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1 Introduction

Hardware acceleration is the method of accelerating calculations by using hardware specifically designed
for the type of calculations. For instance, to simulate light in real-time, the recent NVIDIA 4090
graphics card (GPU) has 128 cores dedicated to raytracing computations [17]. Often, addressing the
capability of dedicated hardware requires expert knowledge. To alleviate this need, Accelerate is a
language designed to compile generic parallel array instructions into hardware-specific code [10]. For
example, the language supports code generation for multi-core CPUs and GPUs. This thesis proposes
the addition of TensorFlow support to Accelerate’s compiler. TensorFlow is a parallel machine learning
library by Google [1]. The library allows the construction of graphs with matrix-like operations. Among
others, the library features GPU support to perform its calculations. To compile Accelerate programs into
TensorFlow, a new implementation is added to Accelerate’s compilation pipeline. This thesis investigates
the possible extent of the instruction set to cover each Accelerate program and enumerates its limitations.
The remainder of section 1 introduces Accelerate and TensorFlow. Section 2 discusses the compilation
process for Accelerate. Section 3 depicts the implementation of the instruction set of this process. Finally,
sections 4 and 5 elaborate on code coverage and performance, and how future research could improve
these results.

1.1 Data-parallelism

Accelerate is a data-parallel language. To quote Bergstrom et al. [7], data-parallel computations apply
a function to the elements of a collection in parallel. Data parallelism is an effective technique that
takes advantage of parallel hardware and is especially suited for large-scale operations. With nested data
parallelism, parallel instructions may contain nested parallel instructions of arbitrary complexity [22].
For illustration, example 1 depicts a simple quicksort implementation.

Example 1: A simple quicksort implementation, can be parallelised by spawning new processes to
compute ls and hs. For readability, this example disregards the performance benefit of removing
the array concatenations. To run it as a nested data-parallel program, the method qs spawns two
separate processes to calculate ls and hs, which recursively spawn new processes by calling qs.

qs :: Ord a => [a] -> [a]

qs [] = []

qs (pivot : as) = let

ls = qs [ a | a <- as, a <= pivot ]

hs = qs [ a | a <- as, a > pivot ]

in ls ++ [pivot] ++ hs

Flat data parallelism Accelerate excludes nested data parallelism to ensure efficient execution on
GPUs [23]. In contrast to the nested variant, flat data parallelism restricts the use of nested parallel
instructions. In short, flat data parallelism is easier to implement, as it provides easier load balancing
and cache-friendly, linear traversals of boxed arrays [19]. In contrast, nested data parallelism is more
expressive to the programmer [7]. To bridge the gap between nested and flat data parallelism, Sabot and
Blelloch [8, 9] introduced an approach named flattening. Flattening converts nested parallel instructions
into flattened parallel instructions over multiple flat arrays. The method proved efficient on shared
memory machines but performed poorly on distributed-memory machines [15]. With the intent to
find an implementation technique that was efficient for such machines, Keller proposed to compile the
nested data parallel instructions with a newly optimised set of flattening transformation instructions [20].
With flattening, each instruction of a program is mapped to a corresponding set of flat data parallel
instructions. This process is also known as vectorisation. In a similar fashion, section 3 illustrates a
vectorisation process where higher-order functions are flattened to a corresponding series of first-order
operations. Finally, flattening increases the work complexity of an algorithm. Among others, Lippmeier
et al. [22] and Keller et al. [19] introduced methods to improve the work complexity of flattening. For
illustration, example 2 elaborates on a flattened version of the nested data-parallel QuickSort algorithm
of example 1.
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Example 2: To illustrate what a flat parallel program looks like, consider the following outline of
a flat data-parallel quicksort program. The full implementation can be found on the Accelerate
examples GitHub page [3]. In an overview, instead of recursively spawning new processes, the array
is sorted by keeping track of element flags in a separate array. The flags indicate the start of
segments in the array that should be sorted. Initially, the input array is the only segment. Then,
while the array is not sorted, the algorithm runs in parallel on every segment and modifies the
flags to indicate the new segments next to the pivot. In this example, there is no nested parallelism
because it creates parallel processes only at the top level of each iteration. As a result, the definition
is flat data-parallel.

1.2 Accelerate

Accelerate is a flat data parallel language for array computations embedded in Haskell [10, 23, 11, 24,
12]. Accelerate has backends to compile data-parallel array instructions into hardware-specific code.
For instance, for multi-core CPUs, it uses LLVM [24], and for GPUs it uses CUDA [10]. Accelerate
distinguishes between vanilla Haskell arrays and embedded arrays. The arrays are kept in the memory
of the backend-specific device and are used to perform embedded calculations on the backend-specific
hardware [10]. In Haskell, Accelerate’s embedded array operations are represented by the type Acc [28].
Moreover, a term of type Acc a is an Accelerate program, which, once executed, will produce a value
of type a. Specifically, each array instruction Acc consists of scalar operations that will be executed on
the external hardware. Continuing from the Accelerate documentation [2], the type of allowed array
elements is characterised by the Elt class, which roughly consists of signed and unsigned integers,
floating point numbers, characters, booleans, shapes and tuples [2]. What’s more, scalar operations
are represented by the Exp type. The Exp type depicts collective array operations that are executed
in parallel. Because Accelerate is a flat data-parallel language, scalar expressions can not spawn new
operations. For illustration, example 3, illustrates an example of an embedded operation.

Example 3: Consider the use operation depicted below. The operation embeds a Haskell array
on the external device. Correspondingly, the result is wrapped in the Acc type, and the type of
elements is characterised by Elt.

use :: (Shape sh, Elt e) => Array sh e -> Acc (Array sh e)

The definition below provides an example use case of an embedded operation on an embedded
array. Moreover, it applies the map instruction to execute function f to all elements of the array
vec.

let vec = use $ fromList (Z:.5) [0..] :: Acc (Vector Int)

f = (\x -> (x + 1) * 2) :: Exp Int -> Exp Int

in map f vec :: Acc (Vector Int)

Array representation In Accelerate, embedded arrays are kept in the memory of the backend-specific
device [10]. In the Accelerate pipeline, an array is represented using a structure of arrays (SoA). SoA
maps a data structure into one parallel array per field [18]. Instead of representing a set of objects
in an array, SoA defines multiple arrays, where each array contains the values of a field for all objects
in the set. When performing parallel instructions on a set of objects, object fields can be easily read
and modified in parallel by addressing these field arrays. For Accelerate, an array is represented by a
collection of pointers to the device memory. Each pointer points to a buffer in memory, which consists
of an array of values. Buffers may isolate array dimensions, tuple fields, etc.
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1.3 TensorFlow

TensorFlow is a machine learning library frequently used for deep learning. Deep learning is the process
of training artificial neural networks. In TensorFlow, neural networks are represented as computational
graphs that perform operations in parallel. A computational graph is a directed graph, with vertices to
describe operations, and directed edges to represent the input and output data for operations. There
are several potential advantages when running data-parallel programs with TensorFlow. For starters,
the library allows its graphs to be run on GPUs. What’s more, TensorFlow features common subgraph
elimination, where repeated computations may be replaced by a single instance of computation [14].
With scheduling, node execution is scheduled as late as possible, such that the results of operations
remain in memory for the least amount of time. Finally, TensorFlow programs can be accelerated with
the TensorFlow Processing Unit (TPU) dedicated hardware. With such benefits, it could be interesting
to run programs other than machine learning algorithms with TensorFlow. However, as TensorFlow
programs are constructed as computational graphs, with the simplicity of available operations, writing
a program may be time-consuming. This is where Accelerate could come in. Namely, Accelerate could
compile parallel array instructions into TensorFlow graphs.

1.4 Research questions

As introduced above, this thesis adds a TensorFlow backend to Accelerate’s new pipeline to embed
its parallel array calculations in TensorFlow. The goal is to investigate the possible extent of running
Accelerate programs in TensorFlow and to characterise limitations along the way. Among others, such
limitations may be implied by Accelerate’s compilation pipeline, or by unsupported functionality in
TensorFlow. For instance, the Accelerate abstract syntax for backends is set up with the CPU and GPU
libraries in mind [24]. And, perhaps already apparent from the second- and first-order differences in
instructions, the new TensorFlow backend might fundamentally differ. As such, implementing a new
compiler for TensorFlow may pose a challenge.

With the Accelerate language statically typed, the compilation pipeline preserves the types at every
step. As a result, code generation in Accelerate backends is also statically typed. For non-statically
typed languages, backends implement a custom statically typed compiler. For example, McDonell et al.
[24] wrote a statically typed compiler for LLVM. As such, the goal is to investigate whether the new
backend’s logic fits inside the typed pipeline traversal. To limit the scope of this thesis, the emphasis
is mostly on enabling, and not on performance. Yet, to give an impression, the results in section 4
also provide a benchmark that compares Accelerate and TensorFlow on a multi-core CPU. As further
discussed in section 5, future research may look to improve on performance and find limitations. In
summary, this research investigates the following research questions:

· Using the Accelerate pipeline, while preserving types at each step, do Accelerate GADTs allow
sufficient manipulation to construct corresponding first-order computational graph operations?

· What is the difference in CPU performance between the new TensorFlow backend and the LLVM
CPU backend?

· With Accelerate, is it possible to provide a friendly programming language to construct TensorFlow
graphs?

2 Accelerate Pipeline

Accelerate supports embedded array calculations on a plethora of hardware. The compilation procedure
for Accelerate programs is referred to as the pipeline. Each hardware-specific implementation for the
pipeline is called a backend. Moreover, the pipeline to run Accelerate instructions with a hardware-
specific backend consists of the following steps:

Desugaring First, the Accelerate instructions are desugared into hardware-specific operation types.
Each Accelerate instruction is translated into a series of hardware-specific instructions that perform
an embedded calculation with a final result equivalent to that of the Accelerate instruction. Section
2.2 provides a detailed overview of the requirements from the pipeline to implement this step.
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Fusion Fusion aims to remove the overhead of programming by combining transformations on data
structures to remove intermediate structures [12]. Some backends, such as LLVM [24], implement
fusion for optimisation purposes. However, to limit the scope of this research, fusion will not be
implemented for the TensorFlow backend.

Scheduling Subsequently, the operation types are scheduled for execution. Before running the schedule,
the pipeline maps the operations to hardware bindings in Haskell.

Execution Finally, the bindings are executed in the order of the schedule. Listing 1 shows the method
run, which executes Accelerate instructions of type Acc on the backend. The backend is char-
acterised by the type-class constraint Backend, which requires an implementation for each of the
pipeline steps. The sections below elaborate on each of the compilation steps. Section 3 depicts
the steps in the pipeline, and elaborates how the steps above are implemented for the TensorFlow
backend.

run :: forall backend t. (Arrays t, Backend backend) => Acc t -> t

Listing 1: The run operation, which compiles and executes Accelerate instructions on a hardware-
specific backend.

2.1 Preliminaries

To provide a complete definition of the compilation process of the Accelerate pipeline, this section
provides an overview of the foundations. For the remainder of this thesis, these notions are referenced
when used in an explanation.

2.1.1 GADTs

Accelerate programs are typed with Haskell’s Generalised Algebraic Data Structures (GADTs). GADTs
in Haskell allow type parameters in syntax trees. For instance, in Accelerate, using GADTs, scalar
expressions have type Exp t, which is parameterised over the return type t. As a result, the return
type can be verified during compilation, which allows Accelerate components to restrict the type of
expressions they accept. For example, the filter operation in Accelerate applies a predicate function
to each element in an array. It drops elements that do not satisfy the predicate and returns the elements
which pass the predicate, together with a description of how many elements were valid [2]. The predicate
is given by a function parameter. The function takes in an element and returns a boolean to indicate
whether the element satisfies the predicate or not. Using GADTs, Haskell’s strict typing system restricts
the user to define a function with an array element as input, and a boolean as output. Correspondingly,
filter below restricts the predicate to be of type (Exp e -> Exp Bool).

With Haskell’s type system, McDonell et al. [24] argue that GADTs offer high confidence in compiler
correctness. Their work addresses how to preserve static-type information throughout the pipeline, and
how it decreases the cost of constructing and maintaining backends. GADTs allow for maintaining type
information throughout the entire compilation pipeline. This enables type information to be transferred
to type-safe code generation interfaces, such as the LLVM interface by McDonell et al.

2.1.2 Shapes

In Accelerate, arrays have an arbitrary amount of arbitrarily sized dimensions. An array’s ordered
collection of dimensions is also referred to as its shape. Listing 2 depicts the definition of the ShapeR

GADT. Notably, the GADT does not contain shape values. As such, ShapeR represents the type of the
shape of an array instead of the shape itself. The actual shape values are stored in the backend-specific
device memory. The shape representation is often passed as a parameter to pattern match the shape
representation. This can be convenient when writing recursive functions over an array, and accessing
pointers on device memory to retrieve the actual shape values.
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data ShapeR sh where

ShapeRz :: ShapeR ()

ShapeRsnoc :: ShapeR sh -> ShapeR (sh, Int)

Listing 2: Using nested pairs, the TupR GADT represents a collection of elements of type a constructed
by s.

Example 4: Listing 2 depicts a recursive definition to characterise an array shape. In general, similar
recursive definitions can be used to represent any collection of elements. For instance, consider the
List GADT below. Its minimal definition consists of the empty list (Nil). In Haskell, a list can
be constructed using the (:) operator. Correspondingly, the Cons constructor adds one element
to the left side of an existing list. Lists in Haskell are homogeneous. In other words, all elements
of a list are of the same type. Correspondingly, the GADT below has a type parameter a, which
defines the type of each element in the list. With the power of GADTs, heterogeneous lists may
also be constructed. However, to illustrate the syntax of GADT, the definition below matches the
definition of regular Haskell lists.

data List a where

Nil :: List a

Cons :: a -> List a -> List a

2.1.3 Tuples

Throughout the Accelerate pipeline, most GADT collections are represented in terms of nested pairs,
also known as tuples. Listing 3 depicts the corresponding TupR GADT with elements of the higher order
type s a. Alternatively, example 4 depicts a list definition to represent a collection. TupR differs from
the regular list construction by separating the nullary and unary tuple constructors. Moreover, in a
tuple, a single element is constructed without constructing Nil first. For illustration, (a, ()) does not
represent the unary tuple of (a), but represents the binary tuple of a and Nil. Furthermore, in a list,
the first field of Cons is a value, while the first field of a pair is a tuple. Tuples are used in most of the
data structures in the rest of the pipeline. For instance, as elaborated by section 2.2, an Acc expression
consists of pairs of expressions and void constructors.

data TupR s a where

TupRunit :: TupR s ()

TupRsingle :: s a -> TupR s a

TupRpair :: TupR s a -> TupR s b -> TupR s (a, b)

Listing 3: Using nested pairs, the TupR GADT represents a collection of elements of type a constructed
by s.

Tuples in Accelerate differ from Haskell’s notion of tuples. For starters, Haskell allows elements in tuples
to have different types. In contrast, all elements in TupR s a are of the same type s a. What’s more,
tuples in Haskell are of a fixed size. That is, elements can not be added with a constructor similar to Cons
of example 4. In contrast, TupR can include more elements by nesting another pair with the TupRpair

constructor.

2.1.4 De Bruijn indices

In the Accelerate pipeline, variables are referred to by their De Bruijn indices. For starters, De Bruijn
indices are integers which represent terms of the lambda calculus [13]. As elaborated in example 5, the
integer value of a De Bruijn index represents the number of binders between the use and declaration
of a term. A benefit of using the De Bruijn index representation is the simplicity of preserving term
uniqueness in an environment. When introducing a new term, its corresponding De Bruijn index is equal
to the number of previously declared terms. De Bruijn indices are not limited to lambda expressions and
can index any kind of recursively constructed data type.
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Example 5: De Bruijn indices represent the number of binders between the use and declaration
of a term in a lambda statement. Starting from the last term in a lambda instruction, or the
leaf of the corresponding higher-order abstract syntax, the most inner term is set to 0, and each
succeeding shadowing declaration is equal to its most recent inner term added by 1. For illustration,
the expression below shows a lambda term converted to De Bruijn indices.

λx.λy.λz. x z (y z)⇝ λλλ 2 0 (1 0)

2.1.5 Environments

In the Accelerate pipeline, variables are kept in an environment data structure. As depicted in listing 4,
environments are represented by the Env GADT. The constructors use a similar recursive construction
as the List GADT in example 4. The main difference is the result types of the constructors. Moreover,
each constructor List has type List a. In contrast, the constructors of Env also denote the shape and
element types of an environment. As a result, the type checker can distinguish one environment from
another.

data Env f env where

Empty :: Env f ()

Push :: Env f env -> f t -> Env f (env, t)

Listing 4: The constructors of the Env GADT, which recursively construct an environment.

Environment variables are represented by De Bruijn indices (section 2.1.4). The Idx GADT of listing
5 represents an index of an element in an environment that corresponds to the nested position of an
element in Env. This GADT is used to reference a variable in an environment. As depicted by listing
4, variables are stored in an environment using a recursive definition. The number of recursive layers
of a constructed Idx corresponds to the position of an element in an environment. As such, the prj'

method from example 6 uses the Idx GADT to retrieve a value from an environment. As elaborated
in the example, the main benefit of the Env GADT is that it allows other GADTs to require terms to
be parameterised over the same environment. Correspondingly, Idx is parameterised over the type of
environment (env) it points to.

data Idx env t where

ZeroIdx :: Idx (env, t) t

SuccIdx :: Idx env t -> Idx (env, s) t

Listing 5: The constructors of the Idx GADT.

Example 6: The method prj' below returns the element of an environment that an index points to.
Both the index (Idx env t) and environment (Env f env) parameters are parameterised over the
same environment type (env). This ensures that the index is never out of bounds, and the element
type is f t.

prj' :: Idx env t -> Env f env -> f t

prj' ZeroIdx (Push _ v) = v

prj' (SuccIdx idx) (Push env _) = prj' idx env
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Examples of variables As depicted in listing 6, environment variables are represented by the Var

and Vars types. For example, consider the ExpVar in listing 2.1.5. The type denotes variables that point
to scalar expressions. This construction allows referring to expressions inside of other expressions in the
syntax tree.

data Var s env t = Var { varType :: s t, varIdx :: Idx env t }

type Vars s env = TupR (Var s env)

Listing 6: The Var GADT represents an environment variable. The variable consists of a De Bruijn
index which points to a nested position of an element in the environment.

type ExpVar = Var ScalarType

type ExpVars env = Vars ScalarType env

Listing 7: The ExpVar and ExpVars types represent variables that point to scalar expressions.

For another example, consider listing 8. The pipeline performs embedded executions by referring to
memory on a backend-specific device. The GroundVar and GroundVars types refer to one or more
pointers to the device memory. What’s more, the variables contain a GroundR representation to indicate
whether the allocated memory contains a scalar value or a buffer.

type GroundVar = Var GroundR

type GroundVars env = Vars GroundR env

data GroundR a where

GroundRbuffer :: ScalarType e -> GroundR (Buffer e)

GroundRscalar :: ScalarType e -> GroundR e

Listing 8: The GroundR GADT indicates the type of a value stored on device memory. The GroundVar

and GroundVars types represent variables that point to values on device memory.

In the pipeline, variables are often introduced by function arguments. Consider the definition of
ELeftHandSide in listing 9 below. The GADT represents function arguments and is parameterised
over two environment types. Namely, the original environment (env), and the new environment af-
ter declaring the bindings (env'). Specifically, for single terms (LeftHandSideSingle), the new en-
vironment consists of the original environment and the new term variable. For wildcard variables
(LeftHandSideWildcard) such as (), the environment remains the same. Finally, when introducing
a tuple of terms (LeftHandSidePair), the new environment consists of the original environment and all
of the variables inside of the tuple.

type ELeftHandSide = LeftHandSide ScalarType

data LeftHandSide s v env env' where

LeftHandSideSingle

:: s v

-> LeftHandSide s v env (env, v)

LeftHandSideWildcard

:: TupR s v

-> LeftHandSide s v env env

LeftHandSidePair

:: LeftHandSide s v1 env env'

-> LeftHandSide s v2 env' env''

-> LeftHandSide s (v1, v2) env env''

Listing 9: The LeftHandSide GADT represents function arguments. It features single values, wildcards
and nested types for tuples.
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2.1.6 Types

In Accelerate, array elements are scalars or tuples of scalars. Scalars are signed integers, unsigned
integers, or floating-point numbers. Correspondingly, with the definition of TupR above, in the pipeline,
array element types are represented with TupR ScalarType. The ScalarType GADT denotes the kind
of scalars that are supported in Accelerate. Next to scalar types, the GADT features a constructor
VectorType for fixed-size vectors. Moreover, in Accelerate, array elements may consist of vectors. For
illustration, a vector may be used to store complex numbers such as coordinates. To limit the scope of
this research, the vector types are not covered.

2.2 Desugaring

The pipeline desugars the Accelerate program into a series of corresponding backend-specific operations.
A large part of the contribution of this thesis consists of converting Accelerate programs into TensorFlow.
The conversion is implemented in the desugaring step of the pipeline. To provide a complete definition,
this section elaborates on how the desugaring class of the pipeline is defined. Among others, the class
depicts flow control, such as device operation execution, allocation, conditions, loops, and more. As
depicted by listing 10 below, the set of operations is comprised by the PreOpenAcc GADT. In an overview,
the set consists of the following control-flow instructions and execution instructions.

· Each kind of external backend features a unique set of hardware-specific computations. Corre-
spondingly, the PreOpenAcc GADT needs an operation set type parameter op. This allows the
type checker to limit execution statements to be constructed with the backend-specific operation
set. Because OperationAcc denotes backend-specific instructions, op differs for each backend im-
plementation. The Exec constructor represents the execution instruction to perform an operation
on the backend-specific device. Correspondingly, the first parameter of Exec denotes such a param-
eterised operation. For the new TensorFlow backend, section 3.2.2 elaborates how the TensorFlow
operations are defined for op.

· Operations are performed on the backend-specific device, such as a GPU. The results of device
operations are stored in device memory. As depicted in section 2.1.5, the GroundVars type repre-
sents variables that point to values in this device memory. With GroundVars as its argument, the
Return constructor represents the retrieval of a value from the device memory.

· The Compute constructor represents the evaluation of a scalar expression Exp with the default
interpreter. Such computation may involve shape-size computation or conditions of if-statements.
These computations do not have to be embedded.

· Similar to regular let construction in Haskell, the Alet constructor represents a local binding
of a flow to a variable. The first argument GLeftHandside indicates the shape of the variable,
the second argument represents the statement to assign, and the third argument represents the
remainder of the flow that has the newly declared variable in its scope. Correspondingly, the
remainder of the flow is parameterised over the new environment which includes the variable.

· Desugarring might require the allocation of new memory. The Alloc constructor represents the
allocation of a new array and includes metadata such as the type of array elements, and variables
that contain its shape information.

· The Use constructor fetches data from a buffer in device memory. For instance, it can be used to
wrap an array from a previously run statement inside of a new Acc statement.

· To capture a single value in an array representation, the Unit constructor represents the creation
of a buffer with a single element.

· Program execution often depends on the result of calculations. The Acond constructor represents
an if-then-else statement based on a variable that points to a boolean.

· To enable loops, the Awhile constructor represents a while loop. Moreover, it performs a function
if its condition is true, and re-evaluates until the condition becomes false.
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The desugarring implementation provides a PreOpenAcc result for every Acc constructor. The process is
implemented in the pipeline with the DesugarAcc class. The set of Accelerate instructions is extensive.
This enhances the expressiveness of the language to the user. However, it introduces a considerable
amount of required implementations in the DesugarAcc class. Fortunately, the DesugarAcc class pro-
vides default implementations for all Acc expressions in terms of generate and permute. The main
benefit is that implementing desugaring with DesugarAcc only requires providing an implementation for
mkGenerate and mkPermute. However, it may be more performant (or closer to the characteristics of the
backend) to overwrite some of the default implementations. Section 3 further elaborates the definitions
of generate and permute, and how they are desugared into TensorFlow graphs. After desugaring, the
instructions are scheduled for execution. Section 3 elaborates on how each step is implemented for the
new TensorFlow backend.

data PreOpenAcc (op :: Type -> Type) env a where

-- Executes an executable operation.

Exec :: op args

-> Args env args

-> PreOpenAcc op env ()

-- Returns the values of variables.

Return :: GroundVars env a

-> PreOpenAcc op env a

-- Return evaluated expression.

Compute :: Exp env t

-> PreOpenAcc op env t

-- Local binding.

Alet :: GLeftHandSide bnd env env'

-> Uniquenesses bnd

-> PreOpenAcc op env bnd

-> PreOpenAcc op env' t

-> PreOpenAcc op env t

-- Allocates a new buffer.

Alloc :: ShapeR sh

-> ScalarType e

-> ExpVars env sh

-> PreOpenAcc op env (Buffer e)

-- Buffer inlet

Use :: ScalarType e

-> Int -- Number of elements

-> Buffer e

-> PreOpenAcc op env (Buffer e)

-- Capture a scalar in a singleton buffer

Unit :: ExpVar env e

-> PreOpenAcc op env (Buffer e)

-- If-then-else

Acond :: ExpVar env PrimBool

-> PreOpenAcc op env a

-> PreOpenAcc op env a

-> PreOpenAcc op env a

-- Value-recursion

Awhile :: Uniquenesses a

-> PreOpenAfun op env (a -> PrimBool)

-> PreOpenAfun op env (a -> a)

-> GroundVars env a

-> PreOpenAcc op env a

Listing 10: The constructors for backend instructions. The op type parameter specifies the backend-
specific instructions.
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2.2.1 Arguments

The signature of a desugaring method in DesugarAcc contains the input arguments of the corresponding
Acc instruction. Listing 11 depicts the constructors of two kinds of argument representations. As
discussed in the approach, only these two kinds of arguments will be encountered in the desugaring
process of the new TensorFlow pipeline. To provide further background, the paragraphs below elaborate
on the constructor types. Finally, example 7 illustrates how the arguments are used to represent the
input and output of map expression in Accelerate.

data Arg env t where

ArgFun :: Fun env e -> Arg env (Fun' e)

ArgArray :: Modifier m

-> ArrayR (Array sh e)

-> GroundVars env sh

-> GroundVars env (Buffers e)

-> Arg env (m sh e)

Listing 11: The function and array argument constructors of the Arg GADT. When desugaring, the data
type represents the parameters of an Acc instruction.

Functions Accelerate supports second-order combinators with scalar expressions as arguments. As
such, the ArgFun constructor depicted in listing 11 has a single argument of type Fun that corresponds
to the function argument. Listing 12 depicts the function data structure. The Fun type shorthands the
environment parameterisation of PreOpenFun with an expression environment and a buffer environment.
The PreOpenFun GADT follows a recursive definition similar to a lambda expression. Moreover, it is
constructed with a recursive series of input terms (Lam), followed by the function body, which consists
of a scalar expression tree PreOpenExp. The scalar expressions correspond to the scalar expressions Exp
in Accelerate [2].

type OpenFun env benv = PreOpenFun (ArrayInstr benv) env

type Fun benv = OpenFun () benv

data PreOpenFun arr env t where

Body :: PreOpenExp arr env t

-> PreOpenFun arr env t

Lam :: ELeftHandSide a env env'

-> PreOpenFun arr env' t

-> PreOpenFun arr env (a -> t)

Listing 12: The PreOpenFun GADT comprises a recursive function definition.

The arr type parameter of PreOpenFun parameterises the type of array instructions. In the case of
OpenFun, the type is represented with ArrayInstr benv. Consider the listing below, with the variable
types GroundVar and ExpVar from section 2.1.5, the ArrayInstr GADT corresponds to two read op-
erations in external memory. First, the Index operation consists of a variable pointing to a buffer. Its
constructed type ArrayInstr benv (Int -> e) corresponds to the index operation. Given an integer
buffer index, it returns an element from the buffer at the given position. Second, the Parameter operation
retrieves a scalar value from the Accelerate program.

data ArrayInstr benv t where

Index :: GroundVar benv (Buffer e) -> ArrayInstr benv (Int -> e)

Parameter :: ExpVar benv e -> ArrayInstr benv (() -> e)

Listing 13: The ArrayInstr GADT represents the two array indexing operations Index and Parameter.

As elaborated in section 2.1.5, Accelerate GADTs may be parameterised over an environment. For
instance, as depicted by listing 12, the OpenFun type shorthands the parameterisation of PreOpenFun
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with a buffer environment (benv) and an expression environment (env). The expression environment
env consists of previously declared expressions. And, the buffer environment includes the scope of
previously declared buffers and scalars stored on the external hardware. A function argument can not
refer to unbound scalar variables. Therefore, Fun initialises the expression environment env as empty ().
Function input terms from the Lam constructor of PreOpenFun are represented by the ELeftHandSize

GADT from section 2.1.5.

Scalar expressions As depicted by listing 12, the body of a function argument consists of a scalar
expression tree of type PreOpenExp. The type represents embedded scalar expressions. The full set of
scalar expression constructors is extensive. The full definition can be found in the Accelerate Haskell
documentation [2]. In section 3.2.2, the constructors relevant to the approach of this thesis will be further
investigated. Some constructors are recursive. To give an example, a let binding stores an expression in
a variable with the Let constructor. The first argument declares the expression to assign to the variable.
Then, the second expression of the Let constructor can reference that variable using the Evar constructor.
As elaborated in section 1.1, Accelerate excludes flat data parallelism. Accordingly, although the GADT
has a recursive structure, PreOpenExp does not spawn new parallel processes.

Arrays The ArgArray constructor depicted in listing 11 is used whenever an array is used as an input or
output of an Acc expression. To correctly interact with the backend-specific device memory depicted by
its structure of arrays (SoA), the ArgArray constructor features metadata and pointers to the backend-
specific device memory. For starters, as depicted by listing 14, the first argument Modifier m specifies
whether the memory is read-only, write-only, or neither.

data Modifier m where

-- | Read-only

In :: Modifier In

-- | Write-only

Out :: Modifier Out

-- | Read & Write

Mut :: Modifier Mut

Listing 14: The Modifier GADT depicts the permitted actions with external memory.

As depicted in listing 15, the second argument ArrayR depicts the shape of the array with the ShapeR

GADT (section 2.1.2) and the type of all array elements with the TypeR GADT (section 2.1.6). The
final two arguments are of type GroundVars. As depicted in listing 8, GroundVars is a type synonym
of Vars GroundR (section 2.1.5). Respectively for GroundRbuffer and GroundRscalar, the two con-
structors indicate whether a variable points to a scalar or buffer in the backend-specific device memory.
Moreover, the third argument of ArgArray refers to shape variables corresponding to the size of each
dimension of the array shape. Finally, the fourth argument points to the buffers that are part of the
SoA.

data ArrayR a where

ArrayR :: { arrayRshape :: ShapeR sh

, arrayRtype :: TypeR e }

-> ArrayR (Array sh e)

Listing 15: The ArrayR GADT provides metadata about the array. The arrayRshape record specifies
the array shape, and the arrayRtype record the element type.
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Example 7: The method mkMap of DesugarAcc implements desugaring map statements. With the
constructors of the Arg GADT shown in figure 11, the first two arguments of mkMap consist of a
function argument and an array argument of type Fun' (s -> t) and In sh s. Correspondingly,
as shown in example 3, map takes a method and an array as its two arguments.

Accelerate performs calculations on a backend-specific device. The result is stored in the
memory of the device. The final argument keeps track of where the resulting array of type
Out sh t is stored after the desugared map operation is performed. Correspondingly, the output
array of shape sh with elements of type t is the result of applying a method of type s -> t to all
elements of type s of an array of shape sh.

class DesugarAcc (op :: Type -> Type) where

mkMap :: Arg env (Fun' (s -> t))

-> Arg env (In sh s)

-> Arg env (Out sh t)

-> OperationAcc op env ()

3 The TensorFlow Backend

To investigate the possible extent of adding TensorFlow support for Accelerate, this thesis introduces a
new TensorFlow-specific backend for the compilation pipeline of Accelerate. In an overview, the back-
end desugars the Accelerate programs into a series of first-order TensorFlow operations and constructs
corresponding TensorFlow graphs to execute the desugaring result. Section 3.1 elaborates on the differ-
ences between Accelerate and TensorFlow, and models how Accelerate programs can be converted into
TensorFlow graphs and executed on a TensorFlow device. Section 3.2 depicts a detailed overview of how
this model is implemented in the GADTs corresponding to the steps of the pipeline.

3.1 Model

The main idea of this thesis is to compile Accelerate programs into TensorFlow graphs and execute them
in TensorFlow. In TensorFlow, the output of a graph node consists of a tensor of elements. Graph nodes
have tensors as their input [1]. Tensors are arrays of an arbitrary dimension, where all elements are of
the same type. Similarly, arrays in Accelerate are also of an arbitrary dimension where the elements
are of a single type (section 2.1.6). As such, arrays in Accelerate can be converted to tensors of the
computational graph.

3.1.1 Desugaring Accelerate programs into TensorFlow instructions

As elaborated in section 2.2, an Accelerate program is represented by a recursively constructed GADT
of Accelerate components. The recursive definition connects Accelerate components by using other
components as constructor arguments. As such, the GADT embodies the abstract syntax tree of the
language. In TensorFlow, each graph consists of an operation node with the output of sub-graphs as
input [1]. As such, similar to Accelerate, the abstract syntax tree for TensorFlow graphs consists of
a recursive definition. As discussed below, the key difference is that Accelerate components can be
parameterised over scalar expressions, whereas TensorFlow components are all specialised and only take
in tensors as input. In other words, TensorFlow components are first-order, and Accelerate components
are second-order. Therefore, when desugaring Accelerate programs into TensorFlow graphs, the higher-
order methods should be compiled into a sequence of first-order computations. As elaborated in section
3.2, higher-order instructions can be flattened by reading through the provided function in the parameter
and traversing its instructions from top to bottom to construct a corresponding series of computations.
Similarly, as discussed in section 1.1, when flattening nested-data parallel programs, Keller eliminated
higher-order operations in a similar fashion [20] by providing a transformation rule for each component
of a program.

The set of Accelerate instructions is extensive. This enhances the expressiveness of the language to
the user but introduces a considerable amount of desugaring in the pipeline. However, as elaborated
in section 2.2, the pipeline already desugars all instructions in terms of the operations permute and
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generate by default. As a result, the new pipeline only has to provide a desugaring implementation
for permute and generate. Both Accelerate components have at least one function as a parameter.
Moreover, as further discussed in section 3, generate takes in a function that should be applied to
every index of an element, and permute has its combination and permutation function parameters.
Hence, they are higher-order components. The TensorFlow instruction set only contains first-order
instructions. Therefore, to implement generate and permute, a total of three function parameters need
to be flattened. Although the three function parameters have different signatures, their bodies comprise
Accelerate’s scalar expressions of type PreOpenExp. To solve the flattening problem, a generic function is
defined that converts a recursively constructed scalar expression into a corresponding series of first-order
TensorFlow operations. What’s more, as elaborated in example 7, Accelerate’s map function applies a
function parameter to an input array and writes the result to an output array. To execute the map

instruction with first-order TensorFlow instructions, each expression in the function parameter body
must be desugared into TensorFlow instructions. As such, the method perfectly isolates the flattening
problem. The result is a series of TensorFlow instructions with a final result equivalent to the passed
function parameter. As elaborated in section 3.2, the desugaring implementations for generate and
permute use map to flatten their function parameters.

3.1.2 Executing desugared programs in TensorFlow

After desugaring, the next step in the Accelerate pipeline is to schedule the set of desugared instructions
for execution. Subsequently, the scheduled instructions are executed on the backend-specific device. In
the pipeline, schedules may fork parallel work instructions, specifically optimised for the kind of backend.
For instance, the LLVM backend implements a dynamically work-stealing scheduler [24]. Yet, the main
goal of this thesis is to investigate the possibility of translating Accelerate to TensorFlow. Therefore,
to limit the scope, the TensorFlow backend uses a sequential scheduler, which schedules the desired
instructions into a sequential flow. The scheduled instructions are performed one by one, but can still
depict the execution of data-parallel operations in TensorFlow. To reduce a bit of the schedule size,
the scheduler does eliminate executions of the identity operation. After scheduling, the calculations are
performed.

Haskell TensorFlow bindings Backends in Accelerate generate code which performs calculations on
external hardware. Accordingly, to implement a new TensorFlow backend, the pipeline must use exter-
nal bindings to perform TensorFlow calculations. Many programming languages have an Application
Programming Interface (API) to construct and execute TensorFlow graphs [6]. For Haskell, the Ten-
sorFlow Haskell library [29] provides bindings to output TensorFlow graphs in Haskell. Using the API
for a different programming language would enlarge the scope of this thesis from generating TensorFlow
graphs to generating code in a different language in general. Therefore, the use of these bindings is the
best option for this research. In this thesis, types and operations of the bindings are prefixed by TF. to
distinguish them from other Haskell statements.

The Haskell TensorFlow bindings library is not maintained by the TensorFlow developers. Instead, it
is one of the community-supported languages, which are open-source projects. Though each language
follows the recommended approach by the TensorFlow maintainers [30], the library may not always be
up to date. For instance, before January 2023, the bindings only supported TensorFlow version 2.3.0. A
disadvantage of this version was the lack of Nvidia’s ampere architecture support, which was added in
version v2.4.0 [27]. Consequently, the programs could not be run on Nvidia’s 3000 series. At the time
of writing, the issue has only recently been resolved [26]. Still, the low frequency of maintenance might
be something to remain in consideration when dealing with future issues. Finally, the binding documen-
tation [31, 32] depicts the signatures available methods, with almost no descriptions. Fortunately, the
method names resemble the names of the Python API documentation [25], which does contain a detailed
description of almost every method that is also included in the Haskell bindings.

Graph construction In TensorFlow, calculations are performed by running TensorFlow graphs. With
the TensorFlow bindings for Haskell, tensor operations take in graphs as their arguments, and return
a graph of the tensor operation constructed with the graphs as input [29]. To illustrate, the addition
operation takes in two graphs and returns a graph that introduces an addition operation node with
both graphs as input. The pipeline schedule contains execution instructions for TensorFlow operations.
Such an instruction does not return a value. Instead, it denotes a side effect that depicts which buffers
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are affected by running the operation. When encountering an execution instruction in a schedule, a
simple approach would be to convert the inputs into tensors, construct a graph with the operation, run
the graph, and store the value of the returned tensor in the output buffer. However, this introduces
the overhead of converting values from and to tensors for every TensorFlow operation in a desugared
Accelerate program. To reduce this overhead, this thesis introduces a different approach which combines
many scheduled operations into a single graph. It connects as many operations as possible up until
evaluation (running the graph) is absolutely necessary. That is, as further elaborated below, until the
scheduled flow is dependent on an output of an operation. For instance, a while loop flow component
may be dependent on a boolean value that is returned by an operation.

Memory allocation As elaborated above, in the Haskell bindings for TensorFlow, a tensor operation
produces a graph. A tensor of type TF.Build refers to a tensor graph, of which the operation of the root
node yields that tensor. Because a tensor operation produces a graph, the return type is also a tensor of
type TF.Build. To obtain its value, the tensor graph can be executed with the TF.run operation, which
returns all elements from the output tensor of the graph. TensorFlow instructions in the schedule denote
a side effect. The side effect indicates which buffers are affected by the operation. Buffers are represented
by a pointer to memory on the host device. Memory is represented differently for each backend. As such,
each backend should implement memory handling by itself. For this reason, the schedule also contains
instructions for memory allocation. To continue, as each backend should implement memory handling
by itself, a buffer in the schedule only consists of a De Bruijn index. The approach is to combine tensor
operations into one graph until the graph value is required to continue the flow execution. To combine
operations from the TensorFlow bindings, the De Bruijn indices should point to graphs in memory. To
access the graphs in memory with the De Bruijn indices, an index-to-memory environment is maintained.
Each time a new buffer is created or modified, the schedule provides the corresponding De Bruijn index
with the input and output buffers. Using the new environment, these indices can then be used to store
and look up graphs in memory. To elaborate, for each schedule component, section 3.2 defines the
implementation of schedule execution and memory management.

3.2 Implementation

Section 3.1 discusses a detailed model for the implementation approach of the new TensorFlow backend
for the Accelerate pipeline. To provide a complete definition of the new backend, this section continues
by describing the code implementation for each step of the pipeline. Moreover, section 3.2.2 discusses
the implementation for desugaring. And, section 3.2.2 discusses the execution of TensorFlow operations.

3.2.1 Desugaring

In summary of sections 2.2 and 3.1, a backend must provide definitions for the DesugarAcc class to
implement the desugaring step in the pipeline. The class requires an implementation for every Acc

statement. It provides a default implementation for all statements in terms of generate and permute.
As such, the implementation of the desugaring step only requires a definition for corresponding methods
mkGenerate and mkPermute in DesugarAcc. Still, both are higher-order methods of which their function
parameters must be flattened into a corresponding series of TensorFlow instructions. As elaborated
above, by implementing the flattening method for map, it can be re-used as a generic flattening method
for mkGenerate and mkPermute.

TensorFlow parameterisation The op type parameter of PreOpenAcc defines the set of operations
that can be executed on the backend-specific device. Correspondingly, the execution constructor Exec
in listing 10 requires an instance of op as its first argument. To parameterise the desugaring result over
the set of TensorFlow instructions, a new GADT TensorOp is constructed. As elaborated in example 8,
the constructors of the TensorOp GADT correspond to TensorFlow-specific operations.

Flattening example As elaborated above, higher-order functions must be flattened into a corre-
sponding series of first-order operations. Listing 17 shows a manually constructed definition to flatten
the statement map (\ x -> x * 2 + 1) into a corresponding series of PreOpenAcc with TensorOp. The
signature of the flattening process is depicted by listing 16. The signature contains two integer arrays.
The first array (In sh Int64) contains the input buffer to apply the method (\ x -> x * 2 + 1) to.
The second array (Out sh Int64) is the output buffer to which the calculation result should be written.
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Example 8: While desugaring, the TensorOp GADT depicts the set of TensorFlow operations that
should be executed on the external hardware. For example, the TAdd constructor listed below
represents the TF.add operation in TensorFlow. The type of each constructor is parameterised
over its side effect type. That is, the affected buffers by executing the calculation on external
hardware. For instance, TAdd has type TensorOp (In sh a -> In sh a -> Out sh a -> ()). In
detail, given three buffers of the same shape and element type, the operation reads input from the
first two buffers and outputs the result into the third. Finally, the TAdd constructor contains the
OneOf TFNum a type constraint. This requires the type a to be compatible with the corresponding
TensorFlow binding.

data TensorOp op where

TAdd :: OneOf TFNum a => TensorOp (In sh a -> In sh a -> Out sh a -> ())

For illustration, the definition below depicts a construction of PreOpenAcc to perform the addition
operation in TensorFlow. The three buffers are provided through the function arguments. The
Exec constructor performs operations on the host device. To perform addition in TensorFlow, the
definition constructs Exec with TAdd.

add :: forall env sh.

Arg env (In sh Int64)

-> Arg env (In sh Int64)

-> Arg env (Out sh Int64)

-> OperationAcc TensorOp env ()

add argIn1 argIn2 argOut = Exec TAdd (argIn1 :>: argIn2 :>: argOut :>: ArgsNil)

The function does not modify the shape of the input. Therefore, the shape sh of the input and output
are equal.

mapXTimesTwoPlusOne :: forall env sh. Arg env (In sh Int64)

-> Arg env (Out sh Int64) -> OperationAcc TensorOp env ()

Listing 16: The signature of the flattening of map (\ x -> x * 2 + 1). The arguments consist of an
input and output array.

Flattening disassembles the function parameter into a corresponding series of TensorFlow operations. The
function mapped over arrays (\ x -> x * 2 + 1) can be desugared into the two TensorFlow operations
of multiplication and addition. The operations can be interpreted as “mutiply with a tensor of twos”
and “add to a tensor of ones”. Therefore, for the resulting OperationAcc structure, an array of twos
and an array of ones will be allocated. Example 8 elaborates how TAdd can be used to desugar tensor
addition. For multiplication, TMul constructs the operation in a similar fashion.

As depicted in listing 17, to refer to the arrays in the constructed flow, two new variables are intro-
duced. Allocating new arrays means declaring new terms, which should be included in the environment.
Therefore, each time an existing environment is referenced, it is updated with the newly declared vari-
ables. This process is also known as weakening. For illustration, consider the execution of multiplication
Exec TMul in listing 17. After assigning a new array of twos to a variable lhs, both environments of the
input arrays must include the new variable. Accordingly, their environments are extended to include the
variable by weakening them with weakenVars w. Finally, to include both the first and second variables
in the final steps, the weakening operators are combined with (w' .> w).

Automated flattening The example in listing 17 shows a manual construction of flattening for
map (\ x -> x * 2 + 1). The new backend should apply this process automatically for any function
parameter. By traversing the body of a function, it should output a structure similar to the example. As
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mapXTimesTwoPlusOne :: forall env sh. Arg env (In sh Int64)

-> Arg env (Out sh Int64) -> OperationAcc TensorOp env ()

mapXTimesTwoPlusOne

(ArgArray _ arrayR@(ArrayR _ t) gvIn gvbIn)

argOut@(ArgArray _ _ _ gvbOut)

| DeclareVars lhs w k <- declareVars $ buffersR t -- variable to array of twos

, DeclareVars lhs' w' k' <- declareVars $ buffersR t -- variable to array of ones

= let sInt64 :: ScalarType Int64

sInt64 = SingleScalarType (NumSingleType (IntegralNumType TypeInt64)) in

aletUnique lhs (desugarAlloc arrayR (fromGrounds gvIn)) $ -- Allocate new array

Alet (LeftHandSideWildcard TupRunit) TupRunit

(Exec -- Fill new array with the number 2

(TConstant sInt64 2) -- TensorOp constructor, creates a new Tensor of twos.

(ArgArray Out arrayR (weakenVars w gvIn) (k weakenId) :>: ArgsNil)) $

Alet (LeftHandSideWildcard TupRunit) TupRunit -- Concat flow instruction (;).

(Exec -- (*2) Multiply input array with new array, store in output array.

TMul (ArgArray In arrayR (weakenVars w gvIn) (weakenVars w gvbIn) :>:

ArgArray In arrayR (weakenVars w gvIn) (k weakenId) :>:

weaken w argOut :>:

ArgsNil)) $

aletUnique lhs' (desugarAlloc arrayR (fromGrounds (weakenVars w gvIn))) $

Alet (LeftHandSideWildcard TupRunit) TupRunit

(Exec -- Fill new array with the number 1

(TConstant sInt64 1)

(ArgArray Out arrayR (weakenVars (w' .> w) gvIn) (k' weakenId) :>:

ArgsNil)) $

Exec -- (+1) Add new array to the result array of (*2)

TAdd

(ArgArray In arrayR (weakenVars (w' .> w) gvIn)

(weakenVars (w' .> w) gvbOut) :>:

ArgArray In arrayR (weakenVars (w' .> w) gvIn) (k' weakenId) :>:

weaken (w' .> w) argOut :>:

ArgsNil)

Listing 17: A desugaring implementation for map (\ x -> x * 2 + 1) for the TensorFlow backend.

elaborated in section 3.1.1, mkMap perfectly isolates the flattening problem. As such, it makes sense to
implement the flattening process inside of mkMap. Listing 18 depicts the implementation of mkMap. For
starters, the implementation of mkMap pattern matches the function argument ArgFun. Because mkmap

applies a method to each element of an array, the function always has exactly one argument. Corre-
spondingly, the pattern ArgFun (Lam lhs (Body body))) is the only possible case. As elaborated in
section 2.2.1 and depicted by listing 12, the body consists of a scalar expression tree of type PreOpenExp.

mkMap (ArgFun (Lam lhs (Body body))) (ArgArray _ (ArrayR _ t) _ gvb) aOut =

mkExp (push' Empty (lhs, distributeBIdx t gvb)) body aOut

mkMap _ _ _ = error "impossible"

Listing 18: The implementation of mkMap.

To flatten the method body, mkMap uses a helper method mkExp, which flattens the scalar expression
tree. As depicted by listing 3.2.1, the signature has the following features. The first argument of mkExp
consists of a buffer environment. The buffer environment BufferEnv keeps track of the previously
declared variables. The second argument depicts the scalar expression that is to be desugared. Finally,
the signature features an output array argument to which the result of the embedded scalar expression
result should be written.
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newtype BufferIdx benv a = BIdx (Idx benv (Buffer a))

type BufferEnv benv env = Env (BufferIdx benv) env

mkExp :: forall env env' sh t.

BufferEnv env env'

-> PreOpenExp (ArrayInstr env) env' t

-> Arg env (Out sh t)

-> OperationAcc TensorOp env ()

Listing 19: The signature for the mkExp method. The method flattens a scalar expression tree into a
corresponding desugared definition of type OperationAcc.

The buffer environment for mkExp is required when handling variables. Scalar expressions such as Let
and Evar allow the declaration and referencing of variables that point to expression buffers. Buffers
are represented by an index which points to memory on the backend-specific device. As discussed in
section 2.1.5, variables of environments consist of De Bruijn indices. Correspondingly, to assign a buffer
to a variable, the buffer environment BufferEnv maps scalar variables to buffer variables. It consists
of pairs of variables parameterised over env and buffer indices benv. For illustration, consider listing
3.2.1 below. It depicts the desugaring implementation for variable references with the Evar constructor
of PreOpenExp. In the definition, idx is the De Bruijn index of the variable. Using prj' from example
6, the index is used to retrieve the pointer that points to the buffer from the environment. The TId

constructor of TensorOp represents copying the values from one tensor into another. In the definition,
the operation is used to mimic the retrieval of a value from a variable.

mkExp env (Evar (Var st idx)) (ArgArray _ arrayR gv gvb@(TupRsingle (Var groundR _)))

| Refl <- reprIsSingle @ScalarType @t @Buffer st

, OneOfDict <- tfAllDict st

= let (BIdx idx') = prj' idx env

gvb' = TupRsingle (Var groundR idx')

in Exec

TId

(

ArgArray In arrayR gv gvb' :>:

ArgArray Out arrayR gv gvb :>:

ArgsNil

)

Listing 20: The implementation of variable accessing from the Evar constructor of PreOpenExp.

The method mkExp should provide a flattening definition for each scalar expression of type PreOpenExp.
The list below elaborates on the implementations. The set of constructors is quite extensive. Therefore,
straightforward implementations are only summarised or left out. The GitHub repository [5] of this
thesis provides the full implementation for each pattern of PreOpenExp.

· The Pair constructor features a pair of scalar expressions. Both expressions should be executed.
Listing 21 includes the execution of two expressions in the desugaring result. To implement the
inclusion of two expressions, an empty let binding is used. Moreover, the ALet constructor in
PreOpenAcc takes in two expressions. After running the first expression, the result of the first
expression is assigned to the variable. Then, the second expression is run. The second expression
has access to the variable. Both expressions must be run, but the variable assignment is optional.
Hence, the running of two expressions can be represented in PreOpenAcc by a let expression with
a unit variable.
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mkExp env (Pair exp1 exp2)

(ArgArray _ (ArrayR sh (TupRpair t1 t2)) gv (TupRpair gvb1 gvb2))

= Alet (LeftHandSideWildcard TupRunit) TupRunit -- empty let binding

(mkExp env exp1 (ArgArray Out (ArrayR sh t1) gv gvb1))

(mkExp env exp2 (ArgArray Out (ArrayR sh t2) gv gvb2))

Listing 21: The implementation of desugarring the Pair constructor of PreOpenExp.

· Occasionally used inside nested pairs of expressions, the Nil constructor represents an empty
expression. The desugared result is also an empty flow, denoted Return TupRunit.

· The Const expression creates a new array with all elements initialised with the same value. Sim-
ilarly, in TensorFlow, the constant operation creates a Tensor with all elements initialised with
the same value. Correspondingly, in TensorOp, the TensorFlow operation is represented by
TConstant :: OneOf TFAll a => ScalarType a -> a -> TensorOp (Out sh a -> ()). The
desugaring result of Const solely consists of running the constant method in TensorFlow.

· First-order scalar operations such as TF.add, TF.mul are featured in the PrimApp constructor of
PreOpenExp. Moreover, the constructor features a primitive scalar operation representation of type
PrimFun. The implementation of PrimApp consists of an application of the corresponding primitive
operations in TensorFlow. Table 1 depicts each mapping. Almost all operations are also supported
by TensorFlow, but not all of them. The existence of these unsupported functions is one of the
limitations when converting Accelerate to TensorFlow.

· The constructor VecPack converts tuples of values to fixed-size vectors, and the constructor VecUnpack
converts vectors to tuples of values. As elaborated in section 2.1.6, array elements as vectors are
not included in the scope of this thesis. Therefore, the implementations for both constructors are
not implemented.

· Slice operations in Accelerate refer to sub-arrays of arrays. An array is represented by a structure
of arrays. To implement array slicing, only the buffers that contain the slice dimensions should be
returned.

· Shapes and indices can be converted to and from their linear representation. The linear representa-
tion of an array is a 1-dimensional array of all elements in column-row ordering. The size of a shape
is equal to the length of the linear representation of a shape. For instance, given an array with
dimensions d0, d1, ...dn, the length of the linear representation is

∏i=n
i=0 di. The ShapeSize construc-

tor represents the computation of the size of an array. As depicted by listing 22, to desugar the
operation, the TensorFlow multiplication operator TMul is applied with all corresponding buffers
that contain the size of a dimension.

mkExp env (ShapeSize sh exp) aOut

| DeclareVars lhs _ k <- declareVars $ shapeType sh

= mkExp env (Let lhs exp (shapeSize sh (k weakenId))) aOut

shapeSize :: ShapeR sh -> ExpVars env' sh

-> PreOpenExp (ArrayInstr env) env' Int

shapeSize ShapeRz TupRunit = Const scalarTypeInt 1

shapeSize (ShapeRsnoc shr) (TupRpair sh (TupRsingle sz))

= PrimApp (PrimMul (IntegralNumType TypeInt))

(Pair

(shapeSize shr sh)

(Evar sz))

shapeSize _ _ = error "impossible"

Listing 22: The desugaring implementation for the calculation of the size of an array shape.

· To continue, the ToIndex constructor linearises an index. That is, given an index of an arbitrarily-
sized array, it calculates the corresponding index in the linearised representation of that array.
Specifically, listing 23 depicts a method to calculate the shape in regular Haskell. Correspondingly,
listing 24 depicts the embedded variant to calculate the shape for the TensorFlow backend.
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Operation Accelerate TensorFlow
addition, multiplication
subtraction, negation,
absolute, sign

PrimAdd, PrimMul
PrimSub, PrimNeg
PrimAbs, PrimSig

add, mul
sub, neg
abs, sign

integer devision,
integer devision
truncated to 0

PrimIDiv
PrimQuot

realDiv
truncateDiv

remainder PrimRem truncateMod
simultaneous
quot and rem

PrimQuotRem
(truncateDiv,
truncateMod)

integer devision PrimIDiv realDiv
simultaneous
div and mod

PrimDivMod
(realDiv,
truncateMod)

bitwise and, or,
xor, not,
shift right, shift left

PrimBAnd, PrimBOr
PrimBXor, PrimBNot
PrimBShiftL, PrimBShiftR

bitwiseAnd, bitwiseOr
bitwiseXor, invert,
shiftRight, shiftLeft

bitwise
count ones,
count leading zeros
count trailing zeros

PrimPopCount
PrimCountLeadingZeros
PrimCountTrailingZeros

unsupported

reciprocal fraction PrimRecip reciprocal
sine, cosine, tangent PrimSin, PrimCos, PrimTan sin, cos, tan
arc sine,
cosine, tangent,
2-argument tangent

PrimAsin,
PrimAcos, PrimAtan
PrimAtan2

asin,
acos, atan
atan2

hyperbolic sine
cosine, tangent

PrimSinh,
PrimCosh, PrimTanh

sinh
cosh, tanh

arc, hyperbolic sine,
cosine, tangent

PrimASinh,
PrimACosh, PrimAtanh

asinh,
acosh, atanh

exponent, log,
sqrt, pow,
logbase

PrimExpFloating, PrimLog,
PrimFSqrt, PrimFPow,
PrimLogBase

exp, log,
sqrt, pow,
(\ x y → log(y) / log(x))

truncate to 0 PrimTruncate unsupported
round, floor,
ceil

PrimRound, PrimFloor,
PrimCeil

round, floor,
ceil

isNaN, isInfinite PrimIsNan, PrimIsInfinite isNan, isInf
<, >,
≤, geq,
=, neq,

PrimLt, PrimGt,
PrimLtEq, PrimGtEq,
PrimEq, PrimNEq

less, greater,
lessEqual, greaterEqual
equal, notEqual

maximum, minimum PrimMax, PrimMin maximum, minimum
logical and, or,
not

PrimLand, PrimLor
PrimNot

logicalAnd, logicalOr
logicalNot

Haskell’s fromIntegral,
and toFloat

PrimFromIntegral,
PrimToFloating

cast

Table 1: Direct mapping of all Accelerate primitive functions to TensorFlow operations.
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toIndex :: ShapeR sh -> sh -> sh -> Int

toIndex ShapeRz () () = 0

toIndex (ShapeRsnoc shr) (sh, sz) (ix, i)

= toIndex shr sh ix * sz + i

Listing 23: A regular Haskell definition to linearise an index, copied from the Accelerate source
code [4].

mkExp env (ToIndex sh exp1 exp2) aOut

| DeclareVars lhs w k <- declareVars $ shapeType sh

, DeclareVars lhs' w' k' <- declareVars $ shapeType sh

= mkExp env (Let lhs exp1 (Let lhs' (weakenE w exp2)

(toIndex sh (k w') (k' weakenId)))) aOut

toIndex :: ShapeR sh -> ExpVars env' sh -> ExpVars env' sh

-> PreOpenExp (ArrayInstr env) env' Int

toIndex ShapeRz TupRunit TupRunit = Const scalarTypeInt 0

toIndex (ShapeRsnoc shr) (TupRpair sh (TupRsingle sz)) (TupRpair ix (TupRsingle i))

= PrimApp (PrimAdd (IntegralNumType TypeInt))

(Pair

(PrimApp (PrimMul (IntegralNumType TypeInt))

(Pair

(toIndex shr sh ix)

(Evar sz)))

(Evar i))

toIndex _ _ _ = error "impossible"

Listing 24: The desugaring implementation for the linearisation of an index.

· The constructor FromIndex converts a linearised index back to its original form. In a similar
fashion to the implementation of ToIndex, the Haskell variant of the computation of listing 25 is
implemented by an embedded variant.

fromIndex :: ShapeR sh -> sh -> Int -> sh

fromIndex ShapeRz () _ = ()

fromIndex (ShapeRsnoc shr) (sh, sz) i

= (fromIndex shr sh (i `quotInt` sz), r)

-- If we assume that the index is in range, there is no point in computing

-- the remainder for the highest dimension since i < sz must hold.

--

where

r = case shr of -- Check if rank of shr is 0

ShapeRz -> $indexCheck "fromIndex" i sz i

_ -> i `remInt` sz

Listing 25: A regular Haskell definition to un-linearise an index, copied from the Accelerate source
code [4].

· The ArrayInstr constructor represents array accessing instructions. For starters, as introduced
in section 2.2.1, the Parameter instruction retrieves a scalar value from the Accelerate program.
To implement variable accessing during execution, TensorOp is given a new constructor TVar.
Although not directly mapped to an existing TensorFlow operation, section 3.2.2 will demonstrate
how the operation is implemented in the execution phase. Finally, there is the Index operation
which returns an element from the buffer at the given position. mkExp features an output array to
store the result. In other words, the output of the Index operation is also an array. The TF.gather
operation in TensorFlow retrieves values from an array given an array of indices. Thus, using an
array with the index as its only element, the TGather constructor in TensorOp can be used to
desugar the operation.

· The Undef constructor represents an operation that is somewhat similar to the undefined state-
ment in Haskell. To quote the Accelerate documentation: “This is useful because a store of an
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undefined value can be assumed to not have any effect; we can assume that the value is overwritten
with bits that happen to match what was already there. However, a store to an undefined location
could clobber arbitrary memory, therefore, its use in such a context would introduce undefined
behaviour.” [2]. TensorFlow does not support undefined Tensors. However, assuming the input
program is correct, the Undef value is supposed to be overwritten at some point. Therefore, the
desugaring implementation can simply resort to initialising a Tensor with zeroes.

· The Coerce constructor interprets the elements of an array as a different type. Correspondingly, the
TF.cast operation in TensorFlow casts elements of a Tensor into a different type. The desugaring
implementation uses the TCast constructor of TensorOp.

· The Cond constructor represents a conditional expression. The operation has three input arrays of
the same shape. The first array consists of booleans, if a boolean at position i is true, then the
element at position i in the result is the i-th element in the second array. If the boolean is false,
then it should be that of the third array. In the Accelerate pipeline, the elements of the second
and third arrays are assumed to remain unevaluated before selecting them with the boolean input.
In TensorFlow, the TF.select operator also has a tensor of booleans and two input tensors as
input. However, both input tensors need to be fully computed before they can be used as input.
As discussed in the results, this causes desugared programs with array-accessing while loops to fail.
This characterises another limitation of converting Accelerate to TensorFlow.

· The Case constructor resembles a switch operation, which is a variant of Cond, but with any
number of conditional cases. Because of its complexity and the aforementioned issues with Cond,
the Case constructor is not implemented in the desugaring step.

· The While constructor depicts a loop instruction. Moreover, the arguments of the constructor
consist of a condition function, an iteration function and a set of input values. First, it applies
the condition function to each input. Subsequently, each element for which the condition function
returns true is updated with the iteration function. Then, it repeats this process until there are no
elements for which the condition function returns true. Similar to Cond, given a list of booleans,
the computation sequence is different for each element, which causes desugared programs with
array-accessing while loops to fail. As with Case, because of the complexity of While, and the
incompleteness of its implementation, the While constructor is not implemented.

· Accelerate’s Foreign Function Interface constructor Foreign calls a foreign scalar expression from
the targeted backend. It also features a fallback method that yields the same result. To limit
the scope of this thesis to just support Accelerate in TensorFlow, the desugaring implementation
always runs the fallback method.

Desugaring generate With the higher-order operation generalised with the implementation of mkMap,
the desugaring implementation is completed by implementing mkGenerate and mkPermute in terms of
mkMap. For starters, the generate operation in Accelerate creates a new array, where each element
contains the result of a given function applied to the index of that element. Listing 26 depicts the full
implementation. The signature consists of a function argument and an output array. The method should
apply the function argument to a new array of shape sh, and write the results in the output array. The
process is defined as follows:

· To flatten the function argument, it needs to be desugared into a first-order series of expressions.
As elaborated above, mkMap isolates the flattening problem. What’s more, mkMap applies a method
to all elements of an input array and writes the output to an output array. As such, in the
implementation for mkGenerate, mkMap applies the function to an array of shape sh, where each
element is the index of that element. TensorFlow does not feature a single method to obtain such
an array of indices. However, the method TF.where returns an array of indices of all elements
greater than 1. So, to obtain such a method, step 1 creates a tensor of ones, and step 2 applies
TWhere to obtain the array of all indices.

· In Accelerate, an array of indices of shape sh is represented by an array of shape sh with elements
of type sh. Therefore, the shape of the array remains sh. In contrast, in TensorFlow, a tensor of
indices does not exist. Instead, a tensor of elements of type sh is just a tensor of rank sh + 1.
That is, the tensor does not contain tuples of dimensions but is just a regular tensor of indices of
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one higher dimension. In Accelerate, tuple elements are stored in separate buffers. So, to run the
step above, the indices returned by TensorFlow should somehow be mapped back to the allocated
buffers. However, the TensorFlow bindings provide no type-safe guarantee over the kind of output
of the TF.where operation. Regardless, for 1-dimensional arrays, TensorFlow just returns an array
of integers. Therefore, the aforementioned mapping complexity can be avoided by linearising the
input array. Correspondingly, step 1 creates a linearised array of ones with the same size as the
original shape sh. Then, the TWhere operation returns a 1-d array of indices in step 2, and step 3
converts the linearised indices back to their original dimensions.

· With the input array of indices returned by TensorFlow by step 3, step 4 applies mkMap with the
function parameter. The result is written to the output array from the second argument. To
implement the steps above, new variables had to be declared. To parameterise the output over the
newly declared arrays, the environments are weakened with the new declarations.

Desugaring permute In Accelerate, the permute function defines the generalised forward permuta-
tion operation (array scatter) [2]. As illustrated by example 9, permute initialises its result array with
a given array of defaults. Then, it combines elements in the result with elements selected from a given
list of permutation elements. The permutation function specifies a result index for each position in the
given array of permutation elements. In other words, it provides a position of the result element. The
permutation function may also return Nothing. If so, a permutation element is not combined with a
result element. The combination function parameter gives a way of combining elements. With its two
function parameters, permute is a higher-order method.

Example 9: An example use case for permute is the computation of the occurrence count (histogram)
for an array of values [2]. As depicted below, the histogram method uses permute to count the
number of occurrences using the (+) combination function. Each position i in the result array
corresponds to the number of occurrences of i in the input.

histogram :: Acc (Vector Int) -> Acc (Vector Int)

histogram xs =

let zeros = fill (constant (Z:.10)) 0

ones = fill (shape xs) 1

in permute (+) zeros (\ix -> Just_ (I1 (xs!ix))) ones

>>> let xs = fromList (Z :. 20) [0,0,1,2,1,1,2,4,8,3,4,9,8,3,2,5,5,3,1,2]

>>> run $ histogram (use xs)

Vector (Z :. 10) [2,4,4,3,2,2,0,0,2,1]

mkPermute :: Arg env (Fun' (e -> e -> e))

-> Arg env (Mut sh' e)

-> Arg env (Fun' (sh -> PrimMaybe sh'))

-> Arg env (In sh e)

-> OperationAcc TensorOp env ()

Listing 27: The signature of desugaring method for permute.

The signature of the corresponding mkPermute method is depicted in listing 27. The implementation of
mkPermute has to tackle the following obstacles.

1. The combination and permutation function parameters must be flattened. In a similar fashion to
mkGenerate, the application of both methods can be defined with mkMap.

2. TensorFlow does not contain a single method that exactly implements the same behaviour as
permute. Instead, the desugaring result should be composed of other TensorFlow operations to
mimic the behaviour of permute.
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mkGenerate :: Arg env (Fun' (sh -> t)) -> Arg env (Out sh t)

-> OperationAcc TensorOp env ()

mkGenerate f (ArgArray _ (ArrayR sh t) gv gvb)

| DeclareVars lhs w k <- declareVars $ TupRsingle (GroundRscalar scalarTypeInt)

, DeclareVars lhs' w' k' <- declareVars $ buffersR (TupRsingle scalarTypeInt)

, DeclareVars lhs'' w'' k'' <- declareVars $ buffersR (TupRsingle scalarTypeInt)

, DeclareVars lhs''' w''' k''' <- declareVars $ buffersR (shapeType sh)

= aletUnique lhs (Compute (ShapeSize sh (paramsIn' $ fromGrounds gv))) $

-- 1) Create a Tensor of flattened shape sh with only ones

aletUnique lhs' (desugarAlloc (ArrayR dim1 (TupRsingle scalarTypeInt))

(fromGrounds (TupRpair TupRunit (k weakenId)))) $

Alet (LeftHandSideWildcard TupRunit) TupRunit

(Exec

(TConstant scalarTypeInt 1)

(ArgArray Out (ArrayR dim1 (TupRsingle scalarTypeInt))

(TupRpair TupRunit (k w')) (k' weakenId) :>: ArgsNil)

) $

-- 2) Obtain a tensor of indices (tf.where returns list of indices of values > 0)

aletUnique lhs'' (desugarAlloc (ArrayR dim1 (TupRsingle scalarTypeInt))

(fromGrounds (TupRpair TupRunit (k w')))) $

Alet (LeftHandSideWildcard TupRunit) TupRunit

(Exec

TWhere

(ArgArray In (ArrayR dim1 (TupRsingle scalarTypeInt))

(TupRpair TupRunit (k (w'' .> w'))) (k' w'') :>:

ArgArray Out (ArrayR dim1 (TupRsingle scalarTypeInt))

(TupRpair TupRunit (k (w'' .> w'))) (k'' weakenId) :>:

ArgsNil)

) $

-- 3) Convert 1d indices to multidimensional indices

aletUnique lhs''' (desugarAlloc

(ArrayR dim1 (shapeType sh))

(fromGrounds $ TupRpair TupRunit (k (w'' .> w')))) $

Alet (LeftHandSideWildcard TupRunit) TupRunit

(mkMap

(ArgFun $ Lam (LeftHandSideSingle scalarTypeInt) $

Body (FromIndex sh

(paramsIn' $ fromGrounds $ weakenVars (w''' .> w'' .> w' .> w) gv)

(Evar (Var scalarTypeInt ZeroIdx))))

(ArgArray In (ArrayR dim1 (TupRsingle scalarTypeInt))

(TupRpair TupRunit (k (w''' .> w'' .> w'))) (k'' w'''))

(ArgArray Out (ArrayR dim1 (shapeType sh))

(TupRpair TupRunit (k (w''' .> w'' .> w'))) (k''' weakenId))

)

-- 4) Apply f to the indices

(mkMap

(weaken (w''' .> w'' .> w' .> w) f)

(ArgArray In (ArrayR dim1 (shapeType sh))

(TupRpair TupRunit (k (w''' .> w'' .> w'))) (k''' weakenId))

(ArgArray Out (ArrayR dim1 t)

(TupRpair TupRunit (k (w''' .> w'' .> w')))

(weakenVars (w''' .> w'' .> w' .> w) gvb))

)

Listing 26: The desugaring implementation for generate.
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In TensorFlow, array scatter functions are supported with scatter operations [6]. For example, the
TF.scatter_nd operation initialises a tensor of zeroes and adds elements to their scattered posi-
tion in the result array. In contrast to TensorFlow’s TF.scatter_nd, Accelerate’s permute uses
a variable set of default values. And, it may use a combination different from TF.scatter_nd’s
addition method. More than one element can be combined with the same result position. There-
fore, when using TF.scatter_nd, it is hard to replicate the actual combination afterwards. As a
result, using TF.scatter_nd would yield a very limited implementation of permute. Fortunately,
TensorFlow also features tensor scatter operations TF.tensorScatterAdd, TF.tensorScatterSub,
TF.tensorScatterMax, TF.tensorScatterMin and TF.tensorScatterUpdate. For starters, these
operations scatter elements into an array of existing values. Respectively, they use the Haskell
equivalent combination functions (+), (-), max, min, const. Using these operators, at least five
permutation functions can be implemented for permute. TensorFlow does not feature any other
methods to scatter and combine values from one tensor to another. Therefore, the implementation
will use the aforementioned tensor scatter operations, and throw an error if some other combination
function is used for permute. This defines one of the limitations of the conversion to TensorFlow.

3. As with mkGenerate, because shapes and indices are represented differently in TensorFlow, Ten-
sorFlow operations that deal with shape should only use and return 1-dimensional arrays.

Listing 32 depicts the single pattern match for the implementation. It assumes that the type of elements
matches the types used by the TensorFlow operations. For other types, it throws an error. As elaborated
above, the implementation of mkPermute uses the tensor scatter operations to scatter and combine values
from one tensor to another. Listing 28 below depicts the corresponding TTensorScatter constructor for
TensorOp. The tensor scatter operations share the same signature. As such, the constructor represents
all five tensor scatter operations. The constructor contains an argument of type ScatterFun which
corresponds to which combination operation is used. Because all TensorFlow shape operations should
only use 1-dimensional arrays, the shape of the arrays for TTensorScatter are restricted by DIM1.

data TensorOp op where

TTensorScatter :: TensorType a

=> ScatterFun

-> TensorOp (Mut DIM1 a -> In DIM1 Int -> In DIM1 a -> ())

data ScatterFun where

ScatterFunAdd :: ScatterFun

ScatterFunMin :: ScatterFun

ScatterFunMax :: ScatterFun

ScatterFunSub :: ScatterFun

ScatterFunUpdate :: ScatterFun

Listing 28: The tensor scatter constructor in TensorOp.

To continue, listing 29 depicts the restriction over the kind of allowed combination methods for permute.
The definition is used in the last step of listing 32.

scatterFun :: ScatterFun = case comb of

Lam (LeftHandSideSingle _) (Lam (LeftHandSideSingle _)

(Body (PrimApp fun (Pair (Evar (Var _ (SuccIdx ZeroIdx)))

(Evar (Var _ ZeroIdx)))))) -> case fun of

PrimAdd _ -> ScatterFunAdd -- (+)

PrimSub _ -> ScatterFunSub -- (-)

PrimMin _ -> ScatterFunMin -- min

PrimMax _ -> ScatterFunMax -- max

_ -> error "only add, sub, min, max, const allowed"

Lam (LeftHandSideSingle _) (Lam (LeftHandSideSingle _)

(Body (Evar (Var _ (SuccIdx ZeroIdx))))) -> ScatterFunUpdate -- const

_ -> error "only add, sub, min, max, const allowed"

Listing 29: The tensor scatter function is pattern matched against the value of the comb parameter.
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In TensorFlow, a tensor scatter operation requires a tensor input of default values, a list of scatter indices
indices, and a list of permutable values updates. Each element i of updates is combined with element
indices!i in the result array. The shapes of input and updates must be equal. This restriction does
not exist in Accelerate. For instance, the histogram method in example 9 applies permute with different
shapes. Therefore, yet another limitation is imposed on the possible permute definitions that can be
supported by TensorFlow. As depicted by listing 32, the three tensors input, indices and updates are
obtained as follows.

· The input array simply corresponds to the defaults array parameter of mkPermute. However,
because TensorScatter may only deal with 1-dimensional arrays, the defaults array is flattened
in the desugaring implementation.

· The indices array is obtained as follows. In the first step of the implementation, the permutation
function is passed as a parameter to the mkGenerate method. The elements in the resulting array
are of type Maybe sh'. Their value corresponds to the output of the permutation function based
on their position in the array. The indices array may only have actual indices, as the tensor
scatter operations do not support empty indices such as the Nothing value. So, to obtain the
correctly formatted array, the resulting array of mkGenerate is filtered with a predicate isJust,
and then mapped with fromJust. Listing 30 depicts the definitions for both predicates. Moreover,
in the Accelerate backend, PrimMaybe is defined as (Word8, ((), a)). Therefore, applying the
map operation for both predicates is as simple as extracting the correct buffer variable from the
corresponding tuple of buffers.

isJust :: TypeR a -> GroundVars env (Buffers (Word8, a))

-> GroundVars env (Buffers Word8)

isJust _ (TupRpair word8 _) = word8

isJust _ _ = error "impossible"

fromJust :: TypeR a -> GroundVars env (Buffers (Word8, ((), a)))

-> GroundVars env (Buffers a)

fromJust _ (TupRpair _ (TupRpair _ a)) = a

fromJust _ _ = error "impossible"

Listing 30: The implementation of mapping isJust and fromJust.

Filtering with a predicate result is a higher-order operation, which is not supported by Tensor-
Flow. Instead, the desugared implementation of filtering implements the following approach. For
starters, given a tensor with elements to filter, and an array of booleans of the same shape, the
TF.booleanMask operation in TensorFlow removes each element from the input tensor if the ele-
ment at the same position in the boolean tensor is False. To obtain the array of booleans, the
predicate is mapped over the input array. Listing 31 below depicts the implementation of filter-
ing with TF.booleanMask. The operation is missing from the TensorFlow Haskell bindings [29].
Therefore, it is replaced with an equivalent implementation with TF.where and TF.gather.

· The updates array corresponds to the values of the array of source values from the parameters.
TensorFlow’s tensor scatter methods require the inputs to be of equal size. From the definition
of the tensor scatter operations, each element i of updates is combined with element indices!i
in the result array. Hence, as some Nothing indices are left out, the corresponding permutable
values should also be left out of updates. Fortunately, because the index returned Nothing, the
permutable value will not be used. Therefore, this necessary step will not have an impact on
the result of permute. With the mask obtained by mapping the isJust predicate over the array
with elements of type Maybe sh', the booleanMask operation is used to obtain the list of updates
without the elements for which the permutation function returned Nothing.
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booleanMask :: TypeR a -> Arg env (In DIM1 Word8) -> GroundVars env (Buffers a)

-> GroundVars env (Buffers a) -> PreOpenAcc TensorOp env ()

booleanMask TupRunit _ _ gvb = Return gvb

booleanMask t@(TupRsingle s) (ArgArray _ (ArrayR sh tIn1) gv gvbIn1) gvbIn2 gvbOut

| OneOfDict <- tfAllDict s

, DeclareVars lhs w k <- declareVars $ buffersR (TupRsingle scalarTypeInt)

= aletUnique lhs

(desugarAlloc (ArrayR sh (TupRsingle scalarTypeInt)) (fromGrounds gv)) $

Alet (LeftHandSideWildcard TupRunit) TupRunit

(Exec TWhere

(ArgArray In (ArrayR dim1 tIn1) (weakenVars w gv) (weakenVars w gvbIn1) :>:

ArgArray Out (ArrayR dim1 (TupRsingle scalarTypeInt)) (weakenVars w gv)

(k weakenId) :>: ArgsNil)

)

(Exec TGather

(ArgArray In (ArrayR dim1 t) (weakenVars w gv) (weakenVars w gvbIn2) :>:

ArgArray In (ArrayR dim1 (TupRsingle scalarTypeInt)) (weakenVars w gv)

(k weakenId) :>:

ArgArray Out (ArrayR dim1 t) (weakenVars w gv) (weakenVars w gvbOut) :>:

ArgsNil)

)

Listing 31: The desugaring implementation for applying a boolean mask.

3.2.2 Execution

In summary of section 3.1.2, after desugaring, the next steps in the Accelerate pipeline are to schedule the
desugared instructions and execute the schedule. The TensorFlow backend uses a sequential scheduler.
A sequential schedule depicts a flow of backend operation execution instructions. Among others, the flow
may depict instructions for memory allocation, conditions and loops. As each backend should implement
memory handling by itself, an input or output buffer in the schedule consists of a De Bruijn index. The
approach is to bundle as many execution instructions in a single TensorFlow graph as possible, so the
values in memory should be able to store graphs. The paragraphs below discuss the implementation of
each step in the code. For reference, the discussed implementation is provided in this thesis’ GitHub
repository [5].

Kernels The pipeline converts the desugared OperationAcc result into a schedule using the sequential
scheduler. What’s more, similar to how OperationAcc is parameterised over TensorOp, to make it
backend-specific, a schedule is parameterised over a Kernel implementation. Moreover, a kernel contains
backend-specific operations and metadata. For the new TensorFlow backend, the new TensorKernel type
contains a constructor for every operation listed in TensorOp, and no metadata. In the code snippets
below, every TensorKernel constructor corresponds to the similarly named constructor of TensorOp.
For instance, the TConstant constructor in TensorOp corresponds to the TensorConstant constructor
of TensorKernel.

Values in memory Using an environment, the De Bruijn index is mapped to variables in mem-
ory. Listing 33 depicts the type TensorEnv of the new environment. In general, state modification
in Haskell is performed inside Haskell’s IO monad. Furthermore, the data type IORef from Haskell’s
Data.IORef references variables stored in the IOmonad. Specifically, the methods newIORef writeIORef
and readIORef respectively create, store and read variables. When executing a schedule, the module
Data.IORef is used to handle state manipulation. The result is wrapped inside TensorFlow bindings’
TF.Session monad. The monad is an extension of the IO monad. As such, using Haskell’s liftIO

method in a do statement, the tensor variables can be updated inside the TF.Session monad. The
buffer representations in the schedule point to references to variables in the IO monad that store input
and output values for tensor operations. Accordingly, the Tensor constructor of the value data type
TensorElement contains an IORef argument. The approach is to combine tensor operations into one
graph until the graph value is required to continue the flow execution. Therefore, a buffer may point
to a graph, or the result from running a graph. For the latter, the result of executing a graph with
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mkPermute (ArgFun comb) (ArgArray _ (ArrayR sh' _) gv' gvb') perm

(ArgArray _ (ArrayR sh t) gv gvb)

| TensorTypeDict <- tfTensorTypeDict' t

, OneOfDict <- tfAllDict' t

, maybeSh' <- TupRpair (TupRsingle scalarTypeWord8)

(TupRpair TupRunit (shapeType sh'))

, DeclareVars lhs w k <- declareVars $ buffersR maybeSh'

, DeclareVars lhs' w' k' <- declareVars $ TupRsingle $ GroundRscalar scalarTypeInt

, DeclareVars lhs'' w'' k'' <- declareVars $ buffersR (shapeType sh')

, DeclareVars lhs''' w''' k''' <- declareVars $ buffersR t

, DeclareVars lhs'''' w'''' k'''' <- declareVars $ buffersR (TupRsingle scalarTypeInt)

, DeclareVars lhs''''' w''''' k''''' <- declareVars $ TupRsingle $ GroundRscalar scalarTypeInt

, DeclareVars lhsSh' _ kSh' <- declareVars $ shapeType sh'

, DeclareVars lhsSh'' wSh'' kSh'' <- declareVars $ shapeType sh'

= -- 1) Create an array of maybeSh' with perm

aletUnique lhs (desugarAlloc (ArrayR sh maybeSh') (fromGrounds gv)) $

Alet (LeftHandSideWildcard TupRunit) TupRunit

(mkGenerate (weaken w perm)

(ArgArray Out (ArrayR sh maybeSh') (weakenVars w gv) (k weakenId))

) $ -- 2) To apply filter with 1D arrays, we need to flatten. Calculate the dim1 size

aletUnique lhs' (Compute (ShapeSize sh (paramsIn' $ weakenVars w $ fromGrounds gv))) $

-- 3) Get 1D array of indices (sh'): filter with isJust and map with fromJust.

aletUnique lhs'' (desugarAlloc (ArrayR sh (shapeType sh'))

(fromGrounds (weakenVars (w' .> w) gv))) $

Alet (LeftHandSideWildcard TupRunit) TupRunit (booleanMask (shapeType sh')

(ArgArray In (ArrayR dim1 (TupRsingle scalarTypeWord8)) (TupRpair TupRunit (k' w''))

(isJust (TupRpair TupRunit (shapeType sh')) (k (w'' .> w'))))

(fromJust (shapeType sh') (k (w'' .> w'))) (k'' weakenId)

) $ -- 4) Get 1D array of updates by filtering with predicate isJust.

aletUnique lhs''' (desugarAlloc (ArrayR sh t)

(fromGrounds (weakenVars (w'' .> w' .> w) gv))) $

Alet (LeftHandSideWildcard TupRunit) TupRunit

(booleanMask t (ArgArray In (ArrayR dim1 (TupRsingle scalarTypeWord8))

(TupRpair TupRunit (k' (w''' .> w'')))

(isJust (TupRpair TupRunit (shapeType sh')) (k (w''' .> w'' .> w'))))

(weakenVars (w''' .> w'' .> w' .> w) gvb) (k''' weakenId)

) $ -- 5) Map array of indices (sh') with toIndex to obtain 1D array of flattened indices.

aletUnique lhs'''' (desugarAlloc (ArrayR sh (TupRsingle scalarTypeInt))

(fromGrounds (weakenVars (w''' .> w'' .> w' .> w) gv))) $

Alet (LeftHandSideWildcard TupRunit) TupRunit

(mkMap (ArgFun $ Lam lhsSh' $ Body (Let lhsSh''

(paramsIn' $ fromGrounds (weakenVars (w'''' .> w''' .> w'' .> w' .> w) gv')) $

toIndex sh' (kSh'' weakenId) (kSh' wSh'')))

(ArgArray In (ArrayR dim1 (shapeType sh'))

(TupRpair TupRunit (k' (w'''' .> w''' .> w''))) (k'' (w'''' .> w''')))

(ArgArray Out (ArrayR dim1 (TupRsingle scalarTypeInt))

(TupRpair TupRunit (k' (w'''' .> w''' .> w''))) (k'''' weakenId))

) $ -- 6) Compute linearised index of input shape

aletUnique lhs''''' (Compute (ShapeSize sh'

(paramsIn' $ weakenVars (w'''' .> w''' .> w'' .> w' .> w) $ fromGrounds gv'))) $

-- 7) Apply tensor scatter to source values, flattened indices and updates.

Exec (TTensorScatter scatterFun) (

ArgArray Mut (ArrayR dim1 t) (TupRpair TupRunit (k''''' weakenId))

(weakenVars (w''''' .> w'''' .> w''' .> w'' .> w' .> w) gvb') :>:

ArgArray In (ArrayR dim1 (TupRsingle scalarTypeInt)) (TupRpair TupRunit

(k' (w''''' .> w'''' .> w''' .> w''))) (k'''' w''''') :>:

ArgArray In (ArrayR dim1 t) (TupRpair TupRunit

(k' (w''''' .> w'''' .> w''' .> w''))) (k''' (w''''' .> w'''')) :>: ArgsNil)

Listing 32: The desugaring implementation for permute.
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TF.run operation consists of the elements of the result tensor, which are represented by Haskell’s Vector
type from Data.Vector.Storable. Accordingly, the TensorValue data type that is stored inside the
IO monad may contain a graph or a graph execution result. Finally, the Scalar constructor also allows
regular Haskell values to be stored. Moreover, in some cases, a computation may be performed by the
default Accelerate interpreter instead, which yields a regular Haskell value. Such values may also be used
as input for tensor operations. Because these values are not tensor values, they are referenced by a buffer.
As such, the Scalar constructor parameterises over a, and the Tensor constructor over Buffer a.

type TensorEnv = Env TensorElement

data TensorValue a where

Build :: TF.Shape -> TF.Tensor TF.Build a -> TensorValue a -- constructed graph

Vector :: TF.Shape -> S.Vector a -> TensorValue a -- graph execution result

Nil :: TF.Shape -> TensorValue a -- empty value, used for allocation

data TensorElement a where

Scalar :: TypeR a -> a -> TensorElement a

Tensor :: VectorType (Type64 a) => ScalarType a

-> IORef (TensorValue (Type64 a)) -> TensorElement (Buffer a)

Listing 33: The environment of type TensorEnv allows input and output values for tensor operations to
be accessed with a De Bruijn index given by a buffer in a schedule.

Running a schedule Similar to the other steps in the pipeline, a sequential schedule is represented as
a GADT with recursive constructors. To execute the schedule, all constructors of the recursively defined
schedule are pattern matched. The type of the result is TF.Session (TupR TensorElement t). Each
case yields a tuple of tensor elements, such that the implementation recursively returns the corresponding
nested tuple of tensor elements. The approach only executes graphs when the scheduled flow is dependent
on an output of an operation. Therefore, the result may still contain unexecuted graphs. As such, before
yielding the final result, all returned graphs are first executed, such that all tensor elements are either
Scalar, or a Tensor with a TensorValue IORef to a Vector constructor. Each constructor of the
schedule GADT depicts a flow component. The paragraphs below elaborate on how each component is
defined and implemented in the TensorFlow backend.

Memory allocation As elaborated above, buffer indices are used to retrieve values from the IO monad
using the tensor environment with type TensorEnv. However, before these variables can be addressed,
they must be created. The sequential schedule features three constructors to create new values, namely
Alloc, Use and Unit.

For starters, the Alloc constructor represents memory allocation. The constructor only contains a shape
reference that indicates the shape of a buffer that should be allocated. Using newIORef, the TensorFlow
implementation creates a new variable in IO to be used later in the flow. The newIORef method requires
an initial value for the new variable. However, because Alloc is only meant to allocate space, the value
is initially Nil. For this reason, as depicted in listing 33, the Nil constructor represents a newly created,
but yet unused variable. A downside of including empty variables in the execution phase is that it can
cause unforeseen errors when a Nil tensor value is used as input for an operation. However, assuming
the scheduler and the desugaring phase are implemented correctly, this behaviour should not occur. As
depicted in listing 34, the corresponding implementation returns a single tuple element with the newly
created tensor.

Regular Haskell values are represented by the Scalar constructor of TensorElement. To capture a
scalar value inside of a new buffer, the Unit constructor provides a De Bruijn index pointing to a Scalar

value in the environment of type TensorEnv. As depicted below, scalar values are the result of running
the Compute constructor. To elaborate, the Unit constructor occurs whenever a scalar value is used as
input for a buffer operation. In other words, it embeds a regular Haskell value such that it can be used
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executeSeqSchedule env (Alloc shR st vars)

| VectorTypeDict <- tfVectorTypeDict st

= do

sh <- liftIO $ getShape env shR vars

ref <- liftIO $ newIORef (Nil (TF.Shape sh))

return $ TupRsingle $ Tensor st ref

Listing 34: The implementation of the execution step for the Alloc schedule constructor.

for calculations on the backend-specific device. Similar Alloc, the implementation of Unit returns the
created tensor with a single element.

Comparable to Unit, the Use constructor also embeds values such that they can be used on the backend-
specific device. Instead of a single value, Use represents the embedding of a list of values. Correspond-
ingly, the implementation returns a new tensor with a list of elements.

Variable handling The Alet constructor represents bindings of variables in the computation flow.
It contains three arguments. The first argument of type LeftHandSide GroundR (listings 9, 8) denotes
the kind of variable that will be declared. The second argument contains the sub-schedule that returns
the variable value. The third argument contains the remainder of the schedule, which also has access
to the new variable. As depicted in listing 35, the implementation returns the result of the remainder
of the schedule. Often, programs contain multiple statements. In languages such as Java and C#,
multiple calculations are indicated with ;. In the pipeline, multiple calculations are indicated with
let () = a in b. In that case, for Alet, the first argument is TupRUnit.

executeSeqSchedule env (Alet lhs _ sched sched') = do

rhs <- executeSeqSchedule env sched

let env' = push env (lhs, rhs)

executeSeqSchedule env' sched'

Listing 35: The implementation of the execution step for the Alet schedule constructor.

Variables are used by other components in the flow. For instance, the Return constructor reads values
from variables and returns their values. The constructor only contains a tuple of variables. The im-
plementation retrieves each corresponding tensor element from the environment of type TensorEnv and
returns its result.

Flow control The Accelerate language supports flow control with the acond and awhile operations.
Listing 36 depicts the signatures of both operations. In the pipeline, with the sequential scheduler,
occurrences of these operations are directly translated to the Acond and Awhile schedule constructors.

awhile :: forall a. Arrays a =>

(Acc a -> Acc (Scalar Bool)) -> (Acc a -> Acc a) -> Acc a -> Acc a

acond :: forall a. Arrays a =>

Exp Bool -> Acc a -> Acc a -> Acc a

Listing 36: The signatures of Accelerate’s awhile and acond operations.

First, the higher-order awhile operation resembles a while loop operation. Specifically, it starts with an
initial value of type Acc a that is run against a condition operation of type
(Acc a -> Acc (Scalar Bool). If true, the body of type (Acc a -> Acc a) is executed once, and the
process is repeated with the output from the body. As such, the process loops until the condition is false.
To implement the equivalent Awhile schedule constructor for the TensorFlow backend, the execution is
dependent on the output of the graph that outputs the condition. The Awhile constructor depicts a while
loop, which has two sub-schedules as its arguments. The first schedule computes the boolean condition
value of the loop. The second schedule depicts the computations of the loop body. The execution of the
loop depends on the intermediate value returned by running the graph constructed from the condition
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schedule. Namely, if the condition is true, the body schedule is executed, and the condition is checked
again. To inspect the intermediate value, the tensor graph constructed from the condition schedule must
be run. Listing 37 depicts the implementation of the Awhile constructor for the TensorFlow backend.

executeSeqSchedule env (Awhile _ cond exp vars) =

executeAwhile env cond exp (mapTupR (\(Var _ idx) -> prj' idx env) vars)

executeAwhile :: TensorEnv env

-> SeqScheduleFun TensorKernel env (t -> PrimBool)

-> SeqScheduleFun TensorKernel env (t -> t)

-> TensorElements t -> TF.Session (TensorElements t)

executeAwhile env

cond@(Slam condLhs (Sbody condSched)) -- while condition schedule

body@(Slam expLhs (Sbody expSched)) ts = do -- while body schedule

liftIO $ runTensorElements ts -- Execute all unexecuted graphs in scope.

TupRsingle condElement <- executeSeqSchedule (push env (condLhs, ts)) condSched

liftIO $ runTensorElement condElement -- Execute conditional graph.

condValue <- liftIO $ returnTensorElement condElement

if toBool condValue -- Check boolean result from conditional.

then do -- If true, perform while body

ts' <- executeSeqSchedule (push env (expLhs, ts)) expSched

executeAwhile env cond body ts'

else return ts -- If false, return tensor values.

executeAwhile _ _ _ _ = error "impossible"

Listing 37: The implementation of the execution step for the Awhile schedule constructor.

To continue, the acond operation in Accelerate returns one of two Accelerate expressions. Notably,
in contrast to awhile with condition type Acc (Scalar Bool), the type of the condition for acond is
Exp Bool. In other words, the condition calculation is not embedded in the backend-specific device.
As discussed below, the Compute constructor represents the execution of non-embedded expressions
with Accelerate’s interpreter. In a similar fashion to Accelerate’s acond operation, the Acond schedule
constructor picks either of two schedules based on a condition expression. Listing 38 depicts the imple-
mentation. Because the boolean condition is already computed by the Compute constructor, the Acond

constructor contains a Scalar variable in which the boolean is stored. As such, the implementation does
not require an intermediate graph execution.

executeSeqSchedule env (Acond (Var _ condIdx) exp1 exp2)

| (Scalar _ cond) <- prj' condIdx env

= if toBool cond -- convert PrimBool to Bool

then executeSeqSchedule env exp1

else executeSeqSchedule env exp2

Listing 38: The implementation of the execution step for the Acond schedule constructor.

Operation execution The schedule contains two constructors that represent performing calculations.
The Exec constructor represents the execution of a TensorFlow operation. The Compute constructor
represents the computation of a regular Accelerate expression. For starters, as mentioned above, for
TensorFlow operations, the approach is to combine as many operation executions into a single TensorFlow
graph. Therefore, the implementation of Exec in the TensorFlow backend should only construct a
TensorFlow graph. The constructor implementations for Awhile and Acond depend on a calculation
result. Only for those constructors must the graph be run. To construct a graph with the kernel
from the constructor, the corresponding tensor operations from the TensorFlow bindings are used. The
constructor also contains a list of input and output buffers that correspond to the operation side effect.
Considering the definitions from listing 33, using the buffer indices, the input and output tensor variables
in the IO monad are retrieved from the environment of type TensorEnv. The input variables are used
as input for the bindings operation. The output variable is where the newly constructed graph will be
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stored. For each input tensor of type TensorValue, if its constructor is Build, it can be used directly
as an argument of the binding function. Otherwise, if its constructor is Value, the values in the Vector
type will be converted back into a graph using the TF.constant operation, which takes in a list of values.
The desugared schedule may contain an execution instruction for the following operations:

· All operations from table 1 are represented by a constructor in TensorKernel. Each constructor is
implemented using the binding operation listed in table 1. Each kernel can be directly mapped to
the operation listed in the table. However, for boolean operators, Accelerate uses the type Word8

to represent booleans, which is technically equivalent. In TensorFlow, booleans are typed with
Haskell’s Bool type. Because the values are the same, the graph construction input can simply
cast the Bool type using the TF.cast operation. Inversely, using TF.cast, the return type of Bool
is cast to Word8. For instance, the operation that corresponds to TensorLogicalAnd is
(\x y -> TF.cast (TF.logicalAnd (TF.cast x) (TF.cast y))). To cast Bool to Word8 re-
quires the Bool to be 1 byte. While testing, no errors appeared to occur. As such, the cast is
assumed to be correct.

· The TensorConstant kernel corresponds to TConstant from TensorOp. It represents the creation
of a new tensor of a given shape sh that is filled with a given constant a. To implement it,
the bindings’ operation fill is used to construct a graph with a single tensor of shape sh with
all elements set to a. The constructor contains a single buffer that contains a De Bruijn index.
Using the tensor environment TensorEnv, the constructed graph is stored in the corresponding
variable in the IO monad using the writeIORef operation. To illustrate, listing 39 demonstrates
the implementation. Moreover, schedule operations only contain a side effect, and do not return a
value. As such, the implementation only modifies the state and the output type is (). Furthermore,
the type of the buffer index is parameterised over Buffer a. Correspondingly, when retrieving the
tensor element from the environment, the constructor is assumed to be Tensor, which, in contrast
to Scalar is also parameterised over Buffer a.

executeKernel :: TensorEnv env -> TensorKernel env

-> TF.Session (TensorElements ())

executeKernel env (TensorConstant (TensorArg shR shVars st (Var _ idx)) s)

| Tensor _ ref <- prj' idx env

= do

sh <- liftIO $ getShape env shR shVars

liftIO $ writeIORef ref $

Build (TF.Shape sh) $

TF.fill (TF.vector sh) (TF.scalar (toType64' st s))

return TupRunit

executeKernel _ (TensorConstant _ _) = error "impossible"

Listing 39: The implementation of the execution step for the TensorConstant kernel.

· The TensorId kernel (TId from TensorOp) corresponds to Haskell’s identity operation id. In the
implementation, it simply sets the output variable to the value of the input variable.

· As discussed in section 3.2.2, the TVar constructor from TensorOp is introduced to retrieve values
from the Parameter constructor of array instructions. As discussed below, these values are cal-
culated using the Compute schedule constructor. To use this value, the corresponding TensorVar

kernel implementation should retrieve it from the environment, and wrap the result in a new tensor.
Correspondingly, listing 40 depicts the implementation.

· The TensorWhere kernel corresponds to the TWhere constructor from TensorOp. As stated in
section 3.2.1, while desugaring, all inputs for operations dealing with shapes are converted to be
one-dimensional. The side effect of TWhere is In DIM1 a -> Out DIM1 Int -> (). However,
the corresponding TF.where operation from TensorFlow returns a tensor of a higher dimension.
Moreover, given a tensor of booleans or integers, it returns a tensor of one higher dimension of
which its dimensions incorporate the indices of all the input elements that were true or greater
than 0. As such, with a one-dimensional tensor of shape [n] as input, the TF.where operation
returns a tensor of shape [n, 1] as output. However, the side effect assumes the output is of
a one-dimensional shape (DIM1). As such, the result should be flattened. With index -1, the
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TF.reshape operation from the bindings flattens an input. The operation for TensorWhere is
(\x -> TF.reshape (TF.where' x) (TF.vector [-1 :: Int64])).

· The TensorGather kernel (TGather from TensorOp) corresponds directly to the gather method
from TensorFlow. Given a tensor of shape sh, and a tensor with indices of the first input, the
gather operation returns a tensor with only those elements referenced by the index tensor. Because
the operation uses indices, the side effect of TGather from TensorOp is parameterised over only
one-dimensional input and output buffers. Interestingly, in contrast to the shape [n, 1] of the out
output of TF.where, the input of TF.gather must be of shape [n]. Therefore, without any shape
conversion, the one-dimensional buffers can be used directly as input and output for the TF.gather
operation.

· The TensorCast kernel (TCast from TensorOp) corresponds directly to the TF.cast method from
TensorFlow. Which simply casts a tensor of type a as a tensor of type b. Similar to Haskell’s
unsafeCoerce, the TF.cast method does not specifically take in the types as input.

executeKernel env (TensorVar arg (Var _ idx))

| Scalar _ s <- prj' idx env = executeKernel env (TensorConstant arg s)

executeKernel _ (TensorVar _ _) = error "impossible"

Listing 40: The implementation of the execution step for the TensorVar kernel.

· The TensorSelect kernel (TSelect from TensorOp) represents the select operation from the
TensorFlow bindings. Given a tensor of booleans and two input tensors, it returns a tensor where
each element is selected from the two input tensors. Specifically, given a position, if the boolean
at the position of the boolean tensor is true, the element at the position of the first input tensor is
selected. If it is false, the element at the position of the second input tensor is selected. Similar to
the implementation of boolean operation mappings in table 1, the Word8 type of the boolean input
can be cast to Bool using the TF.cast operation. The operation corresponding to TensorSelect

is (\x y z -> TF.select (TF.cast x) y z).

· Finally, the TensorScatter kernel (TTensorScatter from TensorOp) corresponds to the tensor
scatter operations from the bindings. Based on the ScatterFun parameter, respectively for add,
min, max, sub and update from listing 28, the kernel corresponds to the TensorFlow operations
TF.tensorScatterAdd, TF.tensorScatterMin, TF.tensorScatterMax, TF.tensorScatterSub and
TF.tensorScatterUpdate. As elaborated in section 3.2.1, given a tensor of indices, the tensor scat-
ter operations update a tensor by combining the elements of another tensor. Given an input tensor
of shape [n], the input of indices must be of shape [n, 1]. This corresponds to the output shape
requirement [n, 1] of TF.where but differs from the input shape requirement [n] of TF.gather.

The schedule constructor Compute is used for computations that should not be embedded on the backend-
specific device. For instance, as elaborated above, the conditional expression of Acond is not embedded.
Such calculations are not performed by TensorFlow but by the regular Accelerate interpreter. Because
this yields a regular Haskell value and is not a TensorFlow execution, the result type is not a graph.
Therefore, the values do not need to be stored in the IO monad and can be used directly as input
for any subsequent calculation, which is what the Scalar constructor is for. Listing 41 illustrates the
corresponding implementation. The evalExpM method uses Accelerate default interpreter to perform the
expression on the host. This method is implemented by the default backend. To retrieve array values
from the TensorFlow backend, the method evalArrayInstr depicted by listing 42 implements the array
indexing instructions Index and Parameter. As discussed in section , Index retrieves a value from an
array, and Parameter retrieves a scalar value from the Accelerate program. To implement Index on
the host device for a TensorValue on the TensorFlow backend, the value is retrieved by accessing the
tensor. If the tensor consists of a constructed graph, the graph is executed and the value is retrieved
from the result tensor. For Parameter, the values are stored with the Scalar constructor. These values
are already stored on the host device.
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executeSeqSchedule :: TensorEnv env -> SeqSchedule TensorKernel env t

-> TF.Session (TupR TensorElement t)

executeSeqSchedule env (Compute expr) = do

value <- evalExpM expr $ EvalArrayInstr $ evalArrayInstr env

-- return as TupR TensorElement using Scalar constructors

return $ toTensorElements (expType expr) value

Listing 41: The implementation of the execution step when for the Compute constructor of the schedule.

evalArrayInstr :: TensorEnv env -> ArrayInstr env (s -> t) -> s -> TF.SessionT IO t

evalArrayInstr env (Index (Var _ idx)) s = case prj' idx env of

Scalar _ _ -> error "impossible"

Tensor st ref -> do

tensorV <- liftIO $ readIORef ref

case tensorV of

Build sh build -> do vec <- TF.runSession $ TF.run build

liftIO $ writeIORef ref $ Vector sh vec

return $ fromType64' st $ vec S.! s

Vector _ vec -> return $ fromType64' st $ vec S.! s

Nil _ -> error "impossible"

evalArrayInstr env (Parameter (Var _ idx)) _ = case prj' idx env of

Scalar _ e -> return e

Tensor {} -> error "impossible"

Listing 42: The implementation for the evalArrayInstr method, which implements tensor indexing for
the host device.

4 Results

This section aims to answer each of the research questions listed in section 1.4. Section 3 provides
a detailed depiction of the model and implementation of the new TensorFlow backend and mentions
its limitations. The answers are based on the given limitations and results from executing Accelerate
programs with the new backend.

4.1 Embedding Accelerate instructions in TensorFlow graphs

With the existing compilation pipeline in Accelerate, the first research question stated in section ??
explores the possibility of running Accelerate programs in TensorFlow. As such, section 3 models and
implements a new TensorFlow backend to desugar Accelerate programs into TensorFlow graphs, and
execute them in TensorFlow. Section 3 also denotes some of the limitations. This section further
elaborates on these limitations and depicts which parts of the Accelerate language remain unsupported.

To compile Accelerate into a hardware-specific language, a backend should provide compilation instruc-
tions for each component in the language. To demonstrate the compilation capability of a backend, it
should ideally be tested for completeness and correctness. Accelerate does not feature a test suite to test
these properties by default. Each component is listed in the documentation of Accelerate [2]. As such,
this thesis defines a test suite with simple test cases for each component listed in the documentation.
Some listings in the documentation have usage examples. For each listing, if there are examples, the
examples are included as test cases in the test suite. If there are no examples, the suite includes a simple
Accelerate program which addresses the listed method. By indicating the success rate of compiling and
executing programs for each component in Accelerate, running the test suite provides a measure of the
new backend’s completeness.

To test for correctness, the suite should ideally include an elaborate testing strategy for each component.
However, to limit the scope of this thesis, the suite does not define such strategies. Still, the suite
verifies the results by comparing them to the results of using Accelerate’s default interpreter backend.
Assuming the interpreter results are correct, the suite can verify the results from the TensorFlow backend.
Accordingly, each test case is constructed to pass if there are no errors for desugaring and execution and
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the result matches the result from the interpreter. If either is not the case, the test case will fail.

In total, the suite contains 260 tests to test 167 components. Due to type errors, missing packages,
etc., not all components from the documentation could be implemented. Table 3 depicts a list of all 33
untested components. Table 2 depicts an overview of the results after running the test suite. In total,
179 test cases passed. Compilation and execution were found to be supported for 113 operations, which
is 68% of the total number of components tested. The paragraphs below elaborate on why some of the
cases failed.

Limitations As discussed in sections 2.2 and 3, the new backend implements each component and
executes them by constructing and running graphs in TensorFlow. Briefly distinguished in section 3,
with Accelerate’s compilation pipeline and the new TensorFlow backend, there still are some limitations.
As a result, as depicted in table 2, not all components were found to be supported. The failed tests can
be explained by the following limitations:

Unsupported Scalar Expressions For starters, as shown in table 1, most primitive scalar expressions
from Accelerate are supported in TensorFlow, but not all of them. As truncation to 0 is not
supported in TensorFlow, the case for truncate failed.

Conditional Array Indexing As depicted in section 3, Accelerate’s if-then-else constructor is imple-
mented using TensorFlow’s TF.select operation. Given a tensor of booleans, it selects elements
from two other input tensors. Both input tensors are fully computed before being used as input
in the graph of TF.select. This is different from Accelerate’s semantics, which assumes that only
selected array elements are evaluated. As a result, programs that use conditional array indexing
may fail. For instance, when an array should be indexed in a loop while an index is in bounds, the
resulting TF.select graph contains two input tensors for both cases. However, because both cases
are computed in the graph, an out-of-bounds error may be thrown. Components in Accelerate
such as folds, scans, etc. are implemented using such a construction. As a result, all cases for
the categories enumeration, concatenation, filtering, folding, scans, segmented scans and stencils
failed. Finally, because of this issue, as stated in section 3, the desugaring implementation does not
implement Case and While, which caused some cases to fail for the categories segmented reduction,
real and numeric. The example used to test compute also featured such a construction. As a result,
the test case failed. However, other usages of the compute may instruction still work. Therefore,
it is not marked as unsupported in table 2.

Unsupported Types Operations in TensorFlow may require types different from their correspond-
ing Accelerate operations. In most cases, this issue can be resolved by casting the types to an
equivalent representation, such as Int64 for Int. However, in some cases, the desired TensorFlow
operation may not support the use of types equivalent to the corresponding Accelerate operation.
For instance, most TensorFlow operations do not support the type Word32, which can not be cast
to any other type. For this reason, tests failed in the categories of real and conversion.

4.2 Difference in performance

The second research question stated in section 1.4 investigates the performance of the new backend. As
mentioned often in this research, the backend was constructed mainly to investigate the possibility of
conversion, without much focus on performance improvements. As such, optimisations such as fusion and
improved scheduling are left out of scope. Yet, to provide a complete overview of the new backend, and
to aid future work, some performance metrics are nice to have. As such, each successfully passing test
case in section 4.1 is also benchmarked with the TensorFlow backend and Accelerate’s default interpreter.
The benchmarks are performed using the Criterion library for Haskell [16]. Each benchmark measures
the time between when the run operation from Accelerate is called and the result is returned. As such,
each step of the pipeline is included. The benchmarks were performed on a machine as indicated by table
5. Table 4 depicts the mean runtimes for each category in the Accelerate documentation. The mean
runtime is calculated by computing the mean time of all benchmarks in the category. Finally, the mean
runtimes for the TensorFlow and Interpreter backends are respectively 41.77 and 6.93 milliseconds.

Statistical significance To test the statistical significance of the performance difference for both
backends on the same machine, an independent t-test was performed. Moreover, the 0-hypothesis H0
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Category Operations Passed tests Support
Introduction use, unit 5/5 2/2
Initialisation generate, fill 4/4 2/2
Enumeration enumFromN, enumFromStepN 2/2 2/2
Concatenation (++), concatOn 0/3 0/2
Expansion expand 0/1 0/1
Composition (?|), acond, awhile, if-then-else 6/6 4/4
Execution (>->), compute 1/2 2/2

Indexing
indexed, map, imap, zipwith, zipwith1-9,
iZipWith, iZipWith1-9, zip, zip1-9, unzip,
unzip1-9

34/34 11/11

Modifying
arrays

reshape, flatten, replicate, rep0, rep1 7/7 5/5

Extracting
subarrays

slice, sl0, sl1, init, tail, take, drop, slit,
initOn, tailOn, takeOn, dropOn, slitOn

26/26 13/13

Permutations
permute, scatter, backpermute, gather,
reverse, transpose, reverseOn, transposeOn

11/11 8/8

Filtering filter, compact 0/2 0/2
Folding fold, fold1, foldAll, fold1All 0/8 0/4
Segmented
reductions

foldSeg, fold1Seg, fold1Seg 0/4 0/3

Specialised
reductions

all, any, and, or, sum, product, minimum,
maximum

0/18 0/8

Scans
scanl, scanl1, scanl’, scanr, scanr1, scanr’,
prescanl, postscanl, prescanr, postscanr

0/20 0/10

Segmented
scans

scanlSeg, scanl1Seg, scanl’Seg, scanrSeg,
scanr1Seg, scanr’Seg, prescanlSeg,
postscanlSeg, prescanrSeg, postscanrSeg

0/10 0/10

Stencils stencil 0/1 0/1

Eq, Ord
(==), (/=), (<), (>), (<=), (>=),
min, max, compare

18/18 9/9

Num
(+), (-), (*), negate, abs, signum,
quot, rem, div, quotRem,divMod

14/14 11/11

Rational toRational 1/1 1/1
Fractional divide, recip 2/2 2/2

Floating
sin, cos, tan, atan, sinh, cosh, tanh, asinh,
aconh, exp, sqrt, log, (**), logBase

14/14 14/14

RealFrac truncate, round, ceiling, floor, div, mod 5/6 5/6

Real

floatRadix, floatDigits, floatRange, decode,
encode, exponent, significand, scale, isNan,
isInfinite, isDenormalized, isNegativeZero,
isIEEE, atan2

8/14 8/14

Scalar constant, fst, snd, uncurry, cond 5/5 5/5
Logical and, or, not 10/10 3/3
Numeric subtract, even, odd, gcd, lcm, (ˆ), (ˆˆ) 3/7 3/7
Shapes index0 1/1 1/1
Conversion ord, chir, boolTo 1/3 1/3
Plain arrays fromList 1/1 1/1
Total 179/260 113/167

Table 2: Results from testing each listing in the Accelerate documentation. The subjects match the
categories in the documentation. The third column denotes the number of passed tests compared to the
total number of test cases. The fourth column denotes the number of supported operations compared to
the total number of operations. In the second column, unsupported operations are highlighted in italics.
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Untested methods
pi, properFraction, divMod, afst, asnd, curry, while, iterate, sfoldl,
index0-3, unindex1-3, indexHead, indexTail, toIndex, fromIndex,
intersect, bitcast, foreignAcc, foreignExp, arrayRank, arrayShape,

arraySize, arrayReshape, indexArray, linearIndexArray, fromFunction,
fromFunctionM, toList, countLeadingZeros, countTrailingZeros

Table 3: The table above lists all of the 33 components listed in the Accelerate documentation that were
not tested, nor included in the results of table 2.

assumes that both sets of runtimes for the TensorFlow and Interpreter backend are equal. To reject this
hypothesis, the p-value must be below α = 0.05. After conducting the test, a p-value of 0.0001 < α was
obtained. As such, H0 is rejected. In other words, the performance difference is found to be statistically
significant.

Category TensorFlow Mean RunTime (ms) Interpreter Mean RunTime (ms)
Introduction 5.34 4.33
Initialisation 8.97 4.78
Enumeration 13.54 5.42
Composition 8.55 5.06
Execution 11.96 9.28
Indexing 169.64 7.76
Modifying
arrays

16.99 6.24

Extracting
subarrays

34.03 7.65

Permutations 32.54 7.43
Eq, Ord 10.09 6.49
Num 8.09 6.52
Rational 7.43 8.29
Fractional 7.6 6.69
Floating 6.84 6.49
RealFrac 7.76 6.49
Real 7.07 6.5
Scalar 26.66 6.93
Logical 64.76 9.35
Numeric 9.65 6.24
Shapes 3.72 3.93
Plain arrays 6.15 6.5
Conversion 4.9 4.41
Mean 41.77 6.93

Table 4: Results from benchmarking every successful test case from table 2. For every test case, the
criterion library outputs a mean runtime result. The runtime columns in the table denote the mean of
the means of all tests in each category.

Operating System Windows 11 Pro 64-bit
CPU AMD Ryzen 9 5900X 12-Core Processor @ 3.70 GHz
RAM 32.0GB Dual-Channel DDR4 @ 1306MHz

Motherboard ASUSTeK COMPUTER INC. ROG STRIX B550-F GAMING (WI-FI) (AM4)

Table 5: The hardware specifications of the device the benchmarks were run on.
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4.3 A friendly programming language to construct TensorFlow graphs

As stated in section 1.4, the final research question concerns providing a friendly programming language
to construct TensorFlow graphs with Accelerate. Currently, in Haskell, the way to construct and execute
TensorFlow programs is by using the TensorFlow bindings. The library is limited to first-order operations.
Difficulties may emerge from the lack of support and documentation. As such, using these bindings
requires a thorough preliminary understanding of TensorFlow. With the new Accelerate backend from
section 3, Accelerate programs can be executed with TensorFlow. As a result, the Accelerate language
can be used to construct graphs instead. This alleviates the need to study TensorFlow before being able
to use it. With the TensorFlow bindings as a first-order language, constructing graphs may be tedious.
As shown in example 10, the second-order nature of Accelerate programs may pose a more programmer-
friendly option to quickly express calculations in TensorFlow. Nevertheless, when opting for the new
backend to construct graphs, there are some downsides the user should take into account. With the
limitations mentioned in section 4.1, the user should remember that not every Accelerate program is
accepted by the backend. And, as discussed in section 4.2, the graphs may not be optimised. To take
into account the backend’s limitations, the user still needs an understanding of TensorFlow. For Haskell
programmers unfamiliar with both languages, it may be more intuitive to use the TensorFlow bindings,
as using the backend would require an understanding of both Accelerate and the characteristics limiting
its use. Still, considering that plenty of Accelerate programs are supported, the backend may pose as a
friendly option to construct graphs for those already experienced with Accelerate.

Example 10: When constructing graphs, the TensorFlow bindings only offer first-order operations.
As a result, constructing TensorFlow graphs may be tedious. For illustration, consider the graph
to compute the quadratic formula below. Each operation of the formula is constructed as a node in
the graph.

quadratic :: (OneOf TFFloat a, Num a)

=> TF.Tensor v a

-> TF.Tensor v a

-> TF.Tensor v a

-> (TF.Tensor TF.Build a, TF.Tensor TF.Build a)

quadratic a b c = (

TF.div

(TF.add

(TF.neg b)

(TF.sqrt (TF.sub (TF.mul b b) (TF.mul (TF.scalar 4) (TF.mul a c)))))

(TF.mul (TF.scalar 2) a),

TF.div

(TF.sub

(TF.neg b)

(TF.sqrt (TF.sub (TF.mul b b) (TF.mul (TF.scalar 4) (TF.mul a c)))))

(TF.mul (TF.scalar 2) a)

)

In contrast to the bindings, Accelerate programs allow second-order operations. For instance,
using the zipWith3 operation below, the formula can be implemented with one or two lines of
code. As an added benefit, compared to the above, the implementation below is more readable.

quadratic :: (Num a, Data.Array.Accelerate.Floating a)

=> Acc (Vector a)

-> Acc (Vector a)

-> Acc (Vector a)

-> (Acc (Vector a), Acc (Vector a))

quadratic x y z = (qAdd x y z, qSub x y z)

where qAdd = zipWith3 (\a b c -> -b + sqrt (b * b - 4 * a * c) / 2 * a)

qSub = zipWith3 (\a b c -> -b - sqrt (b * b - 4 * a * c) / 2 * a)
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5 Conclusion

With the results in section 4.1, this research shows that second-order Accelerate programs can success-
fully be compiled into first-order computational graph operations. However, there are limitations. The
limitations indicate the adequacy of the GADTS in the Accelerate pipeline to construct first-order graphs
for TensorFlow, which constitutes the main contribution of this research. With a performance measure
and an estimate of programmer-friendliness as motivation, future research may aim to optimise the new
backend and solve problems imposed by the characterised limitations. Elaborating on the new backend
requires an extensive illustration of the Accelerate compilation pipeline, which is provided in sections 2
and 3. In doing so, this research also contributes a detailed overview of the pipeline to future researchers
looking to investigate backends for Accelerate.

With the new TensorFlow backend depicted by section 3, this research aimed to answer the research
questions from section 1.4. In short, the aim was to investigate the possible extent of compiling and
executing Accelerate programs as TensorFlow graphs, compare the difference in performance, and, in
doing so, establish a friendly programming language to construct graphs in TensorFlow. The paragraphs
below discuss the interpretation and implication of these results, and how further studies may look to
improve on them.

Limited support With the results depicted in section 4.1, the new backend is found to be covering
68% of Accelerate’s components. In other words, Accelerate programs comprised of these components
can be run with TensorFlow. With this result, this research shows that such second-order programs can
successfully be compiled into corresponding first-order computational graph operations. However, as not
all components are supported, the result does not yet imply the feasibility of all Accelerate programs.
As a result, users must take the limitations into account when using the TensorFlow backend.

The compilation result is assumed to be correct, but this property is not extensively tested. Though,
with the computations directly mapped to TensorFlow operations, one might argue that the correctness
may also be adopted by assuming the TensorFlow operations are correct. Still, this assumption does not
incorporate technical differences such as rounding behaviour. Future work may propose a more extensive
approach to test backend correctness.

The support rate is induced by limitations from the Accelerate compilation pipeline and characteris-
tics of the TensorFlow backend. Most unsupported components are characterised by the limitation of
conditional array indexing, which fails due to how if-then-else operations are implemented. Accelerate’s
semantics assume that only selected array elements are evaluated, while TensorFlow’s TF.select oper-
ation fully computes both tensors before selecting elements from them. On one end, one might argue
that these semantics from Accelerate are bold, especially when potentially supporting compilation to a
plethora of backends. However, the evaluation style is in line with Haskell’s method of lazy evaluation,
where each value is only evaluated when absolutely necessary. And, the semantics efficiently implement
conditional instructions for parallel executions on arrays. Still, when embedding computations on other
hardware, such Haskell-like characteristics may be non-existent. Future work may reveal there still is a
way to circumvent this issue. Speculatively, the conditional operator may be desugared into an if-then-
else constructor in the schedule, which allows for intermediate graph execution. Then, after separating
each tensor element in a separate graph, only the graphs that ought to be selected can be evaluated. Still,
to prevent evaluation, each element probably has to be isolated in a separate graph from the start, which
likely removes any data-parallel advantage TensorFlow may have. Alternatively, the default desugaring
implementations of the unsupported methods may be overhauled to avoid using the conditional state-
ment. This may require automatic program analysis to effectively eliminate occurrences of conditional
array indexing. Finally, perhaps there still exists some desugared sequence of TensorFlow operations for
the if-then-else component that remained uncovered in this research.

Performance Section 4.2 depicts the results after benchmarking all passing test cases for both the
TensorFlow and Accelerate’s default interpreter backend. Respectively, the mean runtimes for the Ten-
sorFlow and interpreter backends are 41.77 and 6.93 milliseconds. The performance difference was found
to be statistically significant. The results show that, for the test cases, the TensorFlow backend is slower
than the default interpreter on a CPU. As such, when looking for a performant execution of running
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Accelerate programs on a CPU, the TensorFlow backend is not the best option.

The main goal of this thesis requires a working backend. Optimisations such as fusion, scheduling im-
provements, alternative definitions, etc. were left out of scope. The TensorFlow backend has plenty
of overhead. Each program instruction is desugared, graphs are constructed, executed, etc. With the
TensorFlow backend, some Accelerate programs desugar into extensive schedules. As the default inter-
preter is run in Haskell, it has much less overhead. Hence, without performance improvements, the worse
performance of the TensorFlow backend is to be expected. Future work may aim to improve performance
by providing optimisations for the TensorFlow backend, such as reducing schedule sizes by introducing
a better scheduling algorithm.

The TensorFlow bindings for Haskell only support first-order operations. Perhaps future work may find
that the workload of converting a second-order into a first-order language will always result in longer
runtimes. In contrast to the bindings in Haskell, the Python programming language does support higher-
order operations for TensorFlow. Still, both libraries construct and execute graphs. As such, the Python
library presumably performs a similar conversion under the hood too. With the Python library officially
supported by TensorFlow, perhaps it features a better-optimised conversion method compared to the one
presented in this thesis. As such, future work may look into generating Python code to run the graphs.
This may cause a loss in type safety but may provide better results. Alternatively, the Haskell bindings
could be enhanced to adopt a similar conversion method to allow higher-order TensorFlow operations.
In doing so, the number of execution instructions in the backend schedule may be reduced to address
higher-order functions, which may alleviate some of the compilation overhead.

For the TensorFlow backend, the longest mean runtime was 169.64 milliseconds. As such, the benchmarks
may indicate that most Accelerate programs can be run with TensorFlow without taking an indefinite
amount of time. The benchmarked test cases focussed on the completeness of supporting each component
and did not investigate every edge case. Speculatively, some Accelerate programs may still desugar into
very large unoptimised schedules, perhaps too big to process. Future work may aim to characterise such
cases and optimise the scheduling process.

The benchmarks were performed on a CPU. The TensorFlow bindings also feature running TensorFlow
on a GPU. When running the test cases on a GPU, plenty of kernel errors were raised. The main goal
of this thesis is to enable compilation and execution. To limit the scope, optimisations are often left
out. As such, GPU tests were not included. However, GPUs often have a plethora of cores dedicated
to executing large-scale parallel computations. Compared to a CPU, TensorFlow shows an increase in
performance when training complex neural networks [21] on a GPU. The Accelerate interpreter backend
can not run on a GPU, but the LLVM backend can. Future work may provide different performance
results when the backends are compared on a GPU.

The benchmarks measure the time between the call of the run operation and the return of the result.
This includes every step in the pipeline. Because the second-order components of Accelerate are compiled
into first-order TensorFlow operations, compilation introduces plenty of overhead. The benchmark does
not indicate whether the execution of a compiled graph is faster than its corresponding program from the
Accelerate interpreter backend. However, considering that the TensorFlow backend uses intermediate
graph execution, it becomes hard to identify where benchmarking should start. Also, with the way the
Accelerate compilation pipeline is set up, the steps of the compilation are not cached and therefore re-
performed for every call of the run operation. Knowledge about execution times does not matter when
the pipeline will always perform desugaring. As such, the benchmarks may just be inclusive enough.

A programmer-friendly language As elaborated in section 4.3, with the new backend, Accelerate
can be used as a programming language to construct and execute graphs in TensorFlow. Compared to
using the first-order TensorFlow bindings in Haskell, the second-order components of Accelerate are often
more readable and more comfortable to use. As a result, Accelerate may provide a more user-friendly
programming language for TensorFlow in Haskell.

The result mainly focuses on comparing TensorFlow languages in Haskell. However, TensorFlow also
has libraries in other languages, such as Python. The Python library supports higher-order operations,
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provides extensive documentation and is actively maintained. Still, compared to Python, the main
benefit of using Accelerate for TensorFlow is that it can run Accelerate programs without requiring the
user to have any knowledge about TensorFlow. In contrast, the Python library is specifically designed
for TensorFlow. Data-parallel operations such as generate require more than one TensorFlow operation
to be implemented. The Accelerate backend for TensorFlow provides such conversions automatically.

The limitations provided in section 4.1 mean that compilation may fail for programs that use unsup-
ported components. As a result, the user is required to know the limitations when writing Accelerate
programs to run with TensorFlow. This may diminish the programmer friendliness of the language for
TensorFlow. What’s more, pre-existing programs in Accelerate may have to be refactored to no longer
use the unsupported components. To improve programmer friendliness, future work may need to aim
to reduce users’ need to take into account the backend’s limitations. By increasing the limited support,
the limitations may become less interfering. If the support rate can not be improved, perhaps the use
of the unsupported components can be restricted by introducing type constraints. Doing so at least
lets the user know about their use of unsupported components in the program before running ut. By
directly pointing out the wrong component, the use of the backend with the limitations may become
more intuitive.
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