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Abstract

Climate change is causing countries to look for change and improvement

in different sectors, including the heating industry. In the Netherlands, this

is manifested, among other things, in a transition from the use of gas to

electricity. Heat pumps could be a part of the solution to this problem, and

the Dutch government has therefore initiated subsidies. However, not ev-

ery house is suitable for a heat pump. For this reason, this thesis investi-

gated the performance of hybrid heat pumps by searching for human be-

havioural patterns. The study demonstrates that by making use of predic-

tive modelling, it is possible to forecast power usage trends. By doing so,

we produced residuals with reduced influence of temperature, thereby en-

abling us to use Fourier analysis to look for human behavioural patterns.

Although we found patterns that yielded indications, we could not give

conclusive evidence that we found human behavioural patterns. How-

ever, we observed differences in how different heat pumps behaved under

similar conditions. These findings suggest that hybrid heat pumps may

not be suitable for every house included in this study. Further investiga-

tion is necessary to prove if our findings were signs of human behavioural

patterns and how the differences in behaviour effects hybrid heat pump

performance.
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1. Introduction

1.1 Climate change

It is undeniable that we are all confronted with environmental challenges.

In the past century, human activities have produced an artificial increase

in the concentration of greenhouse gases in the atmosphere, resulting in

the retention of the sun’s energy within the Earth’s system. The average

surface temperature of Earth is estimated to rise between 2 °C and 6 °C

by the end of the 21st century, and the rate of global warming has nearly

doubled in the last 50 years [1]. The impact of global warming is far greater

than just increasing temperatures. It has disrupted the natural water cycle,

resulting in more intense rainfall, flooding, and drought in various regions.

Global warming also affects rainfall patterns and causes rising sea levels,

coastal erosion, and shifts in infectious disease ranges. The impact of rising

greenhouse gas emissions on climate change is already evident and requires

urgent action [1], [2].

By 2019, the concentrations of atmospheric carbon dioxide (CO2) had

reached levels higher than those observed in at least the past 2 million years

[2]. As a result, international measures are being implemented to tackle cli-

mate change and its negative impacts. In 2015, world leaders of 194 parties,

including the European Union, joined the United Nations Paris Agreement,

committing to work together towards a net-zero emissions world [3].

1.2 Energy transition in the Netherlands

Among the countries of the European Union, the Netherlands has made

notable progress on its transition to a carbon-neutral economy. The coun-

try aims for a swift transition to a low-carbon economy and has integrated

greenhouse gas reduction targets into its energy and climate policy. In 2019,
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1.3 Types of heat pumps

a climate agreement package was developed by the business community

and civil society organizations [4]. The Dutch Ministry of Economics Agri-

culture and Innovation is aiming to reduce CO2 emissions by 49% in 2030

compared to 1990 [5]. One of the key measures outlined in the Climate

Agreement focuses on enhancing the energy efficiency of homes, and tran-

sition away from natural gas heating for new buildings, while also urging

improvements in existing buildings to enable fossil-free heating methods

[6].

A recent report from the Dutch Heating Industry (NVI), suggests that the

CO2 reduction target in the built environment by 2030 can be accomplished

by installing 1.7 million hybrid heating systems. This report emphasizes the

potential of hybrid heat pumps, as a suitable and sustainable solution for

millions of homes [7]. In May 2023, the government stated that there would

be stricter requirements regarding the efficiency of heating installations, and

heat pumps will become the minimum standard starting from 2026 [8].

1.3 Types of heat pumps

Moving away from fossil fuels towards renewable alternatives comes with

an increase in electric-driven systems. One of these systems, designed to

reduce gas usage by households, is the heat pump. There are multiple vari-

ants of the heat pump, with each having its own benefits and shortcomings.

There are heat pumps with an outdoor unit that will extract heat from the

outside air, while others will extract heat from below the ground [9]. This

second option is generally more expensive since a part of the ground must

be removed to install all the pipework that is needed to extract heat; there-

fore, most people will install an outside unit. A third option consists of the

use of photovoltaic thermal collectors, typically abbreviated as PVT. These

are panels that are laid down on the top of a house to collect heat; they are

also used as solar panels.
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Introduction

1.4 Hybrid heat pump

The commonality between these different versions of the heat pump is that

a house should be better isolated than what is seen as acceptable for a house

that uses gas. This creates a problem for all households that want to save

on gas and electricity but do not have all the prerequisites to install a heat

pump [9]. Therefore, the Dutch government is experimenting with subsi-

dizing hybrid heat pumps.

1.4.1 Hybrid heat pump components

A hybrid heat pump consists of two components, a smaller heat pump that

runs on electricity and a smaller boiler that uses gas. As a result, the com-

bined devices should have the benefits of both a heat pump and a boiler,

namely stability and less energy use for heating a room, but also jump-start

the heating of a room when it is cold, and the heat pump does not have

enough power to heat the room quickly. This means that even if a house

cools down more than a typical house that is isolated for the use of a heat

pump, it can still benefit from a hybrid heat pump.

1.4.2 Savings

By implementing a hybrid heat pump, a reduction of around 20% in (CO2)

emissions from heating and hot water can be achieved, together with an

approximate decrease of 80% in natural gas consumption [10]. A second

advantage is that installation is generally not a big operation because most

houses already have a boiler and so the needed pipes and connectors are

already in place.

To investigate if hybrid heat pumps do indeed help to save power and re-

duce CO2 emissions, the Dutch government needs more information about

the performance of hybrid heat pumps in real-life situations.
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1.5 The heat pump explained

Figure 1.1: Illustration showing the components and sequential operation of a
heat pump. Figure obtained from [11].

1.5 The heat pump explained

A heat pump works as follows (illustrated in fig. 1.1):

1. Heat is obtained from the air outdoors. It is directed or circulated over

the heat exchange surface of the outer component of the heat pump.

2. The heat is sufficiently warm to make the liquid refrigerant inside the

heat pump evaporate and transform into a gas.

3. This gas is then transported through a compressor, which boosts its

pressure, resulting in an increase in temperature.

4. The heated gas is directed over the internal heat exchange surface.

This heat can be either blown throughout the interior of the house or

transferred to a central heating or hot water system.

5. As the heat is transferred into the house, the gas cools down, causing

it to revert to a liquid state.

6. This cycle of reverse refrigeration repeats until the desired tempera-

ture is reached in your home, as set on your thermostat.

9



Introduction

1.6 Previous research

There have been earlier projects about monitoring the performance of heat

pumps in the Netherlands.

1.6.1 Installatiemonitor

In 2019 the project “Installatiemonitor” started. The goal of this project was

to collect information about the real-life performance of both heat pumps

and hybrid heat pumps. The project was a partnership between Enpuls,

Gasterra, Gasunie, Liander, N-Tra, RVO, Stedin and Techniek Nederland

and was carried out by consultancy firm BDH.

During this project 800 heat pumps were monitored until the 30th of

June 2021, from which 450 were eventually analysed. They concluded that

the release temperature of the heating system and surface of energy loss

positively correlated with the energy usage of the heat pump. Additionally,

a hybrid heat pump was found to significantly reduces CO2 emissions and

offers a financially attractive heating option [12].

1.6.2 Demo Project Hybride

This research is built upon the Inversable Demo Project Hybrid. The In-

versable Demo Project Hybrid involves several organizations and institu-

tions, including the Dutch Heating Industry (NVI), Technology Netherlands,

the Ministry of the Interior and Kingdom Relations (BZK), the Ministry of

Economic Affairs and Climate Policy (EZK), and the Netherlands Enterprise

Agency (RVO). Utrecht University is also participating in this project. The

current manufacturers participating in this project are Atag, Ferroli, Inter-

gas, Nefit Bosch, Remeha, and Vaillant.

The project includes 200 participants who have either had a hybrid heat

pump installed or will have one soon, starting from November 2022. Since

these hybrid heat pumps differ from the ones previously installed in the

Netherlands, mechanics underwent training to familiarize themselves with

this new type of heating. Additionally, locating participants, despite the
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1.7 Research question

heat pumps being subsidized, has taken some time. Currently, Inversable

has identified all 200 participants and continues to expand the data collec-

tion as heat pumps are installed and connected to a database [10].

1.7 Research question

Inversable suggested that it could be interesting to look at patterns of heat

pump performance over time. Are there certain patterns to be found that

influence the power usage of the heat pump? The “Installatiemonitor” re-

search did not cover the temporal component of heat pump usage longer

than a few hours, and the aspect of human behaviour was also not included.

In this research, those two aspects are the core of the methodology.

In the end, a report about the findings of the performance of hybrid heat

pumps will be produced for the Dutch government to see if it was worth the

investment. If the demo was a success, more hybrid heat pump installations

will follow.

We therefore chose the following research question: To what extent are

human behavioural patterns present in hybrid heat pump performance?

1.8 Thesis structure

The rest of this thesis is structured as follows. In section 2 we will discuss

what data we used and how we prepared it. In section 3 we discuss what

methods we used, both for the predictive model as well as for analysing the

residuals. In section 4 the results are presented. And finally, in section 5 we

talk about our conclusions, start a discussion and highlight potential areas

for future research.
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2. Data

This chapter includes a description of the data followed by data wrangling,

data exploring, data cleaning, and feature creation. Information about the

data extraction can be found in the appendix A.2.

2.1 Data description

The time-series data consists of real-time measurements recorded in 169

houses. This could be 200 in the future, but as mentioned earlier, although

all the 200 participants are found, not all of them have their heat pump in-

stalled yet. On average, there are 7 months of measured data per house,

ranging from 20 days for the shortest duration to 15 months for the longest.

During this period, various sensors were deployed in the houses, including

the heating system sensor, heat pump sensor, boiler sensor, smart meter, and

indoor climate sensor. In addition to data from the aforementioned sensors,

local weather data was collected.

2.1.1 Sensors

A summary of these sensors is provided in fig. A.1. The ‘time resolution’ col-

umn in fig. A.1 indicates the frequency at which new measurements were

recorded for each sensor. However, these time resolutions are more detailed

than necessary for our analysis. Therefore, the data was aggregated on a

daily basis. The aggregation techniques, indicated in the column ‘Aggre-

gation method’ in fig. A.1, varied depending on the type of measurement.

Here we provide a description of the aforementioned sensors,

The heating system sensor: Is responsible for monitoring the heating

system within the house. It measures various parameters such as flow rate,

and the supply and return temperature into the heating system. The energy

12



2.2 Data wrangling

and power of the thermal system are derived from this flow rate and sup-

ply temperature. The heating system sensor collects measurements every 5

seconds, providing detailed insights into the heating system’s performance.

The heat pump sensor: Is positioned at the heat pump unit. It specifi-

cally measures the energy and power supplied to the heat pump. However,

it does not directly measure the amount of energy converted by the heat

pump and transferred to the heating system.

The boiler sensor: Monitors how much energy and electricity the boiler

uses. It should be noted that a small portion of this energy could be used to

heat water for showers or for other purposes besides heating systems.

The smart meter: Is responsible for reading the smart meter readings for

the house. It transmits a “telegram” every 60 seconds for power readings

and every 10 seconds for energy and gas readings. This enables real-time

monitoring and analysis of energy consumption patterns. Please note that

the power consumed and delivered values represent the combined total for

all three phases of the network. Similarly, the energy consumed and de-

livered accounts for both high and low tariffs. Energy can be delivered by

a house when it generates energy itself, such as through the use of solar

panels.

The indoor climate sensor: Is typically placed in the living room and

is primarily used to measure the indoor temperature and humidity. It pro-

vides valuable data for understanding the indoor climate conditions within

the house.

Local weather data: Is collected via The Royal Netherlands Meteorolog-

ical Institute (KNMI) and linked with each house by Inversable.

Although metadata of each house was also provided, this was not used

in this research and therefore not described.

2.2 Data wrangling

A list of active devices given by Inversable was used to see what devices

were usable. Devices are not activated at the same time, meaning that they
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Figure 2.1: Number of active devices per month. The figure shows the gradual
increase of the total active devices from February 2022 until May 2023

are not well comparable. If one device was active during the winter of 2022

and the other one was not, it has a different average heat pump power usage

over the whole period. This statistic is important because it also influences

the normalized heat pump power if a Z-score normalization was applied.

In fig. 2.1, you can see how the number of active devices increases every

month.

2.2.1 Data aggregation

Within the query procedure, the data was aggregated to daily values on

the device level. In addition, only the period the device was active was

extracted, further reducing the query size. The variables that are used in this

thesis are aggregated as follows. Heat pump power is summed per day and

for the in-/outside temperature the daily mean was used. The aggregation

of other features can be found in fig. A.1.

2.2.2 Data selection

By analysing the autumn to spring period, we only take into account the

period where heating is mostly used. Because we also had to take the num-
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2.3 Data exploration

ber of active devices into account, we selected data from the start of October

2022 (October 6th) till April 2023 (April the first) resulting in 59 active de-

vices.

For the local weather data, besides aggregation, the values were multi-

plied by 10 because the KNMI recorded the data in a scaled format, where

the value ’0.1’ corresponded to a magnitude of 1, and the value ’2’ repre-

sented a magnitude of 20 °C.

If we want to compare all the devices equally, the heat pump power

should be normalized. We chose Z-score normalization, a technique in which

the mean of each value is subtracted and then divided by its SD. The Z-score

normalization is applied to each device separately so that each has about the

same range of values.

2.3 Data exploration

In this section, both specific traits of devices are investigated, as well as the

distribution of some features.

2.3.1 Individual devices

By considering each device separately, we can examine the relationship be-

tween outdoor temperature and heat pump power in greater detail. As we

plot them, we can see that devices can behave very differently depending

on the temperature.

Without removing the relation with temperature, it is hard to say if this is

caused by human behaviour. What we can see is that with sub-zero temper-

atures, some devices seem to use less power, while others use more. This

happens with multiple devices on several occasions. Furthermore, some

heat pump power trends are spikier than others. An example of the differ-

ences between devices can be found in fig. 2.2.

Are the users of the heat pump turning it off and on, does it have to do

with poor isolation, is the boiler taking over, or is it a defect? To see exactly

how common one behaviour is, all devices should be compared.

15



Data

2.3.2 Distributions

Plotting all the values of heat pump power values per device per day and

the average outside temperature on that day gives an insight into the distri-

bution of heat pump power per temperature (fig. 2.3).

As mentioned before, multiple devices have below-average heat pump

power usage with freezing temperatures, while others have the opposite

amount. There are also a few outliers at higher temperatures, but most de-

vices seem to behave quite similarly at those temperatures. If we try to plot

a simple linear regression on outside temperature and heat pump power

(blue line), we notice that it seems off. From the right it still looks right

however, if we end up at sub-zero temperatures, we expect the curve to at

least flatten. This is solved by creating a cubic function (orange line). This

line does flatten and goes even down below zero, meaning that eventually,

the majority of devices have below-average power usage.

We expect that the difference in behaviour between the devices shown

in fig. 2.2a and fig. 2.2b are also visible in the distribution plot (fig. 2.3). We

can prove this by plotting these individual devices with the same regression

and polynomial lines. It is visible that one device follows the regression line

while the other follows the polynomial line more closely during sub-zero

temperatures (fig. 2.4).

2.3.3 Polynomials

The cubic function is formed by incorporating a cubic polynomial into the

outside temperature. This process leads to the creation of new features. A

cubic polynomial is referred to as a third-degree polynomial because the

expression’s highest degree is 3, or equivalently, the power of the leading

term is 3.

2.3.4 Day of the week

Another interesting property of heat pump usage to investigate is the dif-

ference between normal weekdays and weekends. To see if there actually is

16



2.3 Data exploration
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(a) Device with a less pronounced correlation to the outside temperature.
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Figure 2.2: Time series depicting the relationship between heat pump power
and outside temperature on a daily basis for individual devices with on the
left y-axis heat pump power and the right y-axis outside temperature. The
time series spans from October 2022 to April 2023. The blue line represents
heat pump power, while the red line represents outside temperature.
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Figure 2.3: Scatter plot with regression and 3rd degree polynomials. It shows
heat pump power vs outside temperature for each day and 45 devices during
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2.4 Data cleaning

a difference, we looked at both the means of heat pump usage on working

days and that of the weekends.

The average heat pump power usage on working days is 495.83, and that

on weekends is 495.93. It seems like there is close to no difference between

these two, but what if we took the weekend days apart? For Saturday, the

average power usage is 488.96, while on Sunday this is 497.01. Previous

work shows that the day of the week does have an influence on temporal

trends, which is why we still included it [13].

Based on this information, four features were derived, considering the

day of the week as a factor (Weekend, Weekday, Saturday, Sunday).

2.3.5 Chosen features

While some features besides outside temperature had a relatively high cor-

relation with heat pump power, these were all closely related to each other

and the heat pump itself (multicollinearity). Although the actual method

will be explained later (3), the idea is to create a model that can take away

the trend based on temperature and show us human behaviour in what is

left. Correlation is therefore important to find. Because of that, only the heat

pump power, outside temperate and inside temperature was selected to be

the basis of our future model.

2.4 Data cleaning

For data cleaning we looked at missing values, and outliers, removing un-

conventional or peculiar behaving devices and imputing the missing data.

2.4.1 Missing values

As you can see in fig. 2.5, some devices have in more than 10% of their rows

missing data. While it is possible to impute all of it, the number of days

that we can analyse is already quite small and imputing in a way that can

pick up on both the temperature trend and human behaviour with this little

amount of data is not without risk. Therefore, we made the decision to drop
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Figure 2.5: Histogram displaying the distribution of missing data per feature,
shown as the count of percentages. Total depicts the percentage of rows where
at least one missing is present.

6 devices out of our analysis, leaving us with 53 devices.

2.4.2 Outliers

For outliers, we looked at both individual data points and devices that are

outliers themselves compared to other devices.

2.4.2.1 Outlier definition

An outlier is a data object that significantly deviates from the majority of

the dataset. In contrast to noisy data, which represents random errors or

variance, outliers are suspected of being generated by different mechanisms

compared to the rest of the data. When an outlier is suspected to be a result

of data collection or recording error, one possible approach is to remove the

observation [14], [15].
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2.4 Data cleaning

2.4.2.2 Finding outliers

Finding outliers in data that might be heavily influenced by human be-

haviour brings some challenges with it. If it is not a recurrent pattern it

can still be human behaviour because it happened on a holiday for exam-

ple. In spite of that, behaviour that happens occasionally, once or twice a

year, is not recognizable in data that describes only about 8 months of heat

pump usage.

One option is to create a linear regression model, predict the heat pump

power and use the residuals to determine if there are outliers. This way,

it is possible to determine whether a given amount of heat pump power

corresponds to the outside temperature, and if it does not, whether this be-

haviour occurs repeatedly and thus is not an outlier. The disadvantage of

this approach is that the linear regression is trained on outliers, among other

things.

Therefore, we chose to detect outliers directly on the original data, using

2.5 times the standard deviation. Choosing the right number of standard

deviations was based on trial and error. With a standard deviation of 3,

almost no values were seen as outliers, although we were sure there were

some. With 2, too many of the values were seen as outliers, although they

were probably just part of the human behaviour we are looking for or spikes

because of temperature change.

In the end, only a few data points per device were identified as outliers,

almost all of which used more heat pump power, as can be seen in fig. 2.6.

This was to be expected, because the beginning of autumn has very low heat

pump power values, close to zero, meaning that heat pump power values

on the lower end are almost never marked as an outlier. After finding the

positions of the outliers, their values were transformed into nan values.

2.4.2.3 Peculiar behaving devices

In some cases, whole devices were dropped for having strange values alto-

gether. An example of one of these devices is visible in fig. 2.7. The average

heat pump power usage of this device is too low compared to most other
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Figure 2.6: Time series of daily average heat pump power from a device dur-
ing the period October 2022 – April 2023 with outliers, indicated by red dots.
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Figure 2.7: Time series of daily average heat pump power from a peculiar de-
vice during the period October 2022 – April 2023 with exceptionally low val-
ues.
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2.4 Data cleaning

houses and suggests that another form of heating is used. Besides looking

at means and eyeballing, Inversable added a list of devices that exhibited

similar odd behaviour. Combined with our own research, this led to the

deletion of 8 devices, leaving us with 45 devices. The inside temperature

was also checked for outliers.

As mentioned earlier, some devices show different behaviour during

freezing temperatures than others. As a second cleaning stage for the cre-

ation of the final model, 15 of these devices were removed. Therefore, the

data set only contains devices that use more heat pump power on average

during freezing temperatures, instead of less like some other devices.

2.4.3 Imputing missing values

For imputing, we applied linear interpolation. A linear relation between

temperature and heat pump power was found. However, the sub-zero tem-

peratures showed large deviations from the estimated relation. Using poly-

nomials or even splines resulted in some unpredictable behaviour with heat

pump power values going below zero. Multi-imputation would also have

been an option, like many others, but because of a limited amount of time, a

relatively safe choice was made with linear interpolation. El-Nesr [16] wrote

an article about interpolation methods on time series and made a list based

on effectiveness expressed in explained variance (R2). It shows that on data

sets that are not too complex (small number of features) linear interpolation

performs well. Although, it is necessary to indicate that the dataset used

in this example is more predictable by time than ours. The imputation was

applied to each device individually to take the specific behaviour of that

device into account.

After removing the odd devices, and the outliers and imputing the data,

a few devices still had missing values. Those were the devices with missing

values at the beginning of the extracted period. Therefore, we made the

decision to shorten the period by moving the start date a few days forward,

changing it from October 6th to October 10th. By changing the data, we also

changed the statistics, as seen in figure table 2.1.
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Data

Table 2.1: Statistics of the data before and after all the cleaning steps.

Feature Mean New mean SD New SD
Heat pump power 414.11 495.86 360.50 352.94
Temperature inside 19.66 19.64 1.63 1.59

Temperature outside 7.04 6.92 4.63 4.61

Instantly notable is the standard deviation (SD) of heat pump power, it

is almost as big as the average heat pump power usage. This was to be

expected knowing that there is a difference in both house sizes, the number

of inhabitants, and isolation measures.

2.4.4 Heating degree days

In the end, an extra feature was created named heating degree days. This

feature is created by subtracting the actual temperature from 15 °C, unless

the temperature is higher than 15 °C, then it will be set to zero. The rea-

soning behind this is that a heat pump generally only operates when the

outside temperature is below 15 °C [17].
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3. Method

Multiple models were created before the final model was used to make the

predictions on which Fourier analysis is applied. We used Linear regres-

sion, polynomial regression and random forest models with any combina-

tions of the selected features. Each of the models was scored with explained

variance (R2) to eventually create the final model, which is based on linear

regression.

3.1 Prediction models

Every model was created using a train set that contains 66.67% of the data

and a test set that contains 33.33% of the data. After every feature that we in-

troduced in this thesis was tested and no further improvement was gained,

the next model was tested.

3.1.1 Linear regression

The first models that were created were based on linear regression.

Linear regression is a fundamental and widely used kind of predictive

analysis. The overall goal of regression is to investigate two things: (1) How

well does a collection of predictor factors predict an outcome (dependent)

variable? (2) Which factors, in particular, are significant predictors of the

outcome variable, and how do they influence it (as indicated by the size

and sign of the beta estimates)? These regression estimations are used to

describe the link between one or more independent variables and one de-

pendent variable [18].

3.1.2 Polynomials

We also implemented polynomial regression.
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Polynomial Regression is a type of regression analysis in which the rela-

tionship between the independent and dependent variables is represented

by an nth-degree polynomial. In our case, a 3rd-degree polynomial with

outside temperature as the dependent variable

A basic linear regression model works only when the data relationship is

linear. However, if we have non-linear data, linear regression will be unable

to create a best-fit line. In such cases, simple regression analysis fails. As we

have seen in data exploring (2.3.2), not all data follows a linear relationship

between temperature and heat pump, the sub-zero temperatures showed

large deviations from the estimated relation [19].

3.1.3 Random forest regression

The last model type we tried to implement was random forest regression.

Random Forest is an ensemble technique that can handle both regres-

sion and classification problems by combining many decision trees using a

technique known as Bootstrap and Aggregation, or bagging. The core idea

is to use numerous decision trees to determine the final output, rather than

depending on individual decision trees [20].

3.1.4 Final model

Our final model is based on linear regression with just the in-/outside tem-

perature since adding extra features did not improve the model. As ex-

plained during data cleaning (2.4.2.3), our final model used the dataset that

was cleaned an extra time with the removal of the devices that behaved dif-

ferently during the sub-zero temperatures. It was trained on 20 devices and

tested on 10. This model outperformed all other models, even though poly-

nomial regression had the best performance on the original data set. The

results of this model will be explained in the results section.
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3.2 Linear assumptions

3.2 Linear assumptions

When using linear regression, some assumptions are taken into account that

need to be verified. The first assumption is that there exists a linear relation-

ship between the predictors and the response variable. We have already

shown that this linear relationship is there (2.3.2).

Another assumption is that the error terms are uncorrelated. The com-

putation of standard errors for the estimated regression coefficients or fit-

ted values relies on this assumption of uncorrelated errors. However, if

there is actually correlation among the error terms, the estimated standard

errors will tend to underestimate the true standard errors. Consequently,

confidence and prediction intervals will be narrower than they should be.

Time series data often exhibit correlated errors, whereas adjacent observa-

tions have positively correlated errors. To investigate this, we can plot the

residuals against time. If there is no noticeable pattern, the errors are likely

uncorrelated. However, if adjacent residuals show tracking or similarity, it

suggests error term correlation [15]. To test this, an autocorrelation plot will

be made to test for correlation between the residuals, this will be done in

the results section 4.5.

The last assumption is that the errors are independent, have equal vari-

ance and are normally distributed [21]. To assess the normality assump-

tion, the histogram of the residuals can be plotted. If the residuals follow a

roughly symmetric bell-shaped distribution, it suggests that the assumption

of normality is met. This will also be done in the results section (4.4).

3.3 Validation

Multiple validation methods were used. For comparing models, cross-validation

and explained variance. For the final model, a histogram of the residuals

was plotted in combination with an autocorrelation plot.
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3.3.1 Cross validation

Cross-validation is a validation method that splits the data into a different

train and test set for multiple iterations. Because some train/test splits will

be more favourable for models than others, cross-validation gives a more

complete insight into the model’s actual performance. Each cross-validation

was executed with 100 iterations.

3.3.2 Evaluation metric

For evaluating the models, we chose explained variance (R2). This metric is

not only useful for comparing models but also gives more information on

how good an individual model is. For example, if a model has R2 equal to

0.05 then it is definitely poor.

3.3.3 Autocorrelation

With the creation of the autocorrelation plot on the residuals, it is visible

how well the model predicts the heat pump power on different time inter-

vals and if the assumption of uncorrelated error terms is met. Autocorre-

lation looks at the correlation of a feature (in our case, heat pump power

residuals) with itself on a later time step. All features start relatively high

on correlation, this makes sense because they have a high correlation with

themselves. Therefore, minor differences over one or two days may not sig-

nificantly impact the correlation. It is like the weather, it is predictable for

a few days, because it stays relatively the same, but over 20 or more days,

normally not so much.
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4. Results

4.1 Overview of the results

The results are split between the predictive model results and those of the

Fourier analysis that was implemented on top of it by Sahar Pourahmad.

4.2 Data properties

The properties of the data that was used for the prediction model is different

from the one used in the previous models. As explained in the data cleaning

section, extra devices were removed. The statistics of the data are shown in

table 4.1.

Table 4.1: Statistics for data used in final model

Feature Mean SD
Heat pump power 534.11 380.51
Temperature inside 19.73 1.69

Temperature outside 6.94 4.62

4.3 Final base model

Our final base model had a score of 0.644. This is an increase of 22% com-

pared to our best previous model. To see how well this model predicts

on individual devices, both best (fig. 4.1) and worst predictions are shown

(fig. 4.2). The difference in score between these individual devices is rela-

tively big and suggests there are still unexplained factors influencing indi-

vidual devices. Despite the significant difference in scores, the line of the

less accurately predicted device deviates less than the score suggests. While

the overall trend is still well followed, the predicted values are slightly over-

estimated or underestimated.
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Figure 4.1: Time series depicting the relationship between the true and pre-
dicted normalized heat pump power on a daily basis for a well-predicted
device. The time series spans from October 2022 to April 2023. The blue line
represents the true heat pump power, while the orange line represents the pre-
diction. R2 score of 0.855.
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Figure 4.2: Time series depicting the relationship between the true and pre-
dicted normalized heat pump power on a daily basis for a poorly predicted
device. The time series spans from October 2022 to April 2023. The blue line
represents the true heat pump power, while the orange line represents the pre-
diction. R2 score of 0.184.
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4.4 Residuals

4.4 Residuals

As mentioned in the linear regression assumptions, residuals from the pre-

diction of our model should follow a normal distribution. Plotting the resid-

uals of our model in a histogram shows how well the normalized heat pump

power of the test devices is predicted and proves that the assumption has

been met (fig. 4.3).
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Figure 4.3: Histogram displaying the residuals count from the predictions of
our best model on the test devices. The residuals are normalized heat pump
power and therefore the number of standard deviations from the mean.

4.5 Autocorrelation

In figure fig. 4.4 you can see the autocorrelation graph. We observe that

the model encounters challenges in making accurate predictions between 1

and 20 days. This changes after 20 days, and most devices stay between
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the boundary lines, meaning that the model can predict heat pump power

on periods longer than 20 days quite well. There are a few devices that are

interesting to discuss.

We observe a negative correlation around 20 days for 3V6IGK9H, mean-

ing that when heat pump power is high it will be low 20 days afterwards

and vice versa. Similarly, at 40 days, a high correlation is observed for this

device. These could be signs of bad isolation, as it does not seem very stable.

Looking closer at this specific device reveals that the house was built

between 1900-1945 and is detached. It has taken all possible isolation mea-

sures: Roof, walls, floor and double-glazed windows. It was given energy

label C.
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Figure 4.4: Autocorrelation graph displaying the correlation of residuals ob-
tained from the predictions made by our best model on the test devices over a
duration of 174 days.

The dark green line, device 217cZs88, has a slow descent in correlation,

meaning that its heat pump power is relatively stable. When it uses a certain
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4.6 Fourier analysis

amount of heat pump power, it will roughly use the same amount the days

after.

Looking closer at this specific device reveals that the house was built

between 1980-2000 and is semi-detached. It has taken all possible isolation

measures: Roof, walls, floor and double-glazed windows. It was given en-

ergy label B.

As you can see, even though both houses took the same isolation mea-

sures, the autocorrelation shows that their heat pumps do behave differ-

ently. One logical explanation is that the age of the house plays an important

role, together with being detached or semi-detached. Another one could be

found in the way the owner uses the heat pump. Although it is advised to

keep it running, some people might turn it on and off.

4.6 Fourier analysis

By using Fourier analysis is it possible to find trends hidden in the data. To

compare the difference between Fourier on pure heat pump power (fig. 4.5)

and Fourier on residuals (fig. 4.6), both results are plotted.
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Figure 4.5: Scatter plot displaying the top 10 frequencies per device from the
Fourier transform on heat pump power. With the logarithm of the period on
the bottom x-axis and the real value of the period on the top x-axis. On the y-
axis, the corresponding amplitudes, obtained from the Fourier transform.

By comparing the Fourier results showing patterns in the heat pump

33



Results

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

Period, Log Values (day)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Am

pl
itu

de

016mEcc5
216nacdJ
217cZs88
2V7Qbd5H
2l7baNVF
3V6lGK9H
o16jEsZH
w16iEsJG
x16mb81N
xV6oFdRd

1 1 1 2 2 3 3 4 5 6 7 9 11 13 16 20 25 30 37 45 55 67 81 99 122
Period, Original Values (day)
Fourier on residuals

Figure 4.6: Scatter plot displaying the top 10 frequencies per device from the
Fourier transform on the residuals. With the logarithm of the period on the
bottom x-axis and the real value of the period on the top x-axis. On the y-axis,
the corresponding amplitudes, obtained from the Fourier transform.

power (fig. 4.5) and the corresponding residuals for the same 10 houses

(fig. 4.6), several observations can be made. The original heat pump power

patterns associated with 6 days, 9–11 days, 11–13 days, 16 days, and 20–25

days are largely diminished in the residuals.

However, certain houses still exhibit residual values that demonstrate

recurrent patterns at approximately 6-7, 13, 25, and 45 days. This suggests

that even after removing the influence of temperature on the heat pump

power, there are still periodic changes in power usage that are visible on

the Fourier analysis of residuals. These recurring patterns may indicate be-

havioural patterns, such as weekly or biweekly activities that cause people

to be away from their homes, resulting in changes in power usage.
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5. Conclusion

The conclusion is that, based on the results, we have no conclusive evi-

dence that we found human behavioural patterns. We did find certain pat-

terns, but we were not able to really specify human behaviour by using the

described methods. It does seem that some heat pumps show strange be-

haviour in ways that are not good for the overall performance. This could

have implications for people who have hybrid heat pumps installed, even

though their situation is not optimal for one, leading to higher power usage

and cost than necessary. Besides power usage and cost, it could also harm

the reputation of hybrid heat pumps.

5.1 Discussion

Different causes could be given for the difference in the performance of heat

pumps during freezing temperatures. According to Inversable, it could be

due to one of the following reasons. Firstly, it’s possible that people set up

the heat pump in a way that when it uses more power than desired, it stops

and the boiler takes over. Secondly, it could be due to less optimal place-

ment of the outside unit of the heat pump, such as being exposed to direct

wind or being surrounded by snow or ice build-up, which can decrease its

efficiency. Thirdly, it could be a faulty sensor. Additionally, it could be the

difference between brands of heat pumps, one may be able to perform better

in freezing conditions than others.

Furthermore, We would have liked to apply various imputation tech-

niques. In this thesis, only linear imputation was applied, even though more

complicated imputation techniques like MICE have proved to be very suc-

cessful.

Besides imputation, our outlier detection method did not take the low

temperature into account which creates some outlier peaks, and if nan val-
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ues were present, outliers were not detected for that specific device.

Additionally, even though research showed the possible importance of

the extra features that were created, they did, however, not improve the

model. The reasons for this are unclear, and further investigation is re-

quired.

Lastly, this research was conducted within a relatively short time limit of

two months. In addition, it is important to note that the project faced server

issues at the beginning, resulting in a significant reduction of our available

time by at least a few weeks.

5.2 Future research

For future research, more data over a longer period of time is required to

make a more advanced analysis. In this thesis, the data covered only about

7 months of data.

Secondly, the difference in behaviour could be further analysed to find

out if the power usage trends are influenced by measurement faults, defects,

bad isolation, or maybe human behaviour after all. The actual impact of the

behaviour of these devices is not measured, but it would be insightful to see

what the impact on performance is and if measures have to be taken.

Lastly, clustering techniques could be applied to cluster devices that be-

have similarly. By doing so, it can be investigated whether these clustered

devices also possess other overlapping characteristics.
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A. Data

A.1 Data description

Description of the data can be found in fig. A.1.

A.2 Data extraction

The data that was used in this thesis only came from the heat pump sensor,
the indoor climate sensor, and the local weather data. From the heat pump
sensor, power in watts; from the climate sensor, the inside temperature of
the house in degrees Celsius; and from the local weather data, the outside
temperature in degrees Celsius.

The data was extracted by writing queries against the Influx database
of Inversable. By setting the output of the influxDB towards Pandas data
frames, it was possible to extract every table as a data frame. Due to server
stability issues, it was not possible to extract the raw data. At the same time,
raw data was not required for the method used.
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A.2 Data extraction

Figure A.1: Data description
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B. Trained models

B.0.1 Linear Regression 1
A linear regression model trained on all devices with a test set and cross-
validation, using the feature’s in-/outside temperature. Resulting in a R2

score of 0.468.

It is roughly the same as when we tried to overfit. This means that we
weren’t actually overfitting and probably need more features that could ex-
plain the unexplained variance.

B.0.2 Linear Regression 2, extra features

A linear regression model trained on all devices with test set and cross-
validation, using different combinations of the extra features created but
without polynomials. Resulting in a R2 score of also 0.468.

Adding the extra features brought no improvements.

B.0.3 Linear Regression 3, 3rd degree polynomial

A linear regression model trained on all devices with a test set and cross-
validation, using the features inside temperature and 3rd-degree polynomi-
als for the outside temperature. Resulting in a R2 score of 0.526.

The highest score so far when using all devices.

B.0.4 Random forest regression
To see if other models besides linear regression would score better, we tried
to implement a random forest regression. The random forest trained on all
devices with a test set and cross-validation, using the feature’s in-/outside
temperature. Resulting in a R2 score of 0.428.

This means that the random forest regression probably is not the ideal
method for this data.
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