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Abstract

Parallel execution has a large potential to improve the speed of a program. To make good use of parallelism
we need a program that is properly split into several tasks that can be performed in parallel. High level
frameworks like Accelerate make it easier to create such programs. Accelerate creates programs using
data parallel array computations. For more parallelism we propose a way to automatically add task
parallelism to programs as part of the Accelerate compiler. We define a transformation to introduce forks
to a program. We formalize this transformation using inference rules and we implement it in the Accelerate
compiler. To reduce the overhead of the added task parallelism, we propose several optimizations to not
introduce forks where they do not introduce actual opportunities of added parallelism, like not forking
trivial statements and combining statements that directly wait on the result of the previous statement.
Our results show that the compilation of this implementation is not significantly slower than the current
Accelerate compiler.
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1 Introduction

Current hardware is often designed to be able to run multiple parts of a program in parallel, either on a CPU
with multiple cores or massively parallel on a GPU. Since it can be difficult to manually create programs
that use parallelism, tools and frameworks have been designed to make it easier for developers to develop
parallel programs, like Accelerate[1], Accelerator[2], GPU++[3], Nikola[4], PyCUDA[5] and Sh[6].

1.1 Parallelization

There are multiple ways to have parallelism in programs. One of these ways is task parallelism, where we
perform multiple different tasks of the program in parallel. Another way is data parallelism. Here we do
not parallelism the different tasks, but we perform the same task on multiple parts of the data in parallel.
These methods can also be combined to have different tasks being performed at the same time, each being
performed on multiple parts of the data.
It is possible to manually add these types of parallelism to a program. It is, however, a lot easier if this is
done automatically. Automatic parallelization has proven to be difficult for the general case[7–10]. This is
partly due to the fact that we need some sort of way to determine when to stop parallelizing, because if we
create too small tasks the parallel overhead is more than the speedup gained by parallelization. In Accelerate
however the primitives that we work with are very large, as they are operations on entire arrays. This means
that this is not as big of an issue for our case.

1.2 Accelerate

Accelerate is a domain specific language embedded in Haskell to write programs for working with large arrays,
which can be executed in parallel on the GPU or the CPU. Currently Accelerate is mainly focused on data
parallelism. We propose a way to add automatic task parallelism to the Accelerate compiler. The Accelerate
compiler should automatically determine which operations in the code can be executed in parallel and create
the structure so this can be done. This could lead to even more parallelism than the current Accelerate
versions, so we can make more efficient use of the GPU or CPU.
Automatically adding task parallelism to Accelerate results in a quite complicated program transformation.
We, therefore, want some assurances that our transformation is correct. For this we make a separate, slightly
simplified, theoretical definition of the transformation, before implementing it in the code. This makes the
transformation easier to understand. Additionally we want the types that are part of the Accelerate language
and compiler to be kept during the transformation, so some incorrect programs are impossible to be created.

1.3 Research questions

The goal of this thesis is to add automatic task parallelism to Accelerate in a well defined and efficient way.
This is done as one of the passes in the compiler. For this we present the main research question:

Research Question 1. How can we add automatic task parallelism to Accelerate at compile time in a well
defined, type safe and efficient way?

To elaborate on this question we introduce the following sub research questions:

Research Question 2. How can the program transformation be formalized?

Research Question 3. How can we ensure type safety?

Research Question 4. How much speedup can we gain with the added parallelism in executing Accelerate
programs?
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2 Background

To understand how we implement automatic task parallelism and why, we first need some extra background
information. In this section we discuss some previous work on parallelization, Accelerate and program
transformations.

2.1 Parallelization

Parallelization is a common topic of research[7, 11–13]. Running code in parallel is often a good way to speed
up a program. It can, however, be complicated to do this efficiently. We first need to be able to create a
program that can be run in parallel. Which means we need multiple parts of the program that do not depend
on each other, so we can execute them in parallel. After this we also need to be able to execute these parallel
programs efficiently.

2.1.1 Parallel code

To execute a parallel program we first need a parallel program. For this, we need a way to represent parallelism
in a language. There are multiple methods that can be used for this. A simple way is using fork-join. This
works by having fork statements in the language that represent a split in the program path where the two
sub-statements can be executed in parallel. After these statements are finished executing, they are joined
again into a single thread. An example of this for a lazy functional language is the letpar expression, as
used by Hogen et al. [9]. This works like a regular let expression, except for the fact that the expression
that is bound in the let can be computed in parallel. To make sure the laziness is still satisfied, the letpar
expression has an extra denotation for what level the parent expression need to be evaluated to, to make
sure this binding is needed.

2.1.2 Automatic parallelization

The easiest way for a developer to create a parallel program is if this is done automatically. That way the
developer can just write a sequential program and the compiler automatically changes this to a program
that can be executed in parallel. This is, however, not that easy to implement. There have been multiple
attempts to do this[7–10].

An early attempt was done by Burke et al. [8]. In this attempt they designed the parallelization for a
simplified language to make it easier. The target parallel language that is used is a language that has two
ways of parallel execution. One way is with loops for which the iterations can be executed in parallel. The
other way is a construct that can be used to specify that multiple code blocks can be executed in parallel.
The algorithm for automatically parallelizing a program to this target language works in three steps. The
first step is the initialization step. In this step, all loops are initialized to parallel loops. Additionally, all
statements that are executed with the same control flow are put to be in parallel. After this step there
are still data dependencies that can cause this overly parallelized program to not always execute correctly.
To fix this the second step loops over all data dependencies. For each data dependency we first find out
whether the data dependency can be solved using privatization. Privatization works by creating a private,
thread-specific instance of shared variables, so the process can just use this variable without having a problem
when other processes also use it. Privatization can resolve dependencies because sometimes multiple parts
of the program use the same variable, but do not actually depend on the value calculated in another part. If
the dependency cannot be solved using privatization, the dependency is solved using sequencing. This means
that the parallelism is reduced to make sure the data dependency is satisfied. In the third and final step, the
privatizations found in the first part of the second step are actually added to the program. This is done at
this point in the algorithm because some data dependencies that could be fixed by privatization are already
fixed using sequencing, so we do not add the privatizations for these dependencies.
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This first attempt works for a simplified imperative language. If the language has laziness, however, it
becomes a lot harder. This is because certain parts of the code might not be executed, as the results
are not actually needed. We cannot just parallelize everything that could be parallelized in terms of data
dependencies, because we might be executing things that do not need to be executed. Hogen et al. [9] made
an attempt at automatically parallelizing a lazy functional language. Their method works in three steps. The
first step is λ-Lifting. This works by extracting nested function definitions to the global scope, to make sure
they are available everywhere. The next step is strictness analysis. In this step, we annotate all expressions
with their strictness properties. This is how far this expression will definitely be evaluated if the parent
expression is evaluated to a certain level. We, thus, know when the result is actually used and can therefore
be calculated beforehand or in parallel. This makes sure that we do not execute statements that are not
actually needed. The final step is the parallelization. Here the expressions that can be parallelized according
to the previous step are looked at. A heuristic is then used to determine whether parallelizing the expression
can actually yield an improvement. If it is determined that it yields an improvement it is abstracted to a
letpar expression.

2.1.3 Work stealing

When executing a program that has parallelism implemented, we want the work to be properly spread over
the available resources. We need a strategy to distribute the work over the threads. If the work is not
balanced properly it might be that one thread is still doing almost all the work while the other threads
are idling. One strategy we can use for this is work stealing[14]. For work stealing each thread will have a
queue with tasks that can be preformed in parallel. When a thread encounters part of a program that can
be performed in parallel, like a fork, it can spawn a new task, which it puts in its queue. When another
thread runs out of work it can look at the queues from the other threads and “steal” a task. This thread can
then perform the “stolen” task. To make sure this can be done efficiently the queue for each thread can be
implemented with a double ended circular queue [15].

2.2 Accelerate

Accelerate is an embedded domain specific language for general parallel programming. It is implemented in
Haskell, and is able to generate optimised CUDA code [1] or efficient parallel code for the CPU. We can, for
example, write the dot product of two vectors as

dotp : : Vector Float −> Vector Float −> Acc ( Sca l a r Float )
dotp xs ys = l et xs ’ = use xs

ys ’ = use ys
in
fold (+) 0 ( zipWith (∗ ) xs ’ ys ’ )

Here, the Acc in the type indicates that it represents a calculation that can later be executed on the device.
The fold and zipWith are functions from Accelerate that perform the same operation as their counterparts
from standard Haskell, but parallelized. The use function is used to lift the vectors from the CPU host
memory to the device memory.
This idea however still comes with some difficulties. Because Accelerate compiles high level Haskell code to
lower level parallel code, it needs to do some extra optimizations and program transformations to generate
efficient parallel code. One of these optimizations will be the addition of task parallelism in this research, but
there have already been other optimizations and improvements. Some of these are discussed in this section.

2.2.1 Shared code

Due to the embedding of Accelerate in Haskell, shared let bindings are lost. This means that if the expression
bound in a let binding is used multiple times, it is reevaluated every time. Sharing recovery [16] can be used
as an optimization. This is done by first discovering shared subterms by giving all terms a unique name,
which is the same if and only if the terms are the same. If we then encounter a term we have already found,
we replace it with a placeholder, since this is a shared term. Next these shared terms are floated to the top
of the AST. Finally we can introduce a new binding for the terms, so they can be evaluated a single time
and used in the places of their corresponding placeholders.
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2.2.2 Fusion

When manually writing CUDA code, we would combine multiple operations on the same array by putting
them in a single loop, to not create intermediate arrays. Because Accelerate is a combinator language
where we use complete array operations, we just use multiple of these array operations in a row. A naive
implementation, however, executes these operations after each other, making an intermediate array between
each operation. This results in a lot of extra memory usage. To improve this, certain operations are performed
at the same time using fusion [16]. For example, two map operations can be performed by simply applying
both functions to each element: map f (map g xs) = map (f . g) xs.
To implement this, we can categorize the operations supported by Accelerate into two categories. The first
one is for operations where each output element depends on at most one input element, called producers, like
maps. The second one is for operations where each output element can depend on multiple input elements
called consumers, like folds. We can relatively easily implement producer/producer fusion as we can just
apply both producer functions after each other for each output element. If we have a producer and then a
consumer we can also fuse this since the consumer can apply the function from the producer and apply it to
the needed elements.

2.2.3 Foreign function interface

For some algorithms, there already exists highly optimized CUDA code. This code can often be a lot faster
than the code generated by Accelerate. Therefore it is useful to be able to use this code from within an
Accelerate program to execute parts of the total program [17].
To make the foreign code available we can use the regular foreign function interface in Haskell. We then
need to lift this code to be able to run it on the device we want to run the code on. To then be able to
call the foreign function from the Accelerate code we can add an extra node type to the AST. This node
represents the foreign function to be executed. This node can however not just represent the foreign code,
because Accelerate can compile to multiple different backends and the foreign code might not work with all
of these backends. We therefore also need and extra backup function to execute when the foreign function
can not be executed from the currently used backend.

2.2.4 Type safe code generation

Accelerate is an embedded language that is compiled at the runtime of the host program. Because of this a
compile error in the Accelerate compiler results in a runtime error in the host program. If we make sure the
compile pipeline is type safe [18], these problems occur a lot less. Because, when compiling the host program
we can already guarantee that the types of the program are correct. For this, Accelerate uses GADTs to
represent the typed AST of the Accelerate program within Haskell at each step of the compile pipeline. To
represent what types can be used as array elements and in scalar expression within the AST, we use the Elt
type class.
Because we want the compiler to be type-safe, we can add separate optimizations in terms of type safe
program transformations. These optimizations can be done separately from other optimizations, which makes
the compiler just a series of optimizations and compilations which all preserve the types in the program. We
can, for example, use this to implement array fusion and other previous optimizations again in a type safe
manner.
In the end, the code is compiled to LLVM’s intermediate language. This, however, does not have proper type
safety guarantees. To make sure there are no LLVM type errors when running the program, we use GADTs
to define a type safe LLVM instruction set. We can generate this well types LLVM AST from the Accelerate
code and then in the final step generate the actual LLVM code.



2 BACKGROUND 5

2.2.5 Irregular arrays

Because Accelerate is a higher level language than the CUDA code generated, there are quite some function-
alities that can be implemented in CUDA but not easily in Accelerate. One of these things is the use of multi
dimensional arrays, where not all sub-arrays have the same size. There has been research to add support
for this in Accelerate using sequences of arrays [19]. These sequences are implemented by flattening the
computations on them to regular computations. The transformation first has two steps where we transform
the types. The first step normalizes arrays by adding an extra type that flattens nested arrays to a single
larger dimensional array. The next step is vectorisation. This step transforms the type from the previous
step in such a way that irregular arrays are changed to a single longer array with segments denoting where
each sub-array starts. The actual program transformation works by removing all irregularity and changing
it to regular computations. This uses a different rule for all different operations. For the actual executing
of these computations the arrays are loaded into memory in chunks. The size of these chunks is determined
dynamically.

2.3 Program transformation

To be able to add parallelism to a program, we need to transform the program. This is, however, not the
only application where we need a program transformation. Almost all automatic optimizations to a program
are defined in terms of a program transformation. Therefore, there has been research done to be able to
efficiently define these transformations[20–23].

2.3.1 Ornaments

When implementing a program transformation we often want to be able to transform from one data type to
the other. These data-types are often very similar. Usually, however, the relation between the two is not
very easy to define. To make it easier to define we can use ornaments [24]. These ornaments work by relating
a data-structure to a data-structure with the same recursive structure but with extra information added.
For example we can relate natural number to lists by adding an extra element to the cons constructor. An
ornament is defined as having a function from the more elaborate data-structure to the less elaborate one.
This can easily be created by just forgetting the extra information the the more elaborate data-structure.
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3 Methodology

We now know our goals, we however still need some more details about how to reach these goals. In this
section we explain some of the basic concepts needed and we elaborate some more on our plans to reach our
goals.

3.1 Parallelism

We need to be able to express the parallelism in the target language. For this, we use fork statements. These
fork statements have two sub-statements that can be executed in parallel. In the implementation, when the
program encounters a fork t̂1 t̂2 it creates a separate thread with t̂1 and continue executing t̂2. To handle
the return values of these statements, we use references. These references refer to a mutable part of memory
where multiple parts of the program can write to and read from. The reference itself is written to only once
before forking the program and then the result is written to the part of memory the reference refers to. The
rest of the program can then read the result from this part of memory when needed. We, however, need
to be sure that the result has actually been computed up to the amount we need when we want to use the
data from a reference. For this we use signals. These signals work in a way where if a piece of code is done
updating some data in memory it resolves the signal. The code that then needs this data waits until the
signal is resolved. This way we know for sure that the earlier code has finished before we use the data.

3.2 Parallelization strategy

To design our parallelization algorithm, we start by creating the inference rules for the transformation. We
base these rules on the terms in the source language. In the rules we introduce forks to the program wherever
possible. This means that we add forks when we encounter a term that has multiple sub-terms. In practice
we add parallelism for let bindings and while loops.
To make these rules work in a more practical algorithm we also need some extra information, namely which
variables are used in a sub-term. To make sure we do not analyze the terms multiple times for the same
information we design an extra pass over the program to make sure all information is available wherever
necessary. We can then formulate the actual transformation rules in terms of the statements in the source
language so we can implement the transformation.

3.3 Optimizations

Our first basic parallelization results in significant overhead. It, for example, leads to a very large program,
with a lot of forks. We can try to eliminate some of the forks. For example, there are forks that can never
actually lead to extra parallelism because the second thread directly depends on the first thread. Removing
these forks also means we can eliminate some of the signals. This makes the transformation doable for larger
programs. Apart from eliminating forks, there are more optimizations that can be done. We analyze the
results of the transformation to find some of these optimizations.

3.4 Formalization

As stated in Research Question 2 the goal is to have a good formalization of the transformation. To do
this we define the transformation by creating an inference rule for each of the terms in the source language.
This formalization has some simplifications. It should help to make the idea of the transformation easier to
understand, and in extension also the resulting code.
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3.5 Type safety

The Accelerate compiler is currently type safe, all variables have a specified type during the compilation. It
is therefore good if our transformation is also able to keep this type safety, as stated in Research Question
3. During the transformation we need to keep track of the types of all variables. For this we use some of the
strategies discussed in Section 2.2.4.

3.6 Benchmarking

For Research Question 4, we want to determine the speedup gained by the added parallelism. We want to
look at both the compilation time and running time of the programs, as the compilation is also done at
runtime. To determine the speedup we need to benchmark the implementation. To do this we use some
Accelerate programs that we run with both the current implementation and our improved implementation.
This shows us how much speedup we gained or lost with our addition of task parallelism.

3.7 Source language

To understand the format of the input language for the transformation, an AST representing the language
from before the program transformation can be seen in Figure 1. An Accelerate program is always represented
as a function f . This can directly be a term t or a lambda that takes in an argument. The term t has most
of the standard control flow terms. Some notable things are the op as, which represents the performing of
an operation with the given arguments. The alloc x represents allocating a buffer of size x. To use buffers
we have use n buf, where we take n elements from buffer buf. The e represents simple expressions. In the
implementation variables are represented using De Bruijn indices. In our representation however we simply
use variable names.

vs := () | x | (vs, vs) Variables

f := t | λx.f Function

t := Term

op vs Operation

| return vs Return

| e Expression

| let vs = t in t1 Let

| alloc x Allocation

| use n buf Use

| unit v Unit

| if v then t1 else t2 If

| while f do f1 vs While

Figure 1: A representation of the source language
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3.8 Target language

The target language is similar to the source language. A representation can be seen in Figure 2. Some
notable differences are that the terms are spread out over three different parts, one for the terms, one for
the bindings and one for the effects. An effect eff represents a term that has a side effect, like waiting for
or resolving signals, executing a kernel and writing to a reference. The bindings b represent statements that
have a return value. These return values are not part of the general term, so these need to be handled
separately. Additionally, we can see that the effect, if and let terms do not only have the parts needed for
their corresponding functionality but also have the term that is executed after. Also the while itself is a bit
different from the original one. Here it works by having a function f̂ that takes in the current state of the
loop and returns both whether or not the loop should continue and the result of the iteration. Finally the
operation from before the transformation is compiled to the backend specific version of that operation. How
this exact compilation works is not relevant for our research.

vs := () | x | (vs, vs) Variables

f̂ := t | λx.f Function

t̂ := Term

return Return

| let x = b in t̂ Let

| eff ; t̂ Effect

| if v then t̂1 else t̂2 ; t̂3 If

| while f̂ vs ; t̂ While

| fork t̂1 t̂2 Fork

b := Binding

e Expression

| signal Signal creation

| ref Reference creation

| alloc sh vs Allocation

| use n buf Use

| unit v Unit

| read v Reference read

eff := Effect

kern vs Kernel

| wait [s] Signal wait

| resolve [s] Signal resolve

| write v1 v2 Reference write

Figure 2: A representation of the target language
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4 Basic transformation

To design the transformation we start by creating a basic version. The idea is that we add a fork whenever
there are two sub-terms in a term, so we add forks for let bindings and while loops. Because we are using
references to handle the possibly parallel executions, we also have to create new rules for the other statements
in the language.

4.1 Basics

To define the transformation we create inference rules for every statement. In these inference rules we write
the transformation as Γ ⊢ t @ d ; t̂. Here, t is the term in the source language, which is transformed to t̂ in
the target language using environment Γ. Finally, d is the destination to write the result of the program to.

4.2 Environment

During the transformation we keep an environment with a mapping from variables in the source program to
their corresponding reference and signals in the target program. In the implementation this environment also
has the type of each of the variables. In the formalization, however, we simplify this by not adding the types.
The environment should only contain variables that are used in the current program or explicitly removed
from the environment.
The definition for the environment can be seen in Equation (4.1). Here, we represent the environment using
a list where [] represents an empty environment and Γ[v] represents variable v added to the environment Γ.
For easier readability we also write [v1, . . . , vn] instead of [][v1] . . . [vn] for the environment containing exactly
variables v1 to vn. Each of the variables v has a reference r, a lock lr for reading and possibly a lock lw for
writing. More in this in the next subsection.

Γ = [] | Γ1[x 7→ r lr] | Γ1[x 7→ r lr lw] (4.1)

4.3 Destination passing style

The computation of a variable can be in a different thread from where it is used, the direct result might
not be in scope where the variable is used. We, therefore, need to create a reference before forking so that
this reference is in scope both for the computation and the usage. We, however, also need to be sure that
the computation is actually finished before we can use the result. For this we use signals; when we are done
computing a variable we resolve the signal. We can then wait for this signal before reading the reference.
Multiple parts of the program can wait for the same signal but every signal has to be resolved exactly once.
To represent the signals corresponding to a variable we use locks. Each lock l = (sw, sr) contains two signals:
one signal sw to wait for before reading the value of the variable and one signal sr to resolve when finished
writing to the variable. In the implementation a lock does not need to have both these signals, as sometimes
the signals are not needed. For simplicity, we assume that they are always both present.
We, however, not only change the variables in the program to use references. Also the result of the program
uses references. Instead of returning a result, a destination reference should be passed to the program to
which the result is written. The destination of the program is represented as a tuple of destination variables.
One of these destinations is written as (r s), where r is the reference to write the result and and s is the
signal to resolve when finished.
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4.4 Let

When we encounter a let binding in the program we introduce a fork. This fork parallelizes the term in the
binding from the in-clause. This does mean that we need to introduce a reference for each of the variables
we are binding here. We pass these references as the destination to the binding and in the environment
to the in term. Since we are introducing a fork we also need to synchronize the variables that are used in
both sub-terms. We denote the split of the environment as Γ ↠ Γ1 ▷◁ Γ2, s, where Γ is split into Γ1 and
Γ2 with s as the extra instruction for handling the signals. The details on how we do this can be found in
Section 4.11.1. The resulting inference rule for a let-binding can be seen in Equation (4.2).

Γ1 ⊢ t @ ((x′
1 s1), . . . , (x

′
n, sn)) ; t̂

Γ2[x1 7→ x′
1 (s1, ) (s1, )] . . . [xn 7→ x′

n (sn, ) (sn, )] ⊢ t1 @ d ; t̂1
Γ ↠ Γ1 ▷◁ Γ2, s

Γ ⊢ let (x1, . . . xn) = t in t1 @ d ;

s ;
let s1 = signal in
let x′

1 = ref in
...
let sn = signal in
let x′

n = ref in
fork t̂ t̂1

Let

(4.2)

4.5 Binding

For the binding in a let we need to create a new let binding as we did not do that when encountering the let
in the source program. The result of this let is then written to the destination. We, however, also possibly
need to read the variables that are used from their corresponding reference. For this we first need to wait for
the used variables to be ready. Then we can read these values. We should then also resolve the read signals
as we ware done reading the variables. We can now perform the action of the binding. After this we should
write the result to the destination and resolve the signals to tell that we are done writing. This results in the
rules found in Equation (4.3).

[x1 7→ r1 (s1, s
′
1), . . . , xn 7→ rn (sn, s

′
n)] ⊢ e @ (r s) ;

wait [s1, . . . , sn]
let x1 = read r1 in
...
let xn = read rn in
let x = e in
resolve [s′1, . . . , s

′
n]

write r x ;
resolve s ;
return

Expression

(4.3a)

[x 7→ r1 (s1, s2)] ⊢ alloc x @ (r s) ;

wait s1 ;
let x = read r1 in
let xs = alloc x in
resolve s2 ;
write r xs ;
resolve s ;
return

Alloc

(4.3b)
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[] ⊢ use n buf @ (r s) ;

let x = use n buf in
write r x ;
resolve s ;
return

Use

(4.3c)

[x 7→ r1 (s1, s2)] ⊢ unit x @ (r s) ;

wait s1 ;
let x = read r1 in
let xs = unit x in
resolve s2 ;
write r xs ;
resolve s ;
return

Unit

(4.3d)

4.6 Function

Functions are a special case as they are not a regular term in the program and do not have a destination. We
therefore use a slightly altered notation for the transformation without the destination. A lambda is handled
by adding the argument to the environment. For a body we need to create a new function with an argument
for the references of the output to be passed to. We can then use these references as the destination of the
content of the body. The rules for this can be seen in Equation (4.4).

Γ[x] ⊢ f ; f̂

Γ ⊢ λx.f ; λx.f̂
Lambda

(4.4a)

Γ[x] ⊢ t @ (r s) ; t̂

Γ ⊢ t ; λ(r, s).t̂
Body

(4.4b)

4.7 Condition

For a condition we need the program to wait for the guard variable to be ready, so we can read the value
from the reference. We can recursively convert both branches. Since we have two branches that do not
necessarily use the same variables, we have to do some synchronization for the environments. For example
if a variable is used in only one of the branches we need to resolve the signals for this variable in the other
branch. For this we use the separate sub-environment rule in Equation (4.6) that removes the variables from
the environment that are not used and resolves their signals. How the synchronization is defined exactly can
be seen in Section 4.11.2. This results in the rule for conditions in Equation (4.5).

Γ ⊢ t1 @ d ; t̂1 Γ ⊢ t2 @ d ; t̂2 Γ(v) = r (s, )

Γ ⊢ if v then t1 else t2 @ d ;

wait s ;
if v
then t̂1
else t̂2 ;
return

If

(4.5)

Γ′ ⊢ t @ d ; t̂ Γ ⊇ Γ′, s

Γ ⊢ t @ d ; resolve s ; t̂
Sub-environment

(4.6)

4.8 Operation

An operation needs to be compiled to a kernel that can be executed on the target device. This is done in this
step, but how it is done exactly is not part of this thesis. The operation does use variables, both for reading
input and for writing the output. We, thus, need to wait for these used variables to be ready and read them
from their references. After this we can resolve the signals for the used variables.
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Γ = [x1 7→ r1 (s11, s
2
1) (s

3
1, s

4
1), . . . , xn 7→ rn (s1n, s

2
n) (s

3
n, s

4
n)] op⇒ kern

Γ ⊢ op (x1, . . . , xn) @ () ;

wait [s11, s
3
1, . . . , s

1
n, s

3
n] ;

let x1 = read r1 in
...
let xn = read rn in
Exec kern (x1, . . . , xn) ;
resolve [s21, s

4
1, . . . , s

2
n, s

4
n] ; return

Operation

(4.7)

4.9 Return

As we now use references for the output of a program we need to write the output when we encounter a
return statement. We do this by first waiting for the result to be ready. After this we read this result from
their corresponding reference, after which we can write this result to the output reference. Finally we can
resolve the output signals.

Γ = [x1 7→ r1 (s1, s
′
1), . . . , xn 7→ rn (sn, s

′
n)]

Γ ⊢ return (x1, . . . , xn) @ ((r′1 s′′1), . . . , (r
′
n s′′n)) ;

wait [s1, . . . , sn] ;
let x1 = read r1 in
write r′1 x1 ;
...
let xn = read rn in
write r′n xn ;
resolve [s′1, s

′′
1 , . . . , s

′
n, s

′′
n] ;

return

Return

(4.8)

4.10 While

The while statement is probably the most complicated statement in the language. It is also another place
where we add task parallelism. Here it is, however, not done by adding a fork statement. In this case it is
the scheduler that can decide to start on the next iteration before the previous one has started. In practice
this means that after the guard has been computed and we know that there is another iteration, there might
already be another thread starting on the next iteration while the current iteration is still being preformed.
In the transformation we have to combine the two functions from before the transformation, for the guard
and the body, into a single function. This new function takes in the result of the previous iteration and
returns the result of the guard and the result of the iteration. As we are using destination passing style these
outputs are references pasted to the function. In the function we first create a destination for the guard
function and then execute this guard. After this we can write the result of the guard to it’s output reference.
If the guard is true we perform an iteration of the while loop with as destination the reference for the result of
the iteration. If the guard was false we write the current values of the while loop to the original destination.
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Γ[x 7→ r (s, )] ⊢ t @ (r2 s2) ; t̂ Γ[x 7→ r (s, )] ⊢ t1 @ (r1 s1) ; t̂1 [y 7→ r1 (s1, )] ⊢ return y @ d ; t̂′

Γ ⊢ while λx.t do λx.t1 vs @ d ;

while
(λ(r, s).λ(r0, s0).λ(r1, s1).
let s2 = signal in
let r2 = ref in
t̂
wait [s2]
let g = read r2 in
write r0 g
resolve [s0]
if g then t̂1
else t̂′)
vs ; return

While

(4.9)

4.11 Environment synchronization

In some of the rules we need to synchronize the variables in the environment. In this subsection we discuss
how we do this for the different occasions.

4.11.1 Parallel

When introducing a fork we have to split the environment for the two different threads. Since these threads
can be executed in parallel we also have to do some extra synchronization to make sure all the used values
are actually computed before using them. In general a read has to wait for all previous writes to be finished
and a write has to wait until all previous writes and reads are finished. To do this we regularly have to create
new signals which can then be resolved in one thread and waited on in the other. Some of the signals that
need to be resolved depend on both of the threads. In this case we create an extra thread that waits for the
signals in the two threads and then resolves the signal that need to be resolved. The resulting rules can be
seen in Equation (4.10).
In Equation (4.10c), when both threads only read the variable, we let both threads wait for the original
signal and create a new separate thread that resolves the signal for the variable when both threads are done
reading. When the first thread reads and the second threads writes in Equation (4.10d) we need the second
to wait with reading until the first thread is done writing to the variable. We also need to wait with resolving
the original write signal, so we create a separate thread to resolve it. In Equation (4.10e), when the first
thread reads and the second thread writes, we have to create a thread for the second thread to wait with
writing until the variable is ready to be written to from before this point and the first thread is done reading.
Finally when both threads write to the variable in Equation (4.10f) the second thread has to wait for the
first thread to be finished reading before it can write and finished writing before it can read.
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[] ↠ [] ▷◁ [], id
Empty

(4.10a)

Γ1 ; Γ1 ▷◁ Γ2, t̂ x ↠ x1 ▷◁ x2, t̂1

Γ[x] ; Γ1[x1] ▷◁ Γ2[x2], t̂1 . t̂
Cons

(4.10b)

x 7→ r (sr1, s
r
2) ↠ x 7→ r (sr1, s1) ▷◁ x 7→ r (sr1, s2),

newSignal s1
newSignal s2
waitResolve [s1, s2] s

r
2

Read-read

(4.10c)

x 7→ r (sr1, s
r
2) (s

w
1 , s

w
2 ) ↠ x 7→ r (sr1, s1) (s

w
1 , s2) ▷◁ x 7→ r (s2, s3),

newSignal s1
newSignal s2
newSignal s3
waitResolve [s1, s3] s

r
2

waitResolve [s2] s
w
2

Write-read

(4.10d)

x 7→ r (sr1, s
r
2) (s

w
1 , s

w
2 ) ↠ x 7→ r (sr1, s1) ▷◁ x 7→ r (sr1, s

r
2) (s2, s

w
2 ),

newSignal s1
newSignal s2
waitResolve [sw1 , s1] s2

Read-write

(4.10e)

x 7→ r (sr1, s
r
2) (s

w
1 , s

w
2 ) ↠ x 7→ r (sr1, s1) (s

w
1 , s2) ▷◁ x 7→ r (s2, s

r
2) (s1, s

w
2 ),

newSignal s1
newSignal s2

Write-write

(4.10f)

newSignal s := let s = signal in (New signal)

waitResolve s1 s2 := fork (wait s1 ; resolve s2 ; return) (Wait resolve)

4.11.2 Conditional

In a condition we have two sub-terms of which only one is executed. These sub-terms do not always use the
same variables. We, however, always need to resolve the signals of a variable. We need to be able to reduce
the environment to only the variables that are needed and resolve the not used signals, so if a variable is in
the environment but not used we remove it from the environment and resolve all the signals for that variable.
However if the variable is in the environment with write privileges but we only read the variable we also need
to resolve the write signal of the variable. The rules for this can be seen in Equation (4.11).

[] ⊇ [], [] (4.11a)

x ≥ x′, s

Γ[x] ⊇ Γ[x′], s (4.11b)

x 7→ r (s1, s2)(s3, s4) ≥ x 7→ r (s1, s2)(s3, s4), [] (4.11c)

x 7→ r (s1, s2)(s3, s4) ≥ x 7→ r (s1, s2), [s4] (4.11d)

x 7→ r (s1, s2)(s3, s4) ≥ (), [s2, s4] (4.11e)

x 7→ r (s1, s2) ≥ x 7→ r (s1, s2), [] (4.11f)

x 7→ r (s1, s2) ≥ (), [s2] (4.11g)

(4.11h)
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4.12 Usage analysis

In order to decide what rule to use for the synchronizations in Section 4.11 we need to know what variables
are used in each sub-term. To do this we have an extra pass over the program before the transformation
where we annotate this. The rules for the analysis can be seen in Equation (4.12). This analysis gives the
variables that are used in a term and whether these variables are only read from or also written to. We then
annotate these result to each term in the program, so we can use this for the synchronization.

f : us

λx.f : us\x Lambda
(4.12a)

op vs : vs Operation (4.12b)

return vs : [vs ↣ R]
Return

(4.12c)

t : us1 t1 : us2
let x = t in t1 : us1 ∪ us2\x

Let
(4.12d)

t1 : us1 t2 : us2
if v then t1 else t2 : [v ↣ R] ∪ us1 ∪ us2

If
(4.12e)

f : us1 f1 : us2
while f do f1 vs : us1 ∪ us2

While
(4.12f)

e : []
Expression

(4.12g)

alloc vs : [vs ↣ R]
Alloc

(4.12h)

use n buf : []
Use

(4.12i)

unit v : [v ↣ R]
Unit

(4.12j)

(4.12k)
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4.13 Examples

Now that we have formulated all the rules for the basic transformation, we can look at some examples. In
Example 4.13.1 we have a simple example of only a single operation. Example 4.13.2 contains a little bit
longer example that has two operations that do not depend on each other, so here a fork would be able to
improve the performance. In both these examples we can clearly see that we are introducing a lot of extra
terms to the program with extra signals, references and forks. In the next section we look into eliminating
some of these forks as not all of them are actually able to lead to a program speedup.

Example 4.13.1. We look at a simple input program that takes in an array and adds one to every element
of the array.

λ ( e0 , b0 ) .
l et b1 = al loc e0 in
let ( ) = map (\ x0 −> 1 .0 + x0 , in b0 , out b1 ) in
return ( e0 , b1 )

This result in the following program after transformation:

λ ( ( s0 , r0 ) , ( s1 , r1 ) ) . −− S i gna l s and r e f e r e n c e s f o r the input
λ ( ( s2 , r2 ) , ( s3 , r3 ) ) . −− S i gna l s and r e f e r e n c e s f o r the output

l et s4 = signal in −− Read and wr i t e s i g n a l f o r the r e s u l t
l et s5 = signal in
let r4 = ref in −− Reference to wr i t e the a l l o c r e s u l t to
fork { −− Forking the a l l o c from the r e s t

l et s6 = signal in −− Read s i g n a l f o r map r e s u l t
fork { −− Fork map from the re turn

wait [ s0 , s6 ] −− Wait f o r r e s u l t to be ready
l et e2 = read r0 in −− Read the input s i z e
write r2 e2 −− Write s i z e to the output r e f
l et b3 = read r4 in −− Read map r e s u l t
write r3 b3 −− Write r e s u l t to output
resolve [ s2 , s3 ] −− Resolve output s i g n a l s

}
wait [ s0 , s1 , s4 , s5 ] −− Wait f o r input array and a l l o c a t i o n
l et e1 = read r0 in −− Read input array s i z e
l et b1 = read r1 in −− Read input array
l et b2 = read r4 in −− Read bu f f e r to wr i t e r e s u l t to
map (\ x0 −> 1 .0 + x0 , in b1 , out b2 ) −− Perform the map
resolve [ s6 ] −− Resolve the read s i g n a l

}
wait [ s0 ] −− Wait f o r input s i z e to be a v a i l a b l e
l et e0 = read r0 in −− Read the input s i z e r e f e r e n c e
l et b0 = al loc e0 in −− Perform the a l l o c a t i o n
write r4 b0 −− Write r e s u l t to output
resolve [ s4 , s5 ] −− Resolve read and wr i t e s i g n a l s

△
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Example 4.13.2. We can now also look at a bit more complicated example. This example takes in an array
and outputs a tuple with two arrays. The first output array is the input array but every element has one
added to it. The second output array is an array of length two with the second and third element of the
input array.

λ ( e0 , b0 ) .
l et b1 = al loc e0 in
let ( ) = map (\ x0 −> 1 .0 + x0 , in b0 , out b1 ) in
let e1 = 2 in
let b2 = al loc e1 in
let ( ) = backpermute (\ x0 −> 1 + x0 , in b0 , out b2 ) in
return ( ( e0 , b1 ) , ( e1 , b2 ) )

After transformation we get the following program:

λ ( ( s0 , r0 ) , ( s1 , r1 ) ) .
λ ( ( ( s2 , r2 ) , ( s3 , r3 ) ) , ( ( s4 , r4 ) , ( s5 , r5 ) ) ) .

l et s6 = signal in
let s7 = signal in
let r6 = ref in
fork {

l et s8 = signal in
fork {

l et s9 = signal in
let r7 = ref in
fork {

l et s10 = signal in
let s11 = signal in
let r8 = ref in
fork {

l et s12 = signal in
fork {

wait [ s0 , s8 , s9 , s12 ]
l et e4 = read r0 in
write r2 e4
l et b6 = read r6 in
write r3 b6
l et e5 = read r7 in
write r4 e5
l et b7 = read r8 in
write r5 b7
resolve [ s2 , s3 , s4 , s5 ]

}
wait [ s0 , s1 , s10 , s11 ]
l et b4 = read r1 in
let b5 = read r8 in
backpermute (\ x0 −> 1 + x0 , in b4 , out b5 )
resolve [ s12 ]

}
wait [ s9 ]
l et e3 = read r7 in
let b3 = al loc e3 in
write r8 b3
resolve [ s10 , s11 ]
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}
l et e2 = 2 in
write r7 e2
resolve [ s9 ]

}
wait [ s0 , s1 , s6 , s7 ]
l et e1 = read r0 in
let b1 = read r1 in
let b2 = read r6 in
map (\ x0 −> 1 .0 + x0 , in b1 , out b2 )
resolve [ s8 ]

}
wait [ s0 ]
l et e0 = read r0 in
let b0 = al loc e0 in
write r6 b0
resolve [ s6 , s7 ]

△
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5 Optimizations

Now that we have formulated the basic rules we can look at optimizing the transformation. In this section
we look at removing forks that do not give any extra performance and we add some extra forks for returning
the variables.

5.1 Trivial

Some of the terms we are currently parallelizing are so small that parallelizing them does not yield any
speedup. For example the compute 2 from Example 4.13.2. So to improve the transformation we are not
parallelizing these trivial terms. The terms that we call trivial are use and compute with an expression that
does not use any variable. We could say that an alloc and unit would also be trivial since the execution is
also basically instant, but because they use variables the waiting for the variable to be ready might take a
non-trivial amount of time.
Since these terms are not parallelized, we know that the result is ready when it is used. This also means
that we do not need a reference or any signals. To implement this we have a separate rule for a let binding
where we keep it as a let binding in the transformation, as seen in Equation (5.1). This rule is used when
the term that is bound in the let is one of the trivial terms. In this rule we transform the binding t to the
corresponding binding b in the target language. As we do not use references this transformation does need
need a destination. The transformation is very close to an identity transformation as there are no extra
things that we need to do.
Not using a reference for these variables does also mean that we have to change some of the other rules as
well. Because now we do not need to read the value from the reference before using the value. This is a quite
trivial change, so we do not elaborate on these rules here.

Γ1 ⊢ t ; b Γ2 ⊢ t1 @ d ; t̂1

Γ ⊢ let x = t in t1 @ d ; let x = b in t̂1
Let-sequential

(5.1)

5.2 Directly waiting

Usually, the result of a statement is used in another statement. If it is the next statement that uses it, there
is no use in forking these two statements from each other, since the second statement waits for the first
one to finish in either case. We can, however, also not simply eliminate the fork for the first statement as
there might be more statement later that do not depend on either statement, which could be executed in
parallel. We want to combine the two statements into a single thread, which is then forked from the rest of
the program. To implement this we look at the first statement in the in-clause of a let binding and see if
it uses all results from the let binding. If it does we use the rule in Equation (5.2) to combine the current
binding with the first statement in the in-clause. Here the t′′ ← t′ t′1 puts the t′ directly in the first fork it
encounters in t′1.

Γ1 ⊢ t @ (x′ s1) ; t̂ Γ2[x 7→ x′(s1, )(s1, )] ⊢ t1 @ d ; t̂1 Γ ↣ Γ1 ▷◁ Γ2, s t̂′ ← t̂ t̂1

Γ ⊢ let x = t in t1 @ d ; s ; let s1 = signal in let x′ = ref in t̂′
Let-combine

(5.2)
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5.3 Fork returns

Often, a return statement has multiple values to return, like in Example 4.13.2. In the basic transformation
we simply write these results sequentially. It might, however, be that the different values to return are ready
at different times. It can, therefore, be better to write these results in parallel, so that if one is ready earlier
it is already returned and can be used somewhere else. To do this we introduce new forks for every value
that is to be returned. The rules for this can be seen in Equation (5.3).

[] ⊢ return () @ () ; return
Return

(5.3a)

Γ1 ⊢ return vs1 @ d1 ; t̂1 Γ2 ⊢ return vs2 @ d2 ; t̂2 Γ = Γ1 ∪ Γ2

Γ ⊢ return (vs1, vs2) @ (d1, d2) ; fork t̂1 t̂2
Return

(5.3b)

[v 7→ r1 (s1, s2)] ⊢ return v @ (r s) ;

wait s1 ;
let x = read r1 in
write r x ;
resolve s2 ++ s ; return

Return

(5.3c)

5.4 Example

With these optimizations added to the transformation the example from Example 4.13.2 results in the program
found in Example 5.4.1.

Example 5.4.1.
λ ( ( s0 , r0 ) , ( s1 , r1 ) ) .

λ ( ( ( s2 , r2 ) , ( s3 , r3 ) ) , ( ( s4 , r4 ) , ( s5 , r5 ) ) ) .
l et s6 = signal in
let s7 = signal in
let r6 = ref in
let s8 = signal in
fork {

l et e2 = 2 in
let s10 = signal in
let s11 = signal in
let r8 = ref in
let s12 = signal in
fork {

fork {
fork {

wait [ s0 ]
l et e4 = read r0 in
write r2 e4
resolve [ s2 ]

}
wait [ s8 ]
l et b6 = read r6 in
write r3 b6
resolve [ s3 ]

}
fork {

write r4 e2
resolve [ s4 ]

}
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wait [ s12 ]
l et b7 = read r8 in
write r5 b7
resolve [ s5 ]

}
l et b3 = al loc e2 in
write r8 b3
resolve [ s10 , s11 ]
wait [ s0 , s1 , s10 , s11 ]
l et b4 = read r1 in
let b5 = read r8 in
backpermute (\ x0 −> 1 + x0 , in b4 , out b5 )
resolve [ s12 ]

}
wait [ s0 ]
l et e0 = read r0 in
let b0 = al loc e0 in
write r6 b0
resolve [ s6 , s7 ]
wait [ s0 , s1 , s6 , s7 ]
l et e1 = read r0 in
let b1 = read r1 in
let b2 = read r6 in
map (\ x0 −> 1 .0 + x0 , in b1 , out b2 )
resolve [ s8 ]

△
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6 Results

Now that we have defined the transformation we can look at how well the transformation works in practice.
In this section we look at the implementation and the tests we ran on this.

6.1 Implementation

To see how well the transformation works in practice we created an implementation based on the transforma-
tion rules1. We try to stay as close as possible to the formal definition to make the implementation easier to
understand and reason about. The implementation replaces an existing transformation for task parallelism
in the compile pipeline. In the pipeline all terms in the AST’s have the types annotated. We want to make
sure that these types are also preserved during our transformation. So in the implementation we keep track
of the typed environment with the current variables and their corresponding types.

6.2 Benchmarks

We also want to test the speed of our implementation. To do this we run some benchmarks. These benchmarks
are ran using the interpreter backend on an AMD Ryzen 9 7950X with 64GB of DDR5-5600 memory.
Every value is an average over ten runs. We test three different implementations. The current version
of Accelerate with only a very basic implementation of task parallelism, the existing implementation of the
new pipeline that is being developed with an implementation for task parallelism similar to ours and finally
our own implementation for task parallelism, which is based on the new pipeline where we replace the existing
transformation for task parallelism with ours.
We use two different programs for testing. The first one is an implementation of an automatic differentiation
benchmark[25] in Accelerate. This program is quite complicated with many different kernels. The second
one is a salt marsh creek formation benchmark. This benchmark is a simulation of creek formation in a salt
marsh ecosystem, using mainly stencil operations.

6.2.1 Compilation time

We first run some benchmarks to test the compilation time of the different implementations. The results for
the automatic differentiation benchmark can be found in Figure 3. We can see that the new pipeline is a lot
slower than the current Accelerate pipeline. A major part of this is an analysis for strongly live variables.
This analysis does a lot of weakening of variable indices. The existing implementation for task parallelism
that we replaced with ours also does this analysis another time, this is, thus, also why our implementation is
significantly faster.
The result for the salt marsh benchmarks can be found in Figure 4. We can see that here the new pipeline is
not a lot slower. This is most likely because the program is a lot easier, so the weakening is usually done on
only a handful of variables. We can, however, still see that the new pipeline is a bit slower that the current
version of Accelerate. We also see that our implementation is somewhere in between the two.
What we can conclude from these results is that our implementation most likely does not add a lot of extra
time to the compilation, which is what we aimed for.

0 100 200 300 400 500 600

Accelerate

New-pipeline

Our-implementation

0.417

562

395

Time(s)

Figure 3: Compilation time of the automatic differentiation benchmark program.

1https://github.com/musicismyalibi/accelerate/blob/task-parallelism/src/Data/Array/Accelerate/Trafo/

Schedule/Uniform.hs

https://github.com/musicismyalibi/accelerate/blob/task-parallelism/src/Data/Array/Accelerate/Trafo/Schedule/Uniform.hs
https://github.com/musicismyalibi/accelerate/blob/task-parallelism/src/Data/Array/Accelerate/Trafo/Schedule/Uniform.hs
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Figure 4: Compilation time of the salt marsh benchmark program.

6.2.2 Running time

We also want to test the speedup of the actual program. For this we use the salt marsh benchmark. We
use the interpreter backend as the other backends do not work correctly with the new pipeline version of
Accelerate. The interpreter is designed to simply be able to run an Accelerate program, but without the
real parallel computations. We are, therefore, not really able to test what kind of speedup our addition of
task parallelism gives, but only an indication of the amount of overhead we add. The backend for the new
pipeline does support some parallelization.
We first test the runtime where we force the program to use a single thread. The results can be found in
Figure 5. We can see that the new pipeline with the extra support of forks and references does make the
runtime quite a bit longer. We can also see that our implementation adds a little bit less overhead than the
implementation in the new pipeline.
We can now have a quick look at the running time for multiple threads. The result can be found in Figure 6.
We can see that these result are quite the opposite of what we would expect, as the program becomes slower
when using more threads. We can however see that this pattern exists for all our compiler versions. This is
most likely caused by some issues with running Haskell in parallel, where it forces running on multiple threads
even though the program itself does not really support this, causing a lot of extra unnecessary overhead.

0 0.5 1 1.5 2 2.5 3
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New-pipeline

Our-implementation
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2.16

Time(s)

Figure 5: Running time of the salt marsh benchmark program on a single thread.
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Figure 6: Running time of the salt marsh benchmark program on a multiple threads.
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7 Conclusion

We have seen that by forking the program when encountering a let binding we can add task parallelism to
a program. We have defined the transformation to do this by creating inference rules for every statement in
the language. To improve the transformation we optimized it by not forking trivial statements, combining
statements when they wait on the previous one and adding extra forks when returning multiple variables.
We have then implemented the transformation based on the definition. This implementation has been made
to be type safe. We found that the implementation in both compilation and single threaded runtime is slower
than the current Accelerate implementation, but faster that the existing implementation for task parallelism
in the new pipeline.

7.1 Research questions

We can now look at the answers to our research questions from Section 1.3. For question 2 we have seen that
we were able to create a good formalization of the transformation by creating inference rules for each term in
the source language. For question 3 we have seen that in the implementation we were able to keep the same
type safety as in the rest of the Accelerate compiler by keeping track of the types in the environment. For
question 4 we do not really know the answer yet as we did not have the time to properly test the runtime of
the programs in a parallel manner.
So in conclusion for question 1 we have seen that we can add task parallelism to Accelerate in quite a well
defined, type safe and efficient way by first creating inference rules for the transformation and then creating
an implementation based on this.

8 Discussion

We have created a good transformation to add task parallelism to accelerate. There are, however, still ways
to improve on our research in future work. In this section we discuss some of these.

8.1 Benchmarks

The benchmarks we ran for this research were quite limited. We only tested two different programs and only
for the interpreter backend. It would be good to do some more tests to see how it behaves for more different
programs. It would also bee good to test whether the addition of task parallelism will actually make the
program execution faster when ran in parallel.

8.2 Optimizations

We have already added some optimizations to the transformation. There are, however, many more opti-
mizations possible that could improve the performance of the program. These optimizations will most likely
mostly be about removing overhead in the form of references and signals. An easy improvement could be
to remove some of the signals when combining two statements into a single thread. More broadly it would
most likely be possible to combine more statements together and remove extra references and signals when
they are not needed. Apart from this it might be possible to treat some more statements as trivial when we
already know that the variables they use will for certain be ready.

8.3 Graph based

In this research we decided to introduce forks mostly in let bindings. This does however mean that we will,
in the basis, only parallelize single terms in a let binding. It could however be beneficial to parallelize series
of terms that directly depend on each other. To find these we could create some sort of graph with all
dependencies of the program. This graph can then be used to decide where to introduce forks. These forks
can then more easily have two larger subterms to parallelize. It could be good to look at this different method
of automatic task parallelism in the future.
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