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Disclamer

The data used in this study is entirely simulated, ensuring the exclusion of any privacy

concerns associated with real-world personal information. Furthermore, the model

developed within this research is designed to be privacy insensitive, solely focused

on distinguishing between the legality of objects within the images. This deliberate

approach was adopted as a precautionary measure to mitigate potential privacy issues

in the future.
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Abstract

Nowadays, inspection of baggage for threat objects (such as explosives) using images

is of interest as it can contribute towards more effective and advanced security screen-

ing systems. As neutron imaging presents certain advantages over traditional X-Ray

imaging, Dynaxion is a company located in Eindhoven that designed a screening sys-

tem based on neutron generation. Moreover, the checking of baggage is partially based

on manual detection. While this can be efficient, it is also costly and leaves window

open for human error. Therefore, this study aims at optimizing a Faster R-CNN that

can accurately detect and classify illegal objects contained in neutron images that were

generated from Dynaxion. For this, six Faster R-CNN models were trained based

on different techniques of feature extraction (ResNet50 and MobileNet-v3), optimiz-

ers (Adam or SGD), learning rates, batch sizes, number of epochs and weight decays.

In conclusion, the best detection was achieved by the combination of the SGD opti-

mizer and the ResNet50 feature extractor, achieving an overall F1 score of 0.85. Sample

images on a test dataset demonstrate the model’s accurate object detection capabilities.
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1. Introduction

1.1 Motivation and context

Millions of suitcases and parcels move around the world every day. While in ev-

ery country one of the biggest priorities is security, current screening safety meth-

ods cannot provide complete certainty as to what is inside; whether explosives, drugs

weapons or simply a pile of clothes. This uncertainty around what is actually being

transported presents a real risk to safety, health and society [1].

The current scanning systems in use rely on traditional X-ray imaging. While X-Ray

imaging has been proven to be effective, it also presents its limitations [2]. Neutron

imaging, on the other hand, offers certain advantages. They have a greater ability to

penetrate dense and shielded materials more effectively than X-Rays, allowing to bet-

ter detect substances that may intentionally be occluded within an object. Addition-

ally, neutrons have different interaction properties with matter compared to X-Rays,

as they are more sensitive to light elements like hydrogen and nitrogen [3]. This is

advantageous because illegal substances often contain hydrogen-rich or nitrogen-rich

compounds [4]. By considering these advantages, it can be concluded that neutron

imaging can provide additional information to help detect objects and their materials

more accurately.

In line with these insights, Dynaxion is a company based at the High Tech Campus

in Eindhoven that is developing a scanning system using neutrons to determine the

contents inside parcels and suitcases. Their system is based on particle acceleration

and neutron generation technology. As parcels pass through the scanning system, the

particle accelerator creates a neutron beam towards the parcel and irradiates it. During

this process, the neutrons that pass through the material of the object without interact-

ing or being absorbed, known as transmitted neutrons, can be quantified or measured.

This process is called neutron transmission and allows the detection of neutrons in a

position-sensitive way. By measuring the intensity of transmitted neutrons and analyz-
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1.2 AI for object recognition

ing their energy distribution, researchers can gather information about the material’s

composition, density, and interaction properties with neutrons [5].

Neutron images are created based on the interactions of neutrons with the mate-

rial. Dark spots in the resulting neutron images arise from regions of the material

that strongly interact with neutrons and where the material exhibits high neutron ab-

sorption, resulting in fewer neutrons being transmitted and measured behind those

regions. Conversely, regions that appear lighter in the neutron image indicate areas

where the material has a lower interaction with neutrons. These regions allow a larger

proportion of neutrons to pass through without substantial absorption, resulting in a

higher number of transmitted neutrons being detected. Therefore, in neutron transmis-

sion imaging, the contrast between light and dark spots provides information about the

material’s interaction with neutrons.

Neutron imaging provides images of what is inside the parcel but there is still the

need for those images to be interpreted. Automation is nowadays mainly based on

scanning luggage or packages into scanners and manually determine whether there is

any potential thread present [6]. Nevertheless, one main drawback with this strategy

is that, besides being costly, it also leaves window open for human error [7]. There-

fore, automatic object-detection in neutron images is a promising approach in which

nuclear physics and Artificial Intelligence (AI) algorithms can be combined to provide

an accurate and automated security screening solution.

1.2 AI for object recognition

Object recognition is a fundamental task in computer vision that aims at identifying

and categorizing objects within images or video sequences. It plays a crucial role in

various applications, such as autonomous driving, surveillance systems and robotics

[8]. In the context of object recognition, classification of neutron images can be a diffi-

cult task because images can be occluded by different objects and cannot be recognised

simply once scanned [9].

Over the years, numerous methods have been proposed for object recognition.

Traditional approaches relied on hand-designed features, such as Scale-Invariant Fea-

ture Transform (SIFT) or Histogram of Oriented Gradients (HOG), that were coupled
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Introduction

with machine learning algorithms like Support Vector Machines (SVM) or Random

Forests. While these methods achieved moderate success, they struggle to handle

complex scenes involving scale variations or object occlusions [10]. More recently,

deep learning-based approaches, such as You Only Look Once (YOLO), Faster Region-

based Convolutional Neural Network (R-CNN) and Single Shot Detectors (SSD) have

emerged as a powerful tool for automatically learning discriminative features from

pixel data. They are an extended approach that overcome the limitation of traditional

Convolutional Neural Networks (CNNs) when it comes to effectively managing object

detection scenarios involving with multiple objects in an image [11].

Specifically, Faster R-CNN addresses this limitation by introducing a region pro-

posal network (RPN) that generates potential object regions, known as bounding box

proposals, within an image. These proposals are then classified and refined to obtain

the final object detection [12]. This enables Faster R-CNN to handle object detection

and localization in complex scenarios involving occlusions and multiple objects, mak-

ing it suitable for object recognition in neutron images.

To demonstrate the effectiveness of Faster R-CNN, several studies have been con-

ducted where Faster R-CNN was chosen as the method for the object recognition task.

Sa et al. showed that one can achieve much better performance using Faster R-CNN

compared to traditional sliding window detection method using hand-crafted features.

In their work, they achieved average precision of 0.905 (as compared to 0.061 average

precision using traditional approaches) when fine tuning the network using 974 lum-

bar X-Ray images [13]. A different study from Koçi et al. performed object recogni-

tion for baggage inspection for threat objects. When comparing Single Shot Detector

(SSD), R-FCN and Faster R-CNN; the best detection was achieved by the combination

of Faster R-CNN and ResNet feature extractor, achieving an accuracy of 87.58% [14].

1.3 Objectives and significance of the study

Image-based detection of objects in neutron images is not yet so common and is there-

fore an interesting approach. Studies have shown that AI algorithms have the ability

to provide a promising solution for the control of illicit objects in parcels or suitcases

undergoing the scanning process. Therefore, it is of great interest to analyse the data

from the Dynaxion scanning system to train and optimize a Faster R-CNN model that
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1.3 Objectives and significance of the study

can accurately determine the spatial extent of the objects in the neutron images as well

as the certainty level of whether it is a legal or illegal object.

The significance of this study lies in its potential to contribute to the development

of more effective and advanced security screening systems. Moreover, training a Faster

R-CNN model could enhance the accuracy of object detection in neutron images, en-

abling better differentiation between legal and illegal objects. The successful imple-

mentation of this model could have broader implications beyond object detection in

neutron images. It could potentially be applied to other fields, such as medical imag-

ing, where accurate object analysis is fundamental. Ultimately, this study could also

contribute to enhancing overall safety and security in various domains. This includes

areas such as transportation or border control, where the detection of illicit objects is

crucial for public safety and the prevention of illegal activities.
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2. Neural Network Architecture

Having mentioned the effectiveness and applicability of Faster R-CNN, it is important

to gain understanding of the algorithm’s inner workings and delve into its individual

components to make use of its full potential.

2.1 Faster R-CNN

Faster R-CNN is said to be efficient as it introduces a unified architecture that inte-

grates region proposal generation and object detection into a single framework. The

structure of Faster R-CNN can be divided into four main components: Feature extrac-

tor, Region proposal network (RPN), Region of Interest (RoI) and classifier. A scheme

of the network architecture can be seen in Figure 2.1 [15].

Figure 2.1: The different parts of a Faster R-CNN architecture [15]

Convolutional layers: feature extraction

Faster R-CNN starts with a backbone convolutional neural network (CNN) to ex-

tract meaningful features from the input image. These feature extraction networks

are typically pre-trained on large-scale image classification datasets like ImageNet.
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2.1 Faster R-CNN

The obtained feature maps are used for subsequent processing. CNNs like ResNet

or VGGNet have demonstrated satisfactory performance, surpassing traditional meth-

ods [16].

Region proposal network (RPN)

Subsequently, the obtained features from the convolutional layers are used to gen-

erate region proposals, which are potential bounding boxes that may contain objects.

It achieves this by sliding a window of size n x n over each feature map. For each

sliding window position, a set of k anchors are generated of different sizes and aspect

ratios, but all having the same center point (Figure 2.2) [15]. In a typical Faster R-CNN

implementation, there are k = 9 anchor boxes of 3 different scales and 3 different aspect

ratios [17].

At each position, the RPN makes two kinds of predictions. First, it predicts whether

an object might be present (labelled as foreground class) or might not be present in the

proposed area (labelled as background class). Second, it predicts the coordinates of the

proposed bounding boxes.

Figure 2.2: The regional proposal network (RPN) of a Faster R-CNN where different
anchor boxes are used at every sliding window position

In order to select where an object is predicted to be present and which anchor box

is representative for the ground-truth bounding box, the Intersection over Union (IoU)

between each anchor box and the target bounding box is calculated [18]. For this, there

are 4 conventional rules to select the positive and negative anchor boxes:

Rule 1. Anchor boxes are marked as positive if the Intersection over Union (IoU) with
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Neural Network Architecture

the ground-truth bounding box is greater than 0.7.

Rule 2. All anchor boxes that have an IoU with the ground-truth bounding box less

than 0.3 are marked as negative.

Rule 3. If no anchor box has an IoU greater than 0.7, the anchor boxes with the largest

IoU (if the IoU is greater than 0.5) are selected.

Rule 4. Anchor boxes that were not marked as either positive or negative do not con-

tribute to the training of the model.

*Positive anchor boxes is where an object might be present. Negative anchor boxes is where an object

might not be present.

Figure 2.3 shows an example of different anchor boxes with their corresponding

IoU [19]. Finally, the RPN generates a set of region proposals by adjusting the anchor

boxes based on the two aforementioned predictions.

Figure 2.3: Example of different Intersection over Union (IoU) values in object detection
[19]

Region of Interest (RoI) pooling

After generating region proposals, the aim of RoI pooling is to reduce all the fea-

ture maps obtained from each region proposal to the same size to enable classification

and bounding box regression. This is achieved by flattening each of the feature maps,

where each multi-dimensional feature map is converted into a 1-D vector array.

Classification
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2.2 Model evaluation and optimization

The final step of Faster R-CNN involves making use of the fixed-sized feature maps

obtained from RoI pooling to perform object classification and predict refined bound-

ing box coordinates for more accurate object localization. The feature maps are fed

into a set of fully-connected layers to predict the probability of each object class being

present in the region proposal. For this, the SoftMax function produces a probability

distribution for each region. The class with the highest probability is considered the

predicted class for a given region [20]. Additionally, the fully-connected layers also

regress the coordinates of the bounding box, refining their positions and sized to ob-

tain a more accurate localization of the object.

After classification and bounding box regression, the regions undergo non-maximum

suppression to remove redundancy. This process selects the most confident detections

and suppresses regions that have a significant overlap [21]. The final output of Faster

R-CNN is a set of bounding boxes along with their corresponding class labels and con-

fident scores, representing the detected objects in the input image.

2.2 Model evaluation and optimization

After building the model, it is important to establish an effective evaluation process to

assess its performance and further optimize it.

2.2.1 Performance metrics

Loss function

In the context of AI, loss is a measure that quantifies the discrepancy between the

predicted output of a model and the true output. It is used as a reference measure of

how well a model is performing during training and can serve as a guide for model

optimization. The choice of the loss function depends on the specific task. Examples

of loss functions are MSE, Binary Cross-Entropy or Smooth L1 [22].

Binary Cross-Entropy is commonly used in binary classification problems, i.e. then

the classification problem involves two classes. It quantifies the dissimilarity between

the predicted probability distribution and the true binary labels (for example, legal and

illegal) and is illustrated in Eq. (2.1) [23].
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Neural Network Architecture

LBCE = −(ytrue log(ypred) + (1 − ytrue) log(1 − ypred)) (2.1)

where ytrue represents the true binary labels (0 or 1) and ypred represents the pre-

dicted probabilities.

Another example is Smooth L1 loss, which is a function commonly used in regres-

sion tasks, such as predicting bounding box coordinates. It is a combination between

the L1 and L2 loss and it adjusts the loss value based on the error difference [23]. The

formula is as follows:

SL1 =

0.5x2, if |x| < 1

|x| − 0.5, otherwise
(2.2)

Where x represents the difference between the predicted and ground truth value.

Smooth L1 loss behaves like L1 loss or L2 loss, depending on the conditions.

If the error between the predictions and ground-truth is less than 1, then the func-

tion behaves like L2 loss. However, if the error is greater than 1, then it behaves like the

L1 loss. One of the advantages is that it presents the advantages of both L1 and L2 loss

function, and it is less sensitive to outliers than L2 loss. Outliers or extreme data points

can occur due to various reasons such as measurement errors, noise, or anomalies.

They have the potential to significantly affect the training process and model perfor-

mance, as they can disproportionately influence the loss calculation. Therefore, being

less sensitive to outliers is useful as it helps prevent the model from being overly in-

fluenced by anomalous or erroneous data points, leading to more reliable and robust

performance.

In an object detection task, the total loss function would be a combination between

the loss of classification and localization as illustrated in Eq. (2.3).
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2.2 Model evaluation and optimization

L = Lcls + Lbbox (2.3)

The ultimate goal when training a model is to minimize the chosen loss function.

This is typically achieved through optimization algorithms that adjust the model’s pa-

rameters to minimize the discrepancy between the predicted and true values.

Precision and recall

Precision and recall can be used to evaluate an object detection model. They both

range from 0 to 1. On one hand, precision, also known as positive predicted value,

measures the percentage of the positive predictions that are truly positive as illustrated

in Eq. (2.4). A higher precision indicates a lower rate of false positives, which means

the model is more precise in identifying positive instances [24].

PR =
tp

tp + fp
(2.4)

Where tp = true positives and fp = false positives.

On the other hand, recall, also known as sensitivity or true positive rate, measures

the fraction of positives that are correctly identified as illustrated in Eq. (2.5). A higher

recall indicates a lower rate of false negatives, which means the model is better at

capturing positive instances [24]. In the case of illegal object detection, a high recall

value would indicate that the model is effectively capturing most of the illegal objects

in the dataset.

RE =
tp

tp + f n
(2.5)

Where fn = false negatives.

13



Neural Network Architecture

The choice between recall and precision is dependent on the specific focus area. For

instance, there might be a lower risk for the model to classify something legal as ille-

gal than misclassifying something that is actually illegal. In such situations, opting for

recall as a metric for evaluating the model would be more practical. However, it is not

necessary to make an exclusive choice, as F1-score is a metric that incorporates both

recall and precision [25].

F1 score

F1-score combines precision and recall into a single measure, providing a balanced

evaluation of the model’s overall effectiveness. F1-score is defined by the following

equation:

F1 = 2x
precisionxrecall

precision + recall
(2.6)

The value ranges from 0 to 1, where a higher value indicates better performance

[25]. Moreover, F1 score is particularly useful when evaluating the model’s perfor-

mance on imbalanced datasets, where the number of positive and negative instances

may vary significantly [26]. Taking this into account, the F1 score seems like a suitable

estimate for defining the overall accuracy of a Faster R-CNN model.

2.2.2 Optimization techniques

Model optimization plays an essential role in training deep neural networks. Gener-

ally, there are two metrics used to evaluate the efficiency of optimizer: speed of con-

vergence and generalization [27].

Stochastic gradient descent (SGD) is commonly used for training deep neural net-

works. It is an algorithm that starts at a random point on a function and travels down

its slope in steps until it reaches the lowest point of that function. In SGD, instead of

using the entire dataset for each iteration, only a small batch is randomly selected to

calculate the gradient and update the model parameters. However, the randomness

introduced by using batches of data can make the optimization process more noisy,
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2.2 Model evaluation and optimization

leading to fluctuations in the loss function during training. To mitigate this, techniques

like learning rate scheduling and momentum are often employed. The advantage of

SGD is its computational efficiency, compared to traditional Gradient Descent or other

methods that require processing the entire dataset [28].

Adam (Adaptive Moment Estimation) is another example of an optimization algo-

rithm. It is an extended version of SGD that combines two SGD extensions-Root Mean

Square Propagation (RMSProp) and Adaptive Gradient Algorithm (AdaGrad) to pro-

vide an adaptive learning rate and efficient parameter updates. One of its advantages

is that it is widely used due to its fast convergence [29]. However, it has been shown

that adaptive optimization methods such as Adam or RMSprop tend to perform well

in the initial steps of training but tend to generalize poorly. Adam tends to converge

faster, while SGD often converges to more optimal solutions [30]

In practice, the choice between SGD and Adam depends on various factors, includ-

ing the specific optimization problem, the size of the dataset, the architecture of the

model, and the available computational resources. It is often recommended to experi-

ment with different optimizers and hyperparameters to find the best combination for

a particular task. Additionally, techniques such as learning rate scheduling and early

stopping can also be applied to further enhance the convergence and generalization

properties of both SGD and Adam.
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3. Neutron Image Dataset: Analysis and Insights

3.1 Description of the data

The dataset comprised a total of 2358 images, each captured from a distinct angle us-

ing the Dynaxion scanning software. Each image had a corresponding annotation file

containing the following information about each object contained in the image: ob-

ject name, material name, material legality, material category, object legality, bounding

box coordinates (xmin, xmax, width and height). Figure 3.1 depicts an example neu-

tron image with a bounding box surrounding each object (headphones, mobile phone,

folded clothes, a book and a knife). Bounding boxes were needed to delineate the

spatial extent of the object and provide a visual reference for object recognition.

Figure 3.1: Example neutron image with bounding box surrounding object

The dataset encompassed 9162 objects present in the neutron images. Table 3.1 pro-

vides an overview of the object distribution within the dataset. Moreover, the different

objects were distinguished based on their size and, hence, their area was measured as

the number of pixels. There were 295 objects with an area smaller than 322 and were

considered small objects (3.2 %); there were 56 with an area between 322 and 962 and

were considered medium objects (0.6 %); and there were 8,811 (96.2 %) objects with an

area greater than 962 and were considered to be large objects.
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3.2 Data preparation

Table 3.1: The distribution of objects in the dataset

Object class Count of Objects
MilitaryKnife* 1980
HandgunColt* 1530
FoldedClothes 1170
headphone 720
shoes 504
cola 468
sunglasses 468
digitalCamera 468
ChocolateBar 468
Huawei_P50_Pocket 450
Book 396
MaleShoes 270
Books 270

Moreover, objects marked with an asterisk (*) indicate target threat objects. There

were 5652 legal objects (approx. 62%) and 3510 illegal objects (38%) across the entire

dataset, as shown in Table 3.2. This means there is a slight class imbalance.

Table 3.2: Legality class balance

Legality class Count
Legal 5652
Illegal 3510

The neutron images were obtained in different sizes and in nine different scales:

475 × 600, 475 × 775, 475 × 850, 475 × 825, 475 × 700, 475 × 700, 475 × 825, 475 × 850 and

475 x 775 pixels. This is because each image was taken from one of the different angles:

0° until 340°, in steps of 20°. The variation in sizes and scales of the neutron images is

a direct result of the different angles at which they were taken. As the angle of view

changes, the spatial coverage of the object within the image frame also changes.

3.2 Data preparation

Image resizing
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Neutron Image Dataset: Analysis and Insights

The main objective of this phase of processing is to prepare an image that will pro-

vide the detection algorithm with the highest possible accuracy during training. To en-

sure consistency in the training and testing process, all images were uniformly scaled

to a target size of 800 × 800 pixels. The choice of this specific size was arbitrary, with the

primary goal being to achieve a square shape for the images, which would allow Faster

R-CNN to further adjust their size based on the specific requirements of the feature ex-

tractor network being used. For instance, ResNet50 typically operates on images of

size 224 × 224 pixels [31].

Furthermore, to facilitate accurate analysis and comparison of object positions and

sizes within the images, the bounding box coordinates were normalized. This nor-

malization process accounts for variations in image dimensions and ensures that the

bounding box coordinates are relative to the target size of the image.

Training, validation and test split

Secondly, the dataset was randomly shuffled and split into a training set, validation

set and test set to evaluate the model’s performance. For this, the image and annotation

file pairs were randomly divided into a training, a validation and a test set, maintain-

ing a 7:1:2 ratio. Therefore, the training set comprised 1651 images, the validation set

comprised 236 images and the test set contained 471 images.

Custom dataset

The subsequent step in the data processing involved preparing the training and val-

idation data for the Faster R-CNN architecture. This was done using a custom dataset

class, which would load the data in the format required for Faster R-CNN and retrieve

the necessary information and map the object class names to their respective labels.

From the annotation files, the following information was extracted for each image:

the coordinates of the N bounding boxes in [x0, y0, x1, y1] format contained in each

image, the labels for each bounding box [1 or 2], a unique image identifier and the

area of the bounding box. The label 0 represented the background class. Labelling was

employed to annotate the ground truth within the dataset. Moreover, the images were

normalized to ensure consistent input for the Faster R-CNN model. The image nor-

malization involved dividing the pixel values by 255 to normalize it to the range [0,1].
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3.2 Data preparation

In addition, and in accordance with the requirements of the Faster R-CNN model, the

annotation files and images were stored in the same folder.

Data augmentation

Moreover, data transformation was applied to the training set to augment the set

and improve the model’s generalization. During training, the images were flipped

horizontally. Moreover, motion blur effect, brightness, contrast and colour jitter were

applied to the images. Each of the transformation techniques mentioned was applied

to each image with a probability of 0.5. These transformations were applied during

the training process, rather than generating additional augmented data beforehand.

In this way, the model sees different versions of the same image during each training

iteration.
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4. Method

4.1 Faster R-CNN training

A PyTorch based framework was used to train and evaluate the Faster R-CNN model.

All these implementations are available in open-source GitHub repository [32]. In or-

der to get the most optimized final model, six models with different combinations of

hyperparameter values were tested, allowing for a comparison of their performance

and behaviour during training. Each of the model’s architectures can be seen in Table

4.1.

Table 4.1: Overview of the six model trainings and configuration parameters

Model Backbone net-
work

Optimizer LR Batch
size

Number
of epochs

Weight
decay

1 ResNet50 Adam 0.001 16 50 0.01
2 ResNet50 SGD 0.001 16 50 0.01
3 MobileNet-v3 Adam 0.001 16 50 0.01
4 MobileNet-v3 SGD 0.001 16 50 0.01
5 ResNet50 SGD 0.01 32 25 0.1
6 ResNet50 SGD 0.1 64 25 0.01

The different hyperparameters included the feature extractor network, optimizer,

learning rate, batch size, number of epochs and weight decay. ResNet-50 and MobileNet-

v3 were chosen as the backbone network for feature extraction. ResNet-50 is a deeper

network that may capture more intricate features but requires higher computational

resources, while MobileNet-v3 is optimized for computational efficiency while main-

taining reasonable accuracy [33]. The choice between these two provided a trade-off

between model complexity, computational resources, and performance.

Additionally, two different optimizers, namely Adam and Stochastic Gradient De-

scent (SGD), were selected for the training process. In some scenarios, Adam has

demonstrated better optimization performance compared to SGD. However, recent

research indicates that Adam may result in poorer generalization performance com-

pared to SGD [29]. Given these findings and time constraints, it was of interest to se-
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4.2 Model validation

lect these two optimization methods. Moreover, momentum of 0.9 was applied to the

models trained with SGD optimizer. This was done because SGD with momentum is a

method which helps accelerate gradients vectors in the right directions, as the current

update is highly influenced by the previous update, thus leading to faster converging

and escaping the possible local minima. In addition, if momentum is applied, local

minima be escaped and model can reach to the global minima. Literature has shown

that a momentum value of 0.9 is commonly considered a good choice [34].

As a side note, the training could not be performed using a GPU-accelerated envi-

ronment to improve computational efficiency for the training.

4.2 Model validation

The trained Faster R-CNN models were evaluated on the validation dataset to assess

its performance and generalization ability to detect and localize objects accurately in

neutron images. For this, the model’s total loss was calculated by summing the four

individual losses from the two main components: the RPN and the classifier. Each

individual loss would contribute equally to the total loss. The loss functions used

for each component can be seen in Table 4.2. The classification loss uses Binary cross

entropy loss function and the regression loss uses the Smooth L1 Loss function.

Table 4.2: Loss functions used for model validation

Component Task Loss function
RPN Foreground or background

class prediction
Binary cross-entropy

Candidate object region pro-
posal

Smooth L1

Classifier Class label prediction Binary cross-entropy
Bounding box prediction Smooth L1

The training loss serves to optimize and evaluate the model’s performance during

the training process. However, it is important to note that the training loss alone may

not offer a comprehensive understanding of the model’s generalization capability to

unseen data. Therefore, the evaluation of each model also involved calculating the

mean average precision (mAP) and the mean average recall (mAR). They were both

calculated and averaged over 10 different IoU threshold values from 0.5 to 0.95 with a
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step size of 0.05. This is because having a single threshold to assess the detection model

might not completely reflect the localization performance as it could induce bias in the

evaluation metric.

These metrics were obtained as an overall average across all objects and separately

for three distinct object sizes: small (area smaller than 322), medium (area between 322

and 962) and large (area larger than 962). In the end, the F1-score was derived from the

mAP and mAR (using Eq. 2.6) as the final metric for assessing the overall performance

of the models, given that it combines both precision and recall into a single measure.

4.3 Model evaluation

Finally, after performing hyperparameter tuning, the final and improved model was

evaluated using the unseen test dataset. For this, inference was performed on the test

dataset with a detection IoU threshold of 0.7. Model inference involved loading the fi-

nal model with its weights to predict each object class together with the corresponding

bounding box for each image in the test dataset. All the images with the predictions

and their object label confidence scores were saved. Finally, a confusion matrix using

the correct and predicted labels was generated.
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5. Results

The primary emphasis of the results is on giving an overview of the obtained results,

including loss values, F1 scores and overall model performance. The first subsection

focuses on evaluation metrics on the validation dataset and the second subsection fo-

cuses on the inference results on the test dataset, specifically using the model that ob-

tained the best overall results from the validation phase for predicting on new images.

5.1 Evaluation metrics

Validation loss

Table 5.1 presents the total loss and the individual losses for each model after the

completion of training. Models 1, 2, 3 and 4 completed 50 epochs of training, whereas

models 5 and 6 completed 25 epochs. This was due to limited time constraints. The

sum of all four individual losses result in the total loss, as seen in Eq. (2.3). Accord-

ing to the table, model 2 demonstrates the lowest loss among all models for the final

classification (0.022) and bounding box regression tasks (0.031) in the Faster R-CNN.

Although model 1 yields the lowest loss for the RPN classification (0.012) and RPN

bounding box regressor task (0.005), model 2 still achieves a lower total loss (0.079).

Table 5.1: Average loss values and loss values for each component of Faster R-CNN the
end of the training process (epoch 50 for models 1, 2, 3 and 4; and epoch 25 for models 5
and 6)

Model Total loss Loss classi-
fier

Loss BB
regressor

Loss RPN
classifier

Loss RPN
bbox re-
gressor

Model 1 0.302 0.113 0.172 0.012 0.005
Model 2 0.079 0.022 0.031 0.016 0.010
Model 3 0.299 0.116 0.161 0.016 0.006
Model 4 0.138 0.041 0.062 0.023 0.012
Model 5 0.606 0.181 0.133 0.224 0.068
Model 6 0.326 0.097 0.146 0.052 0.031

*Values in bold correspond to the lowest loss for each component.
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In addition, the loss values for each model were recorded throughout all epochs

(Appendix A). The loss graphs do not show any clear difference in pattern across the

models. The loss trajectories for all models appear to follow a similar trend as they all

decrease exponentially and eventually reach stability.

F1 score

From the mAP and mAR, the F1 score was calculated using Eq. (2.6) throughout

the training processes. Table 5.2 shows the F1 scores across various object sizes (small,

medium and large) and the overall F1 score for each of the models at the last epoch

of the training. In addition, Figure 5.1 (a) is a visual representation of the F1 score

at the end of the training for the different object sizes and Figure 5.1 (b) is a visual

representation of the overall F1 score throughout the training processes.

Table 5.2: F1 scores for small, medium and large objects as well as the overall F1 score at
the end of the training process (epoch 50 for models 1, 2, 3 and 4; and epoch 25 for models
5 and 6)

Model F1-score
small

F1-score
medium

F1-score
large

Average
F1-score

Model 1 0.40 0.82 0.87 0.83
Model 2 0.47 0.85 0.89 0.85
Model 3 0.37 0.81 0.88 0.81
Model 4 0.49 0.82 0.86 0.82
Model 5 0.00 0.00 0.01 0.01
Model 6 0.30 0.70 0.75 0.70

*Values in bold correspond to the largest F1 score for each component.
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5.2 Inference on test dataset

(a) (b)

Figure 5.1: F1 scores for (a) small (blue), medium (orange) and large (green) objects; and
(b) model 1 (blue), model 2 (orange), model 3 (green), model 4 (red) and model 6 (purple)

across the training history.

From the table and from Figure 5.1, it can be observed that models 1, 2, 3 and

4 yield similar results, as the difference in performance is not very big. Specifically,

model 4 achieves the highest F1-score (0.49) for the detection of small objects. On the

other hand, model 2 has the largest F1 score for medium (0.85) and large objects (0.89)

as well as the largest F1 average (0.85). Besides these, models 5 and 6 exhibit worse

performance results. Model 5 shows F1 scores of 0 or approximately 0 for all categories

and model 6 has the second-lowest average F1-score among all models. Additionally,

the F1 score in model 6 does not increase like models 1,2 3 and 4, but it decreases.

Model 6 is not included in the F1 graphs, as the obtained values were very close to 0.

Moreover, as seen in fig. 5.1 (a) and in (Appendix B), the F1 score is highest for large

objects and lowest for small objects across the models.

5.2 Inference on test dataset

Confusion matrix

Table 5.2 represents the confusion matrix obtained when performing model infer-

ence on the test dataset using model 2. It shows that there are 282 instances of the

‘Legal’ class that were correctly predicted as ‘Legal’ (true negatives). Moreover, 210 in-

stances of the ‘Illegal’ class were correctly predicted as ‘Illegal’ (true positives). There-

fore, the model did not misclassify any object in the entire test dataset.

Prediction sample images

25



Results

Table 5.3: Confusion matrix on test dataset (492 images)

True values / Predicted values Positive (Illegal) Negative (Legal)
Positive (Illegal) 210 0
Negative (Legal) 0 282

The complete set of 492 prediction images after choosing model 2 for predictions

can be found in the open-source GitHub repository [32]. Figure 5.2 shows 6 out of

them used to analyse and visually assess the model’s performance. A confidence score

threshold of 0.7 or higher was selected to ensure that the predictions excluded classifi-

cations where the confidence score was lower. As seen in Figure 5.2, the model’s pre-

dictions were precise in identifying the objects and their respective bounding boxes,

even in cases where the objects were partially hidden and had a different assigned le-

gality label (Figure 5.2 (a), (b) and (f)). Moreover, figure 5.2 (a) includes a military knife

positioned at the lower left corner that is barely visible to the human eye. However,

the model successfully identified and accurately predicted the presence of the knife.

The prediction error mainly resulted from bounding box regression, rather than

classification. This can be seen in Figure 5.2 (c), where the model interpreted the two

military knives as being the same object and, hence, drawing one bounding box around

them. However, this was not always the case. For instance, in Figure 5.2 (d), the model

successfully depicted the objects as two knives.

Additionally, Figure 5.2 (e) illustrates an example of an image where the model

successfully detected a very small object. In this case, the object corresponds to a pair

of men’s shoes. Initially, there was a presumption of error, but upon examining the

corresponding annotation file, the prediction made by the model was indeed accurate.

Finally, Figure 5.2 (f) is another example of correctly classified object.
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5.2 Inference on test dataset

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Prediction images on the test dataset with the corresponding bounding box,
class label and confidence score for object class 27



6. Discussion

The aim of this study was to compare six different Faster R-CNN models in order to

find the network architecture that would lead to the more optimal results for the task

of object detection in neutron images. Therefore, the primary emphasis of this section

is to compare the different models, as the objective was to optimize a model using

different network configurations, and analyse potential sources of error.

6.1 Evaluation metrics

Validation loss

The validation loss graphs (Appendix A) show that the models exhibit similar be-

haviour as the loss decreased exponentially. Moreover, it also demonstrates that the

models reached a plateau in their learning and that further improvements in loss re-

duction may require more sophisticated techniques or adjustments to the training ap-

proach. This stability implies that the models consistently maintain their performance

throughout the training process without significant fluctuations or abrupt changes in

loss values. Model 2 produced the minimum total loss of 0.079, as compared to 0.606

which corresponds to the highest total loss of model 5. This indicates a significant im-

provement in performance for Model 2. As compared to the other models, model 5

yielded acceptable loss values for the RPN component of the Faster R-CNN. However,

it exhibited significantly higher loss values for the final classification and regression

tasks. Hence, model 5 serves as an illustration that even with a relatively low valida-

tion loss, as seen in Table 5.2, that the model’s performance can still be unsatisfactory.

F1 score

Since a low loss value during training does not necessarily guarantee a high F1

score or good performance on the evaluation or test data, it is also important to take F1

into consideration. From the F1 scores in Table 5.2, it can be concluded that the average

F1 score between model 1, 2, 3 and 4 was similar; the lowest value being 0.81 from
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model 3 and the highest being 0.85 from model 2. Model 6 yielded an average F1 score

of 0.70, indicating that it performs less effectively compared to the other models in

predicting object boundaries accurately. Model 5 performed the worst with an average

F1 score of 0, which suggests that this model has very low accuracy and performs

poorly in object detection of neutron images.

Moreover, as can be seen in Figure 5.1 (a), the F1 score is highest for large objects

(best value of 0.89) and medium objects (best value of 0.85) but lower for small ob-

jects (best value of 0.49). This suggests that the models are generally more effective

in accurately detecting and classifying larger objects compared to smaller ones. One

reason for this is that there are more large objects (96.2%) than small objects (3.2%) in

the complete dataset. This imbalance in the dataset with a significantly higher propor-

tion of large objects compared to small objects, can impact the model’s performance.

The model may become biased towards the majority class (large objects) and perform

less effectively on the minority class (small objects). Another reason could be that the

features used by the feature extractor network may be more suited to capturing the

visual patterns of large objects. If the algorithm relies on specific features that are more

prominent in larger objects, it may struggle to effectively detect smaller objects that

exhibit different or less prominent visual patterns. In terms of neutron transmission

imaging, small objects tend to transmit a smaller fraction of the incident neutron flux

compared to larger objects. This is because the interaction between neutrons and small

objects is less pronounced due to their smaller size and lower density, which can make

the detection of small objects more challenging in neutron transmission imaging.

Regarding the F1 score progress throughout the training, as shown in Figure 5.1 (b),

models 1, 2, 3 and 4 resulted in increased F1 score, whereas the F1 score for model 6

showed decreasing behavior. This might be because of the high learning rate assigned

to the training of this model. This might have caused the model’s parameter updates

to be too large and therefore not converging to an optimal solution.

From the loss values and the F1 scores obtained, it can be concluded that model 2

demonstrated superior overall performance, by achieving minimal total loss and max-

imal average F1 score and F1 score for medium and large objects. Despite model 4

achieving the highest F1 score of 0.49, model 2 still obtained a score of 0.47, which is

relatively close in value.
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6.2 Model hyperparameters

Model 1, 2, 3 and 4 shared nearly identical configurations, including a learning rate of

0.001, a batch size of 16, 50 epochs, and a weight decay of 0.01. The only difference

between them was the feature extractor network and the optimizer used to adjust the

network weights. Model 1 and 2 both employed ResNet50, whereas model 3 and 4

employed MobileNet-v3. Moreover, model 1 and 3 had Adam as optimizer; and model

2 and 4 had SGD as optimizer. This was done so that they could be compared to

determine which of the two feature extractors and optimizers would be a more suitable

choice for the specific configuration being studied.

From the validation loss (Table 5.1) and the F1 scores (Table 5.2), it can be concluded

that SGD yielded lower loss values and larger F1 scores than Adam. Unfortunately,

speed of convergence was not recorded. Hence, no conclusions can be drawn about

whether Adam or SGD was faster. A study conducted by Mahmoud et al. compared

different optimizers for object detection in remote sensing images. It was concluded

that Adam yielded higher accuracy than SGD [35]. However, it was also the case that

no momentum was applied to SGD which could have lead to a possible local minima

in the loss function. However, the fact that SGD performed better than Adam in this

study is in line with other recent studies that show that Adam often leads to worse

generalization performance than SGD [29].

Moreover, as to the feature extractor network, ResNet50 yielded better results than

MobileNet-v3 when comparing the total loss values (Table 5.1) and average F1 scores

(Table 5.2). This could be because ResNet50 is a deeper network with a larger number

of layers than MobileNet-v3, and might therefore perform better for large datasets and

complex architectures [36]. This aligns with a study conducted by Storey et al. where

they compared several R-CNN models to detect possible signs of disease in images

containing plant leaves. ResNet50 yielded an accuracy of 80.5% and MobileNet-v3 an

accuracy of 68.3%.

Having discussed this, model 5 and model 6 were adjusted based on the better
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performance of ResNet50 backbone network and SGD optimizer. For these models,

the other hyperparameters were further adjusted (learning rate, batch size, number of

epochs and weight decay). From Table 5.1, it can be seen that the loss values obtained

with these two models were larger, as compared to the other models. Furthermore,

Table 5.2 reveals that model 5 and model 6 resulted in lower F1 scores, with model 5

demonstrating significantly lower F1 scores than the other models, as all values were

approximately 0. The poor performance of model 5 is suspected to be due to the large

weight decay. It has been shown that, in the case of excessive weight decay, even with

prolonged training, the model can fail to achieve a satisfactory level of fitting [37].

Furthermore, there exists an association between the learning rate and batch size,

as evidenced by previous findings [38]. In cases where the learning rates are set to high

values, employing a larger batch size can yield to superior performance compared to

using smaller learning rates. Nevertheless, it appears that opting for a large batch size

and high learning rate for model 6 did not yield significant differences in outcomes.

The model’s performance, while performing better than model 5, exhibited a lower

level of effectiveness compared to the remaining models. The study also showed that

lowering the learning rate and decreasing the batch size will allow the network to train

better [38]. Taking into account that the low learning rate and small batch size of model

1, 2, 3 and 4 yielded the best results, it is recommended for future research to use these

models as a baseline or initial starting point.

Additionally, model 5 and 6 were trained only for 25 epochs due to limited time

constraints. However, it can be seen from the F1 score in Figure 5.1 (b) and the loss

behaviour throughout the training (Appendix A) that, even with an extended training

duration of 50 epochs, these models would not be expected to outperform the other

models. Considering that the primary objective of this study is to identify the most

optimal model, these two models were excluded from the pool of potential candidates

during the selection process.

Overall, the results highlight the desirable performance of models 1, 2, 3 and 4

achieving good results, particularly for large objects. Model 2 yielded the best per-

formance by making use of ResNet50, SGD, a low learning rate and weight decay, a

small batch size, and a relatively large number of epochs. Meanwhile, models 5 and 6

exhibit comparatively worse performance, potentially indicating areas for further im-
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provement.

6.3 Inference on test dataset

As shown in Figure 5.2, the model generally performed accurately, correctly classifying

and enclosing each object with its respective bounding box, even when objects were

occluded by other objects. Moreover, the confusion matrix on the test dataset showed

that the legality labels from all bounding boxes were correctly classified. Even when

model’s small object F1 score was relatively low (0.49), the model generally correctly

classified very small objects when visually inspecting the images.

In some cases, the model predicted two objects as being one and therefore, drawing

one single bounding box around them. This happened because in the last step of a

Faster R-CNN, the regions undergo maximum-suppression by which multiple bound-

ing boxes with a large IoU get suppressed to remove redundancy. By lowering the

threshold, the model might be more tolerant of overlapping bounding boxes and less

likely to merge separate objects into a single box during the maximum-suppression

step. Another alternative would be making use of Soft-NMS, which, instead of com-

pletely removing bounding boxes that overlap significantly, the suppression process

gradually reduces their scores or weights [39]. In this way, it would reduce the chances

of merging them into a single bounding box. In any case, it would not be a big problem

as this was only the case when two objects with the same legality label overlapped. In

a real-world scenario, the focus is primarily on identifying illegal objects. If two illegal

objects located very closely were mistakenly treated as a single object, it would not

be a major problem, as further inspection of the parcel or suitcase would be required

regardless.

Moreover, it would have been useful to calculate mAP and mAR on the test data

in addition to the mAP mAR values on the validation data. However, the obtained

values can be considered to be a good approximation to how the model performs as

the validation dataset is not used for training and is therefore new unseen data for the

model at the evaluation step.

After establishing a specific model and evaluating its performance and generaliz-

ability, it is worth thinking about how the model would perform in a real-world sce-
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nario. First of all, the model’s performance would probably not be the same as it has

only been trained on a limited dataset comprising 12 distinct object classes. In reality,

there can be a significantly larger variety of object classes. As an alternative, a hypo-

thetical test case was explored. Due to the lack of concrete data on the exact number

of illegal items shipped in parcels, it is difficult to provide precise figures. However,

the test case assumed a conservative estimate of 1% illicit materials being shipped. Al-

though this number is purely speculative, it helps to highlight the potential impact

and risks associated with illegal shipments when using the model derived within this

study. Model 2 results in an mAP of 0.83 and mAR of 0.86. Assuming a large number

of objects, let’s say there are 10,000 objects in total. With 1% of them being illegal, there

are 100 illegal objects. Recall indicates that the model can correctly identify approx-

imately 86% of the illegal objects. Therefore, the model would be expected to detect

around 86 out of the 100 illegal objects. On the other hand, precision suggests that out

of the objects classified as illegal by the model, around 83% are true positives. So out

of the objects flagged as illegal by the model, approximately 83% or 83 objects would

be truly illegal. Although the model’s performance metrics indicate favorable results,

they should not be regarded as a complete substitute for manual detection of illegal

objects, especially if the risks taken when missing an illegal object are high.

6.4 Limitations and future research

The aim of this study was to optimize a Faster R-CNN model capable of effectively

detecting objects in neutron images. This objective was successfully accomplished;

however, the study also identified certain limitations and proposed areas for further

improvement. First, the use of macOS as operating system posed a limitation as it

was not completely compatible with Python PyTorch, resulting in the usage of CPU

instead of GPU for model training. Consequently, this significantly slowed down the

training process, with each training taking approximately 20-40 hours. Therefore, to

overcome the slow training process, it is recommended to explore compatibility with

GPU platforms, such as by transitioning to a different operating system or finding

alternative solutions to enable GPU utilization. This could significantly reduce the

training time and facilitate the comparison of additional network configurations.

Moreover, the accuracy of the model may be influenced by the fact that it was tested
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on only 13 different types of objects (Table 3.1). In the real world, there exists a vast

variety of object classes, which were not included in the evaluation. This limitation

suggests the need for future work to enhance the model’s applicability in real-world

scenarios by testing the method with a more extensive and diverse range of threat

objects.

As another limitation, a class imbalance between object sizes was observed, as the

dataset contained 3.2% small objects and 96.2% large objects. This is clearly a notable

difference, which might have been the reason for such low F1 score values for small

objects. Moreover, a slight class imbalance was observed in the dataset, with the legal

class constituting 62% of the samples, while the illegal class accounted for 38% (Ta-

ble 3.2). This imbalance in class distribution could have also influenced the model’s

performance and, therefore, future work should consider employing weighted class

balancing techniques. By assigning higher weights to the underrepresented classes

during training, the model can learn to better handle imbalanced data and improve its

performance on the minority classes.

Finally, it is also important to explore advanced techniques, such as different types

of data augmentation and perform additional attempts to fine-tune the hyperparame-

ters, such as learning rate, batch size, and weight decay. This altogether could lead to

improved model performance.

6.5 Conclusion

The transportation of suitcases and parcels poses security risks due to uncertainties

regarding their contents. Therefore, imaging techniques can be useful to detect suspi-

cious content in parcels or suitcases. As compared to traditional X-Rays, neutron imag-

ing offers advantages as they penetrate dense and shielded materials more effectively

and they are more sensitive to light elements, such as hydrogen or nitrogen, which are

often contained in illegal substances. Moreover, as these images need to be interpreted

and manual detection is costly and leaves window to human error, the use of AI algo-

rithms has become of great interest to enhance security screening. Object recognition,

particularly using Faster R-CNN, has shown promising results in previous studies in-

volving complex scenarios with multiple objects. Therefore, it was of great interest to

make use of the neutron images generated at Dynaxion’s scanning system.
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6.5 Conclusion

This study aims to train and optimize a Faster R-CNN model for accurate object

detection in neutron images. For this, six models with different combinations of hyper-

parameters were tested and compared. Their network architecture included different

feature extractor networks, optimizers, learning rates, batch sizes, number of epochs,

and weight decay values. The models were trained using ResNet-50 and MobileNet-v3

as backbone networks for feature extraction; and Adam and Stochastic Gradient De-

scent (SGD) were chosen as optimizers. Model validation was performed on a separate

validation dataset, evaluating the model’s total loss and calculating mean average pre-

cision (mAP) and mean average recall (mAR) at various IoU thresholds. The F1-score

was derived from mAP and mAR as the final metric for overall performance assess-

ment. The final model was evaluated on an unseen test dataset using a detection IoU

threshold of 0.7. The choice of feature extractor network and optimizer affected the

model’s performance, with ResNet50 and SGD yielding better results. From the six

models, the Faster R-CNN with ResNet50 and SGD demonstrated the lowest valida-

tion loss (0.079) and achieved the highest F1 scores for medium (0.85) and large ob-

jects (0.89) as well as the highest average F1 score (0.85). Sample images are provided

to visually assess the model’s performance, where model generally detected objects

accurately, even in cases of occlusion or partial visibility. While the model showed

satisfactory performance, it is recommended for future research to further expand the

complexity of the dataset and model architecture to an even more realistic scenario.

35



Appendix A

36
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Validation loss graph for each model throughout the duration of the training:
50 epochs (model 1, 2, 3 and 4) and 25 epochs (model 5 and 6)
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(a) (b)

(c) (d)

Figure 6.2: F1 score for each object size (small, medium, large) for each model throughout
the duration of the training: 50 epochs (model 1, 2, 3 and 4)
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