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Abstract 

Background – Missing values are practically inevitable when it comes to data analysis and 
can cause loss of valuable information and introduce bias in the estimates. In social network 
data even a small proportion of missing values can have a substantial impact on the validity 
of results. The most common approach to deal with missing values is complete case analysis 
which does not always prevent these issues. Still, the research investigating this problem is 
scarce. This paper aims to address this gap by providing an overview of multiple imputation 
as a method of handling missing values in social network data.  
Methods – Relational event model analysis is performed on the fully observed relational 
event history dataset to produce the true estimates. Next, a simulation study is performed to 
introduce missingness to a fully observed dataset. Then the results of two approaches - 
multiple imputation and complete case analysis are compared to the results of the analysis on       
the fully observed dataset.  
Results –Multiple imputation with relational event model produced estimates with close to 
zero bias, high coverage rate, and low average width. However, multiple imputation produced 
false significant p-values. In addition, the distributions of the effect estimates were slightly 
skewed for all effects. Complete case analysis produced overestimated effects and standard 
errors but did not produce false significant p-values.  
Conclusion – This study made first steps in evaluating whether multiple imputation with 
relational event model is a valid method to address missing values in relational event history 
data and compared it to the more common solution – complete case analysis. The findings 
reveal potential benefits of multiple imputation and propose direction for future research.  
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1. Introduction 

1.1 Networks 

Newman (2018) defines a network as a collection of points (nodes) connected to each other 

with lines (edges). Networks are used to study various systems in social, physical, and 

biological sciences. A network can be used to represent a system of interest, for example, an 

online or offline social network, biological neural network, etc. (Newman, 2018). An 

example of a real network can be seen in figure 1.  
 

Figure 1. Example of a real social network. The network shows friendship patterns between 

school children in a class of 1930. The nodes are coded according to gender and lines 

represent friendship connections between children.  

 
Note. From “Networks”, by M. E. J. Newman, 2018. Oxford University Press, p. 48 
 

A social network is a network in which nodes represent individuals and edges represent 

various types of connections or relationships between them (Newmann, 2018). Social 

structures represented through social networks can allow for accurate reflection of 

relationships and other various social phenomena (Butts & Marcum, 2017). The network 

shown in figure 1 is an example of such utility of networks. This social network revealed an 

interesting relationship pattern among school children - there are many friendship 

connections within genders, but only one between genders (Newman, 2018). The significance 

of social networks in social research can be attributed to their simplicity and efficiency. One 

of the important qualities of social networks is that the edges can represent a variety of 
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relationships beginning with acquaintance and including professional relationships, close 

friendships, and romantic connections. Therefore, they allow the investigation of many types 

of social phenomena. In addition, social networks make it easy to convey conclusions of 

studies through a visual representation of the social phenomena (Newmann, 2018; Serrat, 

2017). 

 

Social network analysis can be employed to investigate questions such as: “what are 

communication patterns in local communities?” (Bernard, 1989); “How do behaviours and 

ideas spread through a social network?” (Fattore et al., 2009); “How do scientists 

collaborate?” (Grossman, 2002); “What are social structures of dating among young people?” 

(Bearman, Moody, Stovel, 2004); “What is the dynamic nature of interaction between 

teachers and students in the classes during the semester?” (Grunspan, Wiggins, & Goodreau, 

2014). As well as more focused questions, such as “which aspects of past interactions 

determine future interactions?” (Meijerink-Bosman, Back, & Geukes, 2023). Social network 

analysis (SNA) is important for several reasons. Understanding relationships: SNA helps 

uncover and analyse the relationships and connections between individuals, groups, or 

entities (Hawe, & Ghali, 2008). It provides insights into how relationships develop, progress, 

change and how they can be utilised to achieve different outcomes (Hawe, & Ghali, 2008; 

Boyer et al., 2010; Newmann 2018). Identifying key players: SNA enables the identification 

of influential individuals or entities within a network (Serrat, 2017; Landherr et al., 2010). 

SNA can identify the most important nodes through measuring centrality of the network 

which can point to the nodes with most connections, or the nodes that lay on the path to most 

connections or the nodes that are connected to the highest number of other well-connected 

nodes (Newmann, 2018). Revealing structural patterns: SNA reveals the underlying structural 

patterns of a network, such as clusters, subgroups, or communities. SNA can identify nodes 

that are tightly connected between each other and categorise it as a community (Newmann, 

2018). All these and many more capabilities of SNA are widely utilized due to the increasing 

availability of social network data.  

 

1.2 Relational Event History Data 

Social network data, at a minimum, consists of rows and columns which represent individuals 

or other social entities and a presence or absence of a relationship between them (Scott, & 
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Carrington, 2011). There are many types of social network data: interviews, archival records, 

social media data, phone records, etc., (Newmann, 2018). One of such types of social 

network data is relational event history (REH) data. In this type of data, relational events are 

analogous to edges in social network data. Butts and Marcum (2017) define REH as a 

sequence of discrete instances of interaction between a set of individuals or entities. This data 

consists of at least a time or order of the communication event, called relational event, and 

the actors that are involved in the event (Meijerink-Bosman, Back, & Geukes, 2023; Butts, 

2008). An example of the REH data can be seen in table 1. The “Time” column shows the 

time that the communication event took place, which is continuous. The “Sender” column 

shows who initiated the communication event and the receiver column identifies at whom the 

communication event is directed. Names of the actors were coded as numbers.   

 

Table 1. First four relational events in the Apollo 13 data.  

Time Sender Receiver 

11849.2 18 2 

11854.2 2 18 

11885.2 18 2 

11890.2 2 18 

… … … 

 

REH data has become widely available with the development of technology. REH can be 

found in the form of online communication (email, Twitter, Facebook etc.), phone records, 

online collaboration, etc. This data makes it possible to study questions like “what behaviour 

drives communication?”, “how can the next interaction event be predicted?”, “what changes 

the dynamic of interaction over time?”, “which actors’ attributes influence communication 

dynamic?”, “which patterns of interaction are common?” (Meijerink-Bosman, Back, & 

Geukes, 2023; Butts, 2008; Pilny et al., 2016). REH data is a widely regarded and a highly 

prevalent and influential type of network. One key characteristic of this type of data is the 

inherent dependency between the nodes and edges (Meijerink-Bosman, Back, & Geukes, 

2023). Hence, it seems that traditional statistical methods do not handle this type of data very 
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well. Therefore, this data requires a unique tool to analyse it. The model that can take into 

account such a structure is relational event model (REM) (Butts, 2008). REM is especially 

suited to analyse continuous, fine grained, social interaction data, like REH data (Meijerink-

Bosman, Back, & Geukes, 2023).  

Missing values in REH data is a common occurrence. Just like in other types of social 

network data, it can cause a number of problems for the statistical analysis if not handled 

properly. Social network data is especially vulnerable to the problems of missing data (Burt, 

1987). Missingness even in just one part of the node causes “missing parts of a single 

realization of a dependent process” (Gile, & Handcock, 2006, p. 2). Models that are used to 

analyse network data assume data completeness. Therefore, missing data can result in 

misleading or incorrect conclusions (Wang et al., 2016). In addition, Kossinets (2006) found 

that missing data in networks can affect network-level statistics, such as clustering and 

assortativity coefficients.  

Based on whether the missingness is data dependent or not, different approaches to handle it 

must be applied (van Buuren, 2018). Regardless of the missingness mechanism, the default 

method that is used to handle missing values in R packages that are used to perform REM 

analysis like “survival” (Therneau, 2023), “remify” (Arena, 2023), and “remstats” 

(Meijerink-Bosman et al, 2023) is complete case analysis (removing observations with 

missing values). The disadvantages of complete case analysis are the loss of information and 

potential of biased results.  

Several other approaches were proposed to handle missing data in social networks. 

Imputation methods proposed by Burt (1987) whereby missing values are replaced with 

values that represent weak relations and a reconstruction method proposed by Stork and 

Richards (1992). Likelihood-based estimation methods were also discussed by Robins et al. 

(2004), Gile and Handcock (2006), Handcock and Gile (2007) and Koskinen (2007) 

(Huisman & Steglich, 2008). One of the latest studies by Huisman, (2020) investigated the 

effectiveness of simple imputation techniques on conservation of structural properties of the 

network. According to Huisman’s results, simple imputation techniques did not achieve 

successful correction of missing values apart from a few specific situations.  

To the author’s best knowledge, no previous study has evaluated multiple imputation (MI) 

performance with REM. MI is a method that can conserve the data and potentially produce 
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unbiased results (van Buuren, 2018). The MI process consists of the following steps: creating 

multiple completed datasets, conducting a statistical analysis on each of the completed 

datasets, and then pooling the results to produce the final unbiased estimate and standard 

errors. The pooling is performed by “Rubin’s rules”. The pooled variance is estimated by 

combining the within-imputation variance with the between-imputation variance caused by 

the missing values (van Buuren, 2018; Enders, 2022). In the following sections the problem 

of missing values in data and the method of addressing them - MI will be introduced. Then, 

the method of simulating missingness and the process of multiple imputation will be 

described. In order to make the design of the study as straightforward as possible, only 

missingness in one column (sender) will be considered, as a first step in addressing this issue. 

Hence, I propose the following research question: can multiple imputation with REM be 

applied on REH data with missing values in the sender variable, to produce valid inference? 

 

2. Data 

The dataset that was analysed in the current study is a part of Apollo 13 communication 

records between the astronauts and control team. Apollo 13 was a mission conducted by 

NASA within the Apollo space program. Apollo 13 is an infamous mission that was cut short 

after just circling the moon due to an oxygen tank exploding. Due to the extreme 

circumstances the communication that took place was out of the ordinary as well. The famous 

words “Houston we’ve had a problem” originated during the Apollo 13 mission (NASA, 

2022; Kamalabad, Leenders & Mulder, 2023). The dataset is publicly accessible from Apollo 

13 Real Time. 

 

Because of how unconventional this situation is, the communication records from this 

mission present an especially interesting case for social network research. This data 

represents a relational event sequence where each row is a single, directed communication 

event with a time point, sender, and receiver (see Table 1). Sender column represents the 

actors that had initiated the communication event at a corresponding time point. Receivers are 

the targets of the communication event. The subset that was used for the current study 

consists of 3882 relational events (edges), each corresponding to a separate timestamp and 16 

actors (nodes). The dataset is fully observed and did not require any further processing before 

analysing.  
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This dataset is anonymised (actors’ names are substituted with numbers) and publicly 

available, therefore the dataset does not bear any ethical or legal considerations.  

3. Methods 

3.1 Relational Event Model 

 
REM allows researchers to study how the history of interaction influences the future 

probability of interaction through modelling the probability of occurrence of relational events 

at a certain time point. Who is going to interact and at which time point the interaction will 

occur is determined by the event rate λ. The event rate is a log linear function of statistics 

(Meijerink-Bosman, Back, & Geukes, 2023): 

𝑙𝑜𝑔𝜆(𝑖, 𝑗, 𝑡) 	= 	𝛽!𝑥!(𝑖, 𝑗, 𝑡) 	+ 𝛽"𝑥"(𝑖, 𝑗, 𝑡) 	+	𝛽#𝑥#(𝑖, 𝑗, 𝑡)	+. ..		 
	

Where 	𝛽	represents	the	magnitude	of	the	effect	of	the	statistics (x1, x2, x3), t is the time 

point, i.j represent the pair of actors. 	

 

Statistics are defined as predictors that can be used to model the event rate. Statistics can 

encode both endogenous and exogenous predictors. Exogenous predictors refer to any 

variables that are external to the relational event history data, such as attributes and 

characteristics of the actors or the environment. On the other hand, endogenous predictors 

refer to variables that summarise the volume of occurrence of past interactions, such as 

inertia, reciprocity, etc., (Meijerink-Bosman, Back, & Geukes, 2023, Butts, 2008). As the 

data used in the current study is a subset of the data used by Kamalabad, Leenders, & Mulder, 

(2023). We decided to use the same endogenous statistics. The analysed statistics were 

reciprocity, indegree sender, and outdegree receiver.  

 

Reciprocity 

Reciprocity refers to the tendency of actors to reciprocate contact. Positive reciprocity 

coefficient would point to a higher probability of an actor B initiating a communication event 

directed at actor A if previously actor A has initiated a communication event directed at actor 
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B. Reciprocity is modelled as a function of frequencies of past interactions (Butts & Marcum, 

2017; Kamalabad, Leenders & Mulder, 2023).  

 

Indegree sender 

Indegree refers to the number of edges that point towards a node representing a number of 

connections. In-degree sender effect points to a higher probability of a node being an initiator 

of contact in the future if the node has been often a target of communication events in the past 

(Kamalabad, Leenders & Mulder, 2023). For example, if node A has a high indegree (number 

of times the node has been a target of communication events), then node A will have a higher 

probability of being a sender (a node that initiates a communication event) in the future.  

 

Outdegree receiver  

Outdegree refers to the connections pointing towards other nodes. Nodes with high outdegree 

have many edges pointing outwards. Positive outdegree receiver indicates that nodes that 

have had high outdegree in the past, meaning had initiated many contacts, will have a higher 

probability of being a target of a communication event in the future. (Kamalabad, Leenders & 

Mulder, 2023). For example, if a node B has initiated a lot of communication events in the 

past and therefore has a high outdegree, then node B will have a higher probability of being a 

receiver.  

 

To calculate the statistics, first, for every time point (t) a ‘risk set’ needs to be constructed. A 

risk set is a list of all potential events for a specific time point N(N-1). The statistics are 

calculated for every possible pair of nodes in the risk set (Meijerink-Bosman, Back, & 

Geukes, 2023) 
 

3.2 Multiple Imputations 

Missing values can occur due to several reasons: participants’ refusal to answer certain 

questions or refusal to participate all together, drop-out of participants before the end of the 

study, malfunctioning of the software or hardware that is used to collect the information, etc. 

Not all missing values are the same but can be distinguished through their missingness 

mechanism. There are three mechanisms of missingness, which are: missing completely at 

random (MCAR), missing at random (MAR) and missing not at random (MNAR). MCAR 
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refers to occurrences where all values have the same probability of being missing, which 

means that missingness is not related to the data. The data is considered MCAR when: 

 𝑃𝑟(𝑅	 = 	0|	𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜓) 	= 	𝑃𝑟(𝑅	 = 	0|𝜓) 

 

Where R denotes the data of the population, Y refers to the data of the sample, Yobs  is 

observed data, and Ymis is the missing data, and 𝜓 represent the parameters of the missing data 

model. The notation used in this thesis is the same as van Buuren’s (2018).  

 

If the probability of being missing is the same conditional on information that is present in 

the data, the missingness mechanism is said to be MAR. Therefore, conditional on 

information that is observed, MCAR becomes MAR. The data is considered MAR when: 

𝑃𝑟(𝑅	 = 	0|	𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜓) 	= 	𝑃𝑟(𝑅	 = 	0|	𝑌𝑜𝑏𝑠, 𝜓) 
 

MNAR refers to a missingness mechanism that is dependent on the data, however, this 

information is not in the data. Therefore, the probability of data being missing varies, but for 

unknown reasons. The data is considered MNAR when: 

𝑃𝑟(𝑅	 = 	0|	𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜓) 
 

One of the methods of dealing with missing values in the data is multiple imputation. MI is 

defined as ‘state-of-the-art technique for drawing valid conclusions from incomplete data’ 

(Oberman & Vink, 2023, p. 1). In broad terms, multiple imputation is a method of filling in 

missing values with estimates of what could have been if the value would have been observed 

(Oberman & Vink, 2023). The process of multiple imputation is as follows: first, multiple 

imputation creates multiple complete datasets, then the chosen statistical analysis is applied 

to each of the complete datasets, and finally the results of the analysis are pooled into a final 

estimate and standard error. The process of creating complete datasets from incomplete 

datasets involves creation of multiple versions of complete datasets by means of replacing the 

missing values with the values that were drawn from a distribution that is modelled 

specifically for each missing value. The statistical analysis that is performed on the complete 

datasets in this study is REM. Pooling is an important process in multiple imputation and is 

not done by simple averaging of the estimates but is calculated so the standard errors reflect 

the uncertainty that comes with the presence of missing values in the data. The pooled 

variance is a result of combining the conventional within-imputation variance and the 

between-imputation variance which is the result of missing values. Pooling of the estimates 
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of multiple imputed datasets requires the assumption of normal distribution of the estimates 

(Rubin 1987; van Buuren, 2018). 

 

The reason why MI is a unique method of dealing with missing values is because it reflects 

the uncertainty that is inherent to missing values. The uncertainty of the imputed values is 

expressed as a variation of the values across the imputed datasets. The larger the variation of 

the imputed values across the imputed datasets, the larger the uncertainty. Due to the 

presence of missing values in the sample it is impossible to attain the estimand, therefore the 

goal of multiple imputation is to attain an estimate that is unbiased and confidence valid (van 

Buuren, 2018; Rubin, 1996). 

 

Van Buuren (2018) proposes several measures that can help evaluate the statistical validity of 

MI. The measures that will be used in this study are raw bias (RB), percent bias (PB) 

coverage rate (CR), and average width (AW). RB of the estimate refers to the difference 

between the estimate and the truth. The closer to zero the RB is, the more evidence there is 

for the validity of the process. PB is calculated by dividing the RB by the true value and 

multiplying that by hundred. PB should not extend 5%. CR is defined as the proportion of 

times that the true value falls within the range of the multiply imputed values. Preferably, this 

would occur 95% of the time. In case the CR falls below the nominal rate, it would indicate 

that the process is too optimistic leading to potential false positives. In case the CR is 

substantially above the nominal rate it means that the imputation method is inefficient and 

produces inferences that are too conservative. The latter case is preferred over the former one. 

AW is calculated by taking the average of the confidence intervals across the multiple 

imputations. AW serves as an indicator of statistical efficiency and should be as small as 

possible, but not so small as to cause CR to fall below the desired level.  
  

3.3 Data Analysis  

In order to evaluate whether multiple imputation is a viable and preferred approach for 

dealing with missing values in REH data, REM analysis of fully observed data and REM on 

complete cases was compared to REM analysis on multiply imputed data.  

 

To perform REM analysis on the fully observed data, reciprocity, indegree sender, and 

outdegree receiver statistics had to be calculated first. To calculate the statistics remify 
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(Arena, 2023) and remstats (Meijerink-Bosman et al, 2023) packages were used. After 

calculating the statistics, cox proportional hazard model from survival package (Therneau, 

2023) was used to perform REM analysis.  

 

In order to perform a multiple imputation, missingness had to be introduced to the fully 

observed data first. Missingness simulation, multiple imputation, pooling, and averaging were 

performed in accordance with “Strategies for simulating missingness” (Vink, 2022). Because 

a single finite observed dataset was used for the simulation study, sampling variance was not 

considered and was excluded from the evaluation of the performance of imputations (Vink, 

2022). See figure 2 for the schematic representation of the process. The red circle represents 

the fully observed Apollo 13 dataset. The yellow circles correspond to the multiple amputed 

dataset that were a result of the missingness simulation. Green circles represent the completed 

datasets that were created with multiple imputation. And finally black circles represent the 

pooled estimates of the multiple imputations, which means that every simulation produced 

one pooled final point estimate. Missingness was simulated a hundred times, to ensure the 

validity of the results. Each, out of a hundred dataset, had a slightly different missingness 

pattern. 

 

Figure 2. Schematic representation of missing data simulation using finite population 

according to Vink (2022).  

 

 
Note. From “Strategies for simulating missingness”, by G., Vink, 2022. Retrieved from: 

https://www.gerkovink.com/simulate/  
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The amputation was performed using the MICE package, which stands for Multiple 

Imputation by Chained Equations (van Buuren & Groothuis-Oudshoorn, 2011). MICE allows 

selection of proportion of missing values as well as the missingness mechanism, and pattern. 

Figure 3 shows that after amputation, missing values constituted 20% of the dataset and only 

existed in the ‘sender’ column which is the focus of this study. The proportion of missingness 

was selected to constitute 20% in order to introduce a substantial amount of missingness 

without risking the reliability of final estimates. For the missingness mechanism for the 

amputation process, MCAR was selected. Although MCAR is not always reasonable to 

assume, it is a stepping stone towards assessing the validity of the method. If the results 

suggest that MI cannot perform effectively under MCAR, likely it will not perform under 

MAR either. It is important to note that the missingness was not fully random. During 

simulation of amputations some datasets would end up having fewer actors in the sender 

column. Some actors appear rarely in the dataset therefore, when missingness was 

introduced, in some cases all instances of one of the actors was completely removed from the 

dataset. In this case the amputed dataset had only 15 actors appear instead of 16. The MI 

method that was applied in this study can only impute values that appear in the amputed 

dataset. Therefore, some of the complete datasets also included only 15 actors. Less actors 

result in fewer dyads and a smaller risk set. A risk set for 16 actors consists of 240 possible 

communication events while the risk set for 15 actors consists of 210 communication events. 

This discrepancy between some of the amputed datasets made REM analysis impossible on 

some of the completed datasets. To remedy this, a part of the observed dataset (1500 

observations) was conserved and not amputed. This ensured that all actors were present in the 

amputed sample.  

 

Figure 3. Missingness pattern in one of simulations after amputation of the Apollo 13 data. 

The rows represent the missingness patterns occurring in the dataset. The most common 

pattern - 3249 rows are fully observed. The other pattern - 633 rows have a missing value in 

the sender column (red square represents missing values) 
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Because complete case analysis is often a chosen method for handling missing values when 

conducting REM, the amputed datasets were used to perform REM on complete cases before 

performing multiple imputations. A hundred Apollo 13 datasets with missingness in the 

sender column were analysed with REM whereby all relational events that contained missing 

values were excluded from the analysis. The results were later averaged across the analyses 

to represent the final estimate for complete case analysis.  

 

The datasets with simulated missingness were also used to perform multiple imputations 

using MICE. There are several parameters that must be considered when setting up a multiple 

imputation in MICE: number of imputations, number of maximum iterations, method for 

multiple imputation, and which variables are used as predictors for the missing values. The 

number of imputations as well as maximum iterations was set to five. Number of imputations 

determine the number of complete datasets that will be created with multiple imputations. 

Although it is often suggested that the number of imputations should be set to a higher 

number (van Buuren, 2018), the computational efficiency had to be considered. Therefore, a 

total number of five multiple imputations was selected. The number of iterations determine 

the number of cycles that multiple imputation runs to refine the estimates of missing values. 

In each iteration, the variable that was specified gets imputed using the predictor variables 

(van Buuren, 2018). The number of iterations can be increased to ensure proper convergence, 

however, typically a low number of iterations, between 5 and 20 is considered to be able to 

achieve convergence (van Buuren, 2018). A convergence plot for one of the simulations can 

be seen in figure 4. The plot shows mean (left panel) and standard deviation (sd) (right panel) 

for imputed values in the sender column across five imputations and five iterations. 
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Convergence is evaluated using two criteria: mixing and stationarity. Mixing refers to the 

intermingling of the imputation values and stationarity refers to the absence of a clear trend 

across iterations (Gelman et al, 2013; Oberman, van Buuren, & Vink, 2021). In figure 4 (left 

panel) a slight deviation from a typical convergence can be seen. One of the imputations is 

not mixing very well with the rest. However, the right panel shows that the convergence was 

achieved after the second iteration. It is possible that the MI would benefit from a higher 

number of iterations, however the computational efficiency had to be prioritized.   

 

Figure 4. Trace line plots of means (left) and standard deviations (right) of imputed values 

for the sender column in one of the simulations.  

 
 

For the method of multiple imputation, predictive mean matching was used. Predictive mean 

matching “calculates the predicted value of a target value according to the specified 

imputation model” (van Buuren, 2018, Chapter 3.4). From all complete cases in which      

predicted values are closest to the predicted values of the missing observation, for each 

missing value a small set of candidate donors is formed. Then one donor is randomly drawn 

from the candidate set and the observed value of the donor replaces the missing observation. 

Predictive mean matching assumes that the distribution of the missing value is the same as 

the distribution of the observed candidate values. However due to the structure and nature of 

the data a custom method had to be created in order to properly impute the Apollo 13 data. 

This method had to avoid creation of loops, whereby one actor is initiating a contact with 
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themselves. Therefore, a conditional predictive mean matching was used, where candidate 

donors cannot include the same value as the corresponding receiver. Finally, for the predictor 

variables, only the receiver variable was used because when the time variable was included as 

a predictor it was creating loops in the imputed datasets. After creating the completed 

datasets, REM analysis was performed on each set. As potential predictors of interactions 

reciprocity, outdegree receiver and indegree sender were included.  

Finally, all the REM results were pooled, and the pooled results were averaged across a 

hundred simulations.   

 

The code to perform simulations and analyse the data is available in the appendix.  

4. Results  
 
REM results of the fully observed subset of Apollo 13 data can be seen in table 2. The effects 

of all three statistics are close to zero and only indegree sender has a statistically significant 

effect on the hazard rate of the future interactions. Which means that there is no evidence to 

suggest propensity of reciprocating past interactions. Neither there is evidence to point to the 

higher probability of actors to be a target of a communication event if they have initiated 

contact in the past. The effect for indegree sender is small, but statistically significant and 

suggests higher probability of initiating contact for actors who have been contacted more in 

the past.  

 

Table 2.  REM results on the fully observed Apollo 13 data. 

Statistic Estimate Standard error  p-value 

Reciprocity 0.0235 0.0185 0.204 

Indegree Sender  0.0004 74.0× 10!" <.001 

Outdegree Receiver  -91.15× 10!" 74.4× 10!"  0.220 

 

REM results of the amputed, but not yet multiply imputed datasets can be seen in table 3. All 

effects are slightly overestimated compared to the results of the model on the fully observed 

data. Standard errors are also larger than in the true model. The significance of the p-values 
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remained the same – only effect for indegree sender is significant in both models. Last 

column shows the RB of the complete case analysis estimates compared to the true value. RB 

is small across all effects.  

 

Table 3. Complete case REM results averaged across 100 simulations of missingness. 

Statistic Estimate Standard error  p-value bias 

Reciprocity 0.0261 0.0259 0.319 0.0026 

Indegree Sender  0.0008 0.0002 <.001 0.0004 

Outdegree Receiver  -0.0002 0.0002  0.390 -85.77×10-6 

 

 

Averaged REM results after MI across hundred simulations can be seen in table 4. 2.5% and 

97.5% represent the lower and upper boundary of the confidence intervals. Cov stands for 

coverage rate and shows the proportion of times that confidence intervals covered the ‘true’ 

value. The raw bias is very small, close to zero across all effects. Notably, it is smaller than in 

the case of complete case analysis, across all effects. The PB for reciprocity, indegree sender, 

and outdegree receiver is also below 5%: 2.33%, 0.17%, and 1.06% respectively (refer to 

section 3.2 for the description of how to calculate RB). Moreover, for all three effects, the 

true value is found within the confidence intervals 100% of the time. Coverage rate higher 

than 95% is suboptimal, but acceptable. AW of confidence intervals is also very close to zero 

for all effects: reciprocity (0.0035); indegree sender (5.44× 10−6); outdegree receiver 

(19.0 × 10&') (refer to section 3.2 for the description of AW). Notably, the MI method 

produced false significant p-values. Unlike in REM on fully observed data and REM on 

complete cases p-values for reciprocity and outdegree receiver are significant here. This 

could have been caused by the conservation of part of the dataset while introducing 

missingness in the dataset. 

 

Table 4. REM results averaged across 100 simulations of missingness and 5 multiple 

imputation sets.  

Statistic Estimate Standard 

error  

p-value 2.5% 97.5% Cov Bias 
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Reciprocity 0.0241 0.0006 <.001 0.0223 25.9× 10−3 0.99 0.0005 

Indegree 

Sender  

0.0004 980× 10−9 <.001 0.0004 433× 10−6 1.00 -714× 10%& 

Outdegree 

Receiver  
-92.1× 10%' 3.43× 10−6 <.001 -0.0001 -82.6× 10−6 1.00 -968× 10−9 

 

In figures 3-5, the distribution of estimates after MI for the investigated effects can be seen. 

The distribution for reciprocity is slightly skewed to the right and the distribution for indegree 

sender is slightly skewed to the left. The distribution for the estimates of outdegree receiver 

appears to be normal. However, after visual inspection of quantile-quantile plots (Figures 1-3 

in Appendix) it appears that neither of the distributions is normal. In addition, the results of 

Kolmogorov-Smirnov test for reciprocity (D = 0.51, p <0.001), indegree sender (D = 0.50, 

p<0.001), and outdegree receiver (D = 0.50, p<0.001) showed that the hypothesis that the 

distributions of the estimates are normal must be rejected. The skewed distributions violate 

the normality assumption of Rubin’s rules. Not meeting the normality assumption could 

result in overestimated standard errors and biased estimates.  
 

Figure 3. Density plot of estimates for reciprocity of 100 simulations with 5 multiple 

imputations each. 

 
Figure 5. Density plot of estimates for indegree sender of 100 simulations with 5 multiple 

imputations each. 
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Figure 4. Density plot of estimates for outdegree receiver of 100 simulations with 5 multiple 

imputations each. 

 
 

5. Discussion and Conclusion 

 

Missing data had an identifiable effect on the results of the analysis. Similarly to other studies 

(Huisman, & Steglich, 2008; Gile, & Handcock, 2006), complete case analysis produced 

biased inferences. In the current study, complete case analysis overestimated the effects of 

the predictors and produced larger standard errors. As an alternative to complete case 

analysis, this study has performed MI to handle the missing values. Based on the criteria for 
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evaluation of MI RB, PB, CR and AW, the MI with REM appears to be a valid approach for 

addressing the missing data in REH. The raw and percent biases are close to zero across all 

three effects. The CR is too high, suggesting that the confidence intervals are too wide. 

However, conservative inferences that always cover the true value are pointing to statistical 

insufficiency and not invalid inference (van Buuren, 2018). Therefore, the CR is acceptable. 

AW for all three effects appears to be very small. It is important to note that the effects of the 

model are all close to zero, therefore it is difficult to reasonably assess the widths of the 

intervals. Perhaps analysing the full Apollo 13 dataset and not just the subset would have 

produced larger estimates. 

 

To summarise, the MI approach appears to have performed better than complete case 

analysis. The estimates of MI have lower RB, and the standard errors are smaller. However, 

although according to van Buuren’s evaluating criteria the MI method appears to be valid, 

unlike complete case analysis MI have caused false statistical significance of the p-values. 

According to the results of REM analysis on fully observed data, only the effect for indegree 

sender is statistically significant. Yet, in the MI with REM all the effects are statistically 

significant. This could be due to the pooling rules that were used for variance calculation 

which resulted in the underestimation of variance and standard errors creating false 

significant p-values. Because the sampling variance was excluded due to the use of finite 

populations, the variance was calculated as follows:   𝑇 = ()(
*

 (where T denotes total 

variance, B the variance between imputations, and m stands for the number of multiple 

imputations). This has caused the underestimation of variance due to the introduction of a 

constant (conserved part of the dataset) during the amputation process. Notably, if 

conventional Rubin’s rules for pooling were applied (including the sampling variance), it 

would have likely overestimated the variance. Identifying correct variance pooling remains a 

task for future research. Furthermore, the density plots and Kolmogorov-Smirnov test results 

showed slight deviation from the assumption of normal distribution. However, the deviation 

from normal distribution is not substantial, therefore, most likely does not constitute a 

problem for the validity of the pooled estimates.  

 

This study has several limitations. First, MCAR often cannot be reasonably assumed for the 

data at hand. Therefore, it is essential to test MI methods on the data that have missing values 

created under the MAR mechanism. Second, in this study only three statistics were 
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investigated. Future studies could benefit from considering more statistics, for example 

inertia, or enriching the data with attribute variables and using them to calculate exogenous 

statistics. Third, the conservation of the part of the dataset had a negative effect on the 

variance estimates which must be addressed in future research. In addition, the performance 

of the multiple imputation could have suffered from the small number of imputations and 

iterations. Future studies should consider increasing both to achieve optimal performance of 

MI. Additionally, in this study the time variable was removed because it appeared to create 

loops in the completed datasets. In the future studies this should be explored. It is also 

important to mention that this study only considered missingness in the sender column. 

Future research should also investigate the effect of missing values and MI in the time and 

receiver columns as well as in multiple columns at the same time. Lastly, the small effect 

sizes of the estimated parameters from the relational event model make it difficult to assess 

certain performance criteria of the imputation (AW, RB). Future research should consider 

conducting a simulation study on the full Apollo 13 dataset.  

 

The main goal of the current study was to determine whether multiple imputation with REM 

can produce unbiased results. Based on the results of this study, multiple imputation, even if 

only under MCAR missingness assumption, can produce satisfactory results. However, more 

research is needed to address the limitations of this study.  
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Appendix 

Figure 1. Quantile-quantile plot for distribution of estimates for reciprocity effect  

 
Figure 2. Quantile-quantile plot for distribution of estimates for indegree sender effect  
 

 
 
Figure 3. Quantile-quantile plot for distribution of estimates for outdegree receiver effect  
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Code for the R analysis  
 
library(mice, warn.conflicts = FALSE) 
require(lattice) 
library(tidyverse) 
library(magrittr) 
library(dplyr)  
library(purrr) 
library(furrr)   
library(relevent) 
library(broom.mixed) 
library(rem) 
library(ggplot2) 
library(survival) 
library(remify) 
library(remstats) 
library(devtools) 
library(tibble) 
 
## 1. Read the data 

load("UUsummerschool.Rdata") 

rm(Twitter_data_rem3, WTCPoliceCalls, ClassIntercept, ClassIsFemale, 

   ClassIsTeacher, WTCPoliceIsICR, Class) # remove data that is not used 

 

## 2. Ampute and then impute the data 

# renaming dataset for later convenience  

apollo.renamed <- PartOfApollo_13 

apollo.renamed <- apollo.renamed %>%  

  rename( 

    actor1 = sender, 

    actor2 = receiver 

  ) 

 

# making the dataset a tibble  

apollo.renamed <- as_tibble(apollo.renamed) 

 

# determine which column to condition on 

whichcol <- c("", "actor2", "actor1") 

names(whichcol) <- colnames(apollo.renamed) 
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# create predictor matrix for imoutations 

pred <- make.predictorMatrix(apollo.renamed) 

pred[ ,"time"] <- 0 

pred 

 

# use the custom pmm method 

method <- make.method(apollo.renamed) 

method[c(2,3)] <- "pmm.conditional" 

 

#### set with sufficient actors & dyads 

set.seed(123) # fix seed to realize a sufficient set 

 

indic <- sample(1:nrow(apollo.renamed), 1500) 

remify(apollo.renamed[indic, ], model = "tie") %>% dim()  

 

 

#### Combine the sufficient set and the incomplete set 

make_missing <- function(x, indic){ 

  sufficient <- x[indic, ] 

  miss <- x[-c(indic), ] |> 

    ampute(prop = .8,  

           mech = "MCAR", 

           patterns = c(1,0,1)) %>%  

    .$amp 

  combined <- rbind(sufficient,  

                    miss) 

  return(combined[order(combined$time), ]) # sort it all like apollo 

} 

# simulate 100 datasets with missingness in the sender column with MCAR mechanism then 

ampute the data with the conditional pmm and 5 multiple imputations and 5 itterations, 

exclude time column as a predictor 

 

MCAR_finite <- furrr::future_map(1:100, ~ { # map over 100 sims 
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  apollo.renamed %>%  

    make_missing(., indic) %>%  

    mice(m = 5,  

         maxit = 5, 

         method = method, 

         pred=pred, 

         whichcolumn = whichcol, 

         print = F) 

}, .options = furrr_options(seed = 123)) 

 

#check if it is correct 

# MCAR_finite |> map(~.x %>% 

#   complete("long") |> 

#   summarize(all(actor1 != actor2))) 

 

 

# checking convergence  

convergence <- lapply(MCAR_finite, plot) # plot means and sd for every simulation 

 

plot(MCAR_finite[[58]],  

     print=F,  

     y = "actor1",  

     layout = c(2,1)) # plot one of the plots  

 

# Effects and function definition 

# creating functions  

# Define effects 

effects <- ~ -1 + reciprocity(scaling = ("std")) + 

  indegreeSender() + outdegreeReceiver() 

 

# function to remify each imputed dataset 

 

# code edited by Gerko 

rem_function <- function(data) { 
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  # Perform the analysis as before 

  remify::remify(edgelist = data, model = "tie") %>%  

    remstats(tie_effects = effects) 

} 

 

 

# function to create a dataset for the cox model  

cox_sets_function <- function(statsObject_imp, apollo_data) { 

  # take the single riskset  

  # remove the id column 

  risk_sets <- attr(statsObject_imp, "riskset") %>% select(-'id') 

  # creating one set with all risksets for each time point  

  combined <- merge(risk_sets, apollo_data$time, by=NULL)  %>%  

    rename(time = y) %>%  

    .[, c("time", "sender", "receiver")] %>%  

    mutate(sender = as.numeric(sender),  

           receiver = as.numeric(receiver)) 

   

  # GV: Calculate divergence 

  diff <- apollo_data[rep(seq_len(nrow(apollo_data)), each = 240), ] %>%  

    data.matrix() %>%  

    .[, 1:3] - combined 

  # GV: identify non-divergence 

  combined$status <-  

    rowSums(diff == 0) == ncol(diff) 

   

  #combining the dataset with riskset to the statistic 

  reciprocity <- statsObject_imp[,,1] 

  indegreeSender <- statsObject_imp[,,2] 

  outdegreeReceiver <- statsObject_imp[,,3] 

   

  recip.vector <- c(reciprocity) 

  combined$reciprocity <- recip.vector 
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  indegSen.vector <- c(indegreeSender) 

  combined$indegreeSender <- indegSen.vector 

   

  outRec.vector <- c(outdegreeReceiver) 

  combined$outdegreeReceiver <- outRec.vector 

   

  combined$status <- as.integer(as.logical(combined$status)) 

   

  return(combined) 

} 

 

######################### cox model on complete data #########################  

# Prepare event history 

true.reh <- remify(edgelist = apollo.renamed,  

                   model = "tie") 

# calculate stats 

stats <- remstats(tie_effects = effects,  

                  reh = true.reh) 

# use the function to create the correct format of the dataframe 

true.cox.set <- cox_sets_function(stats, PartOfApollo_13) 

# fit cox model  

true.cox.fit <- coxph(Surv(time, status) ~ reciprocity + indegreeSender +  

                        outdegreeReceiver,  

                      data=true.cox.set) 

true <- coefficients(true.cox.fit) 

 

# prepare the data for the cox model 

t1 <- Sys.time() 

cox.models.sims <- MCAR_finite[1:10] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  
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              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

Sys.time() - t1 

 

cox.models.sims2 <- MCAR_finite[11:20] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 
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        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

cox.models.sims3 <- MCAR_finite[21:30] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 
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               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

cox.models.sims4 <- MCAR_finite[31:40] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 
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               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

cox.models.sims5 <- MCAR_finite[41:50] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

cox.models.sims6 <- MCAR_finite[51:60] %>%  
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  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

cox.models.sims7 <- MCAR_finite[61:70] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  



 

39 
 

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

cox.models.sims8 <- MCAR_finite[71:80] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 
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               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

cox.models.sims9 <- MCAR_finite[81:90] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  
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                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  

               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

cox.models.sims10 <- MCAR_finite[91:100] %>%  

  map(~.x %>% # for every simulated multiple imputation.... 

        complete("all") %>% # create a list of completed data sets 

        map(~.x %>% # GV: changed into regular pipe - for every completed data set.... 

              rem_function() %>% # GV: removed .x - remify the imputed set 

              cox_sets_function(apollo_data=PartOfApollo_13) %$%  

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver)) %>%  

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients 

        .$pooled %>% # extract table of pooled coefficients 

        mutate(true = true, # add true 

               df = m-1,  # correct df 

               riv = Inf, # correct riv 

               std.error = sqrt(t), # standard error 

               statistic = estimate / std.error, # test statistic 

               p.value = 2 * (pt(abs(statistic),  

                                 pmax(df, 0.001),  

                                 lower.tail = FALSE)), # correct p.value 

               `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI 

               `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI 

               cov = `2.5 %` < true & true < `97.5 %`, # coverage 

               bias = estimate - true) %>% # bias 

        select(term, m, true, estimate, std.error, statistic, p.value,  
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               riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

        column_to_rownames("term")) # create the sets for cox model 

 

#stitch the lists together 

sims <- list(cox.models.sims, 

             cox.models.sims2, 

             cox.models.sims3, 

             cox.models.sims4, 

             cox.models.sims5, 

             cox.models.sims6, 

             cox.models.sims7, 

             cox.models.sims8, 

             cox.models.sims9, 

             cox.models.sims10) %>%  

  purrr::flatten() # make a single flat list instead of a list of lists 

 

save(sims, file = "sims_moremissing.RData") 

 

# Average sims 

 

Reduce("+", sims) / length(MCAR_finite) 

 

 

# Long data frame 

 

reciprocity <- sims %>%  

  map(~.x %>% .["reciprocity", ]) %>% #select row reciprocity 

  do.call("rbind", .) 

indegreeSender <- sims %>%  

  map(~.x %>% .["indegreeSender", ]) %>%  

  do.call("rbind", .) 

outdegreeReceiver <- sims %>%  

  map(~.x %>% .["outdegreeReceiver", ]) %>%  

  do.call("rbind", .) 
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colMeans(reciprocity) 

 

 

# Plot 

 

library(ggplot2) 

 

reciprocity %>%  

  ggplot(aes(x = estimate)) +  

  geom_density() + theme_classic() + labs(x ="Reciprocity Estimate", y = "Density") 

 

outdegreeReceiver %>%  

  ggplot(aes(x = estimate)) +  

  geom_density() + theme_classic() + labs(x ="Outdegree Receiver Estimate", y = "Density") 

 

indegreeSender %>%  

  ggplot(aes(x = estimate)) +  

  geom_density() + theme_classic() + labs(x ="Indegree Sender Estimate", y = "Density") 

 

# calculate percent bias 

 

av.resiprociy <- colMeans(reciprocity) 

av.indegreeSender <- colMeans(indegreeSender) 

av.outdefgreeReceiver <- colMeans(outdegreeReceiver) 

 

 

PB.recip <- 100 * abs((av.resiprociy["estimate"] - true['reciprocity'])/ true['reciprocity']) 

PB.indegSender <- 100 * abs((av.indegreeSender["estimate"] - true['indegreeSender'])/ 

true['indegreeSender']) 

PB.outdegReciever <- 100 * abs((av.outdefgreeReceiver["estimate"] - 

true['outdegreeReceiver'])/ true['outdegreeReceiver']) 

 

 

# calculate average width 
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AW.recip <- av.resiprociy["97.5 %"] - av.resiprociy["2.5 %"] 

AW.indegSend <- av.indegreeSender["97.5 %"] - av.indegreeSender["2.5 %"] 

AW.outdegRecip <- av.outdefgreeReceiver["97.5 %"] - av.outdefgreeReceiver["2.5 %"] 

 

# look at the distribution more closely  

ggqqplot(reciprocity$estimate, ylab = "Reciprocity Estimates") 

ks.test(reciprocity$estimate, "pnorm") 

 

ggqqplot(indegreeSender$estimate, ylab = "Indegree Sender Estimates") 

ks.test(indegreeSender$estimate, "pnorm") 

 

ggqqplot(outdegreeReceiver$estimate, ylab = "Outdegree Receiver Estimates") 

ks.test(outdegreeReceiver$estimate, "pnorm") 

 

 

############### COMPLETE CASE ANALYSIS ###############  

 

MCAR_missing <- furrr::future_map(1:100, ~ { # map over 100 sims 

  apollo.renamed %>%  

    make_missing(., indic)}, .options = furrr_options(seed = 123)) 

 

 

cox_sets_for_incomplete <- function(data) { 

   

  statsObject <- remify::remify(edgelist = data, model = "tie") %>%  

    remstats(tie_effects = effects) # create statistics for every amputed dataset 

   

  # make sure that complete apollo data to compare with is the same size as 

  # amputed dataset with only complete cases 

  complete.cases <- data[complete.cases(data), ]  

  index <- as.numeric(rownames(complete.cases)) 

  apollo.missing <- apollo.renamed[index, ] 

   

  # take the single riskset  
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  # remove the id column 

  risk_sets <- attr(statsObject, "riskset") %>% select(-'id') 

  # creating one set with all risksets for each time point  

  combined <- merge(risk_sets, apollo.missing$time, by=NULL)  %>%  

    rename(time = y) %>%  

    .[, c("time", "sender", "receiver")] %>%  

    mutate(sender = as.numeric(sender),  

           receiver = as.numeric(receiver)) 

   

  # GV: Calculate divergence 

  diff <- apollo.missing[rep(seq_len(nrow(apollo.missing)), each = 240), ] %>%  

    data.matrix() %>%  

    .[, 1:3] - combined 

  # GV: identify non-divergence 

  combined$status <-  

    rowSums(diff == 0) == ncol(diff) 

   

  #combining the dataset with riskset to the statistic 

  combined$reciprocity <- c(statsObject[,,1]) 

  combined$indegreeSender <- c(statsObject[,,2]) 

  combined$outdegreeReceiver <- c(statsObject[,,3]) 

   

  combined$status <- as.integer(as.logical(combined$status)) 

   

  return(combined) 

} 

 

 

# cox model on complete cases 

complete.case.fit <- MCAR_missing %>%  

  map(~.x %>% # for every completed data set.... 

        cox_sets_for_incomplete() %$%  

        coxph(Surv(time, status) ~  

                reciprocity +  
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                indegreeSender +  

                outdegreeReceiver)) 

 

# disable scientific notation 

options(scipen=999) 

 

# create a dataframe out of the cox model objects 

results <- list() 

 

# Generate 100 dataframes 

for (i in 1:100) { 

  # Create a dataframe with columns of results from the cox models 

  df <- data.frame( 

    coef = complete.case.fit[[i]]$coefficients, 

    se = coef(summary(complete.case.fit[[i]]))[, "se(coef)"], 

    p = coef(summary(complete.case.fit[[i]]))[, "Pr(>|z|)"], 

    true = true[1:3] 

  ) 

  rownames(df) <- c("reciprocity", "indegreeSender", "outdegreeReceiver") 

  # Append the dataframe to the list 

  results[[i]] <- df 

} 

 

 

# average the results across all simulations 

average <- results %>% 

  map(~.x %>% 

        mutate(bias = coef - true) %>% # bias 

        select(true, coef, se, p,  

               bias)) %>%  

  Reduce("+", .) / length(MCAR_missing) 

 

 


