
Utrecht University

Master’s thesis

Computing Science

Machine Learning for Referral of
Patients with Chest Pains using

Regular Care Data

Author
Martijn Jansen (6513328)

Supervision
Dr. Ad Feelders

Dr. Bram van Es

Second reader
Prof. dr. Arno Siebes

July 12, 2023

Abstract

This research uses machine learning models to predict the right care for patients
referred to the University Medical Center in Utrecht (UMCU). The right care will
be predicted using regular care data which includes blood measurements, previous
patient appointments, and referral letters. These referral letters will be text mined.
The goal is to classify patients early, to prevent expensive scans. Only patients
who have been referred to the cardiology department with chest pain symptoms
will be considered. Patients are given one or more classes, making this a multi-
label classification problem. Time series data will be constructed using patients’
history, and models using time series data will be compared to models that cannot.
As time series models, the LSTM model will be used and compared to the T-
LSTM. The addition of target replication to both models is researched. As non-
time series models, the XGBoost, SVM, and Neural Network models will be used.
After creating labels using available data, the number of labels is reduced from 30
to 9 using a novel label combination algorithm. Additionally, subgroup discovery is
performed, which was able to find a group based on one rule with an accuracy of 73%.
Overall, the time-aware LSTM does not perform better than the vanilla LSTM. The
time-series model outperforms the non-time-series models. Target replication only
gives a performance increase for the vanilla LSTM. The best-performing model, the
LSTM with target replication, has a micro F1 score of 0.62 and an AUC of 0.84.
Performance might be limited by the fact that labels had to be constructed from
scratch.

3

Contents

1 Introduction 7

2 Related work 9

3 Dataset description 11
3.1 General practitioner letters . 11
3.2 Hematology analyzers . 11
3.3 Laboratory determinations . 13
3.4 Diagnosis-Treatment-Combinations (DTC) 14
3.5 Actions . 15
3.6 Medication . 16
3.7 Measurements . 16

4 Data preprocessing 19
4.1 Treatment periods . 19
4.2 General Practitioner letter selection 20

4.2.1 Selected letters descriptives 21
4.3 Text mining GP letters . 22
4.4 Concatenation to create model inputs 23

4.4.1 Dimensionality reduction of GP letter embeddings 23
4.4.2 Combining inputs . 24

4.5 Determination of classes . 25
4.6 Merging model inputs with treatment periods 26
4.7 Preprocessing for time series models 27
4.8 Preprocessing for non-time-series models 27

5 Models 29
5.1 XGBoost . 29
5.2 Support Vector Machines . 30
5.3 Neural Networks . 32
5.4 Recurrent Neural Networks . 33

5.4.1 LSTM . 33
5.4.2 Time-Aware LSTM . 34
5.4.3 Target replication . 35

6 Hypertuning models 37
6.1 XGBoost . 37
6.2 SVM . 38
6.3 Neural Network . 39

5

Machine Learning using Regular Care Data

6.4 LSTM . 40
6.5 Time Aware LSTM . 41
6.6 Subgroup discovery . 42

7 Merging similar classes 43
7.1 Theory . 43
7.2 Used model . 44
7.3 Results . 45
7.4 Class distribution . 46

8 Results 49
8.1 XGBoost . 49
8.2 SVM . 51
8.3 Neural Network . 51
8.4 LSTM . 52
8.5 LSTM - Target replication . 53
8.6 Time-aware LSTM . 54
8.7 Time-aware LSTM - Target replication 55
8.8 Significance tests . 55
8.9 Summary of model performance . 56
8.10 Subgroup discovery . 57

9 Conclusion 59
9.1 Research questions . 59
9.2 Discussion . 60
9.3 Future research . 61
9.4 Relevance to the Computing Science Program 62

A Other results 63
A.1 LSTM without merged classes . 63

6 Chapter 0 Martijn Jansen

Chapter 1

Introduction

In the past few years, machine learning models have been implemented by many
sectors and companies [9]. Even though interest in applied machine learning is
growing in the medical sector, there have not been many examples where machine
learning is applied in the sector [47].

This research uses machine learning models to predict which kind of care a
patient needs after being referred by a General Practitioner (GP) to the University
Medical Center in Utrecht (UMCU). We restrict attention to patients who have been
referred to the cardiology department with chest pain symptoms. This symptom has
been chosen as there are many different possible diagnoses that can be the cause of
chest pain [26].

Models that provide interesting insight into a patient’s condition are called Clin-
ical Decision Systems (CDS’s) [13]. However, most CDS’s focus on one specific yes
or no question or one specific disease [38, 42, 49]. For more complex diseases, these
models tend to use expensive diagnosis tools like an MRI. This might cause patients
to be incorrectly diagnosed due to not receiving such expensive scans. There are,
however, forms of data that are less expensive and routinely measured, called regu-
lar care data. This research will use regular care data to diagnose patients without
having to receive expensive scans. If the diagnosis can be predicted accurately for
some groups of patients, patients can be diagnosed earlier in the future. This would
make healthcare cheaper as expensive tests do not have to be performed. Machine
learning is specifically well-suited for analyzing regular care data with many differ-
ent features. Machine learning models can automatically find patterns in data [5].
These patterns might be too subtle for humans to find.

In this research, treatment periods will be used to classify patients. A treatment
period of a patient is defined as the period that starts when the patient is referred to
the hospital and ends when the patient’s care demand has been met. Each of these
treatment periods will be assigned one or more classes based on the care received in
that period. As a treatment period can be given one or more classes, this research is
a multi-label classification problem. These treatment periods and their classes will
be constructed from available data. Regular care data which includes blood mea-
surements, referral letters written by the General Practitioner (GP), demographics,
and appointments are used to predict the class of a treatment period. Features will
be extracted from the GP letters using text mining. By also adding measurements
taken before referral to the hospital, a time series will be created.

To predict which hospital department will give the best care to a patient, different

7

Machine Learning using Regular Care Data

machine learning models will be used, including models that can interpret time series
data and models that cannot do so. The following non-time series models will be
used: XGBoost, Support Vector Machines, and a Neural Network. These models
will be given a summarization of the time-series features. The following time-series
models will be used: LSTM and Time-aware LSTM (T-LSTM). The T-LSTM is
an improvement on the LSTM proposed by Baytas et al [8]. The performance of
the LSTM and T-LSTM will be compared. Lastly, the LSTM and TLSTM models
will be compared to the same models with target replication [34]. Performance
is measured using the AUC and F1 scores of the model predictions. In addition to
this, subgroup discovery will be performed. Subgroup discovery is the act of forming
groups using simple rules based on a given set of inputs with classes. These rules
are based on feature values. Subgroup discovery will be performed using a decision
tree. This results in the following research questions:

RQ1 How well can machine learning models predict the necessary care for a
patient having chest pains, using regular care data?

RQ2 How well does the Time-aware LSTM perform compared to the LSTM?
RQ3 Does integrating target replication into the T-LSTM and LSTM increase

performance?
RQ4 How well do models that handle time-series data perform compared to mod-

els that do not?
RQ5 Are there any classes that can be identified using simple rules retrieved

from performing subgroup discovery?
The research is structured as follows. First, a few works related to the current

research will be discussed. After this, the used dataset will be described and pre-
processed on a per-table level. Next, the data will be processed on a global level.
After this, the used models will be discussed. The next chapter discussed in-depth
tuning of all models. Following this, the merging of similar classes will be discussed.
Then, the results will be presented. Finally, the research questions will be answered
and discussed and recommendations for future research will be made.

8 Chapter 1 Martijn Jansen

Chapter 2

Related work

In this chapter, other work related to the current research will be discussed. All
selected works are applications of machine learning in the medical industry. Fur-
thermore, the works are selected based on their similarity to the current research in
their input data and/or used models.

Lipton et al. [34] use a Recurrent Neural Network (RNN) to diagnose intensive
care unit (ICU) patients. The data used consisted of 10,401 cases, called ”episodes”.
One episode consists of an irregularly sampled time series of 13 variables. Every
episode also has zero or more (out of 128) diagnostic labels. The RNN will try to
predict these labels. As an RNN requires a fixed number of inputs, the data was
transformed into a time series with intervals of one hour. The mean is taken of
all measurements within an interval. Next, forward- and back-filling are used to
fill any intervals with no measurements. Forward- and back-filling means that if
there is an interval with no data, it will be given the data of the previous or next
interval. The paper by Lipton et al. is quite similar to the current research. The
most significant difference is the number of available samples. Where Lipton has
data in which patients are measured hourly, the patients in this research will likely
be measured a lot less frequently, as these patients are not necessarily ICU patients.

Alsheref and Gomaa [6] use blood values to classify blood diseases using 8 differ-
ent machine learning models. As input, they have the blood analysis of 668 patients,
which each contain 28 variables. They use these to try to predict one of four differ-
ent blood diseases, using 9 different machine learning techniques. For this task, the
Support Vector Machine gave the worst accuracy with only 71.20%, whereas Logit-
Boost gave the highest accuracy with 98.16%. The study is similar to the current
study in the fact that blood values are used to predict classes. However, the current
research will have many more variables, as hematology values will also be added
to the blood values. Furthermore, the research will not specifically be focused on
blood-related diseases. This research will also examine using the patient’s history
as time series data, which means different models will be tested, as opposed to the
research by Alsheref and Gomaa.

Gladding et al. [25] use hematology data to predict COVID-19, pneumonia,
urinary tract infection, and heart failure. The models were evaluated using the
AUC metric [33]. Separate models were created for each prediction goal. A boosted
decision tree was used to predict COVID-19 and pneumonia, a random forest was
used to predict urinary tract infection, and a logistic regression model was used
to predict heart failure. On average, these models returned an AUC score of 0.75

9

Machine Learning using Regular Care Data

on their validation sets. From these, urinary tract infection was the hardest to
predict with an AUC of 0.68, and COVID-19 was the easiest to predict with an
AUC of 0.8. The research by Gladding et al. is similar to the current study. The
biggest difference between the two is the fact that in this research, models will be
developed for multi-class prediction. Also, this research will examine models which
use patients’ history as time series data.

AlJame et al. [4] use routine care data to predict COVID-19. First, to impute
missing values, a K-nearest neighbors-based imputation method was used [7]. To
detect outliers, an isolation forest (iForest) was used [35]. Lastly, as the dataset
was imbalanced (with 9.9% positive and 90.1% negative COVID-19 cases) SMOTE
was used to balance the data [17]. A stacking model with two levels was used for
prediction [48]. The first level consists of three classifiers: an extra trees model, a
random forest, and a logistic regression model. The results from these three models
are used by an XGBoost model. This model achieved an AUC of 99.38%. The
research by AlJame et al. differs in a few aspects from the current study. The
current research discusses a multi-class classification problem, while AlJame et al.
discussed a binary classification problem. Also, AlJame et al. use no time series
data, while the current research aims to do so.

10 Chapter 2 Martijn Jansen

Chapter 3

Dataset description

This chapter describes the dataset and all its tables. The dataset is provided by the
University Medical Center Utrecht (UMCU). It is a subset of the Utrecht Patient
Oriented Database (UPOD), which is a large relational database with patient infor-
mation [11]. The dataset contains data of patients who have been referred to the
hospital by a General Practitioner (GP) through a digital GP letter. These letters
are also called ”ZorgDomein” letters. The UMCU started to store these digitally
in 2013. Therefore, we selected all patients that have been referred by the GP in
2013 or later. Another requirement for the group of patients is that they have been
referred to the cardiology department for chest complaints.

3.1 General practitioner letters

The first table consists of all retrieved General Practitioner (GP) referral letters.
This is primarily unstructured data, as a GP is not required to fill in a structured
form. Instead, a free text input field is provided to them.

Patient id Date Sex Age Text

p1 d1 1 40 . . .

p2 d2 0 45 . . .

p3 d3 1 55 . . .

Table 3.1: Structure of the GP letter data

Table 3.1 shows the structure of the data. Accompanying the free text comes
some structured data. The date on which the letter is sent, and the patient’s age
and sex, are included in the table.

3.2 Hematology analyzers

The next table consists of values taken from hematology analyzers by Abbott. Hema-
tology analyzers are able to provide a Complete Blood Count (CBC), which is a set
of features giving information about the tested blood [20, 24]. The features pro-
duced by the analyzers are sent to the GLIMS software. GLIMS adds more features
and gives warnings if the software thinks a determination is invalid.

11

Machine Learning using Regular Care Data

These features are useful for practitioners when examining patients [20]. If any
features change, this might be an indicator that the patient suffers from some kind
of disease. Even though hematology analyzers have many applications like the afore-
mentioned one, due to insufficient knowledge they are not used to their potential
[19].

In the period from 2005 until now, two different hematology analyzers have been
used: Saphire and Alinity. In 2020, the hospital started to use Alinity. The tables of
both analyzers have a few groups of variables. Of these groups, the ”c b” variables
are the actual features. An issue with the different hematology analyzers is that
they do not measure the exact same ”c b” features.

Saphire

49 42

Alinity

5

Figure 3.1: Venn diagram of how many features are measured by each analyzer

Figure 3.1 shows how many features are exclusive to each analyzer and how many
features are measured by both. The figure shows that there are 49 features unique
to Saphire, while there are 5 unique to Alinity. There is an overlap of 42 features.

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

0

2,000

4,000

6,000 Saphire
Alinity

Figure 3.2: The number of determinations per hematology analyzer per year

Figure 3.2 shows how many determinations were taken using each analyzer from
2005 to 2023. The usage of Saphire is slowly being phased out. Therefore, it might
not be a good idea to choose only the Saphire data, even though it has a lot more
features. Hence, both the Saphire and Alinity data will be used. As 54 imputed
features will probably create a lot of noise, only the 42 features which are measured
by both Saphire and Alinity will be used.

Before merging the tables, rows containing errors will be removed. Another
group of variables in the tables are the ”c s” variables. These are control variables
that return 2 if anything has gone wrong with measuring the blood. Therefore, all
rows which contain a ”c s” variable with the value 2 are dropped.

12 Chapter 3 Martijn Jansen

Machine Learning using Regular Care Data

Date Patient id Analyzer Saphire ∩ Alinity: x1, x2 . . . x42

d1 p1 0 . . .

d2 p1 0 . . .

d3 p2 1 . . .

Table 3.2: Structure of the hematology analyzer data

The Alinity and Saphire tables are merged vertically with only the c b variables
that are measured by both analyzers (Saphire ∩ Alinity), the date and patient id
are taken. An indicator variable is added where Saphire rows are given a 0 and
Alinity rows are given a 1. The resulting dataset is structured as shown in table
3.2. A patient can have different determinations for different dates, or possibly no
determinations at all. For each date and patient id combination in the dataset,
variables (x1, x2, . . . , x42) are given.

Including the patient id, date, and analyzer columns, there are 45 columns in the
dataset. There are 82,479 rows in the merged hematology analyzer table. Of these
rows, 3,987 are dropped as these have 41 or more missing columns. This leaves
78,492 rows. One of the advantages of data taken from a hematology analyzer
is that it is very complete. This is because all variables are always tested in a
single determination, whereas in laboratory determinations a doctor decides which
variables will be tested [41]. This is also shown by counting the missingness in the
table, which is 145,026. This means there is a missingness of only 145,026

78,492·45 ·100 = 4.01
percent.

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

0

10

20

Figure 3.3: Missingness percentage in the merged hematology analyzer data from
2005 to 2023

Figure 3.3 shows the missingness percentage (missing
missing+not missing

· 100) per year.
From 2005 till 2009 11 columns were missing in all rows, so it seems these have been
added somewhere in 2010.

3.3 Laboratory determinations

The next set of features is taken from laboratory determinations. Just like the hema-
tology analyzer data, the dataset consists of determinations for different patients on
different dates. However, as can be seen in table 3.3, every variable has its own
row. One determination consists of multiple features measured in a patient’s blood.
Which features, and how many are measured, differs per determination. In table
3.3, the first two rows have the same det id. This means that both rows belong to

Chapter 3 Martijn Jansen 13

Machine Learning using Regular Care Data

Det id Date Patient id Variable name Variable value Lab result ok

1 d1 p1 Iron . . . 1

1 d1 p1 Urea . . . 1

2 d3 p2 Phosphate . . . 0

Table 3.3: Structure of the laboratory determinations data

the same determination. As both rows belong to the same determination, they have
the same date and belong to the same patient.

Before looking at the missingness, a few preprocessing steps must be performed
on the table. Each row has the lab result ok variable. If this variable is 0, it means
that the row is invalid. Therefore, all rows with lab result ok = 0 are removed. The
variable name column contains variable names in two different formats. These will
be mapped to the same format by two mappings that were provided with the dataset:
(format1 → uniform format) and (format2 → uniform format)). These mappings
have been used on the variable name column in the table. After this, all rows with
NaN values were dropped. Lastly, the table is pivoted with det id as the index, the
names of variable name as columns, and Variable value as values for these columns.
After these steps, a pivoted table with 182,791 rows and 1,590 columns is returned.

Date Patient id x1, x2 . . . x19

d1 p1 . . .

d2 p1 . . .

d3 p2 . . .

Table 3.4: Structure of the preprocessed lab determinations table

This means that there are 1,590 unique features in the laboratory determinations
table. There are 290,637,690 missing values in this table, meaning that there is a
missingness of 290,637,690

182,791·1,590 · 100 = 99.48%. To reduce missingness, determinations
taken on the same day from the same patient are merged. This means that if on
the same day, there is a determination taken for iron and a separate one for urea,
these will be merged as one determination. If there are two determinations on the
same day for the same patient that measure one or more of the same features, the
mean is taken. This reduced the number of rows to 115,054, the number of missing
values to 181,546,483, and the missingness to 181,546,483

115,054·1,590 · 100 = 99.24%. As most

features rarely occur, only the ones that occur in at least 20% of the determinations
are kept. This leaves 19 features. Figure 3.4 shows the structure of the table after
these preprocessing steps.

3.4 Diagnosis-Treatment-Combinations (DTC)

The next table consists of Diagnosis-Treatment-Combinations (DTCs). Table 3.5
shows the structure of this table. For some interval i = (Date, End date) and for
some patient a, a diagnosis code is given together with the department in which the
diagnosis code was assigned. There are 227,722 rows in the table and 30 different
departments.

14 Chapter 3 Martijn Jansen

Machine Learning using Regular Care Data

Date End date Patient id Diagnosis code Department

d1 d4 p1 . . . Cardiology

d2 d5 p1 . . . Radiology

d3 d6 p2 . . . Cardiology

Table 3.5: Structure of the Diagnoses-Treatment-Combination’s (DTC’s). For every
row, Date < End date

C
ard

iology

IM P
M

N
eu
rology

S
u
rgery

O
p
h
th
alm

ology

G
H

D
erm

atology

R
evalid

ation

O
torh

in
olary

n
gology

2

4

6

·104

Figure 3.4: Frequency of the ten most frequent departments in the DTC table. Here,
IM stands for Internal Medicine, PM stands for pulmonary Medicine, GH stands for
Gastroenterology and Hepatology

Figure 3.4 shows the frequency of the ten most frequent departments in the DTC
table. The cardiology department occurs the most, followed by Internal Medicine.

3.5 Actions

Patient id Date Description Type

p1 d1 Pacemaker Operative

p2 d2 Repeat consultation Consultation

p3 d3 E.C.G E.C.G

Table 3.6: Structure of the actions table

Table 3.6 shows the structure of the actions table. It features any kind of ”action”
performed on a patient For example, consultations, medical tests like an ECG or
MRI, and any operative actions are recorded here.

Chapter 3 Martijn Jansen 15

Machine Learning using Regular Care Data

The actions table will be split up in two: one without operative actions and one
with only operative actions.

3.6 Medication

Patient id Start date Stop date ATC code Dose If necessary

p1 d1 d4 C01AA04 2 1

p2 d2 d5 C10AA04 0 1

p3 d3 NaN G10ZZ05 5 0

Table 3.7: Structure of the medications table

Table 3.7 shows the structure of the medications table. Here, there is a start
and stop date for every medication taken. The ATC code tells which category a
medicine belongs to [30]. It is a code consisting of a combination of seven digits
and letters. Each digit or letter further specifies the category a medication is in.
For example, if the code starts with C the medication is related to cardiovascular
diseases. The dose column tells how much of the medication needs to be taken every
day. If the dose is 0 this says that it’s optional. Similarly, the if necessary column is
0 if the medication needs to be taken and 1 if it can be taken whenever the patient
needs it. The medication table has 490,816 rows.

3.7 Measurements

Session id Date Patient id Variable name Variable value

1 d1 p1 Weight . . .

1 d1 p1 Height . . .

Table 3.8: Structure of the measurement table

The measurements table features a variety of measurements like height, weight,
BMI, and heart rate. As shown in table 3.8, it is structured like the laboratory
determinations table, as every variable in one measurement is given its own row.

This table will be split into two tables. The first table, measurements1 will
feature height, weight, and BMI. So, the rows where ”variable name” is not weight,
height or BMI are dropped. After this, the table is pivoted with session id as
the index, variable name as the columns, and variable value as the values of these
columns. This leaves 35,515 rows. Here, weight is missing in only 684 rows, a
missingness of 684

35,515
·100 = 1.92%, and height is missing in 14,279 rows, a missingness

of 14,279
49,169

= 40.20%. BMI is imputed whenever it is NaN and height and weight are
both available using formula 3.1.

BMI =
weight

(height
100

)2
(3.1)

16 Chapter 3 Martijn Jansen

Machine Learning using Regular Care Data

The second table, measurements2, will feature all other features like heart rate
and blood pressure. These will be kept separate from the other table as weight,
height, and BMI are less likely to change over time than a feature like heart rate.
This table will be preprocessed similarly. First, all rows where ”variable name” is
height, weight, or BMI are dropped. After this, the table is pivoted with session id
as the index, variable name as the columns, and variable value as the values of these
columns. Then, only the features that occur in at least 20% of the rows are kept.
This leaves nine features.

Chapter 3 Martijn Jansen 17

Chapter 4

Data preprocessing

In this chapter, the data will be preprocessed into a set of inputs and labels.

4.1 Treatment periods

For a few purposes which will be discussed later, primarily label creation, it is useful
to know the periods in which a patient is being treated. Here, a treatment period is
a period in which a patient regularly visits the hospital. A treatment period begins
when a patient is referred to the hospital with a health problem and ends when a
patient has been treated. As these treatment periods are not recorded, estimated
periods will be constructed using most of the available data. The treatment periods
will be constructed by making groups of hospital activities that take place close to
each other.

The process starts by creating a set of events T . This set of events is defined
as the collection of the GP letter (GPL), Hematology Analyzer (HA), Laboratory
Determinations (LD), Diagnosis-Treatment-Combinations (DTC), Actions (A), and
Operations (OP) tables per patient. So:

T = GPL ∪ HA ∪ LD ∪DTC ∪ A ∪OP

Set Tp is a subset of T , with specifically only the events of patient p. The goal
is to split each Tp into subsets τp1 . . . τpn such that each set of events τpi consists of
the events happening in one treatment period. Each item t ∈ τpi has two attributes:
t.type tells which of the sets of events t originally came from and t.date tells the
date of t. The subsets are created as follows. First, Tp is sorted on date in ascending
order. Let t1 be the element with the earliest date in Tp. The element is added to
the first set of p: τp1 = {t1}. After this, all elements are looped over in order. If the
distance in days between tj and tj−1 is smaller or equal to M(tj−1, tj), tj is added
to the set tj−1 is in. M(x, y) is a function that takes two events and returns how
many days can be between x and y to add y to the same set as x. It is defined as
follows:

M(x, y) =


180 If x.date < y.date ∧ x.type = GPL

180 If x.date < y.date ∧ y.type = OP

60 Otherwise

19

Machine Learning using Regular Care Data

Let D(x, y) be a function that returns the difference between the date of item x
and y in days. Also, let tj−1 be an element of τpi . Then, if D(tj−1, tj) ≤ M(tj−1, tj):
τpi = tj ∪ τpi . Otherwise, a new set will be defined: τpi+1

= {tj}. This has to be
done for all tj ∈ Tp and for all patients p.

t1

τp1

t2 t3

τp2

t4 t5 t6 t7 t8 . . .

Figure 4.1: Resulting timeline

Figure 4.1 shows an example. Here, the first item of τp1 took place on t1 and the
last item took place on t3. The distance in days between t3 and t4 was bigger than
M(t2, t3), which caused a new set to be defined.

Patient id Start date End date

p1 04-06-2021 04-08-2021

p1 01-02-2022 09-03-2022

p2 14-06-2009 04-08-2009

Table 4.1: Treatment periods structure, where Start date ≤ End date

Then, for each τpi the first (also earliest) and the last (also latest) elements will
be taken. The first element will be the start date of the period and the last element
will be the end date of the period. The periods are stored as in table 4.1.

4.2 General Practitioner letter selection

In this section, all GP letters that have at least d hematology determinations occur-
ring before the end of their treatment period will be selected as inputs. Here, the
selection is based on how much hematology data there is of a patient instead of lab
data because the hematology data has less missingness.

Each GP letter G of patient p will be considered as candidate input. First, the
treatment period τpi in which G falls will be taken. Let li be the date of the latest
element in τpi . Table HG contains all rows in the hematology table with patient p
and before or at date li will be taken. If |HG| ≥ d, G will be an input, otherwise it
is dropped.

Figure 4.2 shows the number of letters for which |HG| ≥ d. The higher d gets,
the fewer letters satisfy the condition. To strike a balance between keeping as many
letters as possible and being able to train a time series model, d = 4 is chosen. This
leaves 2,717 letters, which will be used as input. For the time series models, d = 20
was chosen as an upper bound. This is the highest number for which 1000 letters
still had determinations. Every letter for which |HG| < 20 will be zero-padded.
meaning that the remaining rows will be filled with zeroes.

20 Chapter 4 Martijn Jansen

Machine Learning using Regular Care Data

0 2 4 6 8 10 12 14 16 18 20 22

2,000

4,000

d required hematology determinations

N
u
m
b
er

of
le
tt
er
s

Figure 4.2: Number of letters that have d hematology determinations occurring
before the end of the treatment period

4.2.1 Selected letters descriptives

This section shows a few descriptive statistics of the patients of the chosen 2,717
letters.

Male Female Both

Mean age 65.66 64.74 65.19

Number of patients 1,341 1,376 2,717

Table 4.2: Mean age and number of patients by gender

Table 4.2 shows the mean age of all patients separated by gender. It seems males
are a bit older than females. There is almost a fifty-fifty split in gender, there are
only 35 more females.

20 30 40 50 60 70 80 90 100

0

20

40

60

80

Age

N
u
m
b
er

of
G
P
le
tt
er
s

Figure 4.3: Number of included GP letters per age of patients at the time the letter
was sent

Figure 4.3 shows how many of the selected patients are a certain age. The figure
shows that most patients are about 60 to 80 years old. It makes sense that there are
a relatively more younger people, given that the older someone is, the more chance
that person has to have had enough hematology analyzer values.

Figure 4.4 shows the number of selected GP letters per year. As the hospital
started to use ZorgDomein in 2013, it makes sense that in the following years the
number of GP letters keep rising. This stabilizes starting with 2016.

Chapter 4 Martijn Jansen 21

Machine Learning using Regular Care Data

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0

100

200

300

400

Year

N
u
m
b
er

of
G
P
le
tt
er
s

Figure 4.4: Number of included GP letters per year

4.3 Text mining GP letters

As section 3.1 shows, the GP letters mostly consist of unstructured data. As unstruc-
tured data cannot be put into machine learning models, it has to be transformed into
structured data first. To do this, the Medical Concept Annotation Toolkit (Med-
CAT) will be used [31]. MedCAT is a machine learning algorithm that is able to
recognize concepts in unstructured texts. It is chosen as it is specifically developed
for the medical field and as there is support for the Dutch language [22]. To recog-
nize those concepts, the algorithm needs a concept database. In this case, such a
database consists of Concept Unique Identifiers (CUI) and words that describe them
[36]. A CUI is simply an identifier that starts with a C and is followed by seven
digits. This identifier then refers to a specific disease or another kind of medical
concept. The MedCAT algorithm uses the words that describe CUI’s to annotate
texts with said CUI’s. The algorithm can annotate these texts without having any
predefined labels, meaning that it is unsupervised. As the provided GP letters are
all in Dutch, a model using MedCAT, trained on a Dutch corpus will be used [22].
This model extends MedCAT by including negation detection. Whereas MedCAT
only returns CUI’s that the algorithm thinks occur in the text, the negation de-
tection model provides a score between -1 and 1 for each CUI. Here, -1 means the
model is very certain that some CUI does not apply to the patient and 1 means the
opposite.

The negation detection model was trained on the 2,717 letters selected in 4.2.
After this, all CUIs with their score (ranging from −1 to 1) were extracted from each
text. On all letters together, 52 unique CUIs were found. A table was constructed
with 2,717 rows (one for each letter) and 52 columns (one for each CUI). For each
letter, the CUI columns are given values as returned by the negation detection
model. If the model did not return any value for that specific letter and CUI, a
score of 0 was given.

As some CUIs might be similar in meaning, a technique similar to word2vec,
cui2vec, was used [10]. The technique is able to learn word embeddings of medical
concepts, specifically CUI’s. With word embeddings, the meaning of a word is
distributed over multiple components. In this research, the pre-trained embeddings
provided by Beam et al. [10] are used. These pre-trained embeddings contain
108,477 medical concepts, expressed in vectors of 500 components.

For every CUI, their embedding will be taken. Then, per GP letter, the mean of
the embeddings will be taken, weighted by score. However, of the 52 unique CUIs,

22 Chapter 4 Martijn Jansen

Machine Learning using Regular Care Data

there are 9 that did not have pre-trained embeddings. These will be left as is. Let
E be the set of all pre-trained embeddings and M be the set of all CUIs mined by
the MedCAT negation detection algorithm. Then C = E ∩M is the set of all CUIs,
mined by the algorithm, that have an embedding. Let Slc be the score given at
letter l to CUI c and let Bc be the embedding vector of CUI c. Then the embedding
Dl based on all CUI’s in C of GP letter l is defined as:

Dl =

 |C|∑
c=1

Slc

−1
|C|∑
c=1

SlcBc

Then Dl is concatenated with all scores of the CUI’s that do not have an em-
bedding (set E \M), making for a vector embedding with size 509.

Patient id Date Sex Age Dl1 , . . . Dl500 CUIl1 , . . . CUIl9
p1 d1 1 40

p2 d2 0 45

p3 d3 1 55

Table 4.3: Structure of the GP letters table after text mining. Here, l stands for
which GP letter and differs in every row

This vector embedding is merged with the GP letter table, which structure is
shown in table 3.1, returning the table as shown in table 4.3. In this structure,
every row has a weighted embedding of the CUI’s in C, denoted as Dl1 , . . . Dl500 ,
in addition to the scores returned by the MedCAT negation algorithm of the CUI’s
that do not have a pre-trained embedding, denoted as CUIl1 , . . . CUIl9 .

4.4 Concatenation to create model inputs

In this section, the final inputs will be created by merging most of the previously
explained tables. The process starts by taking the GP letter table after preprocess-
ing, as defined in section 4.3. Afterward, the data is split into a training set and a
testing set with a 0.75/0.25 split.

4.4.1 Dimensionality reduction of GP letter embeddings

The pre-trained embeddings used in section 4.3 to define the GP embeddings are
supposed to be able to differentiate between 108,477 CUI’s. As the MedCAT al-
gorithm only found 43 CUI’s, it seems reasonable that a large number of the 500
components in their embedding vectors are unnecessary. Thus, it seems reason-
able to assume that dimensionality reduction could work quite well. So, Principal
Component Analysis (PCA) [15] will be applied to the 509-dimensional vector em-
beddings. First, to scale the data, the sklearn.preprocessing.StandardScaler

function in Python is used. This function is first fitted on the training set. Denote
the resulting matrix by X. The function calculates the mean X̄f and standard de-
viation σf for each feature f of X separately [43]. After this, each value of a dataset
X is transformed as follows:

Chapter 4 Martijn Jansen 23

Machine Learning using Regular Care Data

X ′
if =

Xif − X̄f

σf

∀i ∈ {1, . . . , N} ∀f ∈ {1, . . . , F}

Here, N is the number of inputs in X, and F is the number of features in X.
After the scaling function is fitted on the training set, the train and test set are both
transformed.

0 5 10 15 20 25

40

60

80

100

PCA dimensions

%
va
ri
an

ce
ex
p
la
in
ed

Figure 4.5: Percentage variance explained plotted against dimensions used for PCA
for the GP embeddings

Next, the sklearn.decomposition.PCA function is used to perform the Prin-
cipal Component Analysis (PCA). The PCA function is fitted on the training set
after which both the training and testing set are transformed. Figure 4.5 shows how
much variance is explained for each number of dimensions used in PCA. The vari-
ance explained is calculated by summing the explained variance of all components.
From this, 17 dimensions are chosen as this is the smallest number of dimensions
that has more than 95% variance explained, with 95.61% explained variance.

4.4.2 Combining inputs

In this section, most of the previously described tables will be combined into input
sets. The steps described in this section will be performed on both the training and
testing sets. First, each GP letter will be matched with the treatment period it is
in. Then, the table and the hematology analyzer table are joined on patient id. All
rows for which the date from the hematology table is later than the end date of
the treatment period will be dropped. For each of the rows, rows from the labo-
ratory determinations table and the measurements table for the same patient will
be searched. The rows which are the nearest in date to the date on which the
row’s hematology determination has been taken will be selected. Note that, as de-
fined in section 3.7, the measurements table is split into measurments1, with height,
weight, and BMI, and measurements2, with the other variables. The laboratory de-
terminations and measurements2 rows have to be within 60 days of the date of the
hematology measurement of the current row, while the measurements1 rows have to
be within 5 years, as height, weight, and BMI do not change that much.

24 Chapter 4 Martijn Jansen

Machine Learning using Regular Care Data

4.5 Determination of classes

To be able to predict the treatment a patient will receive, each input will need one or
more classes assigned to them. These classes have to be created from available data
and will be based on what treatment a patient has received. To create these, the
treatment periods as described in section 4.1 will be used. Each treatment period will
get its own labels, based on what happens in a period. For this research, a necessary
treatment period is defined as one in which a patient has received medication and/
or an operation. To only keep medication that is given as treatment, the medication
table will be filtered. Rows that abide by the rules defined in formula 4.1 and 4.2
will be kept.

(D(MEnd date,MStart date) > 15) ∨MEnd date = NaN (4.1)

MDose > 0 ∧MIf necessary ̸= 1 (4.2)

Here, D(x, y) returns the distance in days between x and y. So the first rule,
shown in formula 4.1, requires a medication to have been taken for at least 16 days
or that the End date is not available. If the End date is not available, it is assumed
that the patient is still taking the medicine. All rows also have to abide by the rule
shown in formula 4.2. This rule requires each medication row to have at least a dose
of 1, and it requires If necessary to not be 1.

If a patient has not received any medication/ or an operation, they will be
given the label ”none”. In essence, the ”none” label means that someone has been
examined at the hospital but did not receive any treatment. The patients that have
received medication or an operation will be given the label of the department they
were treated at. As the hospital letters and DTC tables are the only tables that
directly mention a department, the department that occurs most in the rows that
occur in the treatment period will be selected as the label.

So, this would mean that every treatment period gets the department they were
treated at as a label or ”None”. All patients in this research are initially referred to
the cardiology department. As it makes sense that if patients come into a certain
department, they are treated at that department, it is likely that most of the patients
have been treated at the cardiology department. To provide more detail on the
necessary treatment of the patients in the cardiology department, there will be more
than one class related to the cardiology department. This will be done by looking at
what kind of operations and medication patients receive in their treatment period
at the cardiology department. The operations table has a lot of row descriptions
that point to the same operation. A mapping was provided which maps 467 of these
descriptions to only 15 cardiology operations. This mapping was performed on the
operations table. For the medications table, it is possible to create medication groups
by looking at the ATC codes. For this research, an assumption is made that only
medication for which their ATC code starts with ”C” or ”B01” is given to treat
diseases related to cardiology. The ”C” medications are further put into groups
by looking at the first two digits after the ”C”. These range from 01, 02,. . . ,09,10,
meaning that there are 10 groups of ”C” medication, and one group of B medication,
B01. Together, this makes 11 medication groups.

The process is summarized in figure 4.6. If a patient is treated at the cardiology
department, that treatment period gets one or more labels, so, it becomes a multi-

Chapter 4 Martijn Jansen 25

Machine Learning using Regular Care Data

Did patient p1 receive cardio
medication or cardio operations
in period (t1, t2)?

Return: all cardio medication
+ all cardio operations
+ cardiology

Did patient p1 receive any
medication or operations
in period (t1, t2)?

Return: None

Are there any DTC or hospital
letters in period (t1, t2)?

Return: Most mentioned
department in letters
and DTC’s

Return: Other

Yes

No

Yes

No

Yes

No

Figure 4.6: How labels are decided for treatment period (t1, t2) of patient p1

label problem. Now every treatment period has one or more labels. To each period,
the labels of the previous periods of the same patient will be added as input. This
will be done cumulatively. This loses the order of events but gains the fact that at
every time step the machine learning models will be able to use the patient’s history.
For example, if a patient has received a pacemaker in the past they are unlikely to
receive one again. The cumulative is defined as in formula 4.3. Here, let label(τpi)
be the set of labels of the i’th treatment period of patient p.

input(τpi) =
i−1⋃
j=0

label(τpj) (4.3)

Formula 4.3, which will be added to each time steps input, is the union of all
previous labels of patient p. The labels are converted to one hot encoding, to be
able to use it as input for the models.

4.6 Merging model inputs with treatment periods

As a last step, the inputs created in section 4.4 will be merged with the treatment
period input and labels as created in section 4.5. Each row in the input table as
created in section 4.4 has a date based on a lab measurement. As these dates
were used to create the treatment periods, each row will belong to exactly one
treatment period. Each row will be merged with the input and assigned the labels
of the treatment group it belongs to. Then, all missing values are imputed using

26 Chapter 4 Martijn Jansen

Machine Learning using Regular Care Data

the sklearn.IterativeImputer function. This function is based on Multivariate
Imputation by Chained Equations (MICE) [46]. All columns that have some missing
values give rise to an additional column that tells if the variable was imputed (1) or
not (0).

4.7 Preprocessing for time series models

For the T-LSTM model, for each sample, a list is created with the time passed
between timestamps. So at timestamp d, the distance in days between d and d− 1
is added. This is also added as a feature to the model.

d S A D M(12) HA(43) GPL(17) LD(19) PL(30) MS(47)

1 .

2 .

. .

dp .

Table 4.4: Structure of the input for the time series models. x(n) means that x
has n features. The following abbreviations are used: S means sex, A means age,
D means time passed since previous timestep, M means measurements, HA means
hematology analyzer, GP means GP letter, LD means lab determination, PL refers
to previous labels (the cumulative of all labels given to each time before it), and MS
refers to the missingness indicators

Table 4.4 shows the inputs created in section 4.6 for each patient p. In total,
there are 171 features for each time step. The final preprocessing step depends on
dp, which is the number of hematology determinations p has. If dp = 20, the input
is left as is. If dp > 20, only the most recent 20 inputs are taken, and the inputs for
which d > 20 are dropped. If dp < 20, the input is zero-padded, so dp − 20 arrays of
zeroes are added after dp.

4.8 Preprocessing for non-time-series models

For the non-time-series models, first, the data of the final time step is taken. Then,
over the other time steps, the mean, max, and min are calculated for each feature
and added. This creates an input of 171 · 4 = 684 features. As there might be some
features that do not add any information like the mean over age or minimum and
maximum over missingness, a novel method was developed to reduce features with-
out losing information. The idea is to take the mean of highly correlated features,
as highly correlated features should be able to construct each other. This will be
done using a graph.

Let G be a graph with a node for every feature. For every combination f1, f2 of
features, the Pearson correlation on the training set is calculated. If this correlation
is higher than 0.99, an edge between node f1 and node f2 is added to graph G. Let
M be a set with the largest maximal clique in G. Then, all features inside M will
be merged into a new feature, by taking the mean. After that, every feature in M
is removed from G. This continues until there is no more clique in G.

Chapter 4 Martijn Jansen 27

Machine Learning using Regular Care Data

This method reduces the number of features from 684 to 600. This method
is similar to PCA, but its components will generally not consist of many different
columns, which is good for interpretability.

28 Chapter 4 Martijn Jansen

Chapter 5

Models

This chapter discusses all models used in this research.

5.1 XGBoost

XGBoost [18] is a gradient tree-boosting algorithm. It is based on the idea of
gradient boosting, which was proposed by Friedman et al. [23]. The idea of gradient
boosting is to combine simple ”base learners”, into one complex model. Here, a
simple function is one with few operations. Each base learner will be added to the
model one by one. At each time step 1,. . . ,M , a new base learner is added. This
base learner will try to correct the mistakes made by the ensemble of the previous
base learners. In the case of XGBoost, these base learners are Classification And
Regression Trees (CART). These are similar to decision trees, with the difference
that each tree returns a likelihood of a class rather than a specific class. A likelihood
is assigned to all leaves of the tree. In XGBoost, the model prediction is defined as
the sum of all likelihoods returned by each CART, as shown in formula 5.1.

FM(xi) =
M∑

m=1

fm(xi) (5.1)

Here, FM is the XGBoost model, FM(xi) is the prediction made by the model of
input xi and each fm for all m ∈ {0, 1, . . . ,M} is a CART. The regularized objective
function is defined as in formula 5.2

I∑
i=1

L(yi, FM(xi)) +
M∑

m=1

R(fm) (5.2)

Here, I is the number of samples, yi is the label of the i’th sample, L is a loss
function and R is a regularization function giving punishment for model complexity.
In this formulation, the model has an ensemble of M base learners and has made
M iterations. In each iteration, a new base learner is added. At step M + 1,
the current model is FM . A new base learner will be added which minimizes the
objective function 5.2. The minimization objective in step M + 1 becomes formula
5.3.

29

Machine Learning using Regular Care Data

I∑
i=1

L(yi, FM(xi) + FM+1(xi)) +
M∑

m=1

R(fm) +R(FM+1) (5.3)

This optimization is solved by using the gradient for each input i of the loss
function L(yi, FM(xi)) to calculate the gain when splitting a leaf of the new base
learner CART. The split with the highest possible gain is chosen. When all splits
have a negative gain due to the regularization objective being larger splitting stops,
the base learner is added to the model and the algorithm continues on to step M+2.

5.2 Support Vector Machines

A Support Vector Machine views all inputs as points in high-dimensional space [39].
The model tries to separate all classes in this space. In two-dimensional space and
with binary classification, this would simply be a line separating the two. In three-
dimensional space, this is a plane. In multidimensional space, however, classes will
be separated using a hyperplane. Do note that in two-dimensional space, a line
is considered a hyperplane and in three-dimensional space, a plane is considered a
hyperplane. Hence, a hyperplane is a higher-dimension generalization of a line and
a plane.

To explain SVMs, one first needs to understand how a linear classification model
works. In the binary case, a linear model tries to find a hyperplane that separates
inputs from class -1 from inputs from class 1. This hyperplane is defined as follows.
Let w be the weight vector that will be trained, let x be an input vector, and let b
be the bias. Then the linear separating hyperplane is defined as:

H : w⊺x+ b = 0

Here, w and b are weights learned by the model. The model algorithm tries to
optimize these weights such that for all vectors x which are class -1, w⊺x+b < 0, and
for all vectors x which are class 1, w⊺x+b ≥ 0. SVMs differ from linear classification
in the following two aspects:

1. How weights w and b are optimized.

2. The separating hyperplane does not have to be linear.

The difference between the weight optimization of the linear classification models
and SVMs comes from the difference in the loss function. In the linear classification
model, the loss function is based on all classified points. SVMs, however, base their
loss function on only a few input vectors, called support vectors. The idea is to
maximize the distance between the decision boundary (the separating hyperplane)
and these support vectors.

To this end, two hyperplanes H− and H+ parallel to the decision boundary are
defined:

H− : w⊺x+ b = −1

H+ : w⊺x+ b = 1

30 Chapter 5 Martijn Jansen

Machine Learning using Regular Care Data

0 2 4 6 8 10

0

2

4

6

8

10

w ⊺
x
+
b =

−
1

w ⊺
x
+
b =

1
w ⊺
x
+
b =

0

Figure 5.1: SVM example

The smallest possible distance from H− to H+ is called the margin. An example
of this is shown in figure 5.1. SVMs try to define w and b, such that the separating
hyperplane w⊺x + b = 0 is placed in a way such that the margin is as large as
possible. The size of this margin is 2

||w|| . This can be rewritten into a minimization

problem: minw,b
1
2
||w||2. In the hard margin SVM case, all points have to be either

on H− or H+ or outside the margin. This can be written in the following constraint:
yi(w

⊺xi + b) ≥ 1 for all i = 1, . . . , n. The points that are on H− or H+ are called
support vectors.

In the soft margin case, the yi(w
⊺x+ b) ≥ 1 hard constraint will be relaxed into

a soft constraint. To this end, a slack variable ξi is introduced. The formulation
becomes as follows:

min
w,b

1

2
||w||2 + C

n∑
i

ξi

S.T. yi(w
⊺xi + b) ≥ 1− ξi ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n

In this new formulation, one is punished for putting a point inside the margin,
instead of strictly disallowing it. The C parameter decides how much the model is
punished for wrongly classifying inputs. As the C parameter increases, the margin
will decrease and the number of wrongly classified inputs in the set of inputs you are
training on will decrease. If these inputs that are wrongly classified with a smaller
C are noise, it would be best for generalization to keep this C smaller.

Another difference with standard linear classification is the fact that the sepa-
rating hyperplane does not have to be linear. This opens up a plethora of options
for datasets featuring non-linear patterns.

Chapter 5 Martijn Jansen 31

Machine Learning using Regular Care Data

x1

x2

x3

Input layer

h1

h2

h3

h4

Hidden
layer 1

Hidden
layer 2

y1

y2

Output
layer

Figure 5.2: Fully connected neural network

5.3 Neural Networks

A standard Neural Network consists of sets of nodes. These sets are also called
layers. The first layer is the input layer. Each feature of the input is given one node
in the input layer. So for example in figure 5.2, the input has 3 features x1, x2 and
x3. These features are fed into the network at their corresponding node. Then, the
next layer is formed by taking different weighted combinations of x1, x2,x3, and a
bias term. Each connection between the input and hidden layer is given a different
weight. So, for example h1 is defined as h1 = x1w1 + x2w2 + x3w3 + bh1 , where each
wi is a weight and bh1 is the bias term. This can be generalized as follows. Let p be
a layer preceding layer c. Let wpicj be the weight between the neuron i of layer p
and neuron j of layer c and let p be the layer before c. Then the value of neuron cj
is defined as in formula 5.4.

cj = f

bcj +

|p|∑
i=0

wpicjpi

 (5.4)

ReLU(x) = max(0, x) (5.5)

σ(ŷi) =
eŷi∑|ŷ|
j eŷj

(5.6)

Note that every neuron is given its own bias term. Formula 5.4 also features
f , which is a non-linear activation function. Using f on the weighted combination
allows non-linear relationships to be modeled. An example of such a function is
ReLU, as shown in formula 5.5. All neuron values of the layers after the input layer
are defined as shown in formula 5.4. An exception to this is the output layer, on
which another function is performed after calculating their activation values using
formula 5.4. This function is often softmax, as defined in formula 5.6. This function
transforms the outputs into a probability distribution, where all output neurons add
up to 1. Each output neuron then gets a fraction of 1 of how likely the model thinks
it is the class assigned to that neuron. Therefore, the size of the output layer is
defined by the number of output classes. The example shown in figure 5.2 shows
only two output classes.

32 Chapter 5 Martijn Jansen

Machine Learning using Regular Care Data

I∑
i=0

L(yi, σ(ŷi)) (5.7)

∂
∑I

i=0 L(yi, σ(ŷi))

∂wk

(5.8)

wk = wk − η
∂
∑I

i=0 L(yi, σ(ŷi))

∂wk

(5.9)

Neural network weights are randomly initialized but updated using gradient de-
scent, which works as follows. The loss of a neural network with I inputs is defined
as shown in formula 5.7. Here yi is defined as the label for input i ∈ {0, 1, . . . , I},
and L is a loss function. Let the weights of layer k be wk. Formula 5.8 shows the
impact of wk on the loss function, by taking the partial derivative of the loss function
with respect to wk. To minimize the loss function, the weights are updated in the
negative direction of the gradient. This is done with a rate of η, which is also called
the learning rate. Updating the weights of layer k is shown in 5.9. Each time the
weights are updated for all inputs is called an epoch.

5.4 Recurrent Neural Networks

h1

x(1)

h2

x(2)

. . . hT

x(T)

ŷ

Figure 5.3: Recurrent Neural Network

A Recurrent Neural Network (RNN) is a model designed to deal with time-series
data [45]. An RNN consists of layers, which are connected via weights. As input, you
have the same n variables but sampled at T different points in time. More formally,
you have T vectors (x(1), x(2), . . . , x(T)), and each vector x(i) = (x

(i)
1 , x

(i)
2 , . . . , x

(i)
n)

has n features. An example of this is shown in figure 5.3. The input vectors are put
one by one into the hidden vector. Similar to neural networks, inside the hidden
layer, the inputs are multiplied by weights, and an activation function is used on
the resulting values. An RNN differs, however, in the fact that starting with h2

the output values are determined by the input and the previous layer. The values
calculated by the last layer are the values used by the output layer. The values from
the previous layer are also called the hidden state. Similar to neural networks, the
weights are also randomly initialized and optimized, as shown in formula 5.9.

5.4.1 LSTM

As an RNN suffers from the vanishing gradient problem, different RNN variants have
been developed to combat this [45]. An RNN variant changes what calculations are

Chapter 5 Martijn Jansen 33

Machine Learning using Regular Care Data

being performed in the hidden layer. The Long Short-Term Memory (LSTM) model
is one of the most popular ones [27], hence LSTMs are used in this research.

Ct−1

ht−1

xt−1 xt xt+1

Ct

ht

Figure 5.4: LSTM

The LSTM model adds a cell state Ct, separate from the hidden state ht, which
keeps track of long-term information. Figure 5.4 shows an example. In the LSTM
cell, the blue boxes in the figure, multiplications, and additions using the model
weights are performed to calculate the next cell state and hidden state. The cell
state first goes through the forget gate, which decides what the model should forget
and remember through weights. After that, information is added to the cell state
from the input and previous hidden state. Lastly, the cell state is transformed using
the previous hidden state and an activation function into the next hidden state. The
hidden state is what is used to predict the output label at each time step. So the
hidden state can be seen as what was predicted in the previous step, while the cell
state can be seen as what is known about the previous time steps.

5.4.2 Time-Aware LSTM

Baytas et al. [8] proposed an alternative to the LSTM model: the Time-Aware
LSTM model (T-LSTM). A regular LSTM (and RNN) assumes that the same time
has passed between x(t) and x(t+1) as between x(t+1) and x(t+2). The T-LSTM model
does not assume this and incorporates the elapsed time between time steps in the
model. For each time step, in addition to an input vector x(t), the model requires
∆t, which is the time that has passed from x(t−1) to x(t).

When compared to the LSTM, the differences occur in handling the previous
memory cell. The T-LSTM model splits the incoming memory values into short-
and long-term memory. The short-term memory is discounted using the value of
∆t. This retains a patient’s global profile while removing temporary aspects from
the profile. The adjustment is defined as follows. At step t, memory cell Ct−1 is
received by the T-LSTM unit. Memory cell Ct−1 is then decomposed into CS

t−1, a
short-term memory cell, and CT

t−1, a long-term memory cell.

CS
t−1 = a(WdCt−1 + bd) (5.10)

CT
t−1 = Ct−1 − CS

t−1 (5.11)

The short-term memory cell is defined as in formula 5.10. Here, a is an activation
function, and Wd and bd are learnable weights, where Wd is a vector of the size Ct−1

and bd is the bias term. The model tries to learn which dimensions of the vector
belong to short-term memory and gives these higher weights. Formula 5.11 defines

34 Chapter 5 Martijn Jansen

Machine Learning using Regular Care Data

the long-term memory, which is the difference between the previous memory cell
and the decomposed short-term memory.

ĈS
t−1 = CS

t−1 · g(∆t) (5.12)

C∗
t−1 = CT

t−1 + ĈS
t−1 (5.13)

The short term memory cell, CS
t−1, is discounted by g(∆t), where g is a mono-

tonically decreasing function. This means that the larger ∆t becomes, the smaller
g(∆t) becomes. The discounted short-term memory ĈS

t−1 is defined as the short-
term memory times g(∆t), as defined in 5.12. Finally, the short-term memory and
long-term memory are added together, forming the adjusted memory cell C∗

t−1 as
shown in formula 5.13. The rest of the model is the same as the LSTM model, only
C∗

t−1 is used instead of Ct−1. Compared to the LSTM model, the T-LSTM model
has to learn weights Wd and bd, which decompose the previous memory state, in
addition to the other weights.

To conclude, the time-aware LSTM model becomes aware of time by discounting
short-term effects, which accentuates long-term effects.

5.4.3 Target replication

h1

x(1)

h2

x(2)

. . . hT

x(T)

ŷ(1) ŷ(2) ŷ(T)ŷ(T)

Figure 5.5: Many to many Recurrent Neural Network

Target replication is a technique proposed to improve the performance of RNN
models [34]. It is made for many-to-one problems, where only a prediction is made
at the end. The technique requires transforming the RNN into a many-to-many
network. This means that at every timestamp, a prediction is made. An example
of such a network is shown in figure 5.3. In a normal many-to-many network, all
predictions are weighed equally. The idea of target replication is, however, to weigh
the prediction that one wants to know, ŷ(T), compared to all the other predictions
ŷ(t) where t = 1, 2, . . . , T − 1. Let y(t) be the actual labels for timestamp t and let
loss(ŷ(t), y(t)) be a loss function comparing the predicted values to the actual labels.
Then, the loss function using target replication is defined as shown in formula 5.14.

α

(
1

T

T−1∑
t=1

loss(ŷ(t), y(t))

)
+ (1− α)

(
loss(ŷ(T), y(T))

)
(5.14)

Here, α ∈ [0, 1] is a hyperparameter that determines how much the predictions
before the final predictions weigh. If α = 0, the network is one without target
replication. As α grows, the weight of the intermediate predictions increases.

Chapter 5 Martijn Jansen 35

Chapter 6

Hypertuning models

To provide the best possible performance, the models will be hyper-tuned. This
means finding the values for which the models perform best. This chapter will
describe which implementation of each model was used and the hyper-tuning process
for each model.

6.1 XGBoost

The XGBoost implementation of the original authors has been used [18]. The pa-
rameters as proposed by Putatunda et al. [44] will be tuned. The n estimators
parameter defines the number of trees used in the model [21]. This parameter also
defines the number of iterations of the model. The max depth parameter limits the
maximum depth of each tree. The colsample bytree parameter is the fraction of
features used when constructing a tree. The features that can be used are chosen
randomly at each iteration of the model. It is a number between 0 and 1. The
reg lambda parameter determines the amount of L2 regularization on the trees.
Lastly, the subsample parameter is defined as the fraction of training samples that
will be used to train the model. Similar to colsample bytree, in every iteration a
fraction of training samples are randomly chosen. The parameter value is a number
between 0 and 1. To hyper-tune the model, hyperopt is used [12]. Hyperopt has
been chosen due to its performance when hyper parameterizing XGBoost [44].

Parameter Values

n estimators {50,60,. . . ,200}
max depth {4,5,. . . , 16}

colsample bytree [0.5, 1.0]

reg lambda [0.0, 1.0]

subsample [0.8, 1.0]

Table 6.1: XGB hyperparameters. Here all interval values are drawn from uniform
distributions over these intervals

Table 6.1 shows the parameters which will be optimized by Hyperopt. These
parameter ranges have been adopted from Putatunda et al. [44]. The n estimators
parameter will be between 50 and 200 in steps of 10, max depth is an integer between

37

Machine Learning using Regular Care Data

4 and 16, colsample bytree is a fraction between 0.5 and 1, reg lambda is between
0 and 1 and subsample is between 0.8 and 1. The Hyperopt implementation by
Putatunda et al. [44] is taken as a base. The model will be optimized on the
training data. The performance is validated using cross-validation with five folds.
The optimization objective is changed to the weighted F1 score. Also, probabilities
are predicted by the XGB classifier instead of directly predicting classes. In order to
speed up the process, ”gpu hist” is used as tree method. The Hyperopt optimizer
is run for 30 trials.

6.2 SVM

For the Support Vector Machine (SVM) the sklearn implementation was used.
More specifically, the sklearn.svm.SVC function. As a SVM does not support multi-
label classification, the sklearn.multioutput.MultiOutputClassifier function
will be used to extend the SVM classifier to a multi-label classifier. The Multi-

OutputClassifier function trains a separate model for each possible class. To
select the optimal hyperparameters hyperopt was used. The kernel parameter,
the C parameter, and kernel-specific parameters will be tuned. As discussed in
section 5.2, the C parameter is a regularization parameter that tells the model how
conservative it should be. A higher C value results in less misclassified training
samples, but possibly a less generalized model which performs worse on the test
set. The kernel parameter decides what kind of functions can be used to separate
the hyperplane. The linear kernel means that the hyperplane is strictly linear. The
poly kernel makes the hyperplane any kind of polynomial function. The degree of
that polynomial function is a hyperparameter. The rbf and sigmoid kernels have no
exclusive hyperparameters. Every kernel, except for the linear kernel, also has the γ
hyperparameter. The gamma hyperparameter influences how many samples should
be included in defining the separating hyperplane, depending on their distance to
that hyperplane. With a large γ, only the support vectors are included. When
γ grows first the samples close to the hyperplane will be included. The larger it
becomes, the more samples will be included.

Which bound Equation Solve for x

γ lower bound ex = 2−15 ≈ −10.397

γ upper bound ex = 23 ≈ 2.079

C lower bound ex = 2−5 ≈ −3.465

C upper bound ex = 215 ≈ 10.397

Table 6.2: SVM ranges translated

The tested hyperparameter values are mostly based on the guide by Hsu et al.
[29]. Hsu et al. recommend using ranges with exponents of 2. As Hyperopt has
an exponent range based on e instead, the upper and lower bounds of the exponent
ranges will be translated. This translation is shown in table 6.2. The ranges are
shown in 6.3. The model will be optimized on the training data. The performance
is validated using cross-validation with five folds. The optimization objective is
changed to the weighted F1 score. Also, probabilities are predicted by the SVM

38 Chapter 6 Martijn Jansen

Machine Learning using Regular Care Data

Parameter Values

Kernel {linear, rbf, sigmoid, poly}
C [e−3.465, e10.397]

γ [e−10.397, e2.079] ∨ {auto : 1
f
, scale : 1

f ·var(x)}
Degree {2, 3, 4, 5}

Table 6.3: SVM hyperparameters. Here, f is the number of features, x is the table
of all inputs, and var(x) flattens x and computes the variance of the flattened vector

classifier instead of directly predicting classes. The Hyperopt optimizer is run for
30 trials.

6.3 Neural Network

For the standard neural network, the TensorFlow library is used. To hyper-tune the
model, keras-tuner is used [40]. A few parts of the structure are fixed. The output
layer will have the sigmoid activation function applied to it, as this is a multi-label
classification problem. Sigmoid clips all values between 0 and 1, and it is a more
sensible choice to use with multi-label classification compared to softmax. Using
softmax, a probability distribution is returned which adds up to 1. With multi-label
classification, however, it is also possible to predict more than one class or zero
classes. Then softmax does not make sense as, for example, it needs to be possible
for two classes to have a probability of 1 or for all classes to have a probability of 0.
This is possible with sigmoid, as it clips all values independently. Adam is chosen
as the model optimizer, as this is one of the most used optimizers [14].

The model will have an input and output layer, and there will be at least one
dense layer plus dropout layer combination. However, the number of dense plus
dropout layers will be hyper-tuned. A dense layer is also called a fully connected
layer, meaning that every neuron in the layer has a connection and weight to the
neurons in the layer before it. The size of the hidden layer is a hyperparameter
and can be set to any positive integer. A dropout layer sits between layers and
randomly sets a fraction of neurons of the previous layer to 0. This fraction is a
hyperparameter and can be between 0 (no dropout) and 1 (all neurons are set to 0).
The learning rate is the rate at which weights are adjusted as discussed in section
5.3. The batch size is the number of examples taken at once to perform gradient
descent on. The loss function will also be hyper parameterized. The first option is
binary cross-entropy, as defined in formula 6.1.

−1

I

I∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (6.1)

Here, yi is the label of input i while ŷi is the prediction of yi by the model.
The function can be split up into two parts, if yi = 1, log(ŷi)) is returned. As the
prediction is put into a log, the closer it is to 1 the larger log(ŷi)) becomes. The
other part, if yi = 0, is log(1 − ŷi). Because of the one minus, this has the same
effect but for 0, the closer it gets to 0 the larger it becomes. As a minus is added

Chapter 6 Martijn Jansen 39

Machine Learning using Regular Care Data

in front of the formula, it becomes a minimization objective. The second option for
the loss function is the binary focal cross-entropy loss [32]. This loss function was
introduced to combat class imbalance. Formula 6.2 shows the definition.

−1

I

I∑
i=1

(yi(αf (1− yi)
γ log(ŷi)) + (1− yi)((1− αf)(yi)

γ log(1− ŷi))) (6.2)

It is similar to binary cross-entropy, only differing in the addition of αf and γ.
Parameter αf , is a number between 0 and 1 and it weighs class 0 to class 1. The
larger αf is, the more labels of class 1 weigh and the fewer labels of class 0 weigh.
Parameter γ lets predictions that are close to their label weigh less. The larger γ
becomes, the more pronounced this effect is. As Lin et al. [32] suggest using γ = 2,
hyper parameterization will be done in ranges around that number.

Parameter Values

Number of dense/dropout layers {1, 2, 3, 4, 5}
Units for each dense layer {32, 64, 128, 256, 512, 1024}

Dropout for each dropout layer {0.2, 0.3,. . . , 0.8}
Loss function {Binary, Focal}
Alpha focal {0.1, 0.2,. . . , 1}

Gamma focal {2, 2.2,. . . , 3.4}
Learning rate [0.01, 0.0001]

Batch size {32,64,128,256}

Table 6.4: Neural network hyperparameters

The hyperparameters which will be tuned are shown in table 6.4. The number
of dense plus dropout layers will vary between 1 and 5. Both the dense layers and
dropout layers have a separate hyperparameter. Each dense layer has a separate
number of units which can be one of 32, 64, 128, or 256. All dropout layers will
have a separate dropout fraction, a number in {0,0.2,. . . ,1}.

The BayesianOptimization function of Keras tuner is used as an optimization
algorithm. The optimization algorithm needs an objective, which is a way to decide
what the best-tested hyperparameters are. Normally, it makes sense to choose the
loss function. However, the loss function is a hyperparameter. As the results of
the loss functions are not exactly comparable (one function being smaller than the
other does not mean the one function is better), the weighted F1 score is chosen as
objective instead. The training set is split into a training set and a validation set
with a 0.75/0.25 split. The optimization algorithm runs for 30 trials which take 50
epochs at maximum. A trial stops early if the validation loss does not improve in
4 epochs. After finding the best hyperparameter values, the best number of epochs
is found by running the model for 50 epochs and taking the epochs with the best
weighted F1 score.

6.4 LSTM

The Long Short-Term Memory (LSTM) implementation of TensorFlow is used.
The model consists of an LSTM layer, a dense layer, a dropout layer, and an output

40 Chapter 6 Martijn Jansen

Machine Learning using Regular Care Data

layer. The dense layer has ReLU activation. The hyperparameters are explained in
section 6.3. To hyper-tune the model, keras-tuner is used [40].

Parameter Values

LSTM units {32, 64, 128, 256, 512, 1024}
Dense layer units {32, 64, 128, 256, 512, 1024}

Dropout {0.2,0.3, . . . , 0.8}
Learning rate [0.01, 0.0001]

Loss function {Binary, Focal}
Alpha focal {0.1,0.2,. . . , 1}

Gamma focal {2, 2.2,. . . , 3.4}
Batch size {32,64,128,256}

α (TR) [0.1, 1]

Table 6.5: LSTM hyperparameters

Table 6.5 shows which hyperparameters will be tuned and what values will be
tested for these. The same parameters will be tuned for the non-TR and TR mod-
els, except for the α (TR) parameter which is exclusive to the TR model. The α
parameter is explained in section 5.4.3. The BayesianOptimization function of
the Keras tuner is used as an optimization algorithm. The training set is split into
a training set and a validation set with a 0.75/0.25 split. Again, the weighted F1
score is used as the optimization objective and the optimization algorithm is run for
30 trials. Each of those 30 trials runs for 50 epochs maximum. A trial stops early if
the validation loss does not improve in 4 epochs.

6.5 Time Aware LSTM

The Time aware LSTM implementation of the original authors, Baytas et al., has
been used [8]. The model consists of an LSTM layer, a dense layer, a dropout
layer, and an output layer. The dense layer has ReLU activation. As defined in
section 5.4.2, the model needs a monotonic decreasing discount function g. The
original authors, Baytas et al. [8], recommend g(∆t) =

1
log(e+∆t)

for datasets which
have long elapsed time between time steps, for example, days. As hematology
determinations are not something that is regularly measured more than once per
day, the difference between time steps is likely to be multiple days. Therefore, g is
chosen to be g(∆t) =

1
log(e+∆t)

. The hyperparameters are explained in section 6.3.

To hyper-tune the model, hyperopt is used [12].
Table 6.6 shows which hyperparameters will be tuned and what values will be

tested for these. Compared to the LSTM models, the number of epochs is added
as a hyperparameter. This is done due to the fact that the T-LSTM implementa-
tion cannot validate and train at the same time. This means for every number of
epochs tested, you need to retrain the entire model. As this takes a lot of time, this
is infeasible for the current research. The same parameters will be tuned for the
non-TR and TR models, except for the α (TR) parameter which is exclusive to the
TR model. The α parameter is explained in section 5.4.3. To hyper-tune the model,

Chapter 6 Martijn Jansen 41

Machine Learning using Regular Care Data

Parameter Values

LSTM units {32, 64, 128, 256, 512, 1024}
Dense layer units {32, 64, 128, 256, 512, 1024}

Dropout {0.2,0.3, . . . , 0.8}
Learning rate [0.01, 0.0001]

Loss function {Binary, Focal}
Alpha focal {0.1,0.2,. . . , 1}

Gamma focal {2, 2.2,. . . , 3.4}
Batch size {32,64,128,256}

α (TR) [0.1, 1]

Epochs {1,2,. . . ,50}

Table 6.6: T-LSTM hyperparameters

hyperopt is used [12]. Hyperopt was chosen as keras-tuner does not support Ten-
sorFlow 1.x while the model is programmed using TensorFlow 1.x. As focal loss was
introduced in TensorFlow 2.x, it is not included as a hyperparameter. The training
set is split up into a smaller training set and a validation set with a 0.75/0.25 split.
Each parameter combination is trained on the smaller training set and validated on
the validation set. The weighted F1 score is used as the optimization objective, and
the optimizer is run for 30 trials.

6.6 Subgroup discovery

In this section, the setup and hyperparameter tuning of the performed subgroup
discovery using decision trees will be discussed. Decision trees will be used, as these
are good at the subgroup discovery task in the clinical domain, even surpassing
algorithms specifically designed for the task [3]. As we have a multi-label problem,
each class will get its own decision tree. The DecisionTreeClassifier function
from the sklearn library will be used. For each decision tree, the class weight
will be balanced to overcome the obstacle of class imbalance. The trees will be
tuned as described by Abu-Hanna et al. [3]. The minimum samples in one leaf
will be set to 3% of the training set, which is based on expert opinion [3]. The
complexity of the trees will be tuned using 10-fold cross-validation, meaning that
the tree will be pruned for different complexity values. The complexity values from
the cost complexity pruning path function in sklearn will be used as possible
values for the hyperparameter, which returns all complexity values used in the trees
pruning process [1]. For each model, the complexity value which has the highest
average cross-validated accuracy will be taken.

42 Chapter 6 Martijn Jansen

Chapter 7

Merging similar classes

Precision Recall F1-score support

micro avg 0.42 0.58 0.48 2055

macro avg 0.19 0.20 0.17 2055

weighted avg 0.40 0.58 0.46 2055

Table 7.1: Averages of LSTM model performance on all 30 classes

After all preprocessing steps, there are 30 classes left. Table 7.1 shows the per-
formance metrics of a hyper-tuned LSTM model on these 30 classes. It shows quite
a low F1 score, especially when taking the unweighted average of the F1 score of all
classes (macro average). Appendix A.1 shows the performance metrics of all classes
separately. The medication classes all have low precision, most department classes
are never even predicted, and most of the operation classes have low F1 scores. This
might be due to classes being too similar to each other. For example, distinguishing
whether someone needs C01 or C02 medication (both given to cardiology patients)
using primarily blood samples seems hard. A solution to this might be to merge
certain classes. For example, you could merge C01 and C02. That would mean the
model would predict C01 ∨ C02 instead of specifically either of the two. Forming
these groups might increase model performance. This chapter will research if making
these kinds of groups will do so.

7.1 Theory

Currently, the labels can be separated into three groups: cardiology medication,
cardiology operation, and department. This research will only explore merging
labels within these three groups. This will be done by looking at which classes are
most similar after training a machine learning model. For the machine learning
model, the standard LSTM is chosen as it is the simplest model in this research
which uses time-series input. The assumption the following algorithm makes is that
classes that have similar inputs, will also have similar activations returned by the
LSTM.

The training set will be split up into two sets, training2 and validation with
a 0.75 and 0.25 split respectively. The model will be trained on training2. After
training, validation will be analyzed in order to merge classes. The overall principle

43

Machine Learning using Regular Care Data

is to look at pairs of classes x, y for which x has a high activation in samples with
class y and vice versa. After all, similar activation will mean that many of the
same neurons are activated, meaning that similar patterns are found by the models.
Let L = {{l1}, {l2}, . . . , {ln}} be a set of singleton sets of unique labels. Then, let
B(L, 2) be the set of all possible combinations of 2 items in L. Let P (L, 2) be all
possible permutations of 2 items in L. The classes l1, l2 which will be merged, are
the classes that minimize the following formula:

M(L,X) = argmin
{c1,c2}∈B(L,2)

1

|P (c1 ∪ c2, 2)|
∑

{p1,p2}∈P (c1∪c2,2)

A(p1, p2, X) (7.1)

A(p1, p2, X) =
1

|Xp1|
∑

x∈Xp1

|xp1 − xp2| (7.2)

Here, X is the output of the LSTM model and Xc are the outputs of all samples
that have class c. Also, each x ∈ Xc is a sample and xc is the activation value for
class c in sample x. Function A(p1, p2), as defined in formula 7.2, returns how similar
the activation of p2 is to the activation of p1 at samples of p1. For each sample, the
absolute difference between the activation of p1 and p2 is calculated and summed,
after which the mean is taken. Function A is called for each possible permutation of
the set c1 ∪ c2. If L consists of only singleton sets, there are only two permutations:
c1, c2 and c2, c1. Formula 7.1 takes the average of the value returned by A over all
permutations. The classes c1 and c2 which get the smallest score, and thus are most
similar, will be chosen to merge.

Instead of calculating the similarity between classes using all samples, only the
samples of the classes being compared are used. This choice has been made to focus
on the patterns which lead to the specific classes. If the patterns found to classify
the compared classes are similar, the activation patterns should also be similar. If
other samples would be used to calculate similarity, patterns found on noise could
for example be included. Using only the class samples allows the formula to focus
on the patterns pointing to the specific classes. As the activations of the compared
classes are subtracted, formula 7.2 is also a measure of how often two classes are
confused by the model. More confused classes are good candidates to merge as
the final models might be more accurate in predicting class c1 or c2 rather than
predicting these classes separately.

7.2 Used model

The LSTM model will hypertuned and trained on the training2 set. The hyper
tuning is done as described in section 6.4. However, there are two differences in the
setup. The first difference is that the model will be given class weights, to account
for class imbalance. This is done because otherwise frequent classes might be given
relatively high activations as there is a higher chance of predicting these classes
correctly. Therefore, the classes are weighted as shown in formula 7.3.

Wc =
maxF

Fc

(7.3)

44 Chapter 7 Martijn Jansen

Machine Learning using Regular Care Data

HP = Hypertuning LSTM on training2
LSTMs = []

for (i in range(0,10)){

LSTMs.add(LSTM(HP).fit(training2).predict(validation))

}

X = mean(LSTMs)

def MergeLabels(L,X){

S = []

for (i in range(0,n)){

c1, c2 = M(L, X)

L = L\{c1, c2}
L = L ∪{{c1, c2}}
S.Add(L)

}

return S

}

med = MergeLabels(med_labels,X)

op = MergeLabels(op_labels,X)

dep = MergeLabels(dep,X)

Listing 1: Merge algorithm. Here, n is the maximum number of iterations for the
function

Here, F is the set of all frequencies of classes in the training set and Fc is that
frequency for class c. The model is given a weight Wc for all classes c. After hyper
tuning on the training2 set, the model is trained on the training2 set with the defined
hyperparameters. It will predict the validation set. As an LSTM model has random
weight initialization, the model is run 10 times and the predictions are averaged.
This should provide more stable results. It seems the model is quite stable, as the
mean variance is about 0.00319. Listing 1 shows the merge algorithm for a set of
labels L. The MergeLabels function returns the list of a few possible class setups.
For example, the 2nd element of the returned list features 2 class merges. The
function is called for the three groups in which merges will be performed, medication
(med labels), operations (op labels), and departments (dep labels). For each merge
step returned by MergeLabels, a non-tuned LSTM will be fitted on the training2
set and tested on the validation set. Here a merge step includes all merges before it
and the current merge.

Figure 7.2 shows the structure of the LSTM that will be used. This is purposely
not hyper-tuned, as hyper-tuning it for every step is infeasible due to hardware
constraints.

7.3 Results

In this section, the results of the LSTM fitted on each merge step will be discussed.
This will be done per group. Per group, the best merge step will be chosen based

Chapter 7 Martijn Jansen 45

Machine Learning using Regular Care Data

Parameter Value

Loss Focal

Optimizer Adam

Learning rate 0.001

Batch size 32

Epochs 10

Layer Layer parameters

LSTM Units: 256

Dense Units: 128, activation: ReLU

Dropout Dropout: 0.2

Output layer Activation: sigmoid

Table 7.2: Non hyper tuned LSTM structure

on the macro F1 score of the model. This F1 score will be calculated only on the
classes of each group.

9 7 5 3

0.45

0.5

0.55

(a) Medication classes

10 8 6 4 2

0.4
0.42
0.44
0.46

(b) Operation classes

9 7 5 3 1

0.38
0.4
0.42
0.44
0.46

(c) Department classes

Figure 7.1: For each group of classes, the F1 score by an LSTM plotted against how
many classes were left in the merge step that was trained and tested on

Figure 7.1a shows the results for the medication class merge steps. In the first
point, there are 9 classes left. Here, no merge has taken place yet. At 8, one merge
has taken place, at 7, two merges have taken place, etcetera. The figure shows that
the F1 score is the highest when leaving two classes. Therefore, this merge step is
chosen and there are two classes left.

Figure 7.1b shows the results for the operations class merge steps. Here, the
highest F1 score is found when there are three classes left. This merge step will be
chosen, meaning that there will be three operation classes left.

Figure 7.1c shows the results for the department class merge steps. Here, the
highest F1 score is found when there are two class left. This merge step will be
chosen, meaning that there will be two department classes left.

7.4 Class distribution

Figure 7.2 shows the label distribution after merging classes. This shows a quite
high label imbalance. While the cardiology and medication classes are very frequent
and the none class is quite frequent, the other classes are quite sparse.

Cardio None PM Med1 Med2 Op1 Op2 Dep1 Dep2

0.65 0.25 0.05 0.51 0.51 0.03 0.13 0.02 0.07

Table 7.3: Fraction of correct samples when predicting one for each class

46 Chapter 7 Martijn Jansen

Machine Learning using Regular Care Data

Card None PM Med1 Med2 Op1 Op2 Dep1 Dep2

0

1,000

2,000 1,777

691

133

1,383 1,385

91
353

58 191

Figure 7.2: Label distribution after merging. Here Card stands for cardiology, PM
stands for pacemaker, Med stands for medication, Op stands for operation and Dep
stands for departments

Table 7.3 shows the fraction of correct samples achieved when predicting only 1
for each class. The table further accentuates the fact that especially the operations
and departments classes are very infrequent.

Classes 1 2 3 4 5 6

Samples 940 670 753 251 99 4

Table 7.4: The number of samples corresponding to each possible amount of classes

Table 7.4 shows how many samples belong to a certain number of classes. Most
samples only have one class, which makes sense as the none and department classes
cannot have a second label. Hence, summing the frequencies of these classes is equal
to the number of samples that belong to one class: 691 + 58 + 191 = 940. The other
samples have at least the cardiology class. Hence, the number of samples minus the
samples with one class is equal to the frequency of the cardiology class: 2,717 - 940
= 1,777.

Across all samples, there are 6,062 classes to predict, meaning that on average
there are 6,062

2,717
= 2.23 classes per sample. As there are nine classes over 2,717 samples,

there are 9 · 2,717 = 24,453 total predictions to be made. From this follows that
6,062
24,453

· 100 = 24.79% of the possible predictions are a class.

Chapter 7 Martijn Jansen 47

Chapter 8

Results

This chapter discusses the results of this research. The performance of each model
will be discussed, after which model performance will be compared and tested for
significant differences.

8.1 XGBoost

Hyperparameter Value

max depth 11

n estimators 120

colsample bytree 0.78

Hyperparameter Value

reg lambda 0.43

subsample 1.0

Table 8.1: Optimal values from hyperparameter tuning the XGB model

The XGBoost model is hyper-tuned as described in section 6.1. Table 8.1 shows
the resulting values. From this follows that the model is somewhat complex, with
120 trees with a maximum depth of 12. Both of these are on the higher end of the
ranges used for the hyperparameter tuning. The number of features used to train
each tree is high, with colsample bytree being 0.78. As subsample is 1, all samples
are used for training. Lastly, reg lambda is 0.43.

Cardio None PM Med1 Med2 Op1 Op2 Dep1 Dep2

Precision 0.71 0.52 0.43 0.6 0.6 0.5 0.36 0.0 0.33

Recall 0.87 0.14 0.12 0.71 0.67 0.04 0.05 0.0 0.02

F1 score 0.78 0.23 0.19 0.65 0.63 0.07 0.08 0.0 0.04

AUC 0.69 0.68 0.8 0.69 0.65 0.64 0.72 0.54 0.68

Table 8.2: Precision, recall, F1 score, and AUC for each class predicted by the
XGBoost model

Table 8.2 shows the performance of the hyper-tuned XGBoost model. The model
does not predict the operation and department classes often. Thus, these classes
have higher precision than recall, resulting in a low F1 score. The pacemaker class
does have a high AUC of 0.8. Similarly, the none class has a higher precision than

49

Machine Learning using Regular Care Data

0 5 10 15 20
0

2

4

6

·10−2

(a) Twenty most important features

0 200 400 600

0

2

4

6

·10−2

(b) All features

Figure 8.1: Feature importance in XGBoost model

recall, resulting in a low F1 score, but still an AUC score of 0.68. The Departements1
class is never predicted, resulting in an F1 score of 0 and a low AUC. The medication
classes and cardiology classes have a higher recall but a lower precision, meaning
that the class is overpredicted.

Figure 8.1 shows the feature importance given by the model, sorted from high
to low. Figure 8.1a shows the twenty most important features. Here, there are
three features that have especially high importance, after which the importance
drops quickly. The important features are ”Min missing HR”, ”Max pacemaker”,
and ”Mean pacemaker”. These are all summarization features of the previous time
steps. Here, HR stands for heart rate.

Group of features Summed importance Mean importance

Previous labels 0.26 0.0022

Hematology values 0.25 0.0014

Missingness 0.21 0.0016

Lab 0.21 0.0013

Measurements 0.2 0.0021

GP letter 0.1 0.0014

Table 8.3: The summed and mean importance given by the XGB model per group
of features, sorted by summed importance

Table 8.3 shows the summed and mean importance given by the XGB model
for all groups of features. It shows that the previous labels group have the highest
mean importance and summed importance of all groups of features. Two of the three
most important features, ”Max pacemaker”, and ”Mean pacemaker”, are from that
group. The GP letter group has the lowest summed importance, with a gap of 0.1
to the other groups.

50 Chapter 8 Martijn Jansen

Machine Learning using Regular Care Data

Hyperparameter Value

C 433.02

gamma 0.53

kernel RBF

Table 8.4: Optimal values from hyperparameter tuning the SVM model

8.2 SVM

The SVM model is hyper-tuned as described in section 6.2. Table 8.4 shows the
resulting values. The best performing kernel is the RBF kernel. A rather high C
value of 433.02 is returned. This might result in a conservative model which does
not predict classes often. Lastly, the optimal value for gamma found is 0.53, which
is on the higher end of the hyperparameter range.

Cardio None PM Med1 Med2 Op1 Op2 Dep1 Dep2

Precision 0.64 0.0 0.0 0.47 0.5 0.0 0.0 0.0 0.0

Recall 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0

F1 score 0.78 0.0 0.0 0.64 0.67 0.0 0.0 0.0 0.0

AUC 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 8.5: Precision, recall, F1 score, and AUC for each class predicted by the SVM
model

Figure 8.5 shows the performance of the hyper-tuned SVM model. Except for
the medication classes and the cardiology class, no class is predicted. The model
seems to just predict these three classes for all samples, as the recall is 1, but the
precision is the same as predicting only ones for these classes. This results in an
AUC of 0.5 for all classes, which means that the model is similar to random guessing.
Therefore, the model does not learn anything about the labels from the data at all.

8.3 Neural Network

Hyperparameter Value

Layers 1

Units 512

Dropout 0.7

Learning rate 0.0006

Batch size 256

Hyperparameter Value

Alpha focal 0.9

Gamma focal 2.0

loss fn Focal

Epochs 7

Table 8.6: Optimal values from hyperparameter tuning the Neural Network model

The Neural Network model is hyper-tuned as described in section 6.3. Table
8.6 shows the resulting values. Here, it seems that using only one set of dense
and dropout layers outperformed the more complex models with more layers. This

Chapter 8 Martijn Jansen 51

Machine Learning using Regular Care Data

means that the Neural Network was only able to find shallow patterns in the data.
More complex patterns generally take more layers to find. The model uses 512 units,
which is relatively high in the range given when tuning. Hence, it seems that the
model is able to find a lot of these shallow patterns. The focal cross-entropy loss
function performs better than the binary cross-entropy loss function. The focal loss
function is given an alpha value of 0.9, which means that correct positive classes are
weighed much higher than correct negative classes, which are given a weight of 1-0.9
= 0.1. The gamma value is equal to the recommended value by the authors [32].
Furthermore, a small learning rate of 0.0006, a large batch size of 256, and 7 epochs
were selected as best performing. A small learning rate results in a small adjustment
of weights every time, while the large batch size and low amount of epochs result in
weights not being adjusted often. This further confirms that the patterns found by
the model were shallow, as more complex patterns generally take more and larger
weight adjustments to find.

Cardio None PM Med1 Med2 Op1 Op2 Dep1 Dep2

Precision 0.64 0.32 0.07 0.48 0.5 0.06 0.17 0.03 0.09

Recall 1.0 0.9 0.24 0.99 0.99 0.19 0.56 0.15 0.33

F1 score 0.78 0.47 0.11 0.65 0.66 0.1 0.27 0.06 0.14

AUC 0.48 0.63 0.58 0.51 0.49 0.6 0.59 0.68 0.62

Table 8.7: Precision, recall, F1 score, and AUC for each class predicted by the
Neural Network model

Table 8.7 shows the performance of the hyper-tuned neural network model. For
all classes, the recall score is much higher than their precision. The often occurring
cardiology and medication classes have a recall of 1 or almost 1 but have a precision
similar to the accuracy of only predicting ones, as shown in figure 7.3. So, it seems
that the model does not learn anything about these classes, but rather predicts these
classes for all samples. This results in low AUC scores, making the model similar to
random guessing for these classes. The none class is similar, only with a bit higher
precision and a bit lower recall. The other classes have better AUC scores, but low
F1 scores.

8.4 LSTM

Hyperparameter Value

LSTM units 512

Dense units 1024

Dropout 0.4

Learning rate 0.007

Batch size 32

Hyperparameter Value

Epochs 19

Loss Focal

Alpha focal 0.9

Gamma focal 2.4

Table 8.8: Optimal values from hyperparameter tuning the LSTM model

52 Chapter 8 Martijn Jansen

Machine Learning using Regular Care Data

The LSTM model is hyper-tuned as described in section 6.4. Table 8.8 shows
the resulting values. Here, the number of LSTM and dense layer units is on the
high end of the given value ranges at 512 and 1024 respectively. The dropout after
the dense layer is set to 0.4. A learning rate of 0.007, a batch size of 32, and 19
epochs perform best. With the low batch size and a high number of epochs, the
model seems to learn complex patterns. As a loss function, focal cross-entropy loss
performs best. The loss functions alpha value is set to 0.9, and the gamma value is
set to 2.4. This alpha is very high, weighting the 0 classes as only 0.1.

Cardio None PM Med1 Med2 Op1 Op2 Dep1 Dep2

Precision 0.68 0.34 0.18 0.55 0.57 0.18 0.23 0.0 0.2

Recall 0.86 0.53 0.32 0.86 0.84 0.15 0.37 0.0 0.44

F1 score 0.76 0.42 0.23 0.67 0.68 0.17 0.28 0.0 0.28

AUC 0.63 0.6 0.69 0.69 0.61 0.62 0.66 0.55 0.7

Table 8.9: Precision, recall, F1 score, and AUC for each class predicted by the LSTM
model

Table 8.9 shows the performance of the LSTM model. The departement1 class
is never predicted. The operation1 class has low precision and recall, resulting in a
low F1 score. The other classes have a higher recall than precision, meaning that
the model predicts that a class occurs often wrong. The cardiology and medication
classes have a precision close to the accuracy of predicting only ones, but still a
relatively high F1 score. The departement2 and pacemaker classes have the highest
AUC while scoring a low F1 score.

8.5 LSTM - Target replication

Hyperparameter Value

LSTM units 32

Dense units 64

Dropout 0.30

Learning rate 0.003

Batch size 256

Hyperparameter Value

Epochs 11

Loss Focal

Alpha focal 0.70

Gamma focal 3.2

α (TR) 0.70

Table 8.10: Optimal values from hyperparameter tuning the LSTM (TR) model

The LSTM model with target replication (TR) is hyper-tuned as described in
section 6.4. Table 8.10 shows the resulting values. Here, the number of LSTM and
dense units is low, so it seems the model did not find a lot of patterns. The dropout
is 0.3. The batch size is high at 256, the learning rate is only 0.003 and the model is
trained for 11 epochs. From this, it seems that weights are not updated often. As a
loss function, focal cross entropy with an alpha of 0.7 and a gamma of 3.2 perform
best. Lastly, the target replication α value is 0.7. This means that the loss function
weighs the final time step with a fraction of 0.3 and the other time steps with a
fraction of 0.7

19
= 0.04.

Chapter 8 Martijn Jansen 53

Machine Learning using Regular Care Data

Cardio None Pacemaker Med1 Med2 Op1 Op2 Dep1 Dep2

Precision 0.68 0.41 0.32 0.55 0.55 0.27 0.26 0.0 0.25

Recall 0.89 0.34 0.36 0.82 0.85 0.15 0.28 0.0 0.33

F1 score 0.77 0.37 0.34 0.65 0.67 0.2 0.27 0.0 0.28

AUC 0.67 0.64 0.7 0.67 0.63 0.7 0.63 0.5 0.77

Table 8.11: Precision, recall, F1 score, and AUC for each class predicted by the
LSTM TR model

Table 8.11 shows the performance of the LSTM (TR) model. The department1
class is never predicted. The often occurring cardiology class and medication classes
have the highest F1 scores. Their precision is relatively low, which results in AUC
scores of around 0.63-0.67. The other classes have low F1 scores but better AUC
scores, between 0.63 and 0.77. Most of these classes have a precision similar to their
recall.

8.6 Time-aware LSTM

Hyperparameter Value

LSTM units 128

Dense units 256

Dropout 0.30

Learning rate 0.0005

Hyperparameter Value

Batch size 32

Epochs 40

Loss Binary

Table 8.12: Optimal values from hyperparameter tuning the TLSTM model

The TLSTM model is hyper-tuned as described in section 6.5. Table 8.12 shows
the resulting values. 128 LSTM layer units are chosen, while 256 dense layer units
are chosen. The dropout is set to 0.3. The learning rate is 0.0005. However, the
batch size is 32 and the number of epochs is 40. It seems the weights are updated
often but very gradually. As loss function, binary cross entropy performs best.

Cardio None PM Med1 Med2 Op1 Op2 Dep1 Dep2

Precision 0.7 0.47 0.78 0.56 0.57 0.0 0.28 0.0 0.24

Recall 0.85 0.22 0.28 0.75 0.6 0.0 0.29 0.0 0.11

F1 score 0.77 0.3 0.41 0.64 0.58 0.0 0.28 0.0 0.15

AUC 0.6 0.56 0.64 0.61 0.58 0.5 0.59 0.5 0.54

Table 8.13: Precision, recall, F1 score, and AUC for each class predicted by the
TLSTM model

The performance of the TLSTM model is shown in 8.13. Here, the Operation1

and Department1 classes are never predicted. The pacemaker and none classes have
higher precision than recall, meaning they are underpredicted. The cardiology and

54 Chapter 8 Martijn Jansen

Machine Learning using Regular Care Data

medication classes have higher recall than precision. All classes have a low AUC
between 0.5 and 0.64.

8.7 Time-aware LSTM - Target replication

Hyperparameter Value

LSTM units 512

Dense Units 256

Dropout 0.60

Learning rate 0.004

Hyperparameter Value

Batch size 64

Epochs 21

Loss Binary

α (TR) 0.93

Table 8.14: Optimal parameters from hyperparameter tuning the TLSTM (TR)
model

The Time-aware LSTM model with Target Replication (TR) is hyper-tuned as
described in section 6.5. Table 8.14 shows the resulting values. The number of
LSTM units is 512 while the number of dense layer units is 256. There is a high
dropout value of 0.6, meaning that the model needs quite heavy regularization. The
learning rate is 0.004, the batch size is 64 and the number of epochs is 21. This
means that the model is updating weights quite often. The binary cross entropy
function is chosen as the loss function. Lastly, the α (TR) value is very high at 0.93.
This means that the final time step is weighted with a fraction of 0.07 while the
other time steps are weighted with a fraction of 0.93

19
= 0.05. This means that the

final time step is weighted almost equal to the other time steps.

Cardio None Pacemaker Med1 Med2 Op1 Op2 Dep1 Dep2

Precision 0.67 0.6 0.55 0.56 0.54 0.29 0.24 0.0 0.25

Recall 0.91 0.08 0.24 0.71 0.76 0.08 0.14 0.0 0.16

F1 score 0.77 0.14 0.33 0.63 0.63 0.12 0.17 0.0 0.19

AUC 0.56 0.53 0.62 0.61 0.55 0.53 0.54 0.5 0.56

Table 8.15: Precision, recall, F1 score, and AUC for each class predicted by the
TLSTM TR model

Table 8.15 shows the performance of the TLSTM (TR) model. The department1
class is not predicted. The cardiology and medication classes have a higher recall
than precision, meaning that they are overpredicted. The other classes are under-
predicted, with higher precision than recall. Overall, the classes have AUC scores
between 0.5 and 0.63, which is quite low.

8.8 Significance tests

To find if there are any significant differences between models, the McNemar test
[37] is performed for every pair of models. As there are 7 models,

(
7
2

)
= 21 McNemar

tests will be performed. The McNemar test works on a contingency table. The null

Chapter 8 Martijn Jansen 55

Machine Learning using Regular Care Data

hypothesis states that the probability pcorrect,incorrect is the same as the probability
pincorrect,correct. Thus, the null and alternate hypotheses are defined as:

H0 : pcorrect,incorrect = pincorrect,correct

H1 : pcorrect,incorrect ̸= p incorrect,correct

As multiple tests are performed, the probability of getting a type 1 error increases
[2]. A type 1 error means that a null hypothesis is rejected while it is true. To reduce
the probability of a type 1 error, the Holm-Bonferroni [28] method, as recommended
by Cangur et al. [16], is applied with a significance level of α = 0.05.

XGB SVM NN LSTM LSTM(TR) TLSTM

SVM 2.0e-14 - - - - -

NN 2.5e-103 1.6e-93 - - - -

LSTM 3.1e-23 2.8e-04 6.9e-50 - - -

LSTM(TR) 5.6e-10 2.5e-01 5.9e-80 8.2e-07 - -

TLSTM 3.6e-05 8.7e-04 4.6e-82 2.1e-11 2.7e-02 -

TLSTM(TR) 1.1e-05 3.5e-04 3.4e-84 3.5e-10 3.7e-02 7.9e-01

Table 8.16: P-values returned by pair-wise McNemar tests between models. The
blue-colored cells are considered significant by the Holm-Bonferroni method

Table 8.16 shows the p-values returned by applying the pairwise McNemar test
to model pairs. The cells of the values that are considered significant by the Holm-
Bonferroni method are colored blue. Most McNemar tests are considered significant.

8.9 Summary of model performance

XGB SVM NN LSTM LSTM(TR) T-LSTM T-LSTM(TR)

Accuracy 0.82 0.78 0.67 0.76 0.79 0.8 0.8

F1 mic 0.61 0.62 0.57 0.6 0.62 0.59 0.6

F1 mac 0.3 0.23 0.36 0.39 0.39 0.35 0.33

F1 wt 0.55 0.52 0.6 0.61 0.6 0.56 0.55

AUC mic 0.86 0.83 0.79 0.81 0.84 0.73 0.74

AUC mac 0.68 0.5 0.58 0.64 0.66 0.57 0.55

AUC wt 0.68 0.5 0.52 0.64 0.66 0.59 0.56

Table 8.17: Summary of model performances in accuracy, F1 score and AUC. Here,
mic stands for micro, mac stands for macro, and wt stands for weighted

Table 8.17 shows the micro, macro, and weighted F1 and AUC scores. Overall,
the vanilla LSTM models have the highest weighted and macro F1 scores. The
LSTM(TR) model has the highest F1 micro score together with the SVM model.
However, as shown by the macro AUC of the SVM score, it performs as well as a
random model. As discussed in section 8.2, the SVM model only predicts 1 for the

56 Chapter 8 Martijn Jansen

Machine Learning using Regular Care Data

high-occurring classes and never predicts the other classes. The XGBoost model has
the highest AUC scores, closely followed by the LSTM models. The LSTM models
have better AUC and F1 scores than the T-LSTM models.

8.10 Subgroup discovery

Class Complexity Nodes

Cardio 0.012 3

None 0.008 7

Pacemaker 0.128 1

Med1 0.004 27

Med2 0.009 3

Class Complexity Nodes

Op1 0 23

Op2 0.007 15

Dep1 0 33

Dep2 0 45

Table 8.18: The hypertuned complexity value and the number of nodes of each tree

For the subgroup discovery task, nine decision trees, one per class, will be tuned
as described in section 6.6. Table 8.18 shows the hyper-tuned complexity value and
how many nodes are in the tree for each class. The higher this complexity value
gets, the fewer splits will be made in the tree. It seems that most trees are, even
after optimizing the complexity, quite large. There are even three trees for which
the complexity value is 0, meaning that no pruning is done at all.

Class C0 C1 C1 fraction Rules

Med1 25 67 0.73 Mean cardiology ≤ 0.58 ∧ Max urem ≤ 0.35

Cardio 144 343 0.70 Cardiology ≤ 0.5

Table 8.19: The two most pure leaves for all classes

Table 8.19 shows the two most pure classes in all models. Here, a high class
1 fraction (class1

class0+class1
) is achieved using only a few rules. The nine trees created

consist of 157 nodes in total. Of these 157 nodes, only 11 achieved a class 1 fraction
higher than 0.5. Of those nodes, 8 were in the Medication1 tree, 2 were in the
cardiology tree and 1 was in the Medication2 tree. Except for one of the nodes
in the cardiology tree, all nodes that achieved a class 1 fraction higher than 0.5
achieved a fraction higher than the occurrence fraction of the class that the tree was
based on in the training and test set. These fractions are shown in table 7.3.

Chapter 8 Martijn Jansen 57

Chapter 9

Conclusion

In this chapter, the research questions will be answered. After this, they will be
discussed. Lastly, recommendations for future research will be made.

9.1 Research questions

To answer research question one, first the other questions will be answered.
The second research question compares the Time-aware LSTM models against

the LSTM models. The LSTM models have better or equal F1 and AUC scores when
compared to the T-LSTM models. As per the significance tests, the LSTM model is
significantly better than both T-LSTM models. The difference between the LSTM
(TR) model and the T-LSTM models is insignificant. Overall it can be concluded
that the T-LSTM models perform worse than the LSTM model and are equal to the
LSTM(tr) model. Do note that the F1 and AUC scores of the LSTM(TR) model
are much higher than those of the T-LSTM models.

The third research question compares the non-target replication (TR) models to
the TR models. In the vanilla LSTM case, the target replication model performs
a bit better overall, with a higher micro F1 and a higher AUC score, while the
LSTM model does have a slightly higher weighted score. As there is a significant
difference between the models, the LSTM (TR) model performs significantly better
than the LSTM model. The T-LSTM and T-LSTM (TR) models perform very
similarly. There is an insignificant difference between the models. Overall, target
replication significantly improves performance in the vanilla LSTM case, while there
is no significant difference in the T-LSTM case.

The fourth research question compares the time series models to the non-time
series models. When looking at the non-time series models, the SVM performs very
poorly. Concerning the other non-time series models, the neural network model has
a higher weighted and macro F1, while the XGBoost model has a higher micro F1.
The neural network does have a low AUC score due to almost always predicting
the cardiology class and the medication classes. This results in a lower AUC. The
XGBoost model performs significantly better than both the neural network and
SVM models. There is a significant difference between all LSTM models and the
XGBoost model. As the vanilla LSTM models have a higher macro and weighted
F1 score, they are considered higher performing. Overall, when comparing the
neural network and SVM models to the time-series models, the time-series models
mostly outperform them. However, the difference in AUC and F1 scores between

59

Machine Learning using Regular Care Data

the XGBoost model and the time series model is much smaller. The XGBoost model
has a much higher AUC than the T-LSTM models. Overall, the time series models
significantly outperform the non-time series models. However, a caveat here is that
the LSTM (TR) model does not significantly outperform the SVM model. Due to
the fact that the SVM model does not learn anything about the data shown by it
only predicting 1 for three classes and only predicting 0 for other classes, this model
cannot be considered valid.

The fifth research question asks if there are any classes that can be identified
using subgroup discovery. Overall, subgroup discovery works for only a few classes.
Of all nodes, only a few achieved a class 1 fraction higher than 0.5, and those nodes
occurred in only three of the nine trees. Those three classes, the two medication
classes, and the cardiology class were also the most occurring classes, which means
achieving a high class 1 fraction is easier. Still, an improvement is made over the
fraction of 1 class for 10 nodes.

The first research question asks how well the models were able to predict the
classes. The LSTM (TR) model performs best, but even that model is not able to
predict classes very accurately. Except for the cardiology and medication classes, the
model F1 scores are quite low. The micro AUC score is quite good at 0.84, however,
the weighted and macro AUC scores are only 0.66. The subgroup discovery method
is able to get higher class 1 fractions for subgroups of the data for the two medication
and cardiology classes. Overall, it seems difficult for all models to make accurate
predictions.

9.2 Discussion

The low performance of the machine learning models can be the cause of a few
different options. First of all, the labels might not be defined correctly. As the
labels had to be constructed, arbitrary choices had to be made. It might be that a
large group of patients is given the wrong classes. Another cause might be that the
hyperparameters of the model were not optimized enough. The Bayesian optimizer
does not consider all options. This would be very costly, and due to hardware
and time constraints, this was not feasible. But with more options considered, the
models might have performed better. It is also possible that the problem is simply
too complex. It might be that no well-discernable patterns can be found in the
blood measurements or any of the other values relating to the patient’s medication,
operation, or department.

Another factor that might reduce performance is the fact that multi-label clas-
sification was performed on unbalanced classes. With unbalanced classes, it makes
sense for the less frequent classes to be more conservative and the more frequent
classes to be less conservative. Having both cases in one model, however, means that
the model has to balance this out. Performance might have increased if all classes
were given their own models, making nine binary classification problems.

The time-aware LSTM did not provide a performance increase over the vanilla
LSTM. The time-aware LSTM has a discount factor, which should allow the model
to be able to retrieve the general profile of a patient, independent of short-term
effects. This, however, did not seem to work well for these inputs. This might also
be related to the fact that there is missing data on each patient before admittance
to the hospital. Using this data, the T-LSTM model might be able to define the

60 Chapter 9 Martijn Jansen

Machine Learning using Regular Care Data

general profile of a patient more accurately and using that provide better predictions.
Another option is that the T-LSTM performs worse or equal to the LSTM because
the T-LSTM was tuned less extensively due to hardware limitations.

The performance difference between the time-series models and non-time-series
models is quite small, with the XGBoost model even having a higher AUC score
than the time-series models. From this, it seems that the LSTM models did not
find a lot of time-related patterns. This might be caused due to the fact that there
is missing data from before being admitted at the UMCU. It could also be that the
patterns found in blood pointing to disease are just as identifiable using summary
statistics as they are when looking at the entire trend.

9.3 Future research

In this research, all labels had to be constructed from the ground up, using the
available data. This introduces a lot of variation in the possible labels. There are
many options to consider. Future research could try many different options and
choose the one with the best performance.

To be able to define these labels, having all the GP letters of the selected pa-
tients would be useful. In the UMCU, switching between departments is done via
the General Practitioner. This means if someone came into the cardiology depart-
ment but was referred to another department, two GP letters will exist: the one
referring to the cardiology department and the one referring to the other depart-
ment. These letters could be text mined as described in section 4.3. Based on how
similar the resulting embeddings are, one could decide whether both letters describe
the same symptoms. If so, it seems the patient needs treatment from the other
department. For this research, only letters from the cardiology department were
available, which made it hard to differentiate which patient ended up being treated
in other departments.

To be able to provide research similar to this at the UMCU, a care pathway
identifier given to every entry in the database would be really useful. In the current
database, one cannot be sure which entries belong to which care demand. Patients
can have multiple care demands at one time, and currently, there is no way to dif-
ferentiate between these demands in the database. Adding a care pathway identifier
to all database entries could make it so that it is clear where a care demand starts
and ends and which entry belongs to which demand.

In this research, only the data of patients who came into the cardiology depart-
ment with a specific complaint (chest pains) was available. The aim was to be able
to differentiate between patients who needed to be treated at the cardiology depart-
ment and patients who needed to be treated at other departments. However, the
data available on patients who need to be treated at these other departments was
very limited. This results from the fact that patients are originally referred to the
cardiology department. So, it becomes difficult to correctly predict the patients who
need to be treated at these other departments. In future research, using the data
of the patients who are referred to the other departments would possibly greatly
improve the prediction performance of these other classes.

Chapter 9 Martijn Jansen 61

Machine Learning using Regular Care Data

9.4 Relevance to the Computing Science Program

This thesis applies techniques and models taught during algorithmic data analysis
courses to a real-life project. The research provides valuable insights into prepro-
cessing unstructured data into a set of inputs and labels. Also, novel techniques are
introduced, like the method to merge similar labels. The models used have been
hyper-tuned extensively and compared. Also, the LSTM models have been altered
to use target replication, which is not integrated into the LSTM or T-LSTM by
default. This is very relevant to the degree: adding improvements to models which
were taught in class. The research also provides insight into predicting with a time
series input using time-series and non-time-series models.

62 Chapter Martijn Jansen

Appendix A

Other results

A.1 LSTM without merged classes

Precision Recall F1-score support

B01 0.40 0.66 0.50 225

C01 0.24 0.36 0.29 66

C02 0.00 0.00 0.00 4

C03 0.35 0.52 0.42 124

C07 0.39 0.73 0.50 213

C08 0.28 0.43 0.34 137

C09 0.33 0.51 0.40 174

C10 0.37 0.62 0.46 221

Cardio operation other 0.00 0.00 0.00 2

Cardiology 0.67 0.92 0.77 429

Departement other 0.00 0.00 0.00 2

Gynecology 0.00 0.00 0.00 2

Internal Medicine 0.00 0.00 0.00 16

Otorhinolaryngology 0.00 0.00 0.00 5

Pulmonary medicine 0.00 0.00 0.00 7

Gastrointestinal and liver diseases 0.00 0.00 0.00 4

Medication other 0.00 0.00 0.00 0

Neurology 0.00 0.00 0.00 8

None 0.39 0.48 0.43 187

Rheumatology 1.00 0.10 0.18 10

Urology 0.00 0.00 0.00 4

Aneurysm 0.00 0.00 0.00 4

bypass 0.17 0.07 0.10 15

Cardiothoracic 0.17 0.12 0.14 69

Cardioversion 0.00 0.00 0.00 6

Coronaries 0.00 0.00 0.00 7

63

Machine Learning using Regular Care Data

Dotter 0.15 0.05 0.07 44

Valves 0.00 0.00 0.00 7

Pacemaker 0.50 0.28 0.36 25

Stent 0.33 0.13 0.19 38

micro avg 0.42 0.58 0.48 2055

macro avg 0.19 0.20 0.17 2055

weighted avg 0.40 0.58 0.46 2055

samples avg 0.43 0.54 0.43 2055

64 Chapter A Martijn Jansen

Bibliography

[1] url: https://scikit-learn.org/stable/auto_examples/tree/plot_cos
t_complexity_pruning.html.

[2] Hervé Abdi. “Holm’s sequential Bonferroni procedure”. In: Encyclopedia of
research design 1.8 (2010), pp. 1–8.

[3] Ameen Abu-Hanna et al. “PRIM versus CART in subgroup discovery: When
patience is harmful”. In: Journal of Biomedical Informatics 43.5 (2010),
pp. 701–708.

[4] Maryam AlJame et al. “Ensemble learning model for diagnosing COVID-19
from routine blood tests”. In: Informatics in Medicine Unlocked 21 (2020),
p. 100449.

[5] Ethem Alpaydin. Machine learning. Mit Press, 2021.

[6] Fahad Kamal Alsheref and Wael Hassan Gomaa. “Blood diseases detection
using classical machine learning algorithms”. In: International Journal of Ad-
vanced Computer Science and Applications 10.7 (2019).

[7] Gustavo EAPA Batista, Maria Carolina Monard, et al. “A study of K-nearest
neighbour as an imputation method.” In: His 87.251-260 (2002), p. 48.

[8] Inci M Baytas et al. “Patient subtyping via time-aware LSTM networks”. In:
Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 2017, pp. 65–74.

[9] Andrew L Beam and Isaac S Kohane. “Big data and machine learning in health
care”. In: Jama 319.13 (2018), pp. 1317–1318.

[10] Andrew L Beam et al. “Clinical concept embeddings learned from massive
sources of multimodal medical data”. In: Pacific Symposium on Biocomputing
2020. World Scientific. 2019, pp. 295–306.

[11] Maarten J ten Berg et al. “Linking laboratory and medication data: new op-
portunities for pharmacoepidemiological research”. In: (2007).

[12] James Bergstra, Dan Yamins, David D Cox, et al. “Hyperopt: A python li-
brary for optimizing the hyperparameters of machine learning algorithms”. In:
Proceedings of the 12th Python in science conference. Vol. 13. Citeseer. 2013,
p. 20.

[13] Tim Bezemer et al. “A human (e) factor in clinical decision support systems”.
In: Journal of medical Internet research 21.3 (2019), e11732.

[14] Sebastian Bock and Martin Weiß. “A proof of local convergence for the
Adam optimizer”. In: 2019 international joint conference on neural networks
(IJCNN). IEEE. 2019, pp. 1–8.

65

Machine Learning using Regular Care Data

[15] Rasmus Bro and Age K Smilde. “Principal component analysis”. In: Analytical
methods 6.9 (2014), pp. 2812–2831.

[16] Sengul Cangur, Handan Ankarali, and Ozge Pasin. “Comparing performances
of multiple comparison methods in commonly used 2× C contingency tables”.
In: Interdisciplinary Sciences: Computational Life Sciences 8 (2016), pp. 337–
345.

[17] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling tech-
nique”. In: Journal of artificial intelligence research 16 (2002), pp. 321–357.

[18] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”.
In: Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 2016, pp. 785–794.

[19] Gaurav Chhabra. “Automated hematology analyzers: Recent trends and ap-
plications”. In: Journal of Laboratory Physicians 10.01 (2018), pp. 015–016.

[20] Dennis B DeNicola. “Advances in hematology analyzers”. In: Topics in com-
panion animal medicine 26.2 (2011), pp. 52–61.

[21] XGBoost Developers. XGBoost Parameters. Accessed on 02/07/2023. url:
https://xgboost.readthedocs.io/en/stable/parameter.html.

[22] Bram van Es et al. “Negation detection in Dutch clinical texts: an evaluation
of rule-based and machine learning methods”. In: BMC bioinformatics 24.1
(2023), p. 10.

[23] Jerome H Friedman. “Stochastic gradient boosting”. In: Computational statis-
tics & data analysis 38.4 (2002), pp. 367–378.

[24] Beverly George-Gay and Katherine Parker. “Understanding the complete
blood count with differential”. In: Journal of PeriAnesthesia Nursing 18.2
(2003), pp. 96–117.

[25] Patrick A Gladding et al. “A machine learning PROGRAM to identify
COVID-19 and other diseases from hematology data”. In: Future science
OA 7.7 (2021), FSO733.

[26] Gary B Green and Peter M Hill. “Chest pain: cardiac or not”. In: Tintinalli
J. Tintinalli’s Emergency Medicine: A Comprehensive Study Guide (2012).

[27] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[28] Sture Holm. “A simple sequentially rejective multiple test procedure”. In:
Scandinavian journal of statistics (1979), pp. 65–70.

[29] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to
support vector classification. 2003.

[30] Thomas J Hwang et al. “Temporal trends and factors associated with cardio-
vascular drug development, 1990 to 2012”. In: JACC: Basic to Translational
Science 1.5 (2016), pp. 301–308.

[31] Zeljko Kraljevic et al. “Multi-domain clinical natural language processing with
MedCAT: the medical concept annotation toolkit”. In: Artificial intelligence
in medicine 117 (2021), p. 102083.

66 Chapter A Martijn Jansen

Machine Learning using Regular Care Data

[32] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings of
the IEEE international conference on computer vision. 2017, pp. 2980–2988.

[33] Charles X Ling, Jin Huang, Harry Zhang, et al. “AUC: a statistically consis-
tent and more discriminating measure than accuracy”. In: Ijcai. Vol. 3. 2003,
pp. 519–524.

[34] Zachary C Lipton et al. “Learning to diagnose with LSTM recurrent neural
networks”. In: arXiv preprint arXiv:1511.03677 (2015).

[35] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. In: 2008
eighth ieee international conference on data mining. IEEE. 2008, pp. 413–422.

[36] Bridget T McInnes, Ted Pedersen, and John Carlis. “Using UMLS Concept
Unique Identifiers (CUIs) for word sense disambiguation in the biomedical do-
main”. In: AMIA annual symposium proceedings. Vol. 2007. American Medical
Informatics Association. 2007, p. 533.

[37] Quinn McNemar. “Note on the sampling error of the difference between cor-
related proportions or percentages”. In: Psychometrika 12.2 (1947), pp. 153–
157.

[38] Marianne A Messelink et al. “Identification and prediction of difficult-to-treat
rheumatoid arthritis patients in structured and unstructured routine care data:
results from a hackathon”. In: Arthritis Research & Therapy 23.1 (2021), pp. 1–
10.

[39] William S Noble. “What is a support vector machine?” In: Nature biotechnol-
ogy 24.12 (2006), pp. 1565–1567.

[40] Tom O’Malley et al. KerasTuner. https://github.com/keras-team/keras
-tuner. 2019.

[41] L Malin Overmars et al. “A Wolf in Sheep’s Clothing: Reuse of Routinely Ob-
tained Laboratory Data in Research”. In: Journal of Medical Internet Research
24.11 (2022), e40516.

[42] L Malin Overmars et al. “Preventing unnecessary imaging in patients sus-
pect of coronary artery disease through machine learning of electronic health
records”. In: European Heart Journal-Digital Health 3.1 (2022), pp. 11–19.

[43] SGOPAL Patro and Kishore Kumar Sahu. “Normalization: A preprocessing
stage”. In: arXiv preprint arXiv:1503.06462 (2015).

[44] Sayan Putatunda and Kiran Rama. “A comparative analysis of hyperopt as
against other approaches for hyper-parameter optimization of XGBoost”. In:
Proceedings of the 2018 international conference on signal processing and ma-
chine learning. 2018, pp. 6–10.

[45] Hojjat Salehinejad et al. “Recent advances in recurrent neural networks”. In:
arXiv preprint arXiv:1801.01078 (2017).

[46] Stef Van Buuren and Karin Oudshoorn. Flexible multivariate imputation by
MICE. Leiden: TNO, 1999.

[47] Jenna Wiens et al. “Do no harm: a roadmap for responsible machine learning
for health care”. In: Nature medicine 25.9 (2019), pp. 1337–1340.

Chapter A Martijn Jansen 67

Machine Learning using Regular Care Data

[48] David H Wolpert. “Stacked generalization”. In: Neural networks 5.2 (1992),
pp. 241–259.

[49] Derek Wong and Stephen Yip. Machine learning classifies cancer. 2018.

68 Chapter A Martijn Jansen

