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Abstract

Sketches express the subgoal structure of a set of planning problems
with a similar goal. A sketch consists of sketch rules that indicate how
the environment has to change in a particular situation to reach the goal.
Using sketches effectively speeds up the search for a solution to a plan-
ning problem. While a previous technique for learning sketches has been
investigated, this thesis proposes a novel, modular approach to automat-
ically find all ‘good’ sketches with n rules and m features given a set of
domain instances with similar goals. Our approach involves lazily gen-
erating a pool of potential sketches and verifying them using temporal
logic constraints. We show that our method can find good sketches for
eight domains, including those learned in previous research. Because our
approach allows us to generate all good sketches with a certain number
of rules, we can analyze patterns of equivalent sketches, which opens up
a wide range of future work.
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1 Introduction

When humans want to achieve a goal, for example, getting a cup of coffee, bak-
ing a cake, or building a house, we try to take actions that bring us closer to
reaching our objective. This is precisely the process that AI planning aims to
automate. Planning in AI is the problem of finding which sequence of actions
to take, starting from an initial state of the environment, to reach a goal. The
first approaches to solving this problem are what we now call classical planning.
Classical planners often work by trying out action sequences until a path to the
desired goal is found. The possible paths and environment states are explored
using algorithms like breath-first search or iterated width search. But with large
problem instances, the search space gets large, and solving a planning problem
gets intractable.

A way to speed up this search is by exploiting the subgoal structure of a
planning problem. For example, when baking a cake, as a subgoal, you can
gather all the ingredients. This extra information can significantly reduce the
search space. Different methods were introduced for using subgoals to speed up
the search. Examples are hierarchical task networks (HTNs) [24] and landmarks
[26]. Recently, Bonet and Geffner introduced a new approach to exploiting sub-
goal structures, named sketches [4].

A sketch consists of one or more sketch rules. Sketch rules C → E express
that when condition C is true, effect E is a desired subgoal. C and E are ex-
pressed in terms of features. For example, consider a table with blocks and a
robot arm that can pick up, stack, and unstack blocks. If the goal is to unstack
all blocks, we can define feature n as the number of blocks that are stacked upon
each other and define a sketch rule {n > 0} 7→ {n ↓}. This sketch rule states
that if some blocks are stacked upon each other, a subgoal is to decrease the
number of stacked blocks, i.e., to pick up a block that is stacked upon another
block. This subgoal doesn’t have to be reached in one step. In this example, if
the robot is already holding a block, it first needs to put the block on the table
before it can unstack a new block.

Sketches seem promising to speed up the search for a plan [9]. Initially, the
construction of sketch rules involved expert handcrafting. Therefore Drexler et
al. [10] proposed a method that automatically learns these rules. Their approach
uses answer set programming (ASP) to find a coherent set of m sketch rules.

As an alternative approach, we will present an automata-based method for
verifying sketches. We will use temporal logic to express candidate sketch rules
and filter the valid sketches using automata-based model checking. The motiva-
tion for examining this method is threefold. First, our approach will be modular.
We will first generate a pool of candidate sketches and use model checking to
verify them. Because of this modularity, our method will also be able to verify
handwritten sketches or candidate sketches generated by any other algorithm.
Our method will also enable the exploration of different preprocessing steps to
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filter the candidate sketch rules. Secondly, our method inherits the guarantees
of model checking. Automata-based model checking and its correctness are al-
ready widely studied [20]. Lastly, only one method of learning sketches has been
examined before. Because of the different nature of our approach, we might find
other sketches that give us more insight into the concept.

We will start this thesis by formalizing the notion of planning. After that, we
will discuss related work on exploiting subgoal structures in planning problems
and constructing these structures automatically. We give extra attention to
sketches, which we will define formally. In section 4, we will formalize our
approach for generating and verifying sketches. We will first explain how we
generate a pool of candidate sketches to verify. Then we will define what we
think a good sketch is. After that, we will give the syntax and semantics of
CTL∗

f and use it to translate the definition of a good sketch into temporal
logic. Section 5 will describe the different parts of our Python implementation
of this method. To test our method, we will try to reconstruct the sketches
found by Drexler et al. [10]. Our experiments and results are presented in
section 6. Lastly, we discuss our findings, elaborate on directions for future
work, and draw our conclusions in section 7 and 8.
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2 Planning

In planning, we differentiate between domains and more detailed instances of a
domain. A domain is a general description of an environment and its workings
without details of the specific objects or information about a goal we want
to reach. Starting from a domain, we can make different instances. These
instances will specify which objects are in the environment, in what situation
we start, and what goal we want to reach. As an example, we will consider the
Blocksworld domain. In Blocksworld, there is a table with blocks and a robot
that can pick up blocks from the table and put them down again, stack a block
on top of another one, or unstack them. The actions the robot can execute can
be expressed in action schemas.

Definition 1 (Action Schema) An action schema is a quadruple
a = (name, precond, effects+, effects−) in which

• name = n(x1, ..., xk) consists of a unique name n and a list of variables
(x1, ..., xk) that appear somewhere in a.

• precond denotes the preconditions of a, which is a set of literals.

• effects+ and effects− represent the positive and negative effects of a,
respectively. They are both sets of literals.

For an action schema a, we will write name(a), precond(a), effects+(a), and
effects−(a) to refer respectively to its name, preconditions, and positive and
negative effects.

Without knowing the specifics of how many blocks there are, their names,
how the blocks are stacked initially, or what goal we want to reach, the previous
description of the blocksworld already gives a good idea of the environment.
This is the purpose of a planning domain.

Definition 2 (Planning Domain) A planning domain is a tuple D = (V,A)
in which

• V is a set of predicate symbols (p, k) with p the name of the predicate
symbol, and k its arity.

• A is a set of action schemas, such that the variables in each action schema
are predicate symbols from V .

As an example, take the blocksworld domain. Two of its predicates are
(holding, 1), which states whether the robot is holding a block, and (on, 2),
which states that two blocks are stacked upon each other. An action schema is
(pickup(x), {on-table(x), arm-empty(x), clear(x)}, {holding(x)}, {on-table(x)}),
which defines the action of picking up a block that is lying on the table with no
other blocks stacked on top of it.
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By adding specific objects, an initial state, and a goal, a planning domain
D can be extended to a (domain) instance (also called problem instance or
planning problem).

Definition 3 (Domain Instance) A (domain or problem) instance is a tuple
P = (D,O, I,G) in which

• D = (V,A) is the domain

• O is a (finite) set of object names

• I is the initial state; a set of ground predicates p(c1, ..., ck) in which (p, k) ∈
P and ci ∈ O.

• G is the goal, also a set of ground predicates.

For a domain instance, we can construct a set of (grounded) predicates
by adding n objects to each predicate symbol (p, n). For example, if O =
{block1, block2}, the predicate symbol (on-table, 1) produces two grounded pred-
icates on-table(block1) and on-table(block2). We will denote these grounded
predicates as V (O) for a set of predicate symbols V and objects O. Similarly,
we can construct a set of (grounded) actions A(O).

A state s ⊆ V (O) defines how the environment looks at a specific moment.
Formally, it is a set of grounded predicates that are true at that moment. Fol-
lowing the closed world assumption, the predicates not mentioned in this set are
considered false in this state. A state s ⊆ V (O) is a goal state for an instance
P = (D,O, I,G) if G ⊆ s.

An instance can also be represented by a transition system.

Definition 4 (Transition System) A transition system of an instance P =
(D,O, I,G) with D = (V,A), is a triple Σ = (S,A(O), γ) such that

• A(O) is the set of grounded actions,

• γ : S ×A(O) → S such that

γ(s, a) =

{
(s \ effects−(a)) ∪ effects+(a) if preconditions(a) ∈ s

undefined otherwise

• S ⊆ 2V (O) such that I ∈ S and s ∈ S ⇐⇒ ∃a1, ..an ∈ A(O) such that
γ(...(γ(γ(I, a1), a2), ...), an) = s.

A dead state is a state from which it is impossible to reach the goal, i.e.,
s0 ∈ S is a dead state if there exists no sequence of states (s0, s1, s2, ..., sn) and
ai ∈ A(O) with γ(si, ai) = si+1 and sn ∈ G. States that are not dead are called
alive.

As a complexity measure of a problem instance, Lipovetzky and Geffner
introduced the notion of problem width.
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Definition 5 (Problem Width) [23] The width w(P ) of a (problem) instance
P is the minimum k ∈ N for which there is a sequence t0, t1, ..., tm of atom tuples
ti, each with at most k atoms, such that:

1. t0 is true in the initial state of P ,

2. any optimal plan for ti can be extended into an optimal plan for ti+1 by
adding a single action, i ∈ {1, ..., n− 1},

3. any optimal plan for tm is an optimal plan for P .

As an example, consider the Blocksworld domain with blocks A, B, and C,
an initial state in which C is on the table, A is stacked on B and B on C, and
a goal to have block C on top of block A. This is a problem of width 2. A
sequence of atom tuples that adheres to the three conditions in the definition
of problem width can be:

t0 = (clearA, arm-empty)

t1 = (holdingA, clearB)

t2 = (clearA, clearB)

t3 = (clearA, holdingB)

t4 = (clearA, ontableB)

t5 = (clearA, holdingC)

t6 = (clearA,ConA)

unstack(A, B)

putdown(A)

unstack(B, C)

putdown(B)

pickup(C)

stack(C, A)

If we want to make such a sequence with tuples of one atom, we can, for
example, try this sequence

t0 = (clearA)

t1 = (holdingA)

t2 = (ontableA)

t3 = (holdingB)

t4 = (ontableB)

t5 = (holdingC)

t6 = (ConA)

unstack(A, B)

putdown(A)

unstack(B, C)

putdown(B)

pickup(C)

stack(C, A)

This sequence does not satisfy the second condition from the definition of
problem width, since not every optimal plan for t5(holdingC) can be extended
into an optimal plan for t6(ConA). For example, holdingC can be accomplished
optimally by unstacking A and putting it on the table, unstacking B and stacking
it on A, and then picking up C. At that point, B is stacked upon A, and ConA
cannot be reached optimally anymore. The same goes for other sequences with
tuples of one atom. Therefore, the Blocksworld problem instance we consider
here is of width two.
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3 Literature

3.1 Related Work

Different approaches to exploiting the subgoal structure of a planning problem
have been explored. Many of these approaches speed up the search for a solution
but come at the cost of human expert knowledge. Providing expert knowledge
is often time-consuming. Research has been done on constructing this expert
knowledge automatically, sometimes with the help of extra information like
(partial) solutions. In the following, I will review some of these approaches and
how the extra knowledge they need can be learned.

Classical planning A classical planning problem consists of an initial state
(predicates that are initially true), a set of action schemas with their precon-
ditions and effects, and a goal condition. Classical planners use no additional
information about the nature of the problem. Example algorithms to solve clas-
sical planning problems are forward searches like breath-first-search or depth-
first search, starting from the initial state, and backward searches, where one
starts from the goal state and searches for the initial state by applying actions
backward. For problem instances with a large search space, these algorithms
can be slow to find a solution.

Popular approaches to classical planning are STRIPS-style approaches [13].
The STRIPS algorithm attempted to reduce the search space size at the cost of
completeness. In each state, only the transitions of actions that are “relevant
for the goal” are considered. An action is only relevant for the goal if it reduces
the differences between the current and goal states. This idea can be applied to
both forward searches and backward searches.

HTN The plans that humans make have a hierarchical nature. For example,
when baking a cake, we can plan that we will first collect all ingredients, then mix
them following the recipe, and finally put the cake in the oven. These steps are
all high-level tasks that can be subdivided into more concrete actions. Collecting
the ingredients consists of getting the butter, getting eggs, getting milk, etc.
Getting butter then consists of going to the fridge, opening it, grabbing the
butter, and so on. Hierarchical task networks are a way to speed up the search
for a solution to a planning problem by exploiting this hierarchical structure of
tasks. Primitive tasks are the actions that an agent can execute directly, while
compound tasks are higher-level tasks that can be decomposed into primitive
or other compound tasks. An HTN planning problem consists of a high-level
task that needs to be executed and a set of predefined compound tasks and the
lower-level tasks they require.

In contrast to classical planning, an HTN goal is not to be in a state where
something is true but to do a certain task. While in classical planning, we
express that our goal is to be in a state where there is a cake, in HTN planning,
the goal is to bake a cake. During execution, compound tasks are decomposed
into simpler tasks until a sequence of primary tasks is reached.
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Compared to classical planning, HTNs find a solution to planning problems
faster [24] because they have access to more domain knowledge to reduce the
search space. A downside to this approach is the need for an expert to define
the task networks, which is very time-consuming.

To handle this downside, research has been done on finding methods to learn
the task networks automatically. The difficulty is that any sequence of tasks
could make up a compound task. Finding useful compound tasks is something
humans can naturally do, but it is more difficult for a computer. Therefore
most of the learning methods use additional input. Research has been done
on learning task networks from traces [32, 25, 18], partial decomposition trees
[31, 32], solutions to planning problems [18], and combinations of them.

Landmarks Given a planning problem, landmarks are facts that always need
to be true at some point to reach the goal, starting from the initial state [26]. For
example, when baking a cake, it always holds that at some point, all ingredients
are in the same bowl. Landmarks are thus subgoals that always need to be
reached before it is possible to reach the goal. Additionally, different landmarks
can be connected with order relations [26, 17, 27]. It can be the case that
landmark B relies on landmark A, such that A always needs to be reached
before B. For example, all ingredients should be in the same bowl before the
cake is in the oven.

From the start of landmark research, methods have been examined to ex-
tract landmarks from the planning problem. The learning goes in two steps.
First, landmark candidates and approximated orders between them are found
by relaxing the planning task. Second, all landmark candidates that cannot be
proved to be landmarks are removed [17, 28, 27, 26].

Using landmarks speeds up search compared to classical planning because
they exploit information about the subgoal structure and can therefore do better
than blind search.

Logics to express control knowledge Another type of domain knowledge
that can help to speed up search is information on the dynamics of a domain.
For example, if you want to paint a room blue, you can express that after you’ve
painted a wall blue, you do not want to do an action that paints the wall in
a different color. A way to express this type of information is by using logical
languages. Research has been done on expressing this domain-specific control
knowledge in both linear temporal logics (LTL) [1] and temporal action logics
(TAL) [21].

This domain knowledge can be used to eliminate options during forward
planning. In forward planning, one starts from the initial state and executes ac-
tions to make paths until one of the paths reaches a goal state. Using the control
knowledge, every potential partial solution is checked to satisfy the knowledge
formulas. If a partial solution violates one of the rules, it is not further exam-
ined. This speeds up the search compared to classical planning because some
partial plans that are certain to fail or be suboptimal can be eliminated before
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they are fully worked out.
Unlike HTNs and landmarks, this control knowledge gives information about

good and bad transitions between states instead of focussing on subgoals.
Similar to HTNs, experts are needed to provide control knowledge. Some

research has been done on learning LTL control knowledge using a set of optimal
and suboptimal plan solutions [7].

General Policies A policy is a function that maps states to actions, specify-
ing the action to take in a given state. A policy solves an instance if, starting
from the initial state, sequentially applying the actions given by the policy re-
sults in achieving the goal. A general policy is a policy that solves multiple
instances of a planning domain [19, 3].

Different ways to learn general policies are explored. Bonet et al. [2] learned
general policies using an SAT-solver and the theory of qualitative numerical
planning problems (QNP). A QNP is an abstraction over a set of problem in-
stances that consists of features, which are functions over states of the problem
instances that express properties of these states, and actions in which pre- and
postconditions are described in terms of these features. An SAT-solver is a pro-
gram that can compute the satisfiability of propositional logic formulas. Bonet
et al. use an SAT-solver to learn a qualitative numerical planning problem
(QNP) from sample plans and solve this QNP with a FOND planner, which
results in a general policy.

Francès et al. [15] took inspiration from this approach but skipped the phase
of learning the QNPs. Instead, they generate a pool of features, which they use
together with a set of domain instances to express the original planning problem
as a weighted Max-SAT problem. By solving this Max-SAT problem, they find
a general policy. Lastly, research has been done on learning general policies
using graph neural networks (GNNs) [30, 29].

Sketches A more recent approach to adding subgoal structures to a planning
problem is the concept of sketches [4]. Sketch rules express under which condi-
tions a certain subgoal is desired. For example, if the goal is to bake a cake, a
sketch rule could be: if the number of missing ingredients is larger than 0, you
want to decrease this number. General policies can also be considered sketches
in which the subgoals must be reached by applying only one action.

The sketch rules must be followed while constructing a solution to a planning
problem. Using sketches significantly reduces the search space w.r.t. classical
planning [9].

Sketch rules depend on the domain and the desired class of problems but do
not depend on domain instances. If the goal in the blocks domain is to clear(x),
the sketch rules are the same, independent of which block x is, independent of
the initial state and independent of the number of blocks in the domain.

Research is done on learning sketches by Drexler et al. [10]. Inspired by
the approaches of learning general policies [2, 15], Drexler et al. use answer set
programming (ASP) to find a sketch of a certain width, given a set of features
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and a set of domain instances. An ASP program consists of a set of facts and
rules provided in propositional logic. Answer set solvers then find a set of truth
values that satisfy the ASP program. Drexler et al. translate the problem of
finding a sketch for a set of problem instances to an ASP program and return
one sketch.

3.2 Sketches

3.2.1 Definitions

A sketch [4] defines subgoals we want to achieve to reach a goal. These sub-
goals are captured in rules. The idea is that a sketch is not instance dependent
but works over a set of instances with similar goals. We call a set of problem
instances drawn from the same domain and with similar goals a class of prob-
lems Q. In the literature, the notion of similar goals is not formally defined.We
assume goals to be similar if there is a mapping from objects to goals, such that
the goal of each problem instance can be constructed by applying this map-
ping to objects from the instance. Examples for the Blocksworld domain are
achieving a state where a specific block is clear and the robot arm is empty
(achieving clear(x) ∧ arm-empty), stacking two blocks (achieving on(x, y)), or
having all blocks next to each other on the table (on-table(x1) ∧ on-table(x2) ∧
... ∧ on-table(xn) with n the number of blocks.)

Sketches are defined over a set of features Φ. Features are functions from
states in Q to booleans or non-negative integers. For a state s and a feature f ,
f(s) is the feature valuation of f in s , i.e., feature f has value f(s) in state s.

An example of a numerical feature in the blocksworld domain is the number
of blocks currently stacked upon each other. As you can see, this features only
depend on the domain description and not on specific instances. Sketch rules
indicate how these features should change to achieve the goal.

As mentioned, a sketch consists of multiple sketch rules, in which a sketch
rule expresses that under certain conditions, we want to manipulate features in
a certain way. A sketch rule C → E consists of a set of conditions and a set
of effects. If these conditions are true in a state, the subgoal is to reach a state
where the effects hold.
The conditions C of a sketch rule consist of feature conditions ci, defined over
boolean and numerical features. Feature conditions are statements that are
either true or false in a state. Let n ∈ Φ be a numerical feature and b ∈ Φ be a
boolean feature. The semantics of a feature condition ci are the following:

ci ::= n=0 | n > 0 | b | ¬b

For a numerical feature n ∈ Φ, a feature condition can state that this fea-
ture has to be equal to zero (n=0), or this feature has to be greater than zero
(n > 0). For a boolean feature b ∈ Φ, a feature condition can indicate that the
feature has to be true (b) or false (¬b).
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A numerical feature condition ci holds in state s iff

• ci = (n = 0) and n(s) = 0

• ci = (n > 0) and n(s) > 0

• ci = b and b(s) = true

• ci = ¬b and b(s) = false

A condition C = {c1, c2, ..., cn} holds in a state s if ci holds in s for 1 ≤ i ≤ n.

The effects of a sketch rule E consist of feature value changes ei over a set
of features Φ. These feature value changes indicate how features should change
over time.

ei ::= n↑ | n↓ | n= | b | ¬b | b=

For a numerical feature n, feature value changes can indicate that the value
of a feature needs to increase (n ↑), decrease (n ↓), or shouldn’t change (n=).
For a boolean feature b, a value change can indicate that b needs to be true
(b) or false (¬b). Additionally, an effect can require a boolean to keep its value
regarding the condition state (b=). If an effect is not mentioned, we assume it
doesn’t matter how its value changes.

We say that a feature value change ei holds for a transition between two
states (s, s′) iff

• ei = n↑ and n(s) < n(s′)

• ei = n↓ and n(s) > n(s′)

• ei = (n=) and n(s) = n(s′)

• ei = b and b(s′) = true

• ei = ¬b and b(s′) = false

• ei = (b=) and b(s) = b(s′)

An effect E = {e1, e2, ..., en} holds for a transition (s, s′) iff every feature
value change ei holds for (s, s

′) for all 1 ≤ i ≤ n.

A transition from a state s to state s′ follows a rule R : C → E iff C holds in
s and E holds for (s, s′). Applying a rule R : C → E in state s means following
a path (s, s1, s2, ..., s

′) such that (s, s′) follows R.
A sketch is a collection of sketch rules.

Definition 6 (Sketch) A sketch over a class of problems Q and a set of fea-
tures Φ is a finite set of sketch rules Ri : Ci → Ei over Φ.
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For example, consider the Blocksworld in which the goal is to clear a block.
A block is clear if no other blocks are stacked upon it and the robot is not
holding it.

The sketch rules for this domain that are presented in [9] use two features.
The boolean feature H states whether the robot is holding a block. The numer-
ical feature n counts the number of blocks stacked above the block we want to
clear. The sketch rules are

r1 = {¬H,n > 0} → {H,n↓}
r2 = {H,n > 0} → {¬H,n=}

Let’s call the block we want to clear block x. The first rule states that if the
robot is not holding any block, and there are blocks above block x, our subgoal
is to find a state where the robot is holding a block and the number of blocks
above x has decreased. In other words, the subgoal is to unstack a block on
the tower above x. The second rule states that if the robot is holding a block,
the subgoal is to not hold a block so that the number of blocks above x doesn’t
change. In other words, the robot should put the block down on the table or
on top of another tower of blocks that doesn’t contain x.

Another example is an environment with a robot vacuum and different rooms
that need to be cleaned. If the goal is to clean every room, we can define feature
n as the number of dirty rooms and define a sketch rule {n > 0} → {n↓}. This
sketch rule states that if rooms are still dirty, a subgoal is to decrease the num-
ber of dirty rooms, i.e., to clean at least one room. This subgoal doesn’t have
to be reached by only applying one action. In this example, the robot vacuum
first has to do one or more move actions before it can do the cleaning action
and reach the subgoal.

Based on the notion of problem width, Bonet and Geffner introduced a
complexity measure on sketches, named sketch width [4]. The width of a sketch
is the maximum width of the subproblems induced by its rules.

Definition 7 (Sketch width) The width wS(P [s]) of a sketch S at state s
of a problem P , is the width of the subproblem P [s] that is like P but with
initial state s and goal states g such that the pair (s, g) follows one of the
rules of S. The width of a sketch S for a class of problems Q is wS(Q) =
maxP∈Qmaxs∈{ reachable state in P}wS(P [s])

3.2.2 Differences in definitions with previous papers

Any vs Equal In the previous papers about sketches [4, 9, 10], the syntax
of feature effects is slightly different, but the semantics are equivalent to our
definition. We define f = for a feature f ∈ Φ to indicate that this feature should
keep its value relative to the condition state. If a feature is not mentioned in the
effect, we assume its value does not matter. Bonet and Geffner define this the
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other way around. To express that the value of a feature doesn’t matter, they
introduce the feature value change f?. A feature not mentioned in the effect
means its value should stay the same.

We changed the notation because it is more suitable for both our method
and its implementation. The notation we use aligns with how sketches are
represented and saved to files in the DLPlan library, which we will use for our
implementation. Furthermore, it eases the translation to temporal logic. When
a predicate is not mentioned in a logic formula, its truth value doesn’t matter,
which is similar to our syntax for sketches.

Distinguishing the goals In Bonet and Geffner [4], the definition of a sketch
requires the set of features Φ to distinguish the goals for the class of problems
Q. A set of features Φ distinguishes or separates the goals for Q if it is possible
to separate goal states from non-goal states by only using the feature valuations
of the features in Φ. Drexler et al. do not require goal separation in their paper
about learning sketches [10]. To show this, consider the width-0 sketch for the
gripper domain, presented in [10]. We have Φ = {B, c} where B is a boolean
feature true if the robot is in room B, and c is a numerical feature, counting the
number of balls the robot is carrying.

r1 = {c = 0} → {¬B}
r2 = {B} → {c ↓}
r3 = {¬B, c > 0} → {c=}

Drexler et al. consider this a well-formed sketch, while the features in Φ
do not distinguish the goals. For example, the goal state where all balls are in
room B, the robot is in room B, and the robot is not carrying any balls. For this
state, B = true and c = 0. For a non-goal state where all balls are in room A,
the robot is in room B and not carrying any balls, we get the same feature val-
uations. These features thus don’t distinguish goal states from non-goal states.
Since we use the work of Drexler et al. [10] as a reference for our results, we
decided not to consider goal separation. Nevertheless, our method allows for
adding goal separation in future work.
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4 Approach

Our overall goal is to find sketches for a set of planning problems such that
consecutively following sketch rules results in achieving the goal. We will call
such sketches good sketches and formally define them in this chapter.

Our method to find good sketches will start with generating a pool of candi-
date sketches by combining features into conditions and effects and combining
these conditions and effects into sketches. We will translate the constraints from
the definition of a good sketch into temporal logic formulas and use a model
checker to verify whether the constraints hold for a given sketch and instance
in order to find all good sketches.

4.1 Sketch Generation

To generate a candidate sketch pool, we start with a pool of features Φ, similarly
to Drexler et al. [10]. For a sketch S, let’s define |S| as the number of rules the
sketch has, F (S) as the set of features that are mentioned in the sketch, and
|F (S)| the number of features used by the sketch. We aim to construct sketches
of maximum fmax features and rmax rules. Our goal is thus to construct a set
of candidate sketches.

CS := {S | |F (S)| ≤ fmax, |S| ≤ rmax, F (S) ∈ Φ}

Given this finite feature set Φ, there are only finite options to combine them
in conditions and effects to create sketch rules and sketches.

To calculate an upper bound on the number of candidate sketches, we start
by calculating how many sets there are containing f features. This amount is
equal to:

C
|Φ|
f =

|Φ|!
(|Φ| − f)!f !

There are three possibilities to use a feature in a feature condition. We can
not mention the feature or use n = 0 or n > 0 for a numerical feature and b or
¬b for a boolean feature. Each feature can be used in the effects in four ways;
not mentioning the feature, n ↑, n ↓, n= for a numerical feature, and b,¬b, b= for
a boolean feature. Each feature can thus be used in a rule in 3 · 4 = 12 ways.
Therefore, the number of possible rules with maximum fmax features can be
bounded by:

nrules ≤ C
|Φ|
fmax

· 12fmax

Note that this is an upper bound and not an equality. Some rules are
considered multiple times. For example, the rule {} → {} is constructed for
each feature set. Moreover, a rule that only mentions one feature is constructed
for each feature set that contains this feature.
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An upper bound on the number of candidate sketches with rmax rules and
maximum fmax features is:

|CS| ≤ Cnrules
rmax

4.2 Good sketch

Not all assemblies of conditions, effects, and sketch rules will create a sketch
such that following its sketch rules guarantees reaching the goal. Therefore we
will define the notion of a good sketch. The idea of a good sketch is that for
every sequence s0, s1, s2, ... starting from the initial state s0, such that every
pair (si, si+1) follows one of the rules Rj , there will be an n such that sn is the
goal.

We will define three constraints that ensure a sketch is good.

Definition 8 (Good sketch) For a sketch over a class of problems Q to be
good, the following constraints should hold for all instances in Q (in which the
initial state is not a dead state);

1. For every alive, non-goal state s of the instance, a sketch rule should exist
such that its condition is true in s and its effect can be reached from s.

2. A sketch rule should not lead to a dead state.

3. Every path starting in the initial state and consisting of a chain of rule
applications should eventually reach the goal.

The first constraint assures that if it is still possible to reach the goal, we can
always follow one of the rules, no matter in which state we are. This way, we
can never end up in a state where no other rule can be applied. This constraint
is a bit too demanding since there might be a sketch with rules that never lead
to state s, so there is no need for a rule that can be applied from s. On the
other hand, since we want that a sketch works for a class of problems, we can
argue that it needs to be good with any alive state of the instance as the initial
state. In [10], this constraint is also required.

The second constraint is straightforward. If a pair of states (s, s′) follows a
rule, we don’t want s′ to be a dead state. This way, we ensure that following
rules keeps the possibility of reaching the goal. One can argue whether this
constraint is necessary since the third constraint already requires every chain of
rule applications to reach the goal. For example, look at figure 1. The first con-
straint is satisfied; from every alive, non-goal state, a rule can be applied. The
third constraint is also satisfied, because the only sequence of rule applications
starting from the initial state is first applying rule 1 and then rule 2 (following
the blue arrows). One can argue whether this sketch is good because applying
rules will always lead to the goal starting from the initial state, but intuitively
rule 2 is not acceptable since it leads into a dead state. We decided to keep this
constraint.
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Figure 1: Transition system with sketch rules. ci represents that the conditions of
rule i hold. ei represent that the effects of rule i hold, respectively to the states where
ci held. The black arrows are the transitions, and the colored arrows indicate state
pairs that follow a rule.

The third constraint states that we should eventually reach the goal if we
follow consecutive rules. The first constraint implies that there also exists such
a path given that the initial state is not a dead state.

The constraints we set on a good sketch are inspired by but differ from those
given in previous work. Bonet and Geffner [4] define a sketch as well-formed
if the set of rules in the sketch are terminating. Intuitively, termination means
you cannot get stuck in a cycle when following rules. Additionally, in Bonet and
Geffner the features in a sketch should distinguish the goals, as mentioned in
section 3.2.2. They prove that when a sketch is terminating and has bounded
width, it will eventually reach the goal using the SIWR algorithm.

We define a good sketch in a different way to facilitate translation to tempo-
ral logic and to put extra constraints on them, similar to [10].
A sketch can be good but not well-formed because a good sketch doesn’t require
goal separation as defined by Bonet and Geffner. On the other hand, a sketch
can be well-formed but not good if it doesn’t hold that for every state, a sketch
rule can be applied.

In order to know whether a given sketch is good, we need to solve a sketch
verification problem.

Definition 9 (Sketch Verification Problem) Given a sketch over a class of
problems Q, verify whether this sketch is good.
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In the remainder of this chapter, we will describe how we can translate the
constraints of a good sketch to CTL∗

f . This way, we can use a model checker to
verify whether sketches from our candidate sketch pool are good.

4.3 Translation of Sketch Constraints into CTL∗
f

Our objective is to create logical formulas that express the three constraints,
allowing us to evaluate whether a sketch is “good”. In order to do so, we will
represent the conditions and effects of sketch rules in CTL∗

f .

4.3.1 CTL∗
f

CTL∗ [12] is a logical language that combines state formulae of computational
tree logic (CTL) and path formulae of linear temporal logic (LTL). CTL∗

f has
the same syntax as CTL∗, but considers only finite paths. In addition to the
standard operators of CTL∗

f , we add operators to reason about the past in a
path [22].

We define PV as a set of propositional variables (also called atomic proposi-
tions). A Kripke model is a tuple M = (St,R, V ) in which St is a set of states,
R ⊆ St × St is a set of transitions between these states and V : PV → 2St

is a valuation function which indicates in which states a propositional variable
is true. We assume that if a propositional variable is not true in a state, it is
false. A finite path π over a Kripke model M = (St,R, V ) is a sequence of states
π = (s0, s1, ..., sn) with n ∈ N such that ∀i : 0 ≤ i < n holds that (si, si+1) ∈ R.

The grammar of CTL∗
f consists of state formulae φ, whose truth values are

evaluated in a specific state, and path formulae γ, whose truth values are eval-
uated on a specific finite path.

Let p ∈ PV be a propositional variable. The syntax of CTL∗
f is the following:

φ ::= p | ¬φ | φ ∧ φ | Eγ,

γ ::= φ | ¬γ | γ ∧ γ | Xγ | γUγ | Y γ | Oγ.

State formula Eγ is true in a state if there exists a finite path, starting from
that state such that γ holds for that path. Path formula Xγ is true on a path
if γ is true in the next state on that path. γ1Uγ2 holds on a path if γ2 is true
in a future moment on the path, and γ1 is true until γ2 becomes true. On a
path, Y γ holds if γ was true in the previous step, and Oγ holds if γ was true
somewhere in the past.

Let M = (St,R, V ) be a Kripke model, and q ∈ St a state. We define the
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semantics of the state formulae as follows.

M, q |= p for p ∈ PV if q ∈ V (p)

M, q |= ¬φ iff M, q ̸|= φ

M, q |= φ1 ∧ φ2 iff M, q |= φ1 and M, q |= φ2

M, q |= Eγ iff there exists a finite path π = (q0, q1, ...qn) and j : n ≥ j ≥ 0

such that qj = q and π, j |= γ

The path formulae are evaluated on finite paths. Let π = (q1, .., qn) be a
finite path in M , i ∈ {1, .., n} and π(i) := qi be the ith state on that path.

π, i |= φ iff M,π(i) |= φ

π, i |= ¬γ iff π, i ̸|= γ

π, i |= γ1 ∧ γ2 iff π, i |= γ1 and π, i |= γ2

π, i |= Xγ iff i < n and π, i+ 1 |= γ

π, i |= γ1Uγ2 iff there is a j with i ≤ j ≤ n such that π, j |= γ2

and for all k with i ≤ k < j, we have that π, k |= γ1

π, i |= Y γ iff i > 0 and π, i− 1 |= γ

π, i |= Oγ iff there is a k with 1 ≤ k ≤ i such that π, k |= γ

Additionally, we define state formula Aγ (for all paths that start in this
state γ holds), and path formulae F (somewhere in the future γ holds) and G
(γ holds in all states) in terms of the other operators.

Aγ ≡ ¬E¬γ
Fγ ≡ TrueUγ

Gγ ≡ ¬F¬γ

4.3.2 Expanded Sketch

Consider a sketch S that consists of n rules over a set of features Φ:

S = {Ri : Ci → Ei|i ∈ {1, ..., n}}

with Ci = {ci1 , ci2 , ..., cik} a set of feature conditions and Ei = {ei1 , ei2 , ..., eil}
a set of feature value changes. In a state s, each feature condition cij is true or
false, making it suitable to be used as propositional variables in logical formu-
las. This is not the case for feature value changes. The value of a feature value
change e over a feature f can depend on both the current state and a previous
state. To solve this, we write the sketch rule for all possible values of f and
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will substitute the conditions and feature value changes by feature variables.
We define a feature variable as (n = x), (n > x) or (n < x) for n a numerical
feature and x a non-negative integer, or b, ¬b for b a boolean feature. Feature
variables can be evaluated in a single state and can thus be used as propositional
variables in logical formulas.

We define an expanded sketch as a set of expanded sketchrules

Sε = {Rε
i : Cε

i → Eε
i }

in which the conditions Cε
i and the effects Eε

i are sets of feature variables. These
conditions and effects can be used in logical formulas by making a conjunction
of the feature variables in the set. To expand a sketch means to translate a
sketch to an expanded sketch.

Sketch expansions are instance specific. To expand a sketch, we use a domain
instance to determine the upper and lower bound of a feature n and split the
rule into formulas for all possible values of n.

Consider a sketch rule Ri : {c1, c2, ..., ck} → {e1, e2, ..., el}. Let ei = n ↓ for
a numerical feature n. For St a set of states, and the values of n bounded by

nmin ≤ n(s) ≤ nmax ∀s ∈ St

we can split this rule into multiple rules Rim with nmin ≤ m ≤ nmax. Each rule
Rim is defined as follows:

Rim : {c1, ..., ck, (n = m)} → {e1, ..., ei−1, (m > n), ei+1, ..., el}.

If the effects contain any other feature value change of the form n↓, n↑, n= for a
numerical feature n or b= for a boolean feature b, we can repeat this process for
the new rules Rim until all feature value changes are substituted with feature
variables.

For an expanded sketch, we can write the condition and effect of its rules as
a conjunction of its feature variables.

Next, we will translate the three constraints of a good sketch to CTL∗
f . We

will translate each constraint separately and require their conjunction to hold
for a good sketch.

4.3.3 Constraint translation

We introduce a proposition goal, which is true in all the goal states of the prob-
lem instance.

The first constraint states that for every state s in the instance, a sketch
rule should exist such that its condition holds in s and its effect can be reached
from s, unless s is a goal state or a dead state. This can be expressed by saying
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that on every path, either goal is true and we are in the goal state, or it is no
longer possible to reach the goal, or there exists a rule with a condition that
holds at present, and there exists a path such that its effect holds in the future.
In CTL∗

f , we express this constraint as:

AG
(∨

i

(
Ci ∧EX(EF(Ei ∧EFgoal))

)
∨ goal ∨ ¬EFgoal

)
(1)

The second constraint states that a sketch rule must never lead to a dead
state. In other words, for every rule it must hold that if a condition is true at
any point, there cannot be a future where the effect is true in a dead state.∧

i

AG
(
Ci → ¬EX(EF(Ei ∧ ¬EFgoal))

)
(2)

The third constraint states that if a path, starting in the initial state, consists
of a sequence of rule applications, the goal should eventually be reached. We
express this in CTL∗

f as follows:

A

((∨
i

(Ci ∧XFEi)︸ ︷︷ ︸
f1

∧G
((∨

i

(YOCi ∧ Ei)
)
→
(∨

j

(Cj ∧XFEj) ∨ goal
)

︸ ︷︷ ︸
f2

))
→ Fgoal

)

(3)

f1 expresses that the path starts by applying one of the rules, and f2 states
that from that point onward, it must always hold that if we reach a state by
applying a rule, it is either possible to apply another rule or the goal is reached.
This formula can be expressed without the past operators Y and O, but we use
them for readability.

As the last constraint is an implication, it also holds when no paths satisfy
the antecedent (i.e., no paths exist consisting of a sequence of rule applications).
However, the first and second constraints imply that there should always be such
a path. The first constraint asserts that a rule can be followed in each alive state.
The only scenario where no rule is applicable is when we reach a dead state.
However, the second constraint specifies that a rule cannot lead to a dead state,
ensuring that, given a good sketch and satisfaction of the first two constraints,
a sequence of rule applications always exists.
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Figure 2: This figure shows a simplified schematic overview of our implementation.
Green boxes represent files. Orange boxes and arrows represent that we used objects
and functionalities of the Tarski library for this part of the program. Blue arrows and
boxes mean we used objects and functionalities from the DLPlan library.

5 Implementation

This section will review how we implemented our method for generating and
verifying sketches 1. Figure 2 shows a simplified schematic overview of our im-
plementation. The full overview can be found in Appendix C.

We start by parsing files that contain information about the domains and
instances we want to use. Next, we use this information to build transition sys-
tems and state spaces for all instances. We then use the states of the instances
to generate a feature pool. These features are used to create a pool of candi-
date sketches lazily. For each candidate sketch, we start by model-checking the
instances with the smallest number of states and work toward the largest. As
soon as one of the constraints of a good sketch doesn’t hold for a sketch on
one of the instances, we continue to the following sketch without verifying this
sketch on the remaining instances. If all constraints hold on all instances for a
sketch, we add this sketch to our pool of good sketches.

5.1 Language and Libraries

We implemented our method for generating and verifying sketches in Python
(3.10). We chose Python because of the availability of three libraries:

1. The Tarksi library [14] allows us to parse PDDL domains and instances
into Python objects;

2. The DLPlan library [8] provides functionality to generate a pool of features
from domain instances;

3. The PyNuSMV library [5] provides Python bindings for the NuSMVmodel
checker.

Due to the lack of CTL∗
f model checkers with past, we opted to alter our

formulas into CTL and LTL formulas and use a suitable model checker for this
new problem. We used the NuSMV model checker [6] because it supports CTL

1The implementation is available online at https://github.com/AnnelineD/TLSketch/
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and LTL model checking and allows for past operators in LTL. Additionally,
the PyNuSMV library made it easy to access the NuSMV functionalities in our
Python code.

Additionally, we made a small logic library that supports representations
of LTL and CTL. Several other Python libraries implement LTL and/or CTL
(for example, ltlf2dfa, NL2LTL, pyModelChecking, ...). Still, all focus on
broader goals like model checking, translating natural language to logic, or finite
automata translation. Since we merely needed representations and no additional
functionality, these libraries were more challenging to use than necessary for our
purpose. Additionally, we found no libraries that support past LTL.

5.2 Input-PDDL

As input for our program, we use domains and instances represented in the
Planning Domain Definition Language (PDDL) [16]. PDDL is a language to
express planning domains and instances. A planning domain is described by its
predicate schemas, action schemas, and, optionally, types and constants. Types
can tag objects and variables in predicate symbols and action schemas such that
only the objects with corresponding types can be used to ground predicates and
actions. Constants are objects that are present in every instance. A planning
instance of such a domain is described by a set of (typed) objects, the set
of propositions that are true in the initial state, and a logical formula that
represents the goal. In our examples, only conjunctions are allowed in the goal.
The goal states are the states of the instance in which this goal conjunction is
true.

Example PDDL descriptions of the domain and an instance of the Blocksworld
can be found in Appendix A.

5.3 Building the Transition Systems

The Tarski library [14] is a helpful tool for parsing PDDL files and represent-
ing the corresponding domains and instances. It provides functionalities for
representing states and actions of problem instances, as well as calculating the
resulting state γ(s, a) after applying an action a ∈ A to a state s ∈ S.

Besides parsing PDDL files, we utilize the Tarski library to build a transition
system given an instance. To build such a transition system, we iteratively apply
grounded actions to calculate reachable states, starting at the initial state.

We represent this transition system as a directed graph with nodes labeled
by numbers. We maintain a separate list of states, indicating which state cor-
responds to each node in the graph. This approach allows for easy translation
of states between representations of different libraries without modifying the
graph structure. Similarly, we represent the initial state and goal states using
the indices of the states in this list. This ensures they don’t need to be changed
when translating between different state representations.

We will represent states by sets of strings, which can be easily translated to
and from both the state representations from the Tarski and the DLplan library.
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This representation enables efficient caching, which will be discussed in detail
later.

Furthermore, we use the Tarski library to parse the goal of the instance into
a set of propositions (which is possible because the goal is a logical formula with
only conjunctions) that we can use to find all goal states. For each goal state,
we add a self-loop in the transition system. We do this because we use a model
checker for infinite paths instead of finite paths. By adding a self-loop in the
goal state, we can mimic finite paths that end in the goal.

5.4 Sketch generation

5.4.1 Feature extraction

We use the DLPlan library [8], made by Drexler et al., to calculate a feature
pool and to evaluate features in states. Like the Tarski library, it has a represen-
tation of states and instances but also of features and sketches (called policies).

As we saw, features are functions from states to positive numbers or boolean
values. In DLPlan, features are Description Logic (DL) formulas over the pred-
icate symbols of a domain. Description logic consists of concepts and roles,
which are respectively unary and binary relations over the set of objects of an
instance. In addition to the roles and concepts in Description logics, Drexler
et al. add a numerical grammar rule n count(X) that counts the number of
objects that adhere to a description logic formula and a boolean grammar rule
b empty(X) that expresses that the set of objects for which the DL formula X
holds is empty. A feature’s complexity is the number of nested concepts and
rules used to construct the feature.

DLPlan can generate features based on a set of states. Although unclear in
[10] how many states are used and of which instances, we use all states of all
provided instances. As input, we needed to translate states in our representation
to states in the DLplan representation.

In the Tarski library, instances are represented by predicate symbols and
action schemas from a domain, and objects as we defined an instance in the
theory. On the contrary, DLPlan represents an instance using a set of grounded
predicates. In DLPlan, this instance information is necessary before it is possi-
ble to build a state. To translate states from the representation of the Tarski
library to a representation of the DLPlan library, we needed to ground all pred-
icates.

Additionally, we add a static goal predicates for each predicate that is
(part of) the goal, as in [9, 10]. A static predicate is a predicate that is true
in every state of an instance. These goal predicates allow us to build fea-
tures that note whether some goal predicate is reached. For example in the
blocksworld, if the goal is to stack blockA on blockB, we add grounded predi-
cate ong(blockA, blockB) as a static predicate. This goal predicate allows us to
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make a feature that checks whether the goal is reached. Since we use the exact
same naming for all propositions and objects in the Tarski, DLplan, and our
own representation, the translation between states of the different representa-
tions is straightforward.

Once we have the DLPlan representation of all DLPlan states, we can use
the DLPlan library to generate a feature pool and calculate the values of these
features for each state. From this feature pool, we delete four features;
“b empty(c top)”, “b empty(c bot)”, “n count(c top)”, “n count(c bot)”. These
features are domain independent and have the same value in each state. There-
fore, they are not informative.

Once all feature valuations are calculated, we will continue working with
these features in a string representation. This way, our sketch representation
does not rely on the DLPlan library. Once the features and their values are
cached (more about caching later), there is no need to recalculate the instances
or states in the representation of the DLPlan library. Additionally, this facili-
tates testing.

5.4.2 Sketch representation

The DLPlan library contains representations for policies that can also be used
to represent sketches. We chose to make a new representation for sketches for
three reasons. First, to generate a pool of candidate sketches, we start by mak-
ing sketch rules that we combine into different sketches. The DLPlan library has
no representation for separate rules but only for complete policies, which made
it cumbersome to combine sketch rules into new sketches. Secondly, the condi-
tions and effects in these policies are represented such that we can only know
which condition or effect a policy uses by comparing its string representation,
which is not elegant. Lastly, the way policies are constructed is inconvenient for
the way we create a candidate sketch pool.

To represent sketches, we started by creating representations for each possi-
ble feature condition and feature value change. Besides the conditions mentioned
previously (n = 0, n > 0, b, ¬b), we add a feature condition f? for a numerical
or boolean feature f . This condition represents that it doesn’t matter which
value f has and contains, thus the same meaning as not mentioning this feature
in the conditions or effects. We add this feature condition only to simplify the
implementation of the feature generation process, where we start with a set of
features and assign a condition to each. For the same reason, we added f? to
the possible feature value changes (n ↑, n ↓, n=, b, ¬b, b=). After the sketch
pool is generated, all feature conditions and value changes of the form f? can
be removed from the sketch.
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5.4.3 Generation

We generate sketches starting with a pool of features Φ of maximal complexity
k. For the sketch generation, we use two different parameters. Let fmax be the
maximum number of features a sketch can use and rmax the maximum number
of rules a sketch can have. We start by constructing all subsets of Φ of size fmax

and smaller F = {X ⊆ Φ : |X| ≤ fmax}.
Each feature can occur in three different conditions; n = 0, n > 0, n? for a

numerical feature n, and b, ¬b, b? for a boolean feature b. For every set ϕ ∈ F,
we create all possible conditions in which the features in ϕ can occur. For a
feature set of, for example, two features, we would get 32 = 9 possible conditions.
For each of these possible conditions, we then calculate the possible effects. In
this process, we already eliminated some options based on the conditions. For
example, if the condition contains the numerical feature condition n = 0, we
don’t allow the feature value change n↓ in the same rule. For a boolean feature
condition b (resp. ¬b), we don’t allow the effect b=, since, in this case, it is
equivalent to the effect b (resp. ¬b). For a feature condition f?, we don’t allow
the feature value change f? since the feature could, in this case, be left out of
the rule and is equivalent to a rule which uses fewer features. We also don’t
allow an effect to only have value changes of the form f?, since this would result
in a rule in which the effect is empty.

Another possible constraint to set here is to allow the effect n ↓ only if n > 0
is mentioned in the conditions. This is because a feature cannot decrease if its
value is not bigger than zero, so a rule {} → {n ↓} has essentially the same
meaning as {n > 0} → {n ↓}. We chose not to use this constraint since some of
the sketches generated by Drexler et al. [10] are from this first form, and using
this constraint would disallow us to reconstruct their learned sketches.

Once we have all possible conditions and all possible effects that match these
conditions, we also have all possible sketch rules. By combining them in sets of
rmax rules, we receive all sketches of size rmax.

In our code, we implemented these steps as generators. The number of
candidate sketches grows fast when we increase fmax or rmax. Increasing fmax

enlarges the number of possible rules since more combinations of features can
be used in each rule. When increasing rmax, more combinations of rules are
possible, increasing the number of sketches. Therefore, creating all candidate
sketches is not always feasible or necessary. Using generators, we lazily create
the feature sets, conditions, and rules.

5.5 Sketch verification

5.5.1 CTL∗
f to CTL and LTL

Linear temporal logic (LTL) and Computational tree logic (CTL) are both dif-
ferent subsets of CTL∗. LTL is a subset defined on traces, and CTL is a subset
defined on states. The syntax of LTL is the following:
Let p ∈ PV be a propositional variable.
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γ ::= p | ¬γ | γ ∧ γ | Xγ | γUγ | Y γ | Oγ.

Given a Kripke model M = (St,R, V ), and an infinite path λ = (q0, q1, ...)
with qi ∈ St, the semantics of LTL with past are defined by the following
clauses:

λ, i |= p iff λ[i] ∈ V (p)

λ, i |= ¬γ iff λ, i ̸|= γ

λ, i |= γ1 ∧ γ2 iff λ, i |= γ1 and λ, i |= γ2

λ, i |= Xγ iff λ, i+ 1 |= γ

λ, i |= γ1Uγ2 iff there is a j with i ≤ j such that λ, j |= γ2

and for all k with i ≤ k < j, we have that λ, k |= γ1

λ, i |= Y γ iff i > 0 and λ, i− 1 |= γ

λ, i |= Oγ iff there is a k with 0 ≤ k ≤ i such that λ, k |= γ

Analogous as before, we define additional operators:

Fγ ≡ TrueUγ

Gγ ≡ ¬F¬γ

We define that LTL formula γ holds for a Kripke model M in state q iff
λ, 0 |= γ for every infinite path λ in M that starts in q.

Just like CTL∗
f , CTL has added path operators. The difference is that in

CTL, path operators can only occur when followed by a state formula.

φ ::= p | ¬φ | φ ∧ φ | EXφ | EGφ | EφUφ.

Its semantics is, just like the semantics of state formulae in CTL∗
f , defined
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on states. Let M = (St,R, V ) be a Kripke model and q ∈ St a state.

M, q |=p for p ∈ PV if q ∈ V (p)

M, q |=¬φ iff M, q ̸|= φ

M, q |=φ1 ∧ φ2 iff M, q |= φ1 and M, q |= φ2

M, q |=EXφ iff there exists an infinite path λ starting from q

such that M,λ[1] |= φ

M, q |=EGφ iff there exists an infinite path λ starting from q

such that M,λ[i] |= φ for all i ≥ 0

M, q |=Eφ1Uφ2 iff there exists an infinite path λ starting from q

such that M,λ[i] |= φ2 for some i ≥ 0 and M,λ[j] |= φ1

for all j with 0 ≤ j ≤ i

Now we have defined LTL with past and CTL on infinite traces, we will
translate the CTL∗

f constraints presented in section 4.3.3 into separate LTL
and CTL formulas. The first two constraints can be translated into CTL, and
the last into LTL.

The CTL∗
f formula of the first constraint (formula (1) in section 4.3.3) only

uses state formulae directly combined with path formulae. Therefore we can
interpret it directly as a CTL formula. The same goes for the second constraint
(formula (2) in section 4.3.3).

The CTL∗
f formula of the third constraint doesn’t contain any state formulae

except the A wrapped around the entire formula. It can directly be interpreted
as an LTL formula since LTL formulas are model checked on all paths that
start from the initial state.

Given an instance with transition system M and initial state q. Using the
NuSMV model checker, a sketch is good if the formulas of the first and second
constraintboth hold as CTL statements on M in the initial state, and the third
constraint holds in q as an LTL statement.

5.5.2 SMV-files

The NuSMV model checker uses smv-files as input. An smv-file specifies the
transition system and initial state on which we want to model check. Addition-
ally, the smv file can contain variables and their values in each state, which can
be used in logical formulas. We will add the features and their feature values
in each state as variables to this smv file. We also define a variable “goal” that
we define to be only true in goal states. Lastly, we also add the conditions
and effects of sketch rules as variables. This makes the logic constraints more
readable, as we will see in section 5.5.4.
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5.5.3 Expanded sketch

To translate a sketch rule R : C → E to a set of expanded sketch rules, we
make a list of possible feature values such that we can combine them in the new
conditions. We start by finding all feature value changes that rely on previous
states and putting their features in a set ∆. These feature value changes are all
numerical, plus the boolean case where a feature needs to keep its value.

∆ := {f : (f ↑∈ E) ∨ (f ↑∈ E) ∨ (f = ∈ E)}

For each feature, we search in the condition whether this feature has constraints
(e.g. it needs to be bigger than 0) and write out all possible values this feature
can have, considering the conditions. Next, we take all combinations of these
possible feature values and make a new, expanded condition for each combi-
nation. To this condition, we add the feature conditions of all features that
were not relevant before. Next, we create a new, expanded effect for each new,
expanded condition, using feature variables.

The NuSMV model checker supports statements like “n > 0”, which makes
it possible to use feature variables directly in the input for the model checker.

5.5.4 Laws

In our code, we refer to the LTL and CTL translations of the constraints of
a good sketch as laws. These laws contain disjunctions over the number of
expanded sketch rules. Therefore, we created functions that take an integer k
as input, and return a law, considering there are k expanded sketch rules. We
call these functions abstract laws. We do not use the conditions and effects
of the expanded rules directly into the law but use variables ci and ei for the
conditions and effects of the ith rule, which we define in the SMV file. For
example, take an imaginary constraint

∧
i ci → ei. The abstract law is defined

as L(n) =
∧

0<i≤n ci → ei. If the expanded sketch we want to check has, e.g.,
two rules, we can use L(2) and define c1, c2 and e1, e2 separately.

5.5.5 Model-checking

To verify our sketches, we use the NuSMV model checker and its Python bind-
ings provided by PyNuSMV [5]. We order the laws such that CTL formulas
are checked before the LTL formulas. We do this because, for most instances,
it is computationally less expensive to check a CTL formula than it is to check
an LTL formula. If one of the formulas fails, we no longer check the following
formulas. Instead of writing the SMV encodings to files, we deliver them to the
designated method directly.

5.6 Caching

During the process, we must often access the transition systems, features, and
feature valuations. Building transition systems can take long, and it can re-
quire a lot of memory to keep them all in memory if the state spaces get big.

31



Therefore, we cache the transition systems and states encoded as strings and
the init and goal states. Additionally, we also cache features and feature valu-
ations. By caching the feature valuations, there is no need to keep the DLplan
representation of all states as soon as the feature valuations are calculated once.
Lastly, we also cache the generated good sketches, together with timings. When
we generate all sketches with maximum n rules and maximum m features, we
can use this result when generating sketches with maximum n + 1 rules and
maximum m features without having to recreate the results.
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width 1 width 2
C ∥F∥ ∥R∥ Found C ∥F∥ ∥R∥ Found

Blocksworld-Clear 4 1 1 ✓ 4 1 1 ✓
Blocksworld-On 4 2 2 ✓ 4 1 1 ✓
Delivery 4 2 2 ✓ 4/5 1 1 ✓
Gripper 4 2 2 ✓ 4 1 1 ✓
Miconic 2 2 2 ✓ 2 1 1 ✓
Reward 2 1 1 ✓ 2 1 1 ✓
Spanner 5/6 1 1 X 5/6 1 1 X
Visitall 2 1 1 ✓ 2 1 1 ✓

Table 1: The maximum feature complexity (C), number of features (F) and
number of rules (R) of the sketches found by Drexler et al. [10] per sketch width.
A checkmark (✓) means we were able to reconstruct and verify the sketch. A
cross (X) means we were not able to verify this sketch. When two different
complexities are reported, this means that one of the features used in Drexler
et al.’s sketch was not present in our feature pool, and we used an equivalent
feature of complexity+1.

6 Experiments

6.1 Specifications

To verify our method, we aimed to reconstruct the sketches that Drexler et al.
generated in their paper about learning sketches [10]. While they only mention
some of their generated sketches in the paper, the remaining sketches can be
found in their supplementary material [11]. Drexler et al. generate sketches of
widths zero, one, and two for nine planning domains. The domains, number of
features, maximum complexity of a feature, and number of rules each of these
sketches has can be found in table 1. Out of the seventeen sketches of widths
one and two, twelve contain only one rule and one feature, and four sketches
contain two rules and two features. Therefore, we ran two experiments:

• Experiment 1: Generate and verify all possible candidate sketches with
one rule and one feature.

• Experiment 2: Generate and verify all possible candidate sketches with
two rules and two features.

We ran the first experiment for eight of the nine domains Drexler et al.
used. We did not use the Childsnack domain. Drexler et al. constructed only
one sketch for this domain which contained four features and five rules. We did
not have the computational resources to run an experiment of this size. For the
second experiment, we used the Blocksworld-On, Delivery, Gripper, and Miconic
domains. For the other domains, none of the Drexler sketches had two rules and
two features, so that no Drexler sketch could be found in the second experiment.

We did not reconstruct the width zero sketches due to reasons explained in
section 6.4. We used the feature complexity reported by Drexler et al. for each
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domain as the maximum feature complexity. Exceptions are the Delivery and
Spanner domain, for which the features used by Drexler et al. did not show up
in our feature pool, due to changes in the DLPlan library. Therefore we had to
use equivalent features that had complexity +1. For experiment 1, we used the
same instances as Drexler et al. used in their experiments. Some domains con-
tained duplicate instances, which we removed before running our experiments.
We will provide more details about the used instances per domain in the re-
mainder of this section. The pool of candidate sketches and the model check
time per sketch increased for the experiments with two features and two rules.
Our initial idea was to set a time-out on model checking a sketch such that it
would skip the sketch and go to the next one in case the model checking took
too long. Unfortunately, PyNuSMV did not support the early stopping of the
model-checking process. Therefore, we only ran the experiments on instances
where a sketch could be checked in less than ten minutes.

We set an overall maximum time of 24 hours per domain.
We ran our experiments on a laptop with an AMD CPU with 6900HS on a

Fedora 37 Linux distribution. We had access to 32 GB RAM but never used
more than 2GB per domain.

6.2 Domains

Blocksworld-Clear The Blocksworld domain consists of a table with blocks
and a robot arm. The robot arm can pick up one block at a time to stack and
unstack the blocks on the table. In Blocksworld-Clear, the goal is to reach a
state where no other blocks are stacked upon a specific block.

Blocksworld-On The Blocksworld-On problem is based on the Blocksworld
domain. The goal is to have two specific blocks stacked on top of each other.

Delivery In the delivery environment, a truck has to pick up packages and
deliver them to a target destination.

Gripper In the Gripper domain, several balls are lying in room A. A robot
with two arms can pick up one ball per arm and move between rooms A and B.
The goal is to bring all balls to room B.

Miconic In Miconic, passengers on different floors wait for an elevator to pick
them up and bring them to their desired floor. When the elevator is on the floor
of a passenger, they can board it, and only when it is at their goal destination,
they can depart.

Reward In the Reward domain, some rewards are placed around the floor.
The goal is for an agent to pick up all the rewards. The environment is imple-
mented as a square grid, in which only specific cells are accessible.
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|I| C |F | |CS| |GS| tfailed tgood tgood/I ttotal
Blocksworld-Clear 237 4 26 199 16 0.2 143.24 0.6 2333.78
Blocksworld-On 231 4 28 215 1 0.18 751.05 3.25 794.54
Delivery 10 5 29 229 5 0.01 0.26 0.03 4.73
Gripper 5 4 34 263 5 0.01 3.08 0.62 18.67
Miconic 503 2 9 69 1 0.2 155.54 0.31 170.29
Reward 71 2 8 62 5 0.02 1.78 0.03 10.28
Spanner 346 6 68 535 6 0.78 417.55 1.21 2950.89
Visitall 177 2 5 39 2 0.06 102.26 0.58 206.98

Table 2: Data of experiment 1: generating and verifying sketches with max 1
feature and max 1 rule.
|I| is the number of domains we used to verify the candidate sketches.
C is the maximum feature complexity.
|F | is the number of features generated.
|CS| is the number of candidate sketches generated and tested.
|GS| is the number of good sketches found.
tfailed is the time in seconds it takes on average to check a sketch that is not
good.
tgood is the time in seconds it takes on average to check that a sketch is good.
tgood/I is the average time in seconds to check when a sketch is good per instance.
ttotal is the total time in seconds that was needed to verify all candidate sketches.

|I| C |F | |CS| |GS| tfailed tgood tgood/I ttotal(h)
Blocksworld-On 13 4 28 2073802 6209 0.02 0.74 0.06 17.16
Delivery 10 4 19 1021086 9189 0.02 0.61 0.06 9.76
Gripper 2 4 34 2761231 37228 0.01 0.05 0.02 24.0
Miconic 19 2 9 196355 2914 0.02 1.54 0.08 3.39

Table 3: Data of experiment 2: generating and verifying sketches with max
two features and two rules. The symbols in the heading have the same meaning
as in table 2. The total time is represented in hours.

Spanner In the spanner domain, there is a man who can only move forward
standing at the start of a corridor. At the end of the corridor is a gate with
some nuts. On the way to the gate, spanners are laid out on the floor, which
the man can pick up. The goal is to use the spanners to tighten all nuts. Each
spanner can only be used once.

Visitall In Visitall, an agent has to visit specific cells of a rectangular grid at
least once.

6.3 Results

To have an overall idea of the number of candidate sketches, the number of good
sketches, and the time our method takes to verify good sketches, we provide an
overview of this information for both experiments. In table 2, we show data for
experiment 1. One thing we report is the number of instances used to verify
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Figure 3: Average time it takes to verify a good sketch on an instance for sketches
with one sketch rule and one feature (experiment 1), and two sketch rules and two
features (experiment 2) over the instances used in both experiments.

Figure 4: Average time to verify a good sketch on an instance per number of states
of the instance.
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Figure 5: Average time to verify a good sketch over one specific instance per number
of expanded sketch rules. For each of the domains, we use the timings of verifying
sketches over largest instance that was used for both experiment 1 and experiment 2.
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the candidate sketches for each domain. More details about these instances are
discussed later in the chapter. For each candidate sketch, we saved the time
to model-check this sketch over each used instance. We used these timings to
calculate the average amount of time it takes to model-check a sketch that is
not good and the average amount of time it takes to verify a good sketch. Since
every domain uses a different number of instances, we also provide the average
time to check a good sketch per instance. The total time reported in this table
is the time to run our program, given that the transition systems, features, and
feature valuations are already cached. For experiment 1, we report all good
sketches we found in Appendix B.

Table 3 shows the same information for experiment 2, generating and veri-
fying sketches with two rules and two features. Again, we will give more details
about the used instances in the remainder of this chapter. For this experiment,
we report the total time in hours. Since there were thousands of good sketches
for each instance, we don’t provide a list of them, but we will discuss a few in
the remainder of this chapter.

After running both experiments, we obtained a set of good sketches for each
experiment and each domain. In these sets, we checked whether the sketches
learned by Drexler et al. [10] were present. Table 1 gives an overview of which
Drexler sketches we found and which we didn’t. One can see that we found the
width-1 and width-2 sketches for all domains except for the Spanner domain.

To fairly compare the time it takes to verify a good sketch with one rule
and one feature with the time it takes to verify a sketch with two rules and
two features, we created a bar chart in which we took an average of the timings
for model-checking sketches only over instances used in both experiments. This
chart can be found in figure 3. We see that for the Gripper domain and the De-
livery domain, it takes longer, on average, to verify sketches with two rules and
two features (experiment 2) than it takes to verify one sketch and one feature
(experiment 1), as we would expect. For domains Blocksworld-On and Miconic,
it is the opposite way around.

To capture the effect of the size of an instance on the time to model-check
a good sketch, we show the average time it takes to verify a good sketch on an
instance, given the number of states of its transition system, for both experi-
ments in figure 4. This figure was created by calculating the number of states
per instance. For each good sketch, we calculated the average time it takes to
verify this sketch over instances of size n. Next, we took the average of these
numbers for all sketches.

To examine the effect of the number of expanded sketch rules on the time it
takes to verify a good sketch, we made figure 5, which shows the average time
it takes to verify a good sketch, per number of expanded sketch rules. These
results were obtained using a single instance, as the instance size affects both
the number of expanded rules and the time required for model checking. To

38



achieve the broadest range of expanded rule numbers, we selected the largest
instance shared between experiment 1 and experiment 2 for each domain. For
each sketch, we calculated the number of expanded sketch rules for all instances
and took the average time needed to verify a sketch over all instances in which
the sketch has n expanded sketch rules. For the same n, we then took the av-
erage of these averages over all sketches.

In the remainder of this chapter, we will discuss the Drexler sketches we
found and didn’t verify for each experiment and discuss some of the other good
sketches we found.

6.3.1 Experiment 1

Blocksworld-Clear For the Blocksworld domain, Drexler et al. generated
600 instances; 200 with three blocks, 200 with four blocks, and 200 with five
blocks. After removing duplicate instances, we ran our experiments on 237 in-
stances, of which 13 with three blocks, 71 with four blocks, and 153 with five
blocks.

The sketches of width one and width two found by Drexler et al. have one
rule and one feature, so we aimed to find them in this first experiment. The
width-1 sketch for this domain is the following:

{} → {n ↑}

in which n is a numerical feature that counts the number of blocks are clear and
should be clear in a goal state. The sketch thus says that the number of blocks
that should be clear and are clear should always increase.

The width-2 sketch for this domain found by Drexler et al. is the following:

{b} → {¬b}

With b a boolean feature that states that none of the blocks that need to be
cleared are clear. Both these sketches were present in our generated set of good
sketches.

Besides the two Drexler sketches, we generated 14 other good sketches. We
present them in the appendix B. Interestingly, one of the other sketches that
we found is equivalent to Drexler’s width-1 sketch:

{n = 0} → {n ↑}

with n the same feature as defined above. This sketch states that if no goal
blocks are clear, it is desired to increase the number of clear goal blocks. In
Blocksworld-Clear, there is only one block that needs to be cleared. Therefore
n is always zero except in a goal state, and this sketch is equivalent to the
width-1 Drexler sketch.
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Analogous, we found an equivalent sketch for Drexler’s width-2 sketch:

{} → {¬b}

with b the same feature as before. This sketch states that it is always desired
to reach a state where some goal blocks are clear.

Blocksworld-On Similarly to Blocksworld-Clear, Drexler et al. generated
600 instances in total, divided over instances with three, four, and five blocks.
After removing duplicate instances, we ran our experiments on 231 instances,
of which 13 with three blocks, 68 with four blocks, and 150 with five blocks.

For this domain, we found only one sketch with one rule and one feature,
which is the same sketch as the width-2 sketch of Drexler et al.

{} → {n ↑}
With n a numerical feature that counts the number of blocks that are cor-

rectly stacked upon each other.

Delivery Like Drexler et. al, we used only instances where the environment
is a 2x2 grid with one or two packages. Five instances were generated for each
configuration, resulting in 10 instance files.

For Delivery, Drexler et. al found following width-2 sketch:

{} → {n ↑}

with n the number of objects that are at their goal location. This sketch ex-
presses that the number of objects at one of the goal locations should always
increase.

When generating features using the DLPlan library, our feature pool did not
include the exact feature used in Drexler et. al’s sketch. This is because, due
to an update in the DLPlan library, the generator does not create concepts for
predicates of arity two and higher. Therefore our feature pool did not include
this feature. Nevertheless, we were able to find a feature with the same fea-
ture evaluations as n. This new feature has complexity five instead of four for
Drexlers feature. Therefore, we ran the experiment with a maximum feature
complexity of five.

With this equivalent feature, we could reconstruct the width-2 sketch for
delivery, together with four other sketches.

Two of the other sketches that we found are:

{} → {n0 ↑}

with n0 the amount of objects (i.e. packages) at their goal location and

{} → {n1 ↓}
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with n1 the amount of packages that are not at their goal location. Interestingly,
n0 and n1 are each others complements. Therefore, both sketches have an
analogous meaning.

Gripper Drexler et al. constructed instances with one to five balls for the
gripper domain. Since the initial state is always the same (all balls and the
robot start in room A), there is only one instance for each number of objects.
Therefore we used five instances in total.

The width-2 sketch for the Gripper domain found by Drexler et al. has one
rule and one feature:

{} → {n ↑}

with n counting the number of well-placed balls. This sketch expresses that the
number of well-placed balls should always increase.

We were able to find and verify this sketch, together with four other good
sketches.

Miconic As in Drexler et al., we used instances with two, three, and four
floors, and for each number of floors, two, three, or four passengers. Drexler et
al. generated 100 instances for each configuration, resulting in 900 instances in
total. After removing all duplicates, 503 instances remained.

We only found one good sketch with one rule and feature for Miconic, which
was the same as Drexler’s width-2 sketch:

{} → {n ↑}

with n the number of passergers that are served. Passengers are served when
they arrive on their target floor. The sketch thus says the number of passengers
on their desired floor should increase.

Reward Drexler et al. generated 50 instances with a grid of 2x2 and 50 in-
stances with a grid of 3x3. Each of the instances has a random number of
accessible cells and a random number of rewards. After removing duplicate in-
stances, we ended with 21 instances of 2x2 and 50 instances of 3x3, which gave
us 71 instances.

For the Reward domain, the width-1 and width-2 sketches are the same. The
sketch has one rule that states that the number of rewards on the floor should
decrease. The sketch is the following:

{} → {n ↓}
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with n the number of rewards that are lying on the floor. The sketch says
that one should always decrease the number of rewards on the floor. The only
way to do this is by picking up rewards.

We were able to verify this sketch, together with four other sketches.

Spanner For the Spanner domain, we used instances with a corridor of three
to five tiles, for each corridor length three to five nuts, and the number of span-
ners equal to or bigger than the number of nuts with a maximum of five spanners.
For each configuration of variables, Drexler et al. provided 20 instances. After
removing duplicates, 346 instances remained.

In Drexler et al., the width-1 and width-2 sketches found for the Spanner
domain are the same:

{} → {n ↓}

With n counting the number of unpicked spanners plus the number of loose
nuts. Thus, the sketch says picking up a spanner or tightening a nut is good.

Our algorithm generates this sketch but is not considered as good. The
reason for this lies in constraint two; no rules can lead to a dead state. One can
decrease n by picking up a spanner, walking to the gate, and tightening a nut.
If there are more nuts in the instance, a dead state is reached since the man
cannot go back to pick up more spanners.

On the contrary, Drexler et al. require that if the effect of a rule holds in a
dead state, there must be an alive state closer to the current state that can be
reached by applying one of the rules. Therefore, this sketch is valid according
to their definition. Their definition is based on the SIWR algorithm, which will
only search for the closest state that satisfies an effect. Since we do not assume
the algorithm the sketches will be used in, our definition of a good sketch is
different.

We did find six good sketches that can be found in the appendix. The first
of these sketches is the following:

{} → {n0 ↑}

With n0 counting the locations where no loose nuts are. The sketch encodes
that tightening all nuts at a location is good.

Another working sketch we find is

{n0 > 0} → {n0 ↑}

with the same feature n0. Noticeable here is that n0 is always positive, as
there are only nuts at the gate and not at the other locations in the hallway.
Therefore, both these sketches have the same meaning.
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Visitall For the Visitall domain, we had to remove some ill-defined instances
with cells disconnected from the other cells such that reaching the goal became
impossible. Drexler et al. created 50 instances per feature setting, with grids of
size 2x2 and 3x3, goal cells 50 percent of the grid, and 100 percent of the grid,
which gave 400 files. After removing duplicate and ill-defined instances, we had
177 instances left.

The sketch Drexler et al. found for both width one and width two are the
same; increase the number of visited cells:

{} → {n ↑}

with n counting the number of cells that are visited. The sketch expresses
that it is good to visit new cells.

We found two good sketches for one rule and one feature, one of which is
the above sketch of Drexler et al. The other sketch is the following:

{n > 0} → {n ↑}

for n the same feature. Since the agent has to start on a cell, there is always
one cell already visited. Therefore the condition n > 0 always holds, and both
found sketches are equivalent.

6.3.2 Experiment 2

Blocksworld-On For the second experiment, we only used the instances with
three blocks, which are 13 instances.

Drexler et al.’s width-1 sketch for the Blocksworld-On domain is the follow-
ing:

r1 :{} → {b, n ↑}
r2 :{¬b} → {b}

With n a feature counting the number of blocks that are correctly stacked
upon each other and b expressing whether the robot arm is empty. The sketch
says that it is always good to stack blocks on top of each other that should be
stacked in the goal, and when you are still holding a block, it is good to put it
down.

We found 6209 good sketches with two rules and features, including Drexlers
width-1 sketch.

Delivery For the second experiment, we use the same instances as we did for
the first experiment, which gives us ten instances in total.
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Drexler’s width-1 sketch is the following:

r1 :{} → {n1=, n0 ↓}
r2 :{n0 > 0} → {n1 ↑}

with n0 the number of objects that are at any location, and n1 the number of
packages that are at their goal location. The first rule states that it is always
good to decrease the number of objects at a location while keeping the number
of packages at their goal location equal. In other words, picking up a package
that is not at its goal location is always good. The second rule states that
whenever there are some objects at a location (which is always the case because
the truck is also an object that cannot be picked up), it is desired to increase
the number of items at their goal location.

Our feature pool did not include the exact n0 used in the Drexler sketches
for the same reason as in experiment 1 but did include a feature with the same
feature valuations in all states.

We found 9188 good sketches with two rules and features for the Delivery
domain, including the width-1 sketch of Drexler with the equivalent feature.

Since Delivery is the only domain in which we used the same set of instances
for both experiments, we can compare the time results. We see that both the
average time to model-check a bad sketch and the average time to check a good
sketch doubled.

Gripper We used the instances with up to two balls for the experiment with
two rules and features.

Drexlers width-1 sketch for the Gripper domain is the following:

r1 :{} → {n1 ↓}
r2 :{} → {n0 ↑, n1=}

with n0 the number of balls that are lying in one of the rooms, and n1 the
number of balls in room A.

Analogous to the features in the Delivery domain, n0 is not in our feature
pool, but we can substitute it with an equivalent feature. With this alternative
feature, Drexler’s sketch was present in our set of good sketches. In total we
found 37228 good sketches with two rules and maximum two features.

Another interesting sketch we found is the following:

r1 :{¬b} → {n ↑}
r2 :{b} → {n ↑}

In which n the same feature as the Drexler width-2 sketch; counting the number
of balls in room A, and b expressing whether the robot is not carrying any balls.
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The sketch says that if the robot is not carrying any balls, the number of balls
in room A should increase, and if the robot is carrying a ball, the number of
balls in room A should increase. What we see is that this sketch is equivalent
to Drexlers width-2 sketch since in any state we should try to increase n.

Analogous we found a sketch:

r1 :{n2 = 0} → {n ↑}
r2{n2 > 0} → {n ↑}

in which n2 is the number of locations at which balls are present.
In total, we found 544 sketches in which the effect of both rules were {n ↑}.

Miconic For the second experiment, we used instances with two floors and
two or three passengers and instances with three or four floors and two passen-
gers. For each parameter setting, we used up to five instances if available, which
gave us a total of 19 instances.

The width-1 sketch found by Drexler is the following:

r1 :{} → {n1 ↑}
r2 :{} → {n0 ↑}

with n0 the amount of passengers in the elevator and n1 the number of
passengers who arrived at their goal location. r1 says it is always good to bring
a passenger to their goal destination, and r2 says it is always good to let a
passenger board the elevator.

We found 2914 good sketches with two rules and features. This set included
the above width-1 sketch.

An interesting sketch in our set of good sketches is the following

r1 :{} → {n1 ↑}
r2 :{} → {n1 ↓}

where n1 has the same definition as in the width-1 Drexler sketch; the num-
ber of passengers that are served, i.e., at their goal destination. What we see
here is that the rules contradict each other. Still, this is a good sketch. Due
to the nature of the Miconic domain, passengers only board the elevator when
they are not at their goal position and only step out of the elevator when they
arrive at their desired floor, which results in being served. Therefore, once a
passenger is served, they will not board the elevator again, and it is impos-
sible not to be served anymore. Therefore, the number of served passengers
can never decrease, and r2 can never be followed. Despite this rule, the sketch
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still adheres to our definition of a good sketch since it should only be possible
to follow one rule from a state, and we never mentioned that it should be pos-
sible to use each rule. 414 other good sketches contain n1 ↓ in one of their effects.

Another interesting sketch we found had the same pattern as the sketch
shown in the results of experiment two of the Gripper domain:

{b} → {n1 ↑}
{¬b} → {n1 ↑}

with b true only if no passengers are served yet, and n1 again the number of
passengers that are at their target floor. In total, we found 93 sketches in which
both effects were {n1 ↑}.

6.4 Width Zero sketches

We did not find any of the width zero sketches. In this section, we will discuss
why this was the case for each domain.

Blocksworld-Clear and Spanner The width zero sketch of the blocks-clear
domain is the following:

r1 :{} → {b, n=}
r2 :{n > 0} → {¬b, n ↓}

In which n is the number of blocks that are stacked upon another block,
and b is true when the robot isn’t holding any blocks. The sketch thus says
that one always wants to reach a state where the robot is not holding a block
anymore while not adjusting the number of stacked blocks. If blocks are still
stacked, one wants to go to a state where the robot is holding a block, and the
number of stacked blocks decreases. This is not a good sketch in our definition.
Consider a blocksworld with two blocks, A and B. Define s1 as the state where
block A is stacked upon block B, and s2 as the state where the robot is holding
block A and block B lies upon the table. The pair (s1, s1) then follows r1. The
transition from s1 to itself is possible in the path (s1, s2, s1). Following r1 can
thus cause an eternal loop and is not a good sketch according to our definition.
Drexler et al. consider this sketch a valid one since their search algorithm only
looks at the closest state satisfying a rule. Therefore, from s1, they will use r2
to get to state s2, and from s2 a new rule will be applied.

The width zero sketch of Spanner is the following:

r1 :{} → {n0 ↓}
r2 :{n1 > 0} → {}
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with n0 the number of nuts that are not tightened plus the number of spanners
that are not picked up yet.

To satisfy the first rule, the man can walk all the way to the last spanner
and pick it up. This decreases the number of spanners that are not picked up,
and therefore n0. Because the man cannot walk back, this rule leads to a dead
state. Again, this sketch is valid according to Drexler et al. because they only
consider the closest state in which an effect will hold.

Blocksworld-On and Gripper The width zero sketch found by Drexler et
al. for Blocksworld-On contains three rules and three features. The one for
Gripper contains two features and three rules. Since we only ran our program
with a maximum of two rules and two features, we did not attempt to find these
sketches.

Reward and Visitall Drexler et al. added a distance feature to find a sketch
of width zero for the Reward and Visitall domains. When trying to calculate
the feature values of these distance features in states from larger instances, our
program crashed. Therefore, we did not attempt to find these sketches.
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7 Discussion and Future work

7.1 Discussion

We reconstructed the width-1 and width-2 sketches of Drexler et al. of seven of
the nine domains they used to test their method. We did not try to reconstruct
the sketches of the Childsnack domain, and the sketch for the Spanner domain
wasn’t model-checked as good. We think this is due to the difference between
our definition and Drexler et al.’s definition of a good sketch.

Besides the sketches of Drexler et al., we also found other good sketches.
When generating sketches with only one rule and one feature, one to sixteen
sketches per domain were model-checked as good out of the 39 to 535 candidate
sketches we generated. We noticed that we often get pairs of good sketches with
the same meaning. Two patterns we see are

1. {} → {x} ≡ {y} → {x} with y true in every alive state (except the goal
states)

2. {x} → {n count(C) ↑} ≡ {x} → {n count(not(C)) ↓} in which not(C) is
the complement of C.

We showed examples of this in the Blocksworld-Clear domain, the Delivery
domain, the Spanner domain, and the Visitall domain. If we would remove these
equivalent sketches in Blocksworld-Clear, we have nine of the sixteen sketches
remaining. We would have three out of five remaining for Delivery and Gripper
and three out of six for the Spanner domain.

As expected, the candidate sketch pool for two rules and features is much big-
ger than the one in the first experiment. The candidate sketch pools contained
two-hundred thousand to two million candidate sketches. For each domain, two
thousand to thirty thousand sketches were verified as good. Due to this large
number of good sketches, we were not able to look at all of them. Nevertheless,
we found some interesting patterns.

In, e.g., the Miconic domain, we found a sketch in which one rule would be
a good sketch on its own, and the second rule had an effect that could never
be reached. Four hundred thirteen other good sketches contained this effect
in one of their rules, which is 14% of the good sketches we found. The effect
can be combined with any possible condition to construct an inapplicable rule.
Additionally, since we use two features, the effect can be combined with other
feature value changes in effects that contain more feature value changes. Rules
that contain this effect can be combined with any other rule that is a sketch on
its own with two features, significantly enlarging the set of good sketches.

Another pattern that was present in different domains was a sketch rule:

r1 :{x} → {z}
r2 :{y} → {z}
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in which, in every alive state, either x or y is true (which is always the case in
good sketches with two rules). This sketch is equivalent to a sketch with one
rule of the form {} → {z}. We showed an example of this in the Gripper do-
main, where we found 544 sketches with this pattern for z being n ↑, the effect
of the Drexler width-2 sketch, which is 1.5% of the total amount of sketches we
found. In the Miconic domain, we found 93 sketches in which both rules had
the same effect as the Drexler width-2 sketch, which is only 0.03 % of the total
amount of good sketches we found. Nevertheless, we hypothesize that for any
other good sketch of the form {} → {z}, we will encounter equivalent sketches
with two rules such that in each state, one of their conditions hold, and both
effects are {z}.

As we can see in tables 2 and 3, it takes between 1 and 78 milliseconds to
find out that a sketch is not good. Verifying a good sketch takes longer. The
time it takes depends on the number of expanded sketch rules and the number
and size of the instances.
We expect it will take longer to check a sketch in experiment two than in exper-
iment one. This is because increased features and rules result in longer logical
formulas. In figure 3, we see this is true for domains Delivery and Gripper but
not for Blocksworld-On and Miconic. We have no apparent reason for this phe-
nomenon. One hypothesis was that since for both Blocksworld-On and Miconic,
we only found one good sketch in experiment 1, we couldn’t take the average
over many sketches, and maybe these were coincidental sketches with many ex-
panded sketch rules. But this theory was disproven by figure 5, where we can
compare the time it takes to model-check a sketch given the number of expanded
sketch rules. In these figures, we see that, even for only sketches with the same
amount of expanded sketch rules, it still takes longer to model-check the sketch
of experiment 1 than the sketches for experiment 2 for the Blocksworld-On and
Miconic domains. Another theory is that it is coincidental by a bad run, and
since we cannot take the average over other sketches, it creates an outlier, but
this is merely speculation.

We expected that the time to model-check over an instance would increase for
instances with a larger state space. Figure 4 confirms this theory. The increase
in time has two reasons; first, for larger state spaces, the model-checker needs
to consider more paths, resulting in a longer model-checking time. Secondly,
for larger instances, features can have more different values, which results in
more extensive logical formulas and, thus, an increase in model checking time.
Figure 5 indeed shows that an increase in the number of expanded sketch rules
increases the time it takes to model-check a sketch. We also see that the number
of expanded sketch rules can increase fast. For sketches with only two rules and
two features, the number of expanded sketch rules goes up to 18 for Delivery,
Gripper, and Miconic and even up to 30 for a Blocksworld-On instance with
three balls.
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7.2 Limitations

One of the limitations of our method is that model-checking a good sketch can
take a long time for large instances, especially when the sketch has many rules
and features. When expanding a sketch, the number of rules blows up when the
features can have many values. The more expanded sketch rules, the longer the
LTL and CTL formulas become and the longer the model-checking process takes.

Another limitation is the combinatorial blowup of our sketch pool. The
number of sketches in our candidate sketch pool grows tremendously with the
size of our feature pool, the maximum number of features, and the maximum
number of rules. To find that a sketch is not good takes several milliseconds,
but depending on the amount and size of the instances, checking whether a
sketch is good can take minutes for sketches with one rule and one feature. For
sketches with two rules and two features, this can take hours for big instances.
For a large number of sketch rules and features, it can be infeasible to find all
possible good sketches.

Interestingly, our method finds all good sketches for a given domain. We
saw that the number of good sketches can be very big when we allow more than
one rule and feature in a sketch. For two rules and two features, thousands of
sketches were found. Increasing the number of rules and features will result in
even more good sketches. This large number of good sketches is impractical and
suggests the need of additional conditions to reduce this number, or a metric to
have an ordering on the good sketches.

Lastly, we don’t use a complexity measure for our sketches. Therefore, we
cannot know which of our good sketches will speed up the search for a plan
faster than others.

7.3 Future work

We will discuss six directions of future work that we find interesting.

Reduce pool of candidate sketches For future work, we would like to
reduce the pool of candidate sketches to speed up the search for a good sketch.
We have four different ideas to address this. First, we can require the set of
features in a sketch to distinguish the goals as was in the original definition of
sketches [4]. By eliminating feature sets that fail to distinguish the goals, we
can significantly decrease the number of feature sets and, consequently, the size
of the candidate sketch pool. In the Miconic domain, we saw that sometimes it
is impossible to follow one of the rules in a sketch. We might be able to find
these rules already in this step and delete them before we combine them with
other rules in sketches. A problem here is that a sketch rule that is impossible
to follow in one instance can be necessary in another. Therefore this method
would need some care. Another idea is to find a CTL∗

f formula that we can
use to check whether a rule would always result in an inadequate sketch. An
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example is the first constraint we check; a rule can never lead to a dead state.
If we can already filter out rules that do not adhere to this constraint, our final
pool of sketches will be smaller.

Moreover, we can identify and eliminate equivalent sketch rules and sketches
as they exhibit redundancy. Examples of equivalent sketch rules were seen in
the result section of Blocksworld-Clear, Delivery, Spanner, and Visitall.

Other ways to generate candidate sketch pool We described a way to
verify whether a sketch is good. We want to explore more efficient ways to gen-
erate candidate sketches that can be verified using our method. For example,
given a feature set that distinguishes the goal, we can check the feature valu-
ations in goal states to know in which direction the feature values should be
manipulated eventually. This information might be used to generate sketches
that are more feasible than any randomly generated sketch, and the search for
good sketches can be more directed. We can use our verification method to
check whether these sketches are good.

Speed up the verification process Another relevant direction of future
work is to speed up the model-checking process. We observed that the number
of expanded rules can grow rapidly, resulting in longer model-checking times.
One solution might be to merge expanded rules where possible. Consider, for
example, the Drexler width-1 sketch from the Gripper domain:

r1 :{} → {n1 ↓}
r2 :{} → {n0 ↑, n1=}

In an instance where n0 and n1 can be equal to 1 or 2, the expanded sketch
will look like:

r11 :{n1 = 1} → {n1 < 1}
r12 :{n1 = 2} → {n1 < 2}
r21 :{n0 = 1, n1 = 1} → {n0 > 1, n1 = 1}
r22 :{n0 = 2, n1 = 1} → {n0 > 2, n1 = 1}
r23 :{n0 = 1, n1 = 2} → {n0 > 1, n1 = 2}
r24 :{n0 = 2, n1 = 2} → {n0 > 2, n1 = 2}

First of all we can delete rules r22 and r24 , since n0 > 2 will never be true.
Allowing disjunctions in the effects of expanded sketch rules, we can reduce
these rules to:

r1121 :{n0 = 1, n1 = 1} → {(n1 < 1) ∨ (n0 > 1 ∧ n1 = 1)}
r1122 :{n0 = 2, n1 = 1} → {(n1 < 1) ∨ (n0 > 2 ∧ n1 = 1)}
r1223 :{n0 = 1, n1 = 2} → {(n1 < 2) ∨ (n0 > 1 ∧ n1 = 2)}
r1224 :{n0 = 2, n1 = 2} → {(n1 < 2) ∨ (n0 > 2 ∧ n1 = 2)}
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In this example, we reduced six expanded sketch rules to four. Having less
extended rules leads to shorter LTL and CTL formulas, which can speed up
the model checking. Additionally, we could simplify the effects of rules r1122
and r1224 , since n0 > 2 is never possible. This would result in the following
expanded sketch rules:

r1121 :{n0 = 1, n1 = 1} → {(n1 < 1) ∨ (n0 > 1 ∧ n1 = 1)}
r′1122 :{n0 = 2, n1 = 1} → {(n1 < 1)}
r1223 :{n0 = 1, n1 = 2} → {(n1 < 2) ∨ (n0 > 1 ∧ n1 = 2)}
r′1224 :{n0 = 2, n1 = 2} → {(n1 < 2)}

Another way to speed up the model-checking would be to find shorter logical
formulas that express the constraints of a good sketch. Our formula for the third
contains three times a disjunction over all expanded sketch rules. If we find a
formula with fewer of these disjunctions, we can speed up the model-checking
process. This also brings us to the next point.

Try out different logical formulas We believe there are different logical
formulas that express the three constraints of a good sketch. We would love to
find and experiment with them. We think it might be possible to find equivalent
formulas that are shorter and, thus, faster to check.

Add complexity measure and use good sketches in planning algo-
rithms Drexler et al. [10] used width as a complexity measurement for sketches.
Future work is to also add a complexity measure to our method. A relevant com-
plexity measure depends on the planning algorithm the sketches will be used in.
An example could be the number of transitions that are allowed between a con-
dition and its effect when following a rule. To verify a sketch given a maximum
number of steps can be achieved by substituting the future (F) operators (resp.
once (O)) in our CTL∗

f formulas by nested next (X) operators (resp. previous
(Y)). This complexity measure suits a method like depth-first search, where one
searches for the effect of applicable sketch rules instead of the goal.

For further testing, we would like to use our generated sketches in a planning
algorithm to show that they indeed work.

Formal proofs An important future step is to provide formal proofs that
establish the soundness and completeness of our sketch generation and verifica-
tion method. Formal proofs could validate the reliability and correctness of our
approach, strengthening its theoretical foundations.

52



8 Conclusion

We introduced a new, modular method to generate and verify sketches using
automata-based model checking and implemented this method in Python. We
made several contributions during this process. First, we provided a new defini-
tion of a good sketch, consisting of three constraints a sketch needs to adhere to.
We provided a way to express sketch rules in logical languages. We translated
the constraints for a good sketch into CTL∗

f formulas and showed that we can
split them into separate CTL and LTL formulas, languages supported by more
popular model checkers. Additionally, we provided a method to generate a pool
of all possible sketches, which we used to construct sketches to verify lazily. To
test our method, we tried to reconstruct the sketches learned by Drexler et al.
[10], for which we were able to reconstruct the width-1 and width-2 sketches for
seven out of eight domains. We did not find the Drexler sketches for one domain
due to a difference in definition. While looking at our set of good sketches, we
could identify patterns of equivalent sketches and sketch rules. We saw that the
time to model-check a good sketch increases fast when the number of expanded
sketch rules increases, which can be addressed in future work.

Our sketch generation and verification method allows us to find all possible
good sketches for a domain and can be used as a baseline for new sketch gener-
ation methods.

We discussed many directions for future work, together with concrete steps
to pursue them. First of all, we would like to add a complexity measure to our
formulas such that we can use our sketches in planning algorithms. Next, it
is an important future step to prove our method’s soundness and completeness
formally. Another direction of future work is reducing the pool of candidate
sketches by exploiting the patterns of equivalent sketches and sketch rules we
found. Alternatively, the modular nature of our approach allows for experi-
menting with more clever ways to generate sketches.

Lastly, future work is to find methods to speed up the model-checking by, for
example, merging expanded sketch rules such that the logical formulas become
shorter or finding other formulas that express the three constraints of a good
sketch.
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A Example PDDL files

A.1 Blocksworld Domain

( d e f i n e ( domain b lockswor ld )
( : requ i rements : s t r i p s )

( : types )
( : cons tant s )
( : p r ed i c a t e s ( c l e a r ?x )

( on−t ab l e ?x )
(arm−empty )
( ho ld ing ?x )
( on ?x ?y ) )

( : a c t i on pickup
: parameters (? ob )
: p r e cond i t i on (and ( c l e a r ?ob ) ( on−t ab l e ?ob ) (arm−empty ) )
: e f f e c t (and ( ho ld ing ?ob ) (not ( c l e a r ?ob ) )

(not ( on−t ab l e ?ob ) ) (not (arm−empty ) ) ) )

( : a c t i on putdown
: parameters (? ob )
: p r e cond i t i on ( ho ld ing ?ob )
: e f f e c t (and ( c l e a r ?ob ) (arm−empty ) ( on−t ab l e ?ob )

(not ( ho ld ing ?ob ) ) ) )

( : a c t i on stack
: parameters (? ob ?underob )
: p r e cond i t i on (and ( c l e a r ?underob ) ( ho ld ing ?ob ) )
: e f f e c t (and (arm−empty ) ( c l e a r ?ob ) ( on ?ob ?underob )

(not ( c l e a r ?underob ) ) (not ( ho ld ing ?ob ) ) ) )

( : a c t i on unstack
: parameters (? ob ?underob )
: p r e cond i t i on (and ( on ?ob ?underob ) ( c l e a r ?ob ) (arm−empty ) )
: e f f e c t (and ( ho ld ing ?ob ) ( c l e a r ?underob )

(not ( on ?ob ?underob ) ) (not ( c l e a r ?ob ) )
(not (arm−empty ) ) ) ) )

Figure 6: PDDL description of the blocksworld domain
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A.2 Blocksworld Instance

( d e f i n e ( problem BW−rand−3)
( : domain b lockswor ld )
( : ob j e c t s b1 b2 b3 )
( : i n i t
(arm−empty )
( on b1 b3 )
( on b2 b1 )
( on−t ab l e b3 )
( c l e a r b2 )
)
( : goa l
( and
( on b1 b2 ) )
)
)

Figure 7: PDDL description of an instance of the blocksworld
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B Sketches

B.1 Blocksworld Clear

{} → {¬b0} b0 := b empty(c and(c primitive(clear,0),c primitive(clear g,0)))

{b0} → {¬b0} b0 := b empty(c and(c primitive(clear,0),c primitive(clear g,0)))

{} → {n0 ↑} n0 := n count(c and(c primitive(clear,0),c primitive(clear g,0)))

{n0 = 0} → {n0 ↑} n0 := n count(c and(c primitive(clear,0),c primitive(clear g,0)))

{} → {¬b0} b0 := b empty(c and(c primitive(clear g,0),c primitive(holding,0)))

{} → {n0 ↓} n0 := n count(c not(c primitive(clear,0)))

{n0 > 0} → {n0 ↓} n0 := n count(c not(c primitive(clear,0)))

{} → {n0 ↑} n0 := n count(c primitive(clear,0))

{n0 > 0} → {n0 ↑} n0 := n count(c primitive(clear,0))

{} → {n0 ↓} n0 := n count(c all(r primitive(on,0,1),c primitive(clear g,0)))

{n0 > 0} → {n0 ↓} n0 := n count(c all(r primitive(on,0,1),c primitive(clear g,0)))

{} → {b0} b0 := b empty(c not(c primitive(clear,0)))

{¬b0} → {b0} b0 := b empty(c not(c primitive(clear,0)))

{} → {b0} b0 := b empty(r primitive(on,0,1))

{} → {b0} b0 := b empty(c some(r primitive(on,0,1),c primitive(clear g,0)))

{} → {n0 ↑} n0 := n count(c and(c primitive(clear,0),c primitive(on-table,0)))
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B.2 Blocksworld On

{} → {n0 ↑} n0 := n count(c equal(r primitive(on,0,1),r primitive(on g,0,1)))

B.3 Childsnack

{} → {b0} b0 := b empty(c and(c not(c primitive(served,0)),c primitive(served g,0)))

{¬b0} → {b0} b0 := b empty(c and(c not(c primitive(served,0)),c primitive(served g,0)))

B.4 Delivery

{} → {n0 ↑} n0 := n count(c some(r primitive(at,0,1),c projection(r primitive(at g,0,1),1)))

{} → {n0 ↑} n0 := n count(c equal(r primitive(at,0,1),r primitive(at g,0,1)))

{n0 > 0} → {n0 ↑} n0 := n count(c equal(r primitive(at,0,1),r primitive(at g,0,1)))

{} → {n0 ↓} n0 := n count(c not(c equal(r primitive(at,0,1),r primitive(at g,0,1))))

{n0 > 0} → {n0 ↓} n0 := n count(c not(c equal(r primitive(at,0,1),r primitive(at g,0,1))))

B.5 Gripper

{} → {n0 ↓} n0 := n count(c all(r primitive(at,0,1),c one of(rooma)))

{n0 > 0} → {n0 ↓} n0 := n count(c all(r primitive(at,0,1),c one of(rooma)))

{} → {n0 ↑} n0 := n count(c some(r primitive(at,0,1),c one of(roomb)))

{} → {n0 ↑} n0 := n count(c equal(r primitive(at,0,1),r primitive(at g,0,1)))

{n0 > 0} → {n0 ↑} n0 := n count(c equal(r primitive(at,0,1),r primitive(at g,0,1)))
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B.6 Miconic

{} → {n0 ↑} n0 := n count(c primitive(served,0))

B.7 Reward

{} → {b0} b0 := b empty(c primitive(reward,0))

{¬b0} → {b0} b0 := b empty(c primitive(reward,0))

{} → {n0 ↑} n0 := n count(c primitive(picked,0))

{} → {n0 ↓} n0 := n count(c primitive(reward,0))

{n0 > 0} → {n0 ↓} n0 := n count(c primitive(reward,0))

B.8 Spanner

{} → {n0 ↑} n0 := n count(c not(c some(r inverse(r primitive(at,0,1)),c primitive(loose,0))))

{n0 > 0} → {n0 ↑} n0 := n count(c not(c some(r inverse(r primitive(at,0,1)),c primitive(loose,0))))

{} → {n0 ↓} n0 := n count(c some(r inverse(r primitive(at,0,1)),c primitive(loose,0)))

{n0 > 0} → {n0 ↓} n0 := n count(c some(r inverse(r primitive(at,0,1)),c primitive(loose,0)))

{} → {b0} b0 := b empty(c primitive(loose,0))

{¬b0} → {b0} b0 := b empty(c primitive(loose,0))

B.9 Visit All

{} → {n0 ↑} n0 := n count(c primitive(visited,0))

{n0 > 0} → {n0 ↑} n0 := n count(c primitive(visited,0))
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C Implementation

Figure 8: Flowchart of the dependencies in our implementation. The orange outlined
boxes represent objects from the Tarski library. The blue outlined boxes represent ob-
jects from the DLPlan library. The green boxes group the objects we cached together
in files.
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