

1

Imputing Missing values in Relational Event History data: A Framework for Social

Network Research

Vira Dvoriak (7334966)

Mahdi Shafiee Kamalabad

Gerko Vink

Master Applied Data Science, Utrecht University

July 7, 2023

2

Abstract 3	
1.	 Introduction 4	

1.1 Networks 4	
1.2 Relational Event History Data 5	

2. Data 8	
3. Methods 9	

3.1 Relational Event Model 9	
3.2 Multiple Imputations 10	
3.3 Data Analysis 12	

4. Results 17	
5. Discussion and Conclusion 20	
References 23	
Appendix 27	

3

Abstract

Background – Missing values are practically inevitable when it comes to data analysis and
can cause loss of valuable information and introduce bias in the estimates. In social network
data even a small proportion of missing values can have a substantial impact on the validity
of results. The most common approach to deal with missing values is complete case analysis
which does not always prevent these issues. Still, the research investigating this problem is
scarce. This paper aims to address this gap by providing an overview of multiple imputation
as a method of handling missing values in social network data.
Methods – Relational event model analysis is performed on the fully observed relational
event history dataset to produce the true estimates. Next, a simulation study is performed to
introduce missingness to a fully observed dataset. Then the results of two approaches -
multiple imputation and complete case analysis are compared to the results of the analysis on
the fully observed dataset.
Results –Multiple imputation with relational event model produced estimates with close to
zero bias, high coverage rate, and low average width. However, multiple imputation produced
false significant p-values. In addition, the distributions of the effect estimates were slightly
skewed for all effects. Complete case analysis produced overestimated effects and standard
errors but did not produce false significant p-values.
Conclusion – This study made first steps in evaluating whether multiple imputation with
relational event model is a valid method to address missing values in relational event history
data and compared it to the more common solution – complete case analysis. The findings
reveal potential benefits of multiple imputation and propose direction for future research.

4

1. Introduction

1.1 Networks

Newman (2018) defines a network as a collection of points (nodes) connected to each other

with lines (edges). Networks are used to study various systems in social, physical, and

biological sciences. A network can be used to represent a system of interest, for example, an

online or offline social network, biological neural network, etc. (Newman, 2018). An

example of a real network can be seen in figure 1.

Figure 1. Example of a real social network. The network shows friendship patterns between

school children in a class of 1930. The nodes are coded according to gender and lines

represent friendship connections between children.

Note. From “Networks”, by M. E. J. Newman, 2018. Oxford University Press, p. 48

A social network is a network in which nodes represent individuals and edges represent

various types of connections or relationships between them (Newmann, 2018). Social

structures represented through social networks can allow for accurate reflection of

relationships and other various social phenomena (Butts & Marcum, 2017). The network

shown in figure 1 is an example of such utility of networks. This social network revealed an

interesting relationship pattern among school children - there are many friendship

connections within genders, but only one between genders (Newman, 2018). The significance

of social networks in social research can be attributed to their simplicity and efficiency. One

of the important qualities of social networks is that the edges can represent a variety of

5

relationships beginning with acquaintance and including professional relationships, close

friendships, and romantic connections. Therefore, they allow the investigation of many types

of social phenomena. In addition, social networks make it easy to convey conclusions of

studies through a visual representation of the social phenomena (Newmann, 2018; Serrat,

2017).

Social network analysis can be employed to investigate questions such as: “what are

communication patterns in local communities?” (Bernard, 1989); “How do behaviours and

ideas spread through a social network?” (Fattore et al., 2009); “How do scientists

collaborate?” (Grossman, 2002); “What are social structures of dating among young people?”

(Bearman, Moody, Stovel, 2004); “What is the dynamic nature of interaction between

teachers and students in the classes during the semester?” (Grunspan, Wiggins, & Goodreau,

2014). As well as more focused questions, such as “which aspects of past interactions

determine future interactions?” (Meijerink-Bosman, Back, & Geukes, 2023). Social network

analysis (SNA) is important for several reasons. Understanding relationships: SNA helps

uncover and analyse the relationships and connections between individuals, groups, or

entities (Hawe, & Ghali, 2008). It provides insights into how relationships develop, progress,

change and how they can be utilised to achieve different outcomes (Hawe, & Ghali, 2008;

Boyer et al., 2010; Newmann 2018). Identifying key players: SNA enables the identification

of influential individuals or entities within a network (Serrat, 2017; Landherr et al., 2010).

SNA can identify the most important nodes through measuring centrality of the network

which can point to the nodes with most connections, or the nodes that lay on the path to most

connections or the nodes that are connected to the highest number of other well-connected

nodes (Newmann, 2018). Revealing structural patterns: SNA reveals the underlying structural

patterns of a network, such as clusters, subgroups, or communities. SNA can identify nodes

that are tightly connected between each other and categorise it as a community (Newmann,

2018). All these and many more capabilities of SNA are widely utilized due to the increasing

availability of social network data.

1.2 Relational Event History Data

Social network data, at a minimum, consists of rows and columns which represent individuals

or other social entities and a presence or absence of a relationship between them (Scott, &

6

Carrington, 2011). There are many types of social network data: interviews, archival records,

social media data, phone records, etc., (Newmann, 2018). One of such types of social

network data is relational event history (REH) data. In this type of data, relational events are

analogous to edges in social network data. Butts and Marcum (2017) define REH as a

sequence of discrete instances of interaction between a set of individuals or entities. This data

consists of at least a time or order of the communication event, called relational event, and

the actors that are involved in the event (Meijerink-Bosman, Back, & Geukes, 2023; Butts,

2008). An example of the REH data can be seen in table 1. The “Time” column shows the

time that the communication event took place, which is continuous. The “Sender” column

shows who initiated the communication event and the receiver column identifies at whom the

communication event is directed. Names of the actors were coded as numbers.

Table 1. First four relational events in the Apollo 13 data.

Time Sender Receiver

11849.2 18 2

11854.2 2 18

11885.2 18 2

11890.2 2 18

… … …

REH data has become widely available with the development of technology. REH can be

found in the form of online communication (email, Twitter, Facebook etc.), phone records,

online collaboration, etc. This data makes it possible to study questions like “what behaviour

drives communication?”, “how can the next interaction event be predicted?”, “what changes

the dynamic of interaction over time?”, “which actors’ attributes influence communication

dynamic?”, “which patterns of interaction are common?” (Meijerink-Bosman, Back, &

Geukes, 2023; Butts, 2008; Pilny et al., 2016). REH data is a widely regarded and a highly

prevalent and influential type of network. One key characteristic of this type of data is the

inherent dependency between the nodes and edges (Meijerink-Bosman, Back, & Geukes,

2023). Hence, it seems that traditional statistical methods do not handle this type of data very

7

well. Therefore, this data requires a unique tool to analyse it. The model that can take into

account such a structure is relational event model (REM) (Butts, 2008). REM is especially

suited to analyse continuous, fine grained, social interaction data, like REH data (Meijerink-

Bosman, Back, & Geukes, 2023).

Missing values in REH data is a common occurrence. Just like in other types of social

network data, it can cause a number of problems for the statistical analysis if not handled

properly. Social network data is especially vulnerable to the problems of missing data (Burt,

1987). Missingness even in just one part of the node causes “missing parts of a single

realization of a dependent process” (Gile, & Handcock, 2006, p. 2). Models that are used to

analyse network data assume data completeness. Therefore, missing data can result in

misleading or incorrect conclusions (Wang et al., 2016). In addition, Kossinets (2006) found

that missing data in networks can affect network-level statistics, such as clustering and

assortativity coefficients.

Based on whether the missingness is data dependent or not, different approaches to handle it

must be applied (van Buuren, 2018). Regardless of the missingness mechanism, the default

method that is used to handle missing values in R packages that are used to perform REM

analysis like “survival” (Therneau, 2023), “remify” (Arena, 2023), and “remstats”

(Meijerink-Bosman et al, 2023) is complete case analysis (removing observations with

missing values). The disadvantages of complete case analysis are the loss of information and

potential of biased results.

Several other approaches were proposed to handle missing data in social networks.

Imputation methods proposed by Burt (1987) whereby missing values are replaced with

values that represent weak relations and a reconstruction method proposed by Stork and

Richards (1992). Likelihood-based estimation methods were also discussed by Robins et al.

(2004), Gile and Handcock (2006), Handcock and Gile (2007) and Koskinen (2007)

(Huisman & Steglich, 2008). One of the latest studies by Huisman, (2020) investigated the

effectiveness of simple imputation techniques on conservation of structural properties of the

network. According to Huisman’s results, simple imputation techniques did not achieve

successful correction of missing values apart from a few specific situations.

To the author’s best knowledge, no previous study has evaluated multiple imputation (MI)

performance with REM. MI is a method that can conserve the data and potentially produce

8

unbiased results (van Buuren, 2018). The MI process consists of the following steps: creating

multiple completed datasets, conducting a statistical analysis on each of the completed

datasets, and then pooling the results to produce the final unbiased estimate and standard

errors. The pooling is performed by “Rubin’s rules”. The pooled variance is estimated by

combining the within-imputation variance with the between-imputation variance caused by

the missing values (van Buuren, 2018; Enders, 2022). In the following sections the problem

of missing values in data and the method of addressing them - MI will be introduced. Then,

the method of simulating missingness and the process of multiple imputation will be

described. In order to make the design of the study as straightforward as possible, only

missingness in one column (sender) will be considered, as a first step in addressing this issue.

Hence, I propose the following research question: can multiple imputation with REM be

applied on REH data with missing values in the sender variable, to produce valid inference?

2. Data

The dataset that was analysed in the current study is a part of Apollo 13 communication

records between the astronauts and control team. Apollo 13 was a mission conducted by

NASA within the Apollo space program. Apollo 13 is an infamous mission that was cut short

after just circling the moon due to an oxygen tank exploding. Due to the extreme

circumstances the communication that took place was out of the ordinary as well. The famous

words “Houston we’ve had a problem” originated during the Apollo 13 mission (NASA,

2022; Kamalabad, Leenders & Mulder, 2023). The dataset is publicly accessible from Apollo

13 Real Time.

Because of how unconventional this situation is, the communication records from this

mission present an especially interesting case for social network research. This data

represents a relational event sequence where each row is a single, directed communication

event with a time point, sender, and receiver (see Table 1). Sender column represents the

actors that had initiated the communication event at a corresponding time point. Receivers are

the targets of the communication event. The subset that was used for the current study

consists of 3882 relational events (edges), each corresponding to a separate timestamp and 16

actors (nodes). The dataset is fully observed and did not require any further processing before

analysing.

9

This dataset is anonymised (actors’ names are substituted with numbers) and publicly

available, therefore the dataset does not bear any ethical or legal considerations.

3. Methods

3.1 Relational Event Model

REM allows researchers to study how the history of interaction influences the future

probability of interaction through modelling the probability of occurrence of relational events

at a certain time point. Who is going to interact and at which time point the interaction will

occur is determined by the event rate λ. The event rate is a log linear function of statistics

(Meijerink-Bosman, Back, & Geukes, 2023):

𝑙𝑜𝑔𝜆(𝑖, 𝑗, 𝑡) 	= 	𝛽!𝑥!(𝑖, 𝑗, 𝑡) 	+ 𝛽"𝑥"(𝑖, 𝑗, 𝑡) 	+	𝛽#𝑥#(𝑖, 𝑗, 𝑡)	+. ..		
	

Where 	𝛽	represents	the	magnitude	of	the	effect	of	the	statistics (x1, x2, x3), t is the time

point, i.j represent the pair of actors. 	

Statistics are defined as predictors that can be used to model the event rate. Statistics can

encode both endogenous and exogenous predictors. Exogenous predictors refer to any

variables that are external to the relational event history data, such as attributes and

characteristics of the actors or the environment. On the other hand, endogenous predictors

refer to variables that summarise the volume of occurrence of past interactions, such as

inertia, reciprocity, etc., (Meijerink-Bosman, Back, & Geukes, 2023, Butts, 2008). As the

data used in the current study is a subset of the data used by Kamalabad, Leenders, & Mulder,

(2023). We decided to use the same endogenous statistics. The analysed statistics were

reciprocity, indegree sender, and outdegree receiver.

Reciprocity

Reciprocity refers to the tendency of actors to reciprocate contact. Positive reciprocity

coefficient would point to a higher probability of an actor B initiating a communication event

directed at actor A if previously actor A has initiated a communication event directed at actor

10

B. Reciprocity is modelled as a function of frequencies of past interactions (Butts & Marcum,

2017; Kamalabad, Leenders & Mulder, 2023).

Indegree sender

Indegree refers to the number of edges that point towards a node representing a number of

connections. In-degree sender effect points to a higher probability of a node being an initiator

of contact in the future if the node has been often a target of communication events in the past

(Kamalabad, Leenders & Mulder, 2023). For example, if node A has a high indegree (number

of times the node has been a target of communication events), then node A will have a higher

probability of being a sender (a node that initiates a communication event) in the future.

Outdegree receiver

Outdegree refers to the connections pointing towards other nodes. Nodes with high outdegree

have many edges pointing outwards. Positive outdegree receiver indicates that nodes that

have had high outdegree in the past, meaning had initiated many contacts, will have a higher

probability of being a target of a communication event in the future. (Kamalabad, Leenders &

Mulder, 2023). For example, if a node B has initiated a lot of communication events in the

past and therefore has a high outdegree, then node B will have a higher probability of being a

receiver.

To calculate the statistics, first, for every time point (t) a ‘risk set’ needs to be constructed. A

risk set is a list of all potential events for a specific time point N(N-1). The statistics are

calculated for every possible pair of nodes in the risk set (Meijerink-Bosman, Back, &

Geukes, 2023)

3.2 Multiple Imputations

Missing values can occur due to several reasons: participants’ refusal to answer certain

questions or refusal to participate all together, drop-out of participants before the end of the

study, malfunctioning of the software or hardware that is used to collect the information, etc.

Not all missing values are the same but can be distinguished through their missingness

mechanism. There are three mechanisms of missingness, which are: missing completely at

random (MCAR), missing at random (MAR) and missing not at random (MNAR). MCAR

11

refers to occurrences where all values have the same probability of being missing, which

means that missingness is not related to the data. The data is considered MCAR when:

 𝑃𝑟(𝑅	 = 	0|	𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜓) 	= 	𝑃𝑟(𝑅	 = 	0|𝜓)

Where R denotes the data of the population, Y refers to the data of the sample, Yobs is

observed data, and Ymis is the missing data, and 𝜓 represent the parameters of the missing data

model. The notation used in this thesis is the same as van Buuren’s (2018).

If the probability of being missing is the same conditional on information that is present in

the data, the missingness mechanism is said to be MAR. Therefore, conditional on

information that is observed, MCAR becomes MAR. The data is considered MAR when:

𝑃𝑟(𝑅	 = 	0|	𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜓) 	= 	𝑃𝑟(𝑅	 = 	0|	𝑌𝑜𝑏𝑠, 𝜓)

MNAR refers to a missingness mechanism that is dependent on the data, however, this

information is not in the data. Therefore, the probability of data being missing varies, but for

unknown reasons. The data is considered MNAR when:

𝑃𝑟(𝑅	 = 	0|	𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜓)

One of the methods of dealing with missing values in the data is multiple imputation. MI is

defined as ‘state-of-the-art technique for drawing valid conclusions from incomplete data’

(Oberman & Vink, 2023, p. 1). In broad terms, multiple imputation is a method of filling in

missing values with estimates of what could have been if the value would have been observed

(Oberman & Vink, 2023). The process of multiple imputation is as follows: first, multiple

imputation creates multiple complete datasets, then the chosen statistical analysis is applied

to each of the complete datasets, and finally the results of the analysis are pooled into a final

estimate and standard error. The process of creating complete datasets from incomplete

datasets involves creation of multiple versions of complete datasets by means of replacing the

missing values with the values that were drawn from a distribution that is modelled

specifically for each missing value. The statistical analysis that is performed on the complete

datasets in this study is REM. Pooling is an important process in multiple imputation and is

not done by simple averaging of the estimates but is calculated so the standard errors reflect

the uncertainty that comes with the presence of missing values in the data. The pooled

variance is a result of combining the conventional within-imputation variance and the

between-imputation variance which is the result of missing values. Pooling of the estimates

12

of multiple imputed datasets requires the assumption of normal distribution of the estimates

(Rubin 1987; van Buuren, 2018).

The reason why MI is a unique method of dealing with missing values is because it reflects

the uncertainty that is inherent to missing values. The uncertainty of the imputed values is

expressed as a variation of the values across the imputed datasets. The larger the variation of

the imputed values across the imputed datasets, the larger the uncertainty. Due to the

presence of missing values in the sample it is impossible to attain the estimand, therefore the

goal of multiple imputation is to attain an estimate that is unbiased and confidence valid (van

Buuren, 2018; Rubin, 1996).

Van Buuren (2018) proposes several measures that can help evaluate the statistical validity of

MI. The measures that will be used in this study are raw bias (RB), percent bias (PB)

coverage rate (CR), and average width (AW). RB of the estimate refers to the difference

between the estimate and the truth. The closer to zero the RB is, the more evidence there is

for the validity of the process. PB is calculated by dividing the RB by the true value and

multiplying that by hundred. PB should not extend 5%. CR is defined as the proportion of

times that the true value falls within the range of the multiply imputed values. Preferably, this

would occur 95% of the time. In case the CR falls below the nominal rate, it would indicate

that the process is too optimistic leading to potential false positives. In case the CR is

substantially above the nominal rate it means that the imputation method is inefficient and

produces inferences that are too conservative. The latter case is preferred over the former one.

AW is calculated by taking the average of the confidence intervals across the multiple

imputations. AW serves as an indicator of statistical efficiency and should be as small as

possible, but not so small as to cause CR to fall below the desired level.

3.3 Data Analysis

In order to evaluate whether multiple imputation is a viable and preferred approach for

dealing with missing values in REH data, REM analysis of fully observed data and REM on

complete cases was compared to REM analysis on multiply imputed data.

To perform REM analysis on the fully observed data, reciprocity, indegree sender, and

outdegree receiver statistics had to be calculated first. To calculate the statistics remify

13

(Arena, 2023) and remstats (Meijerink-Bosman et al, 2023) packages were used. After

calculating the statistics, cox proportional hazard model from survival package (Therneau,

2023) was used to perform REM analysis.

In order to perform a multiple imputation, missingness had to be introduced to the fully

observed data first. Missingness simulation, multiple imputation, pooling, and averaging were

performed in accordance with “Strategies for simulating missingness” (Vink, 2022). Because

a single finite observed dataset was used for the simulation study, sampling variance was not

considered and was excluded from the evaluation of the performance of imputations (Vink,

2022). See figure 2 for the schematic representation of the process. The red circle represents

the fully observed Apollo 13 dataset. The yellow circles correspond to the multiple amputed

dataset that were a result of the missingness simulation. Green circles represent the completed

datasets that were created with multiple imputation. And finally black circles represent the

pooled estimates of the multiple imputations, which means that every simulation produced

one pooled final point estimate. Missingness was simulated a hundred times, to ensure the

validity of the results. Each, out of a hundred dataset, had a slightly different missingness

pattern.

Figure 2. Schematic representation of missing data simulation using finite population

according to Vink (2022).

Note. From “Strategies for simulating missingness”, by G., Vink, 2022. Retrieved from:

https://www.gerkovink.com/simulate/

14

The amputation was performed using the MICE package, which stands for Multiple

Imputation by Chained Equations (van Buuren & Groothuis-Oudshoorn, 2011). MICE allows

selection of proportion of missing values as well as the missingness mechanism, and pattern.

Figure 3 shows that after amputation, missing values constituted 20% of the dataset and only

existed in the ‘sender’ column which is the focus of this study. The proportion of missingness

was selected to constitute 20% in order to introduce a substantial amount of missingness

without risking the reliability of final estimates. For the missingness mechanism for the

amputation process, MCAR was selected. Although MCAR is not always reasonable to

assume, it is a stepping stone towards assessing the validity of the method. If the results

suggest that MI cannot perform effectively under MCAR, likely it will not perform under

MAR either. It is important to note that the missingness was not fully random. During

simulation of amputations some datasets would end up having fewer actors in the sender

column. Some actors appear rarely in the dataset therefore, when missingness was

introduced, in some cases all instances of one of the actors was completely removed from the

dataset. In this case the amputed dataset had only 15 actors appear instead of 16. The MI

method that was applied in this study can only impute values that appear in the amputed

dataset. Therefore, some of the complete datasets also included only 15 actors. Less actors

result in fewer dyads and a smaller risk set. A risk set for 16 actors consists of 240 possible

communication events while the risk set for 15 actors consists of 210 communication events.

This discrepancy between some of the amputed datasets made REM analysis impossible on

some of the completed datasets. To remedy this, a part of the observed dataset (1500

observations) was conserved and not amputed. This ensured that all actors were present in the

amputed sample.

Figure 3. Missingness pattern in one of simulations after amputation of the Apollo 13 data.

The rows represent the missingness patterns occurring in the dataset. The most common

pattern - 3249 rows are fully observed. The other pattern - 633 rows have a missing value in

the sender column (red square represents missing values)

15

Because complete case analysis is often a chosen method for handling missing values when

conducting REM, the amputed datasets were used to perform REM on complete cases before

performing multiple imputations. A hundred Apollo 13 datasets with missingness in the

sender column were analysed with REM whereby all relational events that contained missing

values were excluded from the analysis. The results were later averaged across the analyses

to represent the final estimate for complete case analysis.

The datasets with simulated missingness were also used to perform multiple imputations

using MICE. There are several parameters that must be considered when setting up a multiple

imputation in MICE: number of imputations, number of maximum iterations, method for

multiple imputation, and which variables are used as predictors for the missing values. The

number of imputations as well as maximum iterations was set to five. Number of imputations

determine the number of complete datasets that will be created with multiple imputations.

Although it is often suggested that the number of imputations should be set to a higher

number (van Buuren, 2018), the computational efficiency had to be considered. Therefore, a

total number of five multiple imputations was selected. The number of iterations determine

the number of cycles that multiple imputation runs to refine the estimates of missing values.

In each iteration, the variable that was specified gets imputed using the predictor variables

(van Buuren, 2018). The number of iterations can be increased to ensure proper convergence,

however, typically a low number of iterations, between 5 and 20 is considered to be able to

achieve convergence (van Buuren, 2018). A convergence plot for one of the simulations can

be seen in figure 4. The plot shows mean (left panel) and standard deviation (sd) (right panel)

for imputed values in the sender column across five imputations and five iterations.

16

Convergence is evaluated using two criteria: mixing and stationarity. Mixing refers to the

intermingling of the imputation values and stationarity refers to the absence of a clear trend

across iterations (Gelman et al, 2013; Oberman, van Buuren, & Vink, 2021). In figure 4 (left

panel) a slight deviation from a typical convergence can be seen. One of the imputations is

not mixing very well with the rest. However, the right panel shows that the convergence was

achieved after the second iteration. It is possible that the MI would benefit from a higher

number of iterations, however the computational efficiency had to be prioritized.

Figure 4. Trace line plots of means (left) and standard deviations (right) of imputed values

for the sender column in one of the simulations.

For the method of multiple imputation, predictive mean matching was used. Predictive mean

matching “calculates the predicted value of a target value according to the specified

imputation model” (van Buuren, 2018, Chapter 3.4). From all complete cases in which

predicted values are closest to the predicted values of the missing observation, for each

missing value a small set of candidate donors is formed. Then one donor is randomly drawn

from the candidate set and the observed value of the donor replaces the missing observation.

Predictive mean matching assumes that the distribution of the missing value is the same as

the distribution of the observed candidate values. However due to the structure and nature of

the data a custom method had to be created in order to properly impute the Apollo 13 data.

This method had to avoid creation of loops, whereby one actor is initiating a contact with

17

themselves. Therefore, a conditional predictive mean matching was used, where candidate

donors cannot include the same value as the corresponding receiver. Finally, for the predictor

variables, only the receiver variable was used because when the time variable was included as

a predictor it was creating loops in the imputed datasets. After creating the completed

datasets, REM analysis was performed on each set. As potential predictors of interactions

reciprocity, outdegree receiver and indegree sender were included.

Finally, all the REM results were pooled, and the pooled results were averaged across a

hundred simulations.

The code to perform simulations and analyse the data is available in the appendix.

4. Results

REM results of the fully observed subset of Apollo 13 data can be seen in table 2. The effects

of all three statistics are close to zero and only indegree sender has a statistically significant

effect on the hazard rate of the future interactions. Which means that there is no evidence to

suggest propensity of reciprocating past interactions. Neither there is evidence to point to the

higher probability of actors to be a target of a communication event if they have initiated

contact in the past. The effect for indegree sender is small, but statistically significant and

suggests higher probability of initiating contact for actors who have been contacted more in

the past.

Table 2. REM results on the fully observed Apollo 13 data.

Statistic Estimate Standard error p-value

Reciprocity 0.0235 0.0185 0.204

Indegree Sender 0.0004 74.0× 10!" <.001

Outdegree Receiver -91.15× 10!" 74.4× 10!" 0.220

REM results of the amputed, but not yet multiply imputed datasets can be seen in table 3. All

effects are slightly overestimated compared to the results of the model on the fully observed

data. Standard errors are also larger than in the true model. The significance of the p-values

18

remained the same – only effect for indegree sender is significant in both models. Last

column shows the RB of the complete case analysis estimates compared to the true value. RB

is small across all effects.

Table 3. Complete case REM results averaged across 100 simulations of missingness.

Statistic Estimate Standard error p-value bias

Reciprocity 0.0261 0.0259 0.319 0.0026

Indegree Sender 0.0008 0.0002 <.001 0.0004

Outdegree Receiver -0.0002 0.0002 0.390 -85.77×10-6

Averaged REM results after MI across hundred simulations can be seen in table 4. 2.5% and

97.5% represent the lower and upper boundary of the confidence intervals. Cov stands for

coverage rate and shows the proportion of times that confidence intervals covered the ‘true’

value. The raw bias is very small, close to zero across all effects. Notably, it is smaller than in

the case of complete case analysis, across all effects. The PB for reciprocity, indegree sender,

and outdegree receiver is also below 5%: 2.33%, 0.17%, and 1.06% respectively (refer to

section 3.2 for the description of how to calculate RB). Moreover, for all three effects, the

true value is found within the confidence intervals 100% of the time. Coverage rate higher

than 95% is suboptimal, but acceptable. AW of confidence intervals is also very close to zero

for all effects: reciprocity (0.0035); indegree sender (5.44× 10−6); outdegree receiver

(19.0 × 10&') (refer to section 3.2 for the description of AW). Notably, the MI method

produced false significant p-values. Unlike in REM on fully observed data and REM on

complete cases p-values for reciprocity and outdegree receiver are significant here. This

could have been caused by the conservation of part of the dataset while introducing

missingness in the dataset.

Table 4. REM results averaged across 100 simulations of missingness and 5 multiple

imputation sets.

Statistic Estimate Standard

error

p-value 2.5% 97.5% Cov Bias

19

Reciprocity 0.0241 0.0006 <.001 0.0223 25.9× 10−3 0.99 0.0005

Indegree

Sender

0.0004 980× 10−9 <.001 0.0004 433× 10−6 1.00 -714× 10%&

Outdegree

Receiver
-92.1× 10%' 3.43× 10−6 <.001 -0.0001 -82.6× 10−6 1.00 -968× 10−9

In figures 3-5, the distribution of estimates after MI for the investigated effects can be seen.

The distribution for reciprocity is slightly skewed to the right and the distribution for indegree

sender is slightly skewed to the left. The distribution for the estimates of outdegree receiver

appears to be normal. However, after visual inspection of quantile-quantile plots (Figures 1-3

in Appendix) it appears that neither of the distributions is normal. In addition, the results of

Kolmogorov-Smirnov test for reciprocity (D = 0.51, p <0.001), indegree sender (D = 0.50,

p<0.001), and outdegree receiver (D = 0.50, p<0.001) showed that the hypothesis that the

distributions of the estimates are normal must be rejected. The skewed distributions violate

the normality assumption of Rubin’s rules. Not meeting the normality assumption could

result in overestimated standard errors and biased estimates.

Figure 3. Density plot of estimates for reciprocity of 100 simulations with 5 multiple

imputations each.

Figure 5. Density plot of estimates for indegree sender of 100 simulations with 5 multiple

imputations each.

20

Figure 4. Density plot of estimates for outdegree receiver of 100 simulations with 5 multiple

imputations each.

5. Discussion and Conclusion

Missing data had an identifiable effect on the results of the analysis. Similarly to other studies

(Huisman, & Steglich, 2008; Gile, & Handcock, 2006), complete case analysis produced

biased inferences. In the current study, complete case analysis overestimated the effects of

the predictors and produced larger standard errors. As an alternative to complete case

analysis, this study has performed MI to handle the missing values. Based on the criteria for

21

evaluation of MI RB, PB, CR and AW, the MI with REM appears to be a valid approach for

addressing the missing data in REH. The raw and percent biases are close to zero across all

three effects. The CR is too high, suggesting that the confidence intervals are too wide.

However, conservative inferences that always cover the true value are pointing to statistical

insufficiency and not invalid inference (van Buuren, 2018). Therefore, the CR is acceptable.

AW for all three effects appears to be very small. It is important to note that the effects of the

model are all close to zero, therefore it is difficult to reasonably assess the widths of the

intervals. Perhaps analysing the full Apollo 13 dataset and not just the subset would have

produced larger estimates.

To summarise, the MI approach appears to have performed better than complete case

analysis. The estimates of MI have lower RB, and the standard errors are smaller. However,

although according to van Buuren’s evaluating criteria the MI method appears to be valid,

unlike complete case analysis MI have caused false statistical significance of the p-values.

According to the results of REM analysis on fully observed data, only the effect for indegree

sender is statistically significant. Yet, in the MI with REM all the effects are statistically

significant. This could be due to the pooling rules that were used for variance calculation

which resulted in the underestimation of variance and standard errors creating false

significant p-values. Because the sampling variance was excluded due to the use of finite

populations, the variance was calculated as follows: 𝑇 = ()(
*

 (where T denotes total

variance, B the variance between imputations, and m stands for the number of multiple

imputations). This has caused the underestimation of variance due to the introduction of a

constant (conserved part of the dataset) during the amputation process. Notably, if

conventional Rubin’s rules for pooling were applied (including the sampling variance), it

would have likely overestimated the variance. Identifying correct variance pooling remains a

task for future research. Furthermore, the density plots and Kolmogorov-Smirnov test results

showed slight deviation from the assumption of normal distribution. However, the deviation

from normal distribution is not substantial, therefore, most likely does not constitute a

problem for the validity of the pooled estimates.

This study has several limitations. First, MCAR often cannot be reasonably assumed for the

data at hand. Therefore, it is essential to test MI methods on the data that have missing values

created under the MAR mechanism. Second, in this study only three statistics were

22

investigated. Future studies could benefit from considering more statistics, for example

inertia, or enriching the data with attribute variables and using them to calculate exogenous

statistics. Third, the conservation of the part of the dataset had a negative effect on the

variance estimates which must be addressed in future research. In addition, the performance

of the multiple imputation could have suffered from the small number of imputations and

iterations. Future studies should consider increasing both to achieve optimal performance of

MI. Additionally, in this study the time variable was removed because it appeared to create

loops in the completed datasets. In the future studies this should be explored. It is also

important to mention that this study only considered missingness in the sender column.

Future research should also investigate the effect of missing values and MI in the time and

receiver columns as well as in multiple columns at the same time. Lastly, the small effect

sizes of the estimated parameters from the relational event model make it difficult to assess

certain performance criteria of the imputation (AW, RB). Future research should consider

conducting a simulation study on the full Apollo 13 dataset.

The main goal of the current study was to determine whether multiple imputation with REM

can produce unbiased results. Based on the results of this study, multiple imputation, even if

only under MCAR missingness assumption, can produce satisfactory results. However, more

research is needed to address the limitations of this study.

23

References
Apollo 13 Real-time, (n.d.). http://apollo13realtime.org/.
Arena G (2023). _remify: Processing and transforming REH to formats suitable for the

remverse packages and more_. R package version 3.0.0,

<https://github.com/TilburgNetworkGroup/remify>.

Bearman, P. S., Moody, J., and Stovel, K. (2004). Chains of affection: The structure of

adolescent romantic and sexual networks, Am. J. Sociol. 110, 44–91 .

Bernard, H. R., Johnsen, E. C., Killworth, P. D., and Robinson, S., Estimating the size of an

average personal network and of an event population, in M. Kochen, ed., The Small World,

pp. 159–175, Ablex Publishing, Norwood, NJ (1989).

Boyer, L., Belzeaux, R., Maurel, O., Baumstarck‐Barrau, K., & Samuelian, J. C. (2010). A

social network analysis of healthcare professional relationships in a French

hospital. International Journal of Health Care Quality Assurance, 23(5), 460-469.

Burt, R. S. (1987). A note on missing network data in the general social survey. Social

Networks, 9(1), 63–73. https://doi.org/10.1016/0378-8733(87)90018-9

Butts, C.T. (2008). A relational event framework for social action. Sociological

Methodology, 38 (1), 155–200. https://doi-org.proxy.library.uu.nl/10.1111/j.1467-

9531.2008.00203.x

Butts, C.T., Marcum, C.S. (2017). A Relational Event Approach to Modeling Behavioral

Dynamics. In: Pilny, A., Poole, M. (eds) Group Processes. Computational Social Sciences.

Springer, Cham. https://doi.org/10.1007/978-3-319-48941-4_4

Enders, C. K. (2022). Applied missing data analysis. Guilford Publications.

Faisal, S., & Tutz, G. (2021). Multiple imputation using nearest neighbor methods.

Information Sciences, 570, 500–516. https://doi.org/10.1016/j.ins.2021.04.009

24

Fattore, G., Frosini, F., Salvatore, D., & Tozzi, V. (2009). Social network analysis in primary

care: the impact of interactions on prescribing behaviour. Health Policy, 92(2-3), 141–148.

https://doi.org/10.1016/j.healthpol.2009.03.005

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A and Rubin DB (2013) Bayesian Data

Analysis. Philadelphia, PA, United States: CRC Press LLC.

Grossman, J. W. (2002). The evolution of the mathemati- cal research collaboration graph,

Congr. Numer. 158, 202–212.

Grunspan, D. Z., Wiggins, B. L., & Goodreau, S. M. (2014). Understanding classrooms

through social network analysis: A primer for social network analysis in education

research. CBE—Life Sciences Education, 13(2), 167-178.

Hawe, P., & Ghali, L. (2008). Use of social network analysis to map the social relationships

of staff and teachers at school. Health Education Research, 23(1), 62–9.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical

learning: with applications in r (Second, Ser. Springer texts in statistics). Springer.

https://doi.org/10.1007/978-1-0716-1418-1

Kamalabad, M. S., Leenders, R., & Mulder, J. (2023). What is the Point of Change? Change

Point Detection in Relational Event Models. Social Networks, 74, 166-181.

Landherr, A., Friedl, B. & Heidemann, J. Eine kritische Analyse von Vernetzungsmaßen

in sozialen Netzwerken.(2010). WIRTSCHAFTSINFORMATIK 52, 367–382. https://doi-

org.proxy.library.uu.nl/10.1007/s11576-010-0244-0

Leifeld, P., Cranmer, S. J., & Desmarais, B. A. (2018). Temporal exponential random graph

models with btergm: Estimation and bootstrap confidence intervals. Journal of Statistical

Software, 83(6), 1–36.

25

Lusher, D., Koskinen, J. and Robins, G. (2012), Exponential random graph models for social

networks: Theory, methods, and applications, Cambridge University Press.

Meijerink-Bosman M, Arena G, Karimova D, Lakdawala R, Shafiee Kamalabad M,

Generoso Vieira F (2023). _remstats: Computes Statistics For Relational Event History

Data_. R package version 3.1.0, <https://github.com/TilburgNetworkGroup/remstats>.

Meijerink-Bosman, M., Back, M., Geukes, K. et al. (2023). Discovering trends of social

interaction behavior over time: An introduction to relational event modeling. Behav Res 55,

997–1023. https://doi-org.proxy.library.uu.nl/10.3758/s13428-022-01821-8

NASA Administrator, (2022). Apollo 13. NASA.

https://www.nasa.gov/mission_pages/apollo/missions/apollo13.html#

Newman, M. E. J. (2018). Networks. Oxford University Press.

Oberman, H. I., & Vink, G. (2023). Toward a standardized evaluation of imputation

methodology. Biometrical Journal. Biometrische Zeitschrift, E2200107, 2200107.

https://doi.org/10.1002/bimj.202200107

Oberman, H. I., van Buuren, S., & Vink, G. (2021). Missing the point: Non-convergence in

iterative imputation algorithms. arXiv preprint arXiv:2110.11951.

Pilny, A., Schecter, A., Poole, M. S., & Contractor, N. (2016). An illustration of the relational

event model to analyze group interaction processes. Group Dynamics: Theory, Research, and

Practice, 20(3), 181–195.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys (Ser. Wiley series in

probability and mathematical statistics: applied probability and statistics). Wiley.

https://doi.org/10.1002/9780470316696

Rubin, D. B. (1996). Multiple imputation after 18 years. Journal of the American Statistical

Association, 91(434), 473–489.

26

Scott, J., & Carrington, P. J. (Eds.). (2011). The sage handbook of social network analysis.

SAGE. Retrieved July 3, 2023, from

https://ebookcentral.proquest.com/lib/uunl/detail.action?docID=786857.

Serrat, O. (2017). Social Network Analysis. In: Knowledge Solutions. Springer, Singapore.

https://doi-org.proxy.library.uu.nl/10.1007/978-981-10-0983-9_9

Snijders, T.A.B., van de Bunt, G.G. & Steglich, C.E.G. (2010) Introduction to stochastic

actor-based models for network dynamics. Social Networks, 32, 44–60

Therneau T (2023). _A Package for Survival Analysis in R_. R package version 3.5-5,

 <https://CRAN.R-project.org/package=survival>.

van Buuren, S. (2018). Flexible imputation of missing data. CRC press.

van Buuren S, Groothuis-Oudshoorn K (2011). “mice: Multivariate Imputation by Chained

Equations in R.” Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03.

Vink G., (2022). Strategies for simulating missingness (v1.0). Zenodo.

https://doi.org/10.5281/zenodo.7467995

Wang, C., Butts, C. T., Hipp, J. R., Jose, R., & Lakon, C. M. (2016). Multiple imputation for

missing edge data: a predictive evaluation method with application to add health. Social

Networks, 45, 89–98. https://doi.org/10.1016/j.socnet.2015.12.003

27

Appendix

Figure 1. Quantile-quantile plot for distribution of estimates for reciprocity effect

Figure 2. Quantile-quantile plot for distribution of estimates for indegree sender effect

Figure 3. Quantile-quantile plot for distribution of estimates for outdegree receiver effect

28

29

Code for the R analysis

library(mice, warn.conflicts = FALSE)
require(lattice)
library(tidyverse)
library(magrittr)
library(dplyr)
library(purrr)
library(furrr)
library(relevent)
library(broom.mixed)
library(rem)
library(ggplot2)
library(survival)
library(remify)
library(remstats)
library(devtools)
library(tibble)

1. Read the data

load("UUsummerschool.Rdata")

rm(Twitter_data_rem3, WTCPoliceCalls, ClassIntercept, ClassIsFemale,

 ClassIsTeacher, WTCPoliceIsICR, Class) # remove data that is not used

2. Ampute and then impute the data

renaming dataset for later convenience

apollo.renamed <- PartOfApollo_13

apollo.renamed <- apollo.renamed %>%

 rename(

 actor1 = sender,

 actor2 = receiver

)

making the dataset a tibble

apollo.renamed <- as_tibble(apollo.renamed)

determine which column to condition on

whichcol <- c("", "actor2", "actor1")

names(whichcol) <- colnames(apollo.renamed)

30

create predictor matrix for imoutations

pred <- make.predictorMatrix(apollo.renamed)

pred[,"time"] <- 0

pred

use the custom pmm method

method <- make.method(apollo.renamed)

method[c(2,3)] <- "pmm.conditional"

set with sufficient actors & dyads

set.seed(123) # fix seed to realize a sufficient set

indic <- sample(1:nrow(apollo.renamed), 1500)

remify(apollo.renamed[indic,], model = "tie") %>% dim()

Combine the sufficient set and the incomplete set

make_missing <- function(x, indic){

 sufficient <- x[indic,]

 miss <- x[-c(indic),] |>

 ampute(prop = .8,

 mech = "MCAR",

 patterns = c(1,0,1)) %>%

 .$amp

 combined <- rbind(sufficient,

 miss)

 return(combined[order(combined$time),]) # sort it all like apollo

}

simulate 100 datasets with missingness in the sender column with MCAR mechanism then

ampute the data with the conditional pmm and 5 multiple imputations and 5 itterations,

exclude time column as a predictor

MCAR_finite <- furrr::future_map(1:100, ~ { # map over 100 sims

31

 apollo.renamed %>%

 make_missing(., indic) %>%

 mice(m = 5,

 maxit = 5,

 method = method,

 pred=pred,

 whichcolumn = whichcol,

 print = F)

}, .options = furrr_options(seed = 123))

#check if it is correct

MCAR_finite |> map(~.x %>%

complete("long") |>

summarize(all(actor1 != actor2)))

checking convergence

convergence <- lapply(MCAR_finite, plot) # plot means and sd for every simulation

plot(MCAR_finite[[58]],

 print=F,

 y = "actor1",

 layout = c(2,1)) # plot one of the plots

Effects and function definition

creating functions

Define effects

effects <- ~ -1 + reciprocity(scaling = ("std")) +

 indegreeSender() + outdegreeReceiver()

function to remify each imputed dataset

code edited by Gerko

rem_function <- function(data) {

32

 # Perform the analysis as before

 remify::remify(edgelist = data, model = "tie") %>%

 remstats(tie_effects = effects)

}

function to create a dataset for the cox model

cox_sets_function <- function(statsObject_imp, apollo_data) {

 # take the single riskset

 # remove the id column

 risk_sets <- attr(statsObject_imp, "riskset") %>% select(-'id')

 # creating one set with all risksets for each time point

 combined <- merge(risk_sets, apollo_data$time, by=NULL) %>%

 rename(time = y) %>%

 .[, c("time", "sender", "receiver")] %>%

 mutate(sender = as.numeric(sender),

 receiver = as.numeric(receiver))

 # GV: Calculate divergence

 diff <- apollo_data[rep(seq_len(nrow(apollo_data)), each = 240),] %>%

 data.matrix() %>%

 .[, 1:3] - combined

 # GV: identify non-divergence

 combined$status <-

 rowSums(diff == 0) == ncol(diff)

 #combining the dataset with riskset to the statistic

 reciprocity <- statsObject_imp[,,1]

 indegreeSender <- statsObject_imp[,,2]

 outdegreeReceiver <- statsObject_imp[,,3]

 recip.vector <- c(reciprocity)

 combined$reciprocity <- recip.vector

33

 indegSen.vector <- c(indegreeSender)

 combined$indegreeSender <- indegSen.vector

 outRec.vector <- c(outdegreeReceiver)

 combined$outdegreeReceiver <- outRec.vector

 combined$status <- as.integer(as.logical(combined$status))

 return(combined)

}

######################### cox model on complete data #########################

Prepare event history

true.reh <- remify(edgelist = apollo.renamed,

 model = "tie")

calculate stats

stats <- remstats(tie_effects = effects,

 reh = true.reh)

use the function to create the correct format of the dataframe

true.cox.set <- cox_sets_function(stats, PartOfApollo_13)

fit cox model

true.cox.fit <- coxph(Surv(time, status) ~ reciprocity + indegreeSender +

 outdegreeReceiver,

 data=true.cox.set)

true <- coefficients(true.cox.fit)

prepare the data for the cox model

t1 <- Sys.time()

cox.models.sims <- MCAR_finite[1:10] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

34

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

Sys.time() - t1

cox.models.sims2 <- MCAR_finite[11:20] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

35

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

cox.models.sims3 <- MCAR_finite[21:30] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

36

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

cox.models.sims4 <- MCAR_finite[31:40] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

37

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

cox.models.sims5 <- MCAR_finite[41:50] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

cox.models.sims6 <- MCAR_finite[51:60] %>%

38

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

cox.models.sims7 <- MCAR_finite[61:70] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

39

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

cox.models.sims8 <- MCAR_finite[71:80] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

40

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

cox.models.sims9 <- MCAR_finite[81:90] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

41

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

cox.models.sims10 <- MCAR_finite[91:100] %>%

 map(~.x %>% # for every simulated multiple imputation....

 complete("all") %>% # create a list of completed data sets

 map(~.x %>% # GV: changed into regular pipe - for every completed data set....

 rem_function() %>% # GV: removed .x - remify the imputed set

 cox_sets_function(apollo_data=PartOfApollo_13) %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

42

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term")) # create the sets for cox model

#stitch the lists together

sims <- list(cox.models.sims,

 cox.models.sims2,

 cox.models.sims3,

 cox.models.sims4,

 cox.models.sims5,

 cox.models.sims6,

 cox.models.sims7,

 cox.models.sims8,

 cox.models.sims9,

 cox.models.sims10) %>%

 purrr::flatten() # make a single flat list instead of a list of lists

save(sims, file = "sims_moremissing.RData")

Average sims

Reduce("+", sims) / length(MCAR_finite)

Long data frame

reciprocity <- sims %>%

 map(~.x %>% .["reciprocity",]) %>% #select row reciprocity

 do.call("rbind", .)

indegreeSender <- sims %>%

 map(~.x %>% .["indegreeSender",]) %>%

 do.call("rbind", .)

outdegreeReceiver <- sims %>%

 map(~.x %>% .["outdegreeReceiver",]) %>%

 do.call("rbind", .)

43

colMeans(reciprocity)

Plot

library(ggplot2)

reciprocity %>%

 ggplot(aes(x = estimate)) +

 geom_density() + theme_classic() + labs(x ="Reciprocity Estimate", y = "Density")

outdegreeReceiver %>%

 ggplot(aes(x = estimate)) +

 geom_density() + theme_classic() + labs(x ="Outdegree Receiver Estimate", y = "Density")

indegreeSender %>%

 ggplot(aes(x = estimate)) +

 geom_density() + theme_classic() + labs(x ="Indegree Sender Estimate", y = "Density")

calculate percent bias

av.resiprociy <- colMeans(reciprocity)

av.indegreeSender <- colMeans(indegreeSender)

av.outdefgreeReceiver <- colMeans(outdegreeReceiver)

PB.recip <- 100 * abs((av.resiprociy["estimate"] - true['reciprocity'])/ true['reciprocity'])

PB.indegSender <- 100 * abs((av.indegreeSender["estimate"] - true['indegreeSender'])/

true['indegreeSender'])

PB.outdegReciever <- 100 * abs((av.outdefgreeReceiver["estimate"] -

true['outdegreeReceiver'])/ true['outdegreeReceiver'])

calculate average width

44

AW.recip <- av.resiprociy["97.5 %"] - av.resiprociy["2.5 %"]

AW.indegSend <- av.indegreeSender["97.5 %"] - av.indegreeSender["2.5 %"]

AW.outdegRecip <- av.outdefgreeReceiver["97.5 %"] - av.outdefgreeReceiver["2.5 %"]

look at the distribution more closely

ggqqplot(reciprocity$estimate, ylab = "Reciprocity Estimates")

ks.test(reciprocity$estimate, "pnorm")

ggqqplot(indegreeSender$estimate, ylab = "Indegree Sender Estimates")

ks.test(indegreeSender$estimate, "pnorm")

ggqqplot(outdegreeReceiver$estimate, ylab = "Outdegree Receiver Estimates")

ks.test(outdegreeReceiver$estimate, "pnorm")

############### COMPLETE CASE ANALYSIS ###############

MCAR_missing <- furrr::future_map(1:100, ~ { # map over 100 sims

 apollo.renamed %>%

 make_missing(., indic)}, .options = furrr_options(seed = 123))

cox_sets_for_incomplete <- function(data) {

 statsObject <- remify::remify(edgelist = data, model = "tie") %>%

 remstats(tie_effects = effects) # create statistics for every amputed dataset

 # make sure that complete apollo data to compare with is the same size as

 # amputed dataset with only complete cases

 complete.cases <- data[complete.cases(data),]

 index <- as.numeric(rownames(complete.cases))

 apollo.missing <- apollo.renamed[index,]

 # take the single riskset

45

 # remove the id column

 risk_sets <- attr(statsObject, "riskset") %>% select(-'id')

 # creating one set with all risksets for each time point

 combined <- merge(risk_sets, apollo.missing$time, by=NULL) %>%

 rename(time = y) %>%

 .[, c("time", "sender", "receiver")] %>%

 mutate(sender = as.numeric(sender),

 receiver = as.numeric(receiver))

 # GV: Calculate divergence

 diff <- apollo.missing[rep(seq_len(nrow(apollo.missing)), each = 240),] %>%

 data.matrix() %>%

 .[, 1:3] - combined

 # GV: identify non-divergence

 combined$status <-

 rowSums(diff == 0) == ncol(diff)

 #combining the dataset with riskset to the statistic

 combined$reciprocity <- c(statsObject[,,1])

 combined$indegreeSender <- c(statsObject[,,2])

 combined$outdegreeReceiver <- c(statsObject[,,3])

 combined$status <- as.integer(as.logical(combined$status))

 return(combined)

}

cox model on complete cases

complete.case.fit <- MCAR_missing %>%

 map(~.x %>% # for every completed data set....

 cox_sets_for_incomplete() %$%

 coxph(Surv(time, status) ~

 reciprocity +

46

 indegreeSender +

 outdegreeReceiver))

disable scientific notation

options(scipen=999)

create a dataframe out of the cox model objects

results <- list()

Generate 100 dataframes

for (i in 1:100) {

 # Create a dataframe with columns of results from the cox models

 df <- data.frame(

 coef = complete.case.fit[[i]]$coefficients,

 se = coef(summary(complete.case.fit[[i]]))[, "se(coef)"],

 p = coef(summary(complete.case.fit[[i]]))[, "Pr(>|z|)"],

 true = true[1:3]

)

 rownames(df) <- c("reciprocity", "indegreeSender", "outdegreeReceiver")

 # Append the dataframe to the list

 results[[i]] <- df

}

average the results across all simulations

average <- results %>%

 map(~.x %>%

 mutate(bias = coef - true) %>% # bias

 select(true, coef, se, p,

 bias)) %>%

 Reduce("+", .) / length(MCAR_missing)

