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Abstract

Cancer diagnosis and treatment is currently performed using histopathol-

ogy, which is time consuming and labour intensive. This process can be

automated using digital pathology, if the quality of the input slides is good

enough.

Slide quality is important, due to the fact of differences in staining colour,

that originate from the variety of staining processes performed at the dif-

ferent hospitals. Furthermore, in the process of staining slides, artifacts can

occur.

So, when bad quality slides are used as input for model building, biased

models will result. In this paper I answer the research question ’Is histoQC

a good tool for assessing the quality of the whole slide images in the cancer

genome atlas glioma dataset?’.

The results show that histoQC in its default configuration is not accurate in

detecting artifacts on slides. However I found that the output metrics his-

toQC generates are a good input for similarity analysis.

Knowing that histoQC is a good tool to find similarities in the input slides,

further research can be done to find out if the similarity analysis can predict

the robustness of a model trained on a specific set of the data.
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1. Introduction

Currently, cancer diagnosis and grading is performed by a trained patholo-

gist. In this process tissue samples are obtained during a biopsy or surgical

resection, after which preparation of the slide is performed through staining

the slide with haematoxylin and eosin (H&E). The slide is then examined by

a human expert using an optical microscope. This visual examination is a

repetitive process which can be automated, in order to reduce costs and

turnaround time. [1], [2]

Digital pathology is the digitisation of the traditional diagnostic process of

analysing cells and tissue with a microscope via whole slide image (WSI)

scanners, computer screens and data science. [3] Using digital pathology,

the pathologist digitises the H&E stained glass slide using a scanner. In this

digitisation process, the same magnification is used as when analysing the

slide with a microscope. After scanning the slide, the pathologist can either

analyse the slide manually on the computer screen or (parts of) the analysis

can be automatised by the computer. [4]

There are data quality challenges in automating the histology workflow.

First, the process of staining and digitizing an H&E slide happens differ-

ently in every hospital. This results in darker or lighter images. Second, in

processing the slides the pathologist sometimes writes a note on the slide or

draws a circle around an area of interest. Third, while processing bubbles or

dust can appear on the slide. Last, not every hospital has the same scanner.

[5] These problems can result in biased models that can predict the hospital

at which the slide is generated really well. [6] Since some hospitals process

more slides containing one kind of cancer and others more of another kind,

this can result in bad predictions about the cancer types presented on the

slide.

Andres Janowczyk et al. developed the histoQC module to assess the qual-

ity of whole slide images (WSI) and reduce the bias in models trained on the
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Introduction

slides. [5], [7] HistoQC assesses the slide by using various build-in modules

that use statistics, classification models, convolution operations and com-

parison of image values to the average values in the image. In this process

histoQC outputs metrics about the slides, figures containing the informa-

tion about the artifacts in the slides and masks that can overlay the original

slide to subtract tissue on the slide that can be used for further analysis. All

these outputs can be used to check the quality of the WSI and select similar

slides for further analysis, to reduce bias. This module has already gener-

ated good results for assessing the data of H&E stained images of kidney

biopsies [5]. Furthermore, Janowczyk has done research to compare the re-

sults of histoQC with assessing the slides by histopathologists and found

that they agree 95% of the time [7]. These two examples indicate histoQC is

a good tool for assessing the quality of WSI and detecting artifacts on them.

In this paper, I will answer the research question ’Is histoQC a good tool

for assessing the quality of the WSIs in the cancer genome atlas (TCGA)

glioma dataset?’ and the subquestions ’Can histoQC accurately detect arti-

facts on the WSI in the TCGA glioma dataset?’ and ’Can the output metrics

of histoQC be used for performing a similarity analysis on the WSI in the

TCGA glioma dataset?’. In order to find the answers to this questions I will

first describe the background on brain tumours, histopathology and slide

quality. Second, I will describe the data. Third, I will propose the methods

for assessing the quality using the histoQC package. Last, I will discuss the

results and provide options for further research.
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2. Background

2.1 Brain Tumours

In this paper I will focus on primary brain tumours, which are tumours in

the brain and central nervous system (CNS). [8], [9] There are different types

of primary brain tumours known, from which I will focus on the malignant

brain tumours known as gliomas. [8] A glioma is a type of tumour that

originates in the glial cells, the non-neural cells that do not produce electri-

cal impulses.[10]–[12] Around 75% of the malignant primary brain tumours

are gliomas. [8] Among gliomas, the following types are known and named

based on the type of cell with which they share histological features.

• Astrocytoma’s originate from star-shaped glial cells that are located in

the cerebrum. An astrocytoma usually does not spread outside the

CNS and therefore will not affect other organs [13].They have defined

borders and develop slowly. They are known as grade I or grade II

tumours and are the least aggressive type of brain tumours.

• Oligodendrogliomas, are tumours that originate from the oligodendro-

cytes of the brain or from glial precursor cells and is mostly found

in the frontal lobe [14]. Oligodendrogliomas are more aggressive tu-

mours and are considered grade III tumours.

• Glioblastomas are the most aggressive type of brain cancer and are clas-

sified as grade IV brain tumours. The cellular origin of this type is not

known. However, recent research show that astrocytes, oligodendro-

cyte progenitor cells and neural stem cells could all serve as cell origin.

[15]–[19]
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Background

Figure 2.1: Histopathology Image: from (a) healthy brain tissue and (b) ma-
lignant brain tissue. Both images represent a 256x256 µm representation of a
WSI. I created these images from WSIs in the TCGA dataset.

2.2 Histopathology

Histopathology is the field of human tissue analysis for a specific disease

and the histopathology images as described here are currently the principle

information source for cancer diagnosis and prognosis. These histopathol-

ogy images or whole slide images (WSI) are prepared in a process in which

the tissue sample is stained on a glass slide using haematoxylin and eosin

(H&E). H&E staining results in dark purple coloured nuclei, with the other

tissues coloured pink. Under the microscope the tissue is analysed to diag-

nose or grade brain tumours. [20]

An example of a slice of a WSI is shown in figure 2.1, on the left side an

example of healthy brain tissue is visible, where on the right side malig-

nant tissue is present. Comparing these two parts of a WSI, the differences

are clear. In the healthy tissue, less cell nuclei (purple dots) are present on

the slide, than in the malignant tissue. Furthermore, in the healthy tissue

the nuclei are more round and evenly distributed over the slide. The vari-

ation that is visible in the healthy tissue comes from the different cell types

present in the brain tissue. In the malignant tissue, more cell nuclei are

present, with lots of variation in their shape and size. This variation can be

both explained by the different cell types present in brain tissue as by the

abnormal cell growth of tumours.
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2.3 Slide Quality

Figure 2.2: A WSI, the whole slide (a) is 22.5x20mm in steps the WSI is
zoomed in untill almost pixel level in the lower left corner (d) which has a size
of 0.05x0.05mm, and in which the cell nuclei and other cell tissues are finally
separable.

In histopathology, for every biopsy taken, the pathologist needs to analyse

the WSI, which are at least 15 x 20 mm in size, where the representations in

figure 2.1 are only 256 x 256 µm. So you would need 59 by 78 images like

figure 2.1 to produce a typical WSI. In figure 2.2 an example of a typical WSI

is shown. As this image shows, a significant zoom-in is necessary to dis-

tinguish the cell nuclei and other cell tissues. Combining the big size of the

data with the possibility of both healthy and malignant tissue being present,

makes histopathology a highly skilled and time-consuming process that is

prone to human error.

2.3 Slide Quality

Figure 2.3: The variation in colour in WSIs stained with H&E. The colour vari-
ance can most likely be explained by the differences in staining process of the
hospitals that contributed their data to the TCGA dataset. As shown in the
zoom-in at the lower left corners, the colour differences are not explained by
the nuclei density. I created these representations from the WSIs in the dataset.

In order to do successful analysis on WSIs, the quality of the slides is
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Background

important. With high quality slides, prepared via the same staining process,

the data from multiple hospitals will be comparable. However, hospitals

currently have their own staining process, which can lead to variations in

colour intensity between the slides from different hospitals, as shown in fig-

ure 2.3. The zoom-in representations in the lower left corners show that

the colour variation can not solely be explained by the nuclei density in the

WSI, since the other cell materials also differ in colours between this three

examples.

Furthermore, sometimes artifacts are present on the slides. Artifacts can

originate from the glass slide, the tissue and from the scanning of the slides.

These artifacts influence the computational pathology process by introduc-

ing information that does not contain tissue and therefore can reduce the

accuracy of models trained on the slide. [5] In figure 2.4 examples of ar-

tifacts are shown. Figure 2.4 a, b, c and d show the artifacts caused by the

glass slide. For example in (a) a slide that is dirty. The dirt can be recognised

by the grey parts on the slide. In (b) a slide is marked with pen. Sometimes

the pathologist highlights a part of the slide with a marker or writes some-

thing on the slide. In (c) a cover slip is visible on the left side of the slide as

a black vertical stripe. This artifact comes from the top glass (cover) of the

glass slide slipping. In (d) we see an air bubble. This comes from air that is

caught between the bottom and top glass of the slide.

In figure 2.4 e an example of a tissue section artifact is shown. Tissue section

artifacts are caused by the tissue on the glass slide. In case of (e) in the mid-

dle of the slide an intense, dark purple area is visible, caused by the tissue

being folded on the slide. In figure 2.4 f and g we see artifacts that originate

from the scanning process. In (f) the slide contains a blurry section caused

by the scanner being out of focus when capturing that part of the slide. In

(g) grid noise is present, which is visible by the vertical lines on the slide.

This artifact is caused by the way the scanner moves over the slide.
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2.3 Slide Quality
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3. Data

The data for this project was retrieved from the Cancer Genome Atlas (TCGA).

It consisted of whole slide images (WSIs) of brain tumours, containing 1704

WSIs of low grade gliomas (LGG) and glioblastoma multiforma (GBM). [21]

The data is retrieved from multiple hospitals, more specifically 41 hos-

pitals for the brain tumour data, and the histopathology process can differ

a little. Meaning that the way the tissue is stained on the slide, can differ

between the hospitals. This will result in a variation in the intensity of the

colours of the WSI, as shown in figure 2.3. Another reason for colour space

artifacts can be caused by the use of different scanners in the different hospi-

tals. Furthermore, the data is not obtained for research goals, but for clinical

practice resulting in the possibility of artifacts on the slides, as shown in

figure 2.4.
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4. Method

The aim of this paper is to assess if histoQC is a good tool for quality con-

trol of whole slide images (WSIs) from brain tumour tissue in the Cancer

Genome Atlas (TCGA). Since previous research indicates that histoQC is a

good tool for quality control in H&E stained WSIs of kidney biopsies [5] and

that the results of histoQC are in line with assessing WSIs by a histopathol-

ogist [7] I choose to use histoQC for the quality assessment of the TCGA

glioma dataset.

HistoQC is a quality control tool that is able to analyse WSIs stained by var-

ious processess, but is tested most on H&E stained WSIs. In the analysis of

the WSIs histoQC first trains a classification model on templates to detect

pen markings and cover slips on the WSIs. After that it starts analysing the

WSI using statistical measures, convolution operations and the classifica-

tion model it trained. For a complete list of the modules that are built-in in

histoQC see appendix D. It is possible to change histoQCs configuration file

to meet the requirements of the project. In this project I used the default con-

figuration file to do the analysis, which means that the classification models

are trained on templates provided by histoQC. [22]

Since I divided the aim of the paper in two sub-questions, I will describe the

methods used to answer the first sub-question ’Can histoQC accurately de-

tect artifacts on the WSI in the TCGA glioma dataset?’ in the section 4.1 arti-

fact detection and the methods used to answer the second sub-question ’Can

the output metrics of histoQC be used for performing a similarity analysis

on the WSI in the TCGA glioma dataset?’ in the section 4.2 similarity analy-

sis.

An overview of the complete workflow can be found in figure 4.1
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Method

Figure 4.1: Workflow

4.1 Artifact Detection

In the first part of the project, the histoQC module is used to detect artifacts

on the WSI of the TGCA dataset. The main goal is to detect the artifacts as

described in figure 2.4. In order to detect the artifacts in the WSIs, it is nec-

essary to include the right modules in the configuration that is used for the

analysis. In this case I want to detect dirt, pen markings, cover slip, air bub-

ble, folded tissue, blurry sections and grid noise. The default configuration I

will use for this project is able to detect all these artifacts using the methods

described in table 4.1. For some of the artifacts specific modules are avail-

able, namely for pen markings, coverslip detection and blurry regions, the

other artifacts are detected based on their differences in the contrast mea-

sures compared to the rest of the slide. After running the histoQC analysis,

masks are created with the parts of the slide containing tissue that can be

used for overlaying with the original slide, to remove the artifacts.

To check the accuracy of histoQC in detecting the artifacts, I manually ex-

amine all 1704 WSIs to check if there are pen markings, cover slips and large

blurry areas on the slides.

.
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4.2 Similarity Analysis

Artifact Module Description
Dirty Slide getIntensityThresholdPercent The getIntensityThresholdPercent operation com-

pares the pixel values to a threshold. If the pixel
value is above the threshold, the pixel is detected as
dirty.

Pen mark ClassificationModule Before analysing the slides a random forest clas-
sifier is trained on an example image and a mask.
During the analysis histoQC checks if the image
has a comparable mask and therefore needs to be
classified as containing a pen mark.

Cover slip ClassificationModule Like for the pen marking for the coverslip an exam-
ple slide and mask is provided on which a random
forest classifier is trained. During analysis the slide
is classified as having a coverslip or not.

Air bubble getIntensityThresholdPercent The getIntensityThresholdPercent operation checks
the image pixel-wise and compares it to a prede-
fined threshold. If the value is above the lower
threshold and below the upper threshold the area is
marked as containing an air bubble.

Folded tissue getIntensityThresholdPercent The getIntensityThresholdPercent checks the slide
pixel-wise to compare the values to the predefined
threshold. If the value of the pixel is higher then the
set threshold, the tissue at that pixel is marked as
folded.

Blurry section identifyBlurryRegions Searches the images for regions with a certain
threshold for blurriness with a predefined thresh-
old. If the pixel is recognised as blurry and has a
radius bigger than the set radius, it is marked as
blurry.

Grid noise getIntensityThresholdPercent The getIntensityThresholdPercent checks the slide
pixel-wise and compares it to the predefined
thresholds. If the value is higher than the lower
limit and lower than the upper limit it is recognised
as grid noise.

Table 4.1: Artifacts that are detected, including the module used and a de-
scription how the module works.

4.2 Similarity Analysis

Next to artifact detection and creating the masks of useful tissue, the his-

toQC module also returns metrics of the WSIs. These metrics contain in-

formation about the basic information/statistics about the slides, like the

scanner used to create the slide, the magnification at which the slide is dig-

itized, the amount of pixels in the WSI, the height and width of the WSI

and the mpp (magnification per pixel) in x and y direction. Furthermore,

the metrics contain information about the slides colours and artifacts. A full

list of the metrics histoQC produced using the default configuration can be

found in appendix C, in this table the first 10 rows represent the information

about the slide and the other 51 rows contain information about the slides’

colours and artifacts.
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These metrics about the colours and artifacts in the slides, which are 51 met-

rics, are used to assess the similarity of the WSIs in the dataset. These met-

rics contain among others information about the percentage of the slides

covered with artifacts, the brightness and darkness of the slides, the amount

of contrast and comparisons of the RGB distribution in the slides to a tem-

plate.

The output table of histoQC containing the information regarding these

variables is used as input for the similarity analysis. The similarity anal-

ysis is performed in python using a principal component analysis (PCA).

The principal components that are created in the analysis give an indication

about how much variance in the slides is explained by them. Slides with

similar principal component values are likely more alike based on the met-

rics that are used as input. Based on the results of PCA, the structure of the

data is studied and the similarity between the slides. Slides that are close to

each other in the PCA results are likely to be similar, where slides far away

are likely to be different.

After the PCA in which only 2 of the 51 dimensions in total are analysed,

the PCA results will be used as input for an UMAP analysis. UMAP is a

similarity analysis method in which multiple dimensions can be reduced

to two dimensions. By using UMAP therefore all the PCA results can be

captured in only two dimension, meaning that the output plot will better

represent the similarity between the slides. The similarity or differences

between slides in UMAP analysis can be described based on the distance,

slides further apart from each other in the plot are less similar than slides

close to each other.

14



5. Results

For the analysis the default configuration file is used, resulting in 59 metrics

as output. From the original 1704 WSI that were used as input data, histoQC

was not able to detect tissue suitable for analysis on 4.6% of them due to ar-

tifacts or too little contrast between the tissue and background. This means

that 78 slides had no tissue suitable for analysis on them and therefore are

excluded from further analysis.

In a subsample of 35 of these slides on which histoQC did not detect suit-

able tissue, I manually checked if indeed the tile I have from a piece of the

slide had no high quality tissue on it. In 14% of the checked images, the

tile was made out of tissue that could be used for analysis. This means that

from the 78 slides which histoQC found not suitable for further analysis 11

slides most likely will be suitable for further analysis.

On average histoQC detected 0.05% of the pixels on the whole slide to have

tissue suitable for analysis, with a range of percentages of the pixels in the

WSIs that are suitable for analysis is between 0% and 0.27%. The average

number of pixels used for analysis by histoQC is 1.6 million, where an aver-

age WSI is 80,000 x 60,000 pixels in size meaning that it consists of 4.8 billion

pixels. This numbers added together indicate that the numbers are reason-

able, but nevertheless it is a really small percentage of pixels, even when the

large amount of background pixels is taken into account.

5.1 Artifact Detection

In histoQC there are metrics for the pen markings, coverslip edge and blurry

regions, which can be used to calculate the percentages of slides containing

this artifacts. For the complete TCGA glioma dataset of 1704 slides, his-

toQC detected a pen marking on 3.4% of them, a coverslip on 95.4% and a
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Figure 5.1: Example slides at which histoQC detects a coverslip, but there is
none visible in the original slide. In the upper image the borders of the tissue
are detected as coverslip and in the lower image the borders of the penmark-
ing are detected as a coverslip.

blurry area bigger than the mean blurry area in 18.5%. The number of slides

containing a coverslip is high, due to the fact that histoQC also detects cov-

erslips on slides that don’t have them, as shown in figure 5.1. During the

analysis of the slides with a blurry region, I found that histoQC detected a

blurry region in 99.6% of them. This is because almost all of the slides con-

tain a little blurry region on them at the edge of the tissue, caused by the fact

that the tissue density is lower making it harder to keep the scanner in fo-

cus. Therefore the number of slides with a blurry region that is bigger than

the average area of the blurry region on the slides are measured, resulting

in 18.5% of the slides containing a large blurry region.

I manually checked the results for pen markings, cover slips and blurry ar-

eas and found that 6% of the slides contains pen markings, 7.7% of the slides

contains a cover slip and 8.4% of the slides contain a blurry area that is vis-

ible with bare eye. The results of histoQC and the manual check are shown

in table 5.1. With the numbers next to each other, the differences in number

for the coverslip are really big, which can be explained as described above

and in figure 5.1.
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5.1 Artifact Detection

Artifact HistoQC Eyeballing
Pen mark 3.4% 6.0%
Cover slip 95.4% 7.7%
Blurry 18.5 % 8.4%

Table 5.1: Results of the histoQC artifact detection and the manual check of all
1704 WSI. The difference for the cover slip is really big and can be explained
by histoQC detecting cover slips at tissue borders and other artifacts.

In figure 5.2 an example of the visual output of the histoQC results of

the artifact detection for the slides represented in the background section,

figure 2.4, is shown. In the left column the original slides are represented,

in the middle the artifact detection (the grey/black area), the tissue suitable

for analysis (the pink area) and the background (in green) are found and on

the right the mask that is created and can be used to overlay the original

slide in order to extract the tissue suitable for analysis.

When reviewing the slides and the artifact detection visible in figure 5.2,

we see in (a) that next to the dirt, also parts of the tissue are masked out

resulting in only a small section of tissue suitable for analysis. In (b) the pen

marking is detected and also some other artifacts at the borders of the tissue.

In (c) the cover slip is detected and masked out, but the tissue on the slide

is all selected as suitable for analysis. In (d) the air bubbles are detected, as

shown by the colour difference in the green background in the middle col-

umn, however this has no effect on the tissue that is suitable for analysis. In

(e) the folded tissue near the middle of the slide is detected and also some

other parts of the tissue are masked out. In (f) we can see in the middle and

right images that none of the tissue in the slides is selected as viable tissue

for analysis. At last in (g) we can see that the horizontal lines or grid lines in

the original slide are detected by histoQC, but do not effect the tissue that is

suitable for analysis. In almost all of these examples, more than one artifact

is present, resulting in parts of the tissue masked out. Some of the artifacts

are clear from the original slide, but others are hard to detect with bare eye.

From this select sample of slides, it shows that histoQC is capable of detect-

ing artifacts and creating a mask for subtracting the tissue that is suitable
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for analysis. However, there are no distinct modules in histoQC that create

metrics on the grid noise, air bubble, folded tissue or dirt. So, it might be an

accident that these artifacts are removed from the slide in these examples.

Furthermore, we found out that the metrics for blurry areas on the slides

and the coverslip give a high number of false positives when not analysed

carefully.

More artifact detection results can be found in appendix A.
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5.1 Artifact Detection

Figure 5.2: The results of the artifact detection in histoQC. On the left side the
original slides are represented, in the middle the representation on which the
pink tissue is the tissue that is suitable for analysis, in black/grey the artifacts
detected and in green the background. On the right side the mask is shown
that can be overlay over the original slide to extract the tissue suitable for anal-
ysis. Slide a-f represent the same slides as in figure 2.4, with (a) a dirty slide,
(b) a slide with a pen marking, (c) a slide with on the left the cover slip, (d) a
slide with air bubbles, (e) a slide with folded tissue, (f) a blurry slide and (g) a
slide with grid noise in the background.
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Results

5.2 Similarity Analysis

Before starting the similarity analysis, the 78 slides on which histoQC did

not detect any analysable tissue were removed from the dataset. Then the

PCA was run as described in the methods section. The graphical represen-

tation of the PCA results can be found in figure 5.3.

Figure 5.3: The results of the PCA analysis after deleting the slides on which
no tissue was detected. On the left the points in the scatterplot are coloured
based on the site at which the slide was created. On the right the points are
replaced with a tile of the slides.

On the left side the PCA results are shown colour coded based on the site

at which the slide is generated. It is visible that the slides that are generated

on one site are more similar to each other than slides generated on different

sites. For example the yellow dots representing site ’HT’ are centred at the

bottom of the point cloud.

On the right side the points in the PCA results are replaced with a tile of the

original slides. In this visualisation, it is clear that the slides with a lower

contrast are represented at the upper left part of the point cloud and the

slides with a higher contrast are represented more at the bottom right of the

point cloud.

Overall, there are no clear clusters in the PCA results, meaning that the
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5.2 Similarity Analysis

slides are more or less similar. However, even without clusters in the data,

when looking at the PCA in thumbnails visualisation, one can see that from

topleft to bottom right the tiles go from pale to dark coloured. So, it might

be possible to classify the group into two based on the colour intensity in

the slides.

Furthermore, when looking at figure 5.4 it is visible that some hospitals are

more clustered at a distinct location in the point cloud than others. On the

left side, hospitals ’12’ and ’HT’ are coloured and as shown these hospitals

are located at the border of the point cloud and more or less seperated from

the other hospitals. On the right side, hospitals ’06’ and ’DU’ are coloured

and this representation shows that these two hospitals are more located in

the center of the point cloud and are evenly distributed over it. This figure

shows that the hospital at which a slide is generated, can influence the sim-

ilarity between the slides.

Figure 5.4: PCA results on the slides. On the left the hospital ’HT’ is coloured
blue and hospital ’12’ is coloured orange. The slides these hospitals pro-
duced are more similar to the other slides these hospitals produced than to the
slides produced at other hospitals in the dataset. On the right hospital ’DU’ is
coloured green and hospital ’06’ is coloured red. The slides generated at these
hospitals are in the middle of the point cloud and do not show any separation.
The slides produced at hospital ’DU’ and ’06’ are more representative for the
slides from all hospitals.
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Results

Most explainable variables
PC1 PC2
template3_MSE_hist template4_MSE_hist
chan2_brightness template2_MSE_hist
grayscale_brightness small_tissue_filled_percent
chan1_brightness_YUV fatlike_tissue_removed_percent
deconv_c1_std fatlike_tissue_removed_num_-

regions

Table 5.2: The five most explainable variables for PC1 and PC2

Next to this visual representation of the PCA results, the variance ex-

plained by principle component (PC) 1 and 2 are calculated. PC1 can ex-

plain 24.3% of the variance in the slides and PC2 19.6%, meaning that to-

gether PC1 and PC2 can explain 43.9% of the variance in the slides. At last

the most explainable variables for PC1 and PC2 are subtracted, to find out

on which ground the similarity found can be explained. In table 5.2 the most

explainable variables for PC1 and PC2 can be found. This table represents

that colour and brightness are the main explainable variables for PC1, since

MSE_hist compares the colours in the slide with a template, and chan2_-

brightness, grayscale_brightness and chan1_birhtness_YUV are measures

for the brightness in the slide. For PC2 the most explainable variables are

also colour based, since the first two explainable variables are both a com-

parison of the slide to a template. Next to this colour based explainable

variables PC2 also has explainable variables based on what is in the slide,

such as fatlike tissue and small tissue areas. A full explanation of all vari-

ables in the metrics output can be found in the appendix C.

To get an even better idea of the similarity between the slides, the PCA

results are used as input for an UMAP analysis. This is done to get an idea of

the similarity between the slides on all dimensions, where the PCA results

explained above only represent two dimensions. The UMAP results can be

found in figure 5.5. In this visualisation again on the left the points in the

visualisation are coloured based on the site at which the slide was generated

and on the left the points are replaced by a tile per slide. In these results the

hospitals are more evenly distributed over the whole point cloud then in

the PCA results. Furthermore, there are no distinct clusters in the UMAP
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5.2 Similarity Analysis

Figure 5.5: The results of the UMAP analysis with the PCA results as input.
On the left the points are colour coded based on the site at which the slide is
generated, on the right the points are replaced with a tile of the slide.

results. In the tile representation we see that the distinct separation of paler

and darker slides is less significant in the UMAP analysis. There is however

still a big variation within the slides, as the distance between the two tails is

relatively large. This indicates that some slides are more alike than others.

Colour does not seem the biggest factor to explain this variation based on

this results.
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6. Conclusion

The aim of this research paper is to assess histoQC as a quality control tool

for the TCGA LGG and GBM dataset. In order to do this, the first re-

search question was: ’Can histoQC accurately detect artifacts on the WSI

in the TCGA glioma dataset?’ The results show that histoQC in the default

configuration was not able to accurately detect the artifacts on the slides.

First histoQC did not report about dirt, air bubbles, folded tissue and grid

noise, although we are interested in these artifacts. Second, the results on

the amount of pen markings, cover slip and blurry areas were not accu-

rate when compared to eyeballing. In order to increase histoQC’s accuracy

on the artifact detection, the configuration tool can be adjusted. For exam-

ple, modules detecting dirt, air bubbles, folded tissue and grid noise can be

added as classification modules by creating examples and masks that can be

used to train a randomforest classifier. Other options to detect these artifacts

are to add specific histoQC modules to the configuration pipeline to detect

the artifacts, for example for the air bubbles the module bubbleRegionByRe-

gion.py can be used to detect the air bubbles. For increasing the accuracy

on detecting the pen markings and cover slip it would have been good to

write down which slides contain these artifacts when manually checking all

slides. This way examples from the dataset can be used to train the classi-

fication module to increase the accuracy. Furthermore, now all slides were

manually checked to assess if there were artifacts present, statistically only

a sample would have been enough to check the accuracy of histoQC. More

precise, if the amount of a certain artifact detected by histoQC is 5%, it will

be enough to check only 0.05 * 1704 = 85 slides manually to assess the accu-

racy of the results.

The second research question was: ’Can the output metrics of histoQC be

used for performing a similarity analysis on the WSI in the TCGA glioma

dataset?’. The results show that the histoQC metrics are a good source to
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perform similarity analysis on the dataset. In order to further improve these

similarity analysis it will be good to take a look at what metrics are used.

The general metrics about the images were already removed, but currently

the results on the artifacts that are detected are still included, however I am

not interested in the similarity based on the artifacts, because this will not

change robustness of trained models in the future. At last, it will be good

to dive deeper into the UMAP results to find out what feature will explain

the similarity and dissimilarity between the slides. Some options can eas-

ily be checked, for example if the type of tumour is relevant for the pattern

in UMAP, can be checked by colour coding the points based on the type of

brain tumour.

For further research it will be interesting to adjust the configuration pipeline

in order to get it more specified on the artifacts or metrics of interest. For

example more classifiers can be added in order to detect the other artifacts

histoQC was not able to detect in the default configuration. Next to that the

classifiers could be trained on templates chosen from the original dataset in

order to increase the accuracy. Next to examples from the original dataset

as templates also multiple examples can be provided to histoQC in order to

train a more robust classifier.

Another interesting point for further research is using the masks histoQC

creates to overlay the original slides to subtract the tissue that histoQC de-

tected as suitable for further analysis. If only these high quality tissues of

the slides are used for model training, it might result in better model perfor-

mance.

Further improvement in model performance might be gained by using the

similarity analysis results to divide the dataset in multiple clusters of less

similar slides, so that the slides represent the over-all variability better. This

way models will perform better on new hospital data, due to the models

being trained on high variability data and therefor learns to ignore for ex-

ample the colour differences in the slides, resulting in less biased models.

When the division in clusters based on the similarity analysis is proven to

result in more robust models trained on the slide, one can even look into

the similarity results as a basis for predicting which slides will be good for
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Conclusion

robust model building.

At last, it will be interesting to check if the results of the similarity analy-

sis change after colour-normalising the slides. This way the effect of colour

normalisation on model building can be researched.
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A. Artifact Detection

In the image in figure A.1 all the slides detected as slides with penmarkings

are shown. When taking a look at all 57 of these slides, it is noted that not all

of these slides actually contain penmarkings on them. Most likely, histoQC

detects penmarkings in them due to the bright (red) colour in them on some

of the places.

In the image in figure A.2 an example image of histoQC detecting a

blurry image is shown, with its tile next to it. Altough histoQC detects blur-

riness in the whole slide, the tile shows that there is tissue on the slide that

is not out of focus.

Figure A.2: Example image in which HistoQC found no analysable tissue be-
cause of the whole image being out of focus, however the tile created from the
WSI being in focus.
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Artifact Detection

Figure A.1: All 57 slides histoQC detected to have penmarkings on them.
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B. Complete Results

In this appendix I will show the complete similarity analysis results, also

the PCA and UMAP results with the empty slides included.

B.1 All slides included

At first the variation in the variables of the output metrics of histoQC was

assessed. The boxplot with this results are shown in figure B.1. Over all 51

metrics that are considered for the similarity analysis, the normalized vari-

ation is more or less the same. After analysing the boxplot and the variance

Figure B.1: The boxplot displaying the variance in the variables used from the
output metrics of histoQC.

in the metrics, the PCA was performed to look for similarity between the

slides. The results of this initial PCA analysis can be found in B.2. In this

graph we can see that there are two groups in the data. When looking at the
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Complete Results

Figure B.2: The PCA results of all data. On the left the points are colour coded
based on the hospital the slide was generated, on the right the points are re-
placed by the thumbnails of the slides. Two distinct groups are present in the
data, with the left group represented with less pale slides than the right group.
Further analysis indicated that the right group consists of the slides on which
histoQC was not able to detect tissue.

PCA results in thumbnails, we can see that the group on the right contains

paler images than the group on the left. The right group in the PCA results

contains 79 slides, from which all 78 slides that contain no tissue. Therefore,

for better representation of the results, these 78 slides were removed from

the dataset and the PCA is then performed only on the slides on which his-

toQC did detect tissue. In this initial analysis PC1 explains 40.7% of the

variance in the data and PC2 explains 12.2% of the variance. The most ex-

plainable variables can be found in table B.1.

Most explainable variables
PC1 PC2
michelson contrast template4_MSE_hist
rms contrast small_tissue_filled_percent
chan3_brightness_YUV fatlike_tissue_removed_num_-

regions
deconv_c2_std template2_MSE_hist
deconv_c1_std fatlike_tissue_removed_percent

Table B.1: The five most explainable variables for PC1 and PC2 in the analysis
including all slides
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B.2 Only slides with tissue

B.2 Only slides with tissue

After removing the slides on which histoQC was not able to detect any tis-

sue, the variance in the metrics was re-evaluated. If we look at the variance

in the metrics shown in the boxplot in figure B.3 and compare it with the

one in figure B.1 it is clear that when removing the slides with no tissue,

results in less negative variance. This can be explained by the fact that his-

toQC assigns -100 to all values when it is not able to detect any tissue on the

slide.

The results after removing the empty slides are discussed in the results sec-

tion.

Figure B.3: The boxplot displaying the variance in the variables used from the
output metrics of histoQC.
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C. HistoQC Output metrics

Metric Description

filename The name of the slide used as input

image_bounding_box The rectangular area that encompasses the tissue

region on the slide

base_mag The magnification used to digitize the WSI

type The type of scanner used to digitize the WSI

levels

height The height of the slide in pixels

width The width of the slide in pixels

mpp_x The magnificaiton per pixel in the x-direction

mpp_y The magnification per pixel in the y-direction

comment The details about the scanning process

pen_markings The percentage of the slide that is covered by pen

markings

coverslip_edge The percentage of the slide that contains a cover

slip.

bright The brightness of the slide, represents if the whole

slide is in the same brightness

dark The darkness of the slide, represents the level of

darkness or contrast on the slide

flat_areas The percentage of the slide that is flat or has low

curvature

fatlike_tissue_re-

moved_num_regions

The number of regions containing fat-like tissue that

are removed

fatlike_tissue_re-

moved_mean_area

The average area of fat-like tissue areas that are re-

moved
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fatlike_tissue_re-

moved_max_area

The maximum area of fat-like tissue that is removed

from the slide

fatlike_tissue_re-

moved_percent

The percentage of fat-like tissue that is removed

from the slide

small_tissue_filled_-

num_regions

The number of regions in the slide that contain

small tissue sections

small_tissue_filled_-

mean_area

The mean area of the regions in the slide that con-

tain small tissue sections

small_tissue_filled_-

max_area

The largest area of the regions in the slide that con-

tain small tissue sections

small_tissue_filled_-

percent

The percentage of the slide that is covered by small

tissue sections

small_tissue_re-

moved_num_regions

The number of regions containing small tissue sec-

tions that are removed

small_tissue_re-

moved_mean_area

The average area of regions containing small tissue

sections that are removed

small_tissue_re-

moved_max_area

The largest area of all regions containing small tis-

sue sections that is removed

small_tissue_re-

moved_percent

The percentage of the slide that contains small tissue

sections that are removed

blurry_removed_-

num_regions

The number of regions containing blurry sections

that are removed

blurry_removed_-

mean_area

The average area of blurry sections that is removed

blurry_num_max_-

area

The largest blurry section that is removed

blurry_removed_-

percent

The percentage of the slide that contained blurry

sections that are removed

spur_pixels The percentage of the slide that contains small, iso-

lated pixels that are not connected to the main tissue

regions
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HistoQC Output metrics

areaThresh The percentage of the slide that is above a cer-

tain threshold for tissue area. If this value is low it

means that there is a low density of tissue regions.

template1_MSE_hist Compares the colours in the slide to the colours in

template 1

template2_MSE_hist Compares the colours in the slide to the colours in

template 2

template3_MSE_hist Compares the colours in the slide to the colours in

template 3

template4_MSE_hist Compares the colours in the slide to the colours in

template 4

tenenGrad_contrast Represents the contrast on the slide.

michelson_contrast A measure for contrast that takes into account the

maximum and minimum brightness values of the

slide. It is calculated as the difference between the

maximum and minimum brightness values divided

by the sum of the maximum and minimum bright-

ness values.

rms_contrast A measure for the contrast that is calculated by the

root mean square difference between the brightness

values in the slide.

grayscale_brightness A measure for the brightness of the grey colours in

the slide, represents its overall lightness or dark-

ness.

grayscale_bright-

ness_std

The standard deviation in the grayscale brightness.

chan1_brightness The brightness of the red colours in the slide.

chan1_brightness_std The standard deviation in the brightness of red

colours.

chan2_brightness The brightness of the green colours in the slide.

chan2_brightness_std The standard deviation in the brightness of green

colours.
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chan3_brightness The brightness of the blue colours in the slide.

chan3_brightness_std The standard deviation in the brightness of blue

colours.

chan1_brightness_-

YUV

The mean channel brightness of the red color chan-

nel of the slide after converting to YUV color space.

chan1_brightness_-

std_YUV

The standard deviation in chan1_brightness_YUV.

chan2_brightness_-

YUV

The mean channel brightness of the green color

channel of the slide after converting to YUV color

space.

chan2_brightness_-

std_YUV

The standard deviation in chan2_brightness_YUV.

chan3_brightness_-

YUV

The mean channel brightness of the blue color chan-

nel of the slide after converting to YUV color space.

chan3_brightness_-

std_YUV

The standard deviation in chan3_brightness_YUV.

deconv_c0_mean The mean deconvolution on channel 0.

deconv_c0_std The standard deviation in deconvolution on channel

0.

deconv_c1_mean The mean deconvolution on channel 1.

deconv_c1_std The standard deviation in deconvolution on channel

1.

deconv_c2_mean The mean deconvolution on channel 2.

deconv_c2_std The standard deviation in deconvolution on channel

2.

pixels_to_use The number of pixels in the slide that are used for

analysis.

Table C.1: The output metrics histoQC generates with the default configura-
tion file.
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D. HistoQC Output metrics

In the following table all modules available in histoQC are described in-

cluding the operations. This table is based on the table in the supplemental

material of the journal of clinical oncology, histoqc: An open-source quality

control tool for digital pathology slides. [7]

File module Operation Description
MorphologyModule.py removeSmallObjects Remove small items from the image. This is typically

done for reducing small pixel noise, dust, etc.
fillSmallHoles Fill in small/medium sized "holes" in images.For ex-

ample, lumen spaces in tubules often are detected as
background and removed from the final mask. This
module will fill them in.

LightDarkModule.py getIntensityThresholdOtsu Thresholds the image based on dunamic Otsu threshold.
getIntensityThresholdPercent Thresholds the image based on user supplied values.

This is good for detecting where the tissue is on the slide
(non-white) and where folded tissue may be (very dark).

HistogramModule.py getHistogram Makes a histogram image in RGB space.
compareToTemplates Compares the image’s histogram to template images

provided by the user.
DeconvolutionModule.py seperateStains Performs stain deconvolution using skimage’s built in

matrices.
ClassificationModule.py pixelWise Applies an RGB based classifier to the image whose

values come from a user inputted TSV.
byExampleWithFeatures Computes features of template images provided by the

user which have associated binary masks indicating
positive and negative classes. Trained classifier is then
used on images. Excellent for e.g. pen detection (with
texture), cracks, etc.

BubbleRegionByRegion.py roiWise Detect contours of lines of air bubbles on slide. Contains
exemplar of how to use HistoQC to iteratively loop
over very large images at high magnitude. (still work in
process)

BrightContrastModule.py getBrightnessGray Computes the average value of the image in gray colour
space, which ultimately represents how bright the image
is perceived.

getBrightnessByChannelinColorSpace Computes a triplet (one per colour channel) in the desired
colour space. Useful for detecting outliers.

getContrast Computes both RMS and Michelson contrast metrics.
PenMarkingModule.py identifyPenMarkings Identifies pen markings on a pixel by pixel basis by using

user supplied TSV file of colour values. This is usually
suitable when the marking is very different from the
staining (e.g. green/blue marker on pink tissue).

BlurDetectionModule.py identifyBlurryRegions Uses a Laplace matrix to determine which regions in the
image are likely blurry.

BasicModule.py getBasicStats Pulls out metadata from image header.
getMag Pulls out base magnification. This is required by histoQC.

In the future we’ll add ability to predict magnification.
finalComputations Computes the final number of pixels available in the

output image. Too high or low of a number often indicate
incorrect processing or image outliers.

finalProcessingSpur Removes spurious morphology from the final mask.
Essentially small "arms" of tissue are rounded off and
removed.
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finalProcessingArea Removes larger islands from the output masks, e.g.
isolated pieces of tissue.

saveModule.py saveFinalMask Saves both the output mask from HistoQC but also the
overlay on the original image.

saveThumbnails Save thumbnails for easier viewing. This needs to be
completed for the UI to work.

Table D.1: Modules available in histoQC including their operations and dis-
cription of the operations.
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