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In this master thesis, we address the challenge of dynamically replanning trans-
portation services for individuals with reduced mobility in the context of Valys: a
paratransit agency in the Netherlands. High financial costs and the need for reduc-
ing greenhouse gas emissions have put pressure on paratransit agencies to improve
their operational efficiency of transport services. Dynamic replanning can prevent
changes from rendering the schedule created a day in advance inefficient, thereby
averting delays, missed deliveries, and additional expenses. Furthermore, it can en-
hance flexibility for paratransit users, allowing same-day bookings instead of a day
or more in advance.

We propose a Greedy Randomized Adaptive Search Procedure (GRASP) with
evolutionary Path Relinking as a solution to the challenges of dynamic replanning.
To the best of our knowledge, we are the first to apply GRASP in this field. There-
fore, we provide numerical evidence for our GRASP in comparison with a widely
used simulated annealing (SA) method. Comparative analysis with an SA approach
demonstrates that our GRASP outperforms SA significantly in the setting of lim-
ited computation time, typically encountered in real-time planning scenarios. Our
GRASP approach relies on high-quality start solutions for better overall solutions,
and we provide qualitative insight into the influence of the start solution on the per-
formance. At last, we demonstrate that our GRASP approach is better at frequent
real-time replanning than an SA approach. Overall, our findings highlight the effec-
tiveness of our GRASP in addressing the challenges of dynamic replanning.

Furthermore, we assess the opportunity gap of dynamic rescheduling with re-
spect to not rescheduling, quantifying the potential improvement based on the cu-
mulative number of changes. Our results show predictable gains ranging from 3.0%
to 16.8% depending on the number of changes. These gains correspond to a decrease
in service time from 150 to 600 hours per day. Our GRASP algorithm can effectively
close the opportunity gap, improve service delivery, and enhance customer satisfac-
tion.
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Chapter 1

Introduction

In the last few decades, the organization of transport services for people with re-
duced mobility has become a priority in several countries, as the public transit sys-
tem can pose significant obstacles to these people. For example, in Canada and the
Netherlands, the law requires adequate transport services for individuals with re-
duced mobility.

High financial costs and the need for reducing greenhouse gas emissions have
put pressure on paratransit agencies to improve their operational efficiency of trans-
port services. Effectively, these agencies face the challenge of scheduling a fleet of
vehicles to fulfil a set of transportation requests at minimum cost. This challenge,
also known as a Dial-A-Ride Problem (DARP), is a generalization of a pickup and
delivery problem. However, in addition to the classic pickup and delivery problem,
a DARP has service-oriented criteria. Usually, these exist of narrow time windows
on the pickup or delivery time, multiple types of service vehicles, and a maximum
trip duration for the passengers.

To date, most research is focussed on finding such schedules a day in advance,
thus scheduling with all trips known to the scheduler [1]. Creating the schedule in
advance has some benefits for the transporters of paratransit agencies: the involved
transporters are better informed of the number of vehicles needed, and there is more
computation time to create efficient routes.

However, in practice vehicle routing problems are often not static at all due
to uncertain driving times, service times, or information being gradually revealed
throughout the day, such as new trips or cancellations. In a dynamic routing prob-
lem, some input data is revealed or updated during the time in which the operations
take place. These problems are called Dynamic Vehicle Routing Problems (DVRP).
The occurrence of these changes may render the schedule created a day in advance
inefficient, causing delays, missed deliveries, and additional costs. A near-optimal
schedule that is created a day in advance may turn out to be inefficient due to can-
cellations. Additionally, it limits the flexibility of the users, who are restricted to
booking a day or more in advance. Allowing same-day bookings increases flexibil-
ity and service quality.

Dynamic replanning allows for real-time adjustments to the schedule based on
the current situation. This means that changes must be made quickly and efficiently
to ensure that the vehicles are always operating near-optimally. In this thesis, we
investigate a practical case that arises in the Netherlands involving Valys, a para-
transit agency that manages all transportation services for individuals with reduced
mobility in the Netherlands. This case is generalizable to the Dynamic variant of
the Dial-A-Ride problem (DDARP), as will be shown in Section 2. Our proposed
solution can handle the complexity and scale of realistic instances that came from
Valys.
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We will focus on two main topics: 1) a potential method to address this dynamic
problem, Greedy Randomized Adaptive Search Procedure (GRASP), and how that
method compares to a simulated annealing algorithm and 2) the opportunity gap
that arises with dynamic rescheduling. We will perform five different experiments
to address these two topics. To the best of our knowledge, we are the first to use
GRASP in the domain of (D)DARP, therefore comparing it to the well-known sim-
ulated annealing method should provide insight into how this method performs in
this dynamic problem. Addressing the opportunity gap reveals the extent to which
improvements can be made upon the current practice of not optimizing changes.

The remainder of this chapter is organized as follows. Section 1.1 gives an ex-
tended review of related problems in the literature. Section 1.2 explains our research
questions. Finally, in Section 1.3 we give an outline of the rest of this thesis.

1.1 Literature Review

Besides DARP, numerous variations of the Vehicle Routing Problem (VRP) have been
studied in the literature. The most common are the Capacitated VRP (CVRP), a
VRP with vehicle capacities; the VRP with Pickup and Delivery (PDP or VRPPD),
where items should be transported between an origin and a destination; the VRP
with Time Windows (VRPTW), where the customers should be served within given
time windows; and the Heterogeneous fleet VRP (HVRP), a generalization of CVRP,
where a fleet of vehicles with different capacities and cost is available. DARP is a
generalization of the Pickup and Delivery Problem with Time Windows, combined
with the HVRP.

Many of the above-stated problems and combinations of them relate to real-
world problems that are solved every day. For example, grocery stores that deliver
groceries to your door, parcel deliverers such as FedEx and DHL, and in the indus-
try almost all distributions and logistics. Solving these vehicle routing problems is
key to efficient transportation and decreasing supply-chain costs. Vendors of VRP
routing tools often claim that they can offer cost savings of 5%–30% compared to
not using the optimization tools [2]. Considering the enormous volumes handled
by logistic transporters on a daily basis, even an improvement of a few per cent can
make a significant difference in terms of cost savings and reducing greenhouse gas
emissions.

1.1.1 Dial-A-Ride Problem

The DARP consists of moving people between different locations, often with tight
time windows for pickups, and special service constraints such as maximum trip
durations. The focus is on determining a minimum-cost set of vehicle routes, con-
sidering operational and service constraints. A traditional application is the door-
to-door transportation service for people with reduced mobility, often elderly and
disabled.

The human perspective, of moving people instead of objects between different
locations, makes a DARP different from other VRPs. When transporting passen-
gers, reducing user inconvenience must be balanced against minimizing operational
costs [3]. The standard formulation for a DARP is often contributed to Cordeau and
Laporte [4]. Although this formulation has been studied extensively, practical ap-
plications of Dial-A-Ride systems often exhibit numerous additional characteristics,
like user-dependent maximum trip durations, multiple vehicle types, and multiple
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depots. Ignoring these extensions may result in infeasible or unrealistic solutions.
For more practical settings, the considered constraints are usually tailored to the
specific problem situation, such as special service vehicles for wheelchair passen-
gers, or a maximum wait time until pickup. In a practical setting the objective can
range from maximizing the number of people served, to minimizing user waiting
time [5], routing costs [6]–[8] or a combination of both [9], [10].

Finding an optimal solution for the DARP is an NP-hard problem [11]. Never-
theless, when the problem is moderately constrained, and the problem size is small,
exact solution approaches can be used. For example, Desrosiers et al. [12] proposed
a dynamic programming method for solving a single-vehicle DARP that could han-
dle at most 25 trips. Jean-François Cordeau [7] proposed a branch-and-cut algorithm
that can find optimal solutions for at most 48 trips, and 4 vehicles, using several fam-
ilies of valid inequalities to strengthen the LP-relaxation. However, for more realistic
cases these methods do not suffice.

Since the DARP is an NP-hard problem, most previous work has concentrated
on the development of heuristics to solve larger instances of the problem. Cordeau
and Laporte [4] proposed a tabu search heuristic that allows the violation of con-
straints during the search. The method was tested on a randomly generated set of
instances, based on realistic cases provided by Montreal Transit Commission. The
instances contained between 24 and 144 requests and are used by other authors as
benchmarks. Parragh et al. [13] proposed a competitive variable neighbourhood
search, where the neighbourhoods make use of simple swap operations, ideas from
ejection chains, and the exploitation of route parts with no passengers in a vehicle.
They used the benchmarks of Cordeau and Laporte and found in 16 of the 20 in-
stances an improved solution. Dumas et al. [14] presented a two-phase clustering
and column generation method that can handle instances with several hundred cus-
tomers. All methods above, although solving instances with a reasonable amount
of customers, still have large running times. For more realistic cases, e.g. a typi-
cal weekday of Valys may contain over 3000 trips, these would not scale well. Toth
and Vigo [8], [15] proposed a fast and effective parallel insertion heuristic which can
determine good solutions in a few seconds, for relatively small real-life instances
arising in Bologna.

Although having large similarities, these methods are not created for solving
dynamic DARP. More solutions and versions of the DARP and VRP that have been
studied over the past 40 years can be found in the reviews of Cordeau and Laporte
[3], Laporte [16], and Molenbruch et al. [17].

1.1.2 Dynamic Dial-A-Ride Problem

The vast majority of the vehicle routing literature is dedicated to deterministic and
static models, where all problem parameters are assumed to be known, and all de-
cisions are made before the day of operations. In a dynamic routing problem, some
input data is revealed or updated during the time in which operations take place.
We are going to look into the Dynamic Dial-A-Ride Problem (DDARP).

Psaraftis [5] first introduced the concept of the dynamic single-vehicle DARP,
where new requests arise dynamically over time without any prior knowledge of fu-
ture requests. Psaraftis solved the problem using a dynamic programming approach
that was developed for the static DARP. To our knowledge, little research was con-
ducted on dynamic routing between the work of Psaraftis in 1980 and the late 1990s.
However, the last two decades have seen a renewed interest in this class of problems,
thanks to better hardware, faster algorithms and efficient real-time communication
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technologies. As a result, these algorithms can now be realistically implemented in
a practical setting.

Savelsbergh and Sol [18] solved a real-world dynamic VRPPD using a rolling-
horizon framework. The problem is divided into a series of static problems, with
a subset of the known requests. These are then solved using a branch-and-price
heuristic. Computational results of the algorithm are given for several test problems
with up to 500 trips, and 100 vehicles with a capacity of up to 24 passengers. The
large vehicle capacity makes it easier to find routes for trips, as more trips can be
scheduled at the same time on the same vehicle. Besides, the absence of a maximum
trip duration makes the proposed method not directly applicable to our situation.

Desrosiers et al. [19] used a cluster first, route second method. First, a mini-
clustering phase defines clusters of users that should be served by the same vehicle,
then a column generation technique optimally combines the clusters to form vehicle
routes. The technique can be used to create good schedules for several hundred
trips. Madsen et al. [20] presented an algorithm for a similar problem, for a real-life
scenario in Copenhagen, where new requests are inserted in the current routes using
an efficient insertion heuristic based on that of Jaw et al. [21]. The limited number
of requests these algorithms can handle makes them difficult to use in our scenario.

Attanasio et al. [22] solved the same problem using a parallel tabu search heuris-
tic. Interestingly, they found that randomly generated instances are much harder to
solve than real-world instances. Because there are some patterns of taxi mobility in
realistic instances: for example, moving from home places to workplace areas and
between workplace areas. Lazhar Khelifi et al. [23] designed a hybrid approach
based on multi-objective simulated annealing in combination with tabu search to
solve the DDARP. The hybrid approach is characterized by a better exploration of
the search space. Simulations show a noteworthy negative impact on the quality of
solutions when the number of trip requests per hour increases from 20 to 35 over a
4-hour time horizon with 10 vehicles.

Lois et al. [24] proposed an online regret-based algorithm for the DDARP. The
structure is based on two separate sub-algorithms, one for handling incoming re-
quests and the other for continuously improving the solution. The algorithm was
tested on a set of 1619 trip requests and 50 vehicles with promising results and run-
ning time. Nonetheless, due to the distinct characteristics of our research context, in-
cluding a smaller capacity, the presence of driver constraints, and the use of multiple
vehicle types, the findings of this study are not directly applicable to our research.

Horn [25] created a scheduling and dispatching system called L2sched. Their
idea was to find a succession of optimal schedules for the deployment of the fleet.
The difference between any two successive optimal schedules is induced by a small
change in scheduling conditions. So the optimal schedules do not change radically
between steps, but they evolve. When a new request for a trip arrives the trip is
inserted in the schedule such that the marginal cost is minimized. Then an attempt
is made to find local improvements in a broader neighbourhood. Afterwards, at
fixed decision epochs a local search procedure improves the schedule, to overcome
inefficiencies that may accumulate as a result of the incrementally optimal choices
made when inserting new trips. While the paper researches a very similar problem,
it does not directly address the specific research question of our study. The paper
misses constraints on the maximum trip duration and driver requirements.

Other used methods to solve the DDARP are: insertion heuristics by Varone et
al. [26], Jaw et al. [21], and Luo et al. [27]; cluster-then-route, by Bertsimas et al. [28],
and Santi et al. [29]; simulated annealing by Yu et al. [30].
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1.1.3 Related Problems

The ridesharing problem is very similar to the DDARP. The main difference is that
DDARP focuses on optimizing the allocation of vehicles to passengers in real-time,
while ridesharing focuses on optimizing the sharing of rides among multiple pas-
sengers to reduce travel costs for all passengers. The sharing of rides is a fundamen-
tal aspect of ridesharing, where multiple passengers share the same vehicle to reach
their destinations. In DDARP, the sharing of rides among passengers is not necessar-
ily a primary concern, and vehicles may transport only a single passenger on some
parts of a route. DDARP typically involves the use of specialized vehicles, such as
minibuses or wheelchair vehicles, that are designed for special passenger transport.
Ridesharing, on the other hand, can involve the use of any type of vehicle, including
private cars, taxis, and ride-sharing services like Uber and Lyft, as long as the vehicle
can accommodate multiple passengers, but is not taking special needs into account.

Santos et al. [31] looked into the ridesharing problem and proposed a Greedy
Randomized Adaptive Search Procedure (GRASP) heuristic, that can solve large
scale solutions, in a reasonable time. They divided the day into equal-length pe-
riods in which incoming requests are buffered and a static version of the problem is
constructed and solved using their GRASP method. Their GRASP implementation
exists of three phases: the first phase generated a greedy randomized initial solution,
and the second phase performed a local search to improve the solution found. After
the local search, a third phase used a path-relinking technique to explore new solu-
tions on the path between two known solutions. The procedure ends when some
stopping criterium is met. The authors are able to solve instances where for 12 hours
every minute 54 new trips arrive and realize up to 30% savings for passengers that
shared a ride. Their work is an extension of their previous work [32]. They show that
the path-relinking technique works well for the ridesharing problem. Ma et al. [33]
tackled the ridesharing problem by designing a system called T-share to increase the
number of passengers served while decreasing the driving distance. Their method is
based on a fast taxi-searching algorithm with a lazy shortest-path calculation strat-
egy. These works are of particular interest in relation to the present work. Although
they address a different problem, the solution methods presented show promising
results for large-scale dynamic problem instances.

Häme [34] proposed an adaptive insertion heuristic for the single-vehicle DARP
with tight time windows. The proposed method generates optimal routes when the
problem size is reasonable (up to ten customers per vehicle). As the problem size
increases, the search space is narrowed to achieve locally optimal solutions. This
exact method could be used as a subroutine to perform better than the often-used
insertion heuristics. However, Hyytiä et al. [35] demonstrated that the performance
degradation of using an insertion heuristic instead of an exact insertion is almost
negligible as the number of possible routes becomes large enough. They conclude
that classical insertion heuristics are indeed well motivated for problems in which
the number of customers assigned to a single vehicle is sufficiently small and the
amount of vehicles is large at any moment.

1.1.4 Differences to Previous Research

Our problem differs from previous research in several crucial aspects. Firstly, only
a few papers in the literature have specifically addressed the challenges associated
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with service cancellations, as most papers focus on handling new transportation re-
quests. Secondly, practical constraints such as driver requirements are often ignored.
Driver requirements consist of a maximum route duration and legally mandated
breaks.

Thirdly, we included several constraints that are specific to our practical case,
but not to many others. These constraints provide passengers with the option to
choose whether they prefer to sit alone and avoid being combined with other trips.
Additionally, we provide an additional service for individuals with guide dogs or
car sickness, who may sit in the front seat.

Although these last two constraints are specific to our practical case, our model
remains generally applicable to the DDARP. Both constraints generalize the other
DDARP models, as they can be disabled by setting them to false for each trip.

Finally, the scale of our research is much larger than what most studies in the
literature have considered. While most research in the literature focuses on small-
scale problems, we focus on the complexity and scale of realistic instances which can
contain over 3000 trips. Our method effectively handles these additional regulations
while maintaining good performance on problems of the given size.

1.2 Approach

This thesis addresses the DDARP that arises in the practical setting of Valys by an-
swering two key questions. First, how does GRASP compare to simulated annealing
in a dynamic setting? Second, what is the opportunity gap of dynamic rescheduling
as compared to not rescheduling?

First Research Question Based on the literature review, we became intrigued by
GRASP and its extensions due to its flexibility in computation time and its ability
to reuse parts of the old schedule, which aligns perfectly with our problem. Since
GRASP is not commonly used in this area of (D)DARP, we aimed to compare our
proposed GRASP algorithm with a well-established method. We selected simulated
annealing, known for its ability to produce near-optimal results.

Specifically, we evaluate the computation time versus the reached objective when
rescheduling once a day. This is an important metric for dynamic problems charac-
terized by their limited allowed computation time. Furthermore, we examine the
influence of the start solution on the final best solution obtained between the two
different methods for both rescheduling once and for rescheduling more often. This
analysis provides insights into the extent to which GRASP relies on the quality of
the start solution compared to simulated annealing. At last, we compare the results
of GRASP and simulated annealing when frequently replanning during the day. To
show which of the two methods is a better option for dynamic problems which deal
with repeated replanning.

Second Research Question We examine the opportunity gap, which refers to the
missed opportunities for efficient passenger transportation due to limited informa-
tion beforehand. Specifically, we investigate the benefits of dynamic rescheduling
versus not, by comparing our GRASP algorithm against different benchmarks we
established. One of the benchmarks simulates the existing practice of not optimiz-
ing changes. We compare the performance of our proposed algorithm against this
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benchmark to quantify the impact of our approach and assess the potential for op-
timization. Another benchmark gives a lower bound on the solution quality, which
can be used to see how well our GRASP algorithm performs.

1.3 Overview

The rest of this thesis is outlined as follows. The next two chapters are preliminary.
In Chapter 2 we present our model and describe two operators on the model. In
Chapter 3, we propose a GRASP method to solve the DDARP. The research ques-
tions are covered in the two chapters following the preliminary chapters. Chapter 4
compares our algorithm against a simulated annealing in three experiments. Chap-
ter 5 presents the benchmarks, determines a strategy for replanning, and analyses
the results to reveal the opportunity gap. Finally, Chapter 6 presents the conclusions
of this thesis and gives some ideas for future research.
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Chapter 2

Problem Description & Model

In this chapter, we introduce our DARP and DDARP model, all relevant operational
constraints, service constraints, and two operators on the model. For the remainder
of this thesis, we assume that all distances are in meters and all times in minutes. The
“static algorithm” refers to an algorithm that creates the routes a day in advance, and
the “dynamic algorithm” refers to an algorithm that can handle changes on the day
itself.

The remainder of this chapter is organized as follows. In Section 2.1, we present
our model for the static DARP, and in Section 2.2 we present our model for the dy-
namic DARP. In Section 2.3 we explain two important operators that are frequently
used.

2.1 DARP Variant of Valys

The interval [0, T] gives the planning horizon. A static algorithm creates all routes
for all (known) trips that must be executed in the planning horizon. We are given
a set N of n trips. A trip i = 1 . . . n has the following characteristics: Let PL

i denote
the number of non-wheelchair passengers to be transported, let PW

i denote the num-
ber of wheelchair passengers to be transported, Lp

i is the pickup location where the
passengers must be picked up, and Ld

i is the dropoff location where the passengers
must be dropped off.

The passengers of a trip can indicate if they want to sit alone or with other people
in the same vehicle. A trip that has passengers that indicated that they want to sit
alone should never be combined such that they sit with others in a vehicle at the
same time. However, these trips can be combined in a route, such that a vehicle
picks up other people before or after serving the passengers. Another option the
passengers of a trip can specify is if one of the passengers wants to sit in the front.
As each vehicle has only one front seat, we assume that at most one passenger of a
single trip wants to sit in the front. This applies e.g. to passengers with guide dogs.
A guide dog should sit in between the legs of a passenger, and this is only possible
in the front seat.

For each trip i the pickup or the dropoff of the passengers must occur at a given
time instant, σi, depending on the trip type. There are two different trip types:

• Pickup trip, where σi denotes the desired pickup time.

• Arrival guarantee trip, where σi denotes the desired dropoff time.

All time instants are modelled as the time in minutes since the start of the planning
horizon.

For all trips, a time window is set that specifies the earliest and latest time service
can begin. For a pickup trip, the passenger should be picked up in between twp
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before the desired pickup time σi, and twp minutes after σi. An arrival guarantee
trip should be dropped off at most twa minutes before the desired dropoff time σi,
and never later than σi. If a vehicle arrives too early, it must wait until the opening
of the time window.

For each of the trips in N, we have two decision variables: the planned pickup
time Bp

i , and the planned dropoff time Bd
i . We also know for each trip the service

time sti at the pickup and dropoff, e.g., representing the time needed to board or
disembark a vehicle. The service time of each trip depends on the type and amount
of passengers.

The duration of a trip is the time between the pickup and dropoff of the trip
excluding the service time of the trip (Bd

i − (Bp
i + sti)). The duration must not exceed

a prescribed maximum trip duration λi, which is proportional to the fastest time
needed to travel from pickup to dropoff directly. Note the service time of the trip
itself is not included in the trip duration and thus does not count up to the maximum
trip duration. However, the service time of other trips does count.

The vehicle type that can accommodate a trip depends on the type of passengers
it has. Wheelchair passengers can only be transported by vehicles that are equipped
to handle wheelchairs, whereas other passengers can be served by any vehicle.

Valys assumes an unlimited mixed vehicle fleet for their current static algorithm,
and we follow the same assumption for our heuristic algorithm. There are enough
vehicles provided by different transporters, which are all taxi companies, to accom-
modate all trip requests. Let A be the set of transporters. Each transporter serves a
region (which is a set of locations), LA

a where a ∈ A.
A route k denotes a schedule for a single vehicle. A route Rk = {u1, u2, . . . , uz}

is an ordered sequence of locations that a vehicle will visit, sorted by visiting time.
The first location u1, is the first pickup location of the route and determines the
assigned transporter. A transporter a is assigned to route k if pickup location u1
lies in the region LA

a , u1 ∈ LA
a . The route starts at the first pickup location, and

we do not account for driving time prior to the first pickup. Transporters differ in
their allocation strategy for allocating vehicles to a route, therefore it is impossible
to know the exact location of any vehicle, and thus we also are unable to determine
the needed driving time prior to the first pickup. A route needs to end in the region
of the corresponding transporter a. When the location of the last dropoff lies in the
region, the route directly ends, then uz is the dropoff location of the last trip and
uz ∈ LA

a . If not, the vehicle needs to drive from the last dropoff location (uz−1) to
the region of the transporter. Let uz be the closest location within the region of the
transporter to the last dropoff location uz−1. The route duration dk of a route k is the
time difference between u1 and uz (including disembarking time if uz is the dropoff
location of a trip).

Different types of vehicles may be used to drive a particular route. Let F denote
the set of available vehicle types, and let the decision variable yk ∈ F represent the
vehicle type assigned to route k. Each vehicle type f ∈ F has a capacity of qP

f non-
wheelchair passengers and qW

f wheelchair passengers, where qW
f = 0 if the vehicle

does not accommodate wheelchairs. Notably, all vehicles have a single front seat.
Additionally, each vehicle type f is associated with a cost per minute of c f .

We want to find a set of routes M, where each trip is assigned to a route. A
fourth decision variable xik denotes the assignment of a trip i to a route k, one if i is
assigned to k and zero otherwise. Note that a trip can only be assigned to a single
route, ∑k∈M xik = 1, but a route can contain multiple trips.
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Definition 2.1 (Locations) L = {Lp
i , Ld

i | ∀i ∈ N} ∪ {ur | ur ∈ LA
a , ∀a ∈ A} is the set

of all locations. Let tl1,l2 (l1, l2 ∈ L) be the shortest travel time from location l1 to location l2.

Definition 2.2 (Individual trip) An individual trip is a trip that is combined with no
other trips, i.e., a route with only one trip.

Remark 2.1 In general, tl1,l2 may not be equal to tl2,l1 , and the triangle inequality is
not always satisfied. Because in the real world, it is sometimes faster to go from A to
C via B, instead of directly from A to C, if only access traffic is allowed in the area of
B.

We now define the constraints which must be satisfied by the vehicle routes.

Constraint 2.1.1 (Capacity) For any given route k, at time t = 0, . . . , T, the number of
non-wheelchair passengers pt and the number of wheelchair passengers wpt in a vehicle must
not exceed the corresponding vehicle capacity. We can express this constraint as:

pt + wpt ≤ qP
yk
+ qW

yk
t = 0, . . . , T (2.1)

wpt ≤ qW
yk

t = 0, . . . , T (2.2)

Constraint 2.1.2 (Pickup trip time window) The planned pickup and the service time of
a trip i at the pickup location should be within the pickup time window of the corresponding
trip.

σi − twp ≤ Bp
i ≤ Bp

i + sti ≤ σi + twp

Constraint 2.1.3 (Arrival guarantee trip time window) The planned dropoff and the ser-
vice time of a trip i at the dropoff location should be within the time window of the trip.

σi − twa ≤ Bd
i ≤ Bd

i + sti ≤ σi

Constraint 2.1.4 (Driver break) A driver is legally obliged to have a break when driving
for at least τd minutes. The break should be held within these τd minutes and should be at
least τb minutes long. A route is not allowed to have a break within the first τf minutes after
a break or after the start of the route, and a route should not end with a break. During the
break, the vehicle should be empty and is not allowed to drive. When dk ≥ τd, a break should
be included in the route.

Constraint 2.1.5 (Maximum route duration) A vehicle is not allowed to drive longer
than τm minutes, dk ≤ τm.

Constraint 2.1.6 (Front seat) When a trip i has a passenger that wants to sit in the front
seat, then trip i should not simultaneously share the same vehicle as another trip that also
wants to sit in the front seat.

Constraint 2.1.7 (Sit alone) A trip i that indicated that the passengers in the trip want to
sit alone, should not simultaneously share the same vehicle as another trip.

Constraint 2.1.8 (Maximum trip duration) A trip i is not allowed to take longer than its
maximum trip duration λi, Bd

i − (Bp
i + sti) ≤ λi. We define λi in terms of a factor (λ) of

the shortest driving time from pickup to dropoff. There are two exceptions to the rule, the
minimum excess ride time is 15 minutes and the maximum excess ride time is 60 minutes,
i.e.:

λi = tLp
i ,Ld

i
+ min(60, max(15, λtLp

i ,Ld
i
)) (2.3)
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To summarize, the Dial-a-Ride problem is to create a set of routes for vehicles that
contain all trips, and minimizes the weighted sum of route durations (∑k∈M cyk dk),
subject to the constraints 2.1.1 - 2.1.8.

2.2 DDARP Variant of Valys

In the dynamic version of the DARP, we have a series of time points e1, . . . , eq, at each
of which a “periodic” reoptimization is started. This reoptimization incorporates all
changes into the current schedule that became known in between the time points
while maintaining feasibility and taking routes that are in progress into account.

At time point ei, we receive a set N of trips, a set M of vehicle routes, and a time
in minutes τ. The vehicle routes in M are created by a static algorithm a day in
advance or by a previous optimization. Let τ denote the allowed computation time
of the algorithm and the time transporters need to communicate the changes in the
routes to their drivers.

During the day of operations, we receive two types of changes: a new trip δnt or
a cancelled trip δc.

An incoming cancellation message δc becomes known at time tδ
c . It contains a trip

i ∈ N that has been cancelled. A characteristic of a cancellation is that it is known at
least τc minutes in advance. So for a cancelled trip Bp

i ≥ tδ
c + τc.

A new trip message δnt becomes known at time tδ
nt. It contains a new trip i that

is not yet known, i.e. i /∈ N, and where Lp
i , Ld

i , gi, PL
i , PW

i , σi, Ai and Fi are defined
but Bp

i , Bd
i and xik ∀k ∈ M are undefined. A new trip becomes known at least τnt

minutes in advance, thus σi ≥ tδ
nt + τnt.

Then for time point ei all changes with ei−1 ≤ tδ
c , tδ

nt < ei are taken into account,
where e0 = 0. All changes with tδ

c , tδ
nt < ei−1 have already been taken into account

by a previous reoptimization. Let ∆ = ∆c ∪ ∆nt be the set of changes of the current
periodic interval, [ei−1, ei), where the superscripts denote the change types, cancella-
tion and new trip respectively. Figure 2.1, shows the process of a periodic approach
graphically.

A change might take place before the execution of the next reoptimization. A
change that becomes known within the periodic interval and the corresponding trip
starts before the beginning of the next periodic reoptimization is called locked. A
cancellation or new trip is locked if at the next periodic reoptimization ei one of the
conditions in Definition 2.3 applies. Locked changes can not be handled any more.
These changes should be handled by the default rules. The default rules give rise to
a baseline benchmark that we compare to, see Section 5.1.1

During the periodic reoptimization, we want to find a new schedule where all
trips in ∆nt are incorporated in a new route set M and all trips in ∆c are removed
from the routes. Hereby we can create new routes (M), change the trips in a route

FIGURE 2.1: Periodic approach graphically displayed.



2.2. DDARP Variant of Valys 13

(xik), the order of pickup and dropoffs (Rk), the vehicle type of a route (yk), and the
pickup and dropoff time of a trip (Bp

i and Bd
i ). However, we are not allowed to

change all parts of a route. At the time of rescheduling, some trips might already
have been executed, and some others might currently be in progress. These trips
can not be changed any more and are called locked. Thus, for locked trips, we can’t
change any of the above-named changes in the routes.

Definition 2.3 (Locked trips) A trip i is locked if one of the following conditions hold:

1. The trip has finished before the rescheduling interval starts:

Bd
i ≤ ei + τ (2.4)

2. The trip is still in progress, thus already picked up but not yet dropped off:

Bp
i ≤ ei + τ < Bd

i (2.5)

3. We are driving towards the trip, thus the next location of a vehicle that is currently
executing a route is the pickup location of a trip i, let j be the location visited just before
pickup of i:

Bp/d
j ≤ ei + τ ≤ Bp

i (2.6)

4. A trip is locked if it simultaneously shares the same vehicle as another trip that is
locked.

Condition 4 extends the locked part until the vehicle load of the route is empty. We do this
because inserting something in between the pickup and the dropoff of a locked trip becomes
unnecessarily complicated, often it is also not desired by the transporters.

Definition 2.4 (In progress) A route is in progress at the start of the rescheduling interval
if:

Bp
i ≤ ei + τ < τz (2.7)

where trip i ∈ N is the first trip that is picked up by the route, Rk = {Lp
i , . . . , uz}, and τz is

the finish time at location uz, so either the time of the dropoff of a trip or the return time at
the working area.

Definition 2.5 (Finished routes) A finished route k ∈ M is a route where the end time of
the route is before the start of the planning interval. All finished routes can be removed from
M, before reoptimizing, together with all trips they served, trip i ∈ N can be removed from
the set N if: xik = 1.

At the start of ei, a route k ∈ M is assigned a vehicle type that can carry a certain
amount of wheelchair passengers and other passengers. If a route is currently in
progress, see Definition 2.3, we can’t change its vehicle type (yk). When a route is
not in progress and not finished, we can change its vehicle type, e.g., to be able to
transport more or fewer passengers.

The challenge of the DDARP is to find a set of routes that minimizes the weighted
sum of the route durations (∑k∈M cyk dk). The set of routes should at least contain all
routes from the input that are in progress. Of the routes in progress the order of the
locked trips should not be changed, and the vehicle capacity of the routes that are in
progress should also not be changed. Besides, all cancelled trips should be removed
from the routes and all new trips should be incorporated.
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2.3 Route Model and Route Operators

Previously in Section 2.1 a route was defined as a sequence of locations. In our
implementation, we model a route as a list of nodes. A node represents the pickup
of a trip, the dropoff of a trip, or a driver break. The nodes store the following
information:

Earliest arrival time (EAT): The earliest possible moment to reach the node.
Earliest departure time (EDT): The earliest time we can leave the node
Wait time: The duration before the trip’s time window opens (zero for breaks).
Vehicle load: The number and type of passengers.
Last break time: The time of the last break (initially set to the EAT of the first node).
Slack time: The maximum allowable shifting of preceding nodes forward in time

while maintaining a feasible route.

A solution consists of a list of routes, where every trip is present in exactly one
route. Permutations of the solutions are created by two operators: 1) inserting a trip
into a route and 2) removing a trip from a route. These operators always respect the
constraints 2.1.1 - 2.1.8.

With these operators, we can generate various neighbourhoods for the solution,
such as inserting a trip into a route or swapping two trips between routes. As the
two operators take care of all constraints, we do not need to check them anywhere
else and it will be enough to know if an operation was successful or if it was infea-
sible. Given that these two operators will be frequently applied, their computation
complexity becomes crucial.

2.3.1 Trip Insertion

To insert a trip into a route, we use a stack of nodes to represent a route. In Listing
1 we show a simplified version of our trip insertion implementation. The process
starts with an empty stack unless the route contains locked trips. In the case of
locked trips, we push all nodes that are in the locked part of the route onto the stack.

Subsequently, we continuously pop and push nodes onto the stack while recalcu-
lating the aforementioned parameters. This process allows us to explore all possible
insertions of a trip, thereby calculating the best possible insertion while preserving
the order of the nodes in the route. Whenever we mention pushing a node to the
stack it implies that all parameters are recalculated accordingly.

We maintain the earliest arrival principle, meaning that we arrive at every node
at the earliest possible moment. Figure 2.2 shows how node parameters are calcu-
lated. To adhere to the principle of earliest arrival, we calculate the EAT by adding
the driving time between the previous node and the current node to the EDT of the
previous node. Whenever we have to wait, we consult the slack time of the previ-
ous node to determine if all preceding nodes can be shifted forward in time, thereby
reducing the wait time and thus the total service duration of the route. Note that
this will never result in infeasible pushes to the stack, as we simply reduce the wait
time. In Figure 2.2, the wait time can partly be reduced by the slack time remaining
for trip b, indicating that the EAT of trip a, b and c is shifted forward in time with the
amount of slack available.

In Line 4 of Listing 1 we consider all locations for a pickup. In Line 5, if there are
already nodes on the stack, we first use the PopNodes function to remove all nodes
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1 simplified procedure Insertion(route_stack, trip)
2 stack = new Stack()
3 PushLockedNodes(route_stack, stack)
4 for pickup_location in range(len(stack), len(route_stack)):
5 if pickup_location > 0:
6 PopNodes(stack, pickup_location)
7 stack.push(route_stack[pickup_location - 1])
8 Validate(stack.push(trip.pickup))
9 for dropoff_location in range(pickup_location, len(route_stack)):

10 if pickup_location ̸= dropoff_location:
11 PopNodes(stack, dropoff_location)
12 Validate(stack.push(route_stack[dropoff_location - 1])
13 Validate(stack.push(trip.dropoff))
14 for k in range(dropoff_location, len(route_stack) + 1):
15 if k == len(route_stack):
16 SaveFeasibleInsert(stack)
17 break
18 Validate(stack.push(route_stack[k])
19 return BestSavedFeasibleInsert()

LISTING 1: Simplified version of the insertion procedure. Adding
breaks, checking feasibility and the acceleration steps are hidden in

the function Validate.

until the length of the stack is i again, as these nodes were pushed when checking
another insert combination. Line 7 pushes the first not yet pushed route node onto
the stack. Then, in Line 8, we push the pickup node of the trip we want to insert onto
the stack and validate the push using the Validate function. This Validate function
handles adding breaks to the route (explained later), checks feasibility and performs
some acceleration steps. When Validate encounters an infeasibility, it continues at
the next pickup position (i + 1), as the route can never become feasible any more.
The for loop declared in Line 9 ensures that we check all insert combinations of the
pickup on the current position and the dropoff on later positions.

Similar to Line 5, Line 10 removes nodes that were pushed when checking an-
other insert combination. Then, in Line 12, we push the next node of the route onto
the stack, increasing the dropoff insert position by one. Line 13 inserts the dropoff

FIGURE 2.2: Values of the parameters after recalculation. EAT stands
for earliest arrival time, EDT for earliest departure time and WT for

the wait time.
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and validates its feasibility again, when infeasible the next dropoff position is con-
sidered (j + 1). Now we have pushed both pickup and dropoff, with possibly some
route nodes before the pickup or in between the pickup and dropoff. Line 14 to 18
inserts all remaining nodes in the route after the dropoff. When we reach Line 16, we
found a feasible insertion and save the stack. Finally, in Line 19 the best-saved stack
is returned. If there is no feasible insert, no stack was saved and an empty stack is
returned to indicate infeasibility.

Breaks A break is required if any of the pushed nodes became infeasible because
the sum of the last break time and τd is smaller than the EDT of the current node. To
insert a break, we begin at the end of the stack and traverse backwards through all
the nodes, checking if a break can feasibly be inserted in between any two nodes. A
break is inserted at the first feasible position encountered. It is important to note that
the vehicle load must be empty in order to insert a break. If no feasible break posi-
tion is found, we stop the procedure and the node is deemed infeasible for pushing
onto the stack. This is handled in Listing 1 in the Validate function. When a break
was successfully added, the corresponding break is removed when the node that
triggered the insertion of a break is popped from the stack, handled in the PopNodes
function.

Speed Up Steps As this procedure of inserting a trip is essentially a “smart” brute-
force method for inserting a trip into a route, we have devised several branching
rules to expedite the procedure.

1. Prior to pushing the pickup of the insert trip onto the stack, we verify if the
EDT of the current top node is no later than the end of the pickup’s time win-
dow. In such a case, we can no longer achieve a feasible solution with the
pickup node on this position or later positions, as we can never get in time
to the pickup location. Thus we terminate the insertion procedure. This is a
strong branching rule as it allows us to skip numerous combinations.

2. If any node is infeasible and the dropoff of the inserted trip is not yet pushed
onto the stack, all subsequent combinations involving the pickup at the current
position will also be infeasible. Consequently, we backtrack to continue the
search with the pickup on the next position.

3. If the EDT of the current top node is no later than the close time of the dropoff’s
time window, the dropoff node cannot be feasibly pushed any more. Hence,
we continue to the next position for the pickup.

4. If the EDT of the last node minus the EAT of the first node exceeds the max-
imum driving time (τm), we can cease further search and backtrack until we
removed the pickup.

The four branching rules listed above significantly speed up the insertion proce-
dure. Officially, this procedure has a cubic time complexity. However, empirical tests
show that a linear number of insertion positions are often considered. This is due
to the infrequent activation of the break procedure. Additionally, the stack ensures
that only the combinations where pickups precede dropoffs are considered. Finally,
the branching rules further reduce the number of positions by quickly discarding
combinations that will never result in a feasible insertion.
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Remark 2.2 The trip insertion procedure does not capture all feasible insertions.
Sometimes it might be feasible to insert a trip but our implementation will conclude
that it is not feasible. This is due to the maximum trip duration. When an insertion
is infeasible because the maximum trip duration of trip i is exceeded it might be pos-
sible that waiting at the pickup node of trip i decreases the duration of i such that
the maximum trip duration isn’t exceeded. We didn’t include this case as it would
significantly increase the running time of the procedure. Additionally, we saw that
when this occurs there often would be another order that was feasible, thereby still
returning a feasible insertion, even though it might not be the best insertion any
more.

2.3.2 Trip Removal

Removing a trip from a route that consists of two trips is straightforward, as both
trips become individual. For longer routes or routes containing locked trips, we
again make use of a stack. We iterate through the current route, pushing nodes onto
the stack from front to back. When we encounter the pickup or dropoff node of the
removed trip, we skip pushing this node to the stack and continue at the next node
in the route. When the last node of the route is considered we are finished. There are
three special cases that require attention:

1. The first two nodes correspond to the pickup and dropoff nodes of the re-
moved trip and the third node is a break. The break should be ignored, as
starting with a break is useless.

2. The last two nodes represent the pickup and dropoff nodes of the removed
trip. In this case, the new last node shouldn’t be a break, if it is, it should be
popped off the stack, as ending with a break is unnecessary.

3. Skipping the removed trip nodes results in two breaks too soon after each other
(i.e., the time between the two breaks is smaller than τf ). In this case, we do
not push the second break to the stack and proceed with the next node.

All parameters mentioned in Section 2.3.1 should still be recomputed. Note that
removing a trip may increase driving times (see Remark 2.1), and hence make the
route infeasible. When that happens a trip can not feasibly be removed. If no infea-
sibility was found the trip can successfully be removed.
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Chapter 3

Greedy Randomized Adaptive
Search Procedure

Many types of metaheuristics have been used to solve dynamic routing problems.
Most researchers used well-known techniques such as simulated annealing, tabu
search or genetic algorithms. In this thesis, we propose a Greedy Randomized
Adaptive Search Procedure (GRASP) with evolutionary Path Relinking to solve the
DDARP. To the best of our knowledge, we are the first to implement GRASP for the
DDARP.

We chose to implement GRASP instead of other well-known metaheuristics for a
few reasons. Foremost, GRASP can build upon the existing planning using already
well-researched (insertion) heuristics. Since dynamic replanning is often constrained
by limited computation time, having a schedule that is likely to be near-optimal
provides a good starting point, such as the one created a day before by the static
algorithm. By using this schedule as a foundation, GRASP can quickly build upon it
to find even better solutions. This ensures that the limited computation time is used
effectively and efficiently.

Secondly, the total computation time of GRASP is predictable. Since the compu-
tation time does not vary significantly from iteration to iteration, the total compu-
tation time increases linearly with the number of iterations. Therefore, the longer
the computation time, the more solutions we can explore and the better the final
solution becomes. Even with only a few minutes available, GRASP is able to find
and connect dozens of local optima using path relinking. This flexibility makes the
method highly adaptable, as we can run GRASP with limited computation time and
still obtain a good solution, or allocate more computation time to achieve an even
better solution.

The remainder of this chapter is organized as follows. In Section 3.1, we will
explain the working of our GRASP algorithm. Then in Section 3.2, we will introduce
path relinking and how it can be combined with GRASP.

3.1 GRASP Heuristic

GRASP was proposed by Feo and Resende in 1995 [36]. GRASP is a multi-start
metaheuristic, which involves running a metaheuristic multiple times with different
starting solutions to increase the likelihood of finding a globally optimal solution.
The pseudocode in Listing 2 illustrates the main block of a GRASP algorithm. Each
iteration consists of a construction phase, where a feasible solution is constructed,
and a local search phase, which starts at the constructed solution and applies iter-
ative improvement until a local optimum is found. This process is repeated until
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some stopping criteria have been met. The best local optimal solution found in all
GRASP iterations is returned as the final solution.

The goal of a metaheuristic is to find a sufficiently good solution to a problem, it
samples a subset of solutions which is otherwise too large to be completely enumer-
ated or otherwise explored. A metaheuristic has two goals that have to be balanced
against each other, exploration, and exploitation. Exploration refers to searching in
the unexplored area of the solution space, while exploitation refers to the search of
the neighbourhood of a promising region. The construction phase includes both ex-
ploration and exploitation. Depending on some parameter α, the construction phase
focuses more on exploration or exploitation. The local search phase of GRASP fo-
cuses solely on the exploitation, it tries to quickly move to a local optimum.

1 procedure GRASP(start_solution, changes)
2 bestSolutionFound = None
3 while GRASP stopping criterion not satisfied:
4 solution = ConstructionPhase(start_solution, changes)
5 solution = LocalSearchPhase(solution)
6 UpdateBestSolution(solution, bestSolutionFound)
7 return bestSolutionFound

LISTING 2: GRASP procedure

3.1.1 Construction Phase

During the construction phase, the algorithm uses a randomized greedy heuristic
to iteratively construct an initial solution to the problem. One element at a time
is considered to build up the solution. In this approach, the randomized greedy
heuristic ranks all elements that can be added to the solution by a greedy function
according to the quality of the solution they can achieve. To introduce variability,
a part of these elements are placed in a restricted candidate list (RCL) and selected
randomly from this list when building the initial solution.

The original GRASP procedure starts from an empty solution. However, as we
are dealing with a dynamic problem and therefore receive the current schedule, we
decided to take the current schedule as a start solution. This makes it possible to
reuse parts of solutions from previous optimizations.

To construct an initial solution, we start with the current schedule and adapt it
to exclude all cancelled trips and include all new trips using a basic set of rules,
also defined in the baseline benchmark described in Section 5.1.1. This benchmark
handles the changes as in current practice. New trips are driven individually (see
Definition 2.2). Cancellations are removed from their route, as explained in Section
2.3.2.

After constructing this initial solution, we implemented a concept used in large
neighbourhood search (LNS) [37]. LNS alternates between a destroy phase and a
repair phase. A destroy phase destructs part of the current solution to escape local
optima, while a repair phase rebuilds the destroyed solution. We implemented the
idea of a destroy phase, to introduce an extra level of diversification. The initial
solution is for every GRASP iteration the same, so the destroy phase ensures that
the initial solutions are sufficiently different from each other. This way, the GRASP
iterations search in different areas of the search space. Another reason for the destroy
phase is to destroy parts of the solution that otherwise would never be explored.
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E.g., routes that would never be split in the local search phase because the removal
(or swap) of a trip never leads to an improvement, and first a decrease in solution
quality is needed to later improve the route.

The degree of destruction is an important choice when implementing the destroy
method. If only a small part of the solution is destroyed then the heuristic may
repeatedly enter the same local optima and is not able to search the entire search
space. However, when a large part of the solution is destroyed LNS may act as a
random restart method, where no parts of the previous solutions are reused.

Our destroy method takes a random percentage, in between 0% and 30%, trips
and removes them from their route. Note that individual trips are kept individual
and if removal results in an infeasible route, the route is left unchanged.

The rest of the construction phase can be seen as the repair phase of LNS, where
we rebuild the solution element by element. We repeatedly insert or combine indi-
vidual trips into routes as long as the solution stays feasible. At the start, there is
a higher probability of selecting insertion as the method of modifying the solution,
while combination is less likely to be chosen randomly. When insertion was selected,
we randomly select a route and calculate all possible insertions of all individual trips
into this route. All feasible insertions into the route are called candidate insertions
and are kept in a candidate list. The candidate list is prioritized according to the
actual insertion cost of the candidate insertions, which is calculated by subtracting
the cost of driving the route individually from the cost of inserting the trip into the
route.

Let the insertion cost of a trip i into a route k be µk
i , and let CLk be the candi-

date list that contains all individual trips with a feasible insertion into route k. Only
the best insertions in CLk are considered and stored in a restricted list of candidates
called RCLk. Let µk

min = mini∈CLk µk
i and µk

max = maxi∈CLk µk
i , respectively, the mini-

mum and the maximum cost attained by all candidate insertions in CLk. The RCLk

can be defined as:

RCLk = {i ∈ CLk | µk
i ≤ µk

min + α(µk
max − µk

min)} (3.1)

for a given value of α ∈ {α1, . . . , αL}. The choice of the trip to be inserted in the
partially constructed feasible solution is chosen uniformly at random among all re-
quests included in the RCLk. Once a trip i has been chosen from the RCLk, the trip
is inserted into route k, and removed from the set of individual trips. When CLk is
empty, no feasible insertion is possible and the route is not considered in the next
iterations.

When combine is selected, we build a CL based on all possible combinations of
two individual trips combined into a new route. Then the same procedure as above
is used to determine which two trips will be combined. We decided to implement
this combine method because it is an extra diversification step. Ensuring that some
trips that otherwise will never be combined still have a possibility to end up together.
At most 70 new routes are created in the construction phase, to prevent combining
too much.

This process is repeated until no trip can feasibly be inserted into one of the
routes or all trips have been inserted into a route. A formal description of the con-
struction phase is reported in Listing 3.
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1 procedure ConstructionPhase(start_solution, changes)
2 solution = BenchmarkSolution(start_solution, changes)
3 solution = RemoveTripsFromRoute(solution, rand(0, 31))
4 routes = all routes in solution, new_routes = rand(50, 71)
5 CE = all individual trips in solution
6 α = pick random from {α1, . . . , αL} according to probabilities p(αl), l = 1, . . . , L
7 while routes not empty and CE not empty:
8 x = rand(0, len(routes) + (new_routes > 0)), CL = []
9 if x == len(routes):

10 CL = FeasibleCombinations(CE)
11 RCL = BuildRCL(CL, α)
12 (trip_a, trip_b) = RCL[rand(0, len(RCL))]
13 new_route = solution.Combine(trip_a, trip_b)
14 Update(CE, routes, trip_a, trip_b, new_route)
15 new_routes -= 1
16 if len(CL) == 1: new_routes = 0
17 else:
18 CL = FeasibleInsertions(routes[x], CE)
19 RCL = BuildRCL(CL, α)
20 trip = RCL[rand(0, len(RCL))]
21 solution.Insert(routes[x], trip)
22 Update(CE, routes, trip, routes[x])
23 return solution

LISTING 3: GRASP construction phase

Effect of the Greediness Factor

In the construction phase, the amount of greediness is determined by the parameter
α. For α = 1 the algorithm acts completely random and chooses from all insertion
candidates (RCLK = CLk). For α = 0 the algorithm is fully greedy and only chooses
from the candidates that have insertion cost equal to µk

min.
Prais and Ribeiro in [38] have shown that using a fixed value for α very often

hinders finding a high-quality solution, which eventually could be found if another
value was used. That’s why we decided to select the value of α from a discrete set
of 11 values: α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The value is chosen
according to pre-assigned probabilities for each α value.

We based the pre-assigned probabilities on the following reasoning, mentioned
by Resende et al. [39] (the quote has been edited to fit the thesis): “each application
of the GRASP construction procedure produces a sample solution from an unknown
distribution, whose mean and variance strongly depends on the value of α. If the
RCL has one element, then the same solution will be produced in all iterations. The
variance of the distribution will be zero and the mean will be equal to the value of
the greedy solution. Instead, when the RCL contains more elements, many solutions
will be produced, implying a larger variance. Since we are acting less greedy, the
mean solution value should be worse than that of the greedy solution. However,
the value of the best solution found outperforms the average value and can be near-
optimal or even optimal. It is unlikely that GRASP will find an optimal solution
if the average solution value is high, even if there is a large variance in the overall
solution values. On the other hand, if there is little variance in the overall solution
construction, it is also unlikely that GRASP will find an optimal solution, even if the
mean solution value is low. What often leads to good solutions are the values for
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α that produce relatively low average solution values in the presence of a relatively
large variance, such as is the case for α = 0.2.”

Besides influencing the solution quality, the greediness factor also has an impact
on the computational time needed in the local search phase. Low values of α produce
more greedy solutions. Those solutions are closer to a local optimum and hence less
time is needed in the local search phase. When α is large, more random solutions are
created. This increases the time in the local search phase since a random solution is
on average further away from a local optimum. Consequently, a higher probability
of picking a lower α value has a positive impact on the computation time in the local
search phase and thus on the overall computation time.

3.1.2 Local Search Phase

During the local search phase, a local search is performed on the solution constructed
in the construction phase until a local minimum is found. In each iteration of the
local search, we keep a current solution, which will explore its neighbourhood to
obtain a better solution. Anytime a better solution is found, we replace the current
solution with the better one and a new iteration begins. A local optimum is found
when no solution in the neighbourhood is better than the current solution.

We chose variable neighbourhood descent (VND) as the local search procedure.
This is a variant of variable neighbourhood search (VNS) [40]. VNS systematically
changes neighbourhoods during the search. The underlying principle is that a lo-
cal optimum under one neighbourhood structure is not necessarily the optimum of
another, but a global optimum is a local optimum regarding all possible neighbour-
hoods. VND only accepts solutions strictly better than the current solution. When
a local optimum is reached with the current neighbourhood structure, the search
resumes with a different neighbourhood structure to escape from the current opti-
mum. We repeat the process until the current solution is optimal in all neighbour-
hood structures.

We have six neighbourhood structures, in the search order: move, move-remove,
swap, combine, remove and move sequence. These neighbourhood structures will
be explained in depth in Sections 3.1.2.1 – 3.1.2.6.

There exist two typical strategies to explore a neighbourhood, 1) best improve-
ment, also known as steepest descent, and 2) first improvement. In best improve-
ment, the associated neighbourhood is completely explored by a deterministic pro-
cedure performing each iteration the best possible operation. The order in which all
neighbours are evaluated doesn’t matter, since the entire neighbourhood is explored.
The first improvement strategy tries to avoid the complexity of exploring the entire
neighbourhood by moving to the first neighbour encountered which improves the
current solution. The order in which the neighbours are explored can have a signif-
icant influence on the final result. Instead of using a deterministic order as in the
best improvement strategy, a random order is usually performed, since the same lo-
cal optima are encountered when using a deterministic order and starting from the
same solution. For the efficiency reason mentioned above, we chose to implement
the first improvement strategy for all neighbourhoods.

Most VND variants traverse the neighbourhood structures sequentially. Basic
VND, pipe VND, cyclic VND and union VND are the most used search procedures.
These variants differ in how they implement the neighbourhood change procedure.
Specifically, if an improvement has been detected in some neighbourhood, it defines
how the search is continued. We implemented the pipe VND that after an improv-
ing operation continues the search in the same neighbourhood until no improving
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1 procedure LocalSearch(Solution solution)
2 neighbourhoods = [move, move_remove, swap, combine, remove, move_sequence]
3 current_neighbour = 0
4 found_improvement = false
5 while current_neighbour < 6:
6 if current_neighbour == 0:
7 found_improvement = false
8 while not neighbourhoods[current_neighbour].is_exhausted():
9 sol = neighbourhoods[current_neighbour].single_step()

10 if sol is better than solution:
11 solution = sol
12 found_improvement = true
13 current_neighbour++
14 if current_neighbour >= 5 and found_improvement:
15 current_neighbour = 0
16 return solution

LISTING 4: GRASP local search phase

neighbours are found, then the search is continued in the next neighbourhood struc-
ture. When no new improvements can be found in the remove, second to last, neigh-
bourhood, and we made at least one improvement in the current or previous four
neighbourhoods, we continue again at the first neighbour. If this is not the case, we
continue the search at the move sequence neighbourhood. Exploration of this neigh-
bourhood is explained in Section 3.1.2.6. When all six neighbourhoods didn’t find
an improving operation, we stop the local search and the current solution is locally
optimal with respect to all neighbourhoods. A formal description of the local search
phase is covered in Listing 4.

3.1.2.1 Move

The move neighbourhood consists of inserting an individual trip into a route. The
trip is inserted as described in Section 2.3.1. We explore the entire neighbourhood
by looking efficiently at all individual trip, and route combinations.

3.1.2.2 Move-Remove

The move-remove neighbourhood looks if an individual trip can be inserted in a
route by removing a trip of that route. The removed trip becomes individual and can
again be reinserted in another route during the same iteration of this neighbourhood.

This neighbourhood comes after the move neighbourhood, thus we know that at
the start no individual trip can be placed in any of the routes and thereby improve
the solution. This neighbourhood looks one step further and checks if we can create
a better route by removing a trip from the route and then insert the individual trip
into the route.

3.1.2.3 Swap

The swap neighbourhood consists of the swap operator. It takes two trips that are
currently in a route (not individual trips) and checks if we can remove the trips from
their routes and then insert them in the other route.
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We extend the swap operator to look at two more cases for the same two trips.
The other cases remove the two trips from their routes and insert only one of the trips
in the route of the other trip. The other trip that is not inserted is made individual.
The operator with the largest cost decrease is chosen. Note that when evaluating the
original swap operator, we already have all information for the extra operators. This
operator is also applied for two trips that are in the same route, by removing them
both and then reinserting them again one by one.

3.1.2.4 Combine

The combine neighbourhood takes two individual trips and inserts them in a new
route if the cost is less than driving them both individually. We do not want too
many new routes at a time, therefore we do not fully explore this neighbourhood.
This is because if we fully explore this neighbourhood we get a lot of new routes and
the number of individual trips decreases. This leads to worse and fewer operations
in the first two neighbourhoods.

Therefore, each neighbourhood iteration creates at most x new routes at a time,
where x is randomly chosen in the domain: x ∈ [4, 15]. When x new routes are cre-
ated, or no trips can be combined we continue the search in the next neighbourhood.

3.1.2.5 Remove

The remove neighbourhood takes a random non-individual trip and checks if it can
be removed from its route, and made individual.

3.1.2.6 Move Sequence

The operator of this neighbourhood selects at most 350 “similar” trips based on the
Shaw operator [37]. The trips can be both individual trips and non-individual trips.
However, no two trips that are on the same route are selected. All trips are removed
from their route (if this is not feasible another trip is chosen to replace this trip). Then
we calculate for each trip the insertion into each route of the other trips. If the route
originally contained an individual trip, it is now empty and an insert will create an
individual trip. If inserting the trip in a route is not feasible then the route is left as
is and the trip is made individual. The cost of inserting the trips into the routes is
placed in a 350 × 350 matrix, where the rows correspond to routes and the columns
to trips. Therefore, a cell represents the cost of inserting the trip corresponding to
the column into the route corresponding with the row.

An assignment algorithm, that uses the min-cost max-flow algorithm, is used to
calculate the cheapest way of inserting all trips into the routes. Note that the cost
difference of the best assignment is at most zero, as we can reinsert all trips back
into their original routes and get the same solution as before. Therefore, we never
generate worse solutions.

When reaching this neighbourhood we know that the solution is locally optimal
with respect to all other neighbourhoods. This neighbourhood is used to escape from
that local optimum by looking at a very large part of the solution space. A success-
ful application with a non-zero cost delta implies that we have reached the region
of another local optimum that is better than the current. Therefore, this neighbour-
hood is perfect to escape local optima. But the time complexity of a single operation
in this neighbourhood is very large, as 350 trips have to be removed and reinserted.
Hence, we only execute this neighbourhood when all other neighbourhoods are fully
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explored. Besides, every time we reach this neighbourhood we execute this neigh-
bourhood at most x times, where x is randomly chosen in the domain: x ∈ [3, 5]. In
a single application of the local search phase, the procedure can be executed at most
fifteen times to further reduce the time complexity. Furthermore, this operator is
only executed when the current solution is “promising”. A solution is promising if
the cost is at most 0.3% higher than the best-found solution in all GRASP iterations.

3.2 Path Relinking

Path relinking is a search intensification strategy, originally proposed by Glover [41].
It is used as an enhancement to heuristic search methods for solving combinatorial
optimization problems. Its use in metaheuristic frameworks has led to significant
improvements in both solution quality and running times [42].

During path relinking, we explore trajectories connecting high-quality solutions
with each other. Path relinking starts with two solutions, the initial solution and
the guiding solution. The idea is to create a path from the initial to the guiding
solution using a set of operations. When the operations are applied one by one over
the initial solution, we obtain in each application a new solution that is more similar
to the guiding solution. After the application of all operations, the initial solution
becomes equal to the guiding solution. At the end of this procedure, the best-found
solution on the constructed path undergoes a local search procedure as described in
Section 3.1.2 and the result is returned.

Path relinking can be viewed as a search strategy that seeks to incorporate ele-
ments of the guiding solution into the initial solution. At the start of the path relink-
ing procedure, we map all routes of the guiding solutions onto routes of the initial
solution, such that each route in the guiding solution is paired with a route in the
initial solution. Two routes are paired together if they are the same route, so both
come from the start solution and have the same ID or when not in the start solution
we pair it with the most similar route in the guiding solution that is unpaired. The
similarity is computed as the number of equal trips both routes serve. Ties are bro-
ken arbitrarily. If the initial solution uses fewer routes we create empty routes with
no trips and pair the new routes with an unpaired guiding route.

The idea is to make at least one route of the initial solution more similar to its
paired route in the guiding solution at every step. At each iteration of path relinking,
we evaluate all possible combinations of three types of operations. First, we look
at trips that are non-individual in the guiding solution but individual in the initial
solution, second we look at non-individual trips in the initial solution but who are
individual in the guiding solution, and last we look at trips that are served in both
solutions but are in the wrong route (their routes are not mapped to each other).

An operation of the first type exists of inserting an individual trip of the initial
solution into the route that is mapped to the route that contains the trip in the guid-
ing solution. An operation of the second type removes a trip from the route in the
initial solution that is individual in the guiding solution. The third operation moves
a trip that is in the wrong route in the initial solution to the correct route, which is the
route in the initial solution that is mapped to the route in the guiding solution that
contains this trip. We evaluate all possible operations and select the operation that
results in the lowest cost delta of the objective function, ensuring a greedy approach
to transition from the initial solution to the guiding solution.
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If no feasible operation is possible any more, and there are still trips being served
by the incorrect vehicle, we have encountered a deadlock. In such cases, the path
relinking procedure would be terminated prematurely.

3.2.1 GRASP + Path Relinking

In the previous sections, we described the basic GRASP procedure, which explores
the solution space through a series of independent searches. Each search begins
with a unique greedy randomized solution, and no information is shared between
the searches, making them all independent. As a result, GRASP is considered a
memoryless metaheuristic. In contrast, other successful metaheuristics, such as tabu
search, genetic algorithms, and ant colony optimization, make extensive use of in-
formation gathered during the search process to guide their search in the solution
space.

Path relinking adds a long-term memory to GRASP, by including an elite set of
“diverse”, high-quality solutions that are found during the search. At each iteration,
the path relinking procedure is applied between the solution found at the end of the
local search phase and a randomly selected solution in the elite set. The result is a
candidate solution to enter the elite set.

The elite set is of fixed length. In the beginning, all solutions can enter the elite
set until the limit is reached. When the limit is reached a solution can only enter the
elite set if it is better than at least one solution currently in the elite set. When it is
better than more than one solution the symmetric difference between these solutions
and the current solution is calculated. The solution with the highest similarity is re-
moved from the elite set and the current solution enters the elite set. The symmetric
difference between two solutions is defined as the number of trips that are served
by the same route. This is calculated by first mapping all routes of one solution onto
the other, as explained in the previous section, and then calculating the trips that are
served in both routes of the mapping. When a trip is individual in both solutions
this counts as served by the same route.

Different types of strategies exist for choosing the initial and guiding solution.
Forward path relinking uses the solution from the elite set as guiding solution and
the result from the local search as initial solution; backward path relinking is the
other way around. We decided to implement backward path relinking because the
possibility of a deadlock does not guarantee that we reach the guiding solution. Now
we always start with improving an already good solution, hoping to enter a nearby
region with a different (lower) local optimum.

3.2.2 GRASP + Evolutionary Path Relinking

At the end, when the GRASP with path relinking procedure terminates, we have
an elite set of high-quality solutions. Evolutionary path relinking [43] implements a
post-optimization step by applying path relinking on all pairs of elite set solutions,
to search for new high-quality solutions and to improve the quality of the final result.
We found that for almost all instances the best solution was found during the post-
optimization step of evolutionary path relinking.

We decided to apply the evolutionary path relinking step not only as a post-
optimization step but also after every ten GRASP iterations. Thus, after ten GRASP
iterations, we perform path relinking among all solutions in the elite set and add
the best found to the elite set. This further improved the final solution across all in-
stances. Empirical tests revealed that an elite set of length three yielded the highest
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quality solutions. By doing so, each application of evolutionary path relinking con-
siders six combinations of solutions. This improved the quality while maintaining
manageable additional computation time.
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Chapter 4

GRASP vs Simulated Annealing

In this chapter, we compare our GRASP method against a proven simulated an-
nealing (SA) method. Since GRASP is not commonly used in the field of dynamic
rescheduling, we analyze its performance to identify the advantages and disadvan-
tages of applying GRASP in this domain. We selected SA as the comparison method
because it is a well-known and widely used method which often produces very good
solutions for varying optimization problems.

The remainder of this chapter is organized as follows. In Section 4.1, we describe
the test instances and the parameters used. In Section 4.2, we describe the SA pro-
cedure used for the purpose of comparing it against GRASP. Then we perform three
experiments to compare both methods to each other.

In Section 4.3, we demonstrate that GRASP quickly finds high-quality solutions,
while SA seems to have a minimum iteration threshold. When the number of itera-
tions falls below this threshold, SA fails to reach high-quality solutions.

In Section 4.4 we establish that our implementation of GRASP requires a start
solution of reasonable quality to attain high-quality solutions, while SA appears to
be independent of the start solution. Frequently replanning on the same day reduces
GRASP’s reliance on the start solution.

Furthermore, in Section 4.5 we present results that reveal that GRASP is better at
real-time frequent replanning than SA. Finally, Section 4.6 concludes this chapter.

4.1 Instances

We use test instances that are based on real-world scenarios of Valys. A case gen-
erator created by CQM provides us with the trips, a set of changes consisting of
cancellations and new trips, and a day-ahead planning generated by the static algo-
rithm that is currently in use by Valys. This static algorithm was created by CQM
and uses SA.

The region of the sub-transporters is divided into postal codes such that each re-
gion corresponds to a specific area in the Netherlands, excluding the Frisian islands.
All regions are disjoint.

All driving times between any two locations are real driving times based on
maps from OpenStreetMap. The calculation between thousands of locations takes
only seconds using CQMaps.

Furthermore, we have two types of vehicles: a) normal cars with a capacity of 4
passengers and b) specialized vehicles that can carry up to 6 passengers, including
a maximum of 2 wheelchair passengers. The service time for a trip is 7 minutes per
wheelchair passenger and 4 minutes for non-wheelchair passengers, independent
of the number of passengers. Arrival guarantee trips have a time window of 30
minutes before the desired arrival time until the desired arrival time. The other trips
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have a time window of 10 minutes before to 10 minutes after the desired pickup
time. The maximum driving time is calculated using λ = 0.5.

A driver can’t work for more than 5.5 hours consecutively without a break.
Breaks last for 30 minutes, and no break is allowed in the first 2 hours after a break
or after the start of the route. The maximum duration of a route is 9 hours, including
breaks. Changes can only be submitted after 6 a.m, furthermore, we assume that all
cancellations and new trips are known at least one hour in advance. For the exact
parameter settings, we also refer to Appendix A.

All instances have a name as follows: (x, y, z). This indicates that the instance
starts with x trips, that it has y cancellations, and z new trips.

All experiments were made in an Intel(R) Xeon(R) CPU E5-2690 v3, 2.60GHz, 12
cores, with 128 GB of memory, using Windows Server 2012 R2 Standard. The source
code was implemented in C++. We ran 8 experiments in parallel on this hardware,
to reduce calculation time from months to days.

4.2 Simulated Annealing

To compare our proposed GRASP method against the proven SA method [44], we
begin SA with the baseline benchmark (see Section 5.1.1) version of the initial solu-
tion and changes. Then, we apply SA to this solution.

We have developed an SA with identical neighbourhoods as GRASP (see Sec-
tions 3.1.2.1 - 3.1.2.5). “Move Sequence” was not used as it served as a diversification
strategy for GRASP to escape local optima. SA already has its own diversification
strategy and rarely gets trapped in local optima. Hence, the Move Sequence neigh-
bourhood is unnecessary and would consume additional time with minimal benefits
for SA.

As discussed in Section 3.1.2, different variants of variable neighbourhood de-
scent (VND) exist. One commonly used variant for SA is the union VND, where
neighbourhoods are selected without a specific order, and the next neighbourhood is
chosen randomly. The probabilities for selecting the five neighbourhoods are adap-
tively tuned during the process. The Move neighbourhood always maintains the
same probability, while the probabilities for Swap and Move-Remove slowly in-
crease, and the probabilities for Remove and Combine slowly decrease. The ini-
tial probabilities were set to ensure an equal number of successful operations in all
neighbourhoods. For Example, Remove has a higher chance of being feasible than
Move, and thus the initial probability of Remove is lower than that of Move.

Lowering the probability for Combine ensures that not all individual trips are
combined into routes of two, as the other neighbourhoods require individual trips
for their operations. Furthermore, routes containing more trips often yield greater
benefits. The probability of Remove is decreased because initially, we want to ex-
plore quickly, but eventually, it becomes more beneficial to have as many trips as
possible in routes. The probability for Move remains the same as it is one of the core
neighbourhoods responsible for placing trips into routes. The probability of Swap is
increased since it becomes more advantageous later in the process when more trips
are already in routes, and we aim to retain as many trips in routes as possible. At
last, Move-Remove also receives an increased probability over time since it com-
bines aspects of the Move while also removing a trip, allowing the removal of trips
in incorrect locations while maintaining an equal number of trips in routes.

Unlike GRASP where we explore the entire neighbourhood, SA randomly selects
a single operation from the neighbourhood and checks feasibility. If the operation
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is infeasible we repeat the process of selecting a neighbourhood, followed by an
operation. If the operation is feasible and results in an improvement, we execute the
operation and this process is repeated. For feasible operations with an increase in
cost, we execute the operation with a probability determined by the temperature.

To determine the temperature, we use the cooling schedule and start/end tem-
perature of Valys’s static algorithm. the cooling schedule linearly decreases the tem-
perature dependent on the ratio between the number of iterations executed and the
target number of iterations.

The proposed SA performs on average 1.64 million iterations per second. When
running our SA and Valys’s static algorithm an equal (large) number of iterations,
the solution quality between the two differs by approximately 0.3%, indicating that
Valys’s static algorithm is a bit better. The difference can likely be attributed to the
different insertion and removal procedures Valys’s static algorithm uses. This pro-
cedure calculates the best possible order of pickup and dropoffs in a route.

4.3 Comparative Results

In this section, we examine the objective reached when given a limited amount of
computation time, such that we can determine how effective GRASP and SA are
within the given (limited) computation time.

Setup Twelve o’clock in the afternoon is taken as the rescheduling moment, and
all changes known before twelve o’clock will be taken into account. We set τ = 15,
meaning all trips taking place until 12:15 p.m. are locked.

Subsequently, we ran both the SA algorithm and our GRASP algorithm multiple
times with these parameters and different iterations and computation times for SA
and GRASP, respectively. The maximum computation time is approximately ten
minutes, which is already considered quite long for dynamic problems.

For SA, we test 29 settings with a different amount of iterations ranging from
100,000 to 1,200,000,000, which took 0.3 to 800 seconds to complete respectively.
Each of these settings is repeated ten times with varying random seeds, to get a
more accurate estimate of the results reached with each setting. Later, we map the
iterations of SA to seconds by taking the average time it took to perform the number
of iterations for each setting.

For GRASP, we adopt a similar approach. We conduct tests on 22 settings, with
varying calculation times, ranging from 1 second to 660 seconds. Each setting is
repeated ten times, with different random seeds. It is worth noting that we test SA
on more settings, to ensure a more accurate mapping from iterations to seconds.

Four instances were used in this experiment: (3300, 660, 660), (3300, 660, 1320),
(4015, 400, 1200), and (4015, 1200, 400).

Results Figure 4.1 presents the results for instance (3300, 660, 660), where the thick
blue (GRASP) and light blue (SA) lines show the average best objective reached
when the algorithm is given a specific computation time. The filled areas surround-
ing the mean lines show the spread of the best objective the algorithm reached in the
corresponding time. The figure can roughly be divided into three regions. In region
A, from 0 to 180 seconds, our GRASP outperforms SA in terms of solution quality.
In region B, from 180 to 350 seconds, the solution quality achieved between the two
methods seems to be comparable. At last in region C, from 350 to 650 seconds, SA
performs slightly better than our GRASP.
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FIGURE 4.1: Allowed computation time against the average objective
reached for instance (3300, 660, 660).

The results of the other three instances are presented in Appendix B, demonstrat-
ing similar results, i.e. the same three regions can be observed in all figures. In region
A, the differences between the methods in the instances at 100 seconds range from
0.77% to 1.83%. In region C the differences at 650 seconds are in between 0.12% and
0.56%. The interval of the regions differs per instance. For larger instances such as
(4015, 400, 1200) and (4015, 2100, 400), region A is larger than for smaller instances,
when typically region C is larger.

Discussion We can conclude that SA can achieve better solutions with longer com-
putation times. However, as we are dealing with a dynamic problem we are given
limited computation time. Our GRASP performs much better in the first minutes
and performs similarly in the minutes after. This demonstrates the power of using
GRASP on this type of problem, we have more flexibility in computation time and
it is able to rapidly deliver high-quality solutions. With more computation time, our
GRASP only performs slightly worse than SA.

The reason that SA is unable to reach high-quality solutions in region A could
be that it needs a minimum number of iterations before being able to produce good
solutions. We call this the Minimum Iteration Threshold (MIT). We expect that SA
needs at least this MIT amount of iterations for thoroughly exploring the solution
search space. With more iterations than the MIT, the exploration phase is long
enough and SA also has enough time for exploitation, reaching high-quality solu-
tions. Our GRASP however does not show a need for a MIT, within five seconds a
high-quality solution is found. After that, it slowly improves the solution and does
not realize any significant improvement from 200 to 650 seconds.

Besides, we can also notice that SA has a higher MIT for larger instances. A
higher MIT for larger instances is needed to explore the larger search space better.
On the other hand, our GRASP doesn’t seem affected by the change in problem
size. It still quickly finds a high-quality solution. This shows that GRASP is more
robust against instances with varying problem sizes. This is also one of the benefits
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of GRASP over SA, as the problem instances at Valys can vary from 2,000 to 5,000
trips depending on the day of the week and then the new trips aren’t even included.

4.4 Impact of Start Solution

GRASP uses the start solution as a building block to build further upon, while SA
is probably largely unaffected by the start solution since the high temperature in the
early stages of the algorithm completely destroys this solution.

To gain insight into the impact of the quality of the start solution, we look at two
scenarios: 1) replanning only once on the day, indicating how well GRASP can han-
dle varying quality start solutions, and 2) replanning frequently during the day. The
first scenario indicates how well GRASP can handle varying quality start solutions.
The second scenario tells us if GRASP can smooth out the effect of the quality of
the start solution when replanning multiple times or if errors accumulate due to the
dependency on the start solution.

4.4.1 Replanning Once

In this experiment, we look at varying quality start solutions with a single run
reschedule of GRASP and SA. The results demonstrate a dependence of GRASP on
the start solution, while SA seems to be independent.

Setup The basis of this experiment is the same as the experiment explained in Sec-
tion 4.3. However, we create 4 new instances per instance that were used in the
previous section. These new instances vary the quality of the start solution by using
Valys’s static algorithm with different numbers of iterations: 1 million, 5 million, 20
million, and 100 million. Normally, the solution is created by running the static al-
gorithm for a few billion iterations. As these iterations are lower the quality of the
start solutions is worse. The worst start solution, 1 million iterations, is on average
14.5% worse than the best start solution. This leaves us with 20 instances, where we
have 4 distinct instances with different trips, new trips and cancellations, and per
distinct instance we have 5 instances that vary only in their start solution.

Since we still use noon as the replanning moment, the start solution quality will
partly differ due to the cost in the locked part of the schedule (from 6 a.m. to 12:15
p.m.). This cost exists of the cost of routes that are already finished before twelve
and of the cost in the locked parts of routes that are in progress. A worse-quality
start solution has poorer-quality routes, so the cost of these parts will be higher. It
is not possible to optimize this cost and the results would differ due to this cost. To
prevent this we fix the schedule until 12:15 p.m. for all instances in the same distinct
case and only vary the quality of the start solutions after 12:15 p.m. Resulting in an
equal cost in the locked part so that comparison of the different solutions is fair.

Results Figure 4.2 presents the results for instance (3300, 660, 660). The figure
illustrates the average objective reached against the allowed computation time for
the varying quality start solutions. The legend provides the objective of the start
solution. To enhance readability, the minimum and maximum values of the objective
reached for each setting are excluded from the figure.

The figure shows that across all the different start solutions SA reaches similar re-
sults within the same computation time. This indicates that the start solution seems
to have no influence on the final solution quality for SA, as may be expected.
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Our GRASP algorithm on the other hand clearly shows different performances
with changing quality of the start solution. Although all follow the same pattern
of quickly reaching a good quality solution and then slowly improving the solution
until converging (as seen in the previous section) we see differences in the solution
quality where the results of our GRASP on the instances converge. Our GRASP on
the start solution with objective 10.08 M never comes very close to our GRASP on
the best start solution, and scores roughly 0.7% worse at any point. Interesting is
that the worst objective is not reached on the instance with the worst start solution
but on the second worst.

For the other start solutions, we see that our GRASP algorithm also performs
similarly within the given computation time. The results are better than on the 10.08
M instance, however, the quality is still very far away from our GRASP on the best
quality start solution.

In Figure 4.3, 4.4 and 4.5 we present results for the remaining three instances.
Once again, the results obtained from SA are close together on the different quality
start solutions for all three instances. None show any significant difference in the
solution quality reached.

The results for GRASP demonstrate a different phenomenon. In Figure 4.3 and
Figure 4.4 we see that there is a ranking in quality. GRASP reaches the best solutions
on the instance with the best quality start solution, followed by the second best,
followed by the worst and after that the middle two are performing similarly. The
last instance, shown in Figure 4.5, reveals that GRASP reaches similar results on the
four start solutions that were newly created and GRASP on the best start solution
reaches the highest objective by far.

Discussion We can directly conclude from the four figures that SA is independent
of the start solution. For all distinct instances it doesn’t matter what the start solution
is, SA reaches similar results at every moment for all quality start solutions. This is

FIGURE 4.2: Computation time against average objective reached, for
instance (3300, 660, 660), for different quality start solutions. The leg-

end shows the objective of the start solution.
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FIGURE 4.3: Computation time against average objective reached, for
instance (3300, 660, 1320), for different quality start solutions. The

legend shows the objective of the start solution.

FIGURE 4.4: Computation time against average objective reached, for
instance (4015, 400, 1200), for different quality start solutions. The

legend shows the objective of the start solution.



36 Chapter 4. GRASP vs Simulated Annealing

FIGURE 4.5: Computation time against average objective reached, for
instance (4015, 1200, 400), for different quality start solutions. The

legend shows the objective of the start solution.

due to the high-temperature SA starts with. The high temperature in the early stages
of the algorithm completely destroys the start solution. In almost all cases there
was some point that the solution didn’t have any combined routes, only individual
routes, indicating that nothing of the start solution was reused which can be seen in
the figures.

GRASP on the best quality start solution reaches significantly better results than
GRASP on the other start solutions. However, the dependence doesn’t seem only
related to the quality of the solution. As the figures do not show a clear ranking that
worse start solutions always lead to worse solutions. This can be seen in figures 4.3
and 4.4, where GRASP on the middle two solutions scores poorly and GRASP on
the second best and worst solution scores better. A possible reason for this could
be the heavy focus on exploitation in the local search phase, where we only accept
improvements. In this case, GRASP on semi-good start solutions performs poorly.
Some routes in the start solutions are semi-good and some are terrible. Therefore,
the local search procedure is focussing on the terrible routes, but not on the semi-
good routes. These semi-good routes are suboptimal but to improve them it would
take a few operations that increase the cost before decreasing it again, as that is not
possible in our local search implementation the routes are left unchanged. Unlike
poor start solutions, where most routes are bad and thus local search improves all
routes.

The reason that in Figure 4.5 the results of GRASP are similar on the four in-
stances with varying start solution quality is that even though the start solutions
differ in quality the result of the baseline benchmark on these instances is similar.
So when we remove all cancellations from their routes and when we plan new trips
individually, we see that the difference in the quality of the resulting solution is sim-
ilar for the four instances. As explained in Section 3.1.1 the construction phase uses
this baseline benchmark as a start solution to build further upon. Hence, the results
are similar as they start from similar quality solutions. This indicates that with many
cancellations a really high-quality start solution is needed to reach good results, such
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that the quality of the baseline benchmark remains reasonable.
A possible explanation for the necessity of a high-quality start solution for our

GRASP implementation lies in the degree of destruction in the destroy phase of the
construction phase. Initially, we assumed a high-quality start solution. Empirical
tests revealed that the degree of destruction was best kept low when using a high-
quality start solution. As GRASP could reuse routes of high-quality from the start
solution. However, with a low-quality start solution, this assumption breaks down
and a higher degree of destruction might be required to reconstruct larger portions
of the start solution. As fewer routes in the start solution are reusable.

4.4.2 Replanning Multiple Times

In this section, we show that the dependency of GRASP on the start solution de-
creases when real-time frequently replanning compared to replanning once, while
simulated annealing still shows no dependence. This is done by simulating an en-
tire day for instances with varying quality start solutions.

Setup For both SA and GRASP, the replanning process starts at 6 a.m. We then
start replanning every 15 minutes for five minutes until midnight. In Section 5.2
we demonstrate that this strategy yields the best results for GRASP. For our imple-
mentation of SA, five minutes of computation time roughly translates to 500 million
iterations.

We examine four (new) instances with the same number of trips, new trips and
cancellations as the instances in the previous sections. New instances were created to
spread the changes more throughout the day to better represent a realistic scenario.
We assess the impact of the start solution’s quality by creating an additional four
instances for each of the new “main” instances. These instances differ only in the
quality of the start solution. We used Valys’s static algorithm to vary the quality
of the start solutions. The start solution for these instances was created using four
different amounts of iterations, namely: 1 million, 5 million, 20 million, and 100
million.

We anticipate obtaining poor-quality solutions with SA due to the limited com-
putation time of five minutes. We have seen in Section 4.3 that SA performs equal
to or worse than our GRASP algorithm when given 5 minutes of computation time.
Nonetheless, we can still analyse the dependence of SA on the start solution. If there
is a dependency SA would show differences in solution quality when given varying
quality start solutions.

Results Table 4.1 shows the objective at the end of the day for replanning with
our GRASP algorithm and Table 4.2 shows the results for replanning with SA for the
different quality start solutions. The column headings show the number of iterations
used for creating the start solution.

We clearly see the (expected) large differences in solution quality between our
GRASP and SA, where the difference in objective value can get up to 2.6%. Also
notable is that our GRASP algorithm still realized better results on the worst start
solution than SA on the best start solution.

Furthermore, for our GRASP algorithm, we see that the better the start solution,
the better the final solution, indicating again that our GRASP algorithm is dependent
on the start solution. Our algorithm’s performance difference between using the best
and worst start solution can go up to almost 0.92%, where on average the difference
is 0.64%. Similar to the previous section we see that in three of the four instances,
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our GRASP algorithm realized worse solutions using start solutions created with 5
million iterations than on the instances with start solutions created with 1 million
iterations.

For SA, we observe no dependence on the start solutions. Table 4.2 shows that
sometimes SA realized the best solutions on the instances created with 5 million
iterations, sometimes on the one with 100 million iterations, and sometimes on the
instance with the original number of iterations. Furthermore, the results of the same
main instance are close together, where the difference between best and worse is in
three of the four instances between 0.14% and 0.22% and on the fourth larger with
0.81%.

Discussion The large differences between SA and GRASP in the final objective
shows the power of GRASP with limited computation time. SA is unable to reach a
high-quality solution within the given computation time of five minutes. This can be
attributed, at least in part, to SA’s Minimum Iteration Threshold (MIT) phenomena.
The 500 million iterations are insufficient for thorough exploration and exploitation,
as discussed in Section 4.3. The remaining part can probably be explained by inef-
ficiencies in the created solution that are stacking up in the locked parts. This will
be further explained in the next section. This suggests that our GRASP algorithm is
better at replanning than SA when given five minutes of computation time.

In the instance (4015, 1200, 400) when replanning once at noon for five minutes
there is a difference of 1.21% between our GRASP on the worst and best start so-
lution. However, when replanning more frequently this difference is reduced to
0.64%, indicating that our GRASP is able to reduce the effect of the start solution on
the final solution when replanning frequently. Our GRASP algorithm reduces the
difference from 1.01% to 0.92% on the instance (4015, 400, 1200). Our GRASP is able
to reduce the difference from 0.82% to 0.20% on the instance (3300, 660, 1320). At
last, our GRASP algorithm on the instance (3300, 660, 660) is the only case where
the difference is equal between the worst and best start solution when replanning
frequently and only once. However, even though there still is a dependency on the
start solution this dependency decreases when frequently replanning.

Our GRASP algorithm is probably less dependent on the start solution when
frequently replanning as the start solution matters less as the day progresses. In the
first few hours, the solutions after replanning still look similar to the start solution,
however after every replan it deviates further from the start solution. Hence, it has
some influence at the start of the day, but as time progresses, it becomes less sensitive
to the quality of the start solution.

Instance 1M 5M 20M 100M Original

(3300, 660, 660) 9,644,967 9,647,837 9,606,751 9,592,402 9,572,712
(3300, 660, 1320) 11,461,030 11,463,600 11,458,747 11,447,412 11,437,932
(4015, 400, 1200) 13,727,478 13,754,305 13,738,286 13,609,963 13,602,158
(4015, 1200, 400) 9,456,721 9,453,262 9,445,452 9,429,332 9,396,329

TABLE 4.1: The final objective of replanning every 15 minutes on a
day with GRASP. 1M, 5M, 20M and 100M stand for the number of
simulated annealing iterations that were used to create the start solu-

tion. “Original” is the normal amount of iterations.
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Instance 1M 5M 20M 100M Original

(3300, 660, 660) 9,808,000 9,799,620 9,818,709 9,818,361 9,804,641
(3300, 660, 1320) 11,676,542 11,658,220 11,674,595 11,651,167 11,661,606
(4015, 400, 1200) 14,052,590 14,023,762 14,009,411 14,012,785 13,940,230
(4015, 1200, 400) 9,623,538 9,604,212 9,615,619 9,613,477 9,609,289

TABLE 4.2: The final objective of replanning every 15 minutes on a
day with simulated annealing. 1M, 5M, 20M and 100M stand for the
number of simulated annealing iterations that were used to create the

start solution. “Original” is the normal amount of iterations.

Given that our GRASP algorithm still exhibits a dependency on the start solu-
tion, we recommend employing a good static algorithm together with GRASP to
maximize its effectiveness. However, we note that the differences in quality start
solutions can get up to 14.24% which is really high. A basic static algorithm should
already improve upon that and would come closer to the quality of the start solu-
tions that are created with 100 million iterations. But to really utilize the potential of
GRASP a good static algorithm is recommended such as Valys’s simulated anneal-
ing.

4.5 Frequent Replanning

In this section, we look into frequent replanning on the same day with GRASP and
SA. We demonstrate that GRASP is better in frequent replanning than SA and give
insight into the reason.

We wanted to explain the gap between a lower bound created by the perfect fore-
sight benchmark (explained in Section 5.1.2) and our proposed GRASP algorithm
(Chapter 5) by obtaining a tighter lower bound. We created an experiment where
we started replanning every 2 minutes for 20 minutes with SA. The communication
time and official computation time were set to 0 minutes (τ = 0), such that SA could
create the best possible schedule with the new changes while keeping the locked
part into account, something that the perfect foresight benchmark couldn’t do.

The results of this experiment were however unexpected. SA showed worse
results than GRASP which was only allowed to replan every 15 minutes with a com-
putation time of 5 minutes. Furthermore, the results showed no direct explanation
for why this happened. Therefore, we wanted to research what caused this differ-
ence. Because if it had something to do with repeated replanning, SA might not be
the best candidate for dynamic problems.

Setup We run both SA and GRASP on 5 instances independent of each other. Both
replan every 15 minutes, starting at 6 a.m. until midnight. GRASP is allowed a
computation time of 5 minutes, therefore τ = 10. SA is allowed to run 2 billion
iterations, which translates to roughly 20 minutes. The official computation time of
SA is set at 0 minutes, so τ = 5. We want to make our SA partly independent of the
implementation and give a lower bound. By setting it at 0, we act as if we can do 2
billion iterations instantly.

Besides running these two methods on the same instances we also run the other
method every 15 minutes in parallel on the same input as the main method. Figure
4.6 shows the experiment graphically, where GRASP is used as the main method and
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FIGURE 4.6: The experiment when we take GRASP as the main
method and reschedule every 15 minutes.

SA is run on the side. Here GRASP produces a solution every 15 minutes that will
be used as a start solution for the next run. We also run SA on this solution with the
same input as GRASP but do not use the generated solution as input for the next.
This is done for both GRASP as the main method with SA on the side and for SA as
the main method with GRASP on the side.

By doing this we can compare GRASP with SA on the separate instances created
every 15 minutes. This allows us to assess how SA and GRASP perform on instances
created by GRASP and on instances generated by SA. These instances are similar
to those used in the experiment described in Section 4.3, although having fewer
changes. Additionally, we can compare the results between the two methods as
the main method, determining which method achieves better results in different
replanning periods and produces better final results.

Note that the experiment was only executed once per instance due to the long
computation times.

Results Figure 4.7 shows the results for two of the five instances. Figures 4.7a and
4.7b display the outcomes of frequent real-time replanning. The objective value at
each replanning moment is the objective value over the entire day, therefore includ-
ing all finished routes, locked routes and all changes known thus far. The first figure
clearly shows the differences between the two methods. However, in the second
figure, the differences are not as apparent due to the larger scale. The objective in-
creases significantly due to the type of changes, more new trips are added to the
solution than trips are cancelled. For this reason, we have created Figure 4.7c, which
depicts the deviation from the average solution quality at every replanning moment,
providing a clearer view of the results. The results of the other three instances and
their supplementary figures can be found in Appendix C.2. Exact results are avail-
able in Appendix C.1.

What we see is that for all five instances, GRASP as the main method has a better
solution at the end of the day compared to SA as the main method, with a difference
in objective ranging from 0.39% to 1.16%. When we look at the results produced
every 15 minutes by GRASP and SA both as the main method we see that GRASP
produces better results in the first few reschedules, then SA produces better results
for a few hours, and after that starting from approximately 1 p.m. our GRASP algo-
rithm consistently produces better solutions.
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Moreover, in all instances, we see that our GRASP algorithm produces better re-
sults in the first replanning period at 6 a.m. (especially visible in Figure C.1). Because
changes become known after 6 a.m. this is just an optimization of the start solution.

Furthermore, when we look at the results on the separate replanning moments
between the main method and the side method (between the two solid lines and
between the two dotted lines in Figure 4.7), we see that in all instances, indepen-
dent of the main method, our GRASP is better in the first few replanning moments
and the methods produce similar results in the last few replanning moments. For
the middle part, it depends if we look at our GRASP as the main method or SA as
the main method. When taking our GRASP as the main method we see that SA
produces better results than our GRASP on the solutions reached every 15 minutes.
However, when we take SA as the main method, the best method alternates between
our GRASP and SA in the middle part. But no significant performance differences
can be found between the two methods.

Discussion At start time 6 a.m., our GRASP consistently generates better solutions
than the start solution as SA fails to produce locally optimal solutions. By applying
GRASP to the non-locally optimal solution created by SA, we can hill climb to the
nearest local optimum, thereby yielding better results.

That is why our GRASP consistently produces better results in the first few
reschedules, due to its extensive use of the high-quality start solution. On the other
hand, SA recreates the entire schedule at each replanning moment, mostly disre-
garding the use of the high-quality start solution that was created with over three
billion iterations. In the first few replanning moments, we often see that SA’s best
solution found is the baseline benchmark version of the start solution, therefore it is
not completely disregarding the start solution, but it is not improving upon it.

In the final rescheduling moments, our GRASP and SA generate similar solutions
since there are only a few trips that do not fall in the locked part. Because of this
limited amount of trips, the search space is relatively small and both methods are
able to produce good results.

With our GRASP as the main method and SA as the side method, we observed
that SA generally performed better than our GRASP in the middle of the day. This
is because the instances are still large enough, the influence of the start solution be-
comes less significant and as we have seen in Section 4.3 SA realizes better results
than our GRASP with longer computation times. Consequently, SA produced supe-
rior results.

Conversely, when SA serves as the main method and GRASP as the secondary
method, the two methods do not show significant differences. This can be attributed
to the fact that SA fails to produce locally optimal solutions, as observed earlier.
Consequently, every 15 minutes GRASP seizes the opportunity for dual optimiza-
tion. Firstly, it enhances the previous solution generated by SA, making it locally
optimal. Something we have seen GRASP do really well in the first replanning mo-
ment, at 6 a.m. Secondly, GRASP optimizes the changes themselves. This allows
GRASP to achieve substantial improvements in solution quality, while SA is again
constructing an entirely new solution to reach a high-quality, non-locally optimal
solution.

At last, the superiority of GRASP as the main method over SA as the main
method in replanning can be attributed to the local vs. global search characteris-
tics of GRASP and SA, respectively. A near-globally optimal solution tends to leave
minimal room for changes, as everything is planned so tightly that almost nothing
can fill the gap when a trip is cancelled. In contrast, searching locally provides more
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flexibility for changes, allowing remaining trips to fill the gaps left by cancellations
and creating routes that can easily be extended with the arrival of new trips. GRASP
produces more locally optimal solutions and therefore is better at handling changes
compared to the globally-focused SA.

Another reason for the superiority of our GRASP as the main method over SA as
the main method lies in the non-locally optimal solutions produced by SA. It is very
likely that inefficiencies are present when a solution is not locally optimal. Since we
replan every 15 minutes the locked part also shifts forwards every 15 minutes. In-
efficiencies occurring precisely within these 15-minute intervals remain locked until
the end. With a total of 72 replannings on a day, some inefficiencies probably oc-
cur directly after the locked part and as a result, SA accumulates inefficiencies in its
locked part, resulting in a lower-quality solution.

4.6 Conclusion

We compared the performance of GRASP with SA to assess how well GRASP per-
forms on this dynamic problem compared to a proven method. We evaluated both
methods in three experiments that examined different aspects of the algorithms:
computation time versus the objective reached, the influence of the start solution
and the ability to replan frequently during the day.

GRASP finds high-quality solutions quickly, while SA appears to have a mini-
mum iteration threshold. When the number of iterations falls below this threshold,
SA fails to reach high-quality solutions. On the other hand, with more iterations
than the threshold, SA performs better. However, considering the variation in this
threshold across different problem sizes and the relatively small difference in quality
between GRASP and SA when given additional computation time, GRASP proves
to be a favourable choice. This is especially true when considering the limited com-
putation time typically available for dynamic algorithms.

Additionally, our GRASP implementation requires a reasonable start solution to
achieve high-quality solutions, while SA shows independence from the start solu-
tion. Increasing the degree of destruction in the destroy phase of the construction
phase could improve the quality on instances with poor start solutions. When re-
planning every 15 minutes on a day, the dependence on the start solution decreases.
In one instance, it reduced the difference between GRASP on the worst start solution
and on the best start solution from 0.82% to 0.20%. To fully leverage the potential of
GRASP, we recommend using a good static algorithm to generate the start solutions.

Furthermore, our results demonstrated that GRASP outperforms SA in real-time
frequent replanning. Despite the significantly longer computation time given to SA,
GRASP consistently produces better results, with differences up to 1.16%. This can
be attributed to GRASP and SA’s local vs global search characteristics, respectively.
A near-globally optimal solution leaves little room for changes, while a locally opti-
mal solution allows for adjustments. Additionally, SA fails to produce locally opti-
mal results, indicating potential inefficiencies. These inefficiencies may accumulate
in the locked part during replanning, resulting in lower-quality solutions.

In conclusion, GRASP proves to be a strong choice for this problem resembling
a DDARP. It effectively and efficiently reuses parts of previous solutions to quickly
generate high-quality results. Moreover, GRASP excels in frequent replanning on
the same day, which is often desirable in dynamic problems. To maximize the bene-
fits of GRASP, starting with a high-quality solution is advisable.
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(A) Instance (3300, 660, 660).

(B) Instance (3300, 660, 990).

(C) Relative improvement of instance (3300, 660, 990). The figure shows the deviation from the average
solution quality at every replanning moment.

FIGURE 4.7: Frequent real-time replanning for GRASP as main and
SA as side and the other way around.
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Chapter 5

Comparative Results of the
Opportunity Gap

In this chapter, we present an analysis of the opportunity gap, which refers to the
potential benefit of rescheduling as compared to not rescheduling. Failing to take
advantage of dynamic rescheduling can lead to inefficiencies in the transportation
system, resulting in longer waiting times for passengers, higher operational costs for
the fleet, and increased environmental impact.

We will focus on the opportunity gap of the DDARP in the context of Valys and
discuss how it can be effectively managed through our proposed GRASP algorithm.
We will compare our algorithm to different benchmarks, including a different ap-
proach that continuously optimizes the schedule, and highlight the benefits and
challenges associated with our method. Overall, this chapter aims to provide a com-
prehensive understanding of the opportunity gap in the DDARP and to present a
practical solution for its effective exploitation.

We found that when real-time rescheduling with GRASP every 15 minutes for a
duration of 5 minutes yields the best results across all instances. Furthermore, we
will demonstrate that the opportunity gap is predictable when knowing the total
number of changes, where the improvement can go up to 17% for instances with
2640 changes.

The remainder of this chapter is organized as follows. In Section 5.1 we present
three benchmarks that we use to compare with. In Section 5.2, we analyse the differ-
ent rescheduling strategies we can use with GRASP. Finally, in Section 5.3 we present
and discuss the results of the opportunity gap for different approaches.

5.1 Benchmarks

To evaluate the performance of our proposed algorithm we compare it against sev-
eral benchmarks which we will explain in this section. To evaluate the quality of our
GRASP method, we need a simple benchmark that creates an upper bound on the so-
lution quality. This benchmark should incorporate the changes in the simplest way
possible, doing as little as reasonably possible. This baseline benchmark is defined
in Section 5.1.1. Section 5.1.2 defines a benchmark that will act as a lower bound by
using Valys’s static algorithm. At last, in Section 5.1.3 we propose a method to solve
the DDARP continuously, such that we can compare our GRASP that uses a periodic
approach against an approach that continuously optimizes the schedule.
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5.1.1 Baseline Benchmark

The baseline benchmark sticks to the original plan as much as reasonably possible.
It represents the strategy of not optimizing changes. We can compare our algorithm
against this benchmark to get an idea of how much our algorithm improves upon not
optimizing the changes. In the end, this benchmark can be interpreted as an upper
bound on the solution quality. The opportunity gap is defined by this benchmark as
it represents the performance when no action is taken in response to the changes. It
reveals to which extent improvements can be made to the schedule when taking the
changes into account.

To modify a schedule to the baseline schedule, the following operations should
be applied:

• All new trips should be scheduled as individual trips.

• A cancelled trip that was planned as an individual trip should be removed
from the solution.

• In the case of a cancelled trip where the pickup location is the first location of
a route, the trip should be removed. The driver should then proceed directly
to the (new) first pickup location, even if it is outside its designated region.

• If both the pickup and dropoff locations of the cancelled trip are not the first
and not the last location, the trip should be removed from the route, as defined
in Section 2.3.2

• When the dropoff location of the cancelled trip is the last location of a route, the
trip should be removed from the route. The driver should then drive directly
from the (new) last dropoff location to the closest point within the transporters’
region if they are not already in their region. If the pickup was not directly
before the dropoff, the pickup should be handled the same as explained above.

It is possible that a route becomes infeasible after removing a trip, see Section
2.3.2. In this case, the entire route is split and all trips in it will be driven individually.
However, trips that are locked will remain in the route, as these are already finished
or in progress.

5.1.2 Perfect Knowledge Benchmark

The perfect knowledge benchmark serves as a lower bound for the dynamic algo-
rithm. This benchmark has complete information about the day’s cancellations and
new trips at the start of the day, enabling it to create an optimal schedule without
the constraints of vehicles already en route. To calculate the final schedule, we use
Valys’s static algorithm, which has been shown through numerous empirical tests to
perform near-optimally.

However, since the perfect knowledge benchmark has access to information that
a dynamic algorithm does not, we expect that there will be a gap between the dy-
namic algorithm’s performance and the benchmark’s near-optimal schedule. As this
benchmark is not limited by the information given at the time, whereas, dynamic al-
gorithms are unable to predict changes in the future. Consequently, we expect that
part of the gap between the dynamic algorithm and this benchmark will never be
closed. Nevertheless, the benchmark provides a useful reference point for evaluat-
ing the dynamic algorithm’s performance.
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5.1.3 Continuous Approach Benchmark

In the continuous approach, changes to the routes are updated in real-time and sent
back in a matter of seconds. The communication time in this approach is almost
always negligible and is often assumed to be zero. Because of the quick response
time, often-used methods include quick insertion heuristics and sometimes post-
insertion optimization. It has as benefit that all changes can be incorporated into the
schedule.

The current schedule is constantly kept in memory to react as fast as possible
to the changes. The key idea is, that we always want to have a schedule that is lo-
cally optimal. At the start of the day, we have the probably near-optimal schedule
created a day before by the static algorithm. After making small changes to incorpo-
rate a new trip or cancellation, we will probably enter a local optimum close to this
near-optimal solution. These local optima are often also of high quality. However,
after many small changes, there will be some accumulation of inefficiencies made by
taking these myopic steps, and the dynamic schedule might get further and further
away from a near-optimal schedule. However, because we start with a high-quality
solution we expect not to deviate too far from this solution and thus still reach a
good solution.

Every time a change arrives, we redetermine the locked trips for all routes, such
that at any time we have an up-to-date schedule that is currently in operation. Then
the action taken depends on the type of change: a cancellation or a new trip, de-
scribed in Procedure 5.1 and Procedure 5.2, respectively.

Procedure 5.1 (Cancellation) We remove the cancelled trip from its route. If the
cancelled trip is an individual trip we simply remove the trip from the solution.
When the cancelled trip is not an individual trip, we start a small optimization step
on the route that will be introduced in Procedure 5.4.

When removing the trip leads to an infeasible route we make all trips in the route
individual. For each of the trips, we apply the optimization explained in Procedure
5.3. If the route contained locked trips the route is added again with only the locked
trips in it and an optimization step is started on the route, as explained in Procedure
5.4.

Procedure 5.2 (New trip) New trips are added to the solution as individual trips.
Afterwards, we are going to try to insert the trip into a route by applying the opti-
mization as explained in Procedure 5.3.

Reoptimization The reoptimization step after each new change ensures that at all
times we will stay in a local minimum. Because only a single change is considered
at a time, it often takes only a few operations to reach a new local minimum. The
optimization procedures only accept improvements to the current schedule.

Procedure 5.3 (Trip reoptimization) Trip reoptimization is applicable only to indi-
vidual trips. It involves three neighbourhoods for consideration: moving a trip into
a route, performing a move-remove operation with a route and exploring the possi-
bility of combining the trip with another individual trip. All are explained in Section
3.1.2, named Move, Move-Remove and Combine, respectively.

In the order of the mentioned neighbourhoods, we systematically explore all po-
tential operations within each neighbourhood. The operation that yields the greatest
cost reduction is selected and executed. E.g. firstly, we examine all possible moves
into a route. If a feasible move with a negative cost delta is identified, we execute
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the move with the highest cost reduction. If no feasible move with a negative cost
delta is found, we proceed to the move-remove neighbourhood, and so on.

If none of the operations are possible, the procedure ends. However, if an opera-
tion is executed, we initiate the route reoptimization procedure explained in Proce-
dure 5.4 on the route where the new trip is inserted in.

Procedure 5.4 (Route reoptimization) Route reoptimization consists of three neigh-
bourhoods, two of which are similar to those in trip reoptimization but from the
other perspective: moving an individual trip into the route, performing a move-
remove operation with an individual trip and swapping a trip in the route with a
trip in another route. All are explained in Section 3.1.2, named Move, Move-Remove
and Swap, respectively.

The neighbourhoods are explored the same as explained in Procedure 5.3. If a
successful operation is performed, the route reoptimization function is recursively
called on the route. In the case of applying the swap operator, this route reoptimiza-
tion is also performed on the other route involved.

5.2 GRASP Rescheduling Strategy

Our GRASP algorithm uses the periodic approach, where the changes are buffered
until a predefined time point when a reoptimization is initiated on all buffered
changes and the current schedule. A periodic approach requires a rescheduling
strategy to determine how often, how long, and when to reschedule. We will look at
the realized average quality of the solutions at the end of the day to determine the
best rescheduling strategy

Setup We looked into four different rescheduling strategies for GRASP: every 2
hours for 10 minutes, every hour for 10 minutes, every 30 minutes for 10 minutes
and every 15 minutes for 5 minutes. We evaluated all four strategies on four dif-
ferent instances. We start rescheduling at 6 a.m. and continue until midnight. The
communication time was set at 5 minutes for all strategies, meaning that τ = 15 for
the first three strategies and τ = 10 for the last strategy.

For the experiment, we evaluated every strategy on the four instances, as well
as the baseline benchmark (Section 5.1.1) and the continuous approach benchmark
(Section 5.1.3). We repeated every strategy ten times and averaged the results.

Results In Table 5.1 we present the percentage improvement with the baseline
benchmark for the continuous approach and the four replanning strategies. This
difference with the baseline benchmark is the opportunity gap of replanning. The
table reveals that replanning every 15 minutes outperforms the other strategies and
the continuous approach, achieving the best results in all instances. Furthermore,
it shows that in every instance the more frequently you replan the greater the im-
provement upon the baseline benchmark. The continuous approach is better in most
instances than the 2h strategy but never better than the 1h strategy.

Discussion These results demonstrate that more frequent replanning leads to an
improvement in the final objective. The best replanning strategy is to replan every
15 minutes for a duration of 5 minutes. This could be because the shorter replanning
time reduces the length of the locked part, leaving more trips unlocked, which in
turn increases the number of trips that can be operated on. Additionally, there is a
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Instance Continuous (%)
Replanning Interval (%)

2 h 1 h 30 min 15 min

(3300, 660, 660) 9.10 8.88 9.87 10.33 10.46
(3300, 330, 990) 8.84 8.90 9.97 10.22 10.45
(3300, 990, 330) 8.69 8.40 9.69 10.03 10.42
(3300, 1320, 1320) 15.21 14.00 15.69 16.29 16.76

TABLE 5.1: The results of GRASP with the different types of strate-
gies, taken as the percentage improvement with the baseline bench-

mark.

higher likelihood that cancelled trips and new trips do not fall within the locked part.
A cancelled trip or new trip can still be locked even though the changes are known
an hour in advance, as we enlarge the locked part until the car is empty (explained in
Definition 2.3). These locked changes cannot be taken into account and are handled
as the baseline benchmark (explained in Section 5.1.1), leaving gaps in routes or
making new trips individual, which is often more expensive than combining them
with other trips.

Our experiment demonstrates that our periodic approach method is better than
a continuous approach when replanning sufficiently often. This can be explained by
two factors. Firstly, our method has more computation time, resulting in better solu-
tions compared to the quick optimization steps taken by the continuous approach.
Secondly, with more frequent replanning, we are able to take all changes into ac-
count, avoiding changes falling into the locked part, thus creating a better schedule.
The big advantage of the continuous approach is that all changes can be included
but as more frequent rescheduling also has the same effect this benefit of continu-
ous rescheduling falls away. However, in the case of replanning every 2 hours, the
continuous approach outperforms our GRASP method. This can be attributed to the
number of changes that fall in the locked part when using a 2-hour rescheduling
strategy.

5.3 Results & Discussion Opportunity Gap

In this section, we compare our GRASP algorithm introduced in Chapter 3, to the
benchmarks described in Section 5.1. Furthermore, we reveal the opportunity of
rescheduling compared to not rescheduling.

Setup We used the strategy of rescheduling every 15 minutes for a duration of 5
minutes, as was determined to be the best approach in our previous analysis in Sec-
tion 5.2. Again, we rescheduled from 6 a.m. to midnight, with a communication time
of 5 minutes, so τ = 10. We tested our GRASP on 20 different instances with varying
numbers of new trips and cancellations. We determined the relative improvement
with respect to the baseline benchmark to reveal the extent to which improvements
can be made.

Results Table 5.2 lists the final results in relative improvement with the baseline
benchmark for our method, the continuous benchmark, the perfect foresight bench-
mark and the schedule created a day before by Valys’s static algorithm. We can see
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Instance Day B. (%) Perf F. (%) Cont. (%) GRASP (%)

(0, 330) 11.87 3.47 2.38 3.23
(0, 660) 21.33 7.25 4.87 6.30
(0, 990) 28.96 9.51 6.61 8.13
(0, 1320) 35.04 11.25 8.50 9.89

(330, 0) -6.27 3.08 2.00 3.01
(330, 330) 6.69 6.69 4.39 5.70
(330, 660) 17.25 9.78 6.94 8.48
(330, 990) 25.66 12.31 8.84 10.45

(660, 0) -13.96 7.33 4.37 6.14
(660, 330) 0.71 9.82 6.51 8.18
(660, 660) 12.13 12.48 9.10 10.46
(660, 990) 21.82 14.63 10.52 12.24
(660, 1320) 29.11 16.30 12.39 13.85

(990, 0) -25.68 9.26 6.59 7.73
(990, 330) -7.73 12.32 8.69 10.42
(990, 660) 5.83 14.63 10.78 12.50
(990, 990) 16.82 16.70 12.48 14.36

(1320, 0) -42.29 11.62 7.76 9.45
(1320, 660) -2.88 16.38 12.18 13.87
(1320, 1320) 19.42 19.87 15.21 16.76

TABLE 5.2: The results of the different types of approaches, taken as
the relative improvement with the baseline benchmark. Day before is
shortened to Day B, Continuous to Cont. and perfect foresight bench-
mark to Perf F. Each instance contains 3300 trips, so the instance name
is shortened to only show the number of cancellations and new trips,

e.g. (660, 990) stands for (3300, 660, 990).

that our GRASP procedure is better than the continuous benchmark on all instances.
Even for smaller instances, the difference is already around 1%, and for larger in-
stances this can go up to 1.88%.

The differences between GRASP and the perfect foresight benchmark range from
0.07% to 3.11%, from the smallest instance to the largest instance respectively. On
average, the deviation between our method and this upper bound is 1.68%. This
difference tends to be slightly higher for instances with a larger number of changes
and slightly lower for instances with fewer changes.

Furthermore, the table reveals that the size of the opportunity gap is similar for
instances with a similar amount of changes, e.g. we can see that with instances
in which the total number of changes (both cancellations and new trips) sums up
to 1320, the realized relative improvement is between 9.4% and 10.5%. Similar be-
haviour can be seen for the other cases, shown in Table 5.3.

Discussion The small ranges for instances with the same number of changes in-
dicate a predictable opportunity gap between these instances. We not only see this
in the relative improvement of our GRASP algorithm but also in the results of the
perfect foresight benchmark. This is noteworthy as it seems that it doesn’t matter
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Changes 330 (%) 660 (%) 990 (%) 1320 (%) 1650 (%) 1980 (%)

Opportunity gap 3.0 − 3.3 5.7 − 6.3 7.7 − 8.5 9.4 − 10.5 12.2 − 12.5 13.8 − 14.4

TABLE 5.3: Range of the opportunity gap, as relative improvement with the
baseline benchmark, for the number of changes accumulated.

what the changes themselves are, suggesting that the potential improvement is not
dependent on the type of change.

Thus, when we roughly know the number of changes a paratransit agency has,
we can predict the relative improvement we can make. Note that the difference be-
tween the schedule created a day before and the baseline benchmark does not follow
the same pattern, meaning, we can not predict how much worse a schedule becomes
when not rescheduling with a certain amount of changes. The differences between
the day-before results are mostly due to the arrival of new trips or the cancellations
of existing trips. The total cost increases with more trips and decreases with fewer
trips.

Furthermore, our results show that there is an opportunity for dynamic reschedul-
ing, even when the number of changes is relatively small, e.g. for the instances with
only 660 changes the improvement can be 6% compared to not optimizing. This
translates in the specific instance of (3300, 330, 330) to a saving of 150 work hours.
For instances with more changes, this can go up to 17%, which roughly translates
in the specific instance of (3300, 1320, 1320) to a decrease of 600 hours in which a
vehicle and driver are needed.

The gap between our GRASP algorithm and the perfect foresight benchmark can
be explained by the flexibility of the perfect foresight benchmark. This upper bound
is not bound by real-time operational restrictions and thus can create routes that
otherwise would likely be impossible to create. Therefore, some gap between our
GRASP method and the perfect foresight benchmark is to be expected. Increasing
the number of changes widens the gap even more, as the difference in the amount
of information received between the perfect knowledge benchmark and our method
is larger. Our GRASP can only optimize based on the information received in the 15
minutes prior to the optimization period, while the perfect knowledge benchmark
has all information. Therefore, our GRASP makes myopic decisions when optimiz-
ing the current trips, making errors early on as information later reveals that other
choices would have been better.

Nevertheless, we think that our method is effective in closing the gap between
the baseline benchmark and a near-optimal schedule, as the average deviation of
1.68% is not very large compared to how much more information the benchmark
receives.
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Chapter 6

Conclusion

In this thesis, we presented an algorithm for the Dynamic Dial-A-Ride Problem that
arises in the practical setting of Valys. We demonstrated the ability of our GRASP
method to quickly generate high-quality solutions, specifically in settings relevant
to real-time planning. In comparison, simulated annealing (SA) requires a mini-
mum number of iterations before producing high-quality solutions, something we
call the minimum iteration threshold (MIT). SA fails to generate a high-quality so-
lution when using fewer iterations than the MIT, as it doesn’t have enough time to
explore the search space. Consequently, our GRASP method is more flexible in its
computation time, generating good solutions with limited computation time and
increasing the quality with more computation time.

Our GRASP method outperformed SA significantly in the initial minutes and
performs similarly in the minutes after. With a longer computation time, our GRASP
only performs slightly worse than SA. Furthermore, our tests revealed that the MIT
of SA is larger for bigger instances, indicating that more computation time is needed
to reach good solutions for larger instances. In contrast, our GRASP doesn’t seem to
be affected by the larger instances, suggesting that it is more robust against instances
with varying problem sizes.

We analysed the influence of varying quality start solutions on the final solu-
tion quality for both our GRASP and SA when replanning once and frequently. Our
findings showed that our GRASP on high-quality start solutions led to better solu-
tions, indicating that the start solution’s quality influences the final objective. On
the other hand, SA seems to be independent of the start solution. Experiments show
that when replanning more frequently the dependency of our GRASP method on
the start solution diminishes, but never vanishes. Therefore, when using GRASP it
is advised to use a good static algorithm to create the start solution.

We showed that SA performed 0.39% to 1.16% worse than GRASP in the setting
of frequent replanning during the day, even though SA had four times more compu-
tation time. An explanation could be that our GRASP is focussing on local search,
providing more flexibility for changes later on. SA focuses on global search, leaving
minimal room for improvement when confronted with changes. Furthermore, the
solutions of SA are not locally optimal and therefore inefficiencies may accumulate
in the locked part, leading to lower-quality solutions.

Finally, we showed that the opportunity gap is predictable with respect to not
replanning. The improvement compared to taking no action ranges from 3.0% for
a few changes to 16.8% for many changes. This can translate to a 150 to 600 hours
decrease in daily service time. We showed that our GRASP method is effective in
closing the gap between not optimizing changes and the perfect knowledge bench-
mark, where all changes are assumed to be known in advance. Our GRASP method
performed on average 1.68% worse than the perfect knowledge benchmark. This
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gap can mostly be explained by the difference in the amount of information re-
ceived between the perfect knowledge benchmark and our method. Our GRASP
algorithm can only optimize based on the information received in the 15 minutes
prior to the optimization period, while the perfect knowledge benchmark has all
information. Therefore, our GRASP algorithm makes myopic decisions when op-
timizing the current trips, making errors early on as information later reveals that
other choices would have been better. However, note that we do not exactly know
how much of the gap is explained by the difference in information.

All in all, by implementing the proposed GRASP method, Valys can leverage dy-
namic rescheduling techniques to enhance its transport service. When faced with
sudden changes in the schedule, our GRASP algorithm can quickly generate high-
quality solutions, resulting in improved service delivery and enhanced customer sat-
isfaction. In addition, we showed the predictability of the opportunity gap with re-
spect to not optimizing. Consequently, Valys can estimate their potential gain based
on cumulative changes. This insight allows Valys to make informed decisions and
calculate the expected decrease in service time, which can range from 150 to 600
hours per day, depending on the cumulative changes.

6.1 Suggestions for Future Research

In this section, we list some promising directions for future research. The parameters
τc (time a cancellation is at least known in advance) and τnt (time a new trip is at
least known in advance) may have a significant effect on the final solution quality.
Looking into this parameter and its influence on the final solution can give a trade-
off between more flexibility for the transportation service users and the solution’s
quality. We showed that a 1-hour advance notice can close the opportunity gap
quite well. This might even be reduced to only 30 minutes, giving more flexibility to
the users.

Furthermore, the degree of destruction in the construction phase of GRASP and
varying qualities start solutions may offer potential improvement in the quality. Bet-
ter solutions could be reached when the degree of destruction is increased for low-
quality start solutions.

Another promising research direction is to apply a hill climbing algorithm as a
post-optimization step to simulated annealing. We showed that simulated annealing
is not really suitable for dynamic problems partly because of the non-local optimal
solutions simulated annealing produces. This step may provide an improvement to
the solution.

Schedule Stability Motivated by the operational challenges of transporters, an in-
novative idea in the setting of real-time replanning is to take schedule stability into
account. We have made a promising start, but in view of the time we weren’t able to
finish testing everything and running experiments.

Schedule stability is an important factor in practice which could improve the so-
lution for the transporters. Conversations with Valys and CQM led to the following
definition of schedule stability: “At any time and for each transporter the number of
vehicles needed should be similar to the schedule created in advance.” So at any mo-
ment, we should try to minimize the deviations in the number of planned vehicles
per transporter.

This is important for Valys and probably other paratransit organizations as it is
really hard to call-in extra drivers for the new routes that were created. Needing
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fewer drivers is also bad, as these drivers still should be paid because they are al-
ready on duty. Valys mentioned that a transporter that needs two more vehicles
is twice as bad as needing one more vehicle, needing three more vehicles is twice
as bad as needing two more vehicles etc. They favour that the deviations for the
transporters are more fairly spread out. Such that not one transporter needs 10 extra
vehicles while another needs 5 fewer vehicles.

To represent the schedule stability, we came up with a binning approach, where
we penalize deviations from the number of a priori scheduled vehicles for a trans-
porter, looking at each transporter individually. We split the time horizon ([0, T])
up into small bins of size τbin, thereby creating T/τbin bins per transporter. Let
bin ba

i be the bin ranging from [(i − 1) × τbin, i × τbin) for transporter a ∈ A, for
i = 0, . . . , T/τbin. Each bin keeps track of the deviation in the number of vehicles
of the current solution compared to the start solution. Our new problem then is to
create a set of routes for vehicles subject to the constraints 2.1.1 - 2.1.8, while mini-
mizing:

∑
k∈M

cyk dk + ∑
a∈A

T/τbin

∑
i=1

(ba
i )

2 ×


c+ if ba

i > 0
c− if ba

i < 0
0 otherwise

(6.1)

Where c+ is the penalty for having more vehicles, and c− is the penalty for having
fewer vehicles.

Now the method which is used to solve the problem becomes a multi-objective
problem where a trade-off has to be made between creating good routes and spread-
ing all vehicles more fairly over the transporters. Such that if a transporter has many
cancelled routes it becomes beneficial to assign new routes to that transporter.

Preliminary results showed that this helped spread all routes equally over the
transporters, such that no transporter had more than 3 extra or fewer vehicles at any
time, compared to the baseline benchmark where a transporter sometimes needed
18 extra vehicles. Future research could continue this research.
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Appendix A

Parameters used in testing

The parameter settings used in our problem.

Parameter Value

qL
a 4

qW
a 0

ca 45
qL

b 4

qW
b 2

cb 54
twp 10
twa 30

λ 0.5
τc 60
τnt 60
τd 330

τb 30
τf 120
τm 540
τ 10

sti 7 × PW
i + 4 × y*

TABLE A.1: Parameters used for our problem. With two types of
vehicles, a and b.

* where y is 1 if PL
i > 0 and 0 otherwise
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Appendix B

Simulated Annealing vs GRASP

FIGURE B.1: Allowed computation time against the average objective
reached for instance (3300, 660, 1320).
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FIGURE B.2: Allowed computation time against the average objective
reached for instance (4015, 400, 1200).

FIGURE B.3: Allowed computation time against the average objective
reached for instance (4015, 1200, 400).
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Appendix C

Results Frequent Replanning

C.1 Results Frequent Replanning

(3300, 660, 660) (3300, 660, 990) (3300, 1320, 660)

GRASP main SA Main GRASP main SA Main GRASP main SA Main

Time GRASP SA GRASP SA GRASP SA GRASP SA GRASP SA GRASP SA

360 9,352,227 9,407,516 9,350,869 9,407,516 9,335,916 9,384,898 9,339,193 9,384,898 9,334,623 9,377,854 9,333,642 9,377,854
375 9,377,258 9,424,091 9,379,491 9,456,489 9,374,673 9,453,631 9,386,512 9,502,353 9,263,936 9,362,082 9,268,829 9,378,619
390 9,349,627 9,417,477 9,426,214 9,415,255 9,430,480 9,498,173 9,441,337 9,470,684 9,198,490 9,266,544 9,294,151 9,274,338
405 9,382,615 9,449,257 9,432,363 9,460,528 9,490,564 9,548,389 9,519,483 9,553,175 9,077,844 9,133,301 9,137,529 9,103,115
420 9,406,693 9,424,649 9,480,108 9,429,581 9,560,983 9,590,680 9,605,423 9,626,979 9,048,882 9,067,435 9,082,609 9,075,353
435 9,444,679 9,485,220 9,471,135 9,491,050 9,635,812 9,659,067 9,682,669 9,674,340 9,022,964 9,037,806 9,045,327 9,022,351
450 9,443,689 9,488,540 9,478,446 9,459,383 9,675,984 9,691,081 9,700,805 9,699,508 8,907,497 8,917,356 8,921,238 8,904,706
465 9,462,185 9,463,859 9,472,704 9,479,220 9,711,676 9,699,524 9,737,654 9,718,804 8,827,515 8,824,788 8,841,100 8,830,901
480 9,501,656 9,507,610 9,496,550 9,497,180 9,756,085 9,731,442 9,758,557 9,755,021 8,781,396 8,796,607 8,788,685 8,782,916
495 9,552,468 9,546,338 9,545,208 9,524,592 9,851,575 9,823,714 9,864,414 9,855,553 8,774,358 8,750,208 8,779,481 8,738,686
510 9,551,764 9,534,649 9,518,272 9,523,755 9,859,864 9,881,456 9,844,757 9,855,724 8,678,021 8,682,487 8,648,417 8,669,519
525 9,567,055 9,543,843 9,526,854 9,559,565 9,921,573 9,889,636 9,889,900 9,899,408 8,644,058 8,610,911 8,616,026 8,620,149
540 9,577,022 9,563,153 9,566,919 9,563,818 9,952,291 9,937,081 9,918,171 9,930,166 8,602,028 8,570,867 8,560,379 8,564,003
555 9,570,843 9,590,139 9,551,332 9,542,837 9,970,969 9,964,357 9,938,572 9,934,333 8,522,339 8,473,544 8,486,884 8,502,120
570 9,561,413 9,557,883 9,527,314 9,556,481 9,985,762 9,992,717 9,957,176 9,962,177 8,497,399 8,481,476 8,478,213 8,484,116
585 9,592,535 9,560,630 9,570,032 9,529,830 10,059,376 10,012,666 10,028,931 9,999,704 8,512,525 8,481,178 8,505,408 8,485,370
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(3300, 660, 660) (3300, 660, 990) (3300, 1320, 660)

GRASP main SA Main GRASP main SA Main GRASP main SA Main

Time GRASP SA GRASP SA GRASP SA GRASP SA GRASP SA GRASP SA

600 9,569,563 9,588,663 9,527,174 9,534,060 10,068,139 10,080,960 10,028,153 10,063,281 8,448,604 8,412,880 8,439,554 8,470,618
615 9,595,680 9,559,482 9,553,982 9,568,651 10,119,659 10,102,985 10,080,575 10,114,564 8,395,543 8,361,346 8,421,429 8,383,659
630 9,603,998 9,582,939 9,567,612 9,612,183 10,129,624 10,126,356 10,136,712 10,123,681 8,353,271 8,326,331 8,356,203 8,353,712
645 9,629,029 9,599,120 9,631,671 9,605,588 10,169,683 10,163,385 10,169,309 10,168,046 8,349,038 8,346,525 8,347,006 8,362,774
660 9,629,539 9,632,792 9,614,240 9,642,644 10,191,855 10,170,790 10,211,382 10,220,468 8,333,598 8,322,481 8,335,271 8,304,965
675 9,636,411 9,615,822 9,630,761 9,637,036 10,201,847 10,204,819 10,220,248 10,194,868 8,303,336 8,291,064 8,271,864 8,284,060
690 9,649,129 9,628,529 9,638,820 9,637,570 10,204,337 10,201,264 10,192,419 10,214,465 8,274,956 8,256,592 8,245,732 8,233,226
705 9,663,809 9,645,602 9,638,105 9,632,999 10,241,765 10,224,209 10,241,937 10,239,614 8,259,921 8,238,904 8,225,267 8,241,431
720 9,649,357 9,627,773 9,617,833 9,628,553 10,256,300 10,251,417 10,245,166 10,252,238 8,242,587 8,248,883 8,227,913 8,223,901
735 9,651,580 9,628,012 9,630,438 9,627,027 10,275,977 10,257,775 10,265,518 10,278,223 8,235,219 8,226,383 8,212,502 8,220,630
750 9,650,476 9,637,672 9,625,249 9,641,797 10,297,977 10,279,266 10,296,311 10,312,500 8,239,108 8,238,031 8,218,784 8,195,633
765 9,656,323 9,610,707 9,650,022 9,628,090 10,352,981 10,329,844 10,367,300 10,339,080 8,236,063 8,192,672 8,191,740 8,208,350
780 9,659,963 9,624,854 9,638,578 9,648,156 10,371,601 10,338,720 10,366,253 10,386,433 8,240,348 8,211,200 8,201,970 8,230,969
795 9,681,271 9,644,787 9,666,011 9,661,313 10,399,621 10,388,177 10,398,034 10,400,344 8,221,126 8,198,738 8,211,947 8,189,043
810 9,667,547 9,665,222 9,653,590 9,668,923 10,399,314 10,376,401 10,403,393 10,426,646 8,184,903 8,186,209 8,165,112 8,163,463
825 9,672,516 9,640,307 9,666,298 9,647,415 10,420,891 10,368,513 10,436,225 10,424,891 8,191,997 8,182,275 8,172,967 8,162,722
840 9,657,503 9,642,778 9,650,979 9,653,739 10,407,661 10,398,920 10,432,836 10,437,422 8,168,336 8,163,488 8,157,001 8,158,478
855 9,634,312 9,596,223 9,635,278 9,644,165 10,410,649 10,391,712 10,438,461 10,450,350 8,156,081 8,155,130 8,146,458 8,143,644
870 9,621,672 9,603,757 9,620,027 9,633,512 10,405,435 10,378,387 10,430,990 10,426,884 8,106,170 8,104,675 8,097,323 8,103,455
885 9,620,350 9,595,630 9,630,141 9,630,898 10,403,962 10,399,758 10,433,064 10,435,044 8,084,599 8,086,259 8,078,537 8,081,941
900 9,631,580 9,600,652 9,642,367 9,642,880 10,402,212 10,392,394 10,430,938 10,439,608 8,079,633 8,071,679 8,079,390 8,071,779
915 9,638,202 9,625,611 9,651,272 9,654,632 10,412,481 10,396,716 10,448,510 10,451,254 8,062,643 8,048,820 8,062,545 8,063,993
930 9,633,833 9,607,085 9,647,557 9,660,362 10,412,236 10,401,318 10,448,135 10,442,082 8,046,321 8,040,435 8,044,157 8,052,467
945 9,648,115 9,610,414 9,656,405 9,654,681 10,423,171 10,402,938 10,445,164 10,442,170 8,041,130 8,020,717 8,050,528 8,036,414
960 9,623,105 9,595,248 9,640,810 9,647,470 10,426,899 10,424,667 10,453,906 10,467,997 8,022,177 8,022,244 8,025,486 8,027,958
975 9,616,073 9,597,187 9,644,793 9,638,288 10,423,683 10,403,389 10,454,130 10,466,498 8,011,497 8,004,493 8,016,621 8,019,348
990 9,606,325 9,600,564 9,624,165 9,620,330 10,435,464 10,422,661 10,479,859 10,470,638 7,988,486 7,977,059 7,994,117 7,998,409
1005 9,600,436 9,574,408 9,616,313 9,612,865 10,451,017 10,441,699 10,487,880 10,489,247 7,979,668 7,965,832 7,986,944 7,990,923
1020 9,590,376 9,574,203 9,609,028 9,613,750 10,439,697 10,423,708 10,471,869 10,462,322 7,970,743 7,959,561 7,981,404 7,973,903
1035 9,581,770 9,556,088 9,605,270 9,604,405 10,441,773 10,421,422 10,463,474 10,467,973 7,959,468 7,940,550 7,964,359 7,965,226
1050 9,579,930 9,556,531 9,604,589 9,606,616 10,452,945 10,433,676 10,474,967 10,483,710 7,951,627 7,940,426 7,956,679 7,968,206
1065 9,595,709 9,579,477 9,615,197 9,621,851 10,470,151 10,453,266 10,501,819 10,507,334 7,946,173 7,926,139 7,965,891 7,953,661
1080 9,594,301 9,575,705 9,617,916 9,623,196 10,465,974 10,455,011 10,502,778 10,502,488 7,916,001 7,914,672 7,925,319 7,933,792
1095 9,594,427 9,588,419 9,625,612 9,620,910 10,473,601 10,465,518 10,510,138 10,518,682 7,895,721 7,894,622 7,914,868 7,911,363
1110 9,597,636 9,584,304 9,627,808 9,628,057 10,478,373 10,480,154 10,518,168 10,519,499 7,876,235 7,870,458 7,895,848 7,902,707
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(3300, 660, 660) (3300, 660, 990) (3300, 1320, 660)

GRASP main SA Main GRASP main SA Main GRASP main SA Main

Time GRASP SA GRASP SA GRASP SA GRASP SA GRASP SA GRASP SA

1125 9,602,821 9,583,271 9,637,215 9,633,617 10,502,840 10,484,839 10,537,724 10,536,927 7,870,262 7,862,131 7,908,960 7,888,432
1140 9,600,368 9,596,695 9,636,878 9,643,206 10,506,228 10,507,009 10,547,929 10,554,039 7,852,708 7,853,455 7,875,069 7,884,680
1155 9,602,206 9,608,897 9,650,656 9,652,986 10,519,498 10,520,195 10,563,527 10,569,395 7,853,959 7,855,677 7,878,937 7,874,327
1170 9,595,434 9,597,577 9,646,987 9,649,768 10,509,271 10,511,839 10,564,401 10,567,308 7,838,779 7,838,537 7,864,418 7,871,108
1185 9,611,585 9,594,014 9,670,638 9,649,918 10,520,340 10,506,773 10,580,938 10,566,310 7,842,725 7,828,323 7,869,367 7,857,536
1200 9,609,103 9,612,556 9,672,542 9,668,682 10,532,882 10,533,190 10,590,786 10,595,602 7,851,046 7,849,646 7,884,554 7,886,770
1215 9,616,013 9,607,951 9,676,367 9,670,729 10,529,499 10,528,092 10,596,109 10,590,655 7,846,728 7,842,809 7,877,555 7,877,923
1230 9,606,700 9,611,634 9,665,756 9,673,132 10,519,387 10,526,724 10,590,026 10,591,198 7,840,234 7,845,440 7,872,317 7,875,711
1245 9,623,556 9,610,948 9,681,908 9,669,103 10,534,739 10,522,718 10,609,460 10,595,566 7,851,496 7,842,708 7,883,699 7,875,698
1260 9,617,874 9,616,091 9,680,288 9,678,464 10,532,627 10,530,758 10,608,691 10,608,040 7,849,936 7,847,840 7,883,588 7,884,094
1275 9,616,400 9,614,605 9,678,140 9,675,458 10,531,703 10,530,730 10,611,224 10,607,281 7,850,488 7,847,707 7,885,680 7,882,409
1290 9,610,240 9,610,720 9,674,397 9,675,808 10,525,214 10,527,019 10,604,093 10,604,610 7,842,937 7,844,870 7,879,436 7,881,201
1305 9,607,929 9,605,523 9,672,767 9,669,380 10,525,662 10,522,076 10,602,687 10,598,923 7,844,289 7,841,034 7,879,985 7,876,216
1320 9,605,814 9,603,414 9,668,606 9,667,699 10,525,114 10,522,571 10,601,766 10,601,087 7,840,213 7,838,323 7,874,955 7,874,634
1335 9,604,156 9,603,836 9,667,092 9,666,287 10,524,929 10,523,632 10,599,027 10,599,757 7,839,953 7,839,809 7,874,417 7,873,698
1350 9,601,073 9,601,997 9,663,450 9,663,463 10,521,592 10,522,602 10,595,438 10,595,277 7,836,843 7,837,472 7,870,547 7,870,391
1365 9,600,909 9,599,619 9,663,610 9,662,074 10,520,236 10,519,354 10,595,560 10,594,647 7,836,130 7,835,028 7,870,737 7,870,421
1380 9,599,857 9,600,307 9,662,558 9,663,008 10,519,184 10,519,634 10,593,916 10,594,366 7,834,219 7,834,979 7,868,980 7,869,586
1395 9,599,842 9,599,575 9,661,176 9,662,276 10,518,427 10,518,830 10,593,498 10,594,266 7,834,514 7,834,569 7,869,886 7,869,510
1410 9,598,739 9,598,739 9,660,961 9,660,073 10,516,726 10,516,726 10,592,217 10,591,797 7,833,411 7,833,411 7,869,203 7,868,783
1425 9,597,879 9,598,739 9,660,440 9,660,961 10,515,889 10,516,726 10,591,380 10,592,217 7,832,890 7,833,411 7,868,682 7,869,203

TABLE C.1: Results at the end of the day when frequently replanning for GRASP and simulated annealing (SA). Where the time is the
number of minutes since midnight.
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(3300, 990, 330) (3300, 330, 990)

GRASP main SA Main GRASP main SA Main

Time GRASP SA GRASP SA GRASP SA GRASP SA

360 9,354,963 9,397,538 9,354,416 9,397,538 9,344,660 9,398,752 9,346,287 9,398,752
375 9,280,884 9,350,579 9,282,090 9,368,032 9,447,228 9,500,669 9,449,767 9,536,555
390 9,196,144 9,241,895 9,255,130 9,275,748 9,515,169 9,588,832 9,591,400 9,606,723
405 9,113,551 9,148,432 9,177,508 9,137,077 9,598,867 9,664,867 9,694,341 9,670,095
420 9,058,305 9,080,880 9,076,926 9,080,733 9,710,554 9,738,409 9,763,578 9,746,790
435 8,999,320 8,983,157 9,006,201 9,007,280 9,825,278 9,881,497 9,843,349 9,877,468
450 8,917,104 8,897,982 8,916,394 8,912,933 9,906,267 9,936,136 9,957,338 9,949,933
465 8,840,406 8,820,291 8,823,855 8,840,461 9,979,220 9,990,368 10,015,370 9,987,414
480 8,791,676 8,787,805 8,781,201 8,801,439 10,064,314 10,063,961 10,062,701 10,087,857
495 8,733,391 8,692,159 8,738,687 8,705,107 10,186,901 10,202,711 10,208,747 10,170,950
510 8,680,516 8,667,140 8,642,674 8,666,328 10,235,433 10,243,249 10,218,888 10,230,632
525 8,622,354 8,626,889 8,602,421 8,593,621 10,316,212 10,303,811 10,293,236 10,290,321
540 8,583,026 8,589,107 8,542,128 8,565,284 10,365,541 10,398,552 10,336,248 10,347,140
555 8,536,031 8,508,670 8,502,695 8,497,114 10,411,208 10,394,063 10,385,013 10,422,508
570 8,499,839 8,482,927 8,444,627 8,466,971 10,431,322 10,472,254 10,451,235 10,433,608
585 8,506,076 8,485,182 8,468,554 8,434,778 10,517,368 10,542,920 10,516,804 10,503,533
600 8,422,262 8,418,280 8,371,944 8,375,229 10,554,911 10,574,591 10,554,146 10,604,906
615 8,417,700 8,388,595 8,365,113 8,381,343 10,629,240 10,644,986 10,670,039 10,655,861
630 8,403,357 8,423,620 8,379,483 8,397,420 10,657,999 10,681,051 10,689,540 10,716,894
645 8,395,683 8,399,723 8,394,181 8,371,191 10,723,940 10,735,129 10,777,756 10,764,481
660 8,355,529 8,343,679 8,340,642 8,353,377 10,770,441 10,781,273 10,809,036 10,821,632
675 8,315,305 8,328,910 8,310,048 8,291,635 10,794,280 10,813,334 10,833,545 10,842,782
690 8,291,188 8,284,432 8,267,701 8,284,899 10,809,496 10,834,490 10,854,606 10,844,329
705 8,281,909 8,284,745 8,263,204 8,274,015 10,856,100 10,867,959 10,881,406 10,859,827
720 8,261,295 8,245,233 8,246,091 8,262,222 10,869,241 10,879,120 10,868,130 10,884,043
735 8,238,102 8,226,762 8,240,195 8,225,053 10,900,350 10,910,471 10,910,588 10,928,509
750 8,217,572 8,215,787 8,204,549 8,214,808 10,932,333 10,924,344 10,943,535 10,971,341
765 8,191,914 8,190,712 8,183,692 8,181,483 10,983,441 10,984,879 11,019,975 11,001,903
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(3300, 990, 330) (3300, 330, 990)

GRASP main SA Main GRASP main SA Main

Time GRASP SA GRASP SA GRASP SA GRASP SA

780 8,174,021 8,173,853 8,171,555 8,177,636 11,007,307 11,011,846 11,037,164 11,041,657
795 8,175,294 8,167,476 8,175,703 8,182,159 11,040,907 11,039,308 11,073,546 11,081,689
810 8,149,982 8,162,859 8,153,945 8,165,069 11,056,022 11,059,562 11,095,692 11,101,936
825 8,141,221 8,124,366 8,150,843 8,136,799 11,087,023 11,059,581 11,125,232 11,113,135
840 8,125,778 8,129,880 8,137,698 8,139,733 11,088,997 11,086,997 11,131,395 11,143,096
855 8,105,659 8,115,080 8,122,417 8,109,282 11,104,048 11,090,542 11,146,753 11,164,125
870 8,088,656 8,094,579 8,088,492 8,098,662 11,110,624 11,111,200 11,167,294 11,165,831
885 8,083,962 8,051,682 8,085,088 8,089,792 11,125,751 11,117,491 11,178,296 11,189,606
900 8,071,259 8,063,969 8,076,091 8,083,509 11,146,994 11,118,608 11,199,582 11,223,247
915 8,071,884 8,064,947 8,081,583 8,076,779 11,163,828 11,171,970 11,238,680 11,247,736
930 8,056,777 8,042,286 8,062,683 8,063,493 11,158,425 11,152,975 11,234,711 11,235,899
945 8,039,903 8,015,180 8,044,475 8,045,112 11,181,182 11,167,676 11,260,354 11,249,073
960 8,010,189 7,993,978 8,020,828 8,015,770 11,193,368 11,182,378 11,268,319 11,256,409
975 7,999,975 7,996,296 7,994,671 8,007,907 11,196,208 11,192,416 11,261,730 11,265,437
990 7,985,557 7,970,159 7,986,327 7,983,628 11,203,549 11,187,543 11,277,812 11,281,590
1005 7,982,977 7,963,844 7,981,717 7,983,599 11,211,298 11,206,561 11,287,214 11,292,716
1020 7,969,022 7,938,970 7,967,672 7,970,761 11,211,338 11,193,984 11,290,446 11,296,208
1035 7,953,793 7,929,703 7,952,649 7,953,481 11,214,884 11,195,006 11,302,059 11,295,387
1050 7,937,819 7,922,934 7,944,093 7,939,678 11,215,411 11,217,731 11,301,433 11,311,996
1065 7,925,019 7,916,037 7,925,861 7,926,937 11,239,500 11,234,946 11,336,211 11,333,906
1080 7,910,157 7,902,828 7,909,850 7,920,560 11,251,268 11,252,197 11,345,940 11,353,079
1095 7,908,519 7,910,037 7,915,829 7,918,716 11,267,641 11,270,799 11,367,747 11,363,630
1110 7,896,214 7,892,637 7,913,184 7,912,580 11,270,854 11,276,754 11,364,464 11,372,449
1125 7,896,408 7,884,396 7,912,120 7,899,013 11,294,667 11,284,001 11,394,574 11,388,896
1140 7,865,319 7,869,636 7,878,739 7,881,992 11,292,389 11,297,012 11,400,308 11,407,276
1155 7,862,668 7,862,201 7,872,083 7,880,562 11,305,270 11,308,484 11,416,035 11,419,214
1170 7,848,321 7,852,211 7,864,519 7,869,272 11,304,154 11,304,269 11,420,573 11,422,494
1185 7,854,271 7,839,978 7,879,063 7,862,053 11,318,537 11,302,152 11,439,348 11,422,293
1200 7,857,328 7,856,799 7,882,809 7,882,201 11,325,320 11,328,060 11,441,762 11,451,181
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GRASP main SA Main GRASP main SA Main

Time GRASP SA GRASP SA GRASP SA GRASP SA

1215 7,852,763 7,852,276 7,883,275 7,881,501 11,324,541 11,320,599 11,451,548 11,447,471
1230 7,841,047 7,843,619 7,871,287 7,874,231 11,319,142 11,323,333 11,447,120 11,454,354
1245 7,847,526 7,836,984 7,878,715 7,866,548 11,338,604 11,322,026 11,468,435 11,452,725
1260 7,846,835 7,845,666 7,880,354 7,878,240 11,336,757 11,334,617 11,463,943 11,464,646
1275 7,848,452 7,844,423 7,880,250 7,878,252 11,334,261 11,333,771 11,464,410 11,462,152
1290 7,843,491 7,843,535 7,873,363 7,873,245 11,328,006 11,328,040 11,456,234 11,456,729
1305 7,841,743 7,840,456 7,873,646 7,871,785 11,331,383 11,324,387 11,460,041 11,454,972
1320 7,836,149 7,837,354 7,868,101 7,868,833 11,330,015 11,329,284 11,460,735 11,458,336
1335 7,833,559 7,833,831 7,865,358 7,865,524 11,326,836 11,327,400 11,458,420 11,458,385
1350 7,832,115 7,832,560 7,863,824 7,864,359 11,320,695 11,322,625 11,454,276 11,453,902
1365 7,833,201 7,831,989 7,864,070 7,863,150 11,321,216 11,320,504 11,452,082 11,451,328
1380 7,831,818 7,833,201 7,861,851 7,862,767 11,320,132 11,320,991 11,450,547 11,451,153
1395 7,831,950 7,831,638 7,861,929 7,861,671 11,320,530 11,320,336 11,450,139 11,449,802
1410 7,831,493 7,831,298 7,861,472 7,861,277 11,319,249 11,318,829 11,449,090 11,449,090
1425 7,831,177 7,831,493 7,861,156 7,861,472 11,318,412 11,319,249 11,448,253 11,449,090

TABLE C.2: Results at the end of the day when frequently replanning for GRASP and simulated annealing (SA). Where the time is the
number of minutes since midnight.
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C.2 Frequent Replanning Extra Figures

(A) Instance (3300, 660, 660).

(B) Instance (3300, 1320, 660).

FIGURE C.1: Frequent real-time replanning for GRASP as main and
simulated annealing (SA) as side and the other way around. The fig-
ure shows the deviation from the average solution quality at every

replanning moment.
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(C) Instance (3300, 330, 990).

(D) Instance (3300, 990, 330).

FIGURE C.1: Frequent real-time replanning for GRASP as main and
simulated annealing (SA) as side and the other way around. The fig-
ure shows the deviation from the average solution quality at every

replanning moment.
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(A) Instance (3300, 1320, 660).

(B) Instance (3300, 330, 990).

(C) Instance (3300, 990, 330).

FIGURE C.2: Frequent real-time replanning for GRASP as main and
simulated annealing (SA) as side and the other way around.
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