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ABSTRACT 

 

In order to evaluate the impact of outcome misclassification on the possible causal association 

between Adverse Events of Special Interest (AESIs) and COVID-19 vaccination, we conducted 

a literature review and a simulation study. The literature study aimed to obtain a plausible range 

of outcome misclassification indices of the International Classification of Diseases (ICD) coding 

systems used in electronic healthcare databases.  

We used logistic regression to contrast a naïve estimator that disregards misclassification 

with a misclassification-integrating Maximum Likelihood Estimation (MLE) model to explore 

the relationship between vaccine exposure and the occurrence of AESIs. The MLE model 

employed marginal probability from a Bernoulli distribution to account for misclassification, 

facilitating a comparison of log of odds ratios and relative risks between the models.  

In our simulation study, we generated data which incorporated a fixed vaccination rate, 

varying sample sizes, regression coefficients, and misclassification rates to evaluate bias and 

mean squared error (MSE) of the log of odds ratio and the relative risk. The analyses showed that 

the MLE model exhibited reduced bias under high prevalence and specificity conditions when 

examining the relative risk bias. Despite its great variability, the MLE model outperformed the 

naïve estimator in specific simulations with increased association strengths, supporting our 

hypothesis. Our findings reveal a need for rigorous methodologies to address misclassification in 

vaccine safety assessments and indicate that the degree of misclassification may be significant, 

depending on the specific ICD code. 

Our research highlighted the importance of thoroughly recognising misclassified data and 

outlined critical areas for future research in epidemiology. Our observations demonstrated that 

the traditional approach, which disregards the subsequent bias brought on by misclassification – 

is not fundamentally flawed, emphasising the need to investigate how and when these errors can 

be significant. 

Words: 285 

Keywords: Misclassification, Adverse Events of Special Interest (AESI), COVID-19 vaccination, 

Simulation study, International Classification of Diseases (ICD), Bias, Mean Squared Error 

(MSE).  
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LAYMAN'S SUMMARY 

 

This research paper explored the misclassification of Adverse Events of Special Interest (AESIs) 

after COVID-19 vaccination. These are pre-selected adverse events extracted from the COVID-

Vaccine-Monitor: Rapid Safety Assessment of SARS-CoV-2 vaccines in the EU Member States 

using electronic health care data sources -protocol. In order to evaluate the impact of outcome 

misclassification on the relationship between COVID-19 vaccination and the AESIs, we 

conducted a comprehensive literature review followed by an in-depth simulation study.  

Our literature review revealed misclassification errors in electronic healthcare databases 

which use the International Classification of Diseases (ICD) coding systems. Across the review 

of misclassification rates, we detected that some AESIs are more prone to misclassification, and 

the degree of misclassification can be measured using metrics such as sensitivity and specificity. 

To examine the impact of misclassification on the interpretation of vaccine safety, we 

analysed two logistic regression models. The naïve model simulated the traditional approach and 

did not factor in misclassified outcomes, while the Maximum Likelihood Estimation (MLE) 

model did.  Unlike traditional approaches, the MLE model accounts for misdiagnosed AESI codes 

within an electronic database. We compared our naïve estimator to our MLE model, uncovering 

factors that bias the association between vaccine exposure and AESIs. While both outcome and 

exposures are assumed to be binary variables, the MLE model used the Bernoulli distribution.  

Our simulation study involved synthesising data with a fixed vaccination rate, varying 

sample sizes, effect sizes, and misclassification rates. These analyses revealed that the MLE 

estimator displayed a reduced bias for relative risk when the prevalence of a given AESI was high 

and the reported misclassification rate of the ICD code was low. However, when the prevalence 

was low, and the strength of association was weak, the MLE did not show superior accuracy in 

all simulations. Nevertheless, the MLE model's greater variability but reduced bias showed that 

it outperformed the naïve estimator in specific simulations, especially those with a stronger 

simulated association – supporting our hypothesis.   

Our findings expose a need for a deeper understanding of the underlying influences 

affecting the bias and error introduced by the inadvertent misclassification of AESIs. Moreover, 

the study stresses the need for rigorous methodologies to address misclassification in future 

vaccine safety studies. Arguably, our observations relay that the traditional approach is not 

fundamentally flawed; given its disregard for misclassified data, this oversight does not always 

result in bias and inaccuracy in healthcare databases. 

Words: 395 
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Introduction 
 

Severe Acute Respiratory Syndrome Coronavirus 2 outbreak in 2019 and the resulting 

coronavirus disease (COVID-19) catalysed a mass vaccination campaign globally (Graham, 

2020; Bok et al., 2021). Implementing an immunisation program of this magnitude demands a 

greater degree of scrutiny regarding vaccine safety. While vaccine development typically spans 

decades, the development of the COVID-19 vaccine was expedited to a matter of months, 

placing even greater importance on the surveillance of vaccine adverse events. In order to assess 

the occurrence of adverse events after vaccine exposure, we must rely on accurate 

approximations of their background rates. Therefore, it is crucial to consider the validity of 

reported adverse events and their diagnoses – significant misclassification could potentially 

weaken the assessment of vaccine associations (Graham, 2020; Patel et al., 2020). 

This research paper is part of the project: COVID-Vaccine-Monitor: Rapid Safety 

Assessment of SARS-CoV-2 vaccines in the EU Member States using electronic health care data 

sources. It focuses on the pre-selected Adverse Events of Special Interest (AESIs) associated with 

vaccine exposure. The study's data retrieval and transformation were based on case-recognising 

algorithms using the 9th and 10th revisions of the World Health Organisation's International 

Classification of Diseases (ICD) system. The ICD system is a diagnostic tool used for comparing 

morbidity and mortality statistics, insurance, and reimbursement purposes. Linking each AESI to 

ICD-9 and ICD-10 codes allows for the evaluation of misclassification of AESI diagnoses to 

conduct a valid assessment of vaccine safety (Mullooly, 2008).  

The ICD-9 and ICD-10 systems are currently the most common versions used by world 

healthcare databases. The validity of ICD codes is assessed by evaluating misclassification 

measures such as the Positive Predictive Value (PPV) – the proportion of true positive cases 

relative to the total positives identified by the electronic system. By comparing the reported 

PPVs of different codes through a literature review, we can assess the relative validity of the 

same and determine the reliability of diagnoses. Therefore, this paper aims to provide critical 

insights into the accuracy of adverse event reporting post-COVID-19 immunisation; thus, we 

hypothesise that proper accounting for misclassification will be meaningful for the safety 

evaluation of novel vaccine technology.  

In response, our research question is: what is the association between misclassification 

errors and the reporting of AESIs following COVID-19 vaccination? The following findings 

could be critical in informing public health policies concerning clinical decision-making related 

to COVID-19 vaccinations. Furthermore, this research addresses a gap within the pre-existing 

literature and highlights the need for a more in-depth understanding of outcome classification 

within electronic healthcare databases. By exploring this question, this paper will significantly 

contribute to the ongoing discussion around the safety of COVID-19 vaccines.  

  1 
CHAPTER 
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Literature Review 
 

Validating ICD algorithms within electronic healthcare databases for real-world evidence studies 

is increasingly important. Poorly validated ICD algorithms can lead to inaccurate or misleading 

diagnoses. A proposed framework for validating ICD algorithms includes several steps, such as 

defining the study population, selecting the appropriate ICD codes, and assessing the algorithm's 

performance using various metrics (Tanpowpong, 2020). 

The literature review compiles the available misclassification rates by finding the PPVs 

for each AESI and its code. The ICD codes [found in Appendix 1] were extracted from the 

Background rates of Adverse Events of Special Interest for monitoring COVID-19 vaccines-report 

and refer to their respective preliminary reports found on the Zenodo platform, an open-access 

repository for sharing research data and outputs. 

Methodology for Literature Review 

We used the Boolean operator 'AND' to combine three search concepts for each disease 

and condition: the specific disease or condition, the respective ICD code, and the concepts of 

validity and positive predictive value (PPV). For example, for Guillain Barre Syndrome, we 

combined 'Guillain Barre Syndrome', 'ICD-9', '357.0', and the validity keywords (including 'PPV', 

'positive predictive value', 'validity', 'validation') using 'AND'. Similarly, for Acute Disseminated 

Encephalomyelitis, we combined 'Acute Disseminated Encephalomyelitis', 'ICD-10', 'G04.0 OR 

G04.8', and the validity keywords. This strategy was consistent for all the conditions and their 

respective ICD codes: 'Acute Aseptic Arthritis' and '274'; 'Diabetes Mellitus' and '250.x'; 

'Idiopathic Thrombocytopenic Purpura (ITP)' and 'D69.3 OR 287.31'; 'Microangiopathy' and 

'448.0 OR I78'; 'Heart Failure' and 'I50.20 TO I50.23'; 'Coronary Artery Disease' and 'I20.0 OR 

I21 OR I24'; 'Ventricular Arrhythmia' and '427.1 OR 427.4 OR 427.5'; 'Myocarditis' and '422 OR 

I40 OR I41'; and so on for all the remaining diseases and conditions including COVID-19, various 

pregnancy-related conditions and infant conditions [found in Appendix 1].  

Inclusion Criteria 

1. The study was published between 1 January 1995 and 1 March 2023.  

2. The study has been written in English.  

3. The study used medical data validating ICD code assignment. 

4. The study fulfilled our Quality Assessment Questions. 

Exclusion Criteria 

1. The study focuses on diagnostic test accuracy. 

Quality Assessment Questions 

1. Was the research question clearly stated? 

2. Was the study design appropriate for answering the research question? 

3. Was the sample size adequate and representative? 

4. Were the data collection methods valid and reliable? 

5. Were the data analysis methods appropriate and transparent? 

  2 
CHAPTER 
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6. Did the study define a study population, select appropriate ICD codes, and use 

appropriate metrics to assess algorithm performance?  

The values reported are primarily PPVs from various scientific papers. This report splits them 

into their respective body systems, focusing on the general outcomes for the general population.  

 

Results of the Literature Review 

Autoimmune Diseases 

Guillain Barre Syndrome 

Guillain Barre Syndrome (GBS) is typically identified using ICD-9 code 357.0. PPVs in studies 

have varied, ranging from 12%-16% in a PRISM study to 29% in a study by Funch et al. (2013). 

However, the PPV increases to 82% when the definition is restricted to primary inpatient 

diagnosis codes (Burwen et al., 2012). 

Acute Disseminated Encephalomyelitis  

Acute Disseminated Encephalomyelitis (ADEM) is designated by the ICD-10 code G04.0. A 

Danish NRP study, which also included G04.8 and G04.9, reported a PPV of 44% for ADEM 

(Boesen et al., 2018). 

Acute Aseptic Arthritis 

Gout, encoded as 274 in ICD-9, showed a PPV of 61% in a study by Harrold et al. (2007). The 

study also reported relatively low PPVs for Osteoarthritis and Rheumatoid Arthritis (60% and 

59%, respectively). 

Diabetes Mellitus 

For Diabetes Mellitus, the ICD-9 codes 250.x1 for Type I and 250.x0 for Type II have been 

studied with high PPVs ranging from 94% to 97% based on two or more indicators (Zgibor et al., 

2007). Khohkar's (2016) study presented a wider range of sensitivity, specificity, and PPVs using 

combined physician claims data and hospital discharge records. 

Thrombocytopenia 

Idiopathic Thrombocytopenic Purpura (ITPa) is identified using ICD-10 code D69.3. Studies 

reported high PPVs, with values of 93% and 95.8%. However, the ICD-9 code 287.3 for primary 

thrombocytopenia showed lower PPVs, ranging from 65% to 85%. After updating the code to 

287.31 in 2006 for immune thrombocytopenic purpura (ITPb), the PPV in inpatient settings rose 

to 80% (Galdarossa et al., 2012; Heden et al., 2009). 

Cardiovascular System 

Microangiopathy 

Microangiopathy validation studies are scarce. Gillmeyer et al. (2019) included ICD codes 448.0 

and ICD-10 I78 for pulmonary capillary hemangiomatosis (PCH), but no specific PPV was 

reported. The best-performing algorithm for identifying pulmonary arterial hypertension (PAH) 

required ICD diagnosis codes, right heart catheterisation (RHC) codes, and PAH-specific therapy 

(VA hospitals: PPV, 70.0%; BMC: PPV, 86.0%). 
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Heart Failure 

Pocobelli et al. (2022) validated the ICD-10 codes for heart failure (HF) and its subtypes. 

Diagnostic codes I50.20-I50.23 have a PPV of 41.4%. The highest PPV was for HF patients with 

mid-range ejection fraction (mEF) or preserved ejection fraction (pEF), with diastolic HF at a 

PPV of 92.0% and pEF/mEF at 97.7%. 

Stress Cardiomyopathy 

Bhat et al. (2020) reported a PPV of 98% for stress cardiomyopathy (SCM), using both ICD-9 

(429.83) and ICD-10 (I51.81) codes. The PPV rose to 100% when only considering patients with 

a primary diagnosis of SCM. 

Coronary Artery Disease 

Bezin et al. (2015) studied acute coronary syndrome and found the highest PPVs for individual 

codes I20.0, I21, and I24. The combination of I20.0, I21 or I24 had the best performance for 

identifying acute coronary syndrome, with a PPV of 84.2%. 

Arrhythmia 

Ye et al. (2018) validated algorithms to identify ventricular arrhythmia and sudden cardiac death.  

They reported an algorithm identifying ventricular arrhythmia and used ICD-9 codes 427.1, 

427.4, and 427.5. This study validated the use of the codes with a PPV of 93%. A variation of 

this algorithm, including code 427.69, lowered the PPV to 82%. Adding codes for unspecified 

cardiac arrhythmia further lowered the PPV to 50%.  

Myocarditis and Pericarditis 

Sundbøll et al. (2016) reported a PPV of 64% for myocarditis and 92% for pericarditis in the 

Danish National Patient Register. The PPVs were higher in university hospitals and younger 

patients. The authors concluded that these diagnoses require caution when used for research due 

to their relatively lower PPVs. 

Circulatory System 

Disseminated intravascular coagulation 

In a study by Wada et al. (2014), ICD-10 codes for disseminated intravascular coagulation (DIC) 

were validated, and they reported PPVs ranging from 68.2% to 90.3%. They used medical records 

as the standard, indicating that ICD codes for DIC can help identify cases with a relatively low 

risk of misclassification. 

Venous thromboembolism  

Öhman et al (2018) validated ICD8/9/10 codes for pulmonary embolisms (PE) and Deep Vein 

Thrombosis (DVT), with an overall PPV of 71.1%. The PPV was 85.8% for PE and 54.1% for 

DVT. The authors found that approximately 9% of PE and DVT events are misclassified, 

predominantly as DVT events. 

Stroke  

In a systematic review by McCormick et al (2015), acute stroke ICD codes were found to 

accurately predict true cases of any type of acute stroke and of particular subtypes. For ischaemic 

stroke, identified by ICD-9 434 or ICD-10 I63, the PPV was 82%. 
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Cerebral venous thrombosis  

Handley and Emsley (2020) reported a validation of ICD-10 codes for intracranial venous 

thrombosis and showed an overall PPV of 92.3% for the codes G08.X, O22.5, I67.6, I63.6, O87.3. 

Hepato-gastrointestinal and Renal System 

Acute Liver Injury 

The European Association characterises Acute Liver Failure (ALF) as a rare and highly specific 

syndrome, typically indicated by abnormal liver blood tests in the absence of underlying chronic 

liver disease (CLD) (McDowell Torres et al., 2010). In a study by Lo Re et al. (2013), the positive 

predictive values (PPVs) of individual ICD-9 codes for severe acute liver injury (SALI) varied 

significantly, from 6.5% to 54.3%. However, when specific codes were observed in conjunction, 

the PPV improved, with the combination of 573.3 and 570 reaching 60%. Due to the specificity 

of the codes and the rarity of ALF, the PPVs for true ALF were relatively low, between 1.8% and 

9.1%. However, in patients without CLD, the PPV for codes 570 and 572.8 was 100%. Another 

study investigating coding algorithms following acetaminophen overdose found a PPV of 85% 

for hepatotoxicity and 53% for ALF in patients with acetaminophen hepatotoxicity (Myers et al., 

2007). 

Acute Kidney Failure 

Waikar et al. (2006) reported that the most common ICD-9 codes for Acute Kidney Failure (AKF) 

were 584.5 and 584.9, and the codes had a PPV of 80.2%. 

Nerves and Central Nervous System Disorders 

Generalised Convulsions and Epilepsy 

In a study by Jetté et al. (2010), ICD-9 epilepsy codes were validated. Code 345.x was examined 

alongside diagnoses resembling epilepsy, such as codes 346.x, 435.x, 780.28, and 780.3. The 

ICD-10 epilepsy code is G40.x or G41.x, with similar resembling diagnoses included. The PPV 

for seizure monitoring unit (SMU) database records reported 84.9% overall, with varying PPVs 

for specific codes. The ICD-9 code 345's validity study showed high PPVs across care settings, 

with lower PPVs when combined with convulsion diagnostic code 780.3. ICD-10 PPVs for G40-

41 followed a similar pattern. 

The given sequence shows PPVs rising in relation to patient cohort nature. In Shui et al.'s paper 

(2009), ICD-9 codes' PPVs were assessed for identifying seizures in children six weeks to 23 

months post-vaccination. Codes 730.8 and 345 had the highest PPVs in emergency room settings, 

lower in inpatient settings, and lowest in outpatient settings. They concluded that PPVs might 

suffer less bias when restricted to ER diagnoses. 

In Gmuca et al. (2020), code 341.0 had a 47% PPV across all sites. However, the most successful 

case-finding algorithms included at least five codes, resulting in a 90% PPV in children and 92% 

in adults when measured through patients with documented hospitalisation. 

Transverse Myelitis  

Boesen et al (2018) reported PPVs for children with G37.3 [transverse myelitis] as 64%. They 

concluded that the PPVs were acceptable for transverse myelitis and that using the ICD-10 code 

is beneficial for epidemiological studies. 
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Respiratory System 

Acute Respiratory Distress Syndrome 

In a study by Thomsen & Morris (1995), the positive predictive values (PPVs) for the ICD-9 

discharge diagnosis codes 518.5, 518.81, and 518.82, pertaining to acute respiratory distress 

syndrome (ARDS), were found to be low. In all six of the surveyed hospitals, PPVs were recorded 

to be 7%. The authors attributed these low PPVs to the low incidence of ARDS in the hospitals, 

coupled with the challenges associated with ICD-9 coding for ARDS. They noted that a low PPV 

is expected when screening for rare conditions like ARDS. 

COVID-19 

Regarding COVID-19, the ICD-10 code is U07.1, several studies have evaluated the validity of 

this code. As reported by Lynch et al. (2021), out of 52,000 hospitalisations in April 2020, the 

PPV for code U07.1 was found to be 91.52%. Kluberg et al. (2022) reported a PPV of 93% for 

the code, while Bhatt et al. (2021) found a PPV of 90.0% among 1,208 patients. These results 

suggest that code U07.1 has high PPVs, making it valid for identifying COVID-19 cases in 

inpatient data. As the pandemic progressed, the use of U07.1 and R05 [Cough] codes declined, 

and diagnosis codes Z20.828 and Z11.59 became more frequently used. 

Skin and Mucous Membrane, Bone and Joints System  

Erythema Multiforme  

Erythema Multiforme (EM), also known as Steven-Johnsons Syndrome (SJS), is represented by 

ICD-9 code 695.1x. A study by Eisenberg et al. (2012) found the positive predictive values 

(PPVs) for this condition to be notably low, with only 2.00% recorded for inpatient claims. 

Another study by Schneider et al. (2012) investigated the incidence of EM and SJS, employing 

ICD-8 and ICD-9 codes for validation. The ICD-8 code 695.1 showed a PPV of 59.6% based on 

a review of discharge summaries, hospital records, and outpatient data. In contrast, ICD-9 code 

695.1, which refers to both SJS and EM, revealed a PPV of 54.0% in one validation study and 

53.7% in another, both based on medical record reviews. 

Chilblain like lesions 

There is currently no available literature concerning the validation of ICD-9 or ICD-10 codes for 

chilblain-like lesions, a skin condition associated with COVID-19. A study by Kanitakis et al. 

(2020) on this subject only included 17 patients, and no ICD validation results were found. 

Levine et al. (2013) demonstrated that ICD-9 codes can be used to retrospectively identify skin 

and soft tissue infections (SSTIs) with high certainty. However, this accuracy diminishes when 

more data like microbiology information and CPT codes are incorporated. The study found that 

the identification of cellulitis/abscess using ICD-9 codes had a PPV of 91.5% (95% CI: 88.9-

94.1%). In contrast, the identification of cellulitis/abscess specific to a particular body site had a 

PPV of 52.6% (95% CI: 47.6-57.6%). The PPVs were generally lower when the SSTI 

identification algorithm was restricted to initial visits. More research is needed to evaluate the 

sensitivity of this method. 

Other Systems 

Anosmia, dysgeusia 

Anosmia and dysgeusia have minimal validation for their ICD codes, but a study by Zayet et al. 

(2021) found that these symptoms had a positive predictive value (PPV) of 77% for a positive 

RT-PCR result for COVID-19. The combination of these two symptoms had a PPV of 83% for a 
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positive SARS-CoV-2 RT-PCR result, making them valuable indicators of COVID-19 infection 

in outpatients. 

Anaphylaxis 

For anaphylaxis, a study by Mesfin et al. (2019) validated the use of ICD-10 codes T80.5, T80.6, 

T88.1, T88.6, and T78.2 in identifying cases of anaphylaxis after vaccination. The study revealed 

a low overall PPV, with only 24.6% of the 69 records confirmed as anaphylaxis due to 

vaccination. However, when using the ICD-10 code T80.5, the PPV was 95.7% for all 

anaphylaxis cases and 52.2% for anaphylaxis due to vaccination. 

A study by de Sordi et al. (2021) also evaluated anaphylaxis identification using ICD-10 codes. 

They identified potential cases by combining specific in-hospital codes, outpatient codes with 

symptom codes, or non-specific in-hospital codes with two symptom codes. The main algorithm 

had a PPV of 62.8% based on 49 true cases, but it underestimated absolute risks by about a third. 

Restricting the algorithm to primary discharge codes improved PPV but reduced sensitivity. 

Multisystem Inflammatory Syndrome in Children (MIS-C) 

Multisystem Inflammatory Syndrome in Children (MIS-C) is a rare condition linked to COVID-

19 infection. An emergency ICD-10 code was introduced in 2020 to account for MIS-C, but it is 

unclear if this code accurately identifies patients with COVID-19. An early study found that only 

20.3% of known COVID-19 cases were assigned this ICD-10 code, though the PPV of the U07.1 

code was 96.3% (Aldawas & Ishfaq, 2022). 

Death  

Death is not associated with an ICD code, but sudden death is linked to the ICD-9 code 798 and 

ICD-10 codes R99, R95, R96.0, and R96.1. However, these codes for sudden death have not been 

validated, as per a study by Khalili et al. (2012). The code R99, for ill-defined causes of death, is 

typically attributed to a specific cause. 

Maternal Pregnancy Outcomes  

Gestational Diabetes 

In the case of gestational diabetes, the ICD-9 code 648.8 had a reported positive predictive value 

(PPV) of 11.6%, as per Donovan et al.'s 2019 study. 

Preeclampsia 

For preeclampsia, Watson (2016) et al. reported a PPV of 81.2% for the ICD-10 O14 code. Geller 

et al. reported a lower PPV (45.3%) for mild or unspecified preeclampsia (ICD-9 642.4) but a 

higher PPV (84.8%) for severe preeclampsia. 

Maternal death 

Regarding maternal death, Sigakis et al. (2016) reported a range of PPVs for various ICD-9 codes 

capturing severe maternal morbidity during delivery hospitalisation. The PPV was high when 

supported by objective evidence, such as laboratory values or procedure documentation. 

However, the PPV was low for codes that required appropriate judgment and interpretation of 

clinical data, like the category 'Severe anaesthesia complications'. As such, these codes should be 

used cautiously in administrative research compared to codes primarily defined by objective data. 

However, specific PPVs for maternal death were not reported. 
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Neonatal Pregnancy Outcomes 

Foetal growth restriction 

Phiri's (2016) study on foetal growth restriction (FGR) reported that the ICD-9 code 656.5x for 

small for gestational age (SGA) infants had a low sensitivity (14.2%) but high specificity (99.7%) 

and positive predictive value (PPV, 86.8%). A systematic review by Watson et al. (2021) found 

a PPV of 57.1% for FGR using the GAIA case definition, suggesting caution in interpreting 

results. 

Spontaneous Abortions 

In the context of spontaneous abortions, Chomistek et al. (2023) found high PPVs for several 

claims-based algorithms, with the most uncomplicated having a PPV of 84.7% (95% CI 78.3, 

91.2) using ICD-10 code O03. 

Stillbirth 

Andrade et al. (2021) showed that an ICD-10-based algorithm could effectively identify stillbirth 

events, with the highest PPV of 82.5% achieved when a diagnosis code indicated a gestational 

age ≥ 20 weeks. 

Preterm-birth  

Using the GAIA case definition, Watson et al (2021) found a PPV of 75.5% for preterm birth 

(PTB). They also reported PPVs of 56.8 (47.7–65.8) for the code O60 and 76.4 (67.6–85.2) for 

P07. 

Major Congenital Anomalies 

Chomistek et al. (2023) reported that an algorithm had a PPV of 44.0% for identifying significant 

congenital anomalies, while another, which required two claims separated by at least 30 days, 

had a PPV of 67.8%. 

Microcephaly 

For microcephaly, Watson et al. (2021) reported a PPV of 40.0 (29.0–50.0) for the ICD-10 code 

Q02. 

Neonatal Death 

A study by Gray et al. (2022) on neonatal death reported a sensitivity of 65.5% and a PPV of 90% 

using the ICD-10 code for cardiac arrest. 

Termination of Pregnancy for Foetal Anomaly (TOPFA) 

In Garne et al.'s study (2023) on termination of pregnancy for foetal anomaly (TOPFA), 99% of 

cases were identified in hospital databases, with 91% having an end-of-pregnancy code and 82% 

having a code for a congenital anomaly. Salemi et al. (2018) reported a PPV of 94.2% for TOPFA 

using the Florida Birth Defects Registry, which increased with more restrictive case definition 

algorithms. 
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Methods 
 

The primary aim of most vaccine safety studies is to establish a causal relationship between 

vaccination and AESIs. Typically, the gold standard design used to infer causality is a randomised 

controlled trial; however, the potential presence of misclassification errors can affect the 

determination of causality.  

Logistic Regression 

Researchers have frequently ignored misclassification, even though this might have introduced 

undue bias. Therefore, a key question arises: is this bias significant enough to skew results, or is 

it negligible? In contrast to the previous approach, our cross-sectional study aims to assess the 

performance of two different estimation methods for the regression coefficient in a logistic 

regression model. Unlike the standard method, a Maximum Likelihood Estimation (MLE) model 

integrates possible misclassification, more thoroughly examining a possible causal relationship.   

Suppose we are interested in a binary exposure status Z and binary outcome Y. We 

modelled the relationship between exposure and outcome by the logistic regression model 

(Equation 1), where 𝛼 denotes the log-odds of experiencing an adverse event when the predictor 

variable is zero, equalling the prevalence of the outcome in the unvaccinated group. The 

regression coefficient 𝛽 signifies the change in log odds of experiencing an adverse event for an 

unvaccinated person compared to a vaccinated person. 

logit [Pr (𝑌 = 1| 𝑍)]    =  α +  β𝑍 

(Equation  1) 

Our investigation primarily focuses on the relationship between COVID-19 vaccine 

status and the likelihood of experiencing an AESI; our model consists of a binary outcome event, 

Y, representing AESI occurrence. The binary predictor variable, Z, signifies the vaccine status; 

hence our naïve model considers four possibilities (Table 1).  

 Outcome (Y) 

Exposure (Z) Yes No 

Yes [𝑃𝑟(𝑌 = 1|𝑍 = 1)] [𝑃𝑟(𝑌 = 0|𝑍 = 1)] 

No [𝑃𝑟(𝑌 = 1|𝑍 = 0)] [𝑃𝑟(𝑌 = 0|𝑍 = 0)] 

Table 1. This contingency table shows the probabilities between the outcome and 

the exposure. 

 

We define the observed outcome as Y* to account for possible misclassification. Four 

possibilities exist for observing Y* depending on the true outcome Y (Table 2). Therefore, the 

relationship between the observed outcome Y* and the true observed outcome Y can again be 

modelled using the logistic regression model (Equation 2), in which τ represents the log-odds of 

observing an adverse event when truly no adverse event occurred, while λ indicates the change 

in log-odds from observing an adverse event to not observing an adverse event, similar to 

Equation 1. 
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 True (Y) 

Observed (Y*) Yes No 

Yes [𝑃𝑟(𝑌∗ = 1|𝑌 = 1)] [𝑃𝑟(𝑌∗ = 1|𝑌 = 0)] 

No [𝑃𝑟(𝑌∗ = 0|𝑌 = 1)] [𝑃𝑟(𝑌∗ = 0|𝑌 = 0)] 

Table 2. This contingency table shows the probabilities between the true and 

observed outcomes. 

 

logit[Pr (𝑌∗ = 1 | 𝑌)] =  𝜏 +  𝜆𝑌 

(Equation  2) 

We consider a naïve model which assumes Y* is Y, and therefore the estimation of the 

log of odds ratio of β was done using the generalised linear model with a binomial distribution. 

In order to account for misclassification, we model the marginal probability Y* as follows: 

Pr(𝑌∗ = 1) = Pr(𝑌∗ = 1 | 𝑌 = 1)Pr(𝑌 = 1) +  Pr(𝑌∗ = 1|𝑌 = 0)[1 - Pr(𝑌 = 1)]   

(Equation  3) 

Equation 3 essentially represents the probability of Y* equaling one given the conditional 

probabilities of Y* given Y and the overall probability of Y being 1. To accommodate this in a 

distributional framework, we leverage the Bernoulli distribution, which is suitable for binary 

outcomes like Y*. The general form of a Bernoulli distribution is: 

Pr(𝑋 = 𝑥)  =  𝑝^𝑥 ∗  (1 − 𝑝)^(1 − 𝑥), for 𝑥 ∈  {0,1} 

(Equation  4) 

In this context, we can express the probability distribution of Y* as: 

Pr(𝑌∗  =  y) =  p𝑦(1 − p)(1−𝑦), for 𝑦 ∈  {0,1} 

(Equation  5) 

In Equation 5, p is the probability of Y* being 1, as obtained from Equation 3. With these 

definitions in place, we can express the likelihood contribution of each subject as: 

Li = Pr(𝑌∗
i) 

(Equation  6) 

We will compare the estimated log of odds ratio and the relative risk obtained by the 

naïve and the MLE method through a simulation study in which the parameters can be found in 

the next section. The relative risk is calculated as the ratio of the probability of being vaccinated 

to the probability of being unvaccinated; this gives the estimated risk of the adverse event 

occurring for vaccinated individuals compared to unvaccinated individuals. In other words, it tells 

us how much more likely it is for a vaccinated individual. In order to calculate the relative risk, 

we use the following formula: 

 

𝑅𝑅 = [Pr(Y = 1|Z = 0)]
[Pr(Y = 0|Z = 0)]⁄  

(Equation  7) 
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Methodology for Simulation study 

The literature review provided supporting information for the conditions under which 

each AESI may exist. We calculated minimum and maximum sensitivity and specificity values 

for each AESI using the range of Positive Predictive Values (PPVs) with the formula below. 

When the literature review provided a PPV range, we used it directly – but for single PPV reports, 

we introduced a margin of error by adding a range of plus-minus 5 per cent to the given PPV, a 

common practice in statistics when there is uncertainty about the true value of a parameter.  This 

information is presented in a comprehensive matrix that illustrates the possible combinations for 

each AESI (Table 4). We also present the minimal and maximal sensitivity and specificity values 

derived from the range of PPVs for each AESI, which can aid in the visual assessment of figures 

produced by the simulation study.  

 

 

PPV =
(Prevalence) × (Sensitivity) 

(Prevalence) × (Sensitivity) + (1 − Specificity) × (1 − Prevalence)
 

(Equation  8) 

In order to assess the performance of the two estimators, we will conduct a simulation 

study. This study will generate data with a fixed vaccination rate, varying sample sizes, regression 

coefficients, and misclassification rates. The simulation study investigated the performance of 

various statistical methods in estimating the association between vaccination status and the 

occurrence of an AESI. Specifically, the study focused on the accuracy and efficiency by 

comparing bias and Mean Squared Error (MSE) under the various simulation scenarios (Table 

3). The bias and MSE of an estimated parameter 𝜃 are calculated as follows: 

Bias = E[𝜃] –  𝜃 

(Equation  9) 

MSE = [E(𝜃 –  𝜃)
2

] 

(Equation  10) 

The analysis was performed using R version 4.1.1 and associated packages [found in 

Appendix 3]. The starting point for the analysis involved changing the code from a list of binary 

data to frequency data, as it is faster to compute simulations with. The codes used were extended 

from a pre-existing code written by other team members [found in Appendix 4]. 
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Condition Description Values 

N Sample Size 200, 1000, 2000, 10000 

P_vac Proportion of Vaccinated 0.7 

Beta True 
True Logistic Regression Coefficient of 

Vaccination on Event 
0.1, 0.5, 0.9 

Alpha True 
True Logistic Regression Intercept of 

Vaccination on Event 
-4.5, -3, -0.5 

Sens 
Sensitivity of Event Registration  

(Pr(Y*  = 1 | Z = 1)) 
0.99, 0.9, 0.8, 0.7 

Spec 
Specificity of Event Registration  

(Pr(Y*  = 0 | Z = 0)) 
0.99, 0.9, 0.8, 0.7 

Table 3. The conditions of the simulation study. 
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Results 
 

 

In this section, we illustrated the performance of two methods in estimating the association 

between outcome and exposure based on the specified conditions (Table 3). Specifically, we 

examined how different degrees of misclassification can influence our understanding of this 

relationship when misclassification is overlooked compared to when it is explicitly 

acknowledged. This approach can illuminate whether it is more advantageous to correct for 

misclassification or to disregard it. The primary performance measures assessed were bias and 

MSE on the log of odds ratio and the relative risk.  

  

Bias Analysis for the Estimated Log of Odds  

In the simulated scenario where the true beta value (representing the strength of association 

between exposure and outcome) was set to 0.1, both estimators resulted in low bias estimates (Fig 

1). More specifically, the naive estimator showed consistency across all conditions,  regardless 

of sample size and true alpha values (which represent the prevalence). However, The MLE model, 

displayed more variability, with notable fluctuations at sample sizes of 1,000 and 2,000 but 

appeared to stabilise at 10,000. These estimates increased as specificity (the ability to correctly 

identify non-cases) rose from 0.7 to 0.99. These fluctuations were more pronounced when the 

prevalence was low (alpha = -4.5), whereas more minor changes were observed for higher 

prevalence values (alpha values of -3 and -0.5). 

When we increased the strength of association (beta) to 0.5 (Fig 2) or 0.9 (Fig 3), the 

behaviour of both estimators remained similar however, an increase in bias was observed. The 

bias was substantial when the strength of association was high (beta = 0.9). However, regardless 

of the strength of association (beta), the bias tended to shrink as specificity increased from 0.7 to 

0.99 for the naïve estimator. In the scenarios where specificity was high (0.99), the prevalence 

was high (alpha = -0.5), and the sample size was large (10,000), bias estimates approached zero 

for the naïve estimator but not for the MLE. There was an increase in bias as we increased beta.  
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Disease Min Spec Max Spec Min Sens Max Sens 

Guillain Barre Syndrome 0.7 0.99 0.7 0.99 

ADEM 0.99 0.99 0.7 0.8 

Acute Aseptic Arthritis 0.7 0.7 0.7 0.9 

Diabetes Mellitus 0.7 0.99 0.7 0.99 

ITP 0.7 0.99 0.7 0.99 

Microangiopathy 0.7 0.8 0.7 0.99 

Heart Failure 0.99 0.99 0.7 0.7 

Coronary Artery Disease 0.8 0.99 0.7 0.99 

Ventricular Arrhythmia 0.7 0.99 0.7 0.99 

Myocarditis 0.7 0.8 0.7 0.99 

Pericarditis 1 0 1 0 

DIC 1 0 1 0 

Pulmonary Embolism + 

DVT 

0.8 0.99 0.7 0.99 

Stroke 0.9 0.99 0.7 0.99 

Venous Thrombosis 1 0 1 0 

Acute Liver Injury 0.7 0.99 0.7 0.99 

Acute Kidney Failure 0.8 0.99 0.7 0.99 

Generalised Convulsions 

and Epilepsy 

0.99 0.99 0.7 0.99 

Transverse myelitis 0.7 0.8 0.7 0.99 

Acute Respiratory 

Distress Syndrome 

0.7 0.9 0.7 0.99 

COVID-19 1 0 1 0 

Erythema Multiforme 0.7 0.99 0.7 0.99 

Skin Infections 0.7 0.99 0.7 0.99 

Anosmia, Dysgeusia 0.8 0.99 0.7 0.99 

Anaphylaxis 0.7 0.99 0.7 0.99 

MIS-C 0.99 0.99 0.7 0.99 

Gestational Diabetes 0.7 0.9 0.7 0.99 

Preeclampsia 0.7 0.99 0.7 0.99 

Foetal growth restriction 0.9 0.99 0.8 0.99 

Spontaneous abortions 0.9 0.99 0.7 0.99 

Stillbirth 0.9 0.99 0.7 0.99 

Preterm birth 0.7 0.8 0.7 0.99 

Major congenital 

anomalies 

0.7 0.99 0.7 0.99 

Microcephaly 0.99 0.99 0.7 0.7 

Neonatal death 0.9 0.99 0.7 0.99 

TOPFA 0.99 0.99 0.7 0.99 

 

Table 4: The minimal and maximal sensitivity and specificity values for each AESI based on the 

literature review.  
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Figure 1: Assessment of Bias of the Log of Odds Ratio under the Assumption of True Beta Value Equalling 0.1  

Figure 2: Assessment of Bias of the Log of Odds Ratio under the Assumption of True Beta Value Equalling 0.5 

Spec 

Sens  

Spec 

Sens  
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Bias Analysis for the Estimated Relative Risk 

[Analysis with Figures 4, 5, and 6 found in the Appendix]  

 

Mean Squared Error Analysis for the Estimated Log of Odds Ratio 

For smaller true beta values, such as 0.1, and under conditions of lower prevalence, the MLE 

showed a lower MSE, with a lower MSE meaning higher accuracy, compared to the naïve 

estimator. This held true regardless of sample size, although both the naïve and MLE provided 

notably high MSE estimates (Fig 7). However, as the sample size increased to 10,000, the MLE 

demonstrated a significant reduction in MSE. This suggests that the MLE can be more accurate 

under these conditions. However, under high prevalence conditions (i.e., when alpha is set at -

0.5), the MSE estimates of the two estimators alternated irregularly, sometimes surpassing and at 

other times falling beneath that of the naïve estimator, a phenomenon observed for all simulations 

when beta was 0.5 (Fig 8).  

When sensitivity and specificity were both high (0.99), the MSE of the MLE and the 

naïve estimator performed similarly. However, a divergence was observed as the sample size 

increased to 10,000: under these specific conditions, the naïve estimator yielded a lower MSE, 

suggesting minimal misclassification. As the true beta value was increased to 0.5 and further to 

0.9 (Fig 9), the results did not clearly indicate which estimator – MLE or naïve – presented lower 

MSEs. The resulting ambiguity emphasises the need for further exploration into the factors 

influencing these results.  

 

 

Figure 3: Assessment of Bias of the Log of Odds Ratio under the Assumption of True Beta Value Equalling 0.9 

Spec 

Sens  
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Figure 7: Assessment of MSE of the Log of Odds Ratio under the Assumption of True Beta Value Equalling  0.1. 

Figure 8: Assessment of MSE of the Log of Odds Ratio under the Assumption of True Beta Value Equalling 0.5. 
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Spec 

Sens  
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Mean Squared Error Analysis for the Estimated Relative Risk 

[Analysis with Figures 10, 11, and 12 found in the Appendix]  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Assessment of MSE of the Log of Odds Ratio under the Assumption of True Beta Value Equalling 0.9. 
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Discussion 
 

Our research adds to the growing body of literature that aims to assess the impact of outcome 

misclassification on reporting the association of AESIs with COVID-19 vaccination. Our 

literature review revealed a wide range of possible sensitivity and specificity values for the pre-

selected AESIs. This underlying diversity highlights the necessity for a more comprehensive 

understanding of these measures when researching the association of COVID-19 vaccines with 

AESIs.  

For instance, the ICD-9 and ICD-10 codes used to classify AESIs, such as those for 

ADEM, Heart Failure, and Generalised Convulsions and Epilepsy, demonstrated a high minimum 

specificity (0.99) – signalling a high rate of true negatives. This implies that the algorithms 

accurately identified individuals not suffering from these AESIs, indicating that misclassification 

is already minimal. Conversely, the ICD codes for Acute Aseptic Arthritis, Microangiopathy, 

Myocarditis, and Transverse myelitis, displayed lower maximum specificity values. This fact 

suggests a higher risk for false negatives, an essential factor for clinicians and public health 

officials to consider; misclassifying these events could lead to imprecise vaccine risk assessments. 

Interestingly, several ICD codes for AESIs, such as Pericarditis, Disseminated Intravascular 

Coagulation, and Cerebral Venous Thrombosis, displayed extreme sensitivity and specificity 

values (1 or 0). This could be attributed to reporting errors or limited data availability, 

emphasising the need for consistent monitoring and data collection for accurate value estimation. 

Furthermore, some codes for conditions like Guillain Barre Syndrome, Diabetes Mellitus, 

ITP, and coronary artery disease showed a wide range for both sensitivity and specificity, 

meanwhile codes for Acute Respiratory Distress Syndrome, Gestational Diabetes, Foetal Growth 

Restriction, and Preterm-birth exhibited narrower ranges. These disparities are particularly 

significant for the recognition of misclassification errors and warrant further investigation. This 

observation encourages the development of appropriate methods to manage misclassification in 

vaccine safety studies, as failure to adjust for this variability could lead to incorrect risk estimates. 

It is crucial to note that the broad range in sensitivity and specificity values across different AESIs' 

ICD codes implies that misclassification could vary significantly depending on the specific AESI 

and code being studied.  

Furthermore, the present study underlines the importance of a holistic approach to 

vaccine safety. Through this approach, researchers are able to account for not just the risk of 

misclassification across all AESIs, but also the specific rate of the same for each event and its 

respective ICD code. This enhanced understanding will provide a more detailed image of the 

potential adverse effects related to COVID-19 immunisation and encourage informed decision-

making in relation to future vaccine administration and public health policy. Our literature review 

lays the foundation for further research into the incorporation of misclassification rates into 

adverse event monitoring. In our methodology, we aimed to expose the potential bias from 

misclassification, which can often confound the determination of causal relationships in vaccine 

safety studies. The power of an RCT's causal inference can be weakened by these errors; 

therefore, our cross-sectional study aims to demonstrate how error and bias manifest in relation 

to the recognition of misclassification when it is present.   
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We compared a naïve estimator (which does not address misclassification) with an MLE 

model (which does integrate misclassification) to provide a more in-depth depiction of the 

association between vaccine exposure and AESIs. Both models use binary exposure status and 

binary outcome variables. In order to accurately portray outcome misclassification data, our MLE 

model was formulated to determine the marginal probability of the observed outcome based on 

the Bernoulli distribution. This approach enabled us to express the likelihood contribution of each 

subject, which thereby formed the groundwork for comparing the log of odds ratio and the relative 

risk obtained by our two models.  

In our simulation study, we generated data which incorporated a fixed vaccination rate, 

varying sample sizes, regression coefficients, and misclassification rates. When simulating the 

bias for the log of odds ratio, we found that the naïve estimator consistently yielded lower bias 

estimates across all conditions when the strength of association was minimal. In contrast, the 

MLE model displayed a higher degree of variability, particularly at smaller sample sizes of 1,000 

and 2,000. Notably, the MLE appeared to stabilise at larger sample sizes, suggesting that 

misclassification becomes less of an issue as the sample size increases. Furthermore, our analysis 

showed that bias estimates are sensitive to changes in effect size. As we increased this parameter, 

we observed a corresponding increase in bias for both estimators. We found that higher specificity 

(indicative of better identification of non-cases) helped to offset this rise in bias. Moreover, we 

noticed that under conditions of high specificity, high prevalence, and large sample size, bias 

estimates approached zero.  

When examining the bias in the relative risk, we observed similar patterns as for the log 

of odds. The fluctuations in bias appeared to be more noticeable at lower prevalence rates with 

both the naïve and MLE models, demonstrating similar performance. However, as the strength of 

association was increased to its highest level (0.9), the bias analysis for the estimated relative risk 

revealed an interesting dynamic. While the naïve estimator remained relatively constant, the MLE 

showed an apparent decrease in bias under high prevalence conditions and high specificity. This 

reduction was particularly pronounced in simulations with the largest effect size, highlighting the 

significant impact of bias and misclassification when predicting large effect sizes. These findings 

underscore the potential benefit of using the MLE to effectively adjust for misclassification, 

potentially leading to a decrease in estimate bias. 

Under low prevalence and small effect sizes, the MLE displayed higher accuracy than 

the naïve estimator, evidenced by lower MSE estimates in log of odds. This trend persisted across 

sample sizes, with MSE estimates rising for both models while sample sizes were small. 

However, the MLE's performance fluctuated under high prevalence and increased effect sizes, 

with the estimates occasionally surpassing and falling beneath the naïve estimator's MSE.  

For the relative risk, the naïve and MLE showed similar estimates for the small effect 

size simulations. After we increased the effect size value to 0.5 and 0.9, the MLE consistently 

outperformed the naïve estimator, indicating better error minimisation and affirming our 

hypothesis. Despite our proposed method of having more negligible bias but more considerable 

variability, this suggests that it may not necessarily outperform a less accurate, yet more biased 

naïve estimate (i.e. an estimator that is near to the true value but exhibits high variability, may 

not necessarily outperform a naive estimate, which, although biased, demonstrates less 

variability). 

The analysis included a computational simulation involving dataset simulation, defining 

conditions, and the use of various estimators. Using a random seed ensured reproducibility in 

results, and implementing a large number of simulations guarantees a comprehensive 

examination of potential real-world scenarios. Moreover, the computation and visualisation of 

error metrics provide an extensive understanding of the model's performance. Nevertheless, the 



 

26 

 

complexity of the MLE method and its implementation has limitations, because it is 

computationally expensive, time-consuming and susceptible to potential issues, such as non-

convergence. While this adds to the robustness of our research, it also increases the resources 

required. Overall, the benefits of this thorough approach outweigh the disadvantages, contributing 

to the study's impact on the field of epidemiology.   
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Conclusion 
 

The insights from our literature review emphasise the importance of a holistic approach to 

studying vaccine safety. We aimed to expose the potential bias and error resulting from data 

misclassification which can confound the determination of causal relationships in vaccine safety 

studies. These errors can deteriorate the power of causal inferences; thus, our cross-sectional 

study demonstrated how error and bias are exhibited through misclassification when present.   

The MLE and naïve estimators' varied results regarding MSE necessitate a careful and 

critical interpretation. These varied findings highlight the need to improve our understanding of 

the factors shaping these results. Essentially, our study aims to investigate how incorporating 

misclassification into the modelling of outcome-exposure relationships can approximate the true 

mechanisms of the association, as determined through bias and MSE. The importance of this 

research lies in its emphasis on adopting robust methods to address misclassification and 

recognition of the unique characteristics pertinent to specific AESI and their ICD codes.  

Our work contributes to the gap in research concerning the safety of COVID-19 vaccines 

and pinpoints critical areas for future exploration in this field. Our observations show that our 

proposed method of incorporating misclassification can sometimes be beneficial, but under 

certain conditions, it may not be necessary. 
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APPENDICES 

Supplementary Materials 
Appendix 1: Literature Review Table Summary 

Disease ICD Version ICD Code PPV Values Reference 

Guillain 

Barre 

Syndrome 

ICD-9 357.0 12%-16%  Yih et al. (2012) 

29% Funch et al. (2013) 

30-71% Shui et al. (2011) 

82% Burwen et al. (2012) 

Acute 

Disseminated 

Encephalom

yelitis 

ICD-10 G04.0, G04.8 44% Boesen et al. (2018) 

Acute 

Aseptic 

Arthritis 

ICD-9 274 61% Harrold et al. (2007) 

Diabetes 

Mellitus 

ICD-9 250.x 94%-97% Zgibor et al. (2007) 

54%-80% Kohkar et al. (2016) 

Idiopathic 

Thrombocyto

penic 

Purpura 

(ITP) 

ICD-10 

ICD-9 

D69.3 93%-95.8%  Heden et al. (2009) 

287.31 65%-85% 

 

Microangiop

athy 

ICD-9/ICD-

10 

448.0/I78 70% Gillmeyer et al. (2021) 

Heart Failure ICD-10 I50.20-I50.23 41.4% Pocobelli et al. (2022) 

Coronary 

Artery 

Disease 

ICD-10 I20.0, I21, I24 66.7%-100.0% Bezin et al (2015) 

Ventricular 

Arrhythmia 

ICD-9 427.1, 427.4, 427.5 50-93% Ye et al (2018) 

Myocarditis ICD-9, ICD-

10 

422, I40/I41 64% Sundboll et al (2016) 

Pericarditis ICD-9, ICD-

10 

391.09, 393, 420, 

423, I30-132 

92% Sundboll et al (2016) 

Disseminated 

Intravascular 

Coagulation 

ICD-10 D65, D68.4 89.7%-90.3% Wada et al (2014), 

Okamoto et al. (2019) 

Pulmonary 

Embolism + 

DVT 

ICD-8/9/10 
 

68.2-90.3% Öhman et al (2018) 

Stroke ICD-9/10 430/I60, 431/I61, 

434/I63, 436/I64 

82%  McCormick et al (2015) 

Cerebral 

Venous 

Thrombosis 

ICD-10 G08.X, O22.5, I67.6, 

I63.6, O87.3. 

92.3% Handley and Emsley 

(2020) 

Acute Liver 

Injury 

ICD-9 570, 572.2, 572.4, 

572.8, 573.3 and 570 

47.1-60% Lo Re (2013) 
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Acute 

Kidney 

Failure 

ICD-9 584.5, 584.6, 584.7, 

584.8, or 584.9. 

80.2%. Waikar et al (2006) 

Generalised 

Convulsions 

and Epilepsy 

ICD-9 345.x 98.9% Jette et al (2008) 

Transverse 

myelitis 

ICD-10 G37.3 64% Boesen et al (2018) 

Acute 

Respiratory 

Distress 

Syndrome 

ICD-9 518.5, 518.81, 518.82 7% Thomsen & Morris 

(1995) 

COVID-19 ICD-10 U07.1 90.0-93.0% Kadri et al (2020), 

Kluberg et al (2022), 

Bhatt et al (2021) 

Erythema 

Multiforme 

ICD-9 695.1x 2.00%-59.6% Eisenberg et al (2012); 

Schneider et al (2012) 

Skin and Soft 

Tissue 

Infections 

ICD-9 N/A 52.6%-91.5% Levine et al (2013) 

Anosmia, 

Dysgeusia 

ICD-10 N/A10 77% Zayet et al (N/A) 

Anaphylaxis ICD-10 T80.5 95.7% Mesfin et al (2019) 

T78.2, T88.6, T80.5, 

T78.4, T88.7, Y57.9 

12.9%-80.6% De Sordi et al. (2021) 

Multisystem 

Inflammator

y Syndrome 

in Children 

(MIS-C) 

ICD-10 U07.1 96.3% Blatz et al (2021) 

Sudden 

Death 

ICD-9/ICD-

10 

798/R99, R95, R96.0, 

R96.1 

N/A N/A  

Gestational 

Diabetes 

ICD-9 648.8 11.6% Donovan et al, 2019 

Preeclampsia ICD-9 642.4  45.3%  Geller et al. (2004) 

ICD-10 O14 81.2% Watson et al. (2021) 

Maternal 

death 

ICD-9 - - Sigakis et al 

Foetal 

growth 

restriction 

ICD-9 656.5x 86.8% Phiri et al, 2016 

Spontaneous 

abortions 

ICD-10 O03 84.7% Chomistek et al, 2023 

Stillbirth ICD-10 Z37.1, Z37.3, Z37.4, 

Z37.6X, Z37.7, P95 / 

O36.4XXX, 

O31.0XXX 

82.5% Andrade et al, 2021 

Preterm birth ICD-10  O60 56.8% Watson et al. (2021) 

P07 76.4% 

Major 

congenital 

anomalies 

ICD-10 - 44.0% - 67.8% Chomistek et al. (2023) 

Microcephal

y 

ICD-10 Q02 40% Watson et al. (2021) 
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Neonatal 

death 

ICD-10 - 81.4% Gray et al. (2022) 

Termination 

of Pregnancy 

for Foetal 

Anomaly 

(TOPFA) 

- - 94.2% Salemi et al. (2018)  

Table 5. Table showing the specific AESI, ICD version, respective code, reported PPV, and source. 
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Appendix 2: RStudio Script for the Calculation of Minimum and Maximum Sensitivity 

 

# Define the PPV calculation function 
calculate_ppv <- function(sens, spec, prevalence) { 
  return(sens * prevalence / (sens * prevalence + (1 - spec) * (1 - prevalence))) 
} 
# Define the prevalence calculation function 
calculate_prevalence <- function(alpha) { 
  return(exp(alpha) / (1 + exp(alpha))) 
} 
# Define the range of spec and sens values 
spec_sens_range <- c(0.7, 0.8, 0.9, 0.99) 
# Define the alpha values 
alpha_values <- c(-4.5, -3.0, -0.5) 
# Initialise a dataframe to store the results 
results <- data.frame() 
# Define the diseases and their PPV ranges 
diseases <- data.frame( 
  Name = c(“Name of each AESI in a list… 
), 
  PPV_lower = c(Lower PPV limit of each AESI in order, 
), 
  PPV_upper = c(  ) 
) 
# Loop over diseases 
for (i in 1:nrow(diseases)) { 
  # Loop over alpha values to calculate prevalence 
  for(alpha in alpha_values){ 
    prevalence <- calculate_prevalence(alpha) 
    # Loop over spec and sens values 
    for(spec in spec_sens_range){ 
      for(sens in spec_sens_range){ 
        # Calculate PPV 
        ppv <- calculate_ppv(sens, spec, prevalence) 
        # Check if PPV falls within the reported range for the disease 
        if(ppv >= diseases$PPV_lower[i] & ppv <= diseases$PPV_upper[i]){ 
          results <- rbind(results, c(diseases$Name[i], alpha, prevalence, 
spec, sens, ppv)) 
        } 
      } 
    } 
  } 
} 
# Name the columns of the results dataframe 
names(results) <- c("Disease", "Alpha", "Prevalence", "Specificity", 
"Sensitivity", "PPV") 
# Print the results 
print(results) 
write.excel <- function(x,row.names=FALSE,col.names=TRUE,...) { 
  
write.table(x,"clipboard",sep="\t",row.names=row.names,col.names=col.names,...
) 
} 
write.excel(results) 
# Initialise a dataframe to store the results 
results <- data.frame() 
# Loop over diseases 
for (i in 1:nrow(diseases)) { 
  # Initialize min and max spec and sens values 
  min_spec <- 1 
  max_spec <- 0 
  min_sens <- 1 
  max_sens <- 0 
  # Loop over alpha values to calculate prevalence 
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  for(alpha in alpha_values){ 
    prevalence <- calculate_prevalence(alpha) 
    # Loop over spec and sens values 
    for(spec in spec_sens_range){ 
      for(sens in spec_sens_range){ 
        # Calculate PPV 
        ppv <- calculate_ppv(sens, spec, prevalence) 
        # Check if PPV falls within the reported range for the disease 
        if(ppv >= diseases$PPV_lower[i] & ppv <= diseases$PPV_upper[i]){ 
          # Update min and max spec and sens values 
          min_spec <- min(min_spec, spec) 
          max_spec <- max(max_spec, spec) 
          min_sens <- min(min_sens, sens) 
          max_sens <- max(max_sens, sens) 
        } 
      } 
    } 
  } 
  # Add the results for the disease to the results dataframe 
  results <- rbind(results, c(diseases$Name[i], min_spec, max_spec, min_sens, 
max_sens)) 
} 
# Name the columns of the results dataframe 
names(results) <- c("Disease", "Min_Specificity", "Max_Specificity", 
"Min_Sensitivity", "Max_Sensitivity") 
# Print the results 
print(results) 
write.excel <- function(x,row.names=FALSE,col.names=TRUE,...) { 
  
write.table(x,"clipboard",sep="\t",row.names=row.names,col.names=col.names,...
) 
} 
write.excel(results) 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

37 

 

Appendix 3: RStudio Packages Used in Simulation Study 

 

Packages Used: 
- tidyverse (version 1.3.1): A collection of packages for data manipulation and 
visualisation in R. 
- maxLik (version 1.4-12): A package for maximum likelihood estimation in R. 
- dplyr (version 1.0.8): A package for data manipulation in R. 
- tidyr (version 1.1.4): A package for data tidying in R. 
 
Citations: 
- tidyverse: Wickham et al., (2019). Welcome to the tidyverse. Journal of Open 
Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686 
- maxLik: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum 
likelihood estimation in R. Computational Statistics 26(3), 443-458. 
doi:10.1007/s00180-010-0217-1 
- dplyr: Wickham et al., (2022). dplyr: A Grammar of Data Manipulation. R package 
version 1.0.8, https://CRAN.R-project.org/package=dplyr 
- tidyr: Wickham et al., (2021). tidyr: Tidy Messy Data. R package version 
1.1.4, https://CRAN.R-project.org/package=tidyr 
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Appendix 4: The Complete RStudio-Script for the Simulation Study  

Link to Daniels code: https://github.com/daob/vaccine-misclassification  

set.seed(342) 
simulate_dataset <- function(condition) { 
  with(condition, { 
    z <- rbinom(n, 1, prob = p_vaccinated) 
    eta_y_true <- alpha_true + beta_true * z 
    y <- rbinom(n, 1, prob = plogis(eta_y_true)) 
    eta_ystar_true <- tau + lambda * y 
    y_star <- rbinom(n, 1, prob = plogis(eta_ystar_true)) 
    dat_samp <- tibble(y_star = y_star, z = z) 
    dat_samp %>% group_by(y_star, z) %>% summarise(count = n(), .groups = 
'drop') %>% complete(y_star, z, fill = list(count = 0)) 
  }) 
} 
 
set.seed(342) 
nsim <-500  
 
conditions <- expand.grid(n = c(200, 1000, 2000, 10000), p_vaccinated = 0.70, 
beta_true = c(0.1, 0.5, -0.9), alpha_true = c(-4.5, -3, -.5), p_true_positive 
= c(0.99, 0.9, 0.8, 0.7), p_true_negative = c(0.99, 0.9, 0.8, 0.7)) %>% tibble 
 
conditions$tau <- with(conditions, log(1 - p_true_negative) - 
log(p_true_negative)) 
conditions$lambda <- with(conditions, log(p_true_positive) - log(1 - 
p_true_positive) - tau) 
 
condition <- conditions 
 
estimator_naive <- function(dat) { 
  fit_glm <- suppressWarnings(glm(y_star ~ z, data = dat, weights = count, 
family = binomial)) 
  relative_risk <- with(dat, (sum(dat$y_star * dat$count * (z == 1)) / 
sum(dat$count[z == 1])) / (sum(dat$y_star * dat$count * (z == 0)) / 
sum(dat$count[z == 0]))) 
  tibble(est_alpha_glm_naive = coef(fit_glm)['(Intercept)'], est_beta_glm_naive 
= coef(fit_glm)['z'], est_rr_naive = relative_risk) 
} 
 
data.new <- simulate_dataset(condition) 
cond <- condition 
 
get_estimator_misclassification_maxlik <- function(tau, lambda) { 
  function(dat) { 
    loglik <- function(params) { 
      alpha <- params['alpha'] 
      beta <- params['beta'] 
      y_star <- dat$y_star 
      z <- dat$z 
      pi_y <- plogis(alpha + beta * z) 
      p_y_star <- pi_y * plogis(tau + lambda) + (1 - pi_y) * plogis(tau) 
      logp <- dbinom(y_star, 1, prob = p_y_star, log = TRUE) * dat$count 
      return(logp) 
    } 
    res <- maxLik(loglik, start = c('alpha' = 0, 'beta' = 0), method = "BHHH") 
    tibble(est_alpha_MLE = coef(res)['alpha'], est_beta_MLE = 
coef(res)['beta'], se_alpha_MLE = stdEr(res)['alpha'], se_beta_MLE = 
stdEr(res)['beta']) 
  } 
} 
 
estimator_misclassification_maxlik <- 
get_estimator_misclassification_maxlik(tau = cond$tau, lambda = cond$lambda) 

https://github.com/daob/vaccine-misclassification
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dat_samp <- simulate_dataset(cond) 
res_mle <- estimator_misclassification_maxlik(dat_samp) 
res_naive <- estimator_naive(dat_samp) 
data.samp <- simulate_dataset(condition) 
 
estimator_relative_risk_mle <- function(dat, est_alpha_MLE, est_beta_MLE) { 
  exp_est_alpha_MLE <- exp(est_alpha_MLE) 
  exp_est_beta_MLE <- exp(est_beta_MLE) 
  prob_unvaccinated <- exp_est_alpha_MLE / (1 + exp_est_alpha_MLE) 
  prob_vaccinated <- (exp_est_alpha_MLE * exp_est_beta_MLE) / (1 + 
exp_est_alpha_MLE * exp_est_beta_MLE) 
  relative_risk <- prob_vaccinated / prob_unvaccinated 
  tibble(est_rr_mle = relative_risk) 
} 
 
run_condition <- function(cond, nsim = 1) { 
  estimator_misclassification_maxlik_new <- 
get_estimator_misclassification_maxlik(tau = cond$tau, lambda = cond$lambda) 
  map_df(1:nsim, function(isim) { 
    dat_samp <- simulate_dataset(cond) 
    res_mle <- estimator_misclassification_maxlik(dat_samp) 
    res_naive <- estimator_naive(dat_samp) 
    res_rr_mle <- estimator_relative_risk_mle(dat_samp, res_mle$est_alpha_MLE, 
res_mle$est_beta_MLE) 
    bind_cols(res_naive, res_mle, res_rr_mle) 
  }) 
} 
 
dummy_result <- run_condition(conditions[1, ], nsim = 1) 
dummy_result[1, ] <- NA 
 
conditions_subset <- conditions 
 
system.time({  
  res_overall <- map_df(1:nrow(conditions_subset), function(icond) { 
    cat(sprintf("%d\n", icond)) 
    current_condition <- conditions_subset[icond, ]  
    res <- tryCatch(run_condition(current_condition, nsim = nsim), error = 
function(e) { dummy_result }) 
    res %>% bind_cols(current_condition)  
  }) 
}) 
 
warnings() 
save(res_overall, file = "res_overall.rdata") 
head(res_overall) 
 
res_overall <- res_overall %>% 
  group_by(n, p_vaccinated, beta_true, alpha_true, p_true_negative, 
p_true_positive)  
 
absolute_error <- res_overall %>% summarize(mae_naive = 
median(abs(est_beta_glm_naive - beta_true)), mae_MLE = median(abs(est_beta_MLE 
- beta_true)), rmse_naive = sqrt(mean( (est_beta_glm_naive - beta_true)^2 )), 
rmse_MLE = sqrt(mean((est_beta_MLE - beta_true)^2))) 
absolute_error %>% 
  pivot_longer(starts_with("mae")) %>% 
  mutate(Estimator = gsub("mae_", "", name), `Median absolute error in β` = 
value) %>% 
  ggplot(aes(n, `Median absolute error in β`, color = Estimator)) + 
  scale_y_continuous(trans='log10')  + 
  scale_x_continuous(breaks = c(200, 1000, 2000, 10000)) + 
  facet_grid(alpha_true ~ p_true_negative + p_true_positive, scales = "free_y") 
+ 
  ggthemes::theme_few() + 
  ggthemes::scale_color_colorblind() + 
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  theme(axis.text.x = element_text(angle = 90, size = 6, vjust = 1, hjust=1), 
legend.position="top") +  
  geom_point() + geom_line() + 
  ggtitle("Median absolute error in estimates of β") 
 
mse_error <- res_overall %>% summarize(mse_naive = mean((est_beta_glm_naive - 
beta_true)^2), mse_MLE = mean((est_beta_MLE - beta_true)^2), rmse_naive = 
sqrt(mean( (est_beta_glm_naive - beta_true)^2 )), rmse_MLE = 
sqrt(mean((est_beta_MLE - beta_true)^2))) 
mse_error %>% 
  pivot_longer(starts_with("mse")) %>% 
  mutate(Estimator = gsub("mse_", "", name), `Mean squared error in β` = value) 
%>% 
  ggplot(aes(n, `Mean squared error in β`, color = Estimator)) + 
  scale_y_continuous(trans='log10')  + 
  scale_x_continuous(breaks = c(200, 1000, 2000, 10000)) + 
  facet_grid(alpha_true ~ p_true_negative + p_true_positive, scales = "free_y") 
+ 
  ggthemes::theme_few() + 
  ggthemes::scale_color_colorblind() + 
  theme(axis.text.x = element_text(angle = 90, size = 6, vjust = 1, hjust=1), 
legend.position="top") +  
  geom_point() + geom_line() + 
  ggtitle("Mean squared error in estimates of β") 
 
res_overall %>% summarize(across(starts_with("est"), mean, na.rm = TRUE)) %>% 
  ungroup %>% select(n, starts_with("est"))  
 
ests_median <- res_overall %>% summarize(across(starts_with("est"), median, 
na.rm = TRUE)) 
head(ests_median) 
 
ests_median %>%  
  pivot_longer(c("est_beta_glm_naive", "est_beta_MLE")) %>% 
  mutate(Estimator = gsub("est_beta.*_", "", name)) %>% 
  mutate(bias = value - beta_true, abs_bias = abs(bias), pct_relbias = 100 * 
abs_bias / beta_true) %>% 
  ggplot(aes(n, bias, color = Estimator)) +  
  scale_x_continuous(breaks = unique(ests_median$n), trans = "sqrt") + 
  facet_grid(alpha_true ~ p_true_negative + p_true_positive) + 
  ggthemes::theme_few() + 
  ggthemes::scale_color_colorblind() + 
  theme(axis.text.x = element_text(angle = 90, size = 8), legend.position="top") 
+  
  geom_hline(yintercept = 0, linetype = 2) + 
  geom_point() + geom_line() + 
  ggtitle("Bias in estimates of β") + 
  coord_cartesian(ylim = c(NA, 1)) 
 
res_sd <- res_overall %>% 
  summarize(across(starts_with("est"), mad, na.rm = TRUE)) %>% 
  ungroup %>%  
  bind_cols( 
    res_overall %>% 
      summarize(across(starts_with("se"), median, na.rm = TRUE)) %>% 
      ungroup %>% select(starts_with("se")) 
  ) 
 
res_sd %>%  
  mutate(`Relative efficiency` = est_beta_MLE/est_beta_glm_naive) %>% 
  ggplot(aes(n, `Relative efficiency`, color = factor(alpha_true))) +  
  scale_x_continuous(breaks = unique(ests_median$n), trans = "sqrt") + 
  scale_y_continuous(trans = "log10") + 
  facet_grid(p_true_negative ~ p_true_positive, scales = "free_y") + 
  ggthemes::theme_few() + 
  ggthemes::scale_color_colorblind() + 



 

41 

 

  theme(axis.text.x = element_text(angle = 90, size = 8), legend.position="top") 
+  
  geom_hline(yintercept = 1, linetype = 2) + 
  geom_point() + geom_line() +  
  ggtitle("How much more variable is the MLE?") 
 
res_sd %>%  
  mutate(`se:sd ratio` = se_beta_MLE / est_beta_MLE) %>% 
  ggplot(aes(n, `se:sd ratio`, color = factor(alpha_true))) +  
  scale_x_continuous(breaks = unique(ests_median$n), trans = "sqrt") + 
  scale_y_continuous(trans = "log10") + 
  facet_grid(p_true_negative ~ p_true_positive, scales = "free_y") + 
  ggthemes::theme_few() + 
  ggthemes::scale_color_colorblind() + 
  theme(axis.text.x = element_text(angle = 90, size = 8), legend.position="top") 
+  
  geom_hline(yintercept = 1, linetype = 2) + 
  geom_point() + geom_line() +  
  ggtitle("How accurate are MLE-estimated standard errors?") 
 
# Calculate mean squared error 
mse_error <- res_overall %>% 
  summarise ( 
    mse_naive = mean((est_rr_naive - beta_true)^2), 
    mse_MLE = mean((est_rr_mle - beta_true)^2), 
    rmse_naive = sqrt(mean((est_rr_naive - beta_true)^2)), 
    rmse_MLE = sqrt(mean((est_rr_mle - beta_true)^2)) 
  ) 
 
# Plot mean squared error 
mse_error %>% 
  pivot_longer(starts_with("mse")) %>% 
  mutate( 
    Estimator = gsub("mse_", "", name), 
    MeanSquaredErrorInBeta = value 
  ) %>% 
  ggplot(aes(n, MeanSquaredErrorInBeta, color = Estimator)) + 
  scale_y_continuous(trans='log10', limits = c(-1, 5.0)) + 
  scale_x_continuous(breaks = c(200, 1000, 2000, 10000)) + 
  facet_grid(alpha_true ~ p_true_negative + p_true_positive, scales = "free_y") 
+ 
  ggthemes::theme_few() + 
  ggthemes::scale_color_colorblind() + 
  theme(axis.text.x = element_text(angle = 90, size = 6, vjust = 1, hjust=1), 
legend.position="top") + 
  geom_point() + geom_line() + 
  ggtitle("Mean squared error in estimates of Relative Risk") 
 
# Mean of estimates over replications per condition 
mean_estimates <- res_overall %>% 
  summarize(across(starts_with("est"), mean, na.rm = TRUE)) %>% 
  ungroup() %>% select(n, starts_with("est")) 
 
# Median of estimates 
ests_median <- res_overall %>% 
  summarize(across(starts_with("est"), median, na.rm = TRUE)) 
head(ests_median) 
 
# Plot bias in estimates of relative risk 
ests_median %>% 
  pivot_longer(c("est_rr_naive", "est_rr_mle")) %>% 
  mutate( 
    Estimator = gsub("est_rr.*_", "", name), 
    bias = value - beta_true, 
    abs_bias = abs(bias), 
    pct_relbias = 100 * abs_bias / beta_true 
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  ) %>% 
  ggplot(aes(n, bias, color = Estimator)) + 
  scale_x_continuous(breaks = unique(ests_median$n), trans = "sqrt") + 
  facet_grid(alpha_true ~ p_true_negative + p_true_positive) + 
  ggthemes::theme_few() + 
  ggthemes::scale_color_colorblind() + 
  theme(axis.text.x = element_text(angle = 90, size = 8), legend.position="top") 
+ 
  geom_hline(yintercept = 0, linetype = 2) + 
  geom_point() + geom_line() + 
  ggtitle("Bias in Estimates of Relative Risk") + 
  coord_cartesian(ylim = c(NA, 4)) 
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Appendix 5: Bias Analysis for the Estimated Relative Risk 

The patterns of bias observed for the relative risk closely mirrored those seen for the log odds 

ratio, with the intensity of fluctuations growing together with the level of specificity. These 

fluctuations became more distinct at lower prevalence rates. In these simulations, the naïve 

produced consistent values.  

Under high prevalence conditions, when the true alpha was -0.5 and specificity was 0.99, 

the naïve estimator and MLE demonstrated certain degrees of bias in estimating relative risk, 

especially when the quantified effect size was relatively low such as 0.1 (Fig 4). However, when 

we raised the true beta value to 0.5, the MLE exhibited less bias than the naïve estimator (Fig 5). 

This was evidenced by point estimates nearing zero in simulations with a sample size of 10,000, 

suggesting that the MLE might show less bias within the relative risk than with the log of odds 

ratio. 

When the strength of association was raised to the highest value of 0.9, the naïve 

estimator remained steady across simulations, producing consistently stable estimates for bias in 

most plots (Fig 6). On the other hand, in comparison, the MLE showed an apparent decrease in 

bias, especially in scenarios with high prevalence and high specificity (0.99). This was 

particularly noticeable for the highest beta coefficient (0.9), suggesting that integrating 

misclassification into our model can be beneficial. This suggests that estimate bias could 

potentially be reduced in scenarios in which misclassification could be appropriately adjusted for.  

 

 

Figure 4: Assessment of Bias of the Relative Risk under the Assumption of True Beta Value Equalling 0.1 
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Figure 5: Assessment of Bias of the Relative Risk under the Assumption of True Beta Value Equalling 0.5. 

Figure 6: Assessment of Bias of the Relative Risk under the Assumption of True Beta Value Equalling 0.9. 
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Appendix 6: Mean Squared Error Analysis for the Estimated Relative Risk 

When true beta values were set to 0.1, we observed a systematic increase in the slope's steepness 

across simulation runs for the MSE (Fig 10). As expected, these estimates became less dramatic 

in scenarios of high prevalence and low specificity and sensitivity. The most apparent effect is 

observed when alpha true is set to -4.5 and specificity and sensitivity parameters are 

approximately 0.99. Interestingly, in this context, there is a negligible distinction between the 

MSE estimates derived from the naïve and MLE methods. 

When we adjusted the beta true to 0.5, an evident pattern emerged (Fig 11), the MLE 

consistently produced lower error estimates across nearly all simulated scenarios. This trend 

became even more pronounced when we further increased beta true to 0.9 (Fig 12). From these 

observations, it could be inferred that the MLE is particularly effective in minimising error for 

the relative risk when the underlying relationship is strong. This is in line with theoretical 

expectations and provides valuable insights into the comparative performance of naïve and MLE 

estimation methods under varying conditions. 

 

 

 

 

 

 

 

 

 

Figure 10: Assessment of MSE of the Relative Risk under the Assumption of True Beta Value Equalling 0.1. 
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Figure 11: Assessment of MSE of the Relative Risk under the Assumption of True Beta Value Equalling 0.5. 

Figure 12: Assessment of MSE of the Relative Risk under the Assumption of True Beta Value Equalling 0.9. 


