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Abstract

Critical congenital heart disease (cCHD) is present in two to three of every

1,000 newborns. Children diagnosed with cCHD are admitted to the pediatric

intensive care unit (PICU) and closely monitored to ensure the highest pos-

sible quality of healthcare. During this period large quantities of continuous

data streams are collected. The aim of this study is to analyze these large

quantities of data using machine learning techniques such as random forest

and boosting to provide insights in detecting deterioration by classifying peri-

ods as stable and unstable. The data consisted of 86 patients with information

on five vital signs: heart rate, respiratory rate, invasive mean blood pressure,

oxygen saturation and regional cerebral oxygen saturation. Pre-processing

steps were necessary to transform the data and generate artificial labels for

model training. Using the pre-processed data, hyperparameter tuning was

performed, and final models were created. Based on these models, classifi-

cations were made on a left-out dataset consisting of nine patients. These

model classifications are compared with a clinical classification established by

a medical expert. The findings revealed an accuracy range of 64.4% to 87.1%,

a sensitivity range of 66.0% to 97.3%, and a specificity range of 23.1% to

94.3%. These numbers demonstrate generally favorable accuracy and sensitiv-

ity scores. However, some models had very low specificity scores, indicating

large amounts of true unstable periods were not classified as unstable. Relying

on such a model would result in missing many critical situations at the PICU.

Nevertheless, some models showed great potential. This study highlights that

machine learning techniques such as random forest and boosting can be used

to provide insights in detecting deterioration in patients. Consequently, it is

recommended to explore the best performing models further and assess if fur-

ther improvements are possible. Additionally, it is important to analyze the

reasons behind certain incorrect classifications to enhance the understanding

of the model. Finally, choosing a best model depends on the task at hand and

should be considered carefully.
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1. Introduction

Critical congenital heart disease (cCHD) is present in two to three of every

1,000 newborns where congenital heart disease is the most frequently occur-

ring congenital disease in newborns [1] [2]. It is categorized as cCHD if cardiac

intervention is required for survival within a newborn’s first year [3]. Over the

last years mortality rates have dropped massively for these infants and nearly

85% reaches adulthood. Nevertheless, these infants are vulnerable for compli-

cations such as brain injury and delayed motor development. Therefore, it is

necessary to focus not only on one specific disease, but also and especially on

co-morbidity. To prevent these co-morbidities, monitoring is essential. Chil-

dren diagnosed with cCHD are admitted to the pediatric intensive care unit

(PICU) and closely monitored to ensure optimal healthcare and minimize the

likelihood of complications, thereby improving their quality of life. During

this period large quantities of lab, image, discontinuous and continuous data

streams are collected and used by nurses and doctors for clinical assessment

[3]. Nevertheless, it can be difficult to get a good overview of all available

data at ones and to use all information in the best possible way for clinical

assessment. Therefore, it would be helpful if certain models could analyze at

least parts of all available data.

Machine learning is still new to healthcare and few examples exist of an im-

plementation within the clinical workflow of departments working with adult

patients [4]. Moreover, no study describes an implementation at the PICU

clinical workflow [3]. Nevertheless, it gives a lot of opportunities and enables

an in-depth analysis of all the data collected of patients at the PICU [5]. Fur-

thermore, AI and machine learning have the ability to change how healthcare

is practiced under the consideration certain aspects are carefully examined [6].

For instance, while a classification model may yield high sensitivity and ac-

curacy scores, its specificity could be much lower. This specificity might be
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Introduction

critical for the implementation of a model, thus not examining all aspects care-

fully can result in unfavorable outcomes. Studies showed that machine learning

can be used to make accurate predictions in healthcare [4] [5] [7]–[11]. The ma-

jority of these studies focus on support vector machine (SVM), random forest

and boosting models, which are able to outperform more traditional models.

To highlight a few studies, Pirneskoski et al. applied a random forest model

to predict one-day mortality rates, surpassing the performance of the prehos-

pital national early warning score. In addition, Clifton et al. demonstrated

that their SVM model was the superior classifier in identifying deterioration

in patients at the emergency department. In short, several studies indicate

potential in applying machine learning techniques to provide better insights

compared to traditional methods focused on critical situations such as detect-

ing deterioration.

Studies also address how these new developments should be implemented in

the workflow to reduce workload but also describe the challenges of the ac-

tual implementation [4] [5]. These challenges can be mitigated through good

communication between nurses, doctors, and the data specialists creating the

models. With these developments, machine learning can be combined with

expert opinions to improve the quality of healthcare while reducing workload.

The aim of this study is to analyze data from infants (< 1 year) at the PICU

with cCHD by using machine learning techniques such as random forest and

boosting. The implementation of machine learning models can provide better

insights in detecting deterioration of patients at specific time points. A good

use of such a prediction model can potentially identify unstable periods in pa-

tients very quickly, reducing the workload of nurses and doctors, both of which

can improve the quality of healthcare. This would also be beneficial for the

prevention of co-morbidities, as quick intervention is possible. Furthermore,

a well-performing model that accurately classifies stable periods can also pro-

vide significant benefits. A patient being stable indicates that no intervention

is required at that moment in time, allowing the family to spend uninterrupted

time with their child. Moreover, insights into stable periods among patients
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can be valuable when dealing with another patient in critical condition. The

nurses and doctors can directly see if there are any other patients that require

intervention. If all patients are stable except for the critical patient, all neces-

sary help can be allocated to the critical patient.

The aim is translated into the following research question:

How well can machine learning algorithms such as random forest and boosting

classify deterioration in infants with cCHD considering their vital parameters

compared to the already implemented support vector machine algorithm?
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2. Data

This chapter describes what data is used and which pre-processing steps have

been taken to prepare the data for further analysis. All coding for this study

was done using R in a digital research environment created by the hospital.

The code used for this study can be found on the website of the Pediatric

(Cardiac) Critical Care and Data Science research group from the University

Medical Center Utrecht, The Netherlands [12].

2.1 Data overview

The data used for this study was collected at the PICU of the Wilhelmina

Childrens Hospital, part of UMC Utrecht, The Netherlands. The dataset con-

sisted of 86 patients (< 1 year) all diagnosed with cCHD where each patient

has its own patient ID and timeline starting from zero when admitted to the

PICU. However, the anatomy and physiology of cCHD patients can be quite

different, resulting in a heterogeneous patient group, all spending a different

amount of time at the hospital. The time element is added as sequential ob-

servations, for example a patient can have 5000 observations all at different

times. The dataset consisted of information on five collected vital signs: heart

rate, respiratory rate, oxygen saturation, invasive mean blood pressure, and

regional cerebral oxygen saturation. Furthermore, information is available on

whether the patients received mechanical ventilation.

The data was provided fully anonymized in the research environment by as-

signing patients an integer number, for instance number one for the first pa-

tient. Furthermore, date and time information was replaced by an incremental

change of 1 every minute starting at zero. Without a name and specific time

and date information, it was not possible in this study to identify a patient

with the resources available. Due to the use of fully anonymized data, the con-
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2.2 Data preparation

sent of the patient’s caregivers was waived by the Medical Ethical Research

Committee of the UMC Utrecht (no. 22-822).

2.2 Data preparation

The data described in the previous section requires pre-processing steps to

make it suitable for training machine learning algorithms. The data does not

provide any labels on the patient being stable or unstable at any given moment

in time, thus should be added by using adequate methods. This emphasizes the

great importance of the preparation phase. Therefore, data has to be cleaned,

modified and analyzed to ensure the quality of the models used. All these steps

were already documented by previous work and used for their model, but were

revisited to make sure they would work for the models in this study [3]. As

stated in previous work, no golden standard is present to determine artificial

labels for indicating deterioration, but a best combination of steps was chosen

and used. Nevertheless, it is possible that some steps may be adapted to new

findings.

With the data in the digital environment, the first cleaning steps can be taken.

First, each patient is analyzed if they are being ventilated by considering an

end-tidal carbon dioxide (EtCO2) above zero at each moment in time. The

EtCO2 is equal to the amount of carbon dioxide present in the expiratory air of

a ventilated patient which is a standard to use at the hospital to determine the

efficacy of the mechanical ventilation. In other words, the availability of this

value indicates that the patient is being ventilated. For times when patients are

ventilated and the respiratory rate is below 5, the ventilation respiratory rate

is used instead of the normal respiratory rate. This replacement is executed to

describe the respiratory rate as best as possible as the normal respiratory rate

can be incorrect when being ventilated. Infants can also have large fluctuations

in their respiratory rate, thus a five-minute moving average is used. Secondly,

regional cerebral oxygen saturation is collected in both hemispheres. If only

one value was available, this value was used as the vital sign value. Otherwise

a mean between both hemispheres was calculated and used. Third, as the
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Data

artificial label creation method does not allow missing values, only complete

data was used and patients with less than 12 hours of complete data were re-

moved. Within this study, no patients were removed as all patients consisted

of more than 12 hours of data. The remaining patients can be used for analysis

and observations are sorted by time per patient. Furthermore, a separation is

made between patient with a mean oxygen saturation during admission below

90% (low group) or equal and above 90% (high group). This separation is

created to account for underlying varying physiology (heterogeneity) in cCHD

patients [3]. Splitting the data in two groups resulted in 26 patients in the low

group and 60 patients in the high group. Besides the separation on oxygen

saturation, equal steps were taking on the complete dataset to determine if

accurate models could be established without accounting for the underlying

varying physiology.

The data is now ready to start the process of creating artificial stable and

unstable labels. Each of the following steps were applied on the low group,

high group and total data. First, the five vital signs were standardized to a

mean of zero and a standard deviation of 1. The standardized columns were

used to create a five-by-five covariance matrix. This covariance is required

for the Mahalanobis calculation. The Mahalanobis is a method that is used

to perform dimension reduction, in this situation a reduction to one principal

component [13]. In other words, the five vital sign values per time point are

reduced to one value by taking into account the correlations between the vital

signs used and a mean. Non-complying correlations of vital signs and vital

sign values far from the mean will result in a high Mahalanobis. The Maha-

lanobis values, at times a patient is ventilated, are multiplied by 1.2. This

multiplication is performed, because ventilated patients have reduced variance

in their vital signs due to the controlled setting where their respiratory rate is

regulated by a machine. With Mahalanobis values present for each time point

a baseline can be established by taking the median of all the Mahalanobis

values available until that specific moment in time.
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2.2 Data preparation

The baseline and the Mahalanobis are the necessary information sources to get

an understanding on which measures were an indication of deterioration. First,

the baseline is subtracted from the Mahalanobis. Secondly, all these differences

of the patients are sorted and the highest 20% differences above zero are given

the label unstable where all other observations get the label stable. A negative

difference would indicate that the baseline is above the Mahalanobis, meaning

that a patient is improving and stable. To elaborate, the baseline is a balanced

line which determines the general trend of a patient over time considering the

median of the Mahalanobis values. As mentioned before, high Mahalanobis

values occur if the vital signs are far from the mean and are not following the

correlations of the vital signs. A Mahalanobis below this line would indicate

that the vital signs are closer to the mean and following the correlations,

indicating an improvement compared to the general trend. Therefore, it is

preferred to see patients with a Mahalanobis close but preferably below the

baseline. However, a patient that is always stable will most likely not be

at the PICU. Furthermore, the artificial labels do not only contain an 80/20

split classification, but also a 90/10 split classification. In other words, the

data consisted of one additional column where 20% of the observations are

unstable and one column where 10% of the observations are unstable. Finally,

the first hour of each patient was removed from the data, because it is not

used to train the model. This first hour often consists of fluctuations due to

the admission period and processes that occur at that period (e.g. starting

of certain medication, placement of lines). Using this part for classification

could influence the overall performance. With the artificial labels present

visualisations of the distributions of the vital signs per group separated on

stable and unstable periods can be created (Appendix A). These visualisations

provide additional insights in the data. For instance, the respiratory rate

distribution indicates that ventilated patients are overrepresented in the stable

group. This finding supports the decision to multiply the Mahalanobis by 1.2.
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The data is fully prepared and cleaned, but still needs to be split into a train-

ing and test set. The training set will be used to train the model where the

test set is used to evaluate the performance. For this study the dataset is

not split on data, but on the number of patients. In the low group 20 out of

26 patients were selected to by in the training set. The high group training

set consisted of 45 out of 60 patients. At last, the training set without the

group separation consisted of 65 out of 86 patients. Although this split does

not result in a data split of exactly 80/20%, it is still within the recommended

boundaries of splitting a dataset. Splitting on patients rather than data is

preferred for this study to ensure that the model is always evaluated on new

unseen patients. Splitting the dataset on the data itself would result in patient

information being present in the training and test set. The model would be

able to learn the patterns of each patient, resulting in an overestimation of

true performance. Applying the same model to new unseen data would most

likely result in a lower performance. This approach is chosen to have more

realistic performance metrics during the model training process compared to

the final model performance. The splitting of patients is done randomly.

The training set is also used to perform 5-fold cross-validation (CV) for hy-

perparameter tuning. Therefore, another patient split is performed to create

5 folds from the training data. The low group ended up with 5 folds with

each containing 4 patients where the high group folds contained 9 patients

each. The total data ended up with 5 folds containing 13 patients. With

the cleaning, modifying, analyzing and patient splitting steps described in this

section, the data is fully prepared to perform hyperparameter tuning, training

and evaluating the models. To summarize, Figure 2.1 illustrates the flow of

data as described above.
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2.2 Data preparation

Figure 2.1: Data preparation flow chart. RR: respiratory rate, Cerebral
rSO2: regional cerebral oxygen saturation
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3. Methods

To answer the research question, four steps are required, each with its own

methods. These steps involve training classification algorithms, comparing

the model performance based on artificial labels, smoothing of final classifica-

tions and comparing the model performance based on clinical labels. The two

methods used for classification are random forest and boosting. Both methods

are selected, because studies showed that they can accurately make predictions

in healthcare [7] [9] [11]. Furthermore, the properties of both models match the

expectations stated by the hospital. They strongly prefer a model that can ac-

curately make classifications without losing too much on interpretability. The

accurate classifications are required to ensure a good performance when such a

model is used in practice. Especially in healthcare, missing critical situations

could have negative consequences for that particular patient. Nevertheless,

interpretability might be as important as accuracy. Healthcare is a field in

society that highly relies on the expertise of medical experts such as nurses

and doctors. The classification or decision of a data-driven machine learning

technique might not always be equal to the clinical opinion or decision. This

disagreement might be resolved if the medical expert understands why the al-

gorithm makes a certain decision. Furthermore, machine learning techniques

will most likely be used to provide additional insights and help the nurses and

doctors, not to replace them. Therefore, it is important that these techniques

are able to explain in some sense what is happening and why certain decisions

are made.

Besides random forest and boosting, other methods are able to make classifica-

tions as well. Logistic regression is one of the simplest classification algorithms.

Logistic regression is strong in terms of interpretability, as you get estimates for

each variable, but may lack the ability to achieve high accuracies, or at least

will most likely not outperform the random forest and boosting techniques.
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3.1 Random Forest

For instance, logistic regression can have difficulties with correlated variables

as is the case in this study. Furthermore, it can be sensitive to outliers and

lacks robustness [14]. Deep learning can also be used for classification. These

type of models are normally very strong considering the accuracy, but do not

provide much in terms of interpretability. Moreover, deep learning requires

large amounts of data to achieve a high accuracy which is not the case for this

study [15] [16]. Therefore, a balance between accuracy and interpretability is

created. Both random forest and boosting techniques consist of this balance

and are somewhat similar to the already implemented support vector machine

model. These models also have the ability to reduce overfitting and deal with

correlated variables [16] [17].

3.1 Random Forest

Random forest can be classified as an ensemble technique that aims to con-

struct a strong learner by combining multiple weak learners. The strong learner

is an aggregated tree, based on a chosen number of simple decision trees, which

gives a prediction considering all the information from the single trees. Never-

theless, the simple decision trees are adjusted to increase accuracy and mitigate

the risk of overfitting. Each tree uses a bootstrap sample of the data, meaning

that repeated samples are taken from the training set. This process is referred

to as bagging. Furthermore, the variables to determine the best split at each

node are not always equal. Depending on the ”mtry” parameter a given num-

ber of variables are considered in each split. The variables are chosen randomly

at each node [16]. This additional step is what distinguishes bagging from ran-

dom forest and usually leads to better performance.

Machine learning techniques often have the opportunity to tune the model’s

hyperparameters considering the available data and research objectives. In

this study, hyperparameter tuning is conducted by applying a 5-fold cross-

validation (CV) grid search on the training data ensuring an equal distribu-

tion of patients across each fold. For instance, the low group has 20 patients

in the training data, resulting in 4 patients in each fold. Table 3.1 describes
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each hyperparameter considered with its input for the grid search. The grid

search explores 27 different models, each representing a unique combination of

hyperparameters. The performance metric used for evaluation is the accuracy,

and the combination of hyperparameters with the highest accuracy is used to

train the final model.

Hyperparameter Description Possible values

mtry
Number of random vari-
ables looked at, at each
split

2, 3, 4

num.trees Number of trees created 100, 250, 500

min.node.size
Minimum number of obser-
vations in each end node

1, 5, 10

Table 3.1: Hyperparameter tuning, random forest

3.2 Boosting

Boosting, similar to random forest, can be classified as an ensemble technique.

Boosting also creates multiple trees and generates a prediction incorporating

the information of all constructed trees. However, there are notable distinc-

tions between random forest and boosting. Unlike random forest, boosting

does not use a bootstrap sample for each tree. Additionally, the trees in ran-

dom forest are independent, whereas in boosting, each tree is built based on

the information of previously grown trees. The error of previously grown trees

is memorized and accounted for in the next tree. This process is repeated as

long as desired, resulting in a final tree [16].

Hyperparameter tuning is also an important element of boosting and poten-

tially even more so than random forest. Boosting offers a wider range of hy-

perparameter options and has a greater influence on the model’s performance

compared to random forest. The ”colsample bytree” parameter is similar to

the ”mtry” parameter of the random forest model and describes a proportion

of variables considered in each tree. Another hyperparameter is ”eta”, which

determines the learning speed of the model. A higher eta value results in faster
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3.2 Boosting

weight updates and often requires fewer trees, while a lower eta value is more

conservative but requires a larger number of trees to achieve good performance.

Choosing a high value for eta should be carefully considered due to the risk

of overfitting. The number of trees created is determined by the ”nrounds”

parameter. Lastly, the ”alpha” parameter is used to shrink variables towards

zero, with zero indicating that a variable does not contribute to the classifi-

cation. A higher ”alpha” value indicates greater shrinkage, due to a higher

penalty. The literature used within this study did not specify a direction for

the hyperparameter values. Therefore, a wide range of options are included to

determine which combination yields the best overall performance considering

the relative limited dataset. Table 3.2 provides an overview of each considered

hyperparameter with its input for the grid search for the low group model.

The grid search explores 162 different models.

Hyperparameter Description Possible values

maxdepth
The depth or layers within
a tree

3, 4, 5

eta
How fast the model is
trained

0.01, 0.1, 0.3

colsample bytree
Proportion of variables se-
lected for each tree

0.6, 1

alpha
Shrinking parameter for
less important variables

0.01, 0.1, 1

nrounds Number of trees created 100, 150, 200

Table 3.2: Hyperparameter tuning, boosting

The low model is tuned based on an extensive grid search. To reduce compu-

tation time the high group and the model without group separation are tuned

based on a narrower range of hyperparameters or possible values. This is done

only when certain values were not close to the best option of the low group. It

is assumed that good hyperparameter options work similarly for the remain-

ing models. In other words, a selection of the best possible values is made to

increase computational efficiency.

17



Methods

3.3 Model performance comparison, artificial

The random forest and boosting output can be analyzed by comparing their

confusion matrices based on the artificial labels used for training and testing.

Each model gives a confusion matrix, which is the core for calculating differ-

ent performance metrics such as: accuracy, error rate, and F1-score. Normally,

it would be useful to compare different metrics because a high accuracy can

be achieved with a high sensitivity but very low specificity. Nevertheless, this

comparison is used to gain some insights into which model is better at classify-

ing the given artificial labels, but does not provide information on the clinical

relevance, thus only the accuracy is considered. Each model is compared to

the same model, but from the other machine learning technique. In other

words, the random forest low group model is compared with the boosting low

group model. This comparison indicates which model has a higher accuracy

and whether this accuracy is significantly different.

3.4 Model performance comparison, clinical

The artificial performance comparison gives some insights in which machine

learning technique is better per model on classifying artificial labels, but can-

not give any indication on how well it performs compared to the opinion of a

clinical expert. The models in the artificial performance comparison section

were trained and tested on the 86 patients. The final models for the clinical

performance comparison are trained on all available data from the 86 patients

and tested on a left out dataset of nine patients. Both the random forest

and boosting models provide classifications with stable and unstable labels.

However, it is highly likely that unstable labels frequently arise during stable

phases and vice versa. These sudden fluctuations might occur during bedside

activity such as some quick checks, a parent being present or the withdrawal of

blood. A clinical expert would not indicate such a period as unstable, result-

ing in a model that does not capture true unstable periods and reducing its

clinical relevance. Therefore, it is recommended to smooth out these phases

and transition from one state to another only if, within the last five minutes,
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at least four instances belong to the other state. For example, if a patient is

stable at time 10, they will only be considered unstable if, between time 10 and

15, four moments of instability are classified. Another method as mentioned

in previous work, is to classify these sudden fluctuations as unreliable or mea-

surement error [3]. The method from that study can also be applied to this

data, but is out of the scope for this study. Smoothing of phases will probably

also reduce the number of times an alarm is given to nurses and doctors and

most likely reduce the number of false alarms. Studies have indicated that 72%

to 99% of clinical alarms are false, leading to alarm fatigue [18]. Alarm fatigue

is sensory overload when nurses and doctors are exposed to a high number of

alarms, which can negatively affect the response when an alarm is given in a

real critical situation. Possibly preventing this by smoothing can therefore,

improve the quality of healthcare. Smoothing of classification labels is applied

to each patient. The window for a possible change in state only considers past

events. In case a change in state is occurring the labels are shifted back for

four minutes in time to accurately capture the exact moment the change began.

In short, stable and unstable moments are smoothed over time considering a

rolling window where the final results are shifted back in time by four minutes

to capture the real change in state as closely as possible. Nevertheless, when

dealing with a gradual change in deterioration or small periods of unstable

moments it might be useful to have a short delay of having a unstable phase,

thus not shift the period back by four minutes also considering alarm fatigue.

It is important to mention that having a delay on deterioration requires ethical

and legal considerations. However, this study assumes that the real clinical

deterioration is best captured with this short shift back in time.

The smoothed classifications of every model are compared to clinical classi-

fications established by a medical expert on a random window of 24 hours for

each patient within the left out dataset. The clinical classification is estab-

lished by considering the five vital signs included in this study. The clinical

performance is determined by creating a confusion matrix where the model

classifications are the predictions and the clinical classification, the reference

or true labels. Each model gives a confusion matrix which are the core for cal-
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culating different performance metrics such as: accuracy, sensitivity, specificity

and F1-score. For comparing the models multiple performance metrics are con-

sidered. It is important to include metrics such as sensitivity and specificity

in the model comparison, due to data imbalance. For example, classifying all

data as stable when 90% of the data is stable will still result in an accuracy of

90%. Nevertheless, the specificity would be zero. Therefore, the selection of

the best model and machine learning technique is based on an evaluation of dif-

ferent performance metrics. This process of assessing the clinical performance

and relevance is part of the internal validation, where the model performance

is tested on a left out dataset with the same type of patients and data.
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4. Results

This chapter describes the results of the study and consists of three sections.

The first section focuses on the hyperparameter tuning and which values re-

sulted in the highest accuracy. Secondly, each model within the random forest

approach is compared to the same model of the boosting approach. For in-

stance, the random forest low group model is compared to the boosting low

group model. Since these models use the same data, a comparison is made

on which machine learning technique can achieve a better performance consid-

ering the artificial labels. At last, the performance of the different models is

evaluated by comparing the classifications with the clinical labels determined

by a medical expert. This final section determines how well the models can be

used in practice and their clinical relevance.

4.1 Hyperparameter tuning

Hyperparameter tuning is performed for both the low and high group models

as well as for the total models with an 80/20 split. The total models with a

90/10 split are trained based on the hyperparameter values of the 80/20 split

models. The 90/10 split models were added later to the study. Due to time

and the hyperparameter findings of the other models, it was decided to not

perform the whole tuning process for the 90/10 split models as well.

The hyperparameter tuning of the random forest models explored three pa-

rameters: mtry, num.trees, and min.node.size. The best values for each hyper-

parameter per model can be found in Table 4.1. Table 4.1 demonstrates that

the low group model which contains the least amount of data requires fewer

trees to achieve the best mean 5-fold CV accuracy. However, the increase in

data from the high group model to the 80/20 split model did not result in

any differences. Besides the number of trees, the other hyperparameters also
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differed between the low group model and the other models. The other models

gave a better performance considering only two variables per split instead of

four and used a higher min.node.size preventing the model from overfitting.

Model Hyperparameters

mtry num.trees min.node.size

Low group 4 100 1
High group 2 250 10
Total 80/20 split 2 250 10
Total 90/10 split 2 250 10

Table 4.1: Best hyperparameter values, random forest models

The hyperparameter tuning of the boosting models explored five parameters:

maxdepth, eta, colsample bytree, alpha and nrounds. The best values for each

hyperparameter per model can be found in Table 4.2. Table 4.2 illustrates that

the best hyperparameter values are similar. However, both low group and high

group have an eta value of 0.01, while the 80/20 split model has an eta value

of 0.1. In other words, the low and high models have a lower learning rate,

thus are more conservative during the training process. The colsample bytree

indicates that the best performance is achieved by considering a proportion

of variables for each tree instead of all five of the vital signs. At last, the

low alpha value as best hyperparameter value shows that giving a penalty to

certain variables does not help the classification performance.

Model Hyperparameters

maxdepth eta
colsample -
bytree

alpha nrounds

Low group 4 0.01 0.6 0.01 100
High group 4 0.01 0.6 0.01 150
Total 80/20 split 4 0.1 0.6 0.01 150
Total 90/10 split 4 0.1 0.6 0.01 150

Table 4.2: Best hyperparameter values, boosting models

22



4.2 Model performance comparison, artificial

4.2 Model performance comparison, artificial

With the determined best values, models are created with the training data

and evaluated based on the test data (artificial performance). It is important

to mention that for the low and high group models of the boosting technique,

the hyperparameter best values are slightly modified. The best eta value deter-

mined by the hyperparameter tuning was 0.01 for these models. Nevertheless,

this resulted in an accuracy of around 3% lower compared to using an eta value

of 0.1. An eta value of 0.1 was the best value for the total models. There-

fore, the eta value is slightly changed for the low and high group models to

increase the performance. Table 4.3 contains the accuracy of all models where

each specific model is compared between the random forest and boosting tech-

niques, as it uses the same data for training and testing. The chi-square test

shows that for all comparisons except for the 90/10 split the boosting model

has a significant better accuracy. In other words, the boosting models are

often better at classifying stable and unstable periods. A complete overview

of the model performance including other metrics can be found in Appendix

B. These performance metrics demonstrated in the appendix indicate that the

sensitivity and precision are quite high (>= 83%). Nevertheless, the negative

predictive value has a range of about 20% to 60%. This indicates that not too

many unstable classifications are indeed unstable determined by the artificial

labeling.

Model Accuracy Chi-square

Random forest Boosting p-value

Low group 82.2% 83.1% < 0.01
High group 85.6% 86.7% < 0.001
Total 80/20 split 83.1% 84.8% < 0.001
Total 90/10 split 91.1% 91.3% 0.27

Table 4.3: Accuracy comparison, artificial labels
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4.3 Model performance comparison, clinical

The artificial model comparison determined how well the artificial labels are

classified. However, it is not possible to capture the clinical performance and

relevance with those results. The models presented in the previous section are

all retrained on the complete dataset to make a final classification on a left

out dataset. The variable importance plots and partial dependence plots of

these final models can all be found in Appendix C. The visualisations indicate

that in general respiratory rate is the most important vital sign followed by

heart rate, invasive mean blood pressure, oxygen saturation, and regional cere-

bral oxygen saturation. Nevertheless, there were some models where oxygen

saturation was the second most important variable and invasive mean blood

pressure the least important variable. Overall, the respiratory rate and the

least important vital sign had an importance value of approximately 0.3 and

0.13, respectively. Generally, this indicates that all vital signs contribute to

classifying stable and unstable periods.

The new dataset contains nine patients where patient numbers 1, 3 and 8 fall

within the high group and the others in the low group. This left out dataset

does not consist of true stable and unstable labels. Therefore, the classification

is compared to the expert’s evaluation. The classification that is compared to

is smoothed to avoid sudden fluctuations which are commonly present in pa-

tients at the PICU. For instance, five unstable observations spread over an

hour of stable observations should all be classified as stable. An example of

the vital signs distributed over time, the classifications made by the models

and the clinical classification can be found in Figure 4.1. The clinical compar-

ison can be divided into three categories: Models that consider all patients,

models that only consider patients within the low group and models that only

consider patients within the high group. The comparison focuses on four met-

rics: sensitivity, specificity, accuracy and the F1-score. A full overview of each

model’s confusion matrix and performance metrics can be found in Appendix

D.
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Figure 4.1: Window of six hours with smoothed classifications and vital
signs. The red and green bars indicate unstable and stable periods, respec-
tively.

Table 4.4 illustrates the clinical performance considering all patients and con-

tains several findings. First, the sensitivity and specificity metrics are closer

to each other for the 80/20 split compared to the 90/10 split. In other words,

the percentage of true stable observations classified as stable is similar to the

percentage of true unstable observations classified as unstable. The 90/10 split

models come close to classifying all true stable observations as stable, but clas-

sify less than half true unstable observations as unstable. The accuracy shows

that the different techniques perform similarly considering the same split, but

the 90/10 models are better compared to the 80/20 models. Nevertheless, the

F1-scores indicate that the boosting models are performing better with very

little difference between the 80/20 and 90/10 split.

Model Sensitivity Specificity Accuracy F1

Random forest 80/20 77.4% 72.9% 76.5% 84.0%
Random forest 90/10 94.8% 48.2% 85.4% 83.7%
Boosting 80/20 78.6% 63.7% 75.5% 91.2%
Boosting 90/10 95.7% 41.4% 85.0% 91.1%

Table 4.4: Clinical performance, all patients
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Table 4.5 demonstrates the clinical performance considering only patients within

the low group. The different models show quite some variation in the sensi-

tivity and specificity values. The table indicates that from both specific low

models, the boosting technique is performing better than the random forest.

The boosting model was able to increase the sensitivity and keep the decrease

of specificity to a minimum. The boosting model also resulted in the highest

accuracy excluding the 90/10 split options. The 90/10 split options resulted

in a higher accuracy, but achieved this by mostly classifying all true stable

observations as stable. Very few true unstable observations were classified as

unstable.

Model Sensitivity Specificity Accuracy F1

Random forest low 66.0% 57.4% 64.4% 75.3%
Boosting low 82.7% 57.2% 78.2% 86.1%
Random forest 80/20 82.2% 58.2% 77.9% 85.9%
Random forest 90/10 97.0% 34.2% 85.7% 91.8%
Boosting 80/20 81.8% 44.2% 75.0% 84.3%
Boosting 90/10 97.3% 23.1% 83.9% 90.8%

Table 4.5: Clinical performance, low group

Table 4.6 demonstrates the clinical performance considering only patients within

the high group. Again variations can be detected in the sensitivity and speci-

ficity. However, the metric values are in general better compared to the low

group and the total models. Furthermore, the high group models are the only

models to achieve a higher specificity score compared to the sensitivity scores

excluding the 90/10 split models. The increase in specificity compared to other

group models did not decrease the sensitivity to much as well. In general, it

seems that the high models are better at creating a good balance in correctly

classifying both classes. The highest accuracies are achieved, equal to other

groups, by the 90/10 split models. Nevertheless, the boosting model specific

for the high group has an accuracy above 80%, with good numbers for both

the sensitivity and specificity. The highest F1-scores are for the 90/10 split

models, but followed by the specific high group boosting model.
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Model Sensitivity Specificity Accuracy F1

Random forest high 71.1% 87.4% 75.1% 81.2%
Boosting high 77.5% 88.2% 80.1% 85.5%
Random forest 80/20 67.0% 94.3% 73.7% 79.4%
Random forest 90/10 90.0% 68.9% 84.8% 90.0%
Boosting 80/20 71.5% 92.1% 76.6% 82.1%
Boosting 90/10 93.2% 68.3% 87.1% 91.6%

Table 4.6: Clinical performance, high group
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5. Discussion and Conclusions

This chapter discusses the findings of the study and compares them to related

work. The discussion of the findings is followed by the limitations and rec-

ommendations. With all the information, conclusions are formulated and the

research question is answered.

5.1 Discussion

Study findings

Within this study, eight different models were developed and tested on both

their artificial and clinical performance. These eight models were trained

using both random forest and boosting techniques, resulting in four models

each. The artificial performance describes the performance of the models when

trained and tested on the artificially created labels, while the clinical perfor-

mance indicates how well the trained models on artificially created labels can

classify stable and unstable labels compared to a clinical classification by a

medical expert. The results of the artificial performance indicated that the

boosting models were better at classification, with a significant difference in

three out of four comparisons. This difference only concludes that the boosting

models in general can classify the artificial labels slightly more accurate. How-

ever, these numbers do not give any indication on how well the classifications

are compared to a true clinical classification.

The clinical performance comparison indicated that in general accurate classi-

fications can be made by the different models. The comparison also showed a

wide range of variation in sensitivity and specificity values within and between

groups. The highest accuracies were achieved by both the boosting and ran-

dom forest 90/10 models [83.9%-87.1%]. However, the sensitivity values [90%-

97.3%] were much higher compared to the specificity values [23.1%-68.9%].
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This is probably related to the imbalanced dataset. The model with a speci-

ficity of 23.1% would not capture a large number of unstable periods. A nurse

or doctor relying only on such a model would miss many critical situations

that could have dangerous consequences. Luckily, monitors around the bed

of a patients capture high and low vital sign values, but using a model like

this should closely be considered. Nevertheless, a low specificity value is often

associated with a high sensitivity value. In case the aim of a model is to cap-

ture only stable periods as well as possible, a 90/10 model is very useful. For

instance, a hospital that relies entirely on monitor alarms (e.g. an alarm is

triggered when the heart rate exceeds a certain threshold) and only wants to

know when a patient is stable may want to use such a model. Nevertheless, in

general it would probably be more valuable to accurately classify both stable

and unstable periods, or at least not miss any unstable periods.

This study also compared group specific models with models trained on all

data and applied to the same specific group. The findings demonstrate that

the specific random forest model did not outperform the total models. The

boosting specific group models, on the other hand, were able to perform better

than the 80/20 split models based on accuracy. The boosting low model was

also able to perform better considering the sensitivity and specificity, while

the high group was better considering the sensitivity. This indicates that it is

preferred to have a group specific boosting model compared to a group specific

random forest model and a total model with an 80/20 split. The specific group

models also showed more balanced sensitivity and specificity values, which can

be a possible requirement for future adaptation of machine learning models in

healthcare.

The findings of this study can also be compared to previous work including

a SVM model, since one of the goals of this study was to provide insights in

its performance compared to other models [3]. It should be mentioned that

it is difficult to compare both studies as the performance is determined based

on a combination of three models. The three models are a SVM model, a

measurement error detection model, and a baseline variation model. Both the
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SVM model and baseline variation model classify observations as stable or

unstable. The measurement error detection model determines whether one or

more observations were collected during a measurement error and gives those

observations a corresponding label. In other words, it is not possible to com-

pare the outcomes directly, but might give an indication of what is possible.

The SVM model resulted for both groups in sensitivity and specificity scores

of 93% and 77%, respectively. The findings of this study indicate lower metric

scores considering the best models. The sensitivity score could be matched

with the 90/10 models on all patients, but have much lower specificity scores.

Nevertheless, the remaining unstable periods might be captured by the base-

line variation model stated in the previous work. The SVM model specific

for the low group resulted in a sensitivity and specificity of 92% and 63%,

respectively. The specific boosting low group and random forest 80/20 model

are the models closest to the SVM according to the metrics. The sensitivity

is about 9.5% lower where the specificity is about 5% lower. These percent-

ages might also go up when including the additional models of the previous

work. At last, the SVM specific for the high group resulted in a sensitivity

and specificity of 93% and 83%, respectively. The specific boosting high group

model would outperform the SVM on the specificity by 5%, but perform less

on the sensitivity with 16%. The boosting 90/10 model would perform similar

on the sensitivity, but score 15% less on the specificity. To summarize, the

combination of models in previous work has better metric values compared to

the models in this study. Nevertheless, some models in this study have the

potential to come close to or perhaps exceed the metrics when combined with

the other models mentioned in the previous work under the assumption that

this would improve the performance.

Related work

A study by Kanbar et al. also developed a machine learning model for iden-

tifying epilepsy surgical candidates and achieved a sensitivity of 77%. Even

though the specific application of the model is different, the sensitivity of the

created models in this study were often equal or higher. Unfortunately, this

study did not describe their specificity value. The same study also determined
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that their model was performing similarly to board-certified neurologist. This

indicates that even professionals make mistakes and models will most likely

also make mistakes. In other words, a model with a metric below 100% is

not immediately unusable in practice. Another study by Ruiz et al. aimed to

predict deterioration in advance (e.g. four hours). Their model, using extreme

gradient boosting, resulted in a sensitivity of 88% and a specificity of 86%.

The application of the model is again a bit different, but has higher metric

values compared to the best models of this study. This indicates that there

are probably still areas to improve on. Nevertheless, some models of this study

were not to far in achieving similar results. It should be mentioned that the

study by Ruiz et al. consisted of 488 patients and over 1,000 possible variables.

The difference in these numbers compared to this study can have a big impact

on the classification metrics and improve the models.

A study conducted by Pirneskoski et al. aimed to compare a random forest

model to the national early warning system (NEWS) based on the mortality

prediction accuracy. The random forest outperformed the NEWS model in-

dicating that machine learning techniques are capable of outperforming more

traditional methods. The sensitivity and specificity of the study were not re-

ported, but could be inferred from the area under the curve plot. The random

forest model created by Pirneskoski et al. was able to achieve a sensitivity

and specificity of approximately 80% and 70%, respectively. The plot also in-

dicates that a sensitivity of around 90% would result in a specificity of around

45%. These metric values are similar to the values of this study and might

conclude that the created models of this study also have the ability to outper-

form more traditional methods. At last, two other studies explored the use of

deep learning for predicting mortality a certain number of hours in advance.

The area under the curve values of both studies resulted in high scores, thus

were accurate in predicting mortality in advance [19] [20]. Aczon et al. pre-

dicted mortality with an area under the receiver operating characteristic curve

of 94%. Kim et al. used the same metric for their models and gave a range

of 89% to 97%. These metrics indicate that with enough data, deep learning

models can make very accurate predictions within healthcare. These metrics
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also show the best performance compared to all the studies discussed in this

section. However, these deep learning models lack interpretability, which is

currently essential for an implementation into the workflow.

Overall, different studies indicate their potential in using machine learning

techniques to add value to the workflow within healthcare. The deep learning

models showed great potential, but also lacked the ability to provide insights

into what is happening within the model, thus its decision making. It appears

that the models created in this study within ten weeks are comparable to other

created models, but in general consisted of slightly lower sensitivity and/or

specificity scores. The models used within the other studies were trained on

more data and included additional variables probably resulting in these dif-

ferences. Another reason for the difference might be the use of real labels, as

the studies did not indicate that artificial labels were created. Nevertheless,

combining the best models of this study, taking into account accuracy as well

as interpretability, with the other additional models created by previous work

would most likely result in a better performance [3]. This would slowly bridge

the gap from being a machine learning technique to an implementation into

the workflow.

Limitations

In addition to the findings and strengths of this study, several limitations

should be mentioned. First, the study filters patients based on the availability

of vital signs such as regional cerebral oxygen saturation which is currently un-

available as a standard of care resulting in selection bias [3]. Furthermore, the

frequency of data collected is once per minute, which is the frequency at which

data is written from the monitors to the patient database management system.

The flow of data to the database is done through re-sampling resulting in some

loss of data as some vital signs are measured more than once every minute.

To summarize, decisions are made based on the usability of the applications

currently available, resulting in a possible reduction in data quality.
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Secondly, the study is conducted within a time period of ten weeks. These

weeks gave the opportunity to explore multiple options to execute the research

and add value to the field of interest. Nevertheless, the depth of the research

has its limits. Even though hyperparameters were tuned and captured a wide

range of possible options, it could have been executed more extensively. In

the end, it is very difficult to state that the hyperparameter values of the final

models are indeed the best options, since many options were not considered.

Furthermore, the models from the hyperparameter tuning have been compared

based on the accuracy. The findings of this study indicated that the accuracy

can change depending on which model is considered. Moreover, an equal accu-

racy between two models can have different sensitivity and specificity values.

This study focused on a general classification performance, thus accuracy was

used for comparison. Nevertheless, if the aim would be to train models that

accurately classify unstable periods, it would be better to use the specificity

to compare the models during hyperparameter tuning. In short, the metric

used to compare the models during hyperparameter tuning should be carefully

considered by determining the clinical aim.

At last, predictions were made on a left out dataset of nine patients. From

these nine patients, a random window of 24 hours was selected and used to

compare it to a clinical classification annotated by one medical expert. It is

possible, due to the low number of true testing labels and the annotations of

one medical expert, the results are less robust. For instance, the high group

contained three patients. A random window with only stable or unstable ob-

servations can have a big influence on the final performance.

Recommendations

For future research, it is recommended to further explore the models and also

determine if the models can be improved. A possible improvement might be

achieved by performing a more extensive hyperparameter tuning. The hyper-

parameter tuning in this study covered a wide range of options, but small

improvements might be possible by testing small changes to the best values

from this study. Furthermore, the study uses a threshold of 0.5 as boundary
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between stable and unstable periods. Adjusting this threshold can result in

a better performance or shift the trade-off between the sensitivity and speci-

ficity. The use of percentages can also be extended by classifying the periods

into more groups or only use the percentage and visualize these percentages

with a color gradient scale. Especially the focus on percentages can be inter-

esting for healthcare, where you often work with certain risks of for example

being unstable.

Furthermore, it is recommended to explore the options to obtain more training

data. Machine learning models often give better performance when trained on

more data. The training set for the high group for example contained more

data compared to the low group and resulted in a better performance on the

test data. The data used also contained a class imbalance which influences

the classification models. This class imbalance cannot be prevented. However,

options exist that create samples from real data to increase in this case the

number of observations for the unstable class. At last, testing is performed on

a relatively small clinically labeled dataset. It would be recommended to have

more clinical labels to give additional value and increase the reliability of the

clinical comparison.

5.2 Conclusions

The aim of this study was to develop several models using the random forest

and boosting techniques that would accurately detect deterioration by clas-

sifying stable and unstable periods in infants at the PICU with cCHD over

time. The models indicated some promising results where certain models were

performing better than others. Especially, the boosting specific low and high

group models showed potential. In addition, models trained on all the data

without separating on a group also resulted in good performance metrics. It

can be helpful to have a general model that can be used for all patients, since

you might not have the information about which group a patient belongs to.
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5.2 Conclusions

The performance metrics of this study showed lower scores compared to the

SVM model of Zoodsma et al. However, the performance of the SVM model

also included additional models to classify deterioration that were not used

within this study. It is assumed that the addition of those models to the ran-

dom forest and boosting models would enhance the metrics and result in similar

results compared to the SVM. Furthermore, the SVM model by Zoodsma et al.

is not able to give percentages, while the random forest and boosting models

can. These percentages make it possible to move from a dichotomous classi-

fication to percentages that indicate a risk of deterioration. In other words,

there will be a difference between a 55% and a 95% probability of being un-

stable, which can be of great importance for clinical decision making in the

clinical workflow.
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A. Stable and unstable data distribu-
tions

This appendix consists of all distributions of the data separated on stable and
unstable periods.

Figure A.1: Heart rate distribution, low group

Figure A.2: Saturation distribution, low group
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Stable and unstable data distributions

Figure A.3: Respiratory rate distribution, low group

Figure A.4: Blood pressure distribution, low group
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Figure A.5: Regional cerebral saturation distribution, low group

Figure A.6: Heart rate distribution, high group
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Stable and unstable data distributions

Figure A.7: Saturation distribution, high group

Figure A.8: Respiratory rate distribution, high group
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Figure A.9: Blood pressure distribution, high group

Figure A.10: Regional cerebral saturation distribution, high group
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Stable and unstable data distributions

Figure A.11: Heart rate distribution, total 80/20 split

Figure A.12: Saturation distribution, total 80/20 split
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Figure A.13: Respiratory rate distribution, total 80/20 split

Figure A.14: Blood pressure distribution, total 80/20 split
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Stable and unstable data distributions

Figure A.15: Regional cerebral saturation distribution, total 80/20 split

Figure A.16: Heart rate distribution, total 90/10 split
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Figure A.17: Saturation distribution, total 90/10 split

Figure A.18: Respiratory rate distribution, total 90/10 split
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Stable and unstable data distributions

Figure A.19: Blood pressure distribution, total 90/10 split

Figure A.20: Regional cerebral saturation distribution, total 90/10 split
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B. Artificial performance

This appendix visualises the confusion matrices and their performance metrics
for the artificial performance.

Random forest

This section contains the confusion matrices and their performance metrics for
the random forest models.

Figure B.1: Performance metrics, low group
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Artificial performance

Figure B.2: Performance metrics, high group
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Figure B.3: Performance metrics, total 80/20 split
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Artificial performance

Figure B.4: Performance metrics, 90/10 split
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Boosting

This section contains the confusion matrices and their performance metrics for
the boosting models.

Figure B.5: Performance metrics, low group
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Artificial performance

Figure B.6: Performance metrics, high group
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Figure B.7: Performance metrics, total 80/20 split
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Artificial performance

Figure B.8: Performance metrics, 90/10 split
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C. Final model interpretation visualisa-
tions

This appendix visualises the variable importance and partial dependence plots
of each model to create better insights in the models which improves inter-
pretability.

57



Final model interpretation visualisations

Random forest

This section contains the variable importance plots (VIP) and partial depen-
dence plots (PDP) for the random forest models.

Figure C.1: VIP and PDP, low group
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Figure C.2: VIP and PDP, high group
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Final model interpretation visualisations

Figure C.3: VIP and PDP, total 80/20 split
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Figure C.4: VIP and PDP, total 90/10 split
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Final model interpretation visualisations

Boosting

This section contains the variable importance plots (VIP) and partial depen-
dence plots (PDP) for the boosting models.

Figure C.5: VIP and PDP, low group

62



Figure C.6: VIP and PDP, high group
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Final model interpretation visualisations

Figure C.7: VIP and PDP, total 80/20 split
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Figure C.8: VIP and PDP, total 90/10 split
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D. Clinical performance

This appendix visualises the confusion matrices and their performance metrics
for the clinical performance.
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Total models

This section contains the confusion matrices and their performance metrics for
the models trained and tested on all patients.

Figure D.1: Performance metrics, random forest 80/20
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Clinical performance

Figure D.2: Performance metrics, random forest 90/10
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Figure D.3: Performance metrics, boosting 80/20
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Clinical performance

Figure D.4: Performance metrics, boosting 90/10
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Low group models

This section contains the confusion matrices and their performance metrics
for the low group models. The first two models are trained and tested on low
group patients where the last four are trained on all patients, but tested on
low group patients.

Figure D.5: Performance metrics, random forest
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Clinical performance

Figure D.6: Performance metrics, boosting
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Figure D.7: Performance metrics, random forest 80/20
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Clinical performance

Figure D.8: Performance metrics, random forest 90/10
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Figure D.9: Performance metrics, boosting 80/20
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Clinical performance

Figure D.10: Performance metrics, boosting 90/10
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High group models

This section contains the confusion matrices and their performance metrics for
the high group models. The first two models are trained and tested on high
group patients where the last four are trained on all patients, but tested on
high group patients.

Figure D.11: Performance metrics, random forest
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Clinical performance

Figure D.12: Performance metrics, boosting
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Figure D.13: Performance metrics, random forest 80/20
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Clinical performance

Figure D.14: Performance metrics, random forest 90/10
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Figure D.15: Performance metrics, boosting 80/20
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Clinical performance

Figure D.16: Performance metrics, boosting 90/10
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