆ It.
Problem: find if any element of I ′t is modified in ∆(P, P ′).

When P itself is an atomic element of I any modification of P causes all test tasks that use P tobe selected. We can however think of ways to subdivide P into a set of program parts. This in turnprovides to possibility to only include a subset of P in I ′.
In the case of code-coverage based test selection we subdivide P by the granularity of our mea-sured coverage. The covered subset of P for test t is defined as covt(P ) ⊆ P , which contributes tothe used set of inputs covt(P ) ⊂ I ′t instead of P itself. This allows us to more precisely answer defi-nition 5 by finding if any covered element of P was modified: covt(P ) ∩∆(P, P ′) ̸= ∅. By definitionwe then select all modification traversing test cases. Adhering to definition 1 this is proven safe byRothermel and Harrold.
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5.1.1. Information Coverage

In addition to P , the test inputs I could contain other types of information that are required tocompute the test result. An example of this is a database that is used as the baseline database fora test execution. By substituting P in the definition above for anything else we can generalize ourselection approach from Code Coverage to Information Coverage. This allows us to subdivide notonly a program into many coverable parts but any element of I , such as a database. Definition 5can then be rephrased as:
Definition 6 (Test Task Minimality By Information Coverage)
Given: a test task t, an information dependency D, its modification ∆(D,D′), test task inputs D ⊂ It
and a used subset of inputs, I ′t ⊆ It.
Problem: find if any element of I ′t is modified in ∆(D,D′).

Also in the example of a database we could think ofD as a subdividable set of pieces of informationinstead of being an atomic element of I. This in turn allows us to measure which pieces of datawere actually loaded during the test scenario. We see this idea of Data Coverage as one moreinstantiation of Information Coverage.

5.2. Addressing the Research Questions

5.2.1. Question 1

How effective is Code-Coverage based test selection on integration-test scenarios?

We will answer question 1 by implementing Code-Coverage based test selection in the Bazel buildsystem as previously described and use it to experiment on an existing codebase. To enhanceBazel with coverage data we will adopt and adapt Coverlet for C#. This existing library allows usefficiently and incrementally instrument backend code artifacts, enabling them to produce cover-age data. Bazel already provides ways to prune the dependency graph of a build task after it wasexecuted. We will add support for this to test tasks and also add the ability to prune portions ofa dependency by breaking them up into multiple smaller dependencies. Using the coverage dataof the instrumented files enables us to only keep the covered code as final inputs to a test task.This configures Bazel to more aggressively cache the test results. Differently put, this improves testcase selection efficiency. As a baseline for our measurements we take the test case selection ratewithout pruning any code lines from the test task inputs, solely depending on the build depen-dency graph analysis. By comparing this with the rate that we achieve after applying our methodwe measure how effective it is.
By answering question 1 we hope to prove industry wide applicability of the previous test case se-lection research using modern build systems. When proven applicable our research will also openup future research possibilities on software-engineering-best-practices that increase efficiency ofthe coverage based test selection algorithm. As a contribution to this field we plan to provide a listof challenges we encountered and how we overcame them.
5.2.2. Question 2

Can we generalize to Information-Coverage and does it improve our efficiency?

To answer question 2 we will implement our new concept of Data-Coverage for the same codebaseand tests that were used in question 1. Instead of seeding the database during the test scenarios
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we will seed a snapshot of a database in another build task. By using this database snapshot asa test task dependency we potentially reduce the coverage of the test task itself by removing anycoverage that only occurred during the seed process.When the database snapshot is stable this willimprove our test selection rate. We will improve further upon this by generalizing our dependencypruning logic to not only prune source files but any dependencies of a test scenario. During testexecution we then also keep track of which parts of the database snapshot are actually being readand only maintain those as test dependencies. Similarly, our model driven application consists of a(very) large set of generated JSON definitions. For these we apply the same method, only includingthemwhen they are read during the scenario. We will measure the difference in test case selectionrate with and without these extensions to answer our second research question.
By answering question 2wewill formalize the concept of Information-Coverage andhow this can beexpressed in modern build systems. We will experiment with our method on the private codebaserepositories of AFAS Software.

5.2.3. Question 3

Do our methods yield good enough results for the industry towards changing its testing strategy?

By analyzing the results of question one and two, for which we performed experiments on a soft-ware system currently in development, we determine how likely it is that coverage based test selec-tion scales to larger integration test sets. A crucial aspect here is that for most code modificationsthe amount of selected test remains small. It is inevitable that some changes will impact all or avery large subset of tests, but as long as this is occasional this is acceptable and can efficiently beincorporated in the developer workflow by scheduling them properly. Using the results of question1 and 2 we will determine how often this occurs.
By answering question 3 we hope that our results prove useful and that software engineering canbenefit from a paradigm shift where integration tests can be validated as efficiently as unit-tests.This would allow test suites to be defined on a higher level by less technical people and to moreclosely resemble the true behavior of the software end user.

18 August 2023



Information-Coverage Based Integration Test Selection Utrecht University,

Chapter 6

Extended Build System Model

When projecting definition 6 to the build system model from section 4.2.1., we should note thatprogram P is represented as one or multiple build system values. To facilitate our requirementsof coverage based selection we extend the model by introducing two new concepts.

6.1. Value Structure Traces

A task can describe the internal structure of its output values in an arbitrary data structure. Thisdata structure subdivides the value into individual pieces of information for which change can betracked independently. We refer to this metadata as value structure traces. To give a better un-derstanding of how they may look, we now demonstrate some variations.
A straight forward data structure to represent the subdivision of information that a value providesis amap of information keys and their checksums. This facilitates the tracking of change for eachindividual key by validating if its checksum changed. For a program consisting of three individualparts the value structure trace could look like:
Part1 = hash(Content of Part1)
Part2 = hash(Content of Part2)
Part3 = hash(Content of Part3)

An extension to the map data structure is the represententation of values as Merkle Trees fromsection 4.1.1. This allows us to describe hierarchical structures of values such as files and folders inzip archives, or classes andmethods in source code. This in turn enables a task tomeasure coverageon different levels of granularity which we will discuss more in depth in section 6.4. Merkle Treesalso allow us tomodel complex dependencies that wewill talk about in section 7.8.3. For a programthat contains one class with some methods this could look like:
Program hash(Sub Trees of Program)

Class1 hash(Sub Trees of Class1)
Method1 hash(Content of Method1)
Method2 hash(Content of Method2)

When the only question that we ask our value structure trace is: "did the checksum for a given keychange?", we can simplify the data structure one step further. The same query can be answered bycombining the key and its checksum into a single hash value. This allows us to reduce the complex-ity of the trace to a hashset. This basically means that we can track if all covered elements of thevalue are still present. Unfortunately, when talking about complex dependencies in section 7.8.3.,hashsets only suffice under very strict conditions. Adapting the first example that we gave for amap then becomes the follwing hashset:
hash(Part1 + Content of Part1)
hash(Part2 + Content of Part2)
hash(Part3 + Content of Part3)
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6.2. Dependency Coverage Traces

A task can describe the coverage for each of its dependency values. This coverage denotes thesubset of pieces of information from the dependency value that were actually used during taskexecution. This implies that other parts of the dependency value will not affect the output valuesof the task. We refer to this metadata as dependency coverage traces. Again, we introduce somevariants to give a better understanding of how this may look.
The simplest structure for the coverage traces is a map of covered information keys and theirchecksum. These keys can then be used to validate if they were unchanged in the dependencyvalue by comparing checksums. This alsoworkswhen validating againstmerkle tree value structuretraces by substituting keys for merkle tree paths. A dependency coverage trace for a task that onlycovers part one and three of a dependency value would then look like this:
Part1 = hash(Content of Part1)
Part3 = hash(Content of Part3)

Whenmodelling value structure traces as a hashset it makes sense to do the same for dependencycoverage traces. Each traced hash represents a piece of information from the dependency valuethat was covered. The up to date check simply checks if all hashes in the coverage trace are stillpresent in the value structure trace. This can be implemented as a is-subset-of operation whichcould result in a more efficient implementation. An adaption to the previous example would thenlook like this:
hash(Part1 + Content of Part1)
hash(Part3 + Content of Part3)

An optimization to both previous variants of a coverage trace could be a list of booleans denotingif a piece of information at their corresponding index was covered. These so called hit locationsrefer to an element of the value structure trace. There are multiple factors that influence whenthis is more efficient than tracking individual hashes. Especially when the coverage of values isrelatively large the resulting coverage trace will likely be smaller when using a boolean list of hitlocations. When the program that we used in the previous examples consists of four parts in totalthis dependency coverage trace would be:
true
false
true
false

6.3. Integration

Value structure traces allow us to subdivide values, such as program P , into multiple parts. Pre-viously we could only achieve this by splitting actual file values into multiple files which is not de-sirable in many cases. Dependency coverage traces allow us to reduce the amount of task depen-dencies, such as test inputs I , by tracking their actual coverage. These additional traces then allowus to improve the incrementality of builds by extending on verifying traces and implementing amore precise up to date check. Namely, we can verify if all the covered pieces of information of adependency value still pass the up to date check. Because this is a subset of the entire value, this ismore likely to occur than passing the up to date check for the entire value. The up to date check canbe implemented by comparing a previous dependency coverage trace to the current value structure
trace of the dependency value. We illustrate this process in the schema below.
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verifying trace

dependency coverage trace of Program

Part3 = hash(Part3)Part2 = hash(Part2)

modify program

Part1 = hash(Part1)

test(Program)

test(modified(Program))

value structure trace

if any(hash in trace mismatches)

There are some caveats to note when applying this to constructive traces, for example in a dis-tributed setting. Because a dependency coverage trace forms a subset relation to a value structuretrace it becomes less trivial to find a matching constructive trace in a cache. Previously there hadto exist a direct match between all the dependency value checksums and a constructive trace toreconstruct a value from the cache. Because of this direct match we could reduce the cache keyitself to a hash enabling very fast lookups. Because of the subset relation there can theoreticallybe various cached values where all dependency coverage traces form a subset relation to the cur-rent value structure traces. Finding these traces in an arbitrarily large cache quickly becomes tooexpensive.
Imagine a program under test that produces a value structure trace containing three hashes, a, band c. Suppose the cache contains the following constructive trace keys:
a + b
a + d
c + e

Ideally we would select the a + b constructive trace since it is compatible with the current valuestructure trace of a, b, c. In a small example this seems doable sincewe can check the subset relationfor each constructive trace in the cache. When we however imagine that a program consists ofthousands of parts, and the cache contains thousands of constructive traces, this algorithm nolonger performs.
Current build system implementations therefore uses the unpruned list of dependencies as theconstructive traces cache key. In our example the cache key then becomes a + b + c. Because ofthis we can only reconstruct values when all dependencies precisely match. Due to the incrementalnature of software changes this however is a lesser problem. We can simply find the latest cachehit by backtracking codebase revisions. This will result in the trace that most likely matches thesubset relations because it is closest in the codebase history. After finding a matching trace andreapplying changes again the previously described enhanced up to date logic can be applied. Thisprocess of making sure that a baseline trace is present is referred to as warming up the local cache.Currently there is no build system that performs this automatically. Therefore it can be worthwhileto perform thismanually in a CI setup for builds where dependencies are aggressively pruned, suchas with code coverage based test selection.
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6.4. Trace Granularity

An important decision to make is how to subdivide values into pieces of information. This decisioninfluences the granularity of our coverage measurements and therefore the precision of our testselection algorithm. One crucial aspect to consider here is how each piece of information is iden-tified. When none of the covered pieces of information changes between codebase modificationswe must be able to identify these pieces of information under the same key as before. A synonymwe use for keys when we are talking about code segments is labels. We could for example chooseto divide a codebase per class or per method. Because classes and methods are named by theprogrammer they are easily keyed accordingly in the value structure trace. Code coverage is how-ever often measured on a more fine grained level allowing for more precise test selection. Onlywhen the code in a covered branch changes must we revalidate the test scenario. Coming up witha deterministic key for a branch is however less trivial.
Rothermel et al. use a graphwalk algorithm to compare the control flow graph of program P and itsupdated version P ′. As long as the covered subset of the control flow of P is unchanged in P ′ a testis not selected, but when a single node diverges the graphwalk fails. We can leverage this to identifyintraprocedural constructs such as branches by using the control flow path to a statement as itslabel. This is true because if the path that leads to a covered branch contains changes, this pathmust be covered as well, hence the test scenario is inevitably selected for testing. In this particularcase we therefore do not care if the branch itself also changed and thus also do not care if the labelfor the branch changes. Whenever multiple control flow paths converge again, they are collapsedinto a single node in the label. This algorithm allows us to implement semi-deterministic branchlabeling as demonstrated in the comments of the following example.
function m()
{

a; b; c;

// m/{a;b;c;if(a)/then}
if(a) { }
// m/{a;b;c;if(a)/else}
else { }

// m/{a;b;c;if(a);if(b)/then}
if(b) { }

d;

// m/{a;b;c;if(a);if(b);d;if(d)/then}
if(d) { }

}

We should note that these labels can become of arbitrary size when the control flow graph grows.To solve this we simply store a hash of these sequences as labels instead. As far as we are awarethis content based labeling method has not been documented before but does feel natural in acontent addressable system and strongly resembles the graph walk logic from previous work. Thecoverage framework LCOV uses GCC branch ids to identify branches but these are unstable afterchanges. Ivanković et al. (Ivanković et al., 2019) mention that they use a slightly modified version atGoogle of GCC ids but they do not elaborate on its characteristics or reasoning.
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Chapter 7

Implementation

To validate ourmodel enhancements we have implemented a prototype that supports informationcoverage based test selection. In this prototype we implement code coverage based test selectionfor C# and data coverage based test selection for a custom database snapshot format in JSON.We do not implement the previously described solutions for missing information dependencies.Therefore our implementation is not yet complete.

7.1. Bazel

We use the Bazel (Bazel, 2015) build system to implement and validate our work. Bazel alreadyhas support for incremental building and testing and supports integrating custom logic in so calledrulesets for new languages or additional requirements. This allows us to easily plug in the coveragecollection processes for the different languages that we require. Bazel also implements variousconcepts that we utilize for caching. This caching behavior translates to answering the test caseselection problem because cached tests are not selected.

7.2. Collecting Coverage

Collecting coverage data requires instrumenting the source code. Source code instrumentation isthe process ofmutating the source codewith additional statements that trace the runtime behaviorof the code. In the previous chapter we referred to these traces as the dependency coverage traces.We use a slightly adapted version of the cross-platform coverage toolkit called Coverlet (Solarin-Sodara, n.d.) for .NET. Coverlet takes as input the DLL containing already compiled C# code, andoutputs a similar DLL with the added trace statements. We adapt this process to fit nicely in theBazel ecosystem, allowing us to cache instrumented DLL files. During a test run Coverlet keepstrack of different language constructs such as lines and branches by inserting very lightweight in-terlocked increment statements on a one dimensional array of integers. After a test scenario isexecuted this so called hits array is persisted as part of the test results. For our purposes it sufficesto only store a single boolean bit per hit location.
We also adapt Coverlet to write a file containing a label for each instrumented hit location duringinstrumentation. Using two separate files allows us to cache the labels once per instrumented file,and store the boolean array of hits as a bit array per executed test. This data layout is similar tothe two-sequence encoding as talked about in Code Coverage at Google (Ivanković et al., 2019).Besides the labels we also track the content hash for each hit location. This ultimately allows us todetect changes to covered code. A noteworthy aspect for our implementation is that these contenthashes are based on the IL code instead of the source code.

7.3. Labeling Source Code

While Code Coverage at Google (Ivanković et al., 2019) describes labeling and coverage results onthe resolution of line numbers, this will not suffice for our application since the line number for agiven program statement may change between P and P ′. After obtaining hit locations for an ar-bitrary test scenario it is important that we can track these locations before and after a change
∆(P, P ′) has occurred using deterministic labels. This is required because we want to known if
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modified code segment s ∈ P ′ actually is part of the hits array for test execution t(P ). This label-ing is trivial when measuring coverage on the granularity of methods and functions since they areuniquely named by the programmer. A small example is given below to illustrate this. It becomesmore challenging when we wish to measure coverage on a more fine-grained level that also distin-guishes intraprocedural control flow such as branch coverage.
namespace Runtime;
class Program
{

public void Main() => Write(Read());
public int Read() => 1;
public void Write(int v) =>

Console.WriteLine(v);
public void Uncovered() => Write(2);

}

Runtime.Program.Main()
Runtime.Program.Read()
Runtime.Program.Write(int)
Runtime.Program.Uncovered()

Labels for the Program.dll on the left

7.4. Merkle Tree Artifacts

To make Bazel understand partial changes of our program we implement a way to provide a valuestructure trace of a file that replaces the default content based hash. This feature allows us to sub-divide the program into many parts for which changes can be tracked separately. Bazel representsoutput files as Artifacts and already knows the concept of Tree Artifacts that represent folders orarchives in a Merkle Tree structure (Merkle, 1979). Similarly, we will implement a special Artifacttype that uses a provided Merkle Tree based on the virtual tree structure of the file it represents.Existing dependency graphpruning logic can then be adapted to also prune subsets of these specialArtifacts similar to the existing Tree Artifact pruning. This results in a reduced set of test inputs.
In our particular caseweuse the previously described labeling logic to name theMerkle Tree entriesand hash the relevant source code content to detect changes between software modifications.This content hash is then persisted during instrumentation right next to the label. Depending onthe granularity this can be the entire method body, or just a single statement. The previous listof labels for Program.dll is is then described by the Merkle Tree below. As an illustration we alsoadded a class label as the root level of the Merkle Tree.
Runtime.Program hash(Nested Merkle Tree Nodes)
Runtime.Program.Main() hash(Code in Main)
Runtime.Program.Read() hash(Code in Read)
Runtime.Program.Write(int) hash(Code in Write)
Runtime.Program.Uncovered() hash(Code in Uncovered)

During test case selection we can finally use this information to determine for any covered codesegment label of s ∈ P if their content hash is the same in P ′ rendering testing unnecessary.
Interestingly, determining if a hash is unchanged in a keyed lookup can be simplified to a set con-tains algorithm by moving the key inside the hash as shown below. Intuitively this translates tofinding if all covered program segments s ∈ P are still present in P ′ which is what we also derivedin definition 5.
hash(Runtime.Program + Nested Merkle Tree Nodes)
hash(Runtime.Program.Main() + Code in Main)
hash(Runtime.Program.Read() + Code in Read)
hash(Runtime.Program.Write(int) + Code in Write)
hash(Runtime.Program.Uncovered() + Code in Uncovered)
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7.5. Branch Coverage

int Test(bool a, bool b)
{

var c = a && b;
int i;

if(c)
{

i = 1;

if(a)
{

// var y = 100;

i = 2;
}

}
else
{

i = 2;

if(b)
{

i = 5;
}
else
{

i = 4;
}

}

return i;
}

ldarg0

ldarg1

and

stlocV_c

ldlocV_c

brfalse

ldc.i41 ldc.i42

stlocV_i

ldarg0

brfalse

ldc.i42

nop

stlocV_i

br

ldlocV_i

stlocV_i

ldarg1

brfalse

ldc.i45 ldc.i44

stlocV_i

br

nop

stlocV_i

ret

We have already described a theoretical model to tackle intraprocedural change detection in sec-tion 6.4. For our C# implementation we however use the the intermediate language (IL) code thatis part of the DLL that we are instrumenting to determine content hashes of methods. By recon-structing the IL statements of a method as a graph, we were able to still leverage the graph walkapproach of Rothermel and Harrold. An example of a C# function body and IL instruction graphare given above. To trim down graph size we omitted some obsolete statements from it. Using thisgraph we determined keys and content hashes for C# code blocks and branches. Using IL actuallybrought some benefits over using the actual source code. Many C# ways of branching were re-duced to only a few different IL statements. We also found that symbol resolution, which in IL hasalready happened during compilation, actually is a crucial requirement for code coverage basedtest selection. We will discuss this further in section 7.8.1.
One substantial challengewe encounteredwas that introducing new variables in themethodwould
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shift all subsequent variable locations by one. As demonstrated in the example below, uncomment-ing the y variable actually also causedmodifications of IL in branches that were left untouched. Thesolution we applied here was to replace the IL variable indices with the names the programmergave them. This still left some unnamed variables that happened to be inserted by the compiler fordebugging purposes. These pairs of stclocV_X and ldlocV_X could be stripped of their index entirelybecause they would always refer to the same index.

Since the size of an arbitrary method is arbitrarily large the previously described labels could be-come arbitrarily large as well. Therefore we also use a hash function to shorten the labels to a fixedsize. The labels for the Test function and IL graph that we demonstrated earlier then become:
Test(bool, bool) hash(Nested Merkle Tree Nodes)
Test(bool, bool)/hash() hash(GREEN nodes)
Test(bool, bool)/hash(ldarg0/ldarg1/and/stlocV_c/ldlocV_c/brfalse#true) hash(BLUE nodes)
Test(bool, bool)/hash(ldarg0/ldarg1/and/stlocV_c/ldlocV_c/brfalse#false) hash(PINK nodes)
Test(bool, bool)/hash({ green and blue prefixes of yellow }) hash(YELLOW nodes)
Test(bool, bool)/hash({ green and pink prefixes of brown }) hash(BROWN nodes)
Test(bool, bool)/hash({ green and pink prefixes of purple }) hash(PURPLE nodes)
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7.6. Flexible Prune Specifications

The input pruning logic in Bazel is currently done via an unused-inputs-list. This approach is limitedby only expressing the set of known inputs that were unused. When additional inputs, such as codemodifications, are added this,means the entire test scenario is re-selected for testing. Formany usecases, such as programming languages, it is safe to argue that these new inputs only matter whenexisting inputs were changed to reference them. Therefore we propose and will implement thatBazel accepts a more flexible prune specification in the known format of .gitignore files. This addssupport for patterns such as wildcards and negations. Using these we can reverse the unused listto a used list for certain file types by, for example, ignoring all *.dll’s and negating only the coveredfiles and code segments. Additionally, because Git works with Merkle Tree algorithms, we suspectthat applicable algorithms for processing this format are readily available. Implemented correctlythe semantics of existing unused-inputs-list files will remain the same.
We must also implement support to express inclusions of only portions of a file. For this we planto extend the gitignore format to accept additional identifier segments after a # indicating subfileMerkle Tree identifiers.

7.7. Database Snapshots

Our test scenarios start by preparing the test environment with seed data. Because this seed datagoes through many different pipelines of the application, this process actually causes a lot of codecoverage. The actual test scenario itself however, only relies on a very small portion of the effectsthat this seed data has on the application. We therefore implement a database snapshot that takesa checkpoint of the application state and persists it as build system values. That way a separatebuild system task covers the code to reach this checkpoint, and the test task only depends onthe snapshot itself. We can then further prune the dependency on this snapshot by only keepingthe truly loaded database tables as a dependency to the test task. To illustrate this a schematicrepresentation is given below.

program components program components'

database snapshot

DC

test

BA D'B'

table3

C'

test'

A'

table4table2table1

While implementing this feature we initially gained very little benefits from it. This was due tothe fact that our database snapshot contained non-deterministic data that differed every time thesnapshot was created. This data mainly consisted of timestamps and random unique identifiers.We resolved this by removing some unnecessary timestamps from our snapshot, and setting other
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timestamps to a fixed value in case of testing. For the random identifiers we chose to implement afixed seed, which causes the identifiers to be deterministic as long as they were being assigned or-derly. Thanks to pruning we however only had to fix the cases that were actually part of the coveredinformation.

7.8. Limitations

7.8.1. JavaScript and TypeScript

To instrument frontend code, which is written in TypeScript, we planned to use the Istanbul (Coe,2018) instrumenter. Istanbul also keeps track of hit locations, similar to Coverlet, so we expectedthat the implementation would be trivial. During engineering we soon encountered some funda-mental issues with the design of the JavaScript language in combination with code coverage basedtest selection. Large parts of the JavaScript code base were always being covered whilst also beingvery prone for modifications. This resulted in very poor performance which caused us to abandonthe implementation of this language for our final work.
In futureworkwewill discuss some ideas on howwe could overcome these issues. First we howeverdescribe the difference between JavaScript and C# that causes these issues.
C# is a compiled language that resolves fully qualified names of classes and methods during com-pile time. When a method is invoked at runtime it uses this linked information to directly invokenested methods. This way the using statements at the top of each C# file are abstracted away, andonly actual method bodies that are invoked, are covered. JavaScript on the other hand, relies onits runtime to dynamically stitch the different parts of the codebase together. Import and exportstatements declare new classes and methods, similar to C#. For JavaScript however the functionbodies do not link against fully qualified names. To knowwhere nested function invocations are re-solved from, the top level scope of a filemust be interpreted first, which is donewhen the JavaScriptapplication is loaded. This means that each JavaScript file will result in at least some coverage foreach test. This would not be an issue if the code in this scope was very stable. However, becausewe declare imports and exports here it is actually very likely to change. A programmer only has toinvoke one new method from an arbitrary function in a JavaScript file, and a new import is addedat the file scope level, resulting in a covered change. This fundamental difference between C# andJavaScript makes it very hard to apply code coverage based test selection to JavaScript code.

7.8.2. Limitations of Code Coverage

Code Coverage based test selection is safe when program modifications that happen outside thecovered scope can not influence program flow. A programming language can however implementdifferent features that should be considered with care. A notable example here is virtual functioncalls and their problem is best demonstrated with an example.
abstract class Fruit {

public virtual int Price() => 1;
}

class Apple : Fruit {
// public override int Price() => 2;

}

void Test(Fruit fruit) {
Assert(fruit.Price() == 1);

}
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The basic test above will succeed for Apple. However by overriding the implementation of Price,as demonstrated in the comment, we can cause the test to fail without touching the previouslycovered program flow.
A solution to this problem that we found in literature was to connect a virtual function call to eachpossible override (Harrold et al., 2001). In our approach this would mean that instrumentation of avirtual function call requires a holistic view of all implemented overrides. Because our approach in-struments each project individually this was not a feasible constraint. Another downside of this ap-proach is that the static set of all possible overrides is often larger than the actual covered overridesduring execution. In our example this wouldmean that introducing a new kind of fruit required theApple test to be evaluated again as well.
A possible solution that we came up with was to simply implement all possible overrides duringinstrumentation. The empty Apple class would then be transformed into something like:
class Apple : Fruit {

public override int Price() => base.Price();
}

Because this generated overridewill result in code coverage this fits perfectly in our coverage basedarchitecture. In case a programmer would implement their own override this would cause the cov-ered code change, hence resulting in test selection. It does however drastically complicate the in-strumentation step because we must analyze which virtual functions exist without override foreach individual class.

7.8.3. Generalization of Information Coverage

void Test {
Assert(!File.Exists("somefile.txt"));

}

We can generalize the previously described virtual function problem as recognizing that a piece ofabsent information may become part of the covered information when it becomes present. In asimple form a similar problem could occur when a test tries to read a file but graciously continuouswhen its not present. An example of such test is shown above. When somefile.txt becomes presentit was not part of the previously covered information. It does however cause the test to fail. Tosupport these scenarios we must introduce a way to express which information will influence ourresult when it becomes available. Besides tracing the covered information during a task executionwe therefore also introduce trace data for information keys that were attempted to be covered butturned out to not exist (yet).
When regarding the fact that a piece of information is not present as a piece of information itselfwe could argue that we still only have to trace the coverage of information. When tracing valuestructure and dependency coverage as hashsets this only works when the set of information thatcould exist, but currently does not exist, is known. This is required because we must be able toanswer if a piece information was not present in a given value structure trace before. When every-thing is represented as a hash however, there is no way to find if a piece of information is missing,or has a different value. Therefore we must encode the fact that it is missing as a hash entry itselfwhen tracing the value structure. This is similar to our proposed solution in the previous section ofintroducing additional coverable information by creating an empty override. The map and merkletree variants of traces do not face the same challenge. Here we can simply query the data structureif a given key exists to find out if it is currently a non existing piece of information. An informationcoverage trace can then also contain keys where the value hash is empty, which allows build system
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task to express dependencies on currently missing information.
Sometimes the information that we try to resolve is not definable by a single key. We could forexample try to read all *.json files from a directory or ZIP archive. In this case simply adding a newJSON file would impact our execution and thus, being modification traversing, possibly our results.
To facilitate complex dependencies on currently missing pieces of information or collections ofinformation matching a certain pattern we propose the following model enhancement.
Information dependencies like this can be expressed in the form of glob patterns similar to .gitig-nore files 1. We could also consider a directory that is globbed to be part of the covered information.Adding files to the directory causes the directory itself to change leading to the invalidation of a de-pendency.

1To read more about .gitignore files visit https://git-scm.com/docs/gitignore
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Chapter 8

Results

Aproof of concept has been implemented to demonstrate the feasibility of the previously describedarchitecture. This prototype currently implements the following features:

• Instrumentation of C# code at the granularity of methods and branches.
• Providing value structure traces for the instrumented C# binaries.
• Measuring C# code coverage during test execution resulting in dependency coverage traces.
• Creating a database snapshot to checkpoint the seed phase of a test. This snapshot is alsorepresented by a value structure trace.
• Modifying runtime behavior to produce a dependency coverage trace for the loaded parts ofa database snapshot.
• Pruning entire dependencies of a test task.
• Pruning subsets of test task dependencies using the value structure and dependency cover-age traces for both C# and the database snapshot.

It therefore, notably, does not implement a solution to the virtual function problem and other notcoverable modifications as described in section 7.8.2.. We also decided not to include JavaScriptand TypeScript support due to the previously described fundamental issues. Because of this wedo not include TypeScript modifications in our results since they would skew the results for themodification types that we did implement.

8.1. Experimental Setup

To validate our work we have conducted experiments on the private codebase of AFAS Software.This codebase consists of a largemonorepo that implements a low code platform consisting of over500 C# projects. We required various modifications to the codebase for our experiments which weimplemented on top of the latest version of the codebase. To validate our test selection methodwe then recreated a git history of the codebase between 11-04-2023 and 03-05-2023 by revertingindividual commits, excluding our previous modifications that were done to facilitate our experi-ment. After each revert we validated the codebase would still build, occasionally resolving conflictsthat were caused by our modifications. This process ultimately resulted in 108 individual commitsthat we used as real world codebase alterations for our experiment.
Git makes it easy to traverse its commits in reverse because each commits refers to its previouscommit. Because of that we chose to revert the commits in reverse historical order starting with thenewest commit. This resulted in a reverse chain of commits that ended in the oldest commit. Thiswas actually convention for us, because we could now traverse the commits in forward historicalorder, starting with the oldest. Wemeasured, for each change between commits, which integrationtest scenarios were selected for testing while applying information coverage based test selection.
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8.2. Hardware

All experiments were conducted on a Dell Precision 5550 laptop with the following specs:
• CPU: Intel Core i7 10875H
• GPU: NVIDIA Quadro T2000
• RAM: 32GB
• Storage: Micron 2300 NVMe 1024GB

8.3. Experiments

To understand the impact of the different techniques that we applied we ran the full experimentfive times:
• Without any information coverage based selection
• Without database snapshotting, applying method coverage based test selection
• Without database snapshotting, applying branch coverage based test selection
• With database snapshotting and method coverage based test selection
• With database snapshotting and branch coverage based test selection

The prior test selection method, that only used existing dependency graph information, would ei-ther select all integration test scenarios or none. If any potential dependency of a test wasmodified,all tests were selected. If the codebase modification was outside of this scope, none were selected.This could happened occasionally when themodification only affected other tests, or modified noncode files such as documentation.
In early trials of the experiment we were already seeing significant gains from only applying C#method coverage based test selection. In a given run of 29 codebase revisions we managed to re-duce a 93% selection rate down to 42%. The table below shows these results. The first line containsbaseline selection rates which are either 0 or all 46 tests. The second line contains the selectionrate with the method coverage based selection feature active.
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Our initial results already gave various interesting insights. Where almost all changes used to resultin a full test run before, code coverage based test selection caused 0 tests to be selected in 41%of the changes. The second largest set of changes were still those that affected every single testcase. This was either due to them being a refactor of some commonly used low level concepts orbecause they covered processes in the initial database seed that every test used.
To optimize for tests thatwere being selected due to coverage of the seedprocess, we implementeda way to differentiate between the seed process and the actual test runtime. Our approach con-sisted of subdividing the seed process and test execution into separate build system tasks. Herethe seed process produced a database snapshot value, for which the test execution task could tracecoverage independently from code coverage. This architecture drastically reduced the code cover-age footprint of test execution, but introduced additional dependencies in the form of databasesnapshot coverage. Our initial results using the snapshotting technique were very disappointingdue to volatlity in the database snapshot itself. In section 7.7. we already discussed these prob-lems, and our solution in more detail.
Finally, to reduce test case selection even further, we also optimized the precision of the codecoveragemeasurements by implementing branch coverage based value structure and dependencycoverage traces. This higher resolution coverage data allowed us to safely exclude test cases thatdid cover a modified method, but only covered unmodified branches of that method. In the nextsection the benefits of this improved resolution are discussed in more detail.

8.4. Results

Selection Rate Over Baseline Over Previous Over No SnapshotBaseline 78,7%Method Coverage 29,6% 37,7%Branch Coverage 28,9% 36,7% 97,3%Method + Snapshot Coverage 22,0% 28,0% 76,2% 74,2%Branch + Snapshot Coverage 21,3% 27,1% 96,7% 73,7%measured test selection rates

The findings of our experiments are shared in the table above. The baseline selection rate for ourfinal experiment was 78.7%, which is higher than that of the initial testing rounds. Looking at theselection rate improvement of only applying method coverage based test selection, we see an im-provement of 62.3% relative to the baseline. More fine grained branch coverage only adds onemore percent to this, which, relative to method coverage, optimizes selection rate by 2.7%. Whenenabling the database snapshotting feature to reduce method coverage we see a 25.8% improve-ment. For branch coverage this improvement is 26.3%. With all features enabled our experimentsshow us a baseline improvement of 72.9% where just over 20% of test cases are still selected.

8.5. Threats to Validity

8.5.1. Internal Validity

Due to the limitations that we discussed in detail in section 7.8.2. our implementation is not com-plete with regards to catching all fault revealing test cases. Additionally, because our test set onlycontains successfully tested commits to the mainline codebase, our experiments tell us nothingabout the amount of fault revealing test cases that we are potentially missing. Since the limitations
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wediscussed only occur under very strict circumstances, we do not expect them to occur very often,if at all. Further research is however required to verify this in a production setting.
Because the runtime of a single test in our test set takes longer than a minute the additional over-head of instrumentation, coverage collection and processing during test selection are neglectable.For codebases where test task duration is lower, the overhead of our method will be higher. As aresult of our implementation in the Bazel build system, and the way that this is designed, it becamevery difficult to measure the true performance implications during our tests. We therefore do notclaim net time savings, but discuss our results objectively as test selection rates.
Another threat to internal validity is maturation. During implementation and experimentation wefound various issues, such as non determinism in snapshots and code paths that were always beingcovered. By fixing these issues we influenced the results of our experiments. We do however thinkthat these steps were required to demonstrate the true potential of coverage based test selection,and that others who apply the technique will be looking for these optimizations as well. Coveragebased test selection even functions as a means of detecting these opportunities.
When considering the history and sampling bias threats to validity this could very well apply toour setup. Because we only selected a consecutive sequence of commits in time we may haveselected a set that does not represent average activity well. Thework being done in this limited timespan could, for example, be skewed towards a specific program part for which test case selectiondiverges from the mean. After manually reviewing the software revisions, we are confident thatthey represent a diverse set of changes. Additionally, the results of our initial experiments, andthose of our final results, do not diverge much. More research will however be needed to verify theresults on a larger dataset.

8.5.2. External Validity

When considering the extent in which we can generalize the results of our study, we should notethat the results are heavily influenced by: codebase size, changeset size and coverage per test task.Additionally, the maturity and structure of a codebase are important as well, since they influencethe likelihood that changesets contain changes to commonly covered code. These so called hotpaths tend to change less frequently when a codebase matures. Additionally, developers couldidentify code that often invalidates test results, and restructure the codebase accordingly. Becauseof these unpredictable dependencies we believe that it is very unlikely that another instantiationof our experiment will yield the same results. It is, however, of greater importance that our pro-posed methods for implementing information coverage in a build systems proved functional. Fur-ther research will be required to get a better understanding of the performance improvements ofinformation coverage based test selection in a generalized setting.
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Chapter 9

Conclusion

This thesis has explored the applicability of code coverage based test selection in a modern indus-try environment. By researching existing work we found that code coverage based test selectionhas been extensively researched in the past. Unfortunately these methods have not been widelyadopted by the industry. As a contribution towards this adoption we extend the formal model ofbuild systems with additional concepts to facilitate code coverage based test selection. The first ofthese generic concepts is a value structure trace that allows the build system to track changes ona more fine-grained level than files, such as coverable code segments. The second concept we in-troduce are dependency coverage traces that allow the build system to express the utilized subsetof a value (identified by its value structure trace) when a build task is executed. Finding an emptyintersection between a dependency coverage trace and the modified subset of a value structuretrace allows us to determine that a build system task does not depend on anything that was mod-ified. Because test execution is resembled by a build system task, this reduces test case selectionrates.
Rothermel et al. defined this process as finding change traversing test cases and proved that thisheuristic is safe. We however discovered various variations of code modifications that could causea test to fail without being part of the baseline code coverage. A notable example of this is given insection 7.8.2. and involves overriding a virtual function. Because of this we contribute the conceptof information coverage as a generalization of code coverage. Information coverage enables usto express the coverage of any piece of information that might change and is used during testexecution. This allows the introduced trace types to express changes to any piece of informationand track dependencies accordingly. We propose a solution to the virtual override problem byallowing dependencies on absent pieces of information.
In order to verify our model enhancements in an industry setting we have implemented a proto-type on top of the Bazel build system. This approach allowed us to leverage much of the existingarchitecture for change tracking and incremental building. The additional featureswe implementedwere a way to express value structure traces in the format of Merkle Trees and dependency cover-age traces in the form of hit locations. This proof of concept does not implement solutions to thepreviously mentioned limitations of code coverage. It does however implement the data coveragesolution using the same trace mechanics for a database snapshot.
With the working implementation of information coverage based test selection we conducted var-ious experiments to measure the impact of our methods. We saw code coverage based test selec-tion reduce the rate of integration tests to almost one third of the baselinemethod. After combiningthis approach with database snapshot coverage heuristics we managed to reduce this selectionrate even further by one quarter. Interestingly, we found that improving the granularity of codecoverage from methods to branches had very little impact.

9.1. Research Questions

These results allow us to answer our research questions as follows:
9.1.1. How effective is Code-Coverage based test selection on integration-test scenarios?

We found that code coverage based test selection can be effective on integration-test scenarios.Our results show that the algorithm, when measured on the granularity of methods, yields an
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improvement of 62.3% over the incremental build graph algorithm. Interestingly, increasing thegranularity of coverage measurements to branches only improves this by one percent to 63.3%.

9.1.2. Can we generalize to Information-Coverage and does it improve our efficiency?

We found that substituting program runtime for a database snapshot, and applying data coverageheuristics on it, improved test case selection rates by an additional 25.8% when combined withmethod covarage and 26.3% when combined with branch coverage. Depending on the determin-istic nature of an application, a database snapshot can actually work counter productive when itcontains non deterministic data each time it is created. Resolving this required significant invest-ments in changing the application logic to be deterministic for any data that was covered duringtest scenarios. This additional overhead imposed on developers, and the relatively low benefits ofdata coverage make it less worthwhile to implement and maintain.
Wealso discovered that for various codebasemodifications, traditional code coverage is not enough.Therefore information coverage based test selection is actually a necessity for an implementationto be complete. We conclude that we were able to implement data coverage as another instanceof information coverage. Data coverage also improved the efficiency of test selection, albeit withsignificant investments in program architecture. Additionally we also conclude that our general-ization to information coverage is actually required to fully express change traversing tests usingcoverage data.

9.1.3. Do our methods yield good enough results for the industry towards changing its testing strategy?

An important insight from our study is that code coverage alone is not enough for a completeimplementation of test selection. More work is required to implement and research the limitationsthat we discovered, which is crucial for a safe industry wide adoption. Our findings do show thatinformation coverage based integration test selection can be successfully deployed in an industrysetting. Purely applying code coverage heuristics already reaches significant improvements overdependency graph based test selection.
Due to the nature of integration tests however, we found that they are very likely to cover a bigchunk of the codebase. We saw many program components that were being covered during thestartup of the program, which caused a large coverage footprint for every test. This resulted in inef-ficient to testing of modifications to these program parts since they caused all tests to be selected.Improving this rate by reducing coverage required significant investments in test infrastructure.In some cases we managed to reduce the coverage by purely changing the implementation. An-other solution we implemented for this are database snapshots that function as a checkpoint ofapplication state and allow us to substitute large parts of code coverage for coverable data.
With these findings we conclude that the industry can shift towards integration testing over unittesting using our build system enhancements. This does however require that the code coverageper integration test is small, which may require significant investments in test setup to be reduced.Additionally we demonstrate that, with minimal investments, code coverage based test selectionreaches significant results for existing integration tests without any modification.
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Chapter 10

Future Work

We will end this work with some possibilities for future work.

10.1. Validating the algorithm in production

The most important next step is to validate the build system enhancements in a real continuousintegration (CI) setup. Our results currently only include already successful codebase revisions.Therefore they do not measure anything about the completeness of the method. By running thealgorithm in a real world CI setup we can get a better understanding of how likely the currentimplementation is to miss a faulty test. This research will also be able to produce a list of faultrevealing codebase modifications that do not surface with traditional code coverage based testselection. Another important next step is to validate our enhancements against other codebases.This will give a better understanding of how well our methods generalize. To facilitate research inreal world CI setups of various codebases we open source our current implementation in Bazel.

10.2. Lower granularity

Our results show only one percent increase in performance when implementing branch coveragecompared to method coverage. This raises the question what impact it would have if we furtherreduced the granularity of coverage to class or namespace levels of sourcecode. Reducing granu-larity could bring performance improvements as well as consume less memory. Additionally, whenconsidering the coverage at the granularity of classes, we see various benefits with regards to thelimitations we discussed. A virtual function override for example, is always part of a class. Introduc-ing the override will then mutate the class that may or may not be already part of the measuredclass coverage. This depends on whether an object of that class is created during test execution,which we can safely measure.

10.3. Information Coverage for Build Systems

When applied properly, we can use our information coverage algorithm as a way to minimize theentire build system, not limited to test tasks. Build system tasks of any kind receive information asinputs and potentially use only a subset of the information. Compilation of .NET projects, for ex-ample, already uses the concept of reference assemblies. These assemblies only contain the publicsignatures of functions without any implementation, similar to .h files for C(++). This is because thisis the only information that the compiler needs to compile another project that references thesesignatures. These reference assemblies are less volatile than the actual assemblies containing im-plementations. This in turn improves the minimality of the build system. With our information cov-erage approach we could replace these reference assemblies with a subset of the information theactual assemblies provide. With some caveats this allows us to even further optimize forminimalityby only maintaining the function signatures that were actually used during compilation as actioninputs, as opposed to all the function signatures.
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10.4. Dynamic programming languages

While implementing the same heuristics for code modifications to our TypeScript codebase we en-countered that the dynamic symbol resolution of this language caused the set of covered code codeto often intersect with changed code. Ultimately this rendered the implementation for JavaScriptand TypeScript out of reach for now. We can however imagine ways to bring change detection ofTypeScript functions closer to that of our C# implementation. This would require some form ofsymbol resolution to occur when determining content hashes of function bodies. An interestingapproach to symbol resolution is discussed by GitHub employees (Clem & Thomson, 2021) whoutilize so called Stack Graphs (Creager & van Antwerpen, 2022) to incrementally track symbol res-olution information. A benefit of their toolkit is the use of Tree Sitter, which is a universal parserthat can support any language. Some of their work could potentially be used to properly determinecontent hashes for dynamic languages.
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