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Abstract

Abstract

Cosmology advances in the last decades due to recent influxes of observational data
have posed to be a challenge for the current numerical methods used. Due to the
nature of analysis of this data, speed and accuracy constraints need to be strongly
considered. Statistical methods that leverage Artificial Intelligence have started to
populate Cosmology literature as an efficient and optimal option. In this work, we
will apply these kind of techniques, and more specifically Gaussian Processes for
regression to create a fast-prediction framework of the components of the Effective
Field Theory model in order to enable prediction of the information provided by
intrinsic alignments and how these act as contaminants in cosmological surveys. The
aim of this project is to train AI models that are on-par with numerical methods but
reduce the computational complexity in several orders of magnitude. We have created
a novel emulator for the shape correlations of intrinsic alignments under the EFT theory
by implementing a Python package for Gaussian Process emulation with GPU support
using the GPyTorch library. We managed to accurately predict the EFT correlators
along the power spectrum with relative errors in the sub-percent order. Sequential
execution for a single cosmology takes a few seconds while in the parallel case this is
reduced to the order of just milliseconds.
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1 Introduction

1 Introduction

Galaxies contain systems of stars, dust, gas and dark matter among others, held alto-
gether by the force of gravity. Their size ranges from a few kilo-parsecs1 to more than
a hundred and they can contain up to hundreds of billions of stars. Galaxies are the
perfect candidates to study the evolution of the Universe because they are the amplest
objects outside our own galaxy, the Milky Way [45].

Furthermore, in the past decades, several optical2 and spectroscopic3 sky surveys have
been conducted providing us with images of unprecedented resolution of the most
distant patches of our Universe. Among these studies (and chronologically) we can
find the early Hubble missions [7, 75], the BOSS [25], the KiDS-450 [41] and 1000 [40]
surveys, the SDSS-IV [9] or the LSST mission [44]. It is also worth mentioning that
there are many other missions ongoing or planned such as the Euclid [31] whose data
will be able to answer a wide range of astrophysical questions, specially if combined
with other powerful surveys such as LSST [61].

It comes with the increase in quality and amount of data, the need for using better
methods to analyze the influx of information to draw accurate and efficient4 conclu-
sions. All of this combined the above-mentioned observational efforts, have led the
field of Cosmology to a new scientific era.

1.1 Preliminaries

To bring context to the project it is useful to draw attention on why we will use galaxies
as candidates for our research.

1.1.1 Galaxies and the redshift

Galaxies can help explain how the Universe is evolving based on some of their funda-
mental properties. Using their position and orientation in the sky, how we perceive
their size or their color can help to understand how galaxies organize or cluster into
what is called the large-scale structure of the Universe. This structure formation takes

1See Parsec in the glossary.
2Common imagery.
3Study of the radiation spectra emitted by matter to infer characteristics such as chemical composition

or velocities of objects.
4In terms of computational complexity, both in size and in time.
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1 Introduction

place on an expanding, homogeneous5 and isotropic6 spacetime. The latter two con-
cepts are the key to what is called the Cosmological Principle, which states that all
systems of reference (whichever position of an observer in the Universe) would per-
ceive the Universe’s expansion equally. But what is this expansion and how do we
know that is taking place?
Galaxies move with really small velocities when compared with the expansion, that is,
the intrinsic force of gravity of the galaxies (holding all their components together) is
stronger that the expansion but it is the space in which they are embedded which really
cause them to move. But at the same time, this can be detected using the light that
we perceive from this distant objects and it was firstly discovered by Edwin Hubble in
the early 20th century. He compared the distance of a set of galaxies with respect to
some standard candles7 and found some deviations on their spectra towards the red,
the so-called redshift8 effect [42].

Figure 1.1: "Velocity-Distance Relation among Extra-Galactic Nebulae". The relation
displayed in the plot shows that the further away a galaxy is receding from
us, the greater the receding speed is.

Source: [42]

The relation shown in Figure 1.1 is know as Hubble’s law and is mathematically stated
as:

5Over large enough areas (≳ 100Mpc), it is very difficult to distinguish one area from another.
6The Universe has the same properties no matter where we look.
7An astronomical object with some known absolute luminosity magnitude which can be used to derive

the distance to the same. Among the different types, the most common are the Cepheid Variables
(which Hubble used in his study). They are used when the parallax (see in the glossary) method
cannot be longer applied accurately.

8See Redshift in the glossary.
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1 Introduction

v = H0d

If the value of H0, namely the Hubble’s constant, can be properly calibrated (making
use of objects with known distances and velocities), one can directly infer the distance
to any galaxy given its velocity, which is in turn given by its redshift.

1.1.2 The Cosmic Microwave Background

It is mandatory to introduce the concept of the Cosmic Microwave Background (CMB)
as it is the limit on how far we can look back in time. When the Big Bang happened, it
was so hot that electrons and protons were not able to interact and it was not until they
cooled down to a temperature of around 3000K after 3.79×105 years that these particles
entered in a recombination period to form the first atoms. The photons9 that did not
interact with these atoms began travelling freely and gave birth to a radiation body
which nowadays is observed homogeneously no matter where we look. There are some
patterns present in the CMB10 (Figure 1.2) and there has been several missions to study
them such as the Planck missions [57, 58]. These have helped to adjust the parameters
that govern the energy density present in the Universe (the Friedmann equation) which
has led to conclude that the matter that we can observe, baryonic matter, makes up
5% of the total whilst the remaining 27% and 68% are dark matter and dark energy
respectively. The nature of the latter two is yet unknown as they do not interact with
electromagnetic fields but are needed to account for some gravitational effects that
influence the Universe’s structure and evolution.

9Packets of electromagnetic radiation.
10Denominated Baryonic Acoustic Oscillations (BAO), which correspond to perturbations that propa-

gated in the way of acoustic waves.
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1 Introduction

Figure 1.2: The Cosmic Microwave Background as measured by the Planck’18 mission

Source: [58], https://sci.esa.int/s/wQdrX4A

What is most interesting is the relation of the CMB with the structure formation as in
smaller scales. We can see that patterns in this radiation wall have led to the emergence
of structures of galaxy clusters bound by filaments and surrounded by voids forming
a ’cosmic web’11. The galaxy distribution that we see today has grown from the
anisotropies (changes) in the CMB in combination with force of gravity. However, the
latter dilutes these patterns over time but still, they can via studied by measuring the
correlation between galaxy positions in the sky.

1.1.3 Galaxy distribution measurements

Galaxy imagery is a key component in Cosmology, via this observations we are able
to define the large-scale of the Universe, how they organize in the ’cosmic web’. These
images cannot be directly used as data-sources as there are certain effects that introduce
distortions in them but at the same time acting as source of information worth of study
as it carries cosmological information. One of them is gravitational lensing (γ). This
artifact occurs when the light emitted by a galaxy passes near an over-density such
as cluster of galaxies or a dark matter field, making the rays appear distorted from
our point of view; the gravitational field creates a divergent ’lense’ which deviates the
light from its normal path and makes the background object appear as if there were
multiple (Figure 1.3. This effect is most notable over long distances.

11See Cosmic web in the glossary.
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1 Introduction

Figure 1.3: The cluster of galaxies denominated Abell 370 is located 4 billion light-
years away and acts as a lense to the galaxies in the background; this effect
cause galaxies to appear multiplied and distorted. One of the most notable
examples is "the Dragon": several duplicated images of a single background
spiral galaxies that are stretched along an arc (it can be appreciated on the
upper left part of the image).

Source: https://hubblesite.org/contents/news-releases/2017/news-2017-20.html
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1 Introduction

Figure 1.4: Schematic representation of gravitational lensing in which a background
source object emits lights which is diverged by an over-density δ in such a
way that we perceive multiple distorted objects around the foreground one.

There is another source of deformation, the so-called intrinsic alignments (I). This is
directly related to how gravitational fields deform the galaxies themselves. This effect
is caused by tidal forces generated by over-densities such as dark matter fields and
cause changes in the orientation of galaxies. It is most notable when galaxies are too
close or when there is not enough structure to produce strong gravitational lensing
such in the closer Universe (z < 0.2− 0.3).

Figure 1.5: Schematic representation of an intrinsic alignments in which two over-
densities δ change the original orientation of a galaxy to a final state in
which its axis is pointing in the direction of the gravitational fields.

Lensing and alignments are tightly coupled, so it is difficult to know which one caused
the deformation. Then, the total shape of a galaxy is given by the following equation:

e+ ∝ γ + I + Noise (1.1)
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1 Introduction

There are other sources of noise attributed to the intrinsic characteristics of the galaxy
such as the shape of the galaxy (disk, elliptical...), whether the galactic core is active or
not (increasing luminosity), the fusion with other galaxies. But in reality what we want
to measure is the correlation between galaxies which is given by the generalization of
Equation (1.1):

ξ++ ∝ γγ + γI + I I + Noise (1.2)

By studying this correlations we are able to constrain the cosmological parameters
of the model which defines how energy and matter distributes in the Universe, the
Lambda cold dark matter (ΛCDM) model [27]. Among this parameters we can find the
density of baryonic (ωb) and dark matter (ωc), the Hubble constant (H0), the spectral
index (ns) or the growth rate ( f ) among many others. Some of these parameters will
be our target in this study for defining ξ++:

• The addition of ωb and ωc.

• The spectral index, ns.

• The primordial amplitude, As, when inflation occurred (or in turn σ8 which
corresponds to the amplitude of the density fluctuations).

• And the dark energy state equation.

The latter item is defined as:

w(z) = w0 + wz(1− z)

Where wz is defined as w′(z = 0) and w0 represents the type of fluid that the dark
energy is and if its value is -1, the dark energy is a constant which is often referred
as Λ. By combining results from different surveys and studies it is expected that the
value of this constant would be bounded. The inclusion of such a (non-zero) constant
would agree with Einstein’s general relativity and support the theory of an expanding
Universe as defined in the ΛCDM model.

1.1.4 The matter power spectrum

The matter power spectrum is the density contrast of the Universe (i.e., the difference
between local density and average density) as a function of scale. It can be thought as
the Fourier transform of the matter-matter correlation function (ξmm, same as Equation
(1.2) but for matter correlation) or, in other words, the probability of finding another
galaxy within a given distance. The spectrum is different given the scale:
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1 Introduction

• Small: the regime (density contrast) is non-linear and alignments are really strong.
Usually, the modelling approach used here is the Halo Occupation Distribution
(HOD) [8, 78].

• Intermediate: the regime is quasi-linear (Gaussian) and because it is Fourier
independent, the power spectrum itself is enough to describe the density field.

• Large: the regime is linear, gravity competes with the expansion and it depends
just on a scalar parameter. It can be used to model inflation, where shapes
correspond to anisotropies in the tidal forces.

The matter power spectrum describes how much structure there is in different scales
described above, where high values correspond to more structure and vice versa (Figure
1.6).

Figure 1.6: Several measurements of the power spectrum, in this case highlighting the
SDSS results (in black) that lie in the quasi-linear regime where the BAO
wiggles are present.

Source: [69]
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1 Introduction

1.2 Motivation

Current and future missions such as Euclid [31] will provide an immense amount of
information to study the large-scale structure formation and evolution. How to process
this data requires of a methodology which needs to be accurate (at the percent level)
and more importantly fast. Direct numerical computation, despite being adequate for
the first constraint, is too computationally intensive.

Current theoretical mechanisms (such as Effective Field Theory, EFT; more on Section
2.2) for extracting information about galaxy correlations require the calculation of
components such as loop integrals12 which are not scalable and need to be sped up.
Statistical approximations with methods that leverage Artificial Intelligence (AI) are
one of the best options, as they could provide results with almost no error when
compared with the ground truth data and at the same time saving up computation
resources.

AI models can be constrained in the same way as any other classical model provided
that they get to see representative data of the problem at hand. This enables easy cus-
tomization of the model at training time just by modifying the input data (e.g., adding
more independent variables or features that describe or condition the dependent vari-
ables or outputs).

1.3 Aim of the project

The main goal of this research is to create a framework to train AI models to provide
a quick and accurate (we will target absolute relative errors at the sub-percent level,
this metric will be extensively elaborated on Section 4) interface for inference of several
characteristics related to galaxies’ intrinsic alignments. The models will be based on the
Gaussian Process (GP) architecture as it has been shown to be useful in other studies
(more on Section 2.3). It will leverage GPU13 computing capabilities, much in line with
the recent AI developments that take advantage of their hardware characteristics to
enable fast matrix multiplications which in turns helps dealing with vast amounts of
data. For this purpose will make use of the Python library GPyTorch [33]. We will aim
to achieve inference speeds of the order of milliseconds.

The setup will be that of a supervised multi-output regression problem in which for a
given set of cosmological parameters we will need to infer a set of factors representing
different components of an EFT model. These factors correspond to a set of one-loop
integrals extracted from a power spectrum which in turn was generated from a fiducial
(ground-truth) cosmology.

12See Loop integral in the glossary.
13Graphics Processing Unit.
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1 Introduction

Generating a dataset of fiducial cosmologies from different combinations of cosmologi-
cal parameters is also needed as a preliminary step in order to have a representative
sample of our problem. Furthermore, the fiducial set of integrals needs to be numer-
ically extracted to be used as comparison baseline to the predictions made by the
model.

We will train different models constrained to different ranges of data and cosmological
parameters (different datasets) to serve increasing accuracies at the expense of size and
inference speed; presenting the user with diverse pre-trained options that will tailor to
their needs.
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2 Related work

2 Related work

2.1 General overview

There have been some previous studies related to galaxy intrinsic alignments. In
general, what we study is spatial correlations of ellipticities not of single galaxies but
of larger galaxy samples via the matter density contrast, i.e., the matter power spectrum.
Extracting the contaminant factor that pose alignments is closely linked to the analysis
of gravitational lensing and galaxy clustering. Several models have been proposed to
study this effect [45]:

• Halo14 shape models: applied to elliptical galaxies (usually red), measure the
alignment of the baryonic matter with dark matter halo which hosts the structure
due to alike properties.

• Tidal alignment models: applied to elliptical galaxies (usually blue), measure how
the gravitational tidal field generated by the large-scale structure, in which the
galaxies are embedded, acts and distorts the baryonic matter.

• Quadratic alignment models: applied to spiral galaxies, measure the perturbative
effect of the angular momentum of the host halo and how it changes the galaxies’
symmetry axis.

• Vorticity models: through simulations, measure the strong alignments between
dark matter haloes and the large-scale structure non-linear vorticity.

• Acceleration models: measure the shape and orientation, based on the pattern of
accretion of matter onto the galaxy.

• Merging models: applied to spiral galaxies, measure the angular momentum
of the galaxy caused by the infall of other galaxies (fusion). The total angular
momentum results from the combination of the angular momenta of the initial
galaxies.

All of the above-mentioned models share the fact that the alignments are determined
by the interaction of the galaxies with the fields in which they are embedded.

Some other studies have been carried to observe intrinsic alignments, such an early
one that used photographic data and considered very low redshifts in which lensing
is minuscule, thus correlations should be caused by intrinsic alignments [15] or later
ones that used instead spectroscopy applied again to low redshifts [12, 21]; all of them

14See Dark matter halo in the glossary.
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agreeing in the fact that intrinsic alignments are present and account for a few percents
of the contaminants.

Models for early (elliptical) and late-type (spirals) galaxies use different free parame-
ters to study them. In summary, the former state that the amplitude of the intrinsic
alignments for a galaxy scale linearly with its luminosity [46, 67] whilst the later state
that the ellipticity of a galaxy depends on the angular momentum direction; in this
case it is the large-scale structure the one that exerts a torque on the halo in which the
galaxy is embedded [23, 24]. For this discussed kind of models one needs to model the
dynamics of the dark matter haloes and take into account the changes induced by the
process of merging haloes.

Finally, there are other theories to explain alignments such as ones that simply pose that
the stellar component (galaxy) follows the shape and orientation of the halo in which
they are embedded; this could be determined by the initial (and random) conditions
of the emerging structure or, as found in simulations, be determined by the vorticity
fields or the cold gas accretion streams.

2.2 Modelling intrinsic alignments

As stated in Section 1.1.3, measurements of ξ++ are used to constrain the cosmological
parameters. Whenever we want to model these, we usually have some observed data
and a model that depends on the (cosmological) parameters of interest. Any other
extra parameters used in the model are denominated ’nuisance’ and just increase the
parameter-space which can lead to an increase in the error on the measurements of our
parameters of interest.

Constraining the cosmological parameters requires modelling of gravitational lensing
but at the same time, and as mentioned in Section 2.1, intrinsic alignments cannot
be ignored as they are a contaminant and thus, can bias the parameter estimation.
Among the aforementioned methods, the linear tidal alignment model [10, 16] has
been commonly adopted in literature. This model works relatively well for alignments
which are separated by large distances (of approximately 10h−1Mpc or more) and for
red galaxies; but where this theory starts to fail is at smaller separations and for blue
galaxies [71]. For this non-linear and quasi-linear regimes, methods such the direction
of the angular momenta are used, but recent studies have proposed other alternatives
to measure intrinsic alignments on this scales in order to obtain accurate and unbiased
parameter constraints beyond linear scales. Approximations of the linear power spectra
by its nonlinear analogue or HOD have been used and validated via cosmological
simulations independently. Since the nonlinear/HOD cannot be approximated, and
alternative by combining these two mechanisms has been created under what is called
Standard Perturbation Theory (SPT) [11, 13, 65], in order to obtain accurate analytical
predictions in the non-linear regimes where the perturbations are small. This model
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studies the small perturbations caused by gravity that grow, seeded and eventually
give rise to the current structure that we can observe in the Universe.

A variation of SPT that can describe the statistics of any tensorial field in the large-scale
structure is called Effective Field Theory (EFT) [71]. It is based on Eulerian (point)
perturbation theory and on large-scales describes the matter density distribution as an
effective fluid [6] whereas on small-scales all the physics are integrated out and can
be compared with simulations or observations in like manner. Furthermore, it solves
the issue of convergence at smaller scales due to physical independence thanks to the
inclusion of contributions of higher spatial derivatives of the density and tidal fields.
So all in all, with EFT, the modelling of intrinsic alignments is extended from the linear
regime to the quasi-linear one. It is worth to note that this approach can be applied to
both three-dimensional shapes of galaxies as well as to the two-dimensional projection
of those that can be encountered in galaxy surveys [73]. Under this framework and
using symmetries of trace-free15 tensors (meaning that size is not taken into account,
just the shape) and scalar biased tracers16 (e.g., a generic count of galaxy population),
several characteristics from galaxies can be obtained such their shape, size and more
importantly for our research, the effects of intrinsic alignments in biased tracers as
observed in galaxy redshift surveys.

Galaxy shapes (their ellipticities) are affected by both gravitational lensing (which
is a two-dimensional projection effect) and by intrinsic alignments which arise from
physical interactions (thus, happening in a three-dimensional space). The latter, can
be derived from the power spectrum (Section 1.1.4) using a one-loop perturbative
expression (Feynman diagram17). Several terms contribute to this expression and
among those there are thirteen independent integral correlators for Equation (1.2) ([71],
Section 4.3 and Appendix B.1) and which are the numerical results of an integration
routine (Figure 2.1). We will use those as ground-truth as well as target for emulation
in our research.

Figure 2.1: One-loop correlators from EFT

15Tr[A] = 0, i.e., the trace of a given matrix (A) is zero. Being the trace the sum of the elements in the
main diagonal.

16A tracer is any object or group of objects that help detecting other objects (such as dark matter).
17See Feynman diagram in the glossary.
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2.3 Cosmological emulation

As higher quality and complete datasets from different surveys come online, the cost
of running large-volume simulations becomes prohibitive (e.g., running a MCMC18

could require up to the order of O(106) evaluations). Statistical analysis of cosmolog-
ical quantities has proven to be an extremely useful tool to sped up computations in
contrast to direct numerical calculation; it can retrieve inferred values with errors at
the percent and even sub-percent level. This approximation methodology relies on
building ’emulators’ which are nothing more than AI models.

Several of these models have been constructed over the past years with different aims
such as emulating the matter linear power spectra [38], the non-linear power spectra
[49, 50, 54], both linear and non-linear [55, 68] or CMB statistics (temperature, polar-
ization...) [68]. The general trend for choosing an architecture for these emulators is
that of Gaussian Processes (GPs) [74], specifically GP regression. On the other hand
there have been other models based on Neural Networks (NNs) as architecture for the
interpolation process [1, 2, 4].

However, not many of this emulators are based on perturbation theory. Under this
category fall one-loop tracers emulators [18, 22] which are able to perform inference in
the order of 1s, or more closely related to our aim, COMET, an EFT/VDG (Velocity
Difference Generating function) emulator [30] which reduces the time to the order of
10ms. COMET uses an approach close to that of neural emulators [26, 28] despite
using GPs; it models positions of observables whereas in our case want to model the
intrinsic alignments of those. We will closely follow COMET’s approach to keep a
flexible, but at the same time, small range of cosmological parameters to help keeping
computational costs as small as possible without compromising the key advantage of
perturbation theory, accuracy.

18Markov chain Monte Carlo
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3 Methodology

3.1 General overview

In this section we will describe the architecture and process of the emulator design
(Figure 3.1), including the parameters chosen for training (with the corresponding justi-
fication), the generation methods for the datasets and an overview of the AI pipeline.

3.1.1 Cosmological parameters

The range of parameters currently being sampled in the emulator are in line with the
KiDS-1000 priors [40]. This is the fourth public release of the KiDS project and it is
a weak lensing survey that covers an area of 1000 degrees2 with images. Statistical
analysis of the shearing, clustering and lensing was used in order to constraint the
cosmological parameters.

Parameter Min Max
ωc 0.051 0.255

ωb 0.019 0.026

ns 0.84 1.1

Table 3.1: Cosmological parameter ranges. ωc: physical density in cold dark matter,
ωb: physical density in baryons and ns: scalar spectral index.

Furthermore, H0 = 69.5 km s−1 Mpc−1 (the Hubble constant) and As = 2.2078559×10−9

(the comoving curvature power) are fixed in order to be able to set the initial power
spectra (values taken from COMET [30]). The redshift value (z) is set to zero.

As we are not sampling H0 (h = H0/100), the emulator predictions could be exactly
re-scaled provided that the input linear power spectra (Plin) are in units of Mpc, that is,
removing all the dependencies to h [64]. This technique is called ’evolution mapping’
[63] and with it not only the predictions could be scaled but other parameters such
as ΩK, w0, wa, As and redshift evolution. This approach involves including an extra
quantity denominated σ12 which represents the variance of the linear density field in
spheres of 12 Mpc [64]. This quantity can be absorbed by the norm of the linear power
spectrum as in Equation (48) of COMET, thus it can be either be emulated separately
or computed numerically a posteriori in the re-scaling phase.

The space of generation for the power spectra is k′min = 10−4 and k′max = 100 (both in
units of Mpc−1) with a total of 700 points, in order to get a fine grained set of spectra
in units of Mpc3.
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Figure 3.1: General overview of the project’s flow, orange represents input parameters
(being As and h fixed and the rest sampled accordingly in the ranges de-
fined in Section 3.1.1), green represents the AI pipeline components and
blue outputs of the different steps. The aforementioned outputs are the
product of the double squared boxes, being those in pink external processes
independent to the AI pipeline.

3.1.2 Dataset structure

50,000 different cosmologies will be created by applying Latin Hypercube Sampling
(more on Section 3.5) over the parameters defined in Table 3.1 and the k′min and k′max.
Afterwards, FFTLog [66] will be applied over each one of them (represented by a
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sample of just three parameters, namely, ωc, ωb and ns) to obtain the 13 one-loop
components as per defined in the perturbative effective field theory (EFT) [72].
For each cosmology, 13 components will be generated for each one of the 700 k-bins
and in order to downscale the data, we sample again just 100 points between kmin =
5×10−3Mpc−1 and kmax = 2Mpc−1 enforcing an over-density in the Baryonic Acoustic
Oscillations (BAO) wiggles as done in COMET (we use 100 samples instead of 106).

We decided to define kmax as a few times kNL ([19], Equation (12)):

k−2
NL(z) =

1
12π2

∫ ∞

0
Plin(k, z)dk

At z = 3, kNL(z = 3) ≃ 0.5 Mpc−1. So to be on the safe side, we decided to use
kmax = 2 Mpc−1. The rationale for increasing this a bit is that we know that at z = 0
the EFT fits the data up to kmax ≃ 0.3 Mpc−1 and that the non-linear scale at this
redshift is kNL(z = 0) ≃ 0.15 Mpc−1, so it makes sense to increase it a bit.

The cosmologies file will be structured as follows: each row will represent each one
of the 700 k-bins components where each column will represent the different power
spectra as generated with the sampled parameters. Thus the shape will be 700 x 50000.
The former will be used as input for FFTLog and will output 13 values for each one
of the components, resulting in a shape of 650, 001 x 100: where the first row contains
the k-bins as re-sampled to the kmin - kmax followed by 13 blocks of 50,000 vectors
corresponding to each one of the correlators per cosmology. Finally, the ready-to-use
dataset model will have a shape of 50, 000 x 14 x 100. The extra value added to the
second dimension, corresponds to the power spectra that were used to generate each
one of the 50,000 cosmologies as we also will emulate them.

The naming conventions for the correlators are in line with the original EFT paper,
namely:

• I correlators: I11, I12, I13, I22, I24, II33, I34, I44 and I55.

• J correlators: J1, J2 and J3.

To those we will add the denomination for the power spectra, Plin, that we will reuse
later when discussing the modeling approach.

3.1.3 Training objective

The Gaussian Process model will be trained to fit the 13 integral correlators and the
power spectra values at each one of the k-bins for each one of the samples or features
(set of cosmological parameters). The end goal is that the user just inputs the amount of
cosmologies to emulate, and the AI pipeline will randomly draw the three cosmological
parameters (within the ranges defined in Section 3.1.1) to perform inference in order
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to get the 14 predictions.
Note that the emulator has been trained with a fixed k-range of 100 values between
5×10−3Mpc−1 and 2 Mpc−1, so we will provide also a splining method to be able to
provide prediction at both different k-bins within the range and outside of it19.

Finally, the optimal goal will be to have some pre-trained models with a reasonable
size, that maintain the expected accuracy and inference speed. This models will be
exposed via a user-friendly interface in which all the inner processes are abstracted.

3.1.4 Software considerations

All the power spectra are generated with the Python wrapper of CAMB [51].

The FFTLog computation will be performed by leveraging a native Mathematica [43]
implementation.

The Gaussian Process model will be implemented in GPyTorch [33] using support
libraries such as the Python implementation of KeOps [17] for large-scale GPU training
and inference.

3.1.5 Hardware considerations

All the experiments were run in a mobile workstation with a six cores (5.10 GHz) Intel
i7 CPU, 64GB of DDR4 RAM and an NVIDIA Quadro RTX 3000 GPU with 6GB of
GDDR6 VRAM.

3.2 Cosmology generation

Using CAMB, two different functionalities were implemented, one to generate cos-
mologies using Latin Hypercube Sampling20 over the cosmological parameter space
and another one to generate them just based on already created parameters. This
decision was made based on the fact that the correlators generation process needs a
broader and finer grained range (700 k-bins) of values for the cosmologies (using the
first method) but the power spectra for this same parameters need to be down-scaled
for the emulator range (using the second method) of 100 k-bins. Although, for the
latter splining could have been performed, it was decided to regenerate from scratch
as the overhead was not excessive and accuracy was then ensured.

19Caveats: the inference in this case will not be as accurate as we depend on the quality of the spline
and the user will be warned accordingly.

20See Latin Hypercube Sampling in the glossary.

Emulating effective field theory predictions for galaxy alignments
Ignacio Montes-Álvarez

18



3 Methodology

All the parameters not mentioned in Section 3.1.1 are set to their default values. Along
these values is worth to remark that the default transfer function is set to the Boltzmann
one.

3.3 Correlators’ generation

All the integration routine is decoupled from our Python’s pipeline and leverages Math-
ematica [43] implementing the FFTLog algorithm [66]. The calculations are performed
on a notebook which makes use of CPU multi-threading. The code is divided in two
main parts:

1. Cosmology independent: computes some known fixed quantities for the (13)-type
and (22)-type integrals used to calculate the loop matrices plus initializes the
FFTLog module as per the original paper.

2. Cosmology dependent: first it pre-computes the FFT [14] of the power spectra over
the provided k-bins range and then it actually performs the integrals’ calculation
to obtain the final correlators’ values by means of matrix multiplications.

3.4 Preprocessing

All inputs to the model are processed such that they do not have any h dependencies,
we do this by multiplying by h the k-values and diving by h3 the actual correlator
and power spectra values. Both of those have different re-scaling techniques that will
ease the learning process of the models, the latter being the most straightforward one
as it is just a logarithmic transformation21. For the correlators there are several steps
involved:

1. Removal of negative values: as the final step of the preprocessing pipeline is to
apply a logarithm, is a must that there are only positive values so that the trans-
formation is defined. There are three different cases that need to be considered.

• No change of sign: all correlators always positive, such as I11, I24 or J3
22.

• Add a constant: if for some of the correlator values there is a positive/negative
or negative/positive change (i.e., the correlator crosses zero at some point)
we will add the minimum value (minus a small value, such as 0.1, to ensure
a proper logarithmic transformation) across the whole range of correlator
values as a constant to all of them. This happens for correlators such as I12,
I13 or I34.

21Natural logarithm.
22Plin is not mentioned here as this is a different process, but it is worth to note that is always positive

too.
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• Flip the sign: this happens when all the values for a correlator are nega-
tive. The correlators not mentioned in the previous two points undergo this
transformation.

f (X) =


−X if all(X) < 0
X + (min(X)− 0.1) if any(X) < 0
X otherwise

The negative scaling f takes as input X which is the whole set of values for a
single correlator, namely, the 100 k-bins for each one of the cosmologies associated
to it.

2. Normalization using the power spectra values: the ratio of the correlators by the
corresponding power spectra value is taken. This is done since the correlators’
amplitude can greatly vary depending on the parameters used for the generation
so using ratios reduces the dynamical range of the quantities, making emulation
easier.

• I factors: are scaled by a smoothened fiducial power spectrum that is shared
for all of them.

• J factors: are scaled by the corresponding power spectra that were used to
generate them.

3. Logarithmic transformation: for extra reduction of the dynamical range and im-
prove numerical stability.

This whole process will look as follows in terms of equations:

Inorm = ln
( f (I)

Plin f iducial

)

Jnorm = ln
( f (Ji)

Plini

)
Finally, the last step taken is to normalize all data per input dimension (i.e., correlator
and power spectrum). Again, this helps training performance and stability by making
the features to be in the same scale. In our case, for each set of samples per dimension
we make the data have zero mean and unit variance by applying the following:

Xnorm =
X̄
σX
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3.5 Sampling

For both the selection of the cosmological parameters and the split into train and test
sets Latin Hypercube Sampling was used.

Additionally, since the output from CAMB returns the k-values in an evenly log-spaced
and interpolated range between kmin and kmax, we need to capture the BAO wiggles in
order to apply evolution mapping. To do this we take a different approach: we apply
the algorithm used in COMET for sampling the k-bins with an over-density around
the BAO wiggles for the power spectra which linearly interpolates given a minimum,
a maximum, a mode or center in which to generate more samples and the strength or
density to apply over the center. The most important value to capture this region of
the spectrum is the mode, which in units of k/h is 0.22 and after applying the proper
transformation with our value of h (0.695 in units of 100 km s−1 Mpc−1) is 0.153.

3.6 Gaussian Process emulation

The approach chosen is that of exact regression using Gaussian Processes ([74], Algo-
rithm (2.1)) implemented leveraging state-of-the-art libraries for reducing the compu-
tational complexity of inference from O(n3) to O(n2). This overhead mostly comes for
the matrix inversion needed for computing the GP posterior mean ( f̄∗) at a single point
x∗:

f̄∗ = k⊤∗ (K + σ2
n I)−1y (3.1)

Where K = (X, X∗) is the covariance matrix (kernel) of n x n training points and
k∗ = k(x∗) = K(X, x∗) is the test vector.

In the same way, the posterior variance can be calculated as follows:

V[ f∗] = k(x∗, x∗)− k⊤∗ (K + σ2
n I)−1k∗

This inversion is mostly performed using a Cholesky decomposition which works by
splitting a given matrix A into the product of two Cholesky factors: A = LL⊤ being
L the lower triangular matrix of A. Since the matrix is known to be symmetric and
positive definite, its determinant can be calculated by:

|A| =
n

∏
i=1

L2
ii

It has been commonly attributed to be the method of choice for solving GP problems
as it is extremely stable but it comes at the expense of run time. The whole block of
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improvement comes from the GPyTorch library [33] which uses matrix-matrix multipli-
cations which fully utilize GPU in its inference engine. They developed an algorithm
called ’Blackbox Matrix-Matrix Multiplication’ (BBMM) which uses a modified batched
version of linear conjugate gradients (mBCG) inspired mainly by the so-called iterative
Krylov subspace methods; the latter is based on matrix access by just using matrix-
vector multiplies (MVM). The most important aspect of this is how they compute the
conjugate gradients: they solve eigenvalues without explicitly computing a matrix,
they follow an adapted version of the calculation of matrix estimators via matrix-vector
products [29] without using the Lanczos tridiagonalization algorithm [77] but instead
preconditioning with a pivoted Cholesky decomposition [5, 37] to accelerate the con-
vergence of conjugate gradients without losing accuracy [59].

All in all, BBMM efficiently uses actual hardware (GPUs) to perform all of these large-
scale matrix multiplications circumventing space complexity and stability problems
whilst, and most importantly, reducing the time complexity of exact GP inference to
O(n2).

Finally, we also make use PyKeOps [17, 32] for support of symbolic matrices in order
to speed up tensor programs. The main advantage over traditional dense (large, heavy
memory load and time-consuming) arrays/tensors and even sparse (with few non-
zero coefficients, thus less memory intensive but which do not stream well on GPU)
is that they are represented by a function, F(xi, yj), that given two vectors is able to
compute the location (i, j) on an array Mi,j. This symbolic tensor representations are
fast and memory-efficient providing up to 10x-100x speed-up in many GPU tensorial
applications.

3.6.1 Model architecture

Much in line with COMET and as we are treating the correlators and power spectra
outputs independently, we will construct 100 sub-models per output dimension (i.e.,
100 models times 14 dimensions, for a total of 1400 models). Each one of these sub-
models groupings is wrapped in an IndependentModelList (as per GPyTorch) which
in turn optimizes all the sub-models at the same time. The construction of this model
looks as follows:
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Algorithm 1 Setup model list

Input: x_train← torch.tensor: the cosmological parameters array
Input: y_train← torch.tensor: the features for the specific correlator/power spectrum
Input: correlator_index ← int: the identifier of the dimension

1: models← list
2: likelihoods← list
3: k_bins_size← 100
4: for i ∈ range(k_bins_size) do
5: likelihoods.append(GaussianLikelihood)
6: models.append(ExactGPModel(x_train, y_train[:, correlator_index, i])
7: model ← IndependentModelList(∗models)
8: likelihood← LikelihoodList(∗likelihoods)
9: loss← SumMarginalLogLikelihood(likelihood, model)

Output: model, likelihood, loss: the corresponding wrapper model with its likelihood
and associated loss function for the correlator provided

Algorithm 1 takes as input the cosmological parameters array (wc, wb, ns) for the
selected cosmologies which is shared for all the tasks, the vectors corresponding to the
correlator at hand and the identifier for the same. In lines (7) and (8) the star operator
means broadcasting, i.e., unpacking the list. This algorithm populates two lists for
each specific k-bin with:

• Model: an exact GP model which based on the platform and the hardware avail-
able decides which kernel to use. In the case of Linux and a GPU available it will
use the PyKeOps version of the kernel. In any case, it is an additive kernel, i.e., a
kernel created by adding other two, which in this case are a Radial Basis Function
and Matérn function.

krb f (x1, x2) = exp
(
−1

2
(x1 − x2)

⊤Θ−2(x1 − x2)
)

Where Θ is a length-scale parameter.

kmatern(x1, x2) =
21−ν

Γ(ν)
(√

2νd
)νKν

(√
2νd

)
Where d = (x1 − x2)

⊤Θ−2(x1 − x2) is the distance between the two inputs with a
scale factor given by the length-scale parameter Θ. Γ is the gamma function23, ν is
a smoothing parameter in which higher values imply more smoothness (it usually
takes values of 0.5, 1.5 or 2.5 and in our case, we use 2.5) and Kν is a modified
Bessel function24.

23See Gamma function in the glossary.
24See Modified Bessel function in the glossary.
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The (characteristic) length-scale parameter Θ, in plain words, represents how far
you need to move on a particular axis in the input space so that the function
values become uncorrelated. In our case we signal the kernels to learn a different
value for each one of the input dimensions using the paradigm of Automatic
Relevance Determination (ARD) [56]. ARD determines how relevant an input is,
in other words, if the length-scale for a given dimension has a large value the
covariance will be almost independent of that particular input, meaning that it
will be removed from the inference process.

In addition, the model will use a ConstantMean which is not more than a non-zero
constant prior mean function, µ(x) = C, in which the value of C will be learned
during training.

• Likelihood: the mapping from latent (predicted by the model) function values
f (x) to observed or true values y. It is a one-dimensional distribution of scalar
functions, in other words, for a specific x we expect that f (x) ∈ R. In our case, a
GaussianLikelihood which translates to:

y(x) = f (x) + ϵ

p(y| f ) = f + ϵ

Where ϵ is the Gaussian (standard homoskedastic) noise, i.e., it follows a Gaussian
distribution ϵ ∼ N(0, σ2).

These two lists are then wrapped into the corresponding convenience classes which
treat all the sub-models as a single one.

Additionally we define the loss function which in our case is based on computing the
ExactMarginalLogLikelihood (evidence) for each one of the sub-models ( f ∼ GP(µ, K)).
The marginal likelihood is the integral of the likelihood times the prior:

p(y|X) =
∫

p(y| f (X))p( f (X)|X)d f

And the marginal log likelihood:

Lm = log(p(y|X)) = −1
2

f⊤K−1 f − 1
2

log |K| − n
2

log(2π) (3.2)

Finally, the loss across the whole wrapper of models (SumMarginalLogLikelihood) is
given by generalizing Equation (3.2):

L =
∑n

i=0 Lmi

n
(3.3)
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Where n is the number of losses corresponding to the amount of sub-models, in our
case, 100.

3.6.2 Training

We can comprise the full training pipeline into one algorithm that acts upon the models,
likelihoods and losses defined for each one of the correlators (plus power spectra) in
the previous section.

Algorithm 2 Training loop

Input: model ← IndependentModelList: the model to optimize
Input: likelihood← LikeLihoodList: the likelihood associated to the model
Input: loss← SumMarginalLogLikelihood: the function to compute the loss
Input: iterations← int: number of epochs to train the model for
Input: η ← f loat: the learning rate of the model

1: optimizer ← AdamW(model.parameters(), η)
2: scheduler ← CosineAnnealingWarmRestarts(optimizer, T0 = 10, Tmult = 1)
3: losses← list
4: for i ∈ range(iterations) do
5: optimizer.zero_grad()
6: predictions← model(∗model.train_inputs)
7: if CG convergence fails then
8: break
9: loss← −loss(predictions, model.train_targets)

10: losses.append(loss)
11: loss.backward()
12: optimizer.step()
13: scheduler.step()
Output: model, likelihood, losses: the trained model and likelihood with the correspond-

ing losses for each epoch

There is a few considerations regarding Algorithm 2:

• In line (1) we define the optimizer to use during training. This object keeps track
of the current state of the parameters of the model (e.g., length-scale) and is also
in charge of update those based on the computed gradients. In this case we use
an AdamW [52] optimizer which is in turn a modification of the commonly used
optimizer for deep learning applications, Adam [48]. The latter is extensively
used as it is extremely flexible (it can be applied to a lot of different optimization
objectives, with noisy and/or sparse gradients), adapts really well to large-scale
setups in terms of data and/or parameters, has favorable convergence properties
when compared with classical stochastic optimization methods (such as Stochastic
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Gradient Descent, SGD [62]) and, more importantly, while keeping computation
and memory costs as low as possible. The decision to use AdamW as our opti-
mizer comes from the inherent flexibility of Gaussian Processes which leads them
to be prone to overfitting25. There are some techniques to counter this effect, such
as as L2 regularization and weight decay [36] in SGD, however the weight decay
is not applicable in the same way for adaptive gradient optimizers such as Adam.
In the case of AdamW, the process of decaying the weights of the parameters
is decoupled from the loss-based gradient updates ([52], Algorithm 2, line (12))
and it has been experimentally shown to be effective both to prevent overfitting
and increase generalization performance as a whole. The learning rate (η) in
a model determines the size of the steps that an optimization algorithm takes
when moving towards the minimum of a loss function; if it is too big, it might
overshoot and converge too quickly in a non-optimal local minimum, whereas
in the opposite case, it might cause the process to be too slow and get stuck in
sub-optimal local minimum. So it is important to determine an adequate learning
rate so that the optimizer converges to the best solution available: common values
for deep learning algorithms are in the range 10−1 to 10−5 but these values are
really a guideline since the learning rate is a really problem-dependent parameter.
GPyTorch recommends a η of 10−1 for most problems solved with Adam, but
in our case with AdamW we chose 5×10−2 to give a bit more of room for the
optimization routine. Finally, we use the default value of 10−2 for the weight
decay rate.

• In line (2) we instantiate a learning rate (η) scheduler. The decision to use a
scheduler here comes from the optimizers’ experiments which effectively shown
that static learning rates tend to converge to worse solutions while taking more
time than if an scheduler is used. This function controls how the learning behaves
during the optimization process and in our case we follow the approach of step-
based warm restarts26, in other words, decay the value of the learning rate until a
ηmin and after some time reset it to its initial value of ηmax. Our choice of algorithm
is that of Cosine Annealing [53] (same as in AdamW’s paper) and updates the
learning rate as follows:

ηt = ηi
min +

1
2
(ηi

max − ηi
min)

(
1 + cos

(Tcurrent

Ti
π
))

Tcurrent is updated at each iteration, when Ti = Tcurrent = 0 it will set ηt to ηi
max

and once Ti = Tcurrent the value of ηt will be ηi
min and both T’s will be reset.

In addition, the authors include a Tmult parameter that increases by a factor the

25This term is commonly used in AI terminology and refers to the situation in which a model learns too
well the training distribution but it is not able to generalize to unseen (test) data. It is the opposite
of underfitting, a situation in which the model lacks expressiveness at all and performs equally bad
with train and test data.

26There are other approaches to scheduling such as time-based or exponential.
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value of Ti at every restart. Since the specifics of this method are also problem
dependent and we did not have time to test different combinations, we opted for
conservative values of Ti = 10 and Tmult = 1 so after each 10 epochs, the learning
rate will reach zero and restart to the initial value (5×10−2).

• In line (6) a forward pass to the model is invoked by broadcasting the cosmological
parameters to each one of the sub-models, this will compute the predicted values
which are then fed to the loss function (Equation (3.3)) in line (9) to be compared
with the ground-truth vectors.

• Line (11) takes care of computing the gradients of the loss function with respect
to each one of the parameters. Then, the optimizer in line (12) takes a step in
the opposite direction of the gradients updating accordingly the parameters of
the model. At the same time, the scheduler in line (13) increases Tcurrent by one.
Finally, is is worth pointing out that before each new iteration in line (5), the
gradients need to be removed so they can be recomputed from scratch with the
newly updated parameters.

• As an extra measure to prevent overfitting and unnecessary extra training time
we introduce a check similar to that of early-stopping27 in line (7). It terminates
the training loop after the model signals that the conjugate gradients (CG) relative
residual expected to terminate is larger than the defined value (in our case 0.5).
In other words, when the model starts failing for convergence after some time it
is because there is no more updates to do after having found the most optimal
solution with the current parameters.

After each model has been trained, either because the convergence has been reached
or because the error tolerance has not been reached28, we save the parameters of both
the model and the likelihood for further replication in the inference step.

Not less important, the train and test splits generated for optimizing and validating
the models were of size 1750 and 2500 respectively. Usually in other deep learning
approaches the number of samples tends to be way higher but due to the associated
memory overhead in GPs this had to be kept conservative. However, by using PyKeOps
this limit can be increased without impacting the runtime. Adding more samples would
be beneficial so that the the models can capture finer-grained aspects of the distribution
of cosmologies.

In Table 3.2 we show a summary of the main quantities involved during the training
process.

27It is a process that stops training after the model fails to decrease the loss after a few iterations, i.e.,
the optimizer reached a minimum, either local or global.

28After the determined cycles/iterations the minimum value configured as tolerance for a successfully
accurate model epoch, is not achieved, thus the model, starts failing to converge.
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Parameter Value
Training size 1750

Validation size 2500

η 0.05

Iterations 500

CG tolerance 0.5
T0 (Ti) 10

Tmult 1

Table 3.2: Training parameters

It is also worth to note that the models learn normalized and scaled predictions as per
Section 3.4. So in order to check the performance of the models, we need to apply the
inverse process. Furthermore we define our own metric to measure quality:

Error =
∣∣∣∣ corrnmpred

corrnmtrue

− 1
∣∣∣∣∗100 (3.4)

Where we compute the absolute ratio of the predicted value by the true one for what-
ever correlator expressed in terms of a percentage. In our case the prediction that
we will use is the mean value as drawn from the posterior distribution as given by
Equation (3.1). Taking advantage of this, we can also calculate the median error at each
of k-bins for each model using the mean values.

3.6.3 Inference

Once the models are trained, those are reconstructed by initializing each one of the
sub-models for each correlator in a process similar to that of Algorithm 1 but this time
using the dictionaries containing the trained hyperparameters such as the length-scale
or the mean constant prior. The advantage of following this approach instead of using
the whole model with the cached weights is that the memory footprint goes down
from the order of a few GB to that of MB. This comes at the expense of losing the
cached inference computations that speed up subsequent requests.

The main two functionalities exposed to the user in this pipeline are:

1. Single cosmology emulation: in which the user specifies the three cosmological
parameters (wb, wc and ns) and gets the values for all the correlators and the
corresponding power spectrum (which was in turn also predicted and used for
re-scaling the models’ predictions).
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2. Multiple random parallel cosmology emulation: the user specifies how many
cosmologies wants to generate and the framework taking advantage of its parallel
inference capabilities quickly generates the predictions for a set of random and
uniformly distributed cosmological parameters within the training ranges of the
emulator (Table 3.1). This utility makes use of PyTorch’s DataLoader which is
in charge of batching the data into parallel streams so that the models can take
advantage of parallel distribution.

In addition, the user can specify whether to spline the k-values to a set of values differ-
ent to the specific 100 values for which the model was trained. For this, a univariate
spline is used and can accurately map new k-bins to correlator vectors within the mod-
els’ kmin - kmax range. Splining outside of this range is also allowed but the user will
be warned about the potential inaccuracy of the process.
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4 Results

4.1 Training convergence

It is worth to include a plot of the training loss to visualize how the scheduler affects
the optimization process.

Figure 4.1: Loss over time for I11

As it can be seen from the small bumps on the curve, the scheduler resets the learning
rate each 10 iterations; when the learning rate reaches zero before a restart the loss
increases a little bit before continuing towards the minimum. Furthermore, all models
converged around an average value of -2 for the marginal log likelihood (Equation
(3.3)).

4.2 Relative errors of training

As per Equation (3.4) the results are presented for a extract of the correlators and the
power spectrum. Figures 4.2, 4.4, 4.6 and 4.8 include the results for the whole 2500
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validation cosmologies29.

Making it easier to visualize (due to, among others, presence of outliers) Figures
4.3, 4.5, 4.7 and 4.9 include the median absolute relative errors across all validation
cosmologies for the corresponding correlators and the power spectrum in the above-
mentioned figures. The shaded region corresponds to the models’ confidence in the
84th percentile30.

29For the complete list of figures refer to the Appendix B.1.
30For the complete list of figures refer to the Appendix B.2.
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Figure 4.2: Absolute relative errors for I11

Figure 4.3: Median absolute relative error for I11
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Figure 4.4: Absolute relative errors for I12

Figure 4.5: Median absolute relative error for I12
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Figure 4.6: Absolute relative errors for J3

Figure 4.7: Median absolute relative error for J3
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Figure 4.8: Absolute relative errors for Plin

Figure 4.9: Median absolute relative error for Plin

Firstly, it is worth to note that in this project we are not using as ground-truth values
exact mathematical computations of the correlators’ values but an approximation of
those coming from FFTLog, thus, the maximum accuracy can only be as good as that
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of the method. FFTLog states a percent and sub-percent level error depending on the
k-bin range.

We can see that the absolute relative errors in general range from the percent level to
several orders of sub-percent level (up to 10−4) as it can be seen in Figures 4.2 and
4.6 for two of the correlators and in Figure 4.8 for the power spectra. However, there
are some correlators that contain quite a few outliers that bump the errors to several
orders of magnitude in the positive side (up to 103 - 104) as it can be seen in Figure 4.4.
Over those regions, the models cannot make as accurate predictions.

However, it is easier to analyze the errors’ outcome by looking at the median from
those as the outliers are mitigated. We can see that we always stay at the 10−1 error
level with a pretty decent confidence interval. For correlators that cross zero such as
I12, we can still see an increase to the percent level around those regions31. Interestingly,
we can see that for all correlators and the power spectrum, the error tends to increase
as we also increase the k-bins.

4.3 Outlier cosmologies

In Figures 4.10 and 4.11 we plot the correlation between the top 100 cosmologies with
the most error (outliers) to see whether this anomalies are caused by any specific
combination of parameters32.

31This also happens for I13 (Figure B.11) and I34 (Figure B.16).
32For the complete list of figures refer to the Appendix B.3.
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Figure 4.10: Correlations between the cosmological parameters for the outliers of I11

Figure 4.11: Correlations between the cosmological parameters for the outliers of I12
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Here we include two plots from two very different cosmologies, I11 which does not
have extreme outliers (Figure 4.10) and I12 that contains a few of them (Figure 4.11)
and as we can see, the distribution is pretty uniform so no conclusions can be extracted
from this. We can conclude that outliers are not directly related to the parameters’
combinations.

4.4 Timings

4.4.1 Cosmology generation

The generation of the cosmologies with CAMB was done in batches of 2500 cosmologies
and took 3000 seconds on average. This equates to 1.2 seconds per power spectrum.
Furthermore, if at some point in the future the model needs to be updated with more
data (e.g., new cosmological parameters, different ranges...), new cosmologies can be
generated fairly quick.

4.4.2 FFTLog execution

The generation of the correlators was done in batches of 2500 cosmologies and took
1500 seconds on average for the pre-computation of the cosmologies’ shared values and
900 seconds for the actual integration. This roughly equates to a second per cosmology.
This latter fact also helps in generating new extended or updated ground-truth data as
mentioned at the end of the previous section.

4.4.3 Training pipeline

Each one of the models took an average of 2022.15 seconds for training, 22.57 sec-
onds for caching and 266 ms for cached validation (1750 training and 2500 validation
cosmologies, GPU, no PyKeOps).

4.4.4 Inference pipeline

Loading and setting up the cache for all models takes an average 20.28 seconds in all
cases. Once loaded, the inference for the single cosmology case takes an average of 3.7
seconds taking into account model inference, predictions’ saving and splining. On the
other hand, the results for the random parallel generation are showed in Table 4.1.

Emulating effective field theory predictions for galaxy alignments
Ignacio Montes-Álvarez

38



4 Results

Total cosmologies Batch size Runtime (s) Runtime/cosmology (ms)

8192

2048 39 4.8
4096 29 3.5

1,048,576

8192 3300 3.1
65,536 2400 2.3

Table 4.1: Parallel inference times

The timings on the table, again, as the single cosmology case, consider the same extra
processes aside from inference. However, a one time computation needs to be added,
which involves the batching of the data and causes some overhead. The smaller case
totals to roughly one second whereas the 106 case totals 120 seconds.

4.4.5 Time analysis

As a baseline we should take the timings for both generating the correlators with
FFTLog (Section 4.4.2) and the power spectra with CAMB (Section 4.4.1), both of them
being in the 103 ms average. We can see from 4.4.3 that each model takes around 266

ms per model for 2500 cosmologies, yet, if we look at the timings for a single cosmology
prediction in Section 4.4.4 we see that the average run is 3.7 seconds which equates
again to the above-mentioned value for each model. The main takeaway here is that
the whole setup of this framework revolves around the idea of parallel inference and
that is why the timings for just one cosmology versus multiple of them at the same
time take the same amount of time. The explanation behind this is how hardware
computations are performed on the GPU as it does not matter whether we fit just a
single value or several: as long as they fit on the memory bus, they will be calculated
in parallel and the timing will be the same.

From this single cosmology example we can still draw some insights, it is slower than
FTTLog for the correlators as our approach takes 3.5 seconds for all the correlators
instead of a second, however, it is an order of magnitude decrease in runtime for the
power spectrum model.

Where the emulator shines is when it comes to distributed inference, from Table 4.1
we can see that the whole inference process is decreased in several orders of magnitude,
taking just a few ms on average per cosmology: this includes the emulation of the
13 correlators plus the power spectrum. Some preliminary experiments show that
increasing the size of the data that is passed in parallel to the models (bath size)
decreases the runtime. This latter fact is extremely dependent of the hardware available
as it is directly correlated with the amount of memory available.
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5 Discussion

As mentioned in Section 2.3 there are a lot of different products with different emula-
tion objectives and architectures. It is worth to highlight COMET as it is the emulator
that our framework resembles the most: specifically, this emulator is able to achieve a
single prediction runtime of 10ms using the GPy [34] library. However, our approach
is the first of its kind and creates the baseline for intrinsic alignments studies under
the EFT theory. We have created a fast-inference framework that is able to estimate the
components of the EFT theory without sacrificing accuracy.

However, the main limitation of the emulator would come if it was to be used as part
of a MCMC, since the single prediction speed is not too good, sequential execution for
long chains would be not be efficient. However, there are some samplers that already
implement distributed calls on the CPU [47] which could allow to increase the number
of parallel emulations done with the models.

Furthermore, the framework is heavily focused on GPU for inference, so not having
this hardware available would impact performance negatively33.

33No further experiments were conducted to evaluate the CPU performance.
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6 Conclusions and future work

6.1 Summary

We have created a novel emulator for the shape correlations of intrinsic alignments un-
der the EFT theory by implementing a Python package for Gaussian Process emulation
with GPU support using the GPyTorch library. We managed to accurately predict the
EFT correlators along the power spectrum with relative errors in the sub-percent order.
Sequential execution for a single cosmology takes a few seconds while in the parallel
case this is reduced to the order of just milliseconds.

6.2 Code availability

The implementation was organized by using GIT version control and it can be found
at https://git.science.uu.nl/uucosmo/ima-eftemulator34.

The code will be publicly released upon publication of the research and the aim is to
fully integrate it in CCL’s [20] pipeline.

6.3 Future work

The majority of suggested improvements are mentioned in the repository. However, it
is worth to remark some of them here:

1. Evaluate the feasibility and relative performance in terms of accuracy versus
speed trade-off of Variational/Approximate Gaussian Processes. Some examples
include Scalable Variational Gaussian Process (SVGP) [39], SVGP plus Contour
Integral Quadrature (CIQ) [60], Spare Gaussian Process Regression (SGPR) [70]
or Structured Kernel Interpolation (SKI/KISS) [76].

2. Same as in the previous point but for Neural Network approaches by using Multi-
layer Peceptrons (MLPs) or Generative Adversarial Networks (GANs). There has
been some efforts in developing emulators using the former architecture [2, 3].

3. Increase the speed of the single cosmology prediction routine (as COMET [30]
does using GPy) or integrate the parallel one into a MCMC distributed sampler.

34For requesting access contact the author at i.montesalvarez@students.uu.nl
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4. Replace the Mathematica integration routine and efficiently implement it in Python
so there is no need for an external intermediary outside of the package. An option
for this would be to implement CUBA with Cuhre [35] using symbolic Python.
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A Glossary

Arc-second Angular measurement equal to 1
3600 of a degree.

Astronomical unit Abbreviated as AU, is the distance between the Earth and the Sun
and equivalent to approximately 1.5×108 kilometers.

Cosmic web How galaxies organize to form the large-scale structure of the Universe.

Figure A.1: A patch of 2 billion light-years on a side representing the galaxy distri-
bution (measured at z = 0) from the Millennium Simulation Project. The
purple color represent dark matter voids whereas the yellow colors repre-
sent galaxies which tend to cluster together due to gravity forming clumps
and running towards filaments surrounded by the aforementioned voids.

Source: https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/

Dark matter halo Basic unit of cosmological structure which contains gravitationally
bounded (baryonic) matter. A single halo, can contain multiple subhaloes. Models
such as ΛCDM propose that this haloes can contain galaxies. Despite not being
directly observable, it is thought that they exist because their interaction with the
galaxies embedded in them, causing effect such as gravitational lensing or motion
changes (e.g., angular momentum).
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Doppler effect Or Doppler shift, is the change in frequency of a wave with respect of
an observer who is moving relative to the source (Figure A.2). It is given by the
following equation:

fobs =
fe

1− ve
c
→ fobs = fe

√
1− ve

c
1 + ve

c

Where fobs and fe correspond to the observed and emitted frequencies respectively,
ve is the velocity of the source and c is the propagation speed of the waves in the
medium. The above-mentioned equation can be equivalently expressed in terms
of wavelength (λ):

λobs = λe

√
1 + ve

c
1− ve

c
(A.1)

Figure A.2: Schematic representation of the Doppler effect as perceived by an observer
if the source is static or moving (away/towards) from the observer’s refer-
ence system. For the static case: λobs = λe, for the away: λobs > λe and for
the towards: λobs < λe.

Feynman diagram Pictorial representation of those mathematical expressions that de-
scribe the behavior and interaction of subatomic particles. They are used to model
the perturbative contributions to a field. They are graphs that consist of points
(vertices) and lines attached to those (edges). There are several interpretations
and applications that one can make out of such a representation, one of them
corresponds to the loop order. In the scope of our research, we are interested in
one-loop diagrams which are no more that connected unicyclic diagrams; one of
the most common examples is the "triangle diagram" (Figure A.3).
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Figure A.3: An example of a one-loop Feynman diagram.

The general approach to compute this diagrams is by using loop integrals.

Gamma function Denoted by Γ(n) is the generalization of the factorial function to com-
plex numbers. Is defined for all positive integers as per Γ(n) = (n− 1)! and for
all complex numbers (except the negative integers) as:

Γ(n) =
∫ ∞

0
tz−1e−tdt

Latin Hypercube Sampling Or LHS, is a quasi-random sampling method that produces
samples that depict the underlying distribution of the data more accurately that
a classic random sampling method. This enables to use smaller sample sizes as
the data is evenly distributed across all dimensions. To sample a distribution
of N variables, the range of each of them is divided into M (needed as input)
equally probable intervals. Each sample taken is placed on the only one possible
axis-aligned hyperplane containing it (Figure A.4).
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Figure A.4: Schematic representation of how samples (red dots) are taken for N = 2
and M = 5 where we can see that the distribution space has been divided
into 5x5 equally probable regions. Note that none of the samples share
the same hyper-plane, i.e., for this specific 2D example, no row-column
intersection.

Light-year Distance that the light travels in one year, approximately 9.46×1012 kilome-
tres or 0.3 pc.

Loop integral Integral used to evaluate Feynman diagrams with one or more loops
and integrated over the internal momenta. Usually computationally intensive to
calculated, specially for loop values greater than one.

Modified Bessel function Canonical solution of Bessel’s differential equation which in
this case is valid for complex arguments (even for a purely imaginary argument).
It is defined as follows:

Kα(x) =
π

2
I−α(x)− Iα(x)

sin(απ)

Where Iα is defined as:

Iα(x) =
∞

∑
m=0

1
m!Γ(m + α + 1)

(
x
2
)2m+α

Parallax It is the observed displacement of an object caused by the change of the
observers’ system of reference. The distance between two objects can be calculated
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using trigonometry (Figure A.5). This method cannot be applied to extremely
distant objects since the parallax angle would be too small, this meaning that
cannot be applied in our cosmological study.

tan(α) =
1AU

d
→ d =

1AU
tan(α)

(A.2)

Figure A.5: Schematic representation on how to measure stellar parallax (from Earth).

Parsec Abbreviated as pc, Distance to an object whose parallax angle (α) is one arcsec-
ond (1”). It is equivalent to 2.05×105AU or 3.26 light-years. In equation (A.2):

d =
1AU

1”
= 1pc

Redshift Abbreviated as z, is an application of the Doppler effect to cosmology, in
which the waves are light (thus the propagation speed c will be equal to the
speed of light, approximately 3×105 kilometers per second) and the sources are
astronomical objects (Figure A.6). It relies on the decomposition of light spectrum,
meaning that sources that are moving away from us will have their spectra shifted
to the red (and vice versa to the blue). The magnitude of the velocity of the source
is proportional to the shift (for small velocities when compared to that of the
light):

1 + z =
λobs − λe

λe

And applying (A.1) we get the proportionality:
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1 + z =

√
1 + ve

c
1− ve

c
→ ve ≈ cz

Figure A.6: Schematic representation of the redshift effect. When a source emits a wave
of light with a given wavelength, λ(emission), it travels through spacetime
until it reaches us at T(now). The received wave, λ(now), has been shifted
towards the red as the source is moving away from us. The strength
or degree of this change in amplitude of the wavelength is given by the
redshift (z) which increases as the velocity of the source does. Note that
λ(now) > λ(emission).
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B.1 Relative errors of training

Figure B.1: Absolute relative errors for I13

Figure B.2: Absolute relative errors for I22
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Figure B.3: Absolute relative errors for I23

Figure B.4: Absolute relative errors for I24

Figure B.5: Absolute relative errors for I33
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Figure B.6: Absolute relative errors for I34

Figure B.7: Absolute relative errors for I44

Figure B.8: Absolute relative errors for I55
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Figure B.9: Absolute relative errors for J1

Figure B.10: Absolute relative errors for J2
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B.2 Median relative errors of training

Figure B.11: Median absolute relative error for I13

Figure B.12: Median absolute relative error for I22
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Figure B.13: Median absolute relative error for I23

Figure B.14: Median absolute relative error for I24
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Figure B.15: Median absolute relative error for I33

Figure B.16: Median absolute relative error for I34
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Figure B.17: Median absolute relative error for I44

Figure B.18: Median absolute relative error for I55
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Figure B.19: Median absolute relative error for J1

Figure B.20: Median absolute relative error for J2
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B.3 Outlier cosmologies

Figure B.21: Correlations between the cosmological parameters for the outliers of I13

Figure B.22: Correlations between the cosmological parameters for the outliers of I22
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Figure B.23: Correlations between the cosmological parameters for the outliers of I23

Figure B.24: Correlations between the cosmological parameters for the outliers of I24
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Figure B.25: Correlations between the cosmological parameters for the outliers of I33

Figure B.26: Correlations between the cosmological parameters for the outliers of I34
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Figure B.27: Correlations between the cosmological parameters for the outliers of I44

Figure B.28: Correlations between the cosmological parameters for the outliers of I55
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Figure B.29: Correlations between the cosmological parameters for the outliers of J1

Figure B.30: Correlations between the cosmological parameters for the outliers of J2
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Figure B.31: Correlations between the cosmological parameters for the outliers of J3
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