
UTRECHT UNIVERSITY

Department of Information and Computing Science

Applied Data Science Master Thesis

A Comparative Study: Graph Neural Network versus

Gradient Boosting for Edge Sign Prediction in Social

Networks

First examiner:

Javier Garcia-Bernardo

Second examiner:

Eva Jaspers

Candidate:

Filip Chrzuszcz

July 5, 2023

Abstract

Nowadays more and more social network data can be represented as graphs.

The availability of such structures, especially in a form of a signed and di-

rected networks bring new challenges that can be analyzed. One of the

most common challenges in this field is the problem of sign prediction

of the link. The main difficulty is the fact that negative links carry differ-

ent meaning than positive ones. This research focuses on comparing two

methods of predicting the sign of the links. The first method utilizes fea-

ture engineering approach, where node and graph specific characteristics

are extracted and fed as an input to the gradient boosting model. The sec-

ond method utilizes Signed Graph Convolutional Network, which focuses

on extracting node representations in a low dimensional space, which are

used to predict a sign of the link. In the end both methods were compared

on the left out test set of randomly chosen edges using accuracy, AUC

score, precision and recall. The whole experiment was carried out on the

publicly available dataset, which is commonly used as the benchmark

for signed network algorithms. The final scores obtained by the models

were of high quality. However, the performance differ significantly among

tested classes, with positive edges being more easier to predict for the mod-

els than the negative ones.

Contents

1 Introduction 3

1.1 Research motivation . 3

1.2 Related work . 4

2 Data 6

2.1 Description of the data . 6

2.2 Preperation of the data . 7

2.3 Train test split . 8

2.4 Data and code availability . 9

3 Methods 10

3.1 Description of the methods used 10

3.2 LightGBM and SGCN models 10

3.3 Used metrics . 11

3.4 Models setup . 12

4 Results 14

4.1 Overview of the results . 14

4.2 Feature importance of the LGBM model 17

5 Conclusion 20

Appendix

A Appendix 22

A.1 Grid search . 22

A.2 Github repository . 22

Bibliography 24

2

1. Introduction

1.1 Research motivation

The recent growth in the popularity of social networks has contributed sig-

nificantly to the increased availability of such data, especially in the form

of graphs. In these graphs, nodes usually represent users, while the edge

between a pair of nodes indicates some type of relationship between them.

Typically, these graphs are characterized by a high sparsity of connections

and a large variety of node degrees in the graph. [20]

A vast part of the recent research is focused on the negative and posi-

tive sign prediction problem. This task is highly dependent on the network

on which it has to be carried out and objectives to fulfill. In the sense of

social networks, positive signs may implicate friendship or support, while

negative ones - disapproval or disagreement with others. Detecting and

predicting these links is important, as it allows us to better grasp human be-

havior: for example, it could tailor the user experience by suggesting new

relationships to other users based on common friends or interests. In addi-

tion, such methods can be also utilized in various other domains, such as

creating e-commerce recommendations [14] or to identify spurious links in

the protein interaction networks [9].

Sources of the sign prediction task originate from social psychology, es-

pecially from social balance and status theory. In general, a social balance

theory specifies relationships between triads (groups of three nodes), stat-

ing that "the enemy of my friend is my enemy," and "the friend of my en-

emy is my enemy,". The status theory is based on the hidden ordering of

nodes, where a positive link between nodes states that one of them pos-

sesses higher status, while a negative link indicates a lower status. Each of

these theories can be independently used for predicting signs of the edges,

3

Introduction

however here they only serve as a basis for both of the methods utilized in

this research. [10]

Detection and sign prediction of the links using machine learning meth-

ods (e.g., gradient boosting models or graph neural networks) might posi-

tively contribute to solving the problem. It might be challenging due to the

fact that negative links tend to behave differently than positive ones as they

carry different types of information, so the created predictors or embed-

dings have to take this into account. There exists research that focuses on

the sign prediction task such as Leskovec et al.[16] or Chiang et al.[5], where

the emphasis was put on creating features, which are in line with social bal-

ance theory and training the linear models on such predictors. Available

research also includes an approach focused on the graph neural networks

[13] [6], where the breakthrough discoveries in the field of neural networks,

such as embeddings or attention mechanism, are employed in order to en-

hance performance on the sign prediction task. However, there is a research

gap regarding the comparison of these approaches. As they differ signifi-

cantly, this study will attempt to compare their performance on a publicly

available network.

The present study aims to answer the following question: how well can

a machine learning model trained on the dataset with features regarding

nodes and edges perform at the sign link prediction task in comparison to

the Graph Neural Network model? For this particular problem, the Light-

GBM (LGBM) model and Signed Graph Convolutional Network (SGCN)

model were developed and their performances were compared.

1.2 Related work

Limited research has been conducted regarding the comparative analysis

of the graph feature approaches and the graph neural networks. However,

both of these approaches have been developed separately and there have

been plenty of significant research in recent years. The former approach pri-

marily focuses on computing diverse predictors based on the nodes, edges,

and overall graph traits. Some examples of such features can be social bal-

4

1.2 Related work

ance theory attributes, status theory attributes, counts of positive directed

paths, and in-degree or out-degree. Notably, Leskovec et al. [16] presented

an important instance of this approach. They created features per node rep-

resenting the number of positive and negative edges incoming and outcom-

ing from a node, as well as the number of common neighbors. In the end,

the logistic classifier was trained on such a created set of features. This ap-

proach was extended by Chiang et al. [5] where predictors responsible for

cycles of greater length were also added. As neither of these researches was

using more complicated models than linear models it may be of great use

to assess the performance of the gradient boosting model on a similar set of

features.

The second approach has been mostly focused on utilizing graph neu-

ral networks, either using attention mechanism [13] or convolutional layers

in order to present nodes in low dimensional space and based on that pre-

dicted sign of the edges.[6]. Both of the aforementioned approaches utilize

social balance theory as a source of inspiration to create complex represen-

tations of the nodes and edges, based on which the graph neural networks

operate. These methods lack the simplicity and explainability of the meth-

ods based on explicitly created predictors, however, due to their optimized

work and ability to squeeze the characteristics of the nodes and edges into

embeddings of small size, they also perform well on the task of edge sign

prediction.

5

2. Data

2.1 Description of the data

The dataset utilized in this experiment is based on the collection of Wikipedia

users. The network corresponds to votes cast by the users in the elections for

the admin position. When a link is positive it signifies a recommendation

for a particular user for the admin role, while the negative link represents

an opposing vote. There also exist neutral votes, however, these were dis-

carded in the data preprocessing part, as they do not carry the information

that the research seeks. In addition, the previous research [16] [5] [2] also

relied purely on the positive and negative edges from the input datasets as

they bring the crucial information that is searched for in the task of the sign

edge prediction. Besides that, some of the links were duplicated. The du-

plication occurred when the user ran for election several times, the same

voter/votee pair may contribute several votes to the dataset. Due to prob-

lems with further processing of such edges, the duplicates were dropped,

while keeping only the earliest vote in terms of date.

The final network contains 178096 edges and 11259 unique voters and

votees. Approximately 78 percent of the edges represent positive edges,

with the rest being negative. 10284 users have stated their opinion about

another user’s admin admission, 3494 unique users have received a vote

about their admission, and 2519 have both received and given opinions. The

time span of the votes in the dataset ranges from 2004 to 2013. In addition,

each link contains a short text which serves as support for the given vote.

This research did not take into account these texts, due to a limited way of

employing them in the GNN approach.

Because only positive and negative edges were considered during the

data processing stage, and the majority of nodes in the dataset lacked an

6

2.2 Preperation of the data

edge connecting them, it was essential to artificially create and add nonex-

istent links to the training dataset. In the dataset, they were considered as a

third class. The models can then explicitly identify whether the edge exists

and, if so, what its sign is.

2.2 Preperation of the data

The data preparation part varied greatly for both of the used methods. The

approach based on creating features and traits from the network for the

LGBM model required a lot of data preprocessing and preparation, while

the SGCN approach hardly required any preparation. [6].

Predictors which were created for the approach relying on the feature

dataset can be divided into two parts. The first set of predictors consists of

features associated with the social balance theory and status theory. These

features were added because Leskovec et al. [16] proved that they can bring

a lot of information about the edge sign for the model.

common neighbors - number of common neighbors shared by nodes that

form the edge

power of the adjacency matrix - entry from the adjacency matrix raised to

power 2 and 3, corresponding to the nodes forming the edge. This

power refers to the number of ways in which it is possible to travel

between pairs of points creating the edge in a network in exactly k

moves.

indegree and outdegree The overall number of incoming and outgoing edges

from each node

positive and negative degrees The overall number of incoming and outgo-

ing positive and negative edges for each node

node power This predictor is calculated by counting the number of times

each user has been voting in the dataset. It can be associated with

the status theory, as the nodes which have been voting more often are

having higher status within the network than the ones which have

been voting more rarely.

7

Data

The second group of features contains commonly used graph metrics,

which aim at creating the overall picture of the nodes that can be later uti-

lized by the model. As shown by Alzubaidi [2] these features can enhance

the performance of the model significantly.

clustering coefficient The clustering coefficient of each node. It is a mea-

sure of the degree to which nodes in a graph tend to group together.

The coefficient is defined for every single node as the fraction of the

number of links between the vertices which are its neighbors divided

by the number of edges that could possibly exist between them.

page rank coefficient PageRank algorithm which measures the importance

of each node within the graph, based on the number of incoming rela-

tionships and the importance of the corresponding source nodes.[11].

For the next set of features, Γ(v) denotes the set of neighbors of node v.

resource allocation index The resource allocation index which is defined

for a pair of nodes (u,v) as ∑wεΓ(u)
⋂

Γ(v)
1

|Γ(w)| .

preferential attachment score The preferential attachment score is defined

for a pair of nodes (u,v) as |Γ(u) ∗ Γ(v)|.

jaccard similarity The Jaccard similarity score is defined for a pair of nodes

(u,v) as |Γ(u)∩Γ(v)|
|Γ(u)|∪|Γ(v)| .

The SGCN model can build its internal embeddings for the nodes purely

on the input set of positive and negative edges, without any precalculated

predictors. As a result of that, no extra preprocessing was needed for that

step, apart from the basic cleaning, such as removing duplicates as men-

tioned before.

2.3 Train test split

Because the approach based on the LGBM model requires nonexistent edges

for the training phase, in order to be able to predict them on the test set, there

was a need to add these to the training dataset. It was done via negative

sampling, which works by selecting randomly pairs of nodes that do not

8

2.4 Data and code availability

have a link between them and adding such a link to the training set. The

number of added edges was chosen to be equal to the number of all existent

edges prior to this operation. Due to this, the model should be able to learn

the necessary traits of existent and nonexistent edges in order to be able to

distinguish them. For the edges added in the process of negative sampling,

their features were calculated in the same way as for the rest of the dataset.

The SGCN model works in a similar fashion, however, the negative sam-

pling is done internally in the model. In each training epoch, an equal num-

ber of nonexistent edges are generated as the total number present in the en-

tire dataset. The epoch loss is calculated using both the existent and nonex-

istent ones. Because it is done internally, it is not needed for the user to

create new edges for the training phase.

The test dataset is common for both approaches. It is done in order to

enable the possibility of comparing both methods. The positive and nega-

tive edges are selected from the whole set of edges at random. The size of

the test set was set to be 10 percent of the initial dataset. To evaluate model

performance on all edge types, including those which do not exist in the

original network; similarly, as in the training phase, the nonexistent edges

were added via negative sampling.

2.4 Data and code availability

With regards to data availability and ethical considerations associated with

the utilization of this dataset, it is shared publicly on the https://snap.

stanford.edu/data/ website [17]. It is available under the BSD license,

which means that it is free for both academic and commercial use. The

dataset contains usernames, which cannot be connected to any personal

data of the users, so it is safe to use from an ethical point of view. Code

written for purposes of this research is shared under an MIT license and it

is available on the Github repository with the link to it in the Appendix A2.

9

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/

3. Methods

3.1 Description of the methods used

After collecting and preprocessing the data, two separate datasets and mod-

els were built. As stated in the research question, this research aimed to

compare two approaches. For a feature based approach the LightGBM [15]

model was selected and for the graph neural network approach the SGCN

architecture was employed.

3.2 LightGBM and SGCN models

For the approach based on traits of the graph, there was a need to use a

machine learning algorithm that is fast, efficient, and provides great results

out of the box. Most types of regressors based on the idea of boosting satisfy

these criteria, however, the LightGBM excels in terms of speed of efficiency

so it was an algorithm of choice for this task.

The algorithm works by sequentially creating multiple weak learners, in

this case regression trees which are built on the residuals from the previ-

ous trees. In the end, the final prediction is a combination of all built trees.

This procedure allows to take advantage of the ability of decision trees to re-

duce bias, while keeping the variance of the final prediction low, due to the

combination of multiple regressors. LightGBM algorithm improves over

other boosting methods due to the usage of the Gradient-based One Side

Sampling (GOSS) method for tree building and Exclusive Feature Bundling

(EFB) for feature selection. GOSS works by attracting the algorithm’s at-

tention to the instances with high gradients (e.g., larger than a predefined

threshold) and dropping randomly the instances with small gradients. EFB

works by utilising the fact that usually, many features are mutually exclu-

sive (e.g., they do not have zero value at the same time), and thanks to that

10

3.3 Used metrics

these features can be combined into a single feature, thus enhancing the

speed of the training framework.

The second model was the SGCN model. It was chosen due to its op-

timzed work and good results on various publicly available datasets. [12].

The principles responsible for its work differ greatly from the LightGBM.

The SGCN model focuses purely on operating on signed and directed graphs.

It utilizes social balance theory principles to create node embeddings. These

embeddings are core elements of the algorithm as they are responsible for

creating the final predictions. They are learned via an iterative process of

training using the gradient descent method. To capture both positive and

negative ties present in the network, for each node there is trained a pair

of embeddings, one for positive ties and one for negative ones. Thanks to

this approach, the network can keep track of the relationships in the neigh-

borhood of each node. The positives and negatives embeddings are learned

separately and after the training is done, they are combined. This combined

output is used as an input for the final linear layer which predicts edge clas-

sification into one out of three classes (positive, negative, or nonexistent).

3.3 Used metrics

To compare LighgtGBM and SGCN models multiple performance metrics

were used. The formulas used for these metrics are abbreviated as follows:

TP - True positive, FP -False positive, TN - True negative, FN - False nega-

tive. The list of the metrics includes:

1. Accuracy = (TP + TN)/(TP + TN + FP + FN)

2. Precision = TP / (TP + FP)

3. Recall = TP / (TP + FN)

4. AUC - area under the ROC curve. That curve is created by calculating

True Positive Ratio (TP / (TP + FN)) and False Positive Ratio (FP/(FP

+ TN)) and every possible classification threshold.

Both accuracy and AUC can be used as an overall source of information re-

garding the performance of the models, however, since research apart from

11

Methods

assessing the overall performance also aims at examining the ratios of cor-

rectly predicted examples for individual classes, there was a need to use

other metrics. Precision and recall can explain and measure the performance

of the model on negative, nonexisting, and positive edges separately. Recall

explains how many of the true examples have been found by the model,

while precision measures how many of the observations which model clas-

sified to one of the classes truthfully belong to this class.

3.4 Models setup

Both LightGBM and SGCN models have a plethora of hyperparameters,

which can be altered to enhance performance. For the LightGBM model,

the search of parameters was run for parameters responsible for the number

of estimators and max depth of each tree, because as described on the model

website https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.

html these parameters are one of the most important ones in regards of the

model building speed and accuracy. For the SGCN model, the parameter

search was done for the size of the hidden layers and number of them, be-

cause these parameters define the complexity of the model and can drasti-

cally change its performance [3].

There are multiple ways in which a search for the best parameters can be

done. Starting from the simplest approach such as random search, and end-

ing at the very sophisticated ones, which can explore the parameter space

using Bayesian optimization [7]. For the needs of this research, the moder-

ately time consuming approach was chosen in the form of a grid search. It

works by exhaustively searching through a defined grid of possible param-

eter values and evaluating the model’s performance for each combination.

Thanks to this, it is possible to obtain a good solution within a few rounds

of model training, simply by checking every possible option and choosing

the best one in the end.

During the learning procedure of both models, the procedure of early

stopping [19] was employed. It aims at stopping the training of the model

when for a considerable number of epochs there was no improvement on

12

https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html
https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html

3.4 Models setup

the loss metric. Thanks to this, the model is less prone to overfitting and

the training procedure is much faster without significant loss of the perfor-

mance.

13

4. Results

All code for the models, as well as the output files with the results of the

grid search, can be found on Github, with the link present in the Appendix

A2. All the combinations of the hyperparameters from the grid search were

evaluated on the set-aside test set. Values of checked hyperparameters can

be found in Appendix A1.

4.1 Overview of the results

Since multiple metrics were computed for each run of the model, there were

plenty of variables based on which the best model could have been chosen.

Due to its versatility, the area under the ROC curve (AUC) was chosen to be

the parameter responsible for choosing the best model.

For the LGBM model, searched parameters were ‘max depth‘ and ‘n es-

timators‘. They are responsible for the maximal depth of the grown tree and

the number of created trees. The chosen values for these parameters were

• max depth: 4

• n estimators: 600

For the SGCN model, searched parameters were the number of layers and

several neurons for each layer. Both parameters are responsible for the com-

plexity of created embeddings. The chosen values for these parameters were

• number of layers: 2

• number of neurons: 512

Referring to figure 4.1, it can be observed that the feature based LGBM

model outperforms the SGCN model in terms of both accuracy and AUC.

The LGBM model achieves slightly higher scores, with an AUC of 0.956 and

an accuracy of 0.94, compared to the SGCN model’s AUC of 0.844 and ac-

14

4.1 Overview of the results

curacy of 0.807. However, it is important to note that these metrics provide

a general overview of the model’s performance, so it is worth looking at the

recall and precision metrics for all of the classes, especially the negative one,

which is the hardest one to predict, due to the low number of examples in

the training set.

Figure 4.1: Accuracy and AUC of models chosen via grid search

Figure 4.2: Recall of best models chosen via grid search. Scores differ signifi-
cantly between classes, with the nonexistent class having the best results and
negative the worst ones.

15

Results

Figure 4.3: Precision of best models chosen via grid search. Precision for the
negative class is much lower than for others, while positive and nonexistent
classes have scored almost the same for both models.

The LGBM model outperforms the SGCN model when considering pre-

cision and recall metrics, however, it is worth noting that on the negative

class, the SGCN model has managed to obtain similar results for precision

and even slightly better one for recall. Neither of the models had any prob-

lems with the nonexistent class, as both of them had high recall and pre-

cision, meaning that models have no problems with finding and correctly

labeling examples from this class. On the other hand, negative edges pose

much more trouble, having recall equal to 0.77 and a precision of 0.55 for

the SGCN model and 0.717 and 0.57 for the LGBM model. It means that

both models are doing quite well with finding examples from this class, as

indicated by high recall. However, the models also show a tendency to pre-

dict plenty of false positive examples, which results in low precision. Both

models did relatively well in the positive class, having both recall around

0.8 and precision around 0.9.

The ROC curves for the both best models chosen via grid search confirm

good results. They can be seen in figure 4.4 and 4.5. These graphs show

the performance of the models of all 3 classes at every possible classifica-

tion threshold. Both models exhibit similar performance on this metric for

16

4.2 Feature importance of the LGBM model

positive and negative classes. However, the LGBM model has managed to

obtain slightly better results for the nonexistent class in comparison to the

SGCN model.

Figure 4.4: ROC curves for the
LGBM model

Figure 4.5: ROC curves for the
SGCN model

The obtained results for the SGCN model match and even slightly out-

perform results obtained in the previous research. For example, He et al.

[12] have been checking multiple Graph Neural Networks architectures on

the task of the sign edge prediction. The exact result obtained for the SGCN

model on the AUC metric was 0.847, while the model used in this research

has managed to score 0.94. Such a difference may be caused by the fact that

in the mentioned research, the nonexistent class has not been predicted,

meaning the authors performed only binary classification on positive and

negative edges. Because models utilized in this research performed well

on the nonexistent class, this may explain the difference between these two

approaches. In addition, He was using the logistic classifier on top of the

trained nodes embeddings, while the implementation from the Pytorch Ge-

ometric package [8], which has been used in this research, utilizes the linear

layer of the neural network, which also can increase the performance.

4.2 Feature importance of the LGBM model

Because the LGBM model is based on multiple stacked decision trees, it is

possible to easily extract the importance of the features used in the model-

17

Results

building process. There are 3 main ways in which such importance can

be calculated. The first one is based on the number of times the feature

was used in all trees, to create a new split. The second one calculates the

total gain of the splits, which use a particular feature. These feature impor-

tance methods are widely used because they are simple and fast to com-

pute. However there exists a third method called permutation importance

[1], which was used in this research. The permutation feature importance

refers to the reduction in a model’s score when a single feature value is ran-

domly shuffled. Because of the usage of random sampling, which breaks

any linkage of the predictor with the target, it is possible to see how much

the model depends on that particular predictor [18]. Due to that, it is possi-

ble to assess the features importance in a broader sense than simply count-

ing the number of splits or summing the gains.

Table 4.1: Permutation feature importance from the LGBM model

Predictor Score

degree_in_target 0.182

degree_out_source 0.081

resource_allocation_index 0.058

vote_power 0.047

page_rank_target 0.041

common_neighbors 0.034

clustering_source 0.024

clustering_target 0.020

degree_out_target 0.017

jaccard_coefficient 0.014

target_name 0.009

source_name 0.008

preferential_attachment 0.003

adj_matrix_2 0.000

adj_matrix_3 -0.000

degree_in_source -0.001

page_rank_source -0.002

18

4.2 Feature importance of the LGBM model

Permutation importance shows that predictors related to status theory

and social balance theory such as vote power, indegree, and outdegree of the

node are key for the final model performance. Also important are features

related to the overall graph structure such as resource allocation index and

common neighbors. On the other hand, predictors revolving around the

power of the adjacency matrix seem to not matter that much for the model

behavior.

19

5. Conclusion

In the study, we took a technical and comparative approach to address the

task of sign edge prediction in the graph structures. Due to the wide avail-

ability of such structures, it is important to understand them and have the

ability to predict the existence and sign of the edges in such networks. This

may allow us to find factors driving human behavior and provide insights

into the mechanisms of showing trust and distrust among individuals. This

research aimed at comparing two widely used machine learning approaches

that can predict the sign of the edges in the graph structures.

Regarding the research question, the accuracy and AUC were high for

both the SGCN and LGBM models. They were able to detect and classify

the majority of the edges, from all of the classes, however, both models

performed noticeably worse on the negative class in comparison to other

classes. The majority of the results were slightly in favor of the LGBM, with

recall on the negative edges being the only score that was better for the

SGCN model. One possible solution for improving the performance of the

models on all types of edges may be analyzing the text attached to every

existing edge within the dataset. Each such text opinion may give viable

information regarding each edge, however, it may also pose problems, as

there are no such text entries for edges that do not exist, so negative sam-

pling may be tough for these.

One of the limitations of this research was the use of only one medium-

sized dataset. One possible solution to this problem could be the usage of a

bigger network for training purposes. Having more edges and nodes would

be beneficial for used models, as they would be able to better understand

the relationships and dependencies between nodes inside the network. In

addition, it may be of great use to compare developed methods on a greater

number of datasets in order to check the performances of the models on

various types and sizes of networks.

20

In terms of future work, further comparisons of various approaches and

models can be done. Interesting examples of models that may be used are

xGboost [4] for the feature-based approach and SiGAT [13] for the GNN

approach. Both of these models differ from the ones used in this research,

however, they still may obtain good or even better results.

21

A. Appendix

A.1 Grid search

In order to gain maximal performance of the models, grid search of the hy-

perparameters was performed. It was done for each model separately, be-

cause LGBM and SGCN models have different set of parameters which can

be optimized.

For the LGBM model searched parameters were ‘max depth‘ and ‘n esti-

mators‘. They are responsible for maximal depth of grown tree and number

of created trees. For both parameters tested values were:

• max depth -> [4,8,10,15]

• n estimators -> [400,600,1000]

For the SGCN model searched parameters were number of layers and

number of neurons for each layer. Both parameters are responsible for com-

plexity of created embeddings. Tested values were:

• number of layers -> [2,3,4]

• number of neurons -> [64,128,256,512]

Scores of the grid search can be found in the csv file present in the github

repository.

A.2 Github repository

The code with the whole preprocessing pipeline and explanatory notebooks

can be found under https://github.com/arctickey/Master_thesis

22

https://github.com/arctickey/Master_thesis

Bibliography

[1] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation
importance: A corrected feature importance measure,” Bioinformat-
ics, vol. 26, no. 10, pp. 1340–1347, 2010.

[2] A. M. N. Alzubaidi, “Lightgbm for link prediction based on graph
structure attributes,” ICIC express letters. Part B, Applications: an in-
ternational journal of research and surveys, vol. 14, no. 3, pp. 303–311,
2023.

[3] R. Andonie and A.-C. Florea, “Weighted random search for cnn hy-
perparameter optimization,” arXiv preprint arXiv:2003.13300, 2020.

[4] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ser. KDD ’16, San
Francisco, California, USA: ACM, 2016, pp. 785–794, ISBN: 978-1-
4503-4232-2. DOI: 10.1145/2939672.2939785. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939785.

[5] K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon, “Exploiting
longer cycles for link prediction in signed networks,” in Proceedings
of the 20th ACM international conference on Information and knowledge
management, 2011, pp. 1157–1162.

[6] T. Derr, Y. Ma, and J. Tang, “Signed graph convolutional networks,”
in 2018 IEEE International Conference on Data Mining (ICDM), IEEE,
2018, pp. 929–934.

[7] M. Feurer and F. Hutter, “Hyperparameter optimization,” Automated
machine learning: Methods, systems, challenges, pp. 3–33, 2019.

[8] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[9] R. Guimerà and M. Sales-Pardo, “Missing and spurious interactions
and the reconstruction of complex networks,” Proceedings of the Na-
tional Academy of Sciences, vol. 106, no. 52, pp. 22 073–22 078, 2009.

[10] F. Harary, “On the notion of balance of a signed graph.,” Michigan
Mathematical Journal, vol. 2, no. 2, pp. 143–146, 1953.

[11] T. Haveliwala, “Efficient computation of pagerank,” Stanford, Tech.
Rep., 1999.

[12] Y. He, X. Zhang, J. Huang, B. Rozemberczki, M. Cucuringu, and G.
Reinert, “Pytorch geometric signed directed: A software package
on graph neural networks for signed and directed graphs,” arXiv
preprint arXiv:2202.10793, 2022.

[13] J. Huang, H. Shen, L. Hou, and X. Cheng, “Signed graph atten-
tion networks,” in Artificial Neural Networks and Machine Learning–
ICANN 2019: Workshop and Special Sessions: 28th International Confer-

23

https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785

Bibliography

ence on Artificial Neural Networks, Munich, Germany, September 17–19,
2019, Proceedings 28, Springer, 2019, pp. 566–577.

[14] Z. Huang, X. Li, and H. Chen, “Link prediction approach to collab-
orative filtering,” in Proceedings of the 5th ACM/IEEE-CS joint confer-
ence on Digital libraries, 2005, pp. 141–142.

[15] G. Ke, Q. Meng, T. Finley, et al., “Lightgbm: A highly efficient gradi-
ent boosting decision tree,” Advances in neural information processing
systems, vol. 30, 2017.

[16] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive
and negative links in online social networks,” in Proceedings of the
19th international conference on World wide web, 2010, pp. 641–650.

[17] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset
collection, http://snap.stanford.edu/data, Jun. 2014.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[19] L. Prechelt, “Early stopping-but when?” In Neural Networks: Tricks
of the trade, Springer, 2002, pp. 55–69.

[20] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy
of the facebook social graph,” arXiv preprint arXiv:1111.4503, 2011.

24

http://snap.stanford.edu/data

	Introduction
	Research motivation
	Related work

	Data
	Description of the data
	Preperation of the data
	Train test split
	Data and code availability

	Methods
	Description of the methods used
	LightGBM and SGCN models
	Used metrics
	Models setup

	Results
	Overview of the results
	Feature importance of the LGBM model

	Conclusion
	Appendix
	Grid search
	Github repository

	Bibliography

