
Utrecht University

Computing Science Master Thesis

Reference Counting with Reuse in Roc

Author:
J. Teeuwissen, BSc
(6456944)

Supervisors:
F. de Vries, MSc1
Dr. W. Swierstra2

Prof. Dr. G. Keller2
Dr. T. McDonell2

1Roc Programming Language Foundation
2Utrecht University

August 10, 2023

Abstract

Most functional programming languages use a tracing garbage collector to automatically
reclaim unused memory. But tracing garbage collection reclaims garbage memory at an un-
specified time, which results in stop-the-world pauses, an increase in peak memory usage, and
the inability to perform in-place mutations. Instead, a reference counting garbage collector
can be used. Having the exact reference count of a structure allows for in-place mutation
and the immediate reclamation of unused memory, at the cost of runtime overhead. The
reference counting and reuse algorithm Counting Immutable Beans from Ullrich and de Moura
[18] attempts to reduce this overhead by borrowing references. However, their reuse imple-
mentation can lead to an arbitrary increase in peak memory usage. The reference counting
algorithm Perceus from Reinking et al [1] opts for precise reference counting instead, resulting
in garbage free programs. Programs that can be further improved by cancelling out matching
opposite reference counting operations with drop specialisation and with the drop guided reuse
algorithm from Lorenzen and Leijen [2]. Despite both reuse algorithms showing excellent
performance for simple programs, they are unable to fully utilise reuse opportunities across
join points. We use Roc, a purely functional programming language, to compare the previ-
ous Counting Immutable Beans implementation to an extended version of Perceus with drop
guided reuse. We show that our new implementation decreases reference counting overhead,
increases memory reuse, and is competitive with functional programming languages that use
tracing garbage collection.

1

Contents
1 Introduction 3

1.1 Research Questions . 3
1.2 Contributions . 3

2 Overview 4
2.1 Roc . 4

2.1.1 Projections . 4
2.1.2 Non-RC values . 4
2.1.3 Normalisation and Defunctionalisation . 4
2.1.4 Joinpoints . 5

2.2 Reference Counting . 6
2.2.1 Atomic Reference Counting . 6
2.2.2 Counting Immutable Beans . 6
2.2.3 Perceus . 8

2.3 Reuse Analysis . 8
2.3.1 Drop Guided Reuse . 9

2.4 Specialisation . 10
2.4.1 Drop Specialisation . 10
2.4.2 Drop Guided Drop Specialisation . 11
2.4.3 Reuse Specialisation . 12

3 Formalisation 12
3.1 Calculus . 13
3.2 Heap Semantics . 13
3.3 Reference Counting . 15
3.4 Reuse Analysis . 18
3.5 Drop Guided Drop Specialisation . 21

4 Results 23
4.1 Operations . 24
4.2 Performance . 24

5 Conclusion 26
5.1 Discussion . 26
5.2 Future Work . 27

References 28

2

1 Introduction
Computer programs use the computer heap-
based memory to temporarily store data. When
a program requests to store data, it (or the op-
erating system) allocates a portion of memory
to store this data in. But memory is a finite
resource, meaning that unused memory should
be deallocated to be used again later. Tracing
garbage collection (also known as Mark & Scan
or Mark & Sweep) is a common technique for
automatically reclaiming such unused memory
during program execution. Tracing GC works
in cycles of two separate stages. A cycle can be
started periodically or when there is not enough
free memory available for a new allocation. The
first stage starts in roots of the program (like
the stack, registers or static variables) and recur-
sively traverses the reachable memory structures
and marks these structures. The second stage
scans all the allocated memory and reclaims
those that are not marked. Several variations
exist to reduce fragmentation, cycle frequency
and cycle duration [4][11][13]. A benefit of trac-
ing garbage collection is that cyclic references
are garbage collected like any structure, making
it suitable for languages like Haskell and OCaml
that allow the creation of cyclic data struc-
tures through laziness or mutable data types.
However, the garbage memory in-between cycles
cause a higher memory footprint than strictly
necessary, which can negatively affect perfor-
mance. But more importantly: memory is re-
claimed at an unspecified time, which makes it
impossible to immediately reuse allocated mem-
ory for new structures when no longer in use, re-
sulting in additional expensive allocations. An
alternative memory management strategy is ref-
erence counting garbage collection (RC), a tech-
nique where each heap allocated structure is ac-
companied by a count of the pointers that point
to the structure. The reference count is updated
when a reference to the structure is added or
removed, e.g. by passing it to two functions.
When the reference count drops to zero, mean-
ing the structure is no longer referenced, the
memory can be deallocated or reused for a new
structure, as will be discussed in section 3.4. But
reference counting does have downsides. The
reference count itself has to be stored in mem-
ory, increasing the size of each structure. And
the execution of the reference counting opera-
tions themselves can be quite time consuming,
especially when incrementing and decrementing
the reference count when not strictly necessary,
an important consideration in the algorithms we
will discuss in section 2.2. Additionally, it is dif-
ficult to deal with cycles in structures. When
two structures have pointers to each other, the
reference count of neither will ever drop to zero.
Thus, both structures will stay in memory for-

ever [3]. In this work we adapt the Perceus refer-
ence counting algorithm and drop specialisation
optimization from Reinking et all [1] and the
drop guided reuse algorithm from Lorenzen and
Leijen [2] to be compatible with Roc, a purely
functional programming language. And we com-
pare the new algorithms with the previous ref-
erence counting and reuse algorithms based on
Counting Immutable Beans from Ullrich and de
Moura [18] in terms of runtime and memory per-
formance.

1.1 Research Questions
The questions we try to answer in this paper are:

• In what way do the Perceus reference
counting algorithm and the drop-guided
reuse algorithm need to be modified, in
order to be compatible with the Roc com-
piler and drop specialisation?

• What are the effects of the adapted
Perceus reference counting, drop-guided
reuse, and drop specialisation algorithms
on the performance of Roc programs when
compared with the Counting Immutable
Beans reference counting and reuse algo-
rithm?

1.2 Contributions
We make the following contributions to answer
these questions:

• We extend both the resource calculus and
programmatic implementation for Perceus
and drop guided reuse to work with join
points and projections, including a new
syntax-directed resource rule-set for reuse
analysis.

• We describe a new approach for drop spe-
cialisation called drop guided drop special-
isation, which takes the core concept from
Perceus: Garbage Free Reference Count-
ing with Reuse from Reinking et al and
improves its effectiveness and versatility.

• We implement the new Perceus reference
counting, drop guided reuse, and drop
guided drop specialisation in Roc. And
compare both the static and dynamic per-
formance characteristics of the new al-
gorithms with the existing Counting Im-
mutable Beans reuse and reference count-
ing algorithm.

3

2 Overview

We will start our overview with a summary of
the Roc programming language. We will look
at the basic syntax and relevant compiler fea-
tures. After which we will take a closer look
at reference counting, reuse analysis and other
optimisations as described in other papers.

2.1 Roc

Roc is ”A fast, friendly, functional language”
[17] with strict evaluation, referential trans-
parency, and no automatic currying. Fast com-
pilation and performant applications are an ex-
plicit goal [16]. The goal of this section is to
get familiar with Roc and to show compiler fea-
tures that require adaptations to the algorithms
discussed in section 2.2 to 2.4. The examples
used in this section have statements inserted by
the compiler highlighted in gray, to make a clear
distinction between what a user can write and
what the compiler might generate.

2.1.1 Projections

Roc uses product and sum types to represent
data. Product types, called records in Roc, al-
low multiple values (fields) to be wrapped in an-
other value, and for these fields to be projected
out. For example:

Tuple a b : {l: a, r: b}

fst : Tuple a b -> a
fst = \t -> t.l

Listing 1: Record Example

Sum types are called tag unions in Roc.
They can be one of multiple values. For exam-
ple:

Maybe a : [Just a, Nothing]

mapMaybe : Maybe a, (a -> b) -> Maybe b
mapMaybe = \maybe, f -> when maybe is

Just a -> Just (f a)
Nothing -> Nothing

Listing 2: Tag Example

The when ... is pattern match from the
previous example is removed during compi-
lation, generating code similar to this for
mapMaybe:

mapMaybe = \maybe, f ->
maybeTagId = getTagId maybe
switch maybeTagId:

case 0:
a = maybe.Just.0
Just (f a)

default:
Nothing

Listing 3: Tag Example

In which the pattern match is replaced by a
switch on the id of the tag. The original bound
variable a is now explicitly retrieved using a pro-
jection Just.0, the first value given that the tag
is Just. This transformation simplifies the logic
and makes further compilation easier. We will
add projections in general to later formalisations
to be more precise and better correspond with
Roc.

2.1.2 Non-RC values

Roc makes a distinction between reference
counted and not reference counted values. The
memory size of integers, records, and non-
recursive tags (like maybe or result) is known
at compile time, which allows these values to
be allocated on the stack to reduce allocations
and improve performance. The size of lists,
strings, and recursive tags (like linked lists or
trees) cannot be determined at compile time.
Hence these structures are allocated on the heap.
We opt to ignore this distinction because the
check whether a value is reference counted or
not is straightforward to implement and is in-
consequential to the formalisation from section
3. But for consistency we will use types that are
reference counted in the examples.

2.1.3 Normalisation and Defunctionali-
sation

The IR of Roc is both normalised and defunc-
tionalized. The normalisation of a program
means to translate nested expression into multi-
ple, chained, simpler ones. See listings 4 and 5
for an normalisation example for the multiplica-
tion of complex numbers.

Complex a : { r: Int a, i: Int a}

multiplyComplex :
Complex a, Complex a
-> Complex a

multiplyComplex =
\{r: xr, i: xi}, {r: yr, i: yi}
-> {r: xr * yr - xi * yi,

i: xr * yi + xi * yr}

Listing 4: Normalization Example

4

multiplyComplex = \x, y ->
xr = x.r
xi = x.i
yr = y.r
yi = y.i
a = xr * yr
b = xi * yi
c = a - b
d = xr * yi
e = xi * yr
f = d - e
{r: c, i: f}

Listing 5: Normalization Example Cont

In this example we see the complex compu-
tations inside the constructor transformed into
simple operations. First all fields are projected
out and saved into an intermediate variable.
Then the actual computations are performed on
single variables. After which the results are
stored in a record. This simplifies the IR by
removing the need to model nested expressions
and specifies a clear order in which the opera-
tions are performed. This in turn simplifies the
remaining steps in compilation, like the genera-
tion of assembly.

Defunctionalisation, similar to normalisa-
tion, is used to simplify the IR. Defunctional-
isation replaces higher order functions with spe-
cialised first order functions. For example, if we
define a function to apply another function on
both elements of the tuple defined before:

applyTuple : Tuple a a, (a -> b)
-> Tuple b b

applyTuple = \{l, r}, f
-> {l: f l, r: f r}

applyTuple {l: 0, r: 1} \x -> x * 2

Defunctionalisation (without normalisation)
will in turn generate the following code:

applyTuple : Tuple I64 I64
-> Tuple I64 I64

applyTuple = \{l, r}
-> {l: double l, r: double r}

double : I64 -> I64
double = \x -> x * 2

applyTuple {l: 0, r: 1}

The specific types enables analyses to know
what the layout of each argument/variable is
within the function, which is crucial for e.g.
reuse analysis. The defunctionalisation used by

Roc is based on the work from William Brandon,
Benjamin Driscoll, Frank Dai, Wilson Berkow,
and Mae Milano [5].

2.1.4 Joinpoints

The previous sub section mentioned the normali-
sation of programs and the benefits thereof. We,
however, did not yet explain what normalisation
for complex expressions looks like. For example:

makeLoudCatDogSound : Bool -> Str
makeLoudCatDogSound = \isDog ->

sound = if isDog
then "Woof"
else "Miauw"

Str.concat sound "!"

The function from the example above checks
the boolean parameter. If isDog is true, the
”Woof” sound branch is taken, otherwise the
”Miauw” branch. Afterwards the branches join
back up to use string concatenation to add an
exclamation mark. A naive way to normalise
this function would be to add the continuation,
in this case the assignment and the concatena-
tion, to both branches. As shown in the example
below:

makeLoudCatDogSound = \isDog ->
if isDog

then
sound = "Woof"
Str.concat sound "!"

else
sound = "Miauw"
Str.concat sound "!"

This transformation gives us a normalized
program. But this approach combined with
a larger continuation or multiple nested ex-
pressions could result in an code size explo-
sion. A different approach would be to put the
if then else expression in a function, and to
call this function with the isDog parameter to
obtain its sound. But transforming this kind of
logic into function calls has different downsides:

• Function calls require additional stack and
register manipulation, making them more
expensive than simple branching.

• Moving code into functions can break fur-
ther optimisations. Reuse analysis for ex-
ample does not work across functions.

A solution to this problem is join points[12].
Join points are a combination of joins that de-
fine arguments with a continuation and jumps
that can jump to this continuation.

5

Using join points the same example would
look like the following:

makeLoudCatDogSound = \isDog ->
joinpoint soundJp = \sound ->

Str.concat sound "!"
if isDog

then jump soundJp "Woof"

else jump soundJp "Miauw"

Listing 6: Joinpoint Example Cont

These joinpoints can be nested and jumps
can be recursive. Jumps can only occur at the
end of a statement, guaranteeing that the jump
can be compiled into a simple jump (or goto).
Any variables in scope before the definition of
the join (its closure) can be used without pass-
ing them as a parameter. Another benefit of
join points is that they can be used to solve a
multitude of problems like:

• Joining back the control flow after branch-
ing, like in the example above.

• Performing the same action under differ-
ent conditions. Like a pattern match hav-
ing multiple matching conditions for the
same branch.

• Tail call elimination: Some recursive func-
tions can be optimised (tail call elimina-
tion or tail call optimisation) using join
points so that a jump can be performed
instead of a recursive call. Saving on stack
frames and function calls.

Without requiring special IR constructs to
deal with each one separately or duplicating
code, which is why join points see usage in lan-
guages like Haskell, Lean, and Roc. And because
Roc heavily relies on these join points, they
should be considered when designing and imple-
menting RC and reuse algorithms. It would be
sub-optimal for reuse analysis to fail for a func-
tion as simple as makeLoudCatDogSound.

2.2 Reference Counting
Tracing (generational) garbage collection has
been the de facto garbage collection mechanism
for functional programming languages. But the
benefits and drawbacks change in the context of
strict pure functional languages with an explicit
control flow, like Roc or Koka. Drawbacks like
requiring special pointers to reclaim cyclic struc-
tures becomes a non-issue, since cyclic struc-
tures cannot be created. While benefits like be-
ing able to manipulate structures in-place be-
comes even more important if the alternative is
copying the entire structure. And an explicit

control flow allows structures to be dropped im-
mediately after their latest usage by not being
bound to the unwinding of the stack, resulting
in a lower memory usage and more optimisation
opportunities. These benefits are why we will
focus on RC GC for the remainder of this pa-
per. Reference counting in its simplest form is
performed using two operations: dup and drop
(also known as inc and dec). Dup increases the
reference count of a structure by one whilst drop
lowers it by one. If a unique (a reference count of
exactly one) reference is dropped. It will drop all
nested references and free the structure’s mem-
ory instead. The goal of a reference counting
algorithm is to insert these operations in the IR
of a language such that memory is kept allo-
cated while still in use but deallocated when not.
While, preferably, inserting as few operations as
possible. We will look at two algorithms in sec-
tion 2.2.2 and 2.2.3. But first: some context.

2.2.1 Atomic Reference Counting

In addition to the inserting the dup and drop
operations at the right places, their implemen-
tation requires consideration as well. In concur-
rent environments it is possible for structures
to be shared across multiple threads. Thus, ev-
ery step in the RC operations should be per-
formed atomically, to prevent multiple concur-
rent writes from resulting in an erroneous count.
Performing these steps atomically however, can
increase their cost significantly [19]. This prob-
lem can be partially remedied by using a lock-
free approach or by reducing the use of atomic
reference counting in general through Biased
Reference Counting [7]. But the exact mecha-
nism used to modify reference counts is not the
focus of this paper, and as such we will restrict
ourselves to the effect of reference counting op-
erations.

2.2.2 Counting Immutable Beans

The previous tracing GC algorithm used by Roc
is based on the work by Ullrich and de Moura
called Counting Immutable Beans [18]. The goal
of the described algorithm is to reduce the num-
ber of inserted reference counting operations by
marking function parameters as either owned or
borrowed at compile time. A borrowed param-
eter is assumed to be kept alive by the caller,
therefore the caller does not have to dup the
reference count of a variable before passing it
to the function and the callee does not have to
drop it. Reducing the total number of reference
count operations. Counting Immutable Beans is
performed in three steps:

1. Pattern matches and constructors are
paired as possible memory reuse opportu-
nities.

6

2. The borrow signature of all functions is de-
termined, using the reuse information.

3. The reference counting operations are in-
serted, using the borrow signature of other
functions.

Reuse analysis is performed using a heuristic-
based algorithm to recursively iterate over a
function body, while keeping track of variables
that get pattern matched on (scrutinised) and
their memory size in their respective case arms.
(Note that the paper uses the arity of the
matched constructor to reflect the size in mem-
ory, because the values in the constructor are
just pointers to another value in the heap and
thus of equal size. But that this is not always
the case for Roc where values can be contained
inside the structure directly as well and as such
would require keeping track of the memory lay-
out specifically). And using this information
to find later constructions of a matching size.
If found, the analysis will insert a reset state-
ment after the latest usage of the scrutinee and a
reuse statement before the construction. A re-
set returns the pointer of the variable if the refer-
ence count is unique, or a special token (typically
a null pointer) otherwise. The pointer can be
used to reuse this memory, while a null pointer
will cause the reuse to create a fresh allocation.
If such a match is found but not all control
flow paths consume the reuse token, the token is
dropped in those paths by the garbage collection
from the third step. Counting Immutable Beans
does not describe how to perform this analysis
for join points. However, the original implemen-
tation in Lean does perform reuse in the context
of join points, and served as an example for the
previous reuse implementation in Roc. But the
lean implementation is quite limited in the reuse
opportunities it can find: new allocations in the
body or continuation of a join point can only be
matched with pattern matches before the join or
in the body/continuation itself. Reset opportu-
nities inside the continuation cannot be matches
to reuse opportunities inside the body. This can
hinder memory reuse, which is especially annoy-
ing since join points were supposed to be cheap,
a problem we attempt to solve in section 3.4.

Another heuristic algorithm is used to infer
the borrow signature of the functions. Every pa-
rameter is assumed to be borrowed to reduce ref-
erence counting operations, but can be marked
as owned for one of these three reasons:

• The function calls reset on the parame-
ter. Marking such a variable as borrowed
could result in the reset statement return-
ing a pointer to the allocation for later
reuse, whilst the structure itself is actu-
ally shared, resulting in the mutation of

structures that should have remained un-
changed.

• The function is tail called from a func-
tion that can be tail call optimised where
the variable is owned. Because marking
the parameter as borrowed would force the
caller to insert a drop after the call which
could break the optimisation.

• The parameter is passed to a function that
takes the given parameter as owned.

Other parameters are marked as borrowed to re-
duce the number of inserted reference count op-
erations. The reference counting analysis uses a
borrowed and an owned context with variables.
Dups are inserted to move a variable from the
borrowed to the owned context, before each con-
sumption (like constructors or owned function
parameters), which moves them back to the bor-
rowed context. Drops are inserted after the lat-
est usage of an owned variable if not already
consumed.

For example:

Tuple a b : {l: a, r: b}

toTuple : Str -> Tuple Str Str
toTuple = \x -> {l: x, r: x}

Listing 7: Ownership example

In the Roc example above the function
toTuple is determined to take its argument as
borrowed (as it does not call reset on it or a
function that does) and the value is duped once
because there now is an additional reference to
the value, which looks roughly like this in the
intermediate representation (IR) of Roc:

toTuple : Str -> Tuple Str Str
toTuple = \x ->

dup x;
{l: x, r: x}

Listing 8: Ownership example

But if we pattern match on a reference
counted value and do not use that value again,
but do construct a value of the same type again,
a reset and reuse pair will get inserted.

For example:

7

LinkedList a : [
Cons a (LinkedList a),
Nil

]

swapHead : LinkedList a, a ->
LinkedList a

swapHead = \list, x ->
when list is

Nil -> Nil
Cons _ ys -> Cons x ys

Listing 9: swapHead

In the example above the reference counted
list is scrutinised and not used again in the
branches. Thus the memory of the Cons can be
reused. Next, reference counting analysis makes
sure to drop the now unused x and list in the
Nil branch and dup the ys in the Cons branch.
Note that x is marked as owned as it is used
inside a constructor.

swapHead : LinkedList a, a ->
LinkedList a

swapHead = \list, x ->
when list is

Nil ->
drop x

drop list
Nil

Cons _ ys ->
dup ys

r = reset list
Cons @r x ys

Listing 10: IR swapHead

2.2.3 Perceus

In contrast to Counting Immutable Beans (be-
fore inserting reference count operations), which
analyses functions in order to determine a suit-
able ownership for their parameters, Perceus
from Reinking et al opts to always pass param-
eters as owned. Owning all parameters can re-
sult in an increase in reference count operations.
But the authors of Perceus argue that being able
to instantly free unused memory, which is not
possible while borrowing said memory, increases
cache locality and decreases memory usage. A
program in which all memory is deallocated as
soon as it becomes garbage is called ”garbage
free”.

This difference in garbage memory is notice-
able when a function takes a parameter as bor-
rowed while it is called with an owned variable,
which results in the value staying in memory
throughout the execution of the called function.

Even when it is used for a fraction of this time.
For example:

fib : Nat -> Nat
fib = \len ->

list = List.repeat len (len * 1000000)
fibHelp list

fibHelp : List Nat -> Nat
fibHelp = \list ->

len = (List.len list) // 1000000
when len is

0 -> 0
1 -> 1
_ -> fib (len - 1) +

fib (len - 2)

Listing 11: Borrowing Owned Variables

The function fib allocates a list with the same
length as its input, and passes it to fibHelp which
converts it back to a number to determine the
next step. Thus, the list is marked as borrowed
when using Counting Immutable Beans. Mean-
ing that fib will look like the following:

fib = \len ->
list = List.repeat len (len * 1000000)
result = fibHelp list
drop list
result

Listing 12: Fib IR

Dropping the list after the function finishes
means that the entire list will remain allo-
cated during the entire remaining calculation
of fibHelp, including the recursive calls. Pass-
ing the list, or any parameter, as owned, allows
for their immediate deallocation when no longer
in use. We realise that this particular example
is somewhat contrived, but every borrowed pa-
rameter could have the same effect once called
with an owned variable. We will look at another
downside of borrowing in section 2.4.1.

2.3 Reuse Analysis
The goal of reuse analysis is to find matching
deallocations and allocations, and to reuse the
already allocated memory instead of deallocat-
ing it and allocating new memory. In prac-
tice this is done by inserting reset statements
which take a variable, and returns a pointer to
its memory if the reference count of that vari-
able is unique, or a null pointer otherwise. After
which a reuse statement can use this pointer to
reuse the memory for a new structure, or allo-
cate new memory in case of a null pointer, as
described in subsection 2.2.2. Note that reusing
memory by definition results in a program that

8

is no longer garbage free, since reuse holds onto
garbage memory. It is desirable to insert the
least number of reset/reuse operations possi-
ble, while maintaining a certain level of actual
reuse. Meaning that reset statements on always
non-unique variables should be avoided. Be-
cause their logic is more expensive than a simple
decrement while providing no benefit. Addition-
ally, the latest available deallocation should be
reused. So that earlier memory can be deallo-
cated as soon as possible. To reduce the overall
program memory footprint. Roc lowlevel func-
tions, those which are defined in the compiler
itself using Zig, can perform some basis memory
reuse as well. The listSortWith function for ex-
ample can simply sort the list in place if the list
RC is unique. A welcome benefit from reference
counting, but not something we will focus on in
the following subsections.

2.3.1 Drop Guided Reuse

Both Counting Immutable Beans and Perceus
describe reuse analysis as a pass performed be-
fore reference counting, which allows the ref-
erence counting algorithm to cleanup unused
reuse tokens and (in the case of the former) pre-
vents borrowing from breaking reuse opportu-
nities. However, Lorenzen and Leijen explain
in their paper Reference Counting with Frame
Limited Reuse [2] that this approach has draw-
backs whenever a reset opportunity (a pattern
match) appears before the latest usage of that
variable. If the reset statement is inserted before
the latest usage, reference counting will insert a
dup right before the reset. Resulting in the vari-
able never being unique during reset and always
failing reuse. We can demonstrate this problem
using the following function:

modifyHead : LinkedList a,
(LinkedList a -> a) -> LinkedList a

modifyHead = \list, f ->
when list is

Cons x xs ->
y = f list
Cons y xs

Nil -> Nil

modifyHead takes a linked list and, in the case
of a non-empty list, uses a function that takes
the entire list (as owned) to determine a new
value for the head. The reuse analysis will recog-
nise the pattern match on list and will try to in-
sert a reuse for the allocation thereafter. Reuse,
after reference counting, will have the following
result:

modifyHead = \list, f ->
when list is

Cons x xs ->
dup xs

dup list

r = reset list
y = f list
Cons @r y xs

Nil -> Nil

Where we can see the reset list will always
return null because the list will never be unique.

If a reset statement in inserted after the lat-
est usage of a variable in a function call, the
algorithm will insert a dup right before the func-
tion call. And then the function will make sure
it’s dropped again. Allowing the subsequent re-
set/reuse to effectively reuse the memory. But
this approach means that the function itself is
never able to reuse the memory, because the
reference count is always greater than one, and
that the entire structure (including members)
is kept in memory during the entire execution
of the (potentially recursively) called function.
Keeping the entire structure in memory can po-
tentially result in an arbitrary increase in peak
memory usage. If we look at our previous exam-
ple:

modifyHead = \list, f ->
when list is

Cons x xs ->
dup xs

dup list
y = f list
r = reset list
Cons @r y xs

Nil -> Nil

We can now see that the reuse might work,
if the list was unique to begin with. But the
entire list (including its children) will stay allo-
cated during the execution of f, in addition to
the function not being able to reuse the list itself.
f not being able to reuse the list does not seem
like a problem in this small example. But such
behaviour could result in an unbounded increase
of allocated memory for recursive functions with
larger allocated structures.

The alternative presented by Lorenzen and
Leijen is Drop Guided Reuse. A reuse analysis
pass that is performed after reference counting.
This algorithm (as the name suggests) tries to
replace already inserted drops with resets. The
downside of this approach is that we explicitly
have to free unused reuse tokens. But this is
relatively straightforward. The upside is, how-

9

ever, that reuse is only performed when a vari-
able would already have been dropped according
to the (in the case of Perceus) garbage free RC
algorithm. Thus, resets after dups are avoided
(because a drop won’t follow a dup). And most
importantly, a reset will only keep hold of the
memory for a single structure. Meaning that the
increase in peak memory usage is bounded by a
constant (as each stack frame can only have so
many resets) multiplied by the number of stack
frames, Frame Limited Reuse. This results in
our example looking like this:

modifyHead = \list, f ->
when list is

Cons x xs ->
dup xs
y = f list
Cons y xs

Nil -> Nil

Where reference counting does not insert any
drops, and drop specialisation subsequently does
not insert any resets. Meaning no unbounded
amount of garbage memory is being hold on to,
while f can reuse the list or drop it as soon as
it is no longer in use.

2.4 Specialisation
In addition to the reference counting algorithm
itself, Perceus: Garbage Free Reference Count-
ing with Reuse describes two (ignoring reuse
analysis) additional optimisations that can be
performed to improve performance: drop spe-
cialisation and reuse specialisation.

2.4.1 Drop Specialisation

Drops behave, in the case of general structures,
like the following pseudo-code:

drop = \structure ->
if unique structure

then
child1 = structure.1
drop child1
...
childn = structure.n
drop childn
free structure

else
decref structure

Listing 13: Drop Naive

If the reference count of the structure is
unique, all children are dropped recursively af-
ter which the original structure is freed. If it’s

not unique, the reference count is simply decre-
mented by one using decref.

A pattern frequently observed, however, is
dups of children being inserted before the drop
of a parent. Like in a map function:

mapLinkedList :
LinkedList a, (a -> b)
-> LinkedList b

mapLinkedList = \l, f -> when l is
Cons x xs ->

dup x

dup xs

drop l
Cons (f x) (mapLinkedList xs f)

Nil -> Nil

Listing 14: mapLinkedList naive

That results in the children being projected
out inside the drop while they were already in
scope in the original function. And the children
being duped right before being dropped again
whenever the parent is unique. This is the ex-
act problem drop specialisation tries to remedy.
It does so by inlining drops (whenever children
are duped before, or are already projected out)
and moving these dups inside the uniqueness
branches to cancel out, which would look like
this using join points:

mapLinkedList = \l, f -> when l is
Cons x xs ->

join continuation =
Cons (f x) (mapLinkedList xs f)

if unique structure
then

free l

jump continuation
else

dup x

dup xs

decref l

jump continuation
Nil -> Nil

Listing 15: mapLinkedList specialised

And as expected: all reference counting oper-
ations for the children have been removed from
the unique path. Note that this technique is not
only relevant for unions but boxes (a heap allo-
cated value), records and lists of a known size as
well, albeit in a modified shape.

Drop specialisation works with Counting Im-
mutable Beans as well, borrowed references are
never dropped by their functions and as such
won’t be specialised. Thus their reference count
won’t be checked and they won’t be freed prema-
turely. However, in addition to the borrowing

10

function not being able to specialise the drop,
the caller itself is unlikely to be able to do so as
well, as it doesn’t have access to (duped) chil-
dren.

2.4.2 Drop Guided Drop Specialisation

The Perceus paper mentioned drop specialisa-
tion as an optimisation technique, but did not
specify any specific algorithm for finding match-
ing dups and drops to specialise. Koka itself
performs drop specialisation as an optional step
during reference counting. The algorithm gener-
ates a list of variables to be dupped and a list of
variables to be dropped for each branch of a pat-
tern match. Corresponding dups and drops are
subsequently removed or drop specialised. This
works for simple cases like mapping over linked
lists, but fails to specialise drops across multiple
pattern matches and drops without any pattern
matches (like record indexing). Let us consider
the fst function again:

fst : Tuple a b -> a
fst = \t -> t.l

Structs themselves are not reference counted,
but can be duped/dropped which will dup/drop
any fields that are reference counted. The left
item will be dupped right before the tuple will
be dropped. Resulting in the following IR:

fst = \t ->
l = t.l
dup l

drop t
l

That dupes l only for it to be dropped again
during the drop of t. Similar problems oc-
cur when a scrutinee is borrowed after pattern
matching. As that will cause the drop to be in-
serted later in the analysis.

Our novel drop guided drop specialisation
takes a different approach and is performed in
a separate pass. We formalise our algorithm in
section 2.4.1 but will outline the general idea
here:

• Encountered dups are added to a ”duped”
environment.

• Pattern matches and projection add the
parent/child relation to a ”child” environ-
ment.

• Encountered drops check the duped envi-
ronment for the dropped variable, in which
case the drop is removed. Or for children

of the dropped variable, in which case the
drop is specialised using these children.

• Dups consumed by later drops are removed
from the function.

• The duped environment is (partially)
cleared when function calls or other drops
are encountered. As removing dups be-
forehand might cause values to be freed
prematurely.

This approach gives the following IR for our
previous example:

fst = \t ->
l = t.l
r = t.l
drop r
l

where the reference count of l is not modified
and just the other item is dropped.

Drop guided drop specialisation can be per-
formed after reference counting and either be-
fore or after reuse analysis. (in the case of drop
guided reuse, which is performed after reference
counting). But performing it before reuse anal-
ysis has three few key benefits: Firstly, when
drop specialisation is performed before reuse
analysis, no reset/reuse operations have been in-
serted in the IR yet, simplifying analysis. Sec-
ondly, lowlevel functions that borrow their ar-
guments (like projections) can cause patterns
like these to be emitted dup x; drop x;.
These patterns cause drop guided reuse to reuse
the dropped x. But since it was incremented be-
fore, the reuse will always fail. And as the drop
is now replaced by a reuse it is more difficult
for drop specialisation to match/remove the dup
and drop together where possible. Thirdly, drop
specialisation inserts branches on the uniqueness
of variables. These non-unique branches (where
the reuse of the variable is certainly impossible)
allow the reuse analysis to not consider the final
decref of a variable to be a reuse opportunity.
Instead, an older and potentially non-null reuse
token can be passed. For example:

swapTail : LinkedList a, LinkedList a
-> LinkedList a

swapTail = \l, r -> when l is
Nil -> Nil
Cons x xs -> when r is

Nil -> Nil
Cons y ys -> Cons y xs

Listing 16: Double Reuse

The swapTail function adds the head of the
second list to the tail of the first list, if both
are non-empty lists. Without drop specialisa-
tion reuse analysis would find a drop for r in the

11

last branch, inserted by reference counting anal-
ysis, and try to reuse it. But if r does not have
a unique reference count, the reuse fails. Drop
specialisation however, in an attempt to reduce
reference counting, branches on the uniqueness
of r. Creating a path from the drop of l to the
construction of a new Cons where no other reuse
opportunities exist. Resulting in an IR similar
to this:

swapTail = \l, r -> when l is
Nil ->

drop r
Nil

Cons x xs ->
join jp1 r1 =

when r is
Nil ->

free r1

drop xs
Cons y ys ->

join jp2 r2 =

Cons @r2 y xs

if unique r
then

free r1

drop ys

r2 = reset r

jump jp2 r2
else

decref r

jump jp2 r1

if unique l
then

r1 = reset l

jump jp1 r1
else

dup xs

decref r

jump jp1 null

Listing 17: Double Reuse IR

Where we can see that an unique l will be
used for reuse in the case where a non-unique
r won’t be. Additionally, the unique path can
be optimised as well. Instead of calling reset
on the pointer which will return the pointer if
its reference count is unique, we can simply pass
along the pointer directly as reuse token since we
know it’s unique. These effects are something we
will see back in the result section as well. Since
Koka performs drop specialisation during refer-
ence counting, they too perform specialisation
before reuse analysis. But they do not seem to
use known (non-)unique reference counts to im-
prove their reuse analysis.

2.4.3 Reuse Specialisation

Reuse specialisation is an optimisation that aims
to only update the fields that actually change be-
tween the original value and the new value in the
when using reuse. Instead of writing over every
field on construction. This analysis should be
compatible with the work from this paper, but
having multiple potential reuse tokens for a sin-
gle allocation does limit the reuse specialisation
opportunities. The optimisation is not imple-
mented in Roc and as such no adaptations have
been made in this paper.

3 Formalisation
We formalise our results using a normalized lin-
ear resource calculus λ1n. An extended version
of the normalized calculus as described in Ref-
erence Counting with Frame Limited Reuse [2].
Which in turn is a normalized version of the
calculus as described in Perceus: Garbage Free
Reference Counting with Reuse [1], an untyped
lambda calculus with bindings and mutually ex-
clusive pattern matches. The normalisation of
a program means to translate a program with
expressions as arguments to functions and con-
structors, to one where the expressions are re-
placed by variables that are bound in newly gen-
erated bindings [6], see section 2.1.3. For exam-
ple, the expression e1 e2 (application) will be
translated into let x = e2; e1 x. Normalisation
does not only allow us to be more explicit in
regards to the programs evaluation order, but
creates a syntax that better corresponds with
the intermediate representation of Roc programs
during compilation as well. In this section we
will use a combination of lists, sets, and multi-
sets to define our evaluation context and opera-
tions. We will use the compact comma notation
to for set manipulation. (S, x) denotes x being
added to (multi)set S. And (S, T) denotes the
combination of the combination of two (multi)
sets.

12

3.1 Calculus
The syntax of λ1n is shown in figure 1.

e ::= v (value)
| e x (application)
| let x = e; e (bind)
| match x { ˆpi → ei} (match)
| dup x; e (dup)

| drop x; e (drop)

| decref x; e (decref)

| free x; e (free)

| let r = reset x ; e (reset)

| letp y = project N x ; e (projection)

| join id r̄ = λx.e; e (joinpoint)

| jump id x r̄ (jump)

v ::= x (variable)
| λx.e (function)
| C x̄ (constructor)

| C@r x̄ (reuse)

| null (null pointer)

p ::= C b̄ (pattern)
b ::= x (binder)

| _ (wildcard)

Figure 1: Normalized Linear resource calculus
syntax of λ1n

The constructs highlighted in gray are those
that can only be inserted by the compiler and
those highlighted in blue are new additions to
the calculus. These additions are used to per-
form drop specialisation and to accommodate
join points and projections as used by the Roc
compiler, which require a non-trivial adaptation
to RC and reuse analyses. Later figures will have
new additions highlighted in blue as well.

The effect that each statement has on the
heap (their semantics) is described in the next
section.

3.2 Heap Semantics
In figure 2 we show the heap semantics of the
defined calculus. Here we show the effect every
statement has on the heap H. The heap is de-
fined by a mapping from variables to their value

together with a reference count. In addition, we
keep track of all in-scope joinpoints using map-
ping J.

Every rule condition
H|J⊢e⇝H|J⊢e′ can be read as fol-

lows: Given a heap H and a joinpoint environ-
ment J where the condition holds. Then the
expression e evaluates to (derives) e′ together
with an updated heap and joinpoint environ-
ment. For example; the [DROPh] rule is applied
when:

• The current heap contains the variable x
with a reference count higher than one (the
reference is not unique).

• The expression being evaluated is
drop x; e.

And it evaluates to the same heap with a decre-
mented reference count with now expression e
being next to evaluate. The evaluation of a
small example expression can be seen in list-
ing 18. Note that the □ (the ”hole”) is used
to indicate which expression is currently being
evaluated [20].

Assuming bound variables a and b
(not shown on the heap),
and a remaining expression e

Initial state
{} | {} ⊢
let x = C a b; match x {C d e → drop x; e}

Evaluating constructor
let x = □; match x {C d e → drop x; e}
{} | {} ⊢ C a b

Evaluated constructor ([CONh])
let x = □; match x {C d e → drop x; e}
{z →1 C a b} | {} ⊢ z

Evaluating binding
{z →1 C a b} | {} ⊢
let x = z; match x {C d e → drop x; e}

Evaluated binding ([LETh])
{z →1 C a b} | {} ⊢
match z {C d e → drop z; e}

Evaluated match ([MATCHh])
{z →1 C a b} | {} ⊢ drop z; e

Evaluated drop ([DCONh])
{} | {} ⊢ drop a; drop b; e

Listing 18: Evaluation

Later formalizations will use a similar syn-
tax, albeit with different environments.

13

H : x →N+

v maps variables to their values with a reference count
J : id → (r̄, λx.e) keeps track of the available joinpoints and their reuse tokens
E ::= □ | E x | let x = E; e |
Eval: H|J⊢e⇝H′|J′⊢e′

H|J⊢E[e]⇝H′|J′⊢E[e′]

fresh f

H | J ⊢ λΓx.e⇝ H, f →1 λΓx.e | J ⊢ f
[LAMh]

fresh z

H | J ⊢ C x̄⇝ H, z →1 C x̄ | J ⊢ z
[CONh]

(f →n λΓx.e) ∈ H
H | J ⊢ f y ⇝ H | J ⊢ dup Γ; drop f ; e[x := y]

[APPh]

pi = C x̄ (x →n C z̄) ∈ H
H | J ⊢ match x {pi → ei} ⇝ H | J ⊢ ei[x̄ := z̄]

[MATCHh]

H | J ⊢ let x = z; e⇝ H | J ⊢ e[x := z]
[LETh]

H, x →n v | J ⊢ dup x; e⇝ H, x →n+1 v | J ⊢ e
[DUPh]

H, x →n+1 v | J ⊢ drop x; e⇝ H, x →n v | J ⊢ e
[DROPh]

H, x →1 λΓy.e2 | J ⊢ drop x; e⇝ H | J ⊢ drop Γ; e
[DLAMh]

H, x →1 C ȳ | J ⊢ drop x; e⇝ H | J ⊢ drop ȳ; e
[DCONh]

H, x →n+1 v | J ⊢ decref x; e⇝ H, x →n v | J ⊢ e
[DECREFh]

H, x →1 v | J ⊢ free x; e⇝ H | J ⊢ e
[FREEh]

x →n C z̄ ∈ H i < |z̄|
H | J ⊢ letp y = project i x ; e⇝ e[y := z̄i]

[PROJECTh]

H | J ⊢ join id r̄ = λx.e1; e2 ⇝ H | J, id → (r̄, λx.e1) ⊢ e2
[JOINh]

(id → (r̄, λx.e)) ∈ J
H | J ⊢ jump id y r̄′ ⇝ H | J ⊢ e[x := y, r̄ := r̄′] [JUMPh]

fresh z

H, x →1 C x̄ | J ⊢ let r = reset x ; e⇝ H, z →1 C x̄ | J ⊢ drop x̄; e[r := z]
[RESET-Uh]

fresh z n ≥ 1

H, x →n+1 v | J ⊢ let r = reset x ; e⇝ H, x →n v, z →1 NULL | J ⊢ e[r := z]
[RESETh]

H, r →1 C ȳ | J ⊢ C@r x̄⇝ H, r →1 C x̄ | J ⊢ r [REUSE-Uh]

fresh z

H, r →1 NULL | J ⊢ C@r x̄⇝ H, z →1 C x̄ | J ⊢ z
[REUSEh]

Figure 2: Heap semantics of λ1n

14

The [PROJECTh] rule behaves like the
[MATCHh] rule, but instead of an entire vec-
tor, it replaces a single variable in the follow-
ing expression. Given that the matched variable
points to a constructor on the heap with enough
fields to index.

For a let r = reset x ; e the [RESET-Uh] rule
will be applied if the reference to x is unique,
and [RESETh] otherwise. In the unique case,
the value assigned to r will be a pointer to the
original memory from x. This pointer allows
a later [REUSE-Uh] to reuse that memory in-
stead of allocating new memory. As is the case
for [RESETh] and [REUSEh], where a NULL
value assigned to r communicates that x was
not unique and its memory could not be reused.
Note that the children of x are dropped during
[RESET-Uh], and not during reuse. To prevent
them from remaining in memory for any longer
than necessary.

Rules [DUPh] to [FREEh] correspond to the
functions from the overview section (2). Any
manipulated variables passed to these functions
should be alive on the heap. [DUPh] sim-
ply increments the reference count for the vari-
able. While [DROPh] decrements it, if it is not
unique. Otherwise either [DLAMh] or [DCONh]
are applied to free a function or constructor and
drop their closure/children. The [DECREFh]
rule is similar to [DROPh], but it can only be
used when the reference count of the variable is
known to be unique. Meaning it could save on
some checks during actual program execution.
And finally, the [FREEh] rule is used to free
the memory of a unique variable without drop-
ping the closure/children beforehand. Free can
be used in drop specialisation to replace duping
children before dropping the parent.

And finally we have the [JOINh] and
[JUMPh] rules. That define adding joinpoints
to the environment and jumping to them with
an argument and reuse tokens respectively.

3.3 Reference Counting
In figure 3 we define the declarative rules that
allows us to translate an expression from λ1n

into one with reference counting operations. The
rules use a borrowed environment ∆, an owned
environment Γ and environment Θ to keep track
of the current joinpoint closures. All new vari-
ables from either bindings or function param-
eters start off in the owned environment. Af-
ter which they can be consumed exactly once,
by either passing them to a function or using
them in a constructor. If they are not consumed
they have to be explicitly dropped. And if they
need to be consumed multiple times, they need
to be explicitly duped multiple times. A variable
is placed in the borrowed environment whilst
evaluating the expressions before their last con-

sumption. Borrowing allows some rules like pat-
tern matching to read their value without having
to insert dups and drops. As the value is guar-
anteed to stay alive (and not get deallocated)
due to the later usage. Note that the normali-
sation of applications and constructors result in
a reversed evaluation order. Instead of evalu-
ating e1 e2 by treating the free variables of e2
as borrowed in e1. The normalized version of
let x = e2; e1 x uses the free variables from e1
as borrowed in e2 instead.

The rule [VARcd] allows any variable to
be derived when only that variable is cur-
rently owned, which requires the [DUPcd] and
[DROPcd] rules to be applied such that vari-
ables are used as owned exactly as many times
as they are added to the owned environment.
The [APPcd] rule allows x to be borrowed dur-
ing the derivation of e. Borrowing allows x to
be used for matches or projections without hav-
ing to increment and decrement the reference
count of x. And a similar pattern can be seen in
[BINDcd] where the owned environment Γ2, used
to derive e′2, is borrowed during the derivation
of e′1. [MATCHcd] derives new expressions for
each of its branches, where the bound variables
(in the pattern) are duped and added to the
owned environment. And again, a similar pat-
tern can be seen for the rule [PROJECTcd]. The
[CONcd] rule requires all variables to be owned
since they will stay referenced by the new struc-
ture. Lastly, the rule for [JOINcd] adds a new
joinpoint with its closure to the environment
so that a final [JUMPcd] can make sure that
exactly these variables are owned when jumping
to the joinpoint.

For these rules to be correct, they must re-
sult in an evaluation such that all values are
alive when they will still be used and that values
that are no longer used eventually will be deallo-
cated. In other words: the reference counts have
to match the actual number of references. We
claim (without formal proof) that these invari-
ants are upheld by our additions to the calculus.
The [PROJECTcd] rule dups the projected vari-
able and adds it to the owned environment and
the [JOINcd] rule evaluates e1 under the assump-
tion that the variables from Θ′ with x are owned.
An invariant upheld by [JUMPcd]. Applications
of [DUPcd] and [DROPcd] to meet the rule pre-
condition will subsequently ensure correctness.

In addition to the declarative rules from fig-
ure 3 that aim to insert RC operations correctly,
we provide syntax-directed derivation rules for
the insertion of RC operations in λ1n. These
rules attempts to insert these operations opti-
mally. That is, inserting decrements right after
the latest usage of a variable (to lower the mem-
ory usage) and inserting the minimum amount
of reference counting operations while remaining

15

∆ : {x, ...} contains all variables that are currently borrowed
Γ : {x, ...} contains all variables that are currently owned
Θ : id → Γ maps join point ids to their closure

∆ | x | Θ ⊢ x⇝ x
[VARcd]

x ∈ ∆,Γ ∆ | Γ, x | Θ ⊢ e⇝ e′

∆ | Γ | Θ ⊢ e⇝ dup x; e′
[DUPcd]

∆ | Γ | Θ ⊢ e⇝ e′

∆ | Γ, x | Θ ⊢ e⇝ drop x; e′
[DROPcd]

∆, x | Γ | ∅ ⊢ e⇝ e′

∆ | Γ, x | ∅ ⊢ e x⇝ e′ x
[APPcd]

∅ | Γ, x | ∅ ⊢ e⇝ e′ Γ = fv(λx.e)
∆ | Γ | ∅ ⊢ λx.e⇝ λΓx.e′

[LAMcd]

x /∈ ∆,Γ1,Γ2 ∆,Γ2 | Γ1 | ∅ ⊢ e1 ⇝ e′1 ∆ | Γ2, x | Θ ⊢ e2 ⇝ e′2
∆ | Γ1,Γ2 | Θ ⊢ let x = e1; e2 ⇝ let x = e′1; e′2

[BINDcd]

x ∈ ∆,Γ ∆ | Γ, z̄i | Θ ⊢ ei ⇝ e′i z̄i = bv(pi)
∆ | Γ | Θ ⊢ match x {pi → ei} ⇝ match x {pi → dup z̄i; e′i}

[MATCHcd]

∆ | x̄ | Θ ⊢ C x̄⇝ C x̄
[CONcd]

x ∈ ∆,Γ ∆ | Γ, y | Θ ⊢ ei ⇝ e′i
∆ | Γ | Θ ⊢ letp y = project i x ; e⇝ letp y = project i x ; dup y; e

[PROJECTcd]

Γ′ = fv(λx.e1) Θ′ = Θ, id → Γ′ ∅ | Γ′, x | Θ′ e1 ⇝ e′1 ∆ | Γ | Θ′ e2 ⇝ e′2
∆ | Γ | Θ ⊢ join id [] = λx.e1; e2 ⇝ join id [] = λx.e′1; e′2

[JOINcd]

∅ | Γ, x | Θ, id → Γ ⊢ jump id x [] ⇝ jump id x []
[JUMPcd]

Figure 3: Declarative linear resource rules of λ1n for reference counting.

16

∆ | x | Θ ⊢ x⇝ x
[VARcd]

x ∈ ∆,Γ ∆, x | Γ | ∅ ⊢ e⇝ e′ x̄′ = [x]− Γ

∆ | Γ | ∅ ⊢ e x⇝ dup x̄′; e′ x
[APPcs]

∅ | ys, x | ∅ ⊢ e⇝ e′ ys = fv(λx.e) ∆1 = ys− Γ x̄′ = [x]− fv(e)
∆,∆1 | Γ | ∅ ⊢ λx.e⇝ dup ∆1; λysx.(drop x̄′; e′)

[LAMcs]

x /∈ ∆,Γ Γ2 = Γ ∩ fv(e2)
∆,Γ2 | Γ− Γ2 | ∅ ⊢ e1 ⇝ e′1 ∆ | Γ2, x | Θ ⊢ e2 ⇝ e′2 x̄′ = [x]− fv(e2)

∆ | Γ | Θ ⊢ let x = e1; e2 ⇝ let x = e′1; drop x̄′; e′2
[BINDcs]

∆ | Γi | Θ ⊢ ei ⇝ e′i Γi = (Γ, z̄i) ∩ fv(ei) Γ′
i = (Γ, z̄i)− Γi z̄i = bv(pi)

∆ | Γ, x | Θ ⊢ match x {pi → ei} ⇝ match x {pi → dup z̄i; drop Γ′
i; e′i}

[MATCHcs]

ȳ = x̄− Γ {ȳ} ≡ ∆

∆ | Γ | ∅ ⊢ C x̄⇝ dup ȳ; C x̄
[CONcs]

∆ | Γ′ | Θ ⊢ ei ⇝ e′i Γ′ = (Γ, y) ∩ fv(e) x̄′ = [x, y]− fv(e)
∆ | Γ | Θ ⊢ letp y = project i x ; e⇝ letp y = project i x ; dup y; drop x̄′; e′

[PROJECTcs]

Γ′ = fv(λx.e1) x̄′ = [x]− fv(e1)
Θ′ = Θ, id → Γ′ ∅ | Γ′, x | Θ′ e1 ⇝ e′1 ∆ | Γ | Θ′ e2 ⇝ e′2

∆ | Γ | Θ ⊢ join id [] = λx.e1; e2 ⇝ join id [] = λx.(drop x̄′; e′1); e′2
[JOINcs]

Γ1 ⊇ Γ2 Γ3 = Γ1 − Γ2 {x} ≡ ∆,Γ3 x̄′ = [x]− Γ3

∆ | Γ1 | Θ, id → Γ2 ⊢ jump id x [] ⇝ dup x̄′; jump id x []
[JUMPcs]

Figure 4: Syntax-directed linear resource rules of λ1n for reference counting.

correct. For example: for any (in scope) variable
x the declarative rules [DUPcd] and [DROPcd]
allow any number of matching dup and drop
statements to be inserted. And while translat-
ing e′ to dup x; drop X; e′ is correct, it does
not result in an efficient program.
Additionally, the declarative rules are non-
deterministic. Meaning that for a given expres-
sions there might be multiple rules that are pos-
sible to apply to obtain the next expression.
Non-determinism is no problem when illustrat-
ing the concept or proving correctness. But does
not provide a straight forward conversion into
an actual implementation. For example: during
the evaluation of any expression it is possible to
apply the [DUPcd] and [DROPcd] rules, in ad-
dition to the rule specific to the expression like
[BINDcd] or [MATCHcd]. And for rule [BINDcd],
the owned environment Γ is split into the two
environments Γ1 and Γ2 for the evaluation of e1
and e2 respectively. But exactly how to split this
environment such that both expressions can be
translated is not specified. The syntax-directed
rules, which are largely inspired by the work for
Perceus [1], are described in figure 4.

The [BINDcs] rule now explicitly states that
all owned variables that are free (defined before
but used) in expression e2, including the newly
bound variable x. Should be considered owned
during the evaluation to e′2, whilst being bor-
rowed during the evaluation of expression e1.

Additionally, x itself should be dropped imme-
diately when not used in e2. Just like the pa-
rameters to lambdas in [LAMcs] and [JOINcs].

The [MATCHcs] rule dups the variables from
the bound pattern for each branch and drops all
variables that are not used in the branch. Every
variable should not be dropped in at least one
branch. Otherwise it should have been dropped
before. The [PROJECTcs] rule behaves simi-
larly, potentially dropping the assigned variable
and the projected variable if they are not used
in the continuation. Both these rules generate
a dup followed by a drop for any unused bound
variables. This is something drop-specialisation
solves as well.

The [JUMPcs] rule takes the closure of the
join point that is being jumped to. All of these
variables being currently owned. With x be-
ing the only other variable in the current en-
vironment as either borrowed or owned. If x is
borrowed (thus not in Γ3) it will be duplicated
to make it owned. This can occur when x is
both a parameter and part of the closure to the
same joinpoint, effectively consuming it twice.
The reuse token lists for both joins and jumps
are empty, because this pass is performed before
reuse analysis, which adds these reuse tokens.

In addition to being correct, these rules
should result in a garbage free evaluation. The
[PROJECTcs] rule retains garbage freeness by
duping the new variable (and considering it

17

owned) and dropping either this variable or
the projected one if it’s their last usage. The
[JOINcs] can do so by dropping its parameter if
they are not used.

3.4 Reuse Analysis
In figure 5 we can see the declarative rules for
drop-guided reuse [2]. The rules can be read
like those for reference counting. But instead of
keeping track of the owned and borrowed vari-
ables, we use:

• S to keep track of the memory layout of
each variable.

• R to map each such layout to the reuse
tokens available for that layout.

• J to map join points to a list of layouts
that will be used to pass reuse tokens to
joinpoints.

These rules will see the first usage of reset and
reuse. In addition adding reuse token variables
to the join and jumps.

The [VARrd] rule again requires the current
R map to be empty. Because the reuse analy-
sis is performed after reference counting (as op-
pose to before in Perceus), which means that
unused reuse tokens are no longer cleaned up
themselves and we are now responsible for mak-
ing sure that any obtained reuse token is used (or
freed). The variable layouts get inserted by the
[MATCHrd] rule for its branches after discrim-
inating the variable and by the [BIND-CONrd]
rule, which inserts the layout of the bound con-
structor for the evaluation of the continuation.
Knowing the layout of a variable after construc-
tion is especially useful in scenarios where a
constructor is never matched on before drop-
ping it (e.g. by projecting it after creation).
The [RESETrd] and [RESET-Urd] rules are re-
sponsible for creating reuse tokens and insert-
ing them in the environment. The [RESETrd]
can be applied when evaluating a drop state-
ment while knowing the layout of the dropped
variable. While the [RESET-Urd] can be used to
remove a free in order to reuse the memory later.
These reuse tokens can then be consumed by ei-
ther [REUSErd] which passes the reuse token to
the constructor to allow for reuse or [FREE-Rrd]
which frees the memory for an unused reuse to-
ken if the token is not null. Because the reuse
analysis pass is performed after drop specialisa-
tion (section 2.4.2), which inserts both free and
decref operations. We have the ability to simply
add variables to the reuse environment instead
of freeing them, which is better than inserting
a reset, as a reset has to check whether a vari-
able is unique at runtime. While a freed variable
is known to be unique at compile time. Simi-
larly, decrefs are only inserted when a variable

is known not to be unique. Allowing us to avoid
the insertion of a reset. Finally, [JOINrd] uses J
to communicate the layouts of the reuse tokens
it expects. Allowing later [JUMPrd]s to pass
correct tokens.

And again we define syntax-directed resource
rules as well. See figure 6.

These syntax-directed rules allow us to ex-
plicitly define when it is beneficial to insert re-
set/reuses and when not. While it would be cor-
rect to simply always apply the [DROPrs] rule
instead of the [RESETrs] rule. That would not
be very useful.

The [BINDrs] rule is updated to first evaluate
the bound expression and pass any unused reuse
tokens to the next expression. The [MATCHrs]
rule combines all the reuse tokens that are ac-
tually used in each branch, to only drop those
that used in other branches but not in the same
one. The rules for frees and drops are updated to
only remove the free / insert a reset respectively
when the reuse token is actually used in the next
expression, which prevents additional cleanup if
the token is never used in the first place. And
we can see that the jump in [RJUMP-Nrs] is
annotated with the layouts available for reuse
at that point. These layouts will be used by
the ml function to determine the optimal num-
ber of reuse tokens for the joinpoint. (e.g., the
maximum number of reuse tokens for each lay-
out). In the second pass over the jumps, with
the reuse token layouts for the joinpoint in the
context, we can determine what reuse token to
pass for which layout. We do this by iterat-
ing the layouts in reverse and removing tokens
from the context Rn once they have been con-
sumed. Context R′ is used as a backup environ-
ment, where a reuse token variable is created for
each layout so that they can be assigned NULL
and passed as a reuse token if no other token is
available. The layouts are iterated in reverse to
make sure the most recent reuse token is con-
sumed first in the jointpoint, as would be the
case without joinpoints. In addition, reversing
the order makes sure that NULL reuse tokens
won’t be used before the tokens that might not
be null. Something we will mention in section
5.2 for future work as well.

To proof the correctness of the declarative
resource rules for drop-guided reuse from fig-
ure 5. We again would need to proof that val-
ues are not deallocated prematurely, and that
they would eventually be deallocated when no
longer in use. Including the reuse tokens. For
the syntax-directed rules from figure 6 we would
need to proof that all reuse opportunities are
utilised, if unique.

18

S : x → l maps variables to their memory layout
R : [l → r, ...] ordered list that maps layouts to their reuse tokens
J : id → l̄ maps join point ids to a list of layouts

S | ∅ | J ⊢ x⇝ x
[VARrd]

S | ∅ | J ⊢ C v1...vn ⇝ C v1...vn
[CONrd]

S | R | ∅ ⊢ e⇝ e′

S | R | ∅ ⊢ e x⇝ e′ x
[APPrd]

∅ | ∅ | ∅ ⊢ e⇝ e′

S | ∅ | ∅ ⊢ λ x.e⇝ λ x.e′
[LAMrd]

S | R | J ⊢ e⇝ e′

S | R | J ⊢ dup x; e⇝ dup x; e′
[DUPrd]

S | R | J ⊢ e⇝ e′

S | R, l → r | J ⊢ e⇝ free r; e′
[FREE-Rrd]

x → l ∈ S S | R, l → r | J ⊢ e⇝ e′ fresh r
S | R | J ⊢ drop x; e⇝ let r = reset x ; e′

[RESETrd]

S | R1 | ∅ ⊢ e1 ⇝ e′1 S | R2 | J ⊢ e2 ⇝ e′2 e1 ̸= C v1...vn
S | R1,R2 | J ⊢ let x = e1; e2 ⇝ let x = e′1; e′2

[BINDrd]

S, x → l | R | J ⊢ e⇝ e′ l = layout(C)

S | R | J ⊢ let x = C v1...vn; e⇝ let x = C v1...vn; e′
[BIND-CONrd]

S | R | J ⊢ e⇝ e′

S | R | J ⊢ drop x; e⇝ drop x; e′
[DROPrd]

S | R | J ⊢ e⇝ e′

S | R | J ⊢ decref x; e⇝ decref x; e′
[DECREFrd]

S | R | J ⊢ e⇝ e′

S | R | J ⊢ free x; e⇝ free x; e′
[FREErd]

x → l ∈ S S | R, l → x | J ⊢ e⇝ e′ fresh r
S | R | J ⊢ free x; e⇝ e′

[RESET-Urd]

S, x → li | R | J ⊢ ei ⇝ e′i li = layout(pi)

S | R | J ⊢ match x {pi → ei} ⇝ match x {pi → e′i}
[MATCHrd]

S, y → l | R | J ⊢ e⇝ e′ l = layout(xi)

S | R | J ⊢ letp y = project i x ; e⇝ letp y = project i x ; e′
[PROJECTrd]

l = layout(C)

S | l → r | J ⊢ C x̄⇝ C@r x̄
[REUSErd]

n ∈ N r̄ = [fresh r | n′ ∈ [0..n]] l̄ = [fresh l | n′ ∈ [0..n]] R2 = {̄ln′ → r̄n′ | n′ ∈ [0..n]}
J2 = J1, id → l̄ ∅ | R2 | J2 ⊢ e1 → e′1 S | R1 | J2 ⊢ e2 → e′2
S | R1 | J1 ⊢ join id [] = λx.e1; e2 → join id r̄ = λx.e′1; e2′

[JOINrd]

id → l̄ ∈ J l̄ ≡ {l | l → r ∈ R} r̄ = [r | l ∈ l̄, l → r ∈ R]

S | R | J ⊢ jump id x [] → jump id x r̄ [JUMPrd]

fresh l fresh r S | R, l → r | J ⊢ e → e′

S | R | J ⊢ e → let r = NULL; e′
[NULLrd]

Figure 5: Declarative linear resource rules of λ1n for drop-guided reuse.

19

S | R | ∅ ⊢ e⇝ e′

S | R | ∅ ⊢ e x⇝ e′ x
[APPrs]

∅ | [] | ∅ ⊢ e⇝ e′

S | [] | ∅ ⊢ λx.e⇝ λx.e′
[LAMrs]

S | R1 | ∅ ⊢ e1 ⇝ e′1 S | R2 | J ⊢ e2 ⇝ e′2
R2 = [l → r | l → r ∈ R1, r /∈ fv(e′1)] e1 ̸= C v1...vn

S | R1 | J ⊢ let x = e1; e2 ⇝ let x = e′1; e′2
[BINDrs]

S, x → l | R | J ⊢ e⇝ e′ l = layout(C)

S | R | J ⊢ let x = C v1...vn; e⇝ let x = C v1...vn; e′
[BIND-CONrs]

li = layout(pi) S, x → li | R | J ⊢ ei ⇝ e′i
r̄ = {r | l → r ∈ R, r ∈ (fv(e′1) ∪ ... ∪ fv(e′n)} r̄i = r̄ − fv(e′i)

S | R | J ⊢ match x {pi → ei} ⇝ match x {pi → free r̄i; e′i}
[MATCHrs]

S, y → l | R | J ⊢ e⇝ e′ l = layout(xi)

S | R | J ⊢ letp y = project i x ; e⇝ letp y = project i x ; e′
[PROJECTrs]

l = layout(C)

S | R, l → r | ∅ ⊢ C x̄⇝ C@r x̄
[REUSErs]

l = layout(C) l → r /∈ R
S | R | ∅ ⊢ C v1...vn ⇝ C v1...vn

[CONrs]

S | R | J ⊢ e⇝ e′

S | R | J ⊢ dup x; e⇝ dup x; e′
[DUPrs]

x → l ∈ S fresh r S | R, l → r | J ⊢ e⇝ e′ r ∈ fv(e′)
S | R | J ⊢ drop x; e⇝ let r = reset x ; e′

[RESETrs]

x → l ∈ S fresh r S | R, l → r | J ⊢ e⇝ e′ r /∈ fv(e′)
S | R | J ⊢ drop x; e⇝ drop x; e′

[DROPrs]

S | R | J ⊢ e⇝ e′

S | R | J ⊢ decref x; e⇝ decref x; e′
[DECREFrs]

x → l ∈ S S | R, l → x | J ⊢ e⇝ e′ x ∈ fv(e′)
S | R | J ⊢ free x; e⇝ e′

[RESET-Urs]

x → l ∈ S S | R, l → x | J ⊢ e⇝ e′ x /∈ fv(e′)
S | R | J ⊢ free x; e⇝ free x; e′

[FREErs]

S | R1 | J ⊢ e2 ⇝ e′2 R2 = [l → r | l ∈ ml(id, e′2), fresh r]
∅ | R2 | ∅ ⊢ e1 ⇝ e′1 R3 = [l → r | l → r ∈ R2, r ∈ bv(e′1)] l̄ = [l | l → r ∈ R3]
∅ | R3 | id → l̄ ⊢ e1 ⇝ e′′1 S | R1 | J, id → l̄ ⊢ e2 ⇝ e′′2 r̄ = [r | l → r ∈ R3]

S | R1 | J ⊢ join id [] = λx.e1; e2 ⇝ join id r̄ = λx.e′′1 ; e′′2
[JOINrs]

id → l̄ /∈ J l̄ = [l | l → r ∈ R]

S | R | J ⊢ jump id x [] ⇝ jumpl̄ id x []
[JUMP-Nrs]

id → l̄ ∈ J R′ = [l → fresh r | l ∈ l̄]
R|̄l| = R rs = [r,Rn−1 = Rn − [l → r] | n ∈ [| l̄ | ..0], l = l̄n, l → r ∈ Rn ∪ R′]

r̄ = [r | _ → r ∈ R′, r ∈ rs]

S | R | J ⊢ jump id x [] ⇝ let r̄0 = NULL; let r̄n = NULL; jump id x rs
[JUMPrs]

Figure 6: Syntax-directed linear resource rules of λ1n for drop-guided reuse.

P : x → (y, i) maps variables to projected children and at which index
D : {x, ...} is a multi-set of variables, indicating the number of times each variable has been duped
so far.

20

3.5 Drop Guided Drop Specialisa-
tion

In figure 7 we show the formalised rules for
the syntax directed drop specialisation. These
rules, in addition to the evaluated expression,
return the modified environment D. Not unlike
the rules from the heap semantics from figure
1. This environment contains the variables that
have been duped (multiple times) before. We
need to return this updated environment D in
order to determine whether an increment was
used in a later drop specialisation or not. Be-
cause if it was not used, the increment should
remain. And because the variable can still be
used in other language constructs like function
calls or constructors without affecting this en-
vironment, we can no longer rely on the free
variables from an expression to determine if a
variable was used or not. Like we did in figure 3
to 6. Application of these rules should not cause
reference counts to be non-zero where originally
zero and zero where originally not zero to be
correct. To prevent premature or overdue deal-
location.

The [MATCHds], [PROJECTds], and
[BIND-CONds] rules add parent child relations
to the environment P. The [PROJECTds] rule
can simply add the new child relation given
the index, and return the updated expression
together with its updated environment. The
[MATCHds] rule, however, is a bit more in-
volved. For each branch it first adds the pro-
jections to the environment using the bound
variables from the pattern (not the wildcards)
and evaluates the branch expression using this
updated environment. Then, for each unique
variable in the original environment D, the min-
imum multiplicity (the frequency of an item in
a multi-set) of that variable in every branch is
used to create a new multi-set D′. The difference
in the multiplicity for each variable between this
new multi-set and the one returned by the eval-
uation of each branch is used to add additional
dups in the respective branch. To compensate
for the usage of (dups of) the same variable
in drop specialisation in other branches. The
[BIND-CONds] rule adds the parent child rela-
tions for the new constructor in a similar way
as the [MATCHds] rule did. This rule allows a
decrement of the newly constructed value to be
drop specialised, even if its fields are not pro-
jected or pattern matched yet.
The [DUPds] and [DUP-FIRSTds] rules are
used to insert variables into the D environ-
ment. Note that the first occurrence of a DUP
of a variable x will always be evaluated us-
ing rule [DUP-FIRSTds] while later occurrences
are evaluated using [DUPds]. This allows us
the [DUPds] rule to propagate unused dups up-
wards towards the [DUP-FIRSTds], where all

dups can be combined into one and removed
from the environment. Combining dups can
save on additional reference counting operations
when the IR allows a dup to increment the ref-
erence count by more than one.
The [DROP-REMOVEds],
[DROP-SPECIALISEds], and [DROPds] rules
can then be used to consume these dups. The
[DROP-REMOVEds] is used to remove match-
ing dups and subsequent drops from the ex-
pression entirely. A pattern frequently ob-
served when projecting out a field just to read
its value, resulting in a dup for the projec-
tion and a drop after reading its value. The
[DROP-SPECIALISEds] performs the actual
drop specialisation. Drop specialisation is used
when at least one of the fields from the variable
is already in scope as a variable. If so, all the
duped children of x are placed in D′. So that
they can be removed during the evaluation of
the expression to prevent an increment to be
moved after the decrement of its parent (poten-
tially freeing both while the child is still in use).
And given to the specialise which can consume
some of them and add back the remainder to
the return environment. The specialise func-
tion uses the reference count uniqueness of x
to specialise the drop it by branching: if x is
unique, all fields except those that are in the
duped child environment are dropped. Includ-
ing the children from P′ which had not been
projected out, but will be in this branch. After
which x is freed. If x is not unique, only those
that are in the duped environment are duped
after which x is decreffed (lowering the reference
count without having to check for uniqueness to
drop children, because x is not unique in this
branch). See example 19:

stringHeadOrEmpty :
LinkedList Str -> Str

stringHeadOrEmpty =
\list -> when list is

Cons x _ ->
dup x

drop list
x

Nil ->
drop list
""

Listing 19: Specialisation

where the 0 index for list to x is in-
serted in environment P and the following dup
of x is inserted into D. After which the
[DROP-SPECIALISEds] rule is applied. In the
unique case the index 1 is projected out and
dropped, because it was discarded using a wild-
card before. After which list is freed. In the

21

P | D ⊢ e⇝ D′ ⊢ e′

P | D ⊢ e x⇝ D′ ⊢ e′ x
[APPds]

P | ∅ ⊢ e⇝ D′ ⊢ e′

P | D ⊢ λx.e⇝ D ⊢ λx.e′
[LAMds]

P | D ⊢ e1 ⇝ D′ ⊢ e′1 P | D′ ⊢ e2 ⇝ D′′ ⊢ e′2 e1 ̸= C v1...vn
P | D ⊢ let x = e1; e2 ⇝ D′′ ⊢ let x = e′1; e′2

[BINDds]

P′ | D ⊢ e⇝ D′ ⊢ e′ P′ = P ∪ {x → (vi, i) | vi ∈ v1...vn}
P | D ⊢ let x = C v1...vn; e⇝ D′ ⊢ let x = C v1...vn; e′

[BIND-CONds]

Pi | D ⊢ ei ⇝ D′
i ⊢ e′i Pi = P ∪ {x → (xi, n) | n ∈ 0..|b̄i| − 1, xi = b̄in} C b̄i = pi

D′ =
∪
{xm | x ∈ supp D, m = min (D′

1(x), ...,D′
n(x))}

P | D ⊢ match x {pi → ei} ⇝ D′ ⊢ match x {pi → dup D′
i − D′; e′i}

[MATCHds]

P, x → (y, i) | D ⊢ e⇝ D′ ⊢ e′

P | D ⊢ letp y = project i x ; e⇝ D′ ⊢ letp y = project i x ; e′
[PROJECTds]

P | D, x ⊢ e⇝ D ⊢ e′ x /∈ D
n = D′(x) xs = xn

P | D′ ⊢ dup x; e⇝ (D′′ − xs) ⊢ dup xs; e′
[DUP-FIRSTds]

P | D, x ⊢ e⇝ D′ ⊢ e′ x ∈ D
P | D ⊢ dup x; e⇝ D′ ⊢ e′

[DUPds]

P | D ⊢ e⇝ D′ ⊢ e′

P | D, x ⊢ drop x; e⇝ D′ ⊢ e′
[DROP-REMOVEds]

x → _ ∈ P x /∈ D Cv1...vn = layout(x)
P′ = {x → (fresh y, i) | i ∈ 1...n, x → (_, i) /∈ P}

D′ = D ∩ {y | x → (y, i) ∈ P} P′′ | D − D′ ⊢ e⇝ D′′ ⊢ e′

(e′′,D′′′) = specialise(P,P′,D′, e′)

P | D ⊢ drop x; e⇝ D′′ + D′′′ ⊢ e′′
[DROP-SPECIALISEds]

P | D ⊢ e⇝ D′ ⊢ e′ x /∈ D x → _ /∈ P
P | D ⊢ drop x; e⇝ D′ ⊢ drop x; e′

[DROPds]

P | ∅ ⊢ e1 ⇝ D′ ⊢ e′1 P | D ⊢ e2 ⇝ D′′ ⊢ e′2
P | D ⊢ join id [] = λx.e1; e2 ⇝ D′′ ⊢ join id [] = λx.e′1; e′2

[JOINds]

P | D ⊢ jump id x [] ⇝ D ⊢ jump id x []
[JUMPds]

Figure 7: Syntax-directed linear resource rules of λ1n for drop specialization.

22

non-unique case the x has to be duped after
which list can be decreffed. Resulting in an
IR similar to this for the Cons branch:

if unique list
then

xs = project 1 list
decref xs

free list
x

else
dup x

decref list
x

In the previous example there was only a sin-
gle statement following the specialisation, the
return of x, which is simply added to both
branches. Larger continuations would instead
be compiled using e.g. join points to prevent
having to copy the expression into both arms.

Lastly, the [DROPds] rule is used to keep the
drop when it cannot be removed or specialised.
Note that the join point functions are evaluated
without considering the jumps to it for brevity.
The analysis itself is relatively straightforward:

• Both the join point body and continuation
get evaluated as normal.

• The jumps store which dups they have
available

• Matches take the intersection of these dups
to get those available in all branches

• If the continuation has jumps to the join
point (with dups) and the body has no
jumps to itself, we can evaluate both the
body and continuation again, assuming
the join body to consume the dups from
the continuation.

This final optimisation can only be per-
formed for non-recursive join points, the number
of dups returned from the body would otherwise
not be monotonically non-increasing. Making it
difficult to analyse.

For these rules, we assume the layout for each
variable is known during evaluation, we have
shown how to obtain them during reuse anal-
ysis.

4 Results
We used five benchmark programs to compare
the previous Counting Immutable Beans RC al-
gorithm with the newer Perceus based algorithm
and to measure the effects of drop specialisation.
We ported the original algorithm over after ini-
tially replacing it with Perceus, such that the
effects of other changes to the compiler made in

the meantime were limited as much as possible.
The five benchmark programs originate from the
Perceus paper. Most of which stem from the
Lean repository [10] and the Koka repository
[9]. Using these benchmarks allows us to com-
pare the performance of Roc against Koka and
Haskell as well. The benchmarks stress memory
allocation and are not computationally heavy
[1].

• Deriv: Calculates the derivative of expres-
sions up to 10 million nodes and counts the
resulting number of nodes.

• NQueens: Solves the nqueens problem for
a 13 by 13 board and returns a list of all
solutions.

• CFold: Builds an binary expression tree of
20 layers and folds all constant values.

• RBTree: Generates a red-black tree with
a 4,200,000 boolean values and counts the
true values afterwards.

• RBTreeCK: Similar to RBTree but every
10th tree is added to a list. Resulting
in non-unique subtrees and the slow path
with new allocations to be taken.

In addition to comparing the runtime per-
formance with these benchmarks, we compare
the frequency of reference counting operations
statically and dynamically in Roc as well. This
information should provide us with a better un-
derstanding of the observed changes in perfor-
mance. The source for the (Roc) benchmarks
can be found in our fork from the Roc reposi-
tory [8].

We want to note that the original implemen-
tation did not allow for the reuse across differ-
ent data structures with the same layout, but
the new implementation does. The benchmarks
however do not have these opportunities, and as
such should not bias the results.

The computer that ran these benchmarks
was a MSI GS66 Stealth 11 EU [15] with the
following specifications:

• 11th Gen Intel(R) Core(TM) i7-11800H @
2.30GHz

• 16 GB Memory @ 3200MHz

• Micron 3400 1TB (MTFDKBA1T0TFH)
M.2 2280 PCIe Gen4 SSD

The tests were performed using Ubuntu 22.04.2
LTS over WSL with 12 GB of memory and 4
cores appointed. With the main system run-
ning Windows 11 Home build 22621.1702. These
specifications should have little effect on the in-
serted operations, except any change in IR due
to the current platform, but do affect the per-
formance of the benchmarks.

23

4.1 Operations

We will compare both the static (the number of
inserted dups, drops (including decrefs), resets,
and reuses in the IR) and dynamic (number of
encountered of dups, drops, and (de)allocations
during execution) program information for these
benchmarks. Individual rows were colour coded
to increase readability. Green cells indicate the
lowest (best) value in the row and red cells indi-
cate the highest (worst) value in the row. Values
in between got a colour in between. The rows
for reset and reuse were not coded, more or less
reset or reuse statements do not necessarily re-
sult in better results. As this highly depends
on their placement and reference counting oper-
ations. Finally, keep in mind that drop special-
isation duplicates an inserted drop during spe-
cialisation. One for both uniqueness branches.
Resulting in relatively more static drops than
dynamic ones. And that drop specialisation al-
lows for the reuse of memory without the inser-
tion of resets.

From table 1 we can read that either with
or without drop specialisation the number of in-
serted dup operations increases from Counting
Immutable Beans to Perceus, while the opposite
is true (albeit to a lesser extend) for the drops.
While the drop specialisation pass reduces both
significantly more (up to 75% for Deriv!). The
reduced number of drop operations subsequently
lowers the number of reset operations inserted
by frame limited reuse.

From table 2 we can see a similar pat-
tern where drop specialisation reduces the per-
formed RC operations significantly for Beans
and Perceus. And the number of allocations us-
ing Perceus seems to be lower across the board.
This is a result of more valid reset/reuse op-
portunities due to join points being analysed
for reuse as well, while this is not the case for
Beans. We can also see that drop specialisation
for Perceus causes a big decrease in allocations,
more than 50% for RBTreeCk. This change is a
result of our drop specialisation allowing reuse
analysis to use multiple reset sources for a single
reuse, as we explained in section 2.4.2.

4.2 Performance
To compare the benefits/drawbacks for each al-
gorithm implementation in Roc, we have a look
at both the memory usage and the time per-
formance for each benchmark. In addition, to
put these results into perspective, we compare
the RC implementations for Roc with the same
benchmarks in Koka and Haskell. Haskell is a
popular, garbage collected, lazy, and functional
programming language. We used GHC version
9.2.8 to compile the benchmarks with the -O flag
passed to optimise the resulting binary. The
benchmarks for Haskell contained strictness an-
notations to ensure the same amount of work
was performed. For Koka, the first language to
use Perceus and frame limited reuse, we used
version 2.4.0 with the -o=2 flag passed for full
optimisation. The original benchmarks written
for Koka contained borrow annotations to tell
the compiler that a certain argument to a func-
tion should be treated as borrowed, potentially
reducing the number of required RC operations.
But since Roc does not have such annotations,
we opted to remove them for fairness. The four
benchmarks for Roc itself were compiled using
the --optimize flag. Using the version from the
aforementioned commit as is. Together with a
C platform and the mimalloc memory allocator,
the allocator used by both Koka and Lean [14].
To obtain the time benchmark results, all bench-
mark + language combinations were run a 100
times in succession using hyperfine. The results
of which can be seen in figure 8.

Deriv NQueens CFold RBTree RBTreeCK
0

1

2

3

4

6.33 15.42

R
un

tim
e

(s
)

Roc Beans
Roc Beans w Specialisation
Roc Perceus
Roc Perceus w Specialisation
Koka
Haskell

Figure 8: Benchmarks Time Performance

These results seem to match those from sec-
tion 4.1 in that drop specialisation has a big pos-
itive impact on the performance for both Count-
ing Immutable Beans and Perceus, up to 50% for
Perceus. But they also show that the increase
in reference counting operations due to a lack

24

Static Beans Beans Specialized Perceus Perceus Specialized
dup 117 24 134 40
drop 116 54 122 65
reset 9 9 28 13D

er
iv

reuse 10 10 22 19
dup 8 7 10 8
drop 10 7 14 10
reset 0 0 0 0

N
Q

ue
en

s

reuse 0 0 0 0
dup 54 23 61 25
drop 65 40 48 36
reset 6 6 18 8C

Fo
ld

reuse 6 6 14 14
dup 43 30 47 29
drop 31 12 25 22
reset 6 6 21 4

R
BT

re
e

reuse 6 6 23 17
dup 51 34 51 33
drop 36 25 31 36
reset 8 8 21 6

R
BT

re
eC

k

reuse 8 8 25 25

Table 1: Benchmarks Static Operations

Dynamic Beans Beans Specialized Perceus Perceus Specialized
dup 2.20E+08 2.53E+07 3.11E+08 1.17E+08
drop 2.61E+08 7.11E+07 3.46E+08 1.55E+08
alloc 3.88E+07 3.88E+07 3.44E+07 3.14E+07D

er
iv

dealloc 3.88E+07 3.88E+07 3.44E+07 3.14E+07
dup 3.07E+08 2.97E+08 3.07E+08 2.97E+08
drop 3.16E+08 3.02E+08 3.16E+08 3.02E+08
alloc 9.35E+06 9.35E+06 9.35E+06 9.35E+06

N
Q

ue
en

s

dealloc 9.35E+06 9.35E+06 9.35E+06 9.35E+06
dup 2.37E+07 1.56E+07 3.48E+07 2.10E+06
drop 3.80E+07 2.92E+07 3.90E+07 3.69E+06
alloc 1.43E+07 1.43E+07 4.19E+06 3.15E+06C

Fo
ld

dealloc 1.43E+07 1.43E+07 4.19E+06 3.15E+06
dup 4.95E+08 7.98E+07 5.82E+08 9.03E+07
drop 6.34E+08 8.40E+07 6.32E+08 1.32E+08
alloc 1.39E+08 1.39E+08 5.04E+07 4.62E+07

R
BT

re
e

dealloc 1.39E+08 1.39E+08 5.04E+07 4.62E+07
dup 5.36E+08 2.98E+08 6.22E+08 1.39E+08
drop 6.84E+08 3.28E+08 6.99E+08 1.65E+08
alloc 1.48E+08 1.48E+08 7.64E+07 3.02E+07

R
BT

re
eC

k

dealloc 1.48E+08 1.48E+08 7.64E+07 3.02E+07

Table 2: Benchmarks Dynamic Operations

25

of borrowing can have a measurable effect on
performance, as is the case for the Deriv bench-
mark. Note that Roc in general performs some-
what worse than Koka, but better than Haskell.
We expect this to be a result of lacking reuse
specialisation and other optimisations.

To compare the memory usage, we used the
time command to determine the ”Maximum res-
ident set size” (the maximum memory used by
a program) for each combination. The results of
which can be seen in figure 9.

Deriv NQueens CFold RBTree RBTreeCK
0

200

400

600

800

1,000

1,200

1,400

10,692

Pe
ak

M
em

or
y

U
sa

ge
(M

iB
)

Figure 9: Benchmarks Memory Performance

Which shows that the new implementation
has a similar maximum memory consumption as
the old one. Except for CFold, where a slight
improvement can be seen. The resemblance be-
tween the different implementations can have
different causes:

• Borrowing smaller structures and deallo-
cating them later has a smaller impact on
memory usage.

• Borrowing parameters while they are ac-
tually used later in the caller has no effect
on memory usage at all.

• The difference in memory usage due to
borrowing might have been overshadowed
by later allocations. Something we cannot
determine using the maximum memory us-
age alone.

Additionally, it could explain why the RB-
TreeCK benchmark under-performed for
Haskell, as Haskell had to allocate more mem-
ory. Presumably due to the inability to reuse the
already allocated memory. We explained in sec-
tion 2.2.3 that borrowing parameters can result
in an increased memory usage. We demonstrate
this using the same example from listing 11 with
an input size of 20. Our new Perceus based im-
plementation used a maximum of 172MiB (a
single list of 20M U64’s) while the Counting Im-
mutable Beans implementation used 1878MiB,
a tenfold increase.

5 Conclusion
The resource calculus syntax used to describe
both Perceus and drop-guided reuse had to be
extended with join points and projections to be
more compatible with the Roc compiler. As well
as the additional decref and free operations as in-
serted by drop specialisation. In addition, both
the declarative and the syntax-directed resource
rules had to be modified to include rules on how
to work with this extended syntax.

Perceus combined with Frame Limited Reuse
itself results in an overall increase of runtime
reference counting operations but a decrease in
(de)allocations and memory usage when com-
pared to Counting Immutable Beans. Perform-
ing drop specialisation after inserting the refer-
ence counting operations results in a decrease
in RC operations for both algorithms. But af-
ter Perceus it has a greater impact, resulting in
the least RC operations, even when compared
to Counting Immutable Beans with drop spe-
cialisation. In addition, drop specialisation im-
proves the effectiveness of reuse analysis by al-
lowing a different reuse token to be used in cases
where the original structure is known to be not
unique.

5.1 Discussion
Our conclusion is based on our Roc benchmark
results, but different languages that have made
different choices in e.g. memory layout or allo-
cator might see different results. Even within
Roc it is possible that a part of the change in
performance is a result of a change in imple-
mentation details not linked to the theoretical
algorithm and rules. The current benchmarks
(as any benchmark) are quite limited in the
cases that get tested. Cases what would have
a greater effect on non-frame-limited reuse al-
gorithms are currently not tested (section 3.4).
Different benchmarks could have led to a dif-
ferent conclusion. And the results for Count-
ing Immutable Beans vs Perceus heavily rely on
the cost of reference counting vs allocating new
memory. Atomic reference counting (section
2.2.1) might tip the scales in favour of beans.
While larger allocations might tip the scales in
favour of Perceus.

26

5.2 Future Work
During the work for this thesis we found a few
topics that need additional investigation, but
were out of scope for this paper:

• This paper leans towards the practical side
of reference counting, which is why we pro-
vide the syntax-directed resource rules to
guide any implementation. But, without
formal proofs we cannot verify that our
rules do not cause operations to be inserted
incorrectly. And although we believe the
general concept is correct, proofs would be
a welcome addition.

• The drop specialisation support for join
points and jumps is currently limited to
non-recursive cases. We suspect that this
is an intrinsic limitation, knowing that re-
cursive join points are a rare occurrence.
But a better solution that allows drops to
be specialised across join points might ex-
ist.

• Drop specialisation currently is not recur-
sive. Meaning that any not before duped
variables (which would remain dropped
in the unique branch of the specialisa-
tion) are not specialised. We expect addi-
tional passes to yield relatively lower per-
formance improvements (at the cost of an
increased IR size). But there is only one
way to verify these expectations.

• Not all execution flows within a function
hit the same number of reuse (construc-
tors, not drops) opportunities. Meaning
that it’s possible for an IR similar to this
to be generated:

assuming r1 and r2 to be in scope
x1 = Cons @r2 1 Nil
if condition

then
free r1
x1

else
x2 = Cons @r1 2 x1
x2

And this seems fine at first sight. But r1
might come from a (reused) free. Meaning
that it’s guaranteed not to be null, while
r2 might be null. Using r2 for the first
constructor would be sub-optimal for the
then branch. Since it would free a non-
null reuse token while allocating memory
because of a null reuse token. A more ad-
vanced reuse analysis could consume reuse
tokens likely to not be null first.

• We did not implement reuse specialisation
for Roc, as multiple reuse sources make
it difficult to determine from which vari-
able the reuse token originates and what
reuse token order for join points would re-
sult in optimal specialisation. But we do
believe an implementation is possible, and
it would be interesting to see the perfor-
mance impact on the tested implementa-
tions, and if it has a greater impact on any
of them.

• Borrowing is a tricky subject. Callees bor-
rowing structures owned by the caller re-
sult in an increase in peak memory usage
and borrowed variables cannot be used for
reuse, meaning that both are mutually ex-
clusive. Creating different borrow signa-
tures for each function, depending on their
usage, could solve some problems but re-
sults in an explosion in code size. But
at the same time, borrowing structures at
the right time could save on a lot of refer-
ence counting operations, as we saw for the
Deriv benchmark. We think all of these
problems can be solved by keeping track
of ownership at runtime. Pointer tagging
could be used to add the ownership of a
pointer to a heap allocated value, which
can be set by operations inserted during
build time to mark pointers as borrowed
for all function calls except their last one
(as their last usage should be owned). Pro-
jections and pattern matches should give
the projected child the same ownership,
whilst creating new tag unions or records
should use an owned variant of the pointer.
Subsequently, all reference counting op-
erations can check the ownership of the
pointer (which is fast) and simply do noth-
ing for borrowed variables (or always re-
turn null for reset). This approach al-
lows all variables to be borrowed but still
be reused when owned, doesn’t increase
the code size substantially, never causes
garbage memory to remain allocated, and
has minimal runtime overhead when com-
pared to build time borrowing analysis.
Roc uses pointer tagging to store the tag
id for tag unions, if they fit in the pointer.
Which leaves little space for the ownership
bit in the case of larger tag unions. An al-
ternative to pointer tagging might be to
communicate the same information using
registers.

27

References
[1] L.d Alex Reinking. “Perceus: Garbage Free Reference Counting with Reuse”. en. In: PLDI

2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. Association for Computing MachineryNew YorkNYU-
nited States. 2021. doi: 10.1145/3453483.3454032.

[2] D.L. Anton Lorenzen. “Reference Counting with Frame Limited Reuse”. en. In: Proceedings
of the ACM on Programming Languages 6 (2022), pp. 357–380. doi: 10.1145/3547634.

[3] T.H. Axford. “Reference Counting of Cyclic Graphs for Functional Programs”. en. In: The
Computer Journal 33.5 (1990), pp. 466–470. doi: 10.1093/comjnl/33.5.466.

[4] Henry G. Baker. “List Processing in Real Time on a Serial Computer”. In: Commun. ACM
21.4 (Apr. 1978), pp. 280–294. issn: 0001-0782. doi: 10.1145/359460.359470. url: https:
//doi.org/10.1145/359460.359470.

[5] William Brandon et al. “Better Defunctionalization through Lambda Set Specialization”.
In: Proc. ACM Program. Lang. 7.PLDI (June 2023). doi: 10.1145/3591260. url: https:
//doi.org/10.1145/3591260.

[6] Cormac Flanagan et al. “The Essence of Compiling with Continuations”. In: SIGPLAN Not.
28.6 (June 1993), pp. 237–247. issn: 0362-1340. doi: 10.1145/173262.155113. url: https:
//doi.org/10.1145/173262.155113.

[7] T.S. Jiho Choi. “Biased Reference Counting: Minimizing Atomic Operations in Garbage
Collection”. en. In: PACT ’18: Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques. 2018, pp. 1–12. doi: 10.1145/3243176.3243195.

[8] Fork Roc GitHub. May 2023. url: https://github.com/JTeeuwissen/roc/tree/Porting
(visited on 07/28/2023).

[9] Koka GitHub. June 2023. url: https://github.com/koka-lang/koka (visited on 06/04/2023).
[10] Lean. June 2023. url: https://github.com/leanprover/lean4 (visited on 06/04/2023).
[11] Henry Lieberman and Carl Hewitt. “A Real-Time Garbage Collector Based on the Lifetimes

of Objects”. In: Commun. ACM 26.6 (June 1983), pp. 419–429. issn: 0001-0782. doi: 10.
1145/358141.358147. url: https://doi.org/10.1145/358141.358147.

[12] P.D. Luke Maurer. “Compiling without Continuations”. en. In: ACM SIGPLAN Notices 52.6
(2016), pp. 482–494. doi: 10.1145/3140587.3062380.

[13] Simon Marlow et al. “Parallel Generational-Copying Garbage Collection with a Block-Structured
Heap”. In: Proceedings of the 7th International Symposium on Memory Management. ISMM
’08. Tucson, AZ, USA: Association for Computing Machinery, 2008, pp. 11–20. isbn: 9781605581347.
doi: 10.1145/1375634.1375637. url: https://doi.org/10.1145/1375634.1375637.

[14] mimalloc GitHub. June 2023. url: https://github.com/microsoft/mimalloc (visited on
07/10/2023).

[15] MSI GS66 Stealth. 2023. url: https : / / www . msi . com / Laptop / GS66 - Stealth - 11UX /
Specification.

[16] Roc FAQ. May 2023. url: https://github.com/roc-lang/roc/blob/main/FAQ.md (visited
on 05/13/2023).

[17] Roc GitHub. May 2023. url: https://github.com/roc-lang/roc (visited on 05/13/2023).
[18] L.d Sebastian Ullrich. “Counting Immutable Beans”. en. In: IFL ’19: Proceedings of the 31st

Symposium on Implementation and Application of Functional Languages. 2019, pp. 1–12.
doi: 10.1145/3412932.3412935.

[19] David Ungar, David Grove, and Hubertus Franke. “Dynamic Atomicity: Optimizing Swift
Memory Management”. In: SIGPLAN Not. 52.11 (Oct. 2017), pp. 15–26. issn: 0362-1340.
doi: 10.1145/3170472.3133843. url: https://doi.org/10.1145/3170472.3133843.

[20] A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness”. In: Information
and Computation 115.1 (1994), pp. 38–94. issn: 0890-5401. doi: https://doi.org/10.
1006/inco.1994.1093. url: https://www.sciencedirect.com/science/article/pii/
S0890540184710935.

28

https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3547634
https://doi.org/10.1093/comjnl/33.5.466
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/3591260
https://doi.org/10.1145/3591260
https://doi.org/10.1145/3591260
https://doi.org/10.1145/173262.155113
https://doi.org/10.1145/173262.155113
https://doi.org/10.1145/173262.155113
https://doi.org/10.1145/3243176.3243195
https://github.com/JTeeuwissen/roc/tree/Porting
https://github.com/koka-lang/koka
https://github.com/leanprover/lean4
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/3140587.3062380
https://doi.org/10.1145/1375634.1375637
https://doi.org/10.1145/1375634.1375637
https://github.com/microsoft/mimalloc
https://www.msi.com/Laptop/GS66-Stealth-11UX/Specification
https://www.msi.com/Laptop/GS66-Stealth-11UX/Specification
https://github.com/roc-lang/roc/blob/main/FAQ.md
https://github.com/roc-lang/roc
https://doi.org/10.1145/3412932.3412935
https://doi.org/10.1145/3170472.3133843
https://doi.org/10.1145/3170472.3133843
https://doi.org/https://doi.org/10.1006/inco.1994.1093
https://doi.org/https://doi.org/10.1006/inco.1994.1093
https://www.sciencedirect.com/science/article/pii/S0890540184710935
https://www.sciencedirect.com/science/article/pii/S0890540184710935

	Introduction
	Research Questions
	Contributions

	Overview
	Roc
	Projections
	Non-RC values
	Normalisation and Defunctionalisation
	Joinpoints

	Reference Counting
	Atomic Reference Counting
	Counting Immutable Beans
	Perceus

	Reuse Analysis
	Drop Guided Reuse

	Specialisation
	Drop Specialisation
	Drop Guided Drop Specialisation
	Reuse Specialisation

	Formalisation
	Calculus
	Heap Semantics
	Reference Counting
	Reuse Analysis
	Drop Guided Drop Specialisation

	Results
	Operations
	Performance

	Conclusion
	Discussion
	Future Work

	References

