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Abstract

This thesis explores how to formally verify the correctness of a certifying compiler where the correctness of individ-

ual compiler runs is specified by translation relations, each of which characterises the admissible behaviour of a single

compiler pass. Whereas the correctness of compiler passes follows from the fact that we can recognise compiler be-

haviour, there is no guarantee that the recognised behaviour is correct. This motivates the need for formal guarantees

that express that translation relations themselves are well-behaved.

We use the Coq Proof Assistant to demonstrate how we can prove that a well-behaved translation relation preserves

the static and dynamic semantics of programs. In a preliminary study, we show positive results in the context of a simply

typed lambda calculus: we define static and dynamic semantics preservation, and we prove both properties for several

example translation relations. The main takeaway of this study is that we can use logical relations to express and prove

dynamic semantics preservation.

The preliminary study serves as a starting point for scaling up our methods to a more complex lambda calculus

that is based on System 𝐹
𝜇
𝜔 . Though the proof method for dynamic semantics preservation does not scale up easily,

we research and demonstrate how step-indexed logical relations solve the issues that arise such that we can define and

prove dynamic semantics preservation. Furthermore, we prove static and dynamic semantics preservation for a realistic

translation relation.

The semantics preservation proof method is developed for use in a certification engine for the Plutus Tx compiler:

a smart contract language compiler intended for commercial use that is developed and maintained by IOHK. As such,

we show a promising proof method that can be applied in realistic compilers and verification tools.
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Chapter 1

Introduction

The formal verification of compilers is a research area that is the subject of extensive research[12] dating back as far

as 1967[27]. This is not surprising, as compilers are pieces of highly advanced software that perform non-trivial tasks.

Amongst others, these tasks include code optimisations and translations from and to a multitude of (intermediate)

representations and/or programming languages. These tasks are performed in sequence as separate compiler passes,

and all passes together characterise the compilation of a source code to some target code.

Crucially, each of the compiler passes must be correct in order to state with confidence that the target code is well-

behaved with respect to the source code. The exact definition of correctness can differ throughout literature, in part

because of the different types of programming languages on which the literature reports. However, the definition

generally encompasses the notion that each of the compiler passes preserves a set of pre-determined properties. Formal

verification of compilers is concerned with formally proving such correctness properties using rigorous mathematical

methods.

In the context of safety-critical software, it can be argued that it is even more vital to formally verify compiler

correctness. This becomes clear when we consider a type of safety-critical software that is called smart contracts. They
are small, compiled programs on a public blockchain that represent legal agreements which often concern themselves

with sizable financial assets. Thorough explorations of the Ethereum smart contract system show that the system had

a number of security issues that are exploitable in practice[3, 22]. Moreover, there exist examples of successful attacks

on smart contract systems that resulted in great financial losses, such as the notorious DAO attack[23] and the Parity

Multi-Sig Wallet attacks [40, 6, 39].

Importantly, security vulnerabilities are not exclusively the result of smart contract programming mistakes, but can

also be caused by bugs in the compiler. Such bugs can be found even in commercial and open-source compilers[11],

including smart contract language compilers such as Vyper[28]. In addition, a security audit of the historical Serpent

smart contract language compiler unearthed a range of bugs in the compiler code, amongst which bugs of critical

severity[32, 4]. Careful auditing of compiler code is, however, not the whole answer. It could not prevent the second

Parity Multi-Sig Wallet attack[39]. It becomes clear that compiler verification is part of the solution.

Compiler verification can also serve an additional purpose: providing a verifiable link between source and target

code, which allows a user to trust the compiled code. However, there exist a number of compiler verification flavours,

and it is not immediately clear which flavour suits the need of a smart contract system best. We distinguish these

flavours in two ways and compare them.

A first distinction that we can make is that of full compiler verification versus single-run verification. While whole-

compiler proofs offer the strongest guarantees, namely that any compiler run is correct, development of the compiler is

more complex. Particularly, a single change in the compiler design may require an update to the proof. Instead, it may

be a more manageable alternative to only verify individual runs of the compiler such that verification is not as tightly

coupled with compiler design. One alternative is Translation Validation[31], where each run of the compiler is followed

by a validation phase that automatically checks whether the semantics of a program are preserved by comparing code

before and after compilation. Research shows that translation validation can be applied to realistic compilers [25, 33].

An arguably similar alternative is based on Proof-Carrying Code[24], where a certifying compiler pairs each piece of

compiled code with machine-checkable evidence (a certificate) that the compiled code has some desired property [26].

Colby et al. show that it is possible to develop a certifying compiler for realistic languages such as a subset of Java[9].

An advantage over translation validation is that the certificate can double as a verifiable link.

A second distinction is that of on-paper proofs versus mechanised proofs. The use of mechanised proof assistants

has led to a number of projects that formally verify properties of programming languages and compilers using machine-

checked proofs. Examples of projects that are built in the Coq Proof Assistant[5], which is a popular choice of proof

assistant for this type of project[10], include the CompCert project[19, 20, 21], the Lambda Tamer project[8], and the

Aura programming language[14]. Projects that are built in other proof assistants exist as well, such as a verified im-

plementation of ML written in HOL4[18], and a verified compiler for a subset of Java written in Isabelle[36]. It can be

argued that these projects show that the use of proof assistants has had a positive impact on the process of formally

1



CHAPTER 1. INTRODUCTION 2

verifying compiler correctness. One argument in favour is that on-paper proofs of compiler correctness can be un-

convincing because such proofs are extensive and far from trivial to construct[13]. Conversely, mechanically checked

proofs can be more convincing and better maintainable than the alternative on-paper proof, though arguments can be

made against the use of proof assistants as well[13].

With the previous considerations about smart contract language compiler verification in mind, this thesis zooms

in on the Plutus Tx compiler. The compiler is part of the Plutus Platform
1
: a smart contract platform for the Cardano

blockchain
2
that is developed and maintained by IOHK

3
. The Plutus Tx compiler concerns itself with compiling smart

contracts, which are written in a subset of Haskell, to Plutus Core. The latter is a version of System 𝐹 that is further

extended with higher-order kinds and arbitrary recursive types[7]. A hash of the compiled code is put on the blockchain,

and is then the on-chain representative of the smart contract.

Because on-chain code is nearly impossible to change if a compiler bug is found, there should be a high level of

assurance that the compilation of this code is correct – i.e., the compiled code behaves according to the specification of

the source language. For this reason, development was started on a certification engine for the Plutus Tx compiler using

the Coq Proof Assistant[17]. The certification engine is written in the style of a certifying compiler[26]: each piece

of compiled code is paired with a machine-generated compilation certificate that describes that the target program is

well-behaved with respect to the source program. The certificate gives strong guarantees about the correctness of this

single instance of the compiler’s execution, and it allows users to trust on-chain code. Note that an argument against

whole-compiler verification of the Plutus Tx compiler is that the work would amount to verifying parts of the Glasgow

Haskell Compiler, which is a daunting task.

The development of the certification engine has, up until now, focused mostly on recognising the behaviour of the

Plutus Tx compiler[17]. Each transformation that is executed by the compiler is characterised by a translation relation4.
In summary, a translation relation specifies the admissible behaviour of a compiler pass. However, these translation

relations offer no guarantee that the compiler pass is well-behaved. As such, it is an open problem to show that the

semantics of terms are preserved across these translations. In fact, semantics preservation can be seen as a vital property

of any correct compilation pass. This leads to the main research question of this thesis:

Research question: Can we formally verify that translation relations are semantics preserving?

Overview To answer the research question, we distinguish three main goals that we also implement in Coq: (1)

constructing a formal static and dynamic semantics for the (intermediate) languages, (2) defining static and dynamic

semantics preservation and (3) providing machine-checked proofs that show the semantics preservation property for

example transformations. Though it is not within the scope of the project to cover all (intermediate) languages and trans-

formations of the Plutus Tx compiler, we show that the results of this thesis project offer a solid basis for verifying the

correctness of each individual translation relation. We give an overview of the contents of this thesis below. Through-

out the paper, we define everything on paper and then supplement the definitions with Coq proof script snippets that

highlight how we implement the definitions in Coq.

• We discuss the scientific background upon which this thesis builds. This background includes a discussion of the

Plutus Tx compiler, previous work on the certification engine and the Software Foundations books. (Chapter 2)

• We discuss a preliminary study that was conducted during the proposal phase of this thesis project. We show

that we can prove semantics preservation for a few example transformations in the context of a small functional

language: a simply typed lambda calculus. Importantly, we showed that we can prove dynamic semantics preser-

vation using logical relations. As the (intermediate) languages of the Plutus Tx compiler, such as Plutus Core, are

all based on a simply typed lambda calculus, we believed that this positive result implied that we could scale up

our methods to the Plutus Tx compiler. (Chapter 3)

• We formally define the PIR and Plutus Core languages by defining their concrete and abstract syntax, a static

semantics that represents a type checking algorithm and a dynamic semantics in the form of a big-step operational

semantics. (Chapter 4)

• We make precise what semantics preservation means. Specifically, we define both static and dynamic semantics

preservation. In our discussion of dynamic semantics preservation, we adapt Ahmed’s work on step-indexed

logical relations[1] to our setting and we extend their work such that we can use the logical relation to prove

dynamic semantics preservation. (Chapter 5)

• We show that we can prove both static and dynamic semantics preservation for an example translation relation:

desugaring of non-recursive let-bindings. (Chapter 6)

1https://github.com/input-output-hk/plutus/
2https://cardano.org/
3https://iohk.io/
4
In this thesis, we often use the concepts of transformations and translations interchangeably.

https://github.com/input-output-hk/plutus/
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Chapter 2

Scientific background

The thesis project as a whole builds upon two types of scientific background. On one hand, this scientific background

consists of previous work that concerns itself with the Plutus Tx compiler. On the other hand, we consider literature and

existing technology that are related to the Coq Proof Assistant and compiler verification. We list important literature

below, after which we discuss a few works in more detail.

ThePlutus Tx compiler. In section 2.1, we give an overview of the Plutus Tx compiler, andwe focus on its (intermedi-

ate) languages in particular [7, 15]. Section 2.2 describes how Krijnen et al. have identified the different transformations

that are executed in the compiler, and how we can characterise these transformations and specifiy their correctness

using translation relations[17].

The Coq Proof Assistant and compiler verification. Section 2.3 discusses the first two books of Software Founda-

tions in Coq[29, 30]. Most of the results of the preliminary study in chapter 3 directly draw from the second book, and

they serve as a source of inspiration for the remainder of the thesis as well. We also use the Equations package[34, 35],
which allows us to write recursive functions through dependent pattern-matching much like we would write recursive

functions in Haskell. In addition, the Equations package simplifies the process of proving well-foundedness of more

complex recursive functions in Coq. However, we do not further discuss the package here. Lastly, the results pertaining

to dynamic semantics preservation build upon Ahmed’s work on step-indexed logical relations[1]. We defer a detailed

explanation of the work and our adaptation/extension of it to chapter 5.

A note on citations. In the upcoming chapters, we will not always explicitly reference the literature that we discuss

in the next few sections. Instead, we remark that most of this thesis’ results depend on and draw from the literature

mentioned – i.e., these works are ubiquitous throughout the thesis. As such, we hope that this chapter gives sufficient

credit to the authors. Futhermore, we will give concluding remarks in chapter 7 that summarise what we contribute to

these previous works.

2.1 The Plutus Tx compiler

The Plutus Tx compiler
1
compiles a program that is written in a subset of Haskell to Plutus Core[7] in two parts: first,

by compiling Haskell in several steps to GHC Core, and secondly, compiling GHC Core in several steps to Plutus Core

using the Plutus Intermediate Representation (PIR)[15] as an intermediate language. The compilation process consists

of a range of compiler passes, such as variable renaming, type checking, inlining of let-bound variables, desugaring

of let-bindings, dead code elimination and datatype encodings. Much of the ongoing development of the certification

engine has concentrated on the part that compiles PIR to Plutus Core, so we discuss those languages in more detail.

Plutus Core is designed with simplicity in mind because of a blockchain’s inherent property that whatever is put

on the blockchain is hard to revise. Therefore, the developers opted for a small core language. They designed it to be

a modest extension of System 𝐹
𝜇
𝜔 , which consists of System 𝐹 with higher-order kinds and iso-recursive types[7]. The

inclusion of iso-recursive types allows for the use of the Scott encoding to encode datatypes. Because of its relevance

for the Plutus compiler, IOHK funded a research project that resulted in a complete formalisation of System 𝐹
𝜇
𝜔 that was

written in Agda using an intrinsically typed syntax[7]. Amongst other contributions, the authors give mechanically

checked proofs for a number of properties, such as the properties that Progress and Preservation hold for a small-step

operational semantics. These results reinforce the belief that the language specification of Plutus Core is correct in the

sense that its semantics are well-behaved.

1https://github.com/input-output-hk/plutus/

3
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In the process of compiling GHC Core to Plutus Core, the compiler uses the the Plutus Intermediate Representation

(PIR) as an intermediate representation. PIR is almost synonymous with FIR, which adds recursive datatypes and recur-

sive functions onto System 𝐹
𝜇
𝜔 through the addition of both (mutually) recursive and non-recursive let-bindings[15].

PIR adds the let-bindings onto Plutus Core in the same fashion that FIR adds themonto System 𝐹
𝜇
𝜔 . Explicit let-bindings

have the advantage of making it easier to reason about transformations such as inlining and dead code elimination. Ad-

ditionally, the use of PIR breaks up the translation from GHC Core to Plutus Core into more managable, less complex

pieces. Amongst other contributions, the authors provide a complete specification and implementation of a compiler

that compiles FIR to System 𝐹
𝜇
𝜔 [15]. However, the authors do not give a direct operational semantics for the intermediate

language.

The implementation of Plutus Core and PIR differs in a few ways from System 𝐹
𝜇
𝜔 and FIR as they are described in

the papers. For example, type checking and type inference do not proceed precisely according to the typing rules as

defined in the papers. In addition, the implemented languages include additional constructs such as constants and built-

in functions. Naturally, we consider the compiler implementation as leading in this thesis. In chapter 4, we re-formalise

the static and dynamic semantics of the implemented languages for the sake of precision.

2.2 Translation relations and correctness definitions

Recent research efforts have led to the ongoing development of a certification engine for the Plutus Tx compiler, written

using the Coq Proof Assistant in the style of a certifying compiler[26]. Amongst other accomplishments, Krijnen et al.

have identified the different transformations that are performed by the Plutus Tx compiler in the process of compiling

PIR to Plutus Core[17]. To formally characterise the translations, they introduce the concept of translation relations. As
the correctness of translation relations is the core subject of this thesis, we repeat the exposition of translation relations

here.

Let the AST of code in a compiler’s source language be denoted by 𝑡1, and let the AST of the code in a compiler’s

target language be denoted by 𝑡𝑛 . There could be an arbitrary number of intermediate ASTs 𝑡𝑖 where 𝑖 ∈ [1, . . . , 𝑛] that
are possibly inhabitants of intermediate languages. Each translation from an AST 𝑡𝑖 to an AST 𝑡𝑖+1 is characterised by a

translation relation 𝑅𝑖 , which acts as a witness for the compilation of 𝑡𝑖 to 𝑡𝑖+1. By the transitivity property of these 𝑅𝑖 ,

the composition of all translation relations characterises the compilation of 𝑡1 into 𝑡𝑛 through its intermediate ASTs:

𝑡1 compiles to 𝑡𝑛 if 𝑅1 (𝑡1, 𝑡2) ∧ 𝑅2 (𝑡2, 𝑡3) ∧ · · · ∧ 𝑅𝑛−1 (𝑡𝑛−1, 𝑡𝑛) (2.1)

In essence, each 𝑅𝑖 should describe the admissible behaviour of a compiler pass 𝑓𝑖 – that is, the relation 𝑅𝑖 decribes

the different ways in which a term 𝑡𝑖 can translate to a term 𝑡𝑖+1 according to 𝑓𝑖 . As such, the graph of admissible

transformations of 𝑓𝑖 is in 𝑅𝑖 , alternatively formulated as graph(𝑓𝑖 ) ⊆ 𝑅𝑖 .

As an advantage to this approach, each of the translation relations can ignore any concerns about implementation

details of the compiler passes. In practice, each 𝑓𝑖 could use some heuristic to determine how and where to apply

transformations. Decoupling implementation details from each 𝑅𝑖 simplifies the verification process. If the heuristic of

𝑓𝑖 changes, then the definition of 𝑅𝑖 can probably remain the same. Moreover, the definition of any 𝑅𝑖 is independent

of any of the other translation relations. In summary: the certification engine is robust with respect to changes in the

compiler, and its development can also be performed in an incremental fashion.

We define a compiler pass 𝑓𝑖 to be correct if we can characterise its behaviour using a translation relation 𝑅𝑖 :

Definition 2.1 (Compiler pass correctness). 𝑓𝑖 (𝑡𝑖 ) = 𝑡𝑖+1 implies 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1)

Naturally, the characterisation of the behaviour of a compiler pass does not necessarily imply true correctness of the

compiler pass if 𝑅𝑖 itself is not correct. In fact, since each 𝑓𝑖 should be sound with respect to the corresponding 𝑅𝑖 ,

whatever we prove about 𝑅𝑖 will also hold for 𝑓𝑖 . So, to substantiate the correctness of each 𝑅𝑖 and by extension the

correctness of each 𝑓𝑖 , we should prove a measure of correctness properties of 𝑅𝑖 with regards to the semantics of the

underlying (intermediate) languages. Let ⟦𝑡𝑖⟧𝑖 denote the semantics of a term 𝑡𝑖 . Let ∼𝑖 denote a binary operator that

defines a relation between two semantics that captures that two terms are the same. Examples of such a relation include

static semantics preservation and dynamic semantics preservation. We define a correctness property of a translation

relation as follows:

Definition 2.2 (Translation relation correctness). 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1) implies ⟦𝑡𝑖⟧𝑖 ∼𝑖 ⟦𝑡𝑖+1⟧𝑖+1

Proving semantics preservation for translation relations is the main aim of this thesis. This means that we aim to prove

a number of theorems that are formulated in the style of Definition 2.2. We will make more precise the concepts of

static semantics preservation and dynamic semantics preservation in chapter 5. When we report on the results of the

preliminary study in chapter 3, we will also discuss a simpler, though similar version of both concepts within the context

of the preliminary study.
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2.3 Software Foundations

Software Foundations
2
is a series of six

3
books that discusses the field of software technology, and specially the devel-

opment of reliable software. Through use of the Coq Proof Assistant to write and mechanically check the proofs of

theories that are posed, the authors show how proof assistants can make a significant contribution to writing provably

correct software.

The first two books[29, 30] are the main source of Coq-related material that will be used in this thesis project. Both

books were used as an introduction to Coq, though the second book also serves as a major source of inspiration for this

thesis.

2.3.1 Logical Foundations
The first book in the series, called Logical Foundations[29], aims to introduce three main topics and explain how they

interact: (1) functional programming using the functional programming language that is built inside Coq, called Gallina,

(2) basic theories of logic, and (3) the use of mechanised proof assistants. As the reader progresses through the book,

the writers also show how Coq’s type system facilitates the use of Coq as a proof assistant.

2.3.2 Programming Language Foundations
Logical Foundations offers a first insight into reasoning about programs through a number of chapters about a simple

imperative programming language. The second book, called Programming Language Foundations[30], deals with the

same topic in-depth. Amongst others, the book covers reasoning about programs using Hoare Logic, operational se-

mantics, static semantics and advanced proof techniques. Most importantly, the majority of the chapters consider those

topics in the context of a simply typed lambda calculus. This an advantage since the Plutus Tx compiler’s (intermedi-

ate) languages are all based on a simply typed lambda calculus. Consequently, these chapters of the book serve as a

robust starting point for achieving the aim of this thesis: using Coq to define a formal semantics and proving semantics

preservation for translation relations.

2https://softwarefoundations.cis.upenn.edu/
3
Shortly before writing this, a sixth book was newly published: "Separation Logic Foundations"

https://softwarefoundations.cis.upenn.edu/


Chapter 3

Preliminary study: a prototype for a toy
language

In the proposal phase of this project, we conducted a preliminary study that culminated in a research proposal. In this

proposal, we report on the results of semantics preservation proofs for three example transformations in the context of

a small, functional, toy language. This toy language is a simply typed lambda calculus, and it is called ToyLang. In the

proposal, we formalise ToyLang both on paper and in Coq. As the (intermediate) languages of the Plutus Tx compiler,

such as Plutus Core, are all based on a simply typed lambda calculus as well, we believed that this positive result implied

that we could scale up our methods to the Plutus Tx compiler. As such, the proposal serves both as an exposition of the

methods we aimed to use when we started scaling up to the Plutus Tx compiler and also as a proof of concept that shows

that these methods work in a self-contained setting. We also surmised that scaling up our methods to PIR and Plutus

Core would be subject to substantial technical overhead, which proved to be true. Perhaps not surprisingly, the methods

used in the main thesis have evolved away from the methods used in the preliminary study. Still, we consider it useful

to repeat an adaptation of the largest part of the research proposal here, because it fits well in the thesis’ narrative as a

self-contained introduction to solving the problem of semantics preservation. Particularly, the structure and narrative

of the main thesis are similar to those of the proposal.

We give an overview of the contents of this chapter below. The overview given here is in fact the overview of the

research proposal’s contents, though we also describe which parts of the research proposal are omitted in this chapter.

• We give the syntax and static semantics of ToyLang. (Sections 3.1 and 3.2)

• We construct and compare three possible styles of dynamic semantics (denotational, small-step operational and

big-step operational), and we choose to use the big-step operational semantics in the study of semantics preser-

vation because it suits the project best. In this chapter, we omit a detailed consideration of the denotational and

small-step operational semantics. Instead, we briefly motivate our choice for a big-step operational semantics.

(Section 3.3)

• We make the concept of semantics preservation more precise by distinguishing between the preservation of static

semantics and the preservation of dynamic semantics. In the context of dynamic semantics preservation, we

define a notion for the semantic equivalence of terms that incorporates the concepts of syntactic equality and

extensional equality. We discuss the simplest definitions for static and dynamic semantics preservation. We omit

a detailed discussion of more general definitions for static and dynamic semantics preservation because they will

not be used in this chapter (Section 3.4)

• Lastly, we prove the semantics preservation property for three example relations: let-binding desugaring, inlining
of let-bound variables and Call-By-Name simulation. More specifically, we prove that all three preserve both

static and dynamic semantics. In this chapter, we only discuss the semantics preservation proofs for a single

translation relation: desugaring of let-bindings. (Section 3.5)

3.1 Syntax

We start the construction of our prototype by defining the syntax of terms and types in ToyLang. ToyLang itself is a

simply typed lambda calculus (STLC) with some small extensions. We extend the pure simply typed lambda calculus

with Boolean constants, an if-then-else construct, let-bindings and a unit constant that can be interpreted as an

empty tuple. The language and the semantics that we introduce in later sections is entirely standard.

Figure 3.1 defines a BNF grammar that describes the concrete syntax of types 𝜏 in the language. It can be translated

to the ty datatype.

6
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𝜏 ::= Bool | Unit | 𝜏1 → 𝜏2

Figure 3.1: Concrete syntax of types (preliminary study)

𝑡 ::= 𝑛 | 𝜆𝜏 .𝑡 | 𝑡1 𝑡2 | true | false | if 𝑡1 then 𝑡2 else 𝑡3 | unit | let 𝑡1 : 𝜏 in 𝑡2

Figure 3.2: Concrete syntax of terms (preliminary study)

1 Inductive ty : Type :=
2 | ty_bool : ty
3 | ty_unit : ty
4 | ty_arrow : ty -> ty -> ty.

Concerning terms in the ToyLang language, we have a choice of how to represent variables. We chose to use De Bruijn

indices, which have the inherent property that 𝛼-equivalence can be determined through syntactic equality. In fact,

this property simplifies a number of upcoming proofs. A De Bruijn index consists of natural number 𝑛 that counts the

number of binders on the path to the binding site. Figure 3.2 defines a BNF grammar that describes the concrete syntax

of terms 𝑡 in ToyLang.
Note that both 𝜆-abstractions and let-bindings are annotatedwith a type. This is mostly necessary for type checking

purposes, which wewill describe in section 3.2. Even with the small amount of type information in it, the abstract syntax

of terms is extrinsically typed. It is well-known that, next to extrinsically typed abstract syntax, there is one other main

approach of representing the abstract syntax: an intrinsically typed abstract syntax. We chose to use an extrinsically

typed abstract syntax because that would more closely follow the Programming Language Foundations book[30]. We

now define the tm datatype in Coq.

1 Definition ref := nat.
2 Inductive tm : Type :=
3 | tm_var : ref -> tm
4 | tm_abs : ty -> tm -> tm
5 | tm_app : tm -> tm -> tm
6 | tm_true : tm
7 | tm_false : tm
8 | tm_if : tm -> tm -> tm -> tm
9 | tm_let : tm -> ty -> tm -> tm
10 | tm_unit : tm.

With the Notation command in Coq, we can introduce custom parsing rules. This allows us to write terms and types

in the style of the concrete syntax from Figures 3.1 and 3.2, although with some minor differences. We can write terms

using concrete syntax if we put them between <{ and }>, and we can write types using concrete syntax if we put them

between <{{ and }}>. The full script containing all Notation rules can be found in Appendix A.

1 Declare Custom Entry stlc.
2 Declare Custom Entry stlc_ty.
3 Notation "<{ e }>" := e (e custom stlc at level 99).
4 Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
5 (* hidden *)

3.2 Static semantics

With the abstract syntax of terms and types defined, we define the first of two elements that make up a well-defined

semantics for ToyLang: a static semantics.

The final aim of this project is to scale up from the ToyLang language to the Plutus Tx compiler. Because the Plutus

Tx compiler has a type inference algorithm, it is safe to assume that we do not have to write such a type inference

algorithm ourselves. Instead, we could simply let the compiler output the type information with which we annotate the

abstract syntax. In other words, we assume that we have all necessary type information already at our disposal. It is

then straightforward to define typing judgements that characterise a type checking algorithm.
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Γ ::= 𝜏 :: Γ | ∅

Figure 3.3: Concrete syntax of type contexts (preliminary study)

Γ(𝑛) = 𝜏
T-Var

Γ ⊢ 𝑛 : 𝜏

𝜏2 :: Γ ⊢ 𝑡1 : 𝜏1 T-Abs
Γ ⊢ 𝜆𝜏2.𝑡1 : 𝜏2 → 𝜏1

Γ ⊢ 𝑡1 : 𝜏2 → 𝜏1 Γ ⊢ 𝑡2 : 𝜏2 T-App
Γ ⊢ 𝑡1 𝑡2 : 𝜏1

T-True
Γ ⊢ true : Bool

T-False
Γ ⊢ false : Bool

Γ ⊢ 𝑡1 : Bool Γ ⊢ 𝑡2 : 𝜏 Γ ⊢ 𝑡3 : 𝜏 T-If
Γ ⊢ if 𝑡1 then 𝑡2 else 𝑡3 : 𝜏

Γ ⊢ 𝑡1 : 𝜏1 𝜏1 :: Γ ⊢ 𝑡2 : 𝜏2 T-Let
Γ ⊢ let 𝑡1 : 𝜏1 in 𝑡2 : 𝜏2

T-Unit
Γ ⊢ unit : Unit

Figure 3.4: Typing of terms (preliminary study)

First, we define type contexts. To take advantage of the implicit scoping of De Bruijn variables, a type context is

defined to be a cons-list of types. Figure 3.3 defines a BNF grammar that describes the concrete syntax of type contexts.

Looking up the type of a variable 𝑛 in a type context consists of looking up the 𝑛𝑡ℎ element in the context. We denote

such a lookup as if Γ is a function: Γ(𝑛) = 𝜏 . In Coq, contexts are easily represented by built-in lists. The nth_error
function on lists represents the lookup as we defined earlier.

1 Definition context := list ty.

It is now straightforward to define the typing judgements for the type checking algorithm. Figure 3.4 defines the in-

ference rules that represent the typing judgements. The has_type datatype is a straightforward translation of these

inference rules. Again, the Notation command allows us to write types of has_type instances similarly to how we

would write a typing judgement in Figure 3.4.

1 Reserved Notation "Gamma ’|-’ t ’\in’ T" (at level 40, t custom stlc,
2 T custom stlc_ty at level 0).
3 Inductive has_type : context -> tm -> ty -> Prop :=
4 | T_Var : forall Gamma x T, nth_error Gamma x = Some T -> Gamma |- {tm_var x} \in T
5 | T_Abs : forall Gamma T1 T2 t1, (T2 :: Gamma) |- t1 \in T1 -> Gamma |- \T2, t1 \in (T2 -> T1)
6 | T_App : forall T1 T2 Gamma t1 t2,
7 Gamma |- t1 \in (T2 -> T1) -> Gamma |- t2 \in T2 ->
8 Gamma |- t1 t2 \in T1
9 | T_True : forall Gamma, Gamma |- true \in ty_bool
10 | T_False : forall Gamma, Gamma |- false \in ty_bool
11 | T_If : forall t1 t2 t3 T Gamma,
12 Gamma |- t1 \in ty_bool -> Gamma |- t2 \in T -> Gamma |- t3 \in T ->
13 Gamma |- if t1 then t2 else t3 \in T
14 | T_Let : forall Gamma t1 t2 T1 T2,
15 Gamma |- t1 \in T1 -> (T1 :: Gamma) |- t2 \in T2 ->
16 Gamma |- let t1 : T1 in t2 \in T2
17 | T_Unit : forall Gamma, Gamma |- tm_unit \in ty_unit
18 where "Gamma ’|-’ t ’\in’ T" := (has_type Gamma t T).

3.3 Dynamic semantics

We can now turn our attention to constructing a dynamic semantics for ToyLang. The three most common styles of

defining a dynamic semantics are axiomatic semantics, denotational semantics and operational semantics. An axiomatic

semantics is not well-suited for our project, as it is a semantics that deals with programs that are annotated with asser-

tions about program state, which is not a feature of any of the (intermediate) languages of the Plutus Tx compiler. This

leaves us with a choice of constructing a denotational or operational semantics.

In the proposal, we consider three implementations: a denotational semantics based on an evaluator for a simply

typed lambda calculus written in Agda[37], a small-step operational semantics and a big-step operational semantics.

We picked the implementation that best suits our needs by comparing the three implementations. While the proposal

contains a more detailed comparison, we summarise the two main takeaways:
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• The denotational semantics implementation works well for simple languages such as ToyLang, but it would have
been complex to extend it to the Plutus Tx compiler and to reason about the semantics. This is mainly due

to the fact that the (intermediate) languages of the Plutus Tx compiler feature arbitrary recursion, which adds

considerable complexity to the denotational semantics.

• The small-step operational semantics offers fine-grained control in the sense that we can inspect individual com-

putation steps. However, we are often more interested in the results of computations in the context of this thesis

project, and less in the intermediate computation steps.

Because a big-step operational semantics is focused on results of computations, we decided that the big-step operational

semantics suits our needs best, and we therefore use it in both the proposal and the main thesis project. The big-step

operational semantics is a substitution semantics, because that is the same approach that is used by the authors of

the Programming Language Foundations book[30]. This allows us to adapt many of the theorems, lemmas and proof

methods from the book to our setting.

3.3.1 Shifting and substitution
The operational semantics is a substitution semantics, so we need to implement a substitution function. To define a

substitution function on free variables that are represented as De Bruijn indices, we need an additional, unary shift
operation to move terms that are to be substituted below binders such as 𝜆-abstractions and let-bindings. A shift is

necessary if the term that is to be substituted for a variable contains free variables: every time the term is moved below

a binder, all its free variables should be incremented by 1.

Let 𝑡 ↑𝑘 denote that the free variables inside a term 𝑡 are shifted up by 𝑘 . To define a shift operation in Coq, we

define a slightly more general shift’ function that is parameterised by 𝑘 and a cutoff value 𝑐 . The cutoff value serves

as an accumulating parameter that describes how many binders have been traversed, such that we can judge whether a

variable 𝑛 is free.

1 Definition shift’ : nat -> nat -> tm -> tm :=
2 fix shift’ k c t :=
3 match t with
4 | tm_var n => if n <? c then tm_var n else tm_var (k + n)
5 | <{ \T, t }> => <{ \T, {shift’ k (S c) t} }>
6 | <{ t1 t2 }> => <{ ({ shift’ k c t1 }) ({ shift’ k c t2 }) }>
7 | <{ true }> => <{ true }>
8 | <{ false }> => <{ false }>
9 | <{ if t1 then t2 else t3 }> => <{ if {shift’ k c t1} then {shift’ k c t2}
10 else {shift’ k c t3} }>
11 | <{ let t1 : T1 in t2 }> => <{ let {shift’ k c t1} : T1 in ({shift’ k (S c) t2}) }>
12 | <{ unit }> => <{ unit }>
13 end.

The shift’ function applied to an initial cutoff value of 0 computes an actual shift. Lastly, we define some convenient

definitions and notations.

1 Definition shift : tm -> tm := shift’ 1 0.
2 Notation "t ’^’" := (shift t) (in custom stlc at level 1).

With a shift operation implemented, we can turn our attention to implementing a substitution function. Using the

Equations package, we can write the implementation through dependent pattern matching, though it would have been

perfectly fine to write substitution as a Fixpoint as well. The function subst j s t, or alternatively written in concrete
syntax as <{ [j := s] t }>, replaces a variable 𝑗 in the term 𝑡 by a term 𝑠 .

1 Reserved Notation "’[’ n ’:=’ s ’]’ t" (in custom stlc at level 20, n constr).
2 Equations subst : ref -> tm -> tm -> tm :=
3 subst j s (tm_var n) := if j =? n then s else (tm_var n) ;
4 subst j s <{ \T, t }> := <{ \T, [1+j:=s^] t }> ;
5 subst j s <{ t1 t2 }> := <{ ([j:=s] t1) ([j:=s] t2) }> ;
6 subst j s <{ true }> := <{ true }> ;
7 subst j s <{ false }> := <{ false }> ;
8 subst j s <{ if t1 then t2 else t3 }> := <{ if [j:=s] t1 then [j:=s] t2 else [j:=s] t3 }> ;
9 subst j s <{ let t1 : T1 in t2 }> := <{ let [j:=s] t1 : T1 in ([1+j:=s^] t2) }> ;
10 subst j s <{ unit }> := <{ unit }>;
11 where "’[’ j ’:=’ s ’]’ t" := (subst j s t) (in custom stlc).
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𝜆𝜏 .𝑡 ∈ 𝑣𝑎𝑙𝑢𝑒 V-Abs
true ∈ 𝑣𝑎𝑙𝑢𝑒 V-True

false ∈ 𝑣𝑎𝑙𝑢𝑒 V-False
unit ∈ 𝑣𝑎𝑙𝑢𝑒 V-Unit

Figure 3.5: Values (preliminary study)

E-Abs
𝜆𝜏 .𝑡 ⇓ 𝜆𝜏 .𝑡

𝑡1 ⇓ 𝜆𝜏 .𝑡0 𝑡2 ⇓ 𝑣2 [0 := 𝑣2] 𝑡0 ⇓ 𝑣0 E-App
𝑡1 𝑡2 ⇓ 𝑣0

E-True
true ⇓ true

𝑡1 ⇓ true 𝑡2 ⇓ 𝑣2 E-IfTrue
if 𝑡1 then 𝑡2 else 𝑡3 ⇓ 𝑣2

E-False
false ⇓ false

𝑡1 ⇓ false 𝑡3 ⇓ 𝑣3 E-IfFalse
if 𝑡1 then 𝑡2 else 𝑡3 ⇓ 𝑣3

𝑡1 ⇓ 𝑣1 [0 := 𝑣1]𝑡2 ⇓ 𝑣2 E-Let
let 𝑡1 : 𝜏1 in 𝑡2 ⇓ 𝑣2

E-Unit
unit ⇓ unit

Figure 3.6: Big-step operational semantics (preliminary study)

Though most cases of the pattern match are trivial, take notice of the case for abstractions and let-bindings. Moving

beneath a binder results in both shifting the term that is to be substituted, and incrementing the index of the variable

that is the target of the substitution. This is to account for the implicit scoping of De Bruijn indices.

3.3.2 Big-step operational semantics
A big-step operational semantics is focused on results of computations. A first step in constructing such a semantics

is to identify the possible result values that a term can evaluate to. In the case of the ToyLang language, such values

can be either constants, such as true, false and unit, or 𝜆-abstractions. The inference rules in Figure 3.5 describe all

inhabitants of the set of values. The value datatype is a direct implementation of these rules.

1 Inductive value : tm -> Prop :=
2 | v_abs : forall T t, value <{ \T, t }>
3 | v_true : value <{ true }>
4 | v_false : value <{ false }>
5 | v_unit : value <{ unit }>.

With a notion of values formalised, we can define the different ways in which a term can evaluate to a value. We define

a binary evaluation relation on terms, called eval and denoted by ⇓, that fully evaluates terms to values. Figure 3.6

describes the evaluation relation.

When we consider the rules in Figure 3.6, we can observe two categories of rules. On one hand, we have rules that

describe how values evaluate to themselves. For example, the E-Abs rule states that a 𝜆-abstraction evaluates to the

same 𝜆-abstraction. On the other hand, we have rules that describe how components of a constructor must be evaluated

and combined to obtain the eventual result value. For example, in the E-App rule both terms first have to be evaluated

to values after which we can substitute the latter term in the former term, and evaluate the result of the substitution

further. It is now straightforward to translate the rules to the eval inductive datatype.

1 Reserved Notation "t ’==>’ v" (at level 40).
2 Inductive eval : tm -> tm -> Prop :=
3 | E_Abs: forall T t, <{ \T, t }> ==> <{ \T, t }>
4 | E_App: forall t1 T t0 v0 t2 v2, t1 ==> <{ \T, t0 }> -> t2 ==> v2 ->
5 <{ [0 := v2] t0 }> ==> v0 -> <{ t1 t2 }> ==> v0
6 | E_True : <{ true }> ==> <{ true }>
7 | E_False : <{ false }> ==> <{ false }>
8 | E_IfTrue : forall t1 t2 v2 t3, t1 ==> <{ true }> -> t2 ==> v2 ->
9 <{ if t1 then t2 else t3 }> ==> v2
10 | E_IfFalse : forall t1 t2 t3 v3, t1 ==> <{ false }> -> t3 ==> v3 ->
11 <{ if t1 then t2 else t3 }> ==> v3
12 | E_Let : forall t1 v1 T1 t2 v2, t1 ==> v1 -> <{ [0 := v1] t2 }> ==> v2 ->
13 <{ let t1 : T1 in t2 }> ==> v2
14 | E_Unit : <{ unit }> ==> <{ unit }>
15 where "t ’==>’ v" := (eval t v).
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∅ ⊢ 𝑡1 : 𝜏
∅ ⊢ 𝑡2 : 𝜏
𝑡1 ⇓ 𝑣1
𝑡2 ⇓ 𝑣2
𝑣1 = 𝑣2

𝑡1 ≡𝜏 𝑡2
EQV-Syntactic

∅ ⊢ 𝑡1 : 𝜏 ′ → 𝜏

∅ ⊢ 𝑡2 : 𝜏 ′ → 𝜏

𝑡1 ⇓ 𝜆𝜏 ′ .𝑡3
𝑡2 ⇓ 𝜆𝜏 ′ .𝑡4

∀𝑠1.∀𝑠2. 𝑠1 ≡𝜏 ′ 𝑠2 implies (𝜆𝜏 ′ .𝑡3)𝑠1 ≡𝜏 (𝜆𝜏 ′ .𝑡4)𝑠2
𝑡1 ≡𝜏 ′→𝜏 𝑡2

EQV-Extensional

Figure 3.7: Semantic equivalence (preliminary study)

3.4 Semantics preservation

Before we tackle any proofs about translation relations and their correctness, we must define the concept of semantics

preservation. Recall from Definition 2.2 that we consider some translation relation 𝑅𝑖 to be correct if 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1) implies

⟦𝑡𝑖⟧𝑖 ∼𝑖 ⟦𝑡𝑖+1⟧𝑖+1, where ⟦𝑡𝑖⟧𝑖 is a semantics of an AST 𝑡𝑖 , and where ∼𝑖 is a refinement relation. We make the concept

of semantics preservation more precise for both static and dynamic semantics.

In the research proposal, we consider two types of translation relations: translation relations that do not change types

and translation relations that do change types. For the sake of the narrative, we only consider translation relations that

do not change types in this chapter. For an explanation of semantics preservation in the context of translation relations

that change types, we refer the reader to the research proposal.

3.4.1 Static semantics preservation
We consider static semantics preservation for translation relations that change only the syntax of terms and not their

types. The desugaring of let-bindings is an example of such a translation relation. It would be sufficient to prove that

both the source and target term have the same type with respect to the same type context:

Definition 3.1 (Static semantics preservation (preliminary study)). For all 𝑡𝑖 and 𝑡𝑖+1, if 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1) and Γ ⊢ 𝑡𝑖 : 𝜏 , then
Γ ⊢ 𝑡𝑖+1 : 𝜏 .

Still, this formulation of static semantics preservation does not fully describe all theorems that we might need to prove.

For example, consider an inlining transformation that inlines let-bound variables, such as the one characterised in

[17]. The translation relation is parameterised by some environment of let-bound terms, and this environment has

a correspondence with the type context. Namely, the types of let-bound terms are exactly the types that are also in

the type context, and we must assume this in some way for the proof to go through. Therefore, it might be that we

need additional assumptions to finish a proof of static semantics preservation. Nonetheless, Definition 3.1 sketches the

general outline of static semantics preservation.

3.4.2 Dynamic semantics preservation
We interpret preservation of dynamic semantics to mean that the source and target term should be semantically equiv-

alent, i.e., they compute the same result. We use the ≡-sign to denote semantic equivalence, and we define dynamic

semantics preservation as follows:

Definition 3.2 (Dynamic semantics preservation (preliminary study)). For all 𝑡𝑖 and 𝑡𝑖+1, if 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1) then 𝑡𝑖 ≡ 𝑡𝑖+1.

Now, consider an example: intuitively, a term 𝑡𝑖 computes the same result as a term 𝑡𝑖+1 in which some of the let-
bindings are desugared. However, we must be more precise about what semantic equivalence means. If a source and

target term both terminate with values of Bool or Unit type, we can determine semantic equivalence by syntactic

equality on the values, but this does not necessarily work for terms that compute 𝜆-abstractions as their result. This

is a problem in the context of transformations such as desugaring: our dynamic semantics does not reduce below the

𝜆-abstraction value, but it may be the case that the desugaring transformation has desugared let-bindings in the body

of the 𝜆-abstraction. Consequently, the values corresponding to the source and target term are not syntactically equal.

However, even if the abstractions represent the same function and they are not syntactically equal, then they should be

extensionally equal. That is, the abstractions are considered equivalent if they have the same observable behaviour.

Furthermore, we must recognize that semantic equivalence should be type-directed. The semantically equivalent

terms must then be closed and well-typed with respect to the same type 𝜏 . This is a sensible requirement, as terms that

do not have (𝛼-)equivalent types will not compute the same result. Moreover, the evaluation relation is a substitution

semantics, so we always work with closed terms. As such, we now use ≡𝜏 to describe semantic equivalence in the

context of a type 𝜏 . We formalise semantic equivalence using the two inference rules in Figure 3.7.

We have defined semantic equivalence in such a way that we have defined a logical relation. A logical relation is a

relation between well-typed terms that is defined by induction on types. The logical relations proof technique has been
used, for example, to prove the strong normalisation property for a simply typed lambda calculus[38].
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We also need a representation of semantic equivalence in Coq. The approach of our choice is inspired by the chapter

on Normalisation in the Programming Language Foundations book[30]. This chapter uses the logical relations proof

technique in Coq to prove that a simply typed lambda calculus is strongly normalising. We name the logical relation

RSE, in the sense that it is a Relation (R) that describes Semantic Equivalence (SE), and it is represented as a Fixpoint
defined over a ToyLang type and two terms. Its definition is akin to the inference rules in Figure 3.7.

1 Fixpoint RSE (T : ty) (t1 t2 : tm) : Prop :=
2 [] |- t1 \in T /\ [] |- t2 \in T /\
3 (exists v1 v2,
4 t1 ==> v1 /\ t2 ==> v2 /\
5 (match T with
6 | <{{ Unit }}> => True
7 | <{{ Bool }}> => v1 = v2
8 | <{{ T2 -> T1 }}>=>
9 (forall s t,
10 RSE T2 f g s t ->
11 RSE T1 f g <{ v1 s }> <{ v2 t }>
12 )
13 end)
14 ).

3.5 Correctness of transformations

In the proposal, we consider three example translation relations: desugaring of let-bindings, inlining of let-bound
variables and Call-By-Name simulation. We show that all three translation relations are static and dynamic semantics

preserving. The goal of these results is exploratory: the fact that we can show that the translations are semantics

preserving inspired confidence that these concepts could be applied in the Plutus Tx compiler and that our approach

would scale up. We did not aim to perform an exhaustive study of semantics preservation in the context of a simply

typed lambda calculus.

In this chapter we will only repeat the semantics preservation results for one of the translation relations: desugaring

of let-bindings. We refer the interested reader to the research proposal for the results concerning the other translation

relations.

As a notational convention, we use 𝐴 ⊢ 𝑡 ⊲ 𝑡 ′ to denote that we can derive from the contextual information in 𝐴 that

a term 𝑡 transforms to a term 𝑡 ′. The environment 𝐴 stores any information we may need to define the transformation.

Naturally, the environment𝐴 can also be left out if the transformation does not depend on any information. For example,

the translation relation for desugaring does not depend on any contextual information, while the translation relation

for inlining requires contextual information about all let-bound terms that are in scope.

Note on proof completeness. Crucially, the proofs about semantics preservation rely on a few key properties: (i)

Progress, (ii) Preservation, (iii) Determinism, (iv) eval preserves RSE, and (v) substitution preserves typing. While we

have constructed proofs for (iii) and (iv), we have Admitted (i), (ii) and (v) because of time constraints. Since it is known

that these last three properties hold for a simply typed lambda calculus with a well-defined semantics, we believe that it

is justified to use the Admitted theorems and lemmas. We hope that this paragraph has offered sufficient transparency

with regards to the completeness of our proofs.

3.5.1 Desugaring of let-bindings
The desugaring translation relation, which we denote by 𝑅𝐷𝑆 , is a simple one. The changes that the translation relation

makes to terms are only local, because the transformation does not depend on any contextual information. Figure 3.8

defines 𝑅𝐷𝑆 . Clearly, only the DS-LetApp rule is an interesting case, as all other rules are simple congruence cases.

Also, note that desugaring is optional, as we have two possible rules that apply to let-constructs.
The inference rules are directly translated into an inductive datatype desugar that is indexed by both a source and

target term. Again, the only interesting constructor of the datatype is the DS_LetApp constructor. Even more so because

an observant reader can see that that the desugaring translation justifies annotating let-bindings with a type. For type

checking purposes, it would have sufficed to only annotate 𝜆-abstractions with a type. However, when we desugar a

let-binding we suddenly have to annotate the newly constructed 𝜆-abstraction with a type. If we had not annotated

let-bindings with the type of the bound term, we would have not been able to define the translation relation easily.
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DS-Var⊢ 𝑛 ⊲ 𝑛
⊢ 𝑡1 ⊲ 𝑡 ′1 DS-Abs

⊢ 𝜆𝜏1.𝑡1 ⊲ 𝜆𝜏1.𝑡 ′1

⊢ 𝑡1 ⊲ 𝑡 ′1 ⊢ 𝑡2 ⊲ 𝑡 ′2 DS-App
⊢ 𝑡1 𝑡2 ⊲ 𝑡 ′1 𝑡 ′2

DS-True⊢ true ⊲ true
DS-False

⊢ false ⊲ false
DS-Unit

⊢ unit ⊲ unit

⊢ 𝑡1 ⊲ 𝑡 ′1 ⊢ 𝑡2 ⊲ 𝑡 ′2 ⊢ 𝑡3 ⊲ 𝑡 ′3 DS-If
⊢ if 𝑡1 then 𝑡2 else 𝑡3 ⊲ if 𝑡 ′

1
then 𝑡 ′

2
else 𝑡 ′

3

⊢ 𝑡1 ⊲ 𝑡 ′1 ⊢ 𝑡2 ⊲ 𝑡 ′2 DS-Let
⊢ let 𝑡1 : 𝜏1 in 𝑡2 ⊲ let 𝑡 ′

1
: 𝜏1 in 𝑡 ′

2

⊢ 𝑡1 ⊲ 𝑡 ′1 ⊢ 𝑡2 ⊲ 𝑡 ′2 DS-LetApp
⊢ let 𝑡1 : 𝜏1 in 𝑡2 ⊲ (𝜆𝜏1.𝑡 ′2) 𝑡 ′1

Figure 3.8: Desugaring translation relation (𝑅𝐷𝑆 ) (preliminary study)

1 Inductive desugar : tm -> tm -> Prop :=
2 (* hidden *)
3 | DS_LetApp : forall {t1 t1’ T1 t2 t2’},
4 desugar t1 t1’ ->
5 desugar t2 t2’ ->
6 desugar <{ let t1 : T1 in t2 }> <{ (\T1, t2’) t1’ }>
7 (* hidden *).

Static semantics preservation. We prove the following theorem:

Theorem 3.3 (𝑅𝐷𝑆 preserves static semantics (preliminary study)). For all 𝑡1 and 𝑡2, if 𝑅𝐷𝑆 (𝑡1, 𝑡2) and Γ ⊢ 𝑡1 : 𝜏 , then
Γ ⊢ 𝑡2 : 𝜏 .

Proof. We proceed to prove this by induction over the typing judgement. Note that desugaring does not change the

type annotations of our terms. Combined with the fact that changes are only local makes the proof of static semantics

preservation straightforward. As such, it can be concisely constructed in Coq using proof automation, so we list it fully

here.

1 Theorem desugar_preserves_typing : forall t1 t2 T Gamma,
2 desugar t1 t2 ->
3 Gamma |- t1 \in T ->
4 Gamma |- t2 \in T.
5 Proof. intros t1 t2 T Gamma Hds Ht1. generalize dependent t2.
6 induction Ht1; try solve [intros; inversion Hds; subst; eauto].
7 Qed.

□

Dynamic semantics preservation. We prove the following theorem:

Theorem 3.4 (𝑅𝐷𝑆 preserves dynamic semantics (preliminary study)). For all 𝑡1 and 𝑡2, if 𝑅𝐷𝑆 (𝑡1, 𝑡2) then 𝑡1 ≡ 𝑡2.

Proof. The formulation of Theorem 3.4 differs slightly from its definition in Coq. There, we also assume that 𝑡1 and 𝑡2
are well-typed under the empty context. This is justified because we can derive from just these two assumptions that 𝑡1
and 𝑡2 are reducible by the Progress property. Additionally, we can safely assume that 𝑡2 has the same type as 𝑡1 under

the empty context, because we have just proved that desugaring preserves static semantics.

1 Theorem desugar_preserves_semantics : forall t1 t2 T,
2 [] |- t1 \in T ->
3 [] |- t2 \in T ->
4 desugar t1 t2 ->
5 RSE_ID T t1 t2.
6 Proof. intros t1 t2 T Htyp1. generalize dependent t2.
7 induction Htyp1.
8 (* hidden *).
9 Abort.
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If we try to prove the theorem by induction on the first typing judgement, the proof does not work out. This is the case

because the first assumption states that t1 should be a closed, well-typed term, but this is results in a too restrictive

induction hypothesis. Instead, we must first prove a more general lemma that is defined over all well-typed, closed

instances of terms. To this end, we employ an auxiliary instantiation datatype that is indexed by a type context and

two environments, which are just lists of terms.

1 Inductive instantiation : context -> env -> env -> Prop :=
2 | V_nil :
3 instantiation [] [] []
4 | V_cons : forall T t1 t2 c e1 e2,
5 RSE_ID T t1 t2 ->
6 instantiation c e1 e2 ->
7 instantiation (T :: c) (t1 :: e1) (t2 :: e2).

The instantiation datatype records that the elements of the two type-index environments are pair-wise semantically

equivalent, i.e., every 𝑖𝑡ℎ element of the first environment and every 𝑖𝑡ℎ element of the second environment are seman-

tically equivalent with respect to the 𝑖𝑡ℎ type in the context. We could overload the notion of semantic equivalence and

say that the environments are semantically equivalent.

Also, consider some function msubst that given an environment ss and a term t performs the left-to-right substi-

tution of all terms in ss in t.

1 Definition msubst (ss:env) (t:tm) : tm := (* hidden *).
2 Example msubst_example : forall e0 e1 e2 t,
3 msubst [e0; e1; e2] t = <{ [2 := e2] ([1 := e1] ([0 := e0] t)) }>.
4 Proof. reflexivity. Qed.

Now, why are instantiation and msubst useful? Given that two terms s and t have some type T under the same

context c, and given that we have some instantiation instantiation c es et, then it must be the case that both

msubst es s and msubst es t are closed and well-typed with respect to T! Even more so, if we are also given that

s and t are related by the desugaring translation, we can prove that msubst es s and msubst et t are semantically

equivalent. This leads to the more generalised lemma that we need to prove to finish the proof of Theorem 3.4.

1 Lemma msubst_RSE : forall c es et s t T,
2 c |- s \in T ->
3 c |- t \in T ->
4 instantiation c es et ->
5 desugar s t ->
6 RSE_ID T (msubst es s) (msubst et t).
7 Proof. (* hidden *). Qed.

The proof of the lemma proceeds by induction over the first typing judgement. As the proof is rather longwinded,

we do not list it here. Instead, we note that the proof relies on a number of lemmas and theorems about (the interac-

tions between) nearly all previous definitions: the evaluation relation (eval), semantic equivalence (RSE), instantiations
(instantiation), substitutions (subst), multiple substitutions (msubst), shifting (shift), typing (has_type) and so on.
Maybe most importantly, the proof relies on the key properties that are described in the Note on proof completeness
paragraph at the start of this section.

Finally, we can finish the proof of Theorem 3.4.

1 Theorem desugar_preserves_semantics : forall t1 t2 T,
2 [] |- t1 \in T ->
3 [] |- t2 \in T ->
4 desugar t1 t2 ->
5 RSE_ID T t1 t2.
6 Proof.
7 intros t1 t2 T Htyp1 Htyp2 Hds.
8 replace t1 with (msubst [] t1) by reflexivity.
9 replace t2 with (msubst [] t2) by reflexivity.
10 eapply msubst_RSE; eauto.
11 Qed.

□



Chapter 4

PIR and Plutus Core

Plutus Core is an extended version of System 𝐹
𝜇
𝜔 adding higher-order kinds and iso-recursive types[7]. PIR is a superset

of System 𝐹
𝜇
𝜔 that includes non-recursive let-bindings of terms, types and datatypes, and (mutually) recursive let-

bindings of terms and datatypes[15]. In this chapter, we formalise the syntax and semantics of the PIR and Plutus Core

languages. Since PIR is a superset of Plutus Core, we only formalise PIR and note that we will then have formalised

Plutus Core in the same process. We use the aforementioned papers[7, 15] and the Plutus Tx compiler implementation
1

as the basis for this chapter. Naturally, we follow the compiler implementation whenever the papers and the compiler

implementation do not agree.

We define and implement the syntax of terms, types and kinds in section 4.1. We define and implement the static

semantics of PIR as kind and type checking algorithms in section 4.2, where we design the algorithms such that we

only type check for normal types. We define and implement the dynamic semantics of PIR as a big-step operational

semantics in section 4.3.

Note on notational conventions. Like Peyton Jones et al.[15], we adopt Guy Steele’s suggestions for metalanguage

conventions[16]. The most important takeaway from these suggestions is the use and meaning of overlines and under-

lines to expand sequences. Furthermore, we denote substitution of 𝑠 for 𝑥 in 𝑡 by [𝑠/𝑥] 𝑡 .

Note on the use of previous work and our contributions. Most of the work in this chapter is based directly on

work by Peyton Jones et al.[15], Chapman et al.[7], the developers behind the Plutus Tx compiler, and previous work by

Krijnen et al[17]. For example, most of the figures in this chapter are adaptations of figures from the paper by Peyton

Jones et al.[15]. Furthermore, we borrow ideas such as type equality and normalisation of types from both Peyton Jones

et al.[15] and Chapman et al.[7]. Moreover, the implementation of type normalisation is more akin to the compiler

implementation of type normalisation than it is akin to type normalisation as defined in the two mentioned papers. The

implementation of the language syntax in Coq was performed by Krijnen et al[17]. We hope that the reader understands

that this dependence on previous work is not surprising, and we hope that this paragraph gives sufficient credit to the

authors. Other than adapting and re-iterating previous works to produce a formalisation of PIR and Plutus Core, we do

present two novelties: (i) a definition for the formal dynamic semantics of some PIR-specific language constructs, and

(ii) a Coq implementation of a static and dynamic semantics for PIR and Plutus Core.

Note on limitations. The static semantics that we present here differs from the compiler implementation in two sig-

nificant aspects. Firstly, we do not allow type bindings to escape in let-bindings, whereas the compiler implementation

allows this only if the let-binding is top-level. It is a problem for future to work to solve this difference, since allowing

escaped type bindings at the top-level requires some non-trivial programming and proof engineering that we were not

able to perform due to time constraints. The other aspect in which our static semantics differs from the compiler im-

plementation is that an error can have any normalised type as opposed to having the type that it is annotated with. For

now, we have sacrificed principal typing for the sake of type Preservation, which would have been jeopardised if we did

not allow for errors to have any normalised type. With regards to the dynamic semantics that we present in this chapter,

it is not yet complete for the same reason of time constraints. Specifically, we do not give evaluation/reduction rules

for datatype bindings, we ignore strictness flags for term bindings, we do not yet model laziness where it is sometimes

needed, and the semantics of some built-in functions are not yet correctly modelled. We do not think that the limitations

that we have mentioned in this paragraph undermine the positive results of the thesis. Rather, we think that solutions

to these problems will mostly consist of technical overhead.

1https://github.com/input-output-hk/plutus/
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𝑘𝑖𝑛𝑑𝑠 𝐾, 𝐽 ::= ∗ base kind

| 𝐾 → 𝐽 function kind

Figure 4.1: Concrete syntax of kinds

4.1 Syntax

In this section, we define the concrete and abstract syntax of terms, types, kinds and some necessary auxiliary datatypes

in PIR by mimicking the Plutus Tx compiler implementation. We do this because at this stage in the development of the

certification engine, we dump the ASTs of the compiler. These ASTs are then copied straight into a Coq proof script, and

the abstract syntax is designed such that these ASTs are also valid abstract syntax in the certification engine. Because of

this, ASTs may contain artifacts that are particular to the Haskell implementation of the compiler, though this has not

proven to be an insurmountable problem during development.

We define concrete syntax using BNF grammars, while we define abstract syntax by providing snippets of Coq proof

scripts. Because the static semantics, which we will define in section 4.2, depends on kind and type annotations, both

our concrete and abstract syntax are explicit about such as annotations.

4.1.1 Variables and binders
The abstract syntax is parameterised by the representation of both (type) variables and (type) binders, meaning that we

can instantiate the abstract syntax with custom representations. This level of generalisation allows us to experiment, for

example, with De Bruijn indices. We use Coq’s Section mechanism to generalise over all possible variable and binder

representations.

1 Section AST_term.
2 Context (name tyname : Set).
3 Context (binderName binderTyname : Set).
4 (* abstract syntax definitions hidden *)
5 End AST_term.

Throughout this thesis, we use strings as both (type) variable and (type) binder representations. We refer to such

abstract syntax as Named. We do not use De Bruijn indices in order to stay true to the compiler implementation, which

uses unique integers to represent variables and binders. We could easily change our abstract syntax to also use integers,

which is bound to happen in the future, but it is not relevant for this thesis.

To instantiate the abstract syntax, we define a Module containing Notation commands that instantiate the abstract

syntax with the required representations. As a convention, we define representation-general abstract syntax using lower

camelcase identifiers. For example, the representation-general abstract syntax for terms is defined using the inductive

datatype term. As another convention, we define instantiated abstract syntax using upper camelcase identifiers, such

as Term.

1 Module NamedTerm.
2 (* hidden *)
3 Notation name := string. Notation tyname := string.
4 Notation binderName := string. Notation binderTyname := string.
5 (* hidden *)
6 Notation Term := (term name tyname binderName binderTyname).
7 (* hidden *)
8 End NamedTerm.

In both the concrete and abstract syntax, we will often use lower-case letters 𝑥,𝑦, 𝑧 and possibly subscripted versions to

denote both term-level variables and binders. For type-level variables and binders, we use the upper-case equivalents

of those letters.

4.1.2 Kinds
Kinds consist of base kinds and function kinds. Figure 4.1 defines a BNF grammar that represents the concrete syntax

of kinds. The Coq implementation of kinds is straightforward.
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𝑡𝑦𝑝𝑒𝑠 𝑇 ,𝑈 ::= 𝑇 → 𝑈 arrow type

| U𝑖 built-in type

| 𝑋 type variable

| ∀𝑋 :: 𝐾.𝑇 universal type

| ifix 𝑇 𝑈 fixpoint type

| 𝜆𝑋 :: 𝐾.𝑇 lambda abstraction type

| 𝑇 𝑈 function application type

Figure 4.2: Concrete syntax of types

1 Inductive kind :=
2 | Kind_Base : kind
3 | Kind_Arrow : kind -> kind -> kind.

4.1.3 Built-in types
Types can be, amongst others, built-in types. The compiler’s handling of built-in types is not trivial, and since we mimic

the compiler we have to define some additional machinery to handle them. First, we define a universe U as a collection of

possible built-in types, where we denote some 𝑖𝑡ℎ built-in type in the universe by U𝑖 . For example, the default universe

in the compiler consists of integers, bytestrings, strings, characters, units and Booleans. The default universe in Coq is

just a datatype with empty constructors.

1 Inductive DefaultUni : Type :=
2 | DefaultUniInteger
3 (* hidden *).

Wewill use the default universe of built-in types for the remainder of this thesis. We nowdefine two additional datatypes:

one that represents existential quantification as a datatype, and one that represents a built-in type in the default universe.

1 Inductive some {f : DefaultUni -> Type} := Some : forall {u : DefaultUni}, f u -> some.
2 Inductive typeIn (u : DefaultUni) := TypeIn : typeIn u.

We can now write some integer built-in type as Some (TypeIn DefaultUniInteger). This machinery is mostly an

artifact that is particular to the Haskell implementation of the compiler, where they use type parameters of datatype

definitions to parameterise the abstract syntax with a universe of built-in types. We could have omitted this machinery

by using the Coq Module system, but we stay true to the compiler implementation. Note that we do not parameterise

over universes of built-in types in this thesis, although this parameterisation would not be very hard to implement.

4.1.4 Types
Figure 4.2 defines a BNF grammar that represents the concrete syntax of types. The main type language consists of

function types and built-in types (base types). On top of that, we have universal quantification using universal types

and type variables. Lastly, the type language allows for recursive types through computations in types using a type-level
fixpoint operator, type-level abstractions, type-level applications and type variables. What is particular about the type-

level fixpoint operator ifix is that it takes fixpoints only at kind 𝐾 → ∗. The canonical and less restrictive fixpoint

fix would take fixpoints at any kind 𝐾 , but ifix is sufficient for the purpose of PIR. Furthermore, it is easier to define

typing rules for the ifix operator than for the fix operator. For a more detailed consideration of type-level fixpoint

operators, see section 3.1 of Peyton Jones et al[15]. The implementation of types is now straightforward.

1 Inductive ty :=
2 | Ty_Var : tyname -> ty
3 | Ty_Fun : ty -> ty -> ty
4 | Ty_IFix : ty -> ty -> ty
5 | Ty_Forall : binderTyname -> kind -> ty -> ty
6 | Ty_Builtin : @some typeIn -> ty
7 | Ty_Lam : binderTyname -> kind -> ty -> ty
8 | Ty_App : ty -> ty -> ty.
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𝑣𝑑𝑒𝑐𝑙 𝑣𝑑 ::= 𝑥 : 𝑇 variable declaration

𝑡𝑣𝑑𝑒𝑐𝑙 𝑡𝑣𝑑 ::= 𝑋 :: 𝐾 type declaration

𝑐𝑜𝑛𝑠𝑡𝑟 𝑐 ::= 𝑥 (𝑇 ) constructor

𝑑𝑡𝑑𝑒𝑐𝑙 𝑑𝑡𝑑 ::= data (𝑡𝑣𝑑) (𝑡𝑣𝑑 ′) = 𝑐 with 𝑥 datatype declaration

Figure 4.3: Concrete syntax of declarations

4.1.5 Declarations and datatypes
Before we can define the syntax of terms, we have to define the syntax of variable declarations, type declarations,

datatype declarations and constructors. These are the essential constructs with which we can define bindings. Figure
4.3 defines a BNF grammar that represents the concrete syntax of declarations and constructors.

Variable and type variable declarations are rather straightforward: the former declares a variable and its type, while

the latter declares a type variable and its kind. Constructors declare a constructor name and the type of the constructor.

A datatype declaration is more complex. The left-hand side of the declaration defines the name of the datatype as a

type variable declaration, and it defines a sequence of type variable declarations that represent the type variables that

the datatype is parameterised with. The right-hand side of the declaration consists of the name of a pattern matching

function, and a sequence of constructors for the datatype. As an example, we could write the Either datatype from

Haskell in PIR as follows:

data (Either :: ∗ → ∗ → ∗) (𝐴 :: ∗, 𝐵 :: ∗) = Left (𝐴 → Either 𝐴 𝐵), Right (𝐵 → Either 𝐴 𝐵) with matchEither

The Coq implementation now follows easily, with a minor difference with respect to Figure 4.3: constructors also store a

natural number that represents the arity of a constructor. This is mostly an artifact of earlier versions of the certification

engine.

1 Inductive vdecl := VarDecl : binderName -> ty -> vdecl.
2 Inductive tvdecl := TyVarDecl : binderTyname -> kind -> tvdecl.
3 Inductive constr := Constructor : vdecl -> nat -> constr.
4 Inductive dtdecl := Datatype : tvdecl -> list tvdecl -> binderName -> list constr -> dtdecl.

4.1.6 Terms
Finally, we can define terms, which aremutually definedwith bindings. Figure 4.4 defines a BNF grammar that represents

the concrete syntax of terms and bindings. We elaborate on distinct parts of the language before we give the Coq

implementation.

Simply typed lambda calculus. The basis of the language consists of the usual elements of a simply typed lambda

calculus: variables, lambda abstractions and function applications.

Universal types. Universal quantification over types is facilitated by type abstraction and type instantiation.

Recursive types. Iso-recursive types require folding and unfolding of recursive types. An IWrap term converts an

unfolded recursive type to a folded recursive type, while an Unwrap term converts a folded recursive type to an unfolded

recursive type.

Constants. We annotate constant values with their built-in types. A first ingredient that we need to implement

constants is to embed built-in types as Coq Types by define a mapping from constructors in the universe of built-in

types to Coq Types.

1 Definition uniType (x : DefaultUni) : Type :=
2 match x with
3 | DefaultUniInteger => Z
4 (* hidden *)
5 end.
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𝑡𝑒𝑟𝑚𝑠 𝑡,𝑢 ::= 𝑥 variable

| 𝜆𝑥 : 𝑇 .𝑡 lambda abstraction

| 𝑡 𝑢 function application

| Λ𝑋 :: 𝐾.𝑡 type abstraction

| 𝑡 {𝑇 } type instantiation

| IWrap 𝑇 𝑈 𝑡 wrap/fold

| Unwrap 𝑡 unwrap/unfold

| Constant U𝑖 𝑐 constant

| F𝑖 built-in function

| Error 𝑇 error

| let (𝑟𝑒𝑐) 𝑏 in 𝑡 let

𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝑠 𝑏 ::= 𝑣𝑑 (𝑠𝑡𝑟 ) = 𝑡 term binding

| 𝑡𝑣𝑑 = 𝑇 type binding

| 𝑑𝑡𝑑 datatype binding

𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑖𝑡𝑦 𝑟𝑒𝑐 ::= NonRec not recursive

| Rec recursive

𝑠𝑡𝑟𝑖𝑐𝑡𝑛𝑒𝑠𝑠 𝑠𝑡𝑟 ::= NonStrict not strict

| Strict strict

Figure 4.4: Concrete syntax of terms

In a similar fashion to how we defined typeIn to represent a built-in type in the default universe, we also define a

datatype that represents a value of a built-in type.

1 Inductive valueOf (u : DefaultUni) := ValueOf : uniType u -> valueOf u.

We can now write some Boolean true value as Some (ValueOf DefaultUniBool true). Similarly to the machinery

for built-in types, this machinery for constants is mostly an artifact of the compiler implementation in Haskell.

Built-in functions. For built-in functions, we define a collection of possible built-in functions, denoted by F, similarly

to how we defined a universe U for built-in types. We denote some 𝑖𝑡ℎ built-in function in F by F𝑖 . Again similarly,

there exists a default collection of built-in functions. These defaults include, amongst others, simple operations such as

integer arithmetic operations, but more complex operations such as hashing as well. We use only this default collection

throughout the rest of the thesis, although parameterisation over sets of built-in functions would not be very hard to

implement.

1 Inductive DefaultFun :=
2 | AddInteger
3 (* hidden *)
4 | SHA2
5 (* hidden *).

Errors. Errors are annotated with their type, because without it we would not always be able to find the most principal

type when performing type inference or type checking. We could type an error without an annotation as ∀𝑎 :: 𝐾.𝑎, but

this is not necessarily the most general type. As such, the type annotation signals exactly what type the error should

have.

let-bindings. The addition of let-bindings to Plutus Core is the main feature of PIR. A let-binding can be either

(mutually) recursive or non-recursive. Term bindings can be either strict or non-strict. The recursivity and strictness

flags are implemented as empty constructors of inductive datatypes.

1 Inductive Recursivity := NonRec | Rec.
2 Inductive Strictness := NonStrict | Strict.
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𝑘𝑖𝑛𝑑 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠 Δ ::= ∅ empty

| Δ, 𝑋 :: 𝐾 type variable binding

𝑡𝑦𝑝𝑒 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠 Γ ::= ∅ empty

| Γ, 𝑥 : 𝑇 term variable binding

Figure 4.5: Concrete syntax of kind and type contexts

A let-binding can contain any number of bindings. A binding itself can be a term binding, a type binding or a datatype

binding. It is important to note that type bindings are opaque – i.e., they do not behave like a type alias in Haskell

would. Type bindings serve the same purpose as term bindings: term bindings bind term-level sub-computations, and

type bindings bind type-level sub-computations.

Final implementation. Terms and bindings are implemented as mutually defined inductive datatypes, seeing as

terms can appear inside term bindings. The implementation follows easily from Figure 4.4.

1 Inductive term :=
2 | Let : Recursivity -> list binding -> term -> term
3 | Var : name -> term
4 | TyAbs : binderTyname -> kind -> term -> term
5 | LamAbs : binderName -> ty -> term -> term
6 | Apply : term -> term -> term
7 | Constant : @some valueOf -> term
8 | Builtin : DefaultFun -> term
9 | TyInst : term -> ty -> term
10 | Error : ty -> term
11 | IWrap : ty -> ty -> term -> term
12 | Unwrap : term -> term
13 with binding :=
14 | TermBind : Strictness -> vdecl -> term -> binding
15 | TypeBind : tvdecl -> ty -> binding
16 | DatatypeBind : dtdecl -> binding.

4.2 Static semantics

In this section, we define kind and type rules that represent kind and type checking algorithms. We design the type

rules such that they always check for a normalised type, which simplifies the process of reasoning about typing judge-

ments in Coq. To achieve this, we define and implement concepts such as capture-avoiding type substitution and type

normalisation.

4.2.1 Kind and type contexts
Figure 4.5 defines the concrete syntax of kind and type contexts, which are crucial components of kind and type rules.

We implement both types of contexts using partial maps, which are defined in the Software Foundation books[29, 30].

Total maps are implemented as functions from strings to elements of a given type A. Instantiating the type A with

option A gives us a partial map, since a lookup of an element that is not in the map can then return None.

1 Definition total_map (A : Type) := string -> A.
2 Definition partial_map (A : Type) := total_map (option A).

An empty total map should return a default value, or it would not be total. The main operations defined on total maps

are lookups and updates. A lookup is just function application since total maps are modelled as functions. An update is

simple to define.
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Δ(𝑋 ) = 𝐾
K-Var

Δ ⊢ 𝑋 :: 𝐾

Δ ⊢ 𝑇1 :: ∗ Δ ⊢ 𝑇2 :: ∗ K-Fun
Δ ⊢ 𝑇1 → 𝑇2 :: ∗

Δ ⊢ 𝑇 :: 𝐾 Δ ⊢ 𝐹 :: (𝐾 → ∗) → (𝐾 → ∗)
K-IFix

Δ ⊢ ifix 𝐹 𝑇 :: ∗
Δ, 𝑋 :: 𝐾 ⊢ 𝑇 :: ∗

K-Forall
Δ ⊢ (∀𝑋 :: 𝐾.𝑇 ) :: ∗

U𝑖 has kind 𝐾 K-Builtin
Δ ⊢ U𝑖 :: 𝐾

Δ, 𝑋 :: 𝐾1 ⊢ 𝑇 :: 𝐾2 K-Lam
Δ ⊢ (𝜆𝑋 :: 𝐾1 .𝑇 ) :: 𝐾1 → 𝐾2

Δ ⊢ 𝑇1 :: 𝐾1 → 𝐾2 Δ ⊢ 𝑇2 :: 𝐾1 K-App
Δ ⊢ 𝑇1 𝑇2 :: 𝐾2

Figure 4.6: Kinding of types

1 Definition t_empty {A : Type} (v : A) : total_map A := (fun _ => v).
2 Definition t_update {A} (m : total_map A) (x : string) (v : A) :=
3 fun x’ => if x =? x’ then v else m x’.
4 Notation "’_’ ’!->’ v" := (t_empty v) (* hidden *).
5 Notation "x ’!->’ v ’;’ m" := (t_update m x v) (* hidden *).

An empty partial map will always return None. Lookups and updates defined on partial maps follow from their total

map equivalents.

1 Definition empty {A : Type} : partial_map A := t_empty None.
2 Definition update {A : Type} (m : partial_map A) (x : string) (v : A) := (x !-> Some v; m).
3 Notation "x ’|->’ v ’;’ m" := (update m x v) (* hidden *).
4 Notation "x ’|->’ v" := (update empty x v) (* hidden *).

Modelling maps like functions allows us to reason about maps using the same machinery that we can use to reason

about functions. For example, we can prove that a partial map where a variable is shadowed is propositionally equal to

a partial map where the shadowed variable is removed.

1 Theorem update_shadow : forall (A : Type) (m : partial_map A) x v1 v2,
2 (x |-> v2 ; x |-> v1 ; m) = (x |-> v2 ; m).
3 Proof. (* hidden *). Qed.

Finally, we implement multi-updates on partial maps because, amongst other reasons, let-bindings can update a context
with any number of bindings. The multi-update is right-to-left: we apply the first update in the list xts last and vice

versa for the last update in xts.

1 Fixpoint mupdate {X:Type} (m : partial_map X) (xts : list (string * X)) :=
2 match xts with
3 | nil => m
4 | ((x, v) :: xts’) => x |-> v ; (mupdate m xts’)
5 end.

What remains is to instantiate partial maps to obtain kind and type contexts.

1 Definition Delta : Type := partial_map Kind.
2 Definition Gamma : Type := partial_map Ty.

4.2.2 Kind rules
Figure 4.6 defines the set of inference rules that describe a kind checking algorithm. The rules are mostly standard,

seeing as the type language is a small superset of a simply typed lambda calculus. We elaborate on a few interesting

rules before we implement the kind rules.

Built-in types. We assume for the K-Builtin rule that we know the kind of every built-in type in the universe U.
For the default universe in the compiler, all built-in types have a base kind. However, we would like to facilitate the

implementation of a modular approach in the future, so we implement a function that “looks up” the kind of a built-in

type.



CHAPTER 4. PIR AND PLUTUS CORE 22

1 Definition lookupBuiltinKind (u : DefaultUni) : Kind :=
2 match u with
3 | DefaultUniInteger => Kind_Base
4 (* hidden *)
5 end.

Fixpoint type. As mentioned before in subsection 4.1.4, the type-level fixpoint operator takes fixpoints only at kind

𝐾 → ∗. This is reflected in the K-IFix rule: 𝐹 should have kind (𝐾 → ∗) → (𝐾 → ∗). The fixpoint of 𝐹 is a type

function with kind 𝐾 → ∗, which can then be applied to an argument𝑇 of kind 𝐾 to produce a final result of base kind.

Altogether, we denote the application of a fixpoint of 𝐹 to 𝑇 as ifix 𝐹 𝑇 .

Final implementation. The implementation of kinding is a simple translation of the inference rules to an inductive

datatype.

1 Reserved Notation "Delta ’|-*’ T ’:’ K" (* hidden *).
2 Inductive has_kind : Delta -> Ty -> Kind -> Prop := (* hidden *)
3 where "Delta ’|-*’ T ’:’ K" := (has_kind Delta T K).

4.2.3 Type substitution
Because of the design of the type language, types can contain unfinished computations that can be normalised – i.e.,

types can contain beta redexes. To facilitate beta reduction, we implement a naive substitution function on types.

1 Fixpoint substituteT (X : tyname) (U T : Ty) : Ty := (* hidden *).

We also implement multi-substitutions on types since we need these in chapter 5. The order in which we substitute

types in ss is left-to-right: we apply the substitution at the head of the list first.

1 Fixpoint msubstT (ss : list (tyname * Ty)) (T : Ty) : Ty := (* ... *).

A problem with substituteT is that it is not scope-preserving. Substitution can result in accidental capturing if the

type U contains free variables that are bound in T. This is not a problem if we only substitute closed types, though this

is not true for our static semantics. In the type rules that we define later, types that contain beta redexes can also have

an arbitrary number of free type variables. For this reason, we set out to define a capture-avoiding type substitution.

Capture-avoiding type substitution is equivalent to type substitution except for the cases where we move a type

substitution below a binder. As an example, assume that we compute [𝑈 /𝑋 ] (∀𝑌 :: 𝐾.𝑇 ). Naturally, if 𝑋 = 𝑌 , then type

substitution has no effect. However, if they are not equal, then two cases can occur: either 𝑌 occurs freely in 𝑈 or it

does not. In the former case, we must rename 𝑌 and all occurrences of 𝑌 in 𝑇 to a fresh type variable, and continue

substitution in the renamed version of 𝑇 . In the latter case, type substitution proceeds as normal and we compute

∀𝑌 :: 𝐾. [𝑈 /𝑋 ]𝑇 .
We need four ingredients to implement capture-avoiding type substitution: (i) a function that collects free variables

in a type, (ii) a function that generates a fresh type variable, (iii) a function that performs renaming and (iv) a well-

foundedness measure. Ingredient (i) is straightforward. We reduce the problem of generating a fresh type variable to

generating a type variable that is not equal to𝑋 and does not occur freely in𝑈 or𝑇 , and we implement a simple solution

to this reduced problem. We define renaming as a specialised case of type substitution. The last ingredient is needed

because capture-avoiding substitution is not structurally recursive on the type in which we perform substitution. In the

case where we avoid capturing, we continue substitution on a renamed version of the original term, which prevents Coq

from determining whether the function terminates. We use the size of a type, defined as the number of constructors

that the type contains, as a well-foundedness measure.

1 Fixpoint ftv (T : Ty) : list tyname := (* hidden *).
2 Definition fresh (X : tyname) (U T : Ty) : tyname := (* hidden *).
3 Definition rename (X Y : tyname) (T : Ty) := substituteT X (Ty_Var Y) T.
4 Fixpoint size (T : Ty) : nat := (* hidden *).

The proof of well-foundedness follows from the fact that renaming preserves the size of a type.

1 Lemma rename_preserves_size : forall T X Y,
2 size T = size (rename X Y T).
3 Proof. (* hidden *). Qed.



CHAPTER 4. PIR AND PLUTUS CORE 23

Q-Beta
(𝜆𝑋 :: 𝐾.𝑇1) 𝑇2 ≡ [𝑇2/𝑋 ]𝑇1

Q-Refl
𝑇 ≡ 𝑇

𝑇 ≡ 𝑆 Q-Symm
𝑆 ≡ 𝑇

𝑆 ≡ 𝑈 𝑈 ≡ 𝑇 Q-Trans
𝑆 ≡ 𝑇

𝑆1 ≡ 𝑆2 𝑇1 ≡ 𝑇2 Q-Fun
𝑆1 → 𝑇1 ≡ 𝑆2 → 𝑇2

𝑆 ≡ 𝑇 Q-Forall
∀𝑋 :: 𝐾.𝑆 ≡ ∀𝑋 :: 𝐾.𝑇

𝑆 ≡ 𝑇 Q-Lam
𝜆𝑋 :: 𝐾.𝑆 ≡ 𝜆𝑋 :: 𝐾.𝑇

𝑆1 ≡ 𝑆2 𝑇1 ≡ 𝑇2 Q-App
𝑆1 𝑇1 ≡ 𝑆2 𝑇2

𝐹1 ≡ 𝐹2 𝑇1 ≡ 𝑇2 Q-IFix
ifix 𝐹1 𝑇1 ≡ ifix 𝐹2 𝑇2

Figure 4.7: Type equality

It remains to define the final capture-avoiding type substitution function and prove its well-foundedness.

1 Equations? substituteTCA (X : tyname) (U T : Ty) : Ty by wf (size T) :=
2 (* hidden *)
3 substituteTCA X U (Ty_Forall Y K T) =>
4 if X =? Y
5 then Ty_Forall Y K T
6 else if existsb (eqb Y) (ftv U)
7 then let Y’ := fresh X U T in
8 let T’ := rename Y Y’ T in
9 Ty_Forall Y’ K (substituteTCA X U T’)
10 else Ty_Forall Y K T ;
11 (* hidden *).
12 Proof. (* proof using rename_preserves_size *). Qed.

Finally, note that the use of De Bruijn indices as variables would have prevented this problem entirely. However, since

we chose to stick close to the compiler implementation, we have to deal with problems of this type.

4.2.4 Type normalisation
It is necessary to define normalisation of types because types can contain computations, and we would like our type

rules to only type check with respect to normalised types. Moreover, it is easier to determine if types are equal if they

are normal, and normalisation is necessary in the context of our approach to iso-recursive types. Figure 4.7 defines a

notion of type equality, which is a first step on the road to a definition of type normalisation. Type equality will serve as

a sanity check for the definition of type normalisation that we will formalise below. The definition of type equality can

be split into three categories of rules: (i) congruence cases such as Q-Fun and Q-Forall, (ii) the beta reduction rule Q-
Beta, and (iii) properties that hold in general for equalities: reflexivity, symmetry and transitivity. The implementation

of type equality is a simple translation of the inference rules to an inductive datatype that represents a relation between

types. Note that we use the capture-avoiding type substitution function.

1 Reserved Notation "T1 ’=b’ T2" (* hidden *).
2 Inductive EqT : Ty -> Ty -> Prop :=
3 | Q_Beta : forall X K T1 T2 T1’, substituteTCA X T2 T1 = T1’ ->
4 Ty_App (Ty_Lam X K T1) T2 =b T1’
5 (* other rules hidden *)
6 where "T1 ’=b’ T2" := (EqT T1 T2).

Logically, the type normalisation relation should relate types to normal types. In summary, a type is normal if it contains

no beta redexes. A normal type is not only beta redex free if it contains no function applications, since a type variable

in a function position can also block beta reduction. We call a type a neutral type if it consists of a type variable applied
to any number of normal types. Figure 4.8 describes the mutually defined sets of normal and neutral types, which we

denote by 𝑛𝑜𝑟𝑚𝑎𝑙 and 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 in that order. We implement these sets as predicates on types using mutually defined

inductive datatypes.

1 Inductive normal_Ty : Ty -> Prop := (* hidden *)
2 with neutral_Ty : Ty -> Prop := (* hidden *).
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𝑇 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 NO-Lam
𝜆𝑋 :: 𝐾.𝑇 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙

𝑇 ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 NO-Neutral
𝑇 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙

𝑇1 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 𝑇2 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 NO-Fun
𝑇1 → 𝑇2 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙

𝑇 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 NO-Forall
∀𝑋 :: 𝐾.𝑇 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙

𝐹 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 𝑇 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 NO-IFix
ifix 𝐹 𝑇 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙

NO-Builtin
U𝑖 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙

NE-Var
𝑋 ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

𝑇1 ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑇2 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 NE-App
𝑇1 𝑇2 ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

Figure 4.8: Normal and neutral types

𝑇1 ⇝ 𝜆𝑋 :: 𝐾.𝑇𝑛
1

𝑇2 ⇝ 𝑇𝑛
2

[
𝑇𝑛
2
/𝑋

]
𝑇𝑛
1
⇝ 𝑇𝑛

N-Beta
𝑇1 𝑇2 ⇝ 𝑇𝑛

𝑇1 ⇝ 𝑇𝑛
1

𝑇𝑛
1
∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑇2 ⇝ 𝑇𝑛

2 N-App
𝑇1 𝑇2 ⇝ 𝑇𝑛

1
𝑇𝑛
2

𝑇1 ⇝ 𝑇𝑛
1

𝑇2 ⇝ 𝑇𝑛
2 N-Fun

𝑇1 → 𝑇2 ⇝ 𝑇𝑛
1
→ 𝑇𝑛

2

𝑇 ⇝ 𝑇𝑛

N-Forall
∀𝑋 :: 𝐾.𝑇 ⇝ ∀𝑋 :: 𝐾.𝑇𝑛

𝑇 ⇝ 𝑇𝑛

N-Lam
𝜆𝑋 :: 𝐾.𝑇 ⇝ 𝜆𝑋 :: 𝐾.𝑇𝑛

N-Var
𝑋 ⇝ 𝑋

𝐹 ⇝ 𝐹𝑛 𝑇 ⇝ 𝑇𝑛

N-IFix
ifix 𝐹 𝑇 ⇝ ifix 𝐹𝑛 𝑇𝑛

N-Builtin
U𝑖 ⇝ U𝑖

Figure 4.9: Type normalisation

With a notion of normal and neutral types defined, we can now define a normalisation algorithm. Figure 4.9 defines a

set of inference rules that describes a type normalisation algorithm. We denote by 𝑇 ⇝ 𝑇𝑛
that a type 𝑇 normalises to

𝑇𝑛
, where the superscript 𝑛 is just notation for normality and does not represent, for example, a variable. Just by visual

inspection, we can see that the normalisation algorithm is similar to the definition of type equality.

Though we would like to implement type normalisation as a function, it is a rather hard problem to convince Coq

that the function terminates. Proving well-foundedness of the function is equivalent to proving that the type language

is strongly normalising, which requires a non-trivial proof using advanced proof techniques such as logical relations.

Instead, we simply bypass this problem by implementing normalisation as a relation between types.

1 Inductive normalise : Ty -> Ty -> Prop := (* hidden *).

A first sanity check for the normalisation relation is to prove that it produces normal types. We can prove this using a

one-liner.

1 Lemma normalise_to_normal : forall T Tn, normalise T Tn -> normal_Ty Tn.
2 Proof. induction 1; eauto. Qed.

We also prove that the normalisation relation is deterministic, and we prove that the normalisation relation is stable –

i.e., normalisation of normal and neutral types returns exactly the input type.

1 Lemma normalisation__deterministic : forall T Tn T’n,
2 normalise T Tn -> normalise T T’n -> Tn = T’n.
3 Proof. (* hidden *). Qed.
4

5 Theorem normalisation__stable :
6 (forall T, normal_Ty T -> (forall Tn, normalise T Tn -> T = Tn)) /\
7 (forall T, neutral_Ty T -> (forall Tn, normalise T Tn -> T = Tn)).
8 Proof. (* hidden *). Qed.
9

10 Lemma normalisation__stable’ :
11 (forall Tn, normal_Ty Tn -> normalise Tn Tn) /\ (forall Tn, neutral_Ty Tn -> normalise Tn Tn).
12 Proof. (* hidden *). Qed.

Lastly, we prove that the normalisation relation is sound with respect to our definition of type equivalence. Whether

the normalisation relation is complete with respect to type equivalence remains unanswered.
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Throughout this figure, when 𝑑 or 𝑐 is an argument, then:

𝑑 = data (𝑋 :: 𝐾) (𝑌 :: 𝐽 ) = 𝑐 with 𝑥
𝑐 = 𝑦 (𝑇 )
𝑇 = 𝑆 →𝑈 and𝑈 is the return type

Auxiliary functions

branchTy(𝑐, 𝑅) = 𝑆 → 𝑅

dataTy(𝑑) = 𝜆(𝑌 :: 𝐽 ).∀𝑅 :: ∗.(branchTy(𝑐, 𝑅)) → 𝑅

constrLastTy(𝑑) = 𝑋 𝑌

constrTy(𝑑, 𝑐) = ∀(𝑌 :: 𝐽 ).branchTy(𝑐, constrLastTy(𝑑))
matchTy(𝑑) = ∀(𝑌 :: 𝐽 ).constrLastTy(𝑑) → (dataTy(𝑑) 𝑌 )

Binder functions

constrBind(𝑑, 𝑐) = 𝑦 : constrTy(𝑑, 𝑐)
constrBinds(𝑑) = constrBind(𝑑, 𝑐)
matchBind(𝑑) = 𝑥 : matchTy(𝑑)

bindsΓ (𝑥 : 𝑇 = 𝑡) = 𝑥 : 𝑇

bindsΓ (𝑑) = constrBinds(𝑑),matchBind(𝑑)
bindsΔ (𝑋 :: 𝐾 = 𝑇 ) = 𝑋 :: 𝐾

bindsΔ (𝑑) = 𝑋 :: 𝐾

Figure 4.10: Auxiliary definitions

1 Theorem normalisation__sound : forall T Tn,
2 normalise T Tn -> T =b Tn.
3 Proof. (* hidden *). Qed.
4

5 Lemma normalisation__complete : forall S T Sn,
6 S =b T -> normalise S Sn -> normalise T Sn.
7 Proof. Abort.

4.2.5 Auxiliary definitions
We need a number of auxiliary definitions that work on bindings, declarations and constructors before we can finally

define the type rules. These definitions are necessary because we must collect all term variable and type variable bind-

ings that term bindings, type bindings and datatype bindings introduce. For example, each constructor of a datatype

introduces a new term variable binding. Figure 4.10 describes the auxiliary definitions. A note on terminology: if we

say that𝑈 is the result type of𝑇 , then we mean to say that𝑇 = 𝑆 →𝑈 and that𝑈 is not an arrow type. In other words,

fully applying a function of type 𝑇 to a list of arguments with subsequent types 𝑆 will yield a non-arrow result type𝑈 .

1 Definition binds_Delta (b : Binding) : list (tyname * Kind) := (* hidden *).
2 Definition binds_Gamma (b : Binding) : list (name * Ty) := (* hidden *).

4.2.6 Well-formedness of constructors and bindings
As a last component before we finally define type rules, we define well-formedness of constructors and bindings by

defining a set of inference rules that represent a well-formedness checking algorithm. Well-formedness rules are similar

to type rules, but differ in the sense that they do not check for a type. Instead, we only check if the constructors

and bindings are well-formed with respect to their type annotations. Figure 4.11 defines the set of inference rules

that describe the well-formedness checking algorithm. We delay the implementation of well-formedness because it is

mutually defined with the type rules.
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𝑐 = 𝑥 (𝑆 →𝑈 )
𝑈 is result type Δ ⊢ 𝑆 :: ∗

W-Con
Δ ⊢ok_c 𝑐 : 𝑈

Δ ⊢ 𝑇 :: ∗ 𝑇 ⇝ 𝑇𝑛

Δ; Γ ⊢ 𝑡 : 𝑇𝑛

W-Term
Δ; Γ ⊢ok_b 𝑥 : 𝑇 (𝑠𝑡𝑟 ) = 𝑡

Δ ⊢ 𝑇 :: 𝐾 W-Type
Δ; Γ ⊢ok_b 𝑋 :: 𝐾 = 𝑇

𝑑 = data (𝑋 :: 𝐾) (𝑌 :: 𝐽 ) = 𝑐 with 𝑥
Δ′ = Δ, 𝑌 :: 𝐽 Δ′ ⊢ok_c 𝑐 : constrLastTy(𝑑)

W-Data
Δ; Γ ⊢ok_b 𝑑

𝑏 = 𝑏, 𝑏′

Δ; Γ ⊢ok_b 𝑏
bindsΓ (𝑏) ⇝ bindsΓ (𝑏)𝑛

(Δ, bindsΔ (𝑏)); (Γ, bindsΓ (𝑏)𝑛) ⊢oks_nr 𝑏′
W-BindingsNonRec

Δ; Γ ⊢oks_nr 𝑏

𝑏 = 𝑏, 𝑏′ Δ; Γ ⊢ok_b 𝑏 Δ; Γ ⊢oks_r 𝑏′
W-BindingsRec

Δ; Γ ⊢oks_r 𝑏

Figure 4.11: Well-formedness of constructors and bindings

Well-formedness of constructors requires that the return type of the constructor is a given type 𝑈 , and it requires

that the type arguments of the constructor all have a base kind. The well-formedness of term bindings follows fromwell-

typedness of the bound term. As such, well-formedness is mutually defined with the typing judgements that we define

later. Well-formedness of type bindings follows from well-kindedness of the bound type. Well-formedness of datatype

bindings follows from well-formedness of its constructors with respect to the expected return type of constructors: the

datatype name applied to the type parameters of the datatype. For example, a constructor of the Either datatype with

type parameters 𝐴 and 𝐵 should always return something of type Either 𝐴 𝐵. Lastly, we also defined well-formedness

of sequences of bindings. In the case of non-recursive bindings, the term and type variable bindings of the binding at

the head of the sequence come into scope when we check well-formedness of the tail of the sequence. In the case for

recursive bindings, the term and type variable bindings of each binding in the sequence should already be in scope,

or else the bindings would not be (mutually) recursive, so we do not bring anything new into scope when checking

well-formedness of the tail of the sequence. We omit rules for empty sequences as they are trivially well-formed.

4.2.7 Type rules
Figure 4.12 defines the set of inference rules that describe a type checking algorithm. We ensure that we can only type

check for normal types. In addition, we take care to only update type contexts with normalised types. We elaborate on

the more interesting rules now.

Variables. We remarked just before this paragraph that we update type contexts only with normalised types. How-

ever, we do not want to carry around witnesses of the invariant that states that type contexts only contain normalised

types. Because of this, we normalise a looked-up type in the T-Var rule as a precaution. As such, we simplify proof

engineering, and it is not a problem since type normalisation is stable.

Recursive types. We can unfold a type ifix 𝐹 𝑇 to (𝐹 (𝜆𝑋 :: 𝐾.ifix 𝐹 𝑋 )) 𝑇 , given that 𝑇 has kind 𝐾 . The reverse

is true for the folding of types.

Built-in functions. In the T-Builtin rule, we assume that we can determine whether a built-in function has some

type T. It makes sense that we can always determine this, since a built-in function with unknown type is not very useful.

Therefore, we can require that any collection of built-in functions must be accompanied with a function that “looks up”

the corresponding type of a built-in function. We can easily implement such a function for the default built-in function

collection.

1 Definition lookupBuiltinTy (f : DefaultFun) : Ty := (* hidden *).

Constants. We defined machinery such as the some, typeIn and valueOf datatypes to represent some built-in types

and some values of built-in types. In particular, this machinery prevents us from writing values that are not of the built-

in type that a constant is annotated with. For example, a constant such as Constant (Some (ValueOf DefaultUniBool
true)) can only be of the type Ty_Builtin (Some (TypeIn DefaultUniBool)). So, if we consider the T-Constant
rule, the premise “𝑐 has type U𝑖” is trivially true in the Coq implementation.
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Γ(𝑥) = 𝑇 𝑇 ⇝ 𝑇𝑛

T-Var
Δ; Γ ⊢ 𝑥 : 𝑇𝑛

Δ ⊢ 𝑇1 :: ∗ 𝑇1 ⇝ 𝑇𝑛
1

Δ; (Γ, 𝑥 : 𝑇𝑛
1
) ⊢ 𝑡 : 𝑇𝑛

2 T-LamAbs
Δ; Γ ⊢ (𝜆𝑥 : 𝑇1 .𝑡) : 𝑇𝑛

1
→ 𝑇𝑛

2

Δ; Γ ⊢ 𝑡1 : 𝑇𝑛
1
→ 𝑇𝑛

2
Δ; Γ ⊢ 𝑡2 : 𝑇𝑛

1 T-Apply
Δ; Γ ⊢ 𝑡1 𝑡2 : 𝑇𝑛

2

(Δ, 𝑋 :: 𝐾); Γ ⊢ 𝑡 : 𝑇𝑛

T-TyAbs
Δ; Γ ⊢ (Λ𝑋 :: 𝐾.𝑡) : (∀𝑋 :: 𝐾.𝑇𝑛)

Δ; Γ ⊢ 𝑡1 : (∀𝑋 :: 𝐾2 .𝑇
𝑛
1
) Δ ⊢ 𝑇2 :: 𝐾2 𝑇2 ⇝ 𝑇𝑛

2

[
𝑇𝑛
2
/𝑋

]
𝑇𝑛
1
⇝ 𝑇𝑛

T-TyInst
Δ; Γ ⊢ 𝑡1 {𝑇2} : 𝑇𝑛

Δ ⊢ 𝑇 :: 𝐾
𝑇 ⇝ 𝑇𝑛

Δ ⊢ 𝐹 :: (𝐾 → ∗) → (𝐾 → ∗)
𝐹 ⇝ 𝐹𝑛

(𝐹𝑛 (𝜆𝑋 :: 𝐾.ifix 𝐹𝑛 𝑋 )) 𝑇𝑛 ⇝ 𝑇𝑛
0

Δ; Γ ⊢ 𝑀 : 𝑇𝑛
0 T-IWrap

Δ; Γ ⊢ IWrap 𝐹 𝑇 𝑀 : ifix 𝐹𝑛 𝑇𝑛

Δ; Γ ⊢ 𝑀 : ifix 𝐹𝑛 𝑇𝑛 Δ ⊢ 𝑇𝑛
:: 𝐾 (𝐹𝑛 (𝜆𝑋 :: 𝐾.ifix 𝐹𝑛 𝑋 )) 𝑇𝑛 ⇝ 𝑇𝑛

0 T-Unwrap
Δ; Γ ⊢ Unwrap𝑀 : 𝑇𝑛

0

𝑐 has type U𝑖 T-Constant
Δ; Γ ⊢ Constant U𝑖 𝑐 : U𝑖

F𝑖 has type 𝑇
𝑇 ⇝ 𝑇𝑛

T-Builtin
Δ; Γ ⊢ F𝑖 : 𝑇𝑛

Δ ⊢ 𝑇 :: ∗
𝑇 ⇝ 𝑇𝑛

T-Error
Δ; Γ ⊢ Error 𝑆 : 𝑇𝑛

Δ′ = Δ, bindsΔ (𝑏)
bindsΓ (𝑏) ⇝ bindsΓ (𝑏)𝑛

Γ′ = Γ, bindsΓ (𝑏)𝑛
Δ; Γ ⊢oks_nr 𝑏
Δ′
; Γ′ ⊢ 𝑡 : 𝑇𝑛 Δ ⊢ 𝑇𝑛

:: ∗
T-Let

Δ; Γ ⊢ let (NonRec) 𝑏 in 𝑡 : 𝑇𝑛

Δ′ = Δ, bindsΔ (𝑏)
bindsΓ (𝑏) ⇝ bindsΓ (𝑏)𝑛

Γ′ = Γ, bindsΓ (𝑏)𝑛
Δ′
; Γ′ ⊢oks_r 𝑏

Δ′
; Γ′ ⊢ 𝑡 : 𝑇𝑛 Δ ⊢ 𝑇𝑛

:: ∗
T-LetRec

Δ; Γ ⊢ let (Rec) 𝑏 in 𝑡 : 𝑇𝑛

Figure 4.12: Typing of terms
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Error. Recall that errors are annotated with a type for the sake of principal types. Errors can interrupt evaluation,

after which they are propagated through parent constructors. It should be the case that the resulting error value (after

propagation) has the same type as the original term. For example, a term that computes something of an integer type

should not have a boolean type after evaluating to an error. The current type annotations in terms are not sufficient to

manipulate the type annotation of an error such that it has the correct type after error propagation. For now, we remark

that we ignore the type annotation such that an error can have any normalised type. We suspect that this issue can be

solved by augmenting the type annotations of terms.

let-bindings. To type check non-recursive let-bindings, we first check whether the binding sequence is well-formed

without updating the kind and type contexts. The W-BindsNonRec rule makes sure to bring term and type variable

bindings into scope. We then make sure that the body of the let-binding is well-typed. To do this, we must update the

kind context with the type variable bindings of the binding sequence, and we must update the type context with the

normalised term variable bindings of the binding sequence. Type checking recursive let-bindings is similar, but only

differs in the sense that we check well-formedness of the bindings sequence with the updated kind and type contexts.

This is necessary because the bindings in the sequence are possibly mutually recursive, so all term and type variable

bindings should be in scope before we check well-formedness.

Lastly, we explain the last premise of both the T-Let and T-LetRec rules. In Peyton Jones et al.[15], the type rules

explicitly prevent escaping of the inner type. In other words, the term and type variable bindings of the binding sequence

are not in scope when type checking the entire let-binding. However, the compiler implementation allows escaping

on one condition: the let-binding that is being type checked is a top-level let-binding. This is allowed since compiling

the let-binding to Plutus Core would result in a well-behaved term. This is problematic for multiple reasons. First,

consider the compilation scheme from Peyton Jones et al.[15] that compiles a let-binding with a single type binding:

Ctype (let (NonRec) (𝑋 :: 𝐾 = 𝑇 ) in 𝑡) = (Λ𝑋 :: 𝐾.𝑡) {𝑇 } (4.1)

If the let-binding before compilation has an escaped type, then the type of the compiled term has changed! In addition,

escaping makes proofs, such as the fact that “substitution preserves typing” and that “evaluation preserves typing”,

harder to complete. As such, we opted to disallow the escaping of types altogether. This means that our static semantics

implementation is only sound with respect to the compiler implementation of the static semantics. Changes to the

compiler or a different type rule may resolve these issues, but we leave it to future work to flesh out the solution.

Final implementation. Finally, we introduce the implementation of the type rules and the well-formedness rules.

The rules in Figure 4.11 and 4.12 are translated to mutually defined inductive datatypes.

1 Reserved Notation "Delta ’,,’ Gamma ’|-+’ t ’:’ T" (* hidden *).
2 Reserved Notation "Delta ’|-ok_c’ c ’:’ T" (* hidden *).
3 Reserved Notation "Delta ’,,’ Gamma ’|-oks_nr’ bs" (* hidden *).
4 Reserved Notation "Delta ’,,’ Gamma ’|-oks_r’ bs" (* hidden *).
5 Reserved Notation "Delta ’,,’ Gamma ’|-ok_b’ b" (* hidden *).
6

7 Inductive has_type : Delta -> Gamma -> Term -> Ty -> Prop := (* hidden *)
8 with constructor_well_formed : Delta -> constructor -> Ty -> Prop := (* hidden *)
9 with bindings_well_formed_nonrec : Delta -> Gamma -> list Binding -> Prop := (* hidden *)
10 with bindings_well_formed_rec : Delta -> Gamma -> list Binding -> Prop := (* hidden *)
11 with binding_well_formed : Delta -> Gamma -> Binding -> Prop := (* hidden *)
12

13 where "Delta ’,,’ Gamma ’|-+’ t ’:’ T" := (has_type Delta Gamma t T)
14 and "Delta ’|-ok_c’ c ’:’ T" := (constructor_well_formed Delta c T)
15 and "Delta ’,,’ Gamma ’|-oks_nr’ bs" := (bindings_well_formed_nonrec Delta Gamma bs)
16 and "Delta ’,,’ Gamma ’|-oks_r’ bs" := (bindings_well_formed_rec Delta Gamma bs)
17 and "Delta ’,,’ Gamma ’|-ok_b’ b" := (binding_well_formed Delta Gamma b).

We implemented type normalisation with the goal of designing the type checking algorithm such that it only checks

for normal types. We can prove that the type checking algorithm only checks for normal types with a short proof.

1 Lemma has_type__normal : forall Delta Gamma flag t T,
2 Delta ,, Gamma ;; flag |-+ t : T ->
3 normal_Ty T.
4 Proof. (* proof with normalise_to_normal *). Qed.
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V-LamAbs
𝜆𝑥 : 𝑇 .𝑡 ∈ 𝑣𝑎𝑙𝑢𝑒

V-TyAbs
Λ𝑋 :: 𝐾.𝑡 ∈ 𝑣𝑎𝑙𝑢𝑒

𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒 ¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣)
V-IWrap

IWrap 𝐹 𝑇 𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒
V-Constant

Constant U𝑖 𝑐 ∈ 𝑣𝑎𝑙𝑢𝑒

V-Error
Error 𝑇 ∈ 𝑣𝑎𝑙𝑢𝑒

⟨0, 𝑛𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
V-Neutral

𝑛𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒

𝑛 < 𝑎𝑟𝑖𝑡𝑦 (F𝑖 ) NV-Builtin
⟨𝑛, F𝑖⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒 ¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣) ⟨succ 𝑛, 𝑛𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
NV-Apply

⟨𝑛, 𝑛𝑣 𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

⟨succ 𝑛, 𝑛𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
NV-TyInst

⟨𝑛, 𝑛𝑣 {𝑇 }⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

Figure 4.13: Values and neutral terms

4.3 Dynamic Semantics

In this section, we define a big-step operational semantics for the term-level language in a Call-By-Value style using

substitution. In the process, we define and implement additional concepts such as values, term substitution and type

annotation substitution. It is important to note that the term-level language is not strongly normalising, which is a

consequence of iso-recursive types[7]. For the semantics of default built-in functions, we closely follow the meaning

that the Plutus Tx compiler assigns to these functions.

4.3.1 Values
We define the possible result values that can be produced by evaluating a term. Values can be suspended computations,

such as lambda and type abstractions, terms that must further be type-unfolded, such as IWrap terms, or base terms

such as constants and errors. In addition, similarly to how normal types include neutral types, values include neutral

terms. We need neutral terms to properly evaluate built-in functions, because we need to fully apply a built-in function

to compute its result. A neutral term is therefore a built-in function that is partially applied to a number of (non-error)

values and types.

Figure 4.13 describes the mutually defined sets of values and neutral terms, which we denote by 𝑣𝑎𝑙𝑢𝑒 and 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

respectively. Most of the rules are straightforward, except for rules that involve built-in functions. To determinewhether

a term is neutral, we use a peano natural number (with a zero-element 0 and a successor function succ) to count the

arguments that a built-in function is applied to. We use the function 𝑎𝑟𝑖𝑡𝑦 to compute the arity of a built-in function.

The previous two components allow us to define neutral terms and the V-Neutral rule. We can implement values and

neutral terms as predicates using mutually defined inductive datatypes, together with a function that computes the arity

of a default built-in function, and a predicate that defines whether a term is an Error.

1 Definition arity (df : DefaultFun) : nat := (* hidden *).
2 Inductive is_error : Term -> Prop := (* hidden *)
3

4 Inductive value : Term -> Prop := (* hidden *)
5 with neutral_value : nat -> Term -> Prop := (* hidden *).

4.3.2 Term and type annotation substitution
Our operational semantics uses two types of substitutions: substitution on terms and substitution on type annotations.

We need term substitution primarily to define the semantics of function application. We need type annotation substitu-

tion primarily to define the semantics of type instantiation. Note that we make no effort to avoid accidental capturing

like we did for our implementation of capture-avoiding type substitution since we will only use these substitution func-

tions to substitute closed terms and types.

1 Fixpoint substitute (x : name) (s : Term) (t : Term) {struct t} : Term :=
2 (* implementation hidden *)
3 with substitute_binding (x : name) (s : Term) (b : Binding) {struct b} : Binding :=
4 (* implementation hidden *).
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E-LamAbs
𝜆𝑥 : 𝑇 .𝑡 ⇓0 𝜆𝑥 : 𝑇 .𝑡

𝑡1 ⇓𝑗1 𝜆𝑥 : 𝑇 .𝑡0

𝑡2 ⇓𝑗2 𝑣2
¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣2) [𝑣2/𝑥] 𝑡0 ⇓𝑗0 𝑣0 E-Apply

𝑡1 𝑡2 ⇓𝑗 𝑣0 where 𝑗 = 𝑗1 + 𝑗2 + 1 + 𝑗0

E-TyAbs
Λ𝑋 :: 𝐾.𝑡 ⇓0 Λ𝑋 :: 𝐾.𝑡

𝑡1 ⇓𝑗1 Λ𝑋 :: 𝐾.𝑡0 [𝑇2/𝑋 ] 𝑡0 ⇓𝑗0 𝑣0 E-TyInst
𝑡1 {𝑇2} ⇓𝑗 𝑣0 where 𝑗 = 𝑗1 + 1 + 𝑗0

𝑡0 ⇓𝑗0 𝑣0 ¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣0) E-IWrap
IWrap 𝐹 𝑇 𝑡0 ⇓𝑗0 IWrap 𝐹 𝑇 𝑣0

𝑡0 ⇓𝑗0 IWrap 𝐹 𝑇 𝑣0 E-Unwrap
Unwrap 𝑡0 ⇓𝑗 𝑣0 where 𝑗 = 𝑗0 + 1

E-Constant
Constant U𝑖 𝑐 ⇓0 Constant U𝑖 𝑐

Figure 4.14: Big-step operational semantics (basic rules)

For type annotation substitution, we reuse the substituteT function to perform the actual substitution of a type in

some type annotation. Since we aim to use the type annotation substitution function only to substitute closed types, we

do not have to use the capture-avoiding type substitution function.

1 Fixpoint substituteA (X : tyname) (U : Ty) (t : Term) {struct t} : Term :=
2 (* implementation hidden *)
3 with substituteA_binding (X : tyname) (U : Ty) (b : Binding) {struct b} : Binding :=
4 (* implementation hidden *).

In anticipation of chapter 5, we also implement multi-substitutions on terms and type annotations. The order in which

we substitute terms and types that are in ss is left-to-right: we apply the substitution at the head of the list first.

1 Fixpoint msubst_term (ss : list (name * Term)) (t : Term) : Term :=
2 (* implementation hidden *).
3 Fixpoint msubstA_term (ss : list (tyname * Ty).) (t : Term) : Term :=
4 (* implementation hidden *).

In this subsection, we have omitted some details. In order to implement the two types of substitutions, we have also

defined, amongst others, term substitution on sequences of bindings and type annotation substitution on constructors.

Moreover, we have implemented multi-substitution functions for most of the substitution functions that we have im-

plemented but not necessarily listed here. We will not explicitly use these additional substitution functions throughout

the remainder of this thesis, but it is good to be aware of their existence.

4.3.3 Evaluation relation
We define the big-step operational semantics as an evaluation relation. We make sure that the operational semantics

also counts the number of evaluation steps that are used. This is done in anticipation of chapter 5, where we employ

step-indexing to formulate and prove dynamic semantics preservation. We denote by 𝑡 ⇓𝑗 𝑣 that a term 𝑡 evaluates in 𝑗

steps to a value 𝑣 . Naturally, we construct the operational semantics such that 𝑣 is a value.

We will discuss the evaluation relation in four parts, which we define by giving inference rules in four separate

figures. In all cases, we can put the inference rules into two categories: rules that describe how values evaluate to

themselves, and (beta) reduction/computation rules. In sequence, we discuss (i) the basic evaluation rules, (ii) evaluation

rules for let-bindings, (iii) evaluation rules for built-in functions, (iv) evaluation rules for errors, and (v) the final

implementation of the evaluation relation. Recall that we do not give evaluation rules for datatype bindings, we ignore

strictness flags for term bindings, we do not yet model laziness where it is sometimes needed, and the semantics of some

built-in functions are not yet correctly modelled.

(i) Basic rules

Figure 4.14 describes the “basic” rules of the evaluation relation. That is, the figure describes the rules that do not involve

let-bindings, built-in functions and errors. We do however make sure that sub-computations of computation rules do

not result in errors, as an error would interrupt normal evaluation. We will give a short description of the rules.

The E-LamAbs and E-TyAbs rules describe that suspended computations evaluate to themselves. The E-Apply
and E-TyInst rules describe how function and type instantiation/application can continue a suspended computation.

Note that we use the same substitution notation for both term and type annotation substitution. We presume that it is

clear from the context which type of substitution is performed. The E-IWrap rule makes sure that the wrapped term
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let (NonRec) 𝑏 in 𝑡 ⇓𝑗
𝑛𝑟 𝑣 E-Let

let (NonRec) 𝑏 in 𝑡 ⇓𝑗 𝑣

𝑏 ⊢ let (Rec) 𝑏 in 𝑡 ⇓𝑗
𝑟 𝑣 E-LetRec

let (Rec) 𝑏 in 𝑡 ⇓𝑗 𝑣

𝑡0 ⇓𝑗0 𝑣0 E-Let-Nil
let (NonRec) 𝜀 in 𝑡0 ⇓𝑗

𝑛𝑟 𝑣0 where 𝑗 = 𝑗0 + 1

𝑡1 ⇓𝑗1 𝑣1 ¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣1) [𝑣1/𝑥] (let (NonRec) 𝑏 in 𝑡0) ⇓𝑗2
𝑛𝑟 𝑣2 E-Let-TermBind

let (NonRec) ((𝑥 : 𝑇 (𝑠𝑡𝑟 ) = 𝑡1), 𝑏) in 𝑡0 ⇓𝑗
𝑛𝑟 𝑣2 where 𝑗 = 𝑗1 + 1 + 𝑗2

[𝑇 /𝑋 ] (let (NonRec) 𝑏 in 𝑡0) ⇓𝑗1
𝑛𝑟 𝑣1 E-Let-TypeBind

let (NonRec) ((𝑋 :: 𝐾 = 𝑇 ), 𝑏) in 𝑡0 ⇓𝑗
𝑛𝑟 𝑣1 where 𝑗 = 𝑗1 + 1

𝑡0 ⇓𝑗0 𝑣0 E-LetRec-Nil
𝑏0 ⊢ let (Rec) 𝜀 in 𝑡0 ⇓𝑗

𝑟 𝑣0 where 𝑗 = 𝑗0 + 1

𝑏0 ⊢
[
(let (Rec) 𝑏0 in 𝑡1)/𝑥

]
(let (Rec) 𝑏 in 𝑡0) ⇓𝑗1

𝑟 𝑣1
E-LetRec-TermBind

𝑏0 ⊢ let (Rec) ((𝑥 : 𝑇 (𝑠𝑡𝑟 ) = 𝑡1), 𝑏) in 𝑡0 ⇓𝑗
𝑟 𝑣1 where 𝑗 = 𝑗1 + 1

Figure 4.15: Big-step operational semantics (let-bindings)

is a value, such that the E-Unwrap rule can simply cancel out the inner IWrap constructor. Constants also evaluate to

themselves, as is described by the E-Constant rule.

(ii) let-bindings

Figure 4.15 describes the evaluation rules for let-bindings. The operational semantics of let-bindings must be defined

separately for non-recursive and recursive let-bindings. In particular, we also use two separate evaluation relations:

one for the semantics of non-recursive let-bindings, and one for the semantics of recursive let-bindings. As we will
see below, this is actually only necessary for the semantics of recursive let-bindings, since we must carry around an

environment of bindings that are in scope. In contrast, non-recursive let-bindings do not require such an environment.

We consider it useful nonetheless to present the semantics of both types of let-bindings in a similar style.

We denote by let (NonRec) 𝑏 in 𝑡0 ⇓𝑗
𝑛𝑟 𝑣 that the non-recursive let-binding evaluates to a value 𝑣 in 𝑗 steps. We

denote by 𝑏0 ⊢ let (Rec) 𝑏 in 𝑡0 ⇓𝑗
𝑟 𝑣 that the recursive let-binding evaluates to a value 𝑣 in 𝑗 steps given that the

sequence of bindings 𝑏0 is in scope. The E-Let and E-LetRec rules make sure to embed the evaluation relations for

let-bindings in the main evaluation relation. The E-Let-Nil and E-LetRec-Nil rules evaluate the inner term 𝑡0 to a

value 𝑣0 in case the binding sequence is empty, which we denote by 𝜀.

The E-Let-TermBind and E-Let-TypeBind rules are similar to the E-Apply and E-TyInst rules from Figure 4.14.

We make sure to substitute terms and types in both the tail of the binding sequence and the inner term, after which we

continue to evaluate the result of this substitution.

The E-LetRec-TermBind rule wraps the bound term in a recursive let-binding containing the binding sequence

𝑏0, which we then substitute in both the tail of the binding sequence and the inner term. We wrap the bound term in the

recursive let-binding because the bound term might be recursive with respect to any number of terms that are in scope

in 𝑏0, so we must make sure that the 𝑏0 stays in scope. Then, we continue to evaluate the result of this substitution.

Lastly, note that we do not give an E-LetRec-TypeBind rule because recursive type bindings are not supported by the

Plutus Tx compiler.

(iii) Built-in functions.

Figure 4.16 describes the evaluation rules for built-in functions. The E-NeutralBuiltin, E-NeutralApply and E-
NeutralTyInst rules describe how neutral terms evaluate to themselves as they are suspended computations. The

E-NeutralApplyFull and E-NeutralTyInstFull rules describe how fully applied built-in functions evaluate to some

computed value. The implementation of 𝑖𝑠𝐹𝑢𝑙𝑙𝑦𝐴𝑝𝑝𝑙𝑖𝑒𝑑 () is similar to the implementation of neutral terms: a fully

applied built-in function is a neutral term applied to a non-error value or instantiated with a type, such that they are

together no longer neutral. The 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 () function computes the result of a fully applied built-in function, and we

implement it by a simple pattern match on the argument term.
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E-NeutralBuiltin
F𝑖 ⇓0 F𝑖

⟨0, 𝑛𝑣 𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
E-NeutralApply

𝑛𝑣 𝑣 ⇓0 𝑛𝑣 𝑣
⟨0, 𝑛𝑣 {𝑇 }⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

E-NeutralTyInst
𝑛𝑣 {𝑇 } ⇓0 𝑛𝑣 {𝑇 }

¬(⟨0, 𝑡1 𝑡2⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙)
𝑡1 ⇓𝑗1 𝑛𝑣1

⟨0, 𝑛𝑣1⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
𝑡2 ⇓𝑗2 𝑣2

¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣2) 𝑛𝑣1 𝑣2 ⇓𝑗0 𝑣0 E-NeutralApplyPartial
𝑡1 𝑡2 ⇓𝑗 𝑣0 where 𝑗 = 𝑗1 + 𝑗2 + 1 + 𝑗0

¬(⟨0, 𝑡1 {𝑇 }⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙)
𝑡1 ⇓𝑗1 𝑛𝑣1

⟨0, 𝑛𝑣1⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑛𝑣1 {𝑇 } ⇓𝑗0 𝑣0 E-NeutralTyInstPartial
𝑡1 {𝑇 } ⇓𝑗 𝑣0 where 𝑗 = 𝑗1 + 1 + 𝑗0

𝑖𝑠𝐹𝑢𝑙𝑙𝑦𝐴𝑝𝑝𝑙𝑖𝑒𝑑 (𝑛𝑣1 𝑣2) 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑛𝑣1 𝑣2) = 𝑣 E-NeutralApplyFull
𝑛𝑣1 𝑣2 ⇓1 𝑣

𝑖𝑠𝐹𝑢𝑙𝑙𝑦𝐴𝑝𝑝𝑙𝑖𝑒𝑑 (𝑛𝑣1 {𝑇 }) 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑛𝑣1 {𝑇 }) = 𝑣 E-NeutralTyInstFull
𝑛𝑣1 {𝑇 } ⇓1 𝑣

Figure 4.16: Big-step operational semantics (built-in functions)

1 Inductive fully_applied_neutral : nat -> Term -> Prop := (* hidden *).
2 Definition compute_defaultfun (t : Term) : option Term :=
3 match t with
4 | (Apply
5 (Apply
6 (Builtin AddInteger)
7 (Constant (@Some _ DefaultUniInteger (ValueOf _ x)))
8 )
9 (Constant (@Some _ DefaultUniInteger (ValueOf _ y)))
10 ) => Datatypes.Some (Constant (@Some valueOf DefaultUniInteger)
11 (ValueOf DefaultUniInteger (x + y)))
12 (* other pattern matches hidden *)
13 end.

We remark that we can not sensibly compute the result of every fully applied built-in function as of yet. For example, the

VerifySignature built-in function in the default collection of built-in functions has a non-trivial Haskell implementa-

tion that we currently can not model in Coq, so we let it return true in all cases. It would be better to parameterise our

static and dynamic semantics over all possible collections of built-in functions. We would then require of such a param-

eter that it also defines a sensible compute_defaultfun function. As a consequence, we probably have to require from

this parameter certain other proofs and definitions that we need to make our own proofs and definitions go through.

In essence, we would postulate the existence of a set of built-in functions with some desired properties. Due to time

constraints, we leave this as a problem for future work.

The E-NeutralApplyPartial and E-NeutralTyInstPartial rules describe “computation” rules for partially applied

and partially type-instantiated built-in functions. Most importantly, the pre-evaluation term must not already be a

neutral term: in that case, the first three rules apply. Note the similarity between the two rules and the E-Apply and

E-TyInst rules. In this case, however, we can not substitute to continue the suspended computation. Instead, we just

try to evaluate the resulting application or type instantiation and we imagine that some form of substitution could have

taken place. If the resulting application or type instantiation would be a neutral term, then the E-NeutralApply or

E-NeutralTyInst rule would apply. If the resulting application or type instantiation would be a fully applied built-in

function, then the E-NeutralApplyFull or E-NeutralTyInstFull rule would apply.

(iv) Errors.

Figure 4.17 describes the evaluation of errors and the propagation of errors in computation rules. Firstly, the E-Error
rules describes how an error evaluates to itself. The other rules describe how a sub-computation of a computation rule

that evaluates to an error interrupts the computation, after which the error is propagated upwards.

(v) Final implementation.

The implementation of the operational semantics is a straightforward translation of the rules in Figures 4.14, 4.15, 4.16

and 4.17 to mutually defined inductive datatypes.
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E-Error
Error 𝑇 ⇓0 Error 𝑇

𝑡1 ⇓𝑗1 Error 𝑇
E-Error-Apply1

𝑡1 𝑡2 ⇓𝑗 Error 𝑇 where 𝑗 = 𝑗1 + 1

𝑡2 ⇓𝑗2 Error 𝑇
E-Error-Apply2

𝑡1 𝑡2 ⇓𝑗 Error 𝑇 where 𝑗 = 𝑗2 + 1

𝑡1 ⇓𝑗1 Error 𝑇
E-Error-TyInst

𝑡1 {𝑇2} ⇓𝑗 Error 𝑇 where 𝑗 = 𝑗1 + 1

𝑡0 ⇓𝑗0 Error 𝑇 ′
E-Error-IWrap

IWrap 𝐹 𝑇 𝑡0 ⇓𝑗 Error 𝑇 ′
where 𝑗 = 𝑗0 + 1

𝑡0 ⇓𝑗0 Error 𝑇
E-Error-Unwrap

Unwrap 𝑡0 ⇓𝑗 Error 𝑇 where 𝑗 = 𝑗0 + 1

𝑡1 ⇓𝑗1 Error 𝑇 ′
E-Error-Let-TermBind

let (NonRec) ((𝑥 : 𝑇 (𝑠𝑡𝑟 ) = 𝑡1), 𝑏) in 𝑡0 ⇓𝑗 Error 𝑇 ′
where 𝑗 = 𝑗1 + 1

Figure 4.17: Big-step operational semantics (errors)

1 Reserved Notation "t ’=[’ j ’]=>’ v" (* hidden *).
2 Reserved Notation "t ’=[’ j ’]=>nr’ v" (* hidden *).
3 Reserved Notation "t ’=[’ j ’]=>r’ v ’WITH’ bs0" (* hidden *).
4 Inductive eval : Term -> Term -> nat -> Prop := (* hidden *)
5 with eval_bindings_nonrec : Term -> Term -> nat -> Prop := (* hidden *)
6 with eval_bindings_rec : list Binding -> Term -> Term -> nat -> Prop := (* hidden *)
7 where "t ’=[’ j ’]=>’ v" := (eval t v j)
8 and "t ’=[’ j ’]=>nr’ v" := (eval_bindings_nonrec t v j)
9 and "t ’=[’ j ’]=>r’ v ’WITH’ bs0" := (eval_bindings_rec bs0 t v j).

As a sanity check for our evaluation relation, we prove that evaluation always results in a value, and we prove that

(neutral) values evaluate to themselves in 0 steps.

1 Lemma eval_to_value :
2 (forall t v k, t =[k]=> v -> value v) /\
3 (forall t v k, t =[k]=>nr v -> value v) /\
4 (forall bs0 t v k, t =[k]=>r v WITH bs0 -> value v).
5 Proof. (* hidden *). Qed.
6

7 Lemma eval_value :
8 (forall v, value v -> v =[0]=> v) /\
9 (forall n v, neutral_value n v -> v =[0]=> v).
10 Proof. (* hidden *). Qed.



Chapter 5

Definitions and methods for semantics
preservation

With the syntax and semantics of PIR and Plutus Core defined in the previous chapter, we turn our attention to the

concept of semantics preservation. Recall from Definition 2.2 in chapter 2 that we consider some translation relation 𝑅𝑖
to be correct if 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1) implies ⟦𝑡𝑖⟧𝑖 ∼𝑖 ⟦𝑡𝑖+1⟧𝑖+1, where ⟦𝑡𝑖⟧𝑖 is a semantics of an AST 𝑡𝑖 and ∼𝑖 is a relation between

such semantics that captures that two terms are the same. In this chapter, we present the definitions of static semantics

preservation and dynamic semantics preservation, which are both examples of a relation ∼𝑖 . The definition of static

semantics preservation is simple, and we give a simple method of proving static semantics preservation. The definition

of and proof-method for dynamic semantics preservation are more involved. In summary, we employ and extend step-
indexed syntactic logical relations as presented by Ahmed[1] to define and prove dynamic semantics preservation.

Note on the use of previous work and our contributions. Our discussion of static semantics preservation is

short, and does not depend on any specific previous works. Our methods and results pertaining to dynamic semantics

preservation are derived from a paper and corresponding appendix by Ahmed[1]. We adapt the work by Ahmed to

our setting, and thereby contribute with new results as well: we show that step-indexed syntactic logical relations also

work in the context of higher-order kinds and we extend the proof technique to a larger lambda calculus with additional

constructs such as let-bindings. Moreover, we present an implementation of the logical relation in Coq. Nevertheless,

since we adapt and extend Ahmed’s work, much of the remainder of this chapter will show significant similarities with

the contents of their paper. For example, Figures 5.1 and 5.2 are adaptations of Figures that Ahmed present[1]. We hope

that the reader does not find this surprising, and we hope that this paragraph gives sufficient credit to Ahmed.

Note on limitations. The logical relation does not take into account (partially applied) built-in functions as of yet.

Furthermore, the logical relation can only be used to prove dynamic semantics preservation for translation relations

that do not change contexts and/or types. We believe that this does not undermine our results since we expect that

solutions to these limitations will consist mostly of technical overhead.

Note on proof completeness. The lemmas and theorems on which results in section 5.2 depend are not always fully

finished, and therefore Admitted. However, we took care not to rely on lemmas and theorems that are unlikely to hold.

We suspect that fully completing all lemmas and theorems will mostly consist of technical overhead. We hope that this

paragraph offers sufficient transparency with regards to the completeness of the results.

5.1 Static semantics preservation

We can quickly think of the simplest notion of static semantics preservation: two related terms must be well-typed with

respect to the same kind context, type context and type. In fact, we defined an almost identical notion (Definition 3.1)

for a simply typed lambda calculus in chapter 3. We update the definition to work in the setting of the PIR and Plutus

Core languages, and we will call it strong static semantics preservation:

Definition 5.1 (Strong static semantics preservation (SSSP)). For all 𝑡𝑖 and 𝑡𝑖+1, if 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1) and Δ; Γ ⊢ 𝑡𝑖 : 𝑇𝑛 , then
Δ; Γ ⊢ 𝑡𝑖+1 : 𝑇𝑛 .

We can imagine translation relations for which this definition of static semantics preservation does not hold. For exam-

ple, we could simulate non-strict evaluation of certain sub-terms by the use of thunking, which adds a lambda abstraction

that binds a variable of unit type on top of a sub-term. Of course, we must make sure to force thunks by applying a

variable that refers to a thunk to a unit constant. As such, a sub-term before the transformation could have some type

34
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𝑇𝑛
, while its thunked counterpart has some type () → 𝑇𝑛

, where () denotes a unit type. In addition, not only does the

type change, so does the type context, which can now contain additional term variable bindings that refer to unit types.

Because Definition 5.1 may not suffice as a definition for static semantics preservation, we instead create a more

general definition. In this definition, we state that the kind contexts, type contexts and types before and after the

translation must be pairwise related. To formulate this, we assume that there exist three additional binary relations 𝑅Δ𝑖 ,

𝑅Γ𝑖 and 𝑅𝑇𝑖 that relate, in sequence, kind contexts, type contexts and types with respect to some translation relation 𝑅𝑖 .

We can now define weak static semantics preservation:

Definition 5.2 (Weak static semantics preservation (WSSP)). For all 𝑡𝑖 and 𝑡𝑖+1, if 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1) and Δ𝑖 ; Γ𝑖 ⊢ 𝑡𝑖 : 𝑇𝑛
𝑖 and

𝑅Δ𝑖 (Δ𝑖 ,Δ𝑖+1) and 𝑅Γ𝑖 (Γ𝑖 , Γ𝑖+1) and 𝑅𝑇𝑖 (𝑇𝑛
𝑖 ,𝑇

𝑛
𝑖+1), then Δ𝑖+1; Γ𝑖+1 ⊢ 𝑡𝑖+1 : 𝑇𝑛

𝑖+1.

We can show that strong static semantics preservation is an instance of weak static semantics preservation by using the

identity relation for our additional binary relations: weak static semantics preservation subsumes strong static semantics

preservation. We achieve this level of generalisation by not assuming too much about the additional binary relations.

As such, we hope to prevent that Definition 5.2 is still too strong, meaning that there exist translation relations in the

compiler for which the definition of weak static semantics preservation does not hold. We do, however, find it unlikely:

if no relations exist between the kind contexts, type contexts and types, then it might be hard or impossible to prove

any sort of static semantics preservation.

Given the definitions of static semantics preservation, we can prove static semantics preservation of a translation

relation by induction on the typing judgement of the pre-translation term. We expect that any non-trivial translation

relation will also require carrying around additional information to prove the “interesting” cases of the proof, whereas

congruence cases will most often be trivial to prove. In chapter 6, it will become clearer what we mean by the distinction

between interesting cases and congruence cases.

5.2 Dynamic semantics preservation

In chapter 3, we presented a definition (Definition 3.2) of dynamic semantics preservation for a simply typed lambda

calculus. We required that terms that are related by a translation relation should be semantically equivalent. In order to

define semantic equivalence, we employed logical relations, which “specify relations on well-typed terms via structural

induction on the syntax of types”[1]. We defined two terms to be semantically equivalent if the two terms are related by

our logical relation. It is not unsurprising that his approach worked. One of the first works that successfully used the

logical relations proof technique was a proof of strong normalisation for a simply typed lambda calculus by Tait[38],

and our preliminary results are derived from a Coq implementation of this proof that is discussed in the Programming

Language Foundations book[30].

Our approach in the preliminary study does not easily scale up to the Plutus Tx compiler. Both higher-order kinds

and recursive types prove to be problematic. On one hand, higher-order kinds allow for computations in types that can

be normalised, which means we can not define and implement a logical relation by straightforward structural induction

on the syntax of types. On the other hand, the addition of recursive types allows for encoding arbitrary recursion,

which in turn facilitates writing terms that do not terminate. Non-termination is a complicating factor in comparing

the equivalence of two terms.

A previous work by Ahmed, called “Step-Indexed Syntactic Logical Relations for Recursive and Quantified types”[1],

offers the solution. In the paper, Ahmed extends and improves on research by Appel and McAllester[2], who are the first

to employ step-indexing. Step-indexed logical relations, which are logical relations that are indexed by the number of

remaining steps for future execution, solve our two problems: the logical relation is now designed via well-foundedness

using the step-index as a well-foundedness measure, and we only consider terminating terms because we upper-bound

the number of steps that a term may make in the future. Moreover, the 𝜆-calculi that Ahmed considers for their work

have a large overlap with the PIR and Plutus Core languages. The fact that they consider recursive and quantified types,

which are exactly the problematic language constructs for this thesis project, proves to be helpful. Ahmed’s approach

is also less complex than alternative methods of proving program equivalence that do not employ step-indexed logical

relations[1].

In this section, we adapt and extend the work on step-indexed syntactic logical relations by Ahmed[1] to our setting.

Wewill discuss how the logical relation and contextual equivalence are related. Wewill define and implement a relational

model, with which we define and implement the full step-indexed logical relation. We discuss interesting results such

as the Montonicity lemma, the Validity lemma and the compatibility lemmas. Ultimately, we discuss how we can use

these interesting results and additional lemmas and theorems to prove the Fundamental Property, which states that the

step-indexed logical relation is reflexive.
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5.2.1 Contextual equivalence
A valid remark to make is that two logically related terms are not necessarily semantically equivalent. One definition of

semantic equivalence that numerous works use is that of contextual equivalence: two terms are contextually equivalent

if we can place them in the same program context and observe that they have the same behaviour. Ahmed shows that

their step-indexed logical relation for recursive and universal types is sound and complete with respect to contextual

equivalence, whereas they show that their step-indexed logical relation is only sound with respect to contextual equiva-

lence if they include existential types[1]. Because of the overlap between their work and our languages, we believe it to

be likely that we can also prove soundness and completeness of our adapted logical relation with respect to contextual

equivalence. Yet, this is outside the scope of this thesis project, though it could be an interesting subject for future work.

5.2.2 Logical relation: computations and values
Figure 5.1 defines the first part of the relational model with which we define the full logical relation. In this figure, we

define the relational interpretation of normal types as computations, which we denote by RC⟦𝑇𝑛⟧𝜌 , and the relational

interpretation of normal types as values, which we denote by RV⟦𝑇𝑛⟧𝜌 . We define the relational interpretation of

normal types as errors as well, whichwe denote byRE⟦𝑇𝑛⟧𝜌 , since we reuseRE⟦𝑇𝑛⟧𝜌 in every definition ofRV⟦𝑇𝑛⟧𝜌 .
Note that sets are defined at normal types. Thoughwe do not explicitly require that the types are normal in the relational

interpretations, the definition of the full logical relation ensures that they are normal. Also, note that we use 𝑡 ⇓∗ 𝑣 to
denote that a term 𝑡 evaluates to a value 𝑣 in any number of steps.

The relational interpretations are defined as sets on paper, though our implementation of relational interpretations

does not use a concept of sets. Instead, we model relational interpretations as recursive functions that build up a logical

proposition (Prop), such that the logical proposition is equivalent to set membership. For example, we could try to

implement the relational interpretation RC⟦𝑇𝑛⟧𝜌 of normal types as computations using some function RC, such that

RC k T rho v v’ holds if and only if (𝑘, 𝑣, 𝑣 ′) ∈ RC⟦𝑇⟧𝜌 .

1 Check RC : nat -> Ty -> tymapping -> Term -> Term -> Prop.

We use 𝜒 to denote sets of tuples (𝑘, 𝑣, 𝑣), where 𝑘 is a natural number step-index, and where 𝑣 and 𝑣 ′ are terms. We use

𝑅𝑒𝑙𝑇1,𝑇2 to denote a set of sets 𝜒 for which three properties hold with respect to types 𝑇1 and 𝑇2: (i) 𝑣 and 𝑣
′
are values,

(ii) 𝑣 and 𝑣 ′ are closed and well-typed with respect to the normalised versions of 𝑇1 and 𝑇2 respectively, and (iii) 𝜒 must

be monotone – that is, “𝜒 must be closed with respect to a decreasing step-index”[1]. We do not require that 𝑇1 and

𝑇2 are already normal: this would be too restrictive. In essence, 𝑅𝑒𝑙𝑇1,𝑇2 defines a relation on values (with respect to a

step-index) for some types𝑇1 and𝑇2. The definition of the full logical relation ensures that𝑇1 and𝑇2 are closed types as

well. We implement 𝜒 ∈ 𝑅𝑒𝑙𝑇1,𝑇2 as a logical proposition that is equivalent to set membership.

1 Definition Rel (T T’ : Ty) (Chi : nat -> Term -> Term -> Prop) : Prop :=
2 forall j v v’,
3 Chi j v v’ -> 0 < j ->
4 value v /\ value v’ /\
5 (exists Tn, normalise T Tn /\ (empty ,, empty |-+ v : Tn)) /\
6 (exists Tn’, normalise T’ Tn’ /\ (empty ,, empty |-+ v’ : Tn’)) /\
7 forall i,
8 i <= j ->
9 Chi i v v’.

We require that the step-index is strictly larger than 0 in the implementation, which is a consequence of how we imple-

ment RC⟦𝑇𝑛⟧𝜌 , RV⟦𝑇𝑛⟧𝜌 and RE⟦𝑇𝑛⟧𝜌 . For now, it is sufficient to know that this will not cause problems.

The relational interpretations are parameterised by 𝜌 , which denotes a type mapping. We need such a mapping

because types can contain free type variables. To be more precise, we define type mappings such that they can be used

both as a semantic substitution and a syntactic substitution. As a semantic substitution, we want 𝜌 to substitute a relation

on values for a type variable. We use the semantic substitution primarily in the definition of RV⟦𝑋⟧𝜌 in Figure 5.1. As

a syntactic substitution, we want 𝜌 to substitute concrete, closed types for type variables. We primarily use the syntactic

substitution to close off types in Figure 5.1 before we use 𝑃 to check that values are closed and well-typed.

We define type mappings as partial maps that map type variables to triplets of the form (𝜒,𝑇1,𝑇2). We define some

additional notation: given that 𝜌 (𝑋 ) = (𝜒,𝑇1,𝑇2), then 𝜌𝑠𝑒𝑚 (𝑋 ) = 𝜒 . The definition of the full logical relation makes

sure that 𝜒 ∈ 𝑅𝑒𝑙𝑇1,𝑇2 . If 𝜌 = {𝑋1 ↦→ (𝜒,𝑇1,1,𝑇1,2), . . . , 𝑋𝑛 ↦→ (𝜒,𝑇𝑛,1,𝑇𝑛,2)}, then 𝜌𝑚𝑠𝑦𝑛1 (𝑇 ) =
[
𝑇1,1/𝑋1, . . . ,𝑇𝑛,1/𝑋𝑛

]
𝑇 , and

𝜌𝑚𝑠𝑦𝑛2 (𝑇 ) =
[
𝑇1,2/𝑋1, . . . ,𝑇𝑛,2/𝑋𝑛

]
𝑇 . As such, 𝜌𝑚𝑠𝑦𝑛1 and 𝜌𝑚𝑠𝑦𝑛2 perform syntactic multi-substitutions on types. We

implement a type mapping as a list of tuples with auxiliary operations that enable semantic substitutions and syntactic

multi-substitutions.
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𝑃 (𝑇1,𝑇2, 𝑣, 𝑣 ′) = 𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒 ∧𝑇1 ⇝ 𝑇𝑛
1
∧ ∅; ∅ ⊢ 𝑣 : 𝑇𝑛

1
∧

𝑣 ′ ∈ 𝑣𝑎𝑙𝑢𝑒 ∧𝑇2 ⇝ 𝑇𝑛
2
∧ ∅; ∅ ⊢ 𝑣 ′ : 𝑇𝑛

2

𝑅𝑒𝑙𝑇1,𝑇2
𝑑𝑒𝑓
= {𝜒 | ∀( 𝑗, 𝑣, 𝑣 ′) ∈ 𝜒.

𝑃 (𝑇1,𝑇2, 𝑣, 𝑣 ′)∧
∀𝑖 ≤ 𝑗 .(𝑖, 𝑣, 𝑣 ′) ∈ 𝜒}

RE⟦𝑇𝑛⟧𝜌 = {(𝑘, 𝑣, 𝑣) | 𝑃 (𝜌𝑚𝑠𝑦𝑛1 (𝑇𝑛), 𝜌𝑚𝑠𝑦𝑛2 (𝑇𝑛), 𝑣, 𝑣 ′)∧
𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣) ∧ 𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣 ′)}

RV⟦𝑋⟧𝜌 = {(𝑘, 𝑣, 𝑣 ′) | 𝑃 (𝜌𝑚𝑠𝑦𝑛1 (𝑋 ), 𝜌𝑚𝑠𝑦𝑛2 (𝑋 ), 𝑣, 𝑣 ′)∧
¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣) ∧ ¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣 ′)∧
𝜌𝑠𝑒𝑚 (𝑋 ) = 𝜒 ∧ (𝑘, 𝑣, 𝑣 ′) ∈ 𝜒} ∪ RE⟦𝑋⟧𝜌

RV⟦𝜆𝑋 :: 𝐾.𝑇⟧𝜌 = ∅ ∪ RE⟦𝜆𝑋 :: 𝐾.𝑇⟧𝜌
RV⟦𝑇1 𝑇2⟧𝜌 = ∅ ∪ RE⟦𝑇1 𝑇2⟧𝜌
RV⟦U𝑖⟧𝜌 = {(𝑘, 𝑣, 𝑣 ′) | 𝑃 (𝜌𝑚𝑠𝑦𝑛1 (U𝑖 ), 𝜌𝑚𝑠𝑦𝑛2 (U𝑖 ), 𝑣, 𝑣 ′)∧

𝑣 = Constant U𝑖 𝑐 ∧ 𝑣 ′ = Constant U𝑖 𝑐
′∧

𝑐 = 𝑐′} ∪ RE⟦U𝑖⟧𝜌
RV⟦𝑇𝑛

1
→ 𝑇𝑛

2
⟧𝜌 = {(𝑘, 𝑣, 𝑣 ′) | 𝑃 (𝜌𝑚𝑠𝑦𝑛1 (𝑇𝑛

1
→ 𝑇𝑛

2
), 𝜌𝑚𝑠𝑦𝑛2 (𝑇𝑛

1
→ 𝑇𝑛

2
), 𝑣, 𝑣 ′)∧

𝑣 = 𝜆𝑥 : 𝑇1.𝑒 ∧ 𝑣 ′ = 𝜆𝑥 : 𝑇 ′
1
.𝑒′∧

∀𝑗 < 𝑘, 𝑣0, 𝑣 ′0 .
( 𝑗, 𝑣0, 𝑣 ′0) ∈ RV⟦𝑇𝑛

1
⟧𝜌 =⇒

( 𝑗, [𝑣0/𝑥] 𝑒,
[
𝑣 ′
0
/𝑥

]
𝑒′) ∈ RC⟦𝑇𝑛

2
⟧𝜌 } ∪ RE⟦𝑇𝑛

1
→ 𝑇𝑛

2
⟧𝜌

RV⟦ifix 𝐹𝑛 𝑇𝑛⟧𝜌 = {(𝑘, 𝑣, 𝑣 ′) | 𝑃 (𝜌𝑚𝑠𝑦𝑛1 (ifix 𝐹𝑛 𝑇𝑛), 𝜌𝑚𝑠𝑦𝑛2 (ifix 𝐹𝑛 𝑇𝑛), 𝑣, 𝑣 ′)∧
𝑣 = IWrap 𝐹 𝑇 𝑣0 ∧ 𝑣 ′ = IWrap 𝐹 ′ 𝑇 ′ 𝑣 ′

0
∧

∀𝑗 < 𝑘.
∅ ⊢ 𝜌𝑚𝑠𝑦𝑛1 (𝑇𝑛) :: 𝐾 =⇒
∅ ⊢ 𝜌𝑚𝑠𝑦𝑛2 (𝑇𝑛) :: 𝐾 =⇒
(𝐹𝑛 (𝜆𝑋 :: 𝐾.ifix 𝐹𝑛 𝑋 )) 𝑇𝑛 ⇝ 𝑇𝑛

0
=⇒

( 𝑗, 𝑣0, 𝑣 ′0) ∈ RV⟦𝑇𝑛
0
⟧𝜌 } ∪ RE⟦ifix 𝐹𝑛 𝑇𝑛⟧𝜌

RV⟦∀𝑋 :: 𝐾.𝑇𝑛⟧𝜌 = {(𝑘, 𝑣, 𝑣 ′) | 𝑃 (𝜌𝑚𝑠𝑦𝑛1 (∀𝑋 :: 𝐾.𝑇𝑛), 𝜌𝑚𝑠𝑦𝑛2 (∀𝑋 :: 𝐾.𝑇𝑛), 𝑣, 𝑣 ′)∧
𝑣 = Λ𝑋 :: 𝐾.𝑒 ∧ 𝑣 ′ = Λ𝑋 :: 𝐾.𝑒′∧
∀𝑇1,𝑇2, 𝜒 .

∅ ⊢ 𝑇1 :: 𝐾 =⇒
∅ ⊢ 𝑇2 :: 𝐾 =⇒
𝜒 ∈ 𝑅𝑒𝑙𝑇1,𝑇2 =⇒
∀𝑗 < 𝑘.

( 𝑗, [𝑇1/𝑋 ] 𝑒, [𝑇2/𝑋 ] 𝑒′) ∈ RC⟦𝑇𝑛⟧𝜌 [𝑋 ↦→(𝜒,𝑇1,𝑇2 ) ]} ∪ RE⟦∀𝑋 :: 𝐾.𝑇𝑛⟧𝜌

RC⟦𝑇𝑛⟧𝜌 = {(𝑘, 𝑒, 𝑒′) | ∀𝑗 < 𝑘, 𝑒𝑓 .
𝑒 ⇓𝑗 𝑒𝑓 =⇒
∃𝑒′

𝑓
.𝑒′ ⇓∗ 𝑒′

𝑓
∧ (𝑘 − 𝑗, 𝑒𝑓 , 𝑒

′
𝑓
) ∈ RV⟦𝑇𝑛⟧𝜌 }

Figure 5.1: Logical relation (computations and values)
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1 Definition tymapping := list (tyname * ((nat -> Term -> Term -> Prop) * Ty * Ty)).
2 Fixpoint sem (rho : tymapping) (a : tyname) : option (nat -> Term -> Term -> Prop) :=
3 (* hidden *).
4 Fixpoint msyn1 (rho : tymapping) : list (tyname * Ty) := (* hidden *)
5 Fixpoint msyn2 (rho : tymapping) : list (tyname * Ty) := (* hidden *)

Given some tymapping rho, we use the msubstT function from section 4.2 to apply the actual syntacticmulti-substitution

on types.

1 Check msubstT (msyn1 rho) : Ty -> Ty.

We must make a concession when we implement the relational interpretations of computations and values. RC⟦𝑇𝑛⟧𝜌
and RV⟦𝑇𝑛⟧𝜌 are not structurally recursive on normal types, but they are well-founded by the <-relation on natural

numbers. This means that we must prove well-foundedness of our implementation, instead of using Coq’s default

structural recursion checker. Wewould like to use the Equations package since it simplifies implementing well-founded

recursive functions, but the package does not support mutual well-founded definitions. This seems to be problematic

sinceRC⟦𝑇𝑛⟧𝜌 andRV⟦𝑇𝑛⟧𝜌 are mutually recursive, but we can solve this problem by combining the implementations

of the two into a single function. We make sure to also implement RE⟦𝑇𝑛⟧𝜌 in the same function. Interestingly, it is

not problematic to combine the three relational interpretations in a single implementation. We implement RC⟦𝑇𝑛⟧𝜌
by “inlining” the right-hand-sides of RV⟦𝑇𝑛⟧𝜌 and RE⟦𝑇𝑛⟧𝜌 .

1 Equations? RC (k : nat) (T : Ty) (rho : tymapping) (e e’ : Term) : Prop by wf k :=
2 RC k T rho e e’ =>
3 forall j (Hlt_j : j < k) e_f,
4 e =[j]=> e_f ->
5 exists e’_f j’, e’ =[j’]=> e’_f /\
6

7 (exists Tn, normalise (msubstT (msyn1 rho) T) Tn /\ (empty ,, empty |-+ e_f : Tn)) /\
8 (exists Tn’, normalise (msubstT (msyn2 rho) T) Tn’ /\ (empty ,, empty |-+ e’_f : Tn’)) /\
9

10 (
11 (
12 ~ is_error e_f /\
13 ~ is_error e’_f /\
14 (
15 match T with
16 (* other matches hidden *)
17 | Ty_Fun T1n T2n =>
18 exists x e_body e’_body T1 T1’,
19 LamAbs x T1 e_body = e_f /\
20 LamAbs x T1’ e’_body = e’_f /\
21 forall i (Hlt_i : i < k - j) v_0 v’_0,
22 value v_0 /\ value v’_0 /\ RC i T1n rho v_0 v’_0 ->
23 RC i T2n rho <{ [v_0 / x] e_body }> <{ [v’_0 / x] e’_body }>
24 (* other matches hidden *)
25 end
26 )
27 ) \/ (
28 is_error e_f /\
29 is_error e’_f
30 )
31 ).
32 Proof. all: lia. Qed.

In the above implementation, lines 3-5 are specific to RC⟦𝑇𝑛⟧𝜌 : for any 𝑗 that is strictly less than 𝑘 , the fact that 𝑒

evaluates to 𝑒𝑓 in 𝑗 steps must imply that there exists also some 𝑒′
𝑓
to which 𝑒′ evaluates in any number of steps. We

then require that 𝑒𝑓 and 𝑒′
𝑓
must be related as values for the 𝑘 − 𝑗 steps that remain for future execution steps. The

largest part of the function, which consists roughly of lines 7-31, is specific to RV⟦𝑇𝑛⟧𝜌 and RE⟦𝑇𝑛⟧𝜌 .
We require that 𝑒𝑓 and 𝑒

′
𝑓
are closed and well-typed with respect to a closed and normalised version of𝑇 in lines 7-8.

This is accomplished in figure 5.1 using the function 𝑃 . Since we close off𝑇 , we must also re-normalise it as substitution

can introduce beta redexes.
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After the closedness and well-typedness constraints, we incorporate RE⟦𝑇𝑛⟧𝜌 in the function. Either 𝑒𝑓 and 𝑒′
𝑓

are both errors, in which case we consider them trivially related, or they are both not errors and we must satisfy some

additional type-specific constraints. In figure 5.1, we accomplish the same distinction between errors and non-errors by

applying set union with RE⟦𝑇𝑛⟧𝜌 in the definition of each RV⟦𝑇𝑛⟧𝜌 .
The last part of the function, which spans lines 15-25, consists of the match-expression. We introduce additional

constraints in each match-case that are specific to the matched type. We have omitted most of the match-cases in the

Coq proof script snippet above, though we will discuss what the type-specific parts of each RV⟦𝑇𝑛⟧𝜌 mean. We did

list the match-case for function types as it nicely illustrates how we implement the definitions from Figure 5.1.

Type variables (𝑋 ). Values should be related with respect to the semantic substitution 𝜌𝑠𝑒𝑚 (𝑋 ).

Lambda abstraction and function application types (𝜆𝑋 :: 𝐾.𝑇𝑛 or 𝑇𝑛
1
𝑇𝑛
2
). Values can not be related at lambda ab-

straction and function application types since there is no 𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒 such that 𝑣 has a lambda abstraction or function

application type.

Built-in types (U𝑖 ). Since only constants can have built-in types, values are related at a built-in type only if the values

are syntactically equal constants.

Function types (𝑇𝑛
1
→ 𝑇𝑛

2
). We do not handle built-in functions as of yet. Therefore, only lambda abstractions can

have function types, so the values must be of the form 𝜆𝑥 : 𝑇1.𝑒 and 𝜆𝑥 : 𝑇 ′
1
.𝑒 for some types 𝑇1 and 𝑇 ′

1
. We

do not need to know how 𝑇1 and 𝑇
′
1
are related to 𝑇𝑛

1
. The main takeaway should be that the values are lambda

abstractions. Now, since lambda abstractions are suspended computations, we can define two lambda abstractions

to be related at the function type if they are extensionally related: applying them to related arguments leads to

related results. As the terminology suggests, the continuations of suspended computations must be related in

terms of the relational interpretation of normal types as computations. As lambda abstractions might be applied

to arbitrary terms, we must also consider what it means if terms in the argument position must be further reduced

before we can perform beta reduction. Because of this, we consider some moment in the future where we have

𝑗 < 𝑘 steps remaining for future execution. Then, given two values that are related at the type 𝑇𝑛
1
for 𝑗 steps, the

continued computations of the lambda abstractions must be related as computations at the type 𝑇𝑛
2
for 𝑗 steps.

Fixpoint types (ifix 𝐹𝑛 𝑇𝑛). Values that have a fixpoint type must have the form of IWrap 𝐹 𝑇 𝑣0 and IWrap 𝐹 ′ 𝑇 ′ 𝑣 ′
0

for some types 𝐹 , 𝑇 , 𝐹 ′ and 𝑇 ′
. Again, we do not need to know how these type annotations relate to 𝐹𝑛 and 𝑇𝑛

:

the main takeaway should be that the values are IWrap values. Now, recall that the terms 𝑣0 and 𝑣
′
0
are themselves

values. We define the relational interpretation such that the IWrap values are related if the unwrapped values are
related.

Universally quantified types (∀𝑋 :: 𝐾.𝑇𝑛). Values that are related at a universal type must be type abstractions of

the form Λ𝑋 :: 𝐾.𝑒 and Λ𝑋 :: 𝐾.𝑒′. They are related in a somewhat similar way to how lambda abstractions are

related at a function type. However, we can pick arbitrary 𝐾-kinded types𝑇1 and𝑇2 for type instantiation instead

of related types. Since these types are not syntactically equal, we must delay the syntactic substitution of types

by using a type mapping 𝜌 . Moreover, we must pick a semantic substitution 𝜒 ∈ 𝑅𝑒𝑙𝑇1,𝑇2 in case we have to relate

two values at the type variable 𝑋 at some point. In summary, we define the relational interpretation such that

instantiation with arbitrary types should lead to related results.

Picking arbitrary types for type instantiation allows us to prove a larger class of contextual equivalence statements

than when we would have picked related types. More specifically, we can prove a larger class of free theorems[41]:
theorems that follow directly from types without having to inspect their term inhabitants. One simple example

of a free theorem is that any two terms of a type ∀𝑋 :: ∗.𝑋 → 𝑋 must be contextually equivalent since the only

term that has this type is the identity function. It can be argued that allowing for the picking of arbitrary types

makes the logical relation unnecessarily expressive. We only need to prove contextual equivalence of terms that

are related by a translation relation, and these translation relations are not likely to make profound changes in

types and type annotations. Because of this, it might have been sufficient to assume that type abstractions are

only ever instantiated with related types, or even equal types. Nevertheless, we choose not to too stray too far

from Ahmed’s work.

In our implementation, we can still differentiate between computations (RC) and values (RV). We define RV such that it

is a special case of RC.

1 Definition RV (k : nat) (T : Ty) (rho : tymapping) (v v’ : Term) : Prop :=
2 value v /\ value v’ /\ RC k T rho v v’.
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RD⟦∅⟧ = {∅}
RD⟦Δ, 𝑋 :: 𝐾⟧ = {𝜌 [𝑋 ↦→ (𝜒,𝑇1,𝑇2)] | 𝜌 ∈ RD⟦Δ⟧ ∧ ∅ ⊢ 𝑇1 :: 𝐾 ∧ ∅ ⊢ 𝑇2 :: 𝐾 ∧ 𝜒 ∈ 𝑅𝑒𝑙𝑇1,𝑇2 }

RG⟦∅⟧𝜌 = {(𝑘, ∅, ∅)}
RG⟦Γ, 𝑥 : 𝑇𝑛⟧𝜌 = {(𝑘,𝛾 [𝑥 ↦→ 𝑣] , 𝛾 ′ [𝑥 ↦→ 𝑣 ′]) | (𝑘,𝛾,𝛾 ′) ∈ RG⟦Γ⟧𝜌 ∧𝑇𝑛 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 ∧ (𝑘, 𝑣, 𝑣 ′) ∈ RV⟦𝑇𝑛⟧𝜌 }

Δ; Γ ⊢ 𝑒 ≤ 𝑒′ : 𝑇𝑛 𝑑𝑒𝑓
= Δ; Γ ⊢ 𝑒 : 𝑇𝑛 ∧ Δ; Γ ⊢ 𝑒′ : 𝑇𝑛∧

(∀𝑘 ≥ 0.∀𝜌,𝛾,𝛾 ′ .
𝜌 ∈ RD⟦Δ⟧ ∧ (𝑘,𝛾,𝛾 ′) ∈ RG⟦Γ⟧𝜌 =⇒
(𝑘,𝛾 (𝜌𝑚𝑠𝑦𝑛1 (𝑒)), 𝛾 ′ (𝜌𝑚𝑠𝑦𝑛2 (𝑒′))) ∈ RC⟦𝑇𝑛⟧𝜌 )

Δ; Γ ⊢ 𝑒 ∼ 𝑒′ : 𝑇𝑛 𝑑𝑒𝑓
= Δ; Γ ⊢ 𝑒 ≤ 𝑒′ : 𝑇𝑛 ∧ Δ; Γ ⊢ 𝑒′ ≤ 𝑒 : 𝑇𝑛

Figure 5.2: Logical relation (contexts, approximation and equivalence)

We can move from RC to RV given that the first of the related expressions evaluates to a value in 𝑗 < 𝑘 steps. We can

move immediately from RV to RC.

1 Lemma RC_to_RV : forall k T rho e e’,
2 RC k T rho e e’ ->
3 forall j (Hlt_j : j < k) e_f,
4 e =[j]=> e_f ->
5 exists e’_f j’, e’ =[j’]=> e’_f /\
6 RV (k - j) T rho e_f e’_f.
7 Proof. (* hidden *). Qed.
8

9 Lemma RV_to_RC : forall k T rho v v’,
10 RV k T rho v v’ ->
11 RC k T rho v v’.
12 Proof. (* hidden *). Qed.

There is one peculiar consequence of this RV definition. Consider some proof context that includes a hypothesis (H :
RV k T rho v v’). Since values evaluate to themselves in 0 steps, we can only ever hope to extract information from H
if 0 < 𝑘 . For example, given such a hypothesis H we sometimes need to extract the information that 𝑣 and 𝑣 ′ are closed
and well-typed. We do not run into such problems in our implementation: by construction of the dynamic semantics

and the full logical relation, we only need to extract such information if 0 < 𝑘 .

5.2.3 Logical relation: contexts, approximation and equivalence
In the previous subsection we defined and implemented the relational interpretations of normal types as computations

and values. In this subsection, we define and implement the relational interpretation of kind contexts as type mappings,

whichwe denote byRD⟦Δ⟧, and the relational interpretation of type contexts as term substitutions, whichwe denote by

RG⟦Γ⟧𝜌 . Lastly, we define and implement the full logical relation. Figure 5.2 defines these last relational interpretations

and the full logical relation.

The relational interpretation RD⟦Δ⟧ of kind contexts is a set of type mappings 𝜌 . The definition is such that the

domains of 𝜌 and Δ match if 𝜌 ∈ RD⟦Δ⟧. Furthermore, the definition ensures that the syntactic substitutions have the

correct kind and that the semantic substitutions follow from their corresponding syntactic substitutions.

1 Definition kass := list (name * Kind).
2 Inductive RD : kass -> tymapping -> Prop :=
3 | RD_nil :
4 RD nil nil
5 | RD_cons : forall ck rho T1 T2 Chi X K,
6 empty |-* T1 : K ->
7 empty |-* T2 : K ->
8 Rel T1 T2 Chi ->
9 RD ck rho ->
10 RD ((X, K) :: ck) ((X, (Chi, T1, T2)) :: rho).
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We do not relate kind contexts to type mappings in our implementation. Instead, we relate kind assignments to type

mappings. A kind assignment ck can still be used to represent a kind context by using mupdate. Additionally, we can
use the msubstA_term function from section 4.3 to apply syntactic multi-substitutions on type annotations.

1 Check mupdate empty ck : Delta.
2 Check msubstA_term (msyn1 rho) : Term -> Term.
3 Check msubstA_term (msyn2 rho) : Term -> Term.

The relational interpretation RG⟦Γ⟧𝜌 of type contexts is a set of triplets (𝑘,𝛾,𝛾 ′). Here, 𝑘 is a step-index and 𝛾 and 𝛾 ′

are term substitutions. Again, the definition is such that the domains of 𝛾 , 𝛾 ′ and Γ match if (𝑘,𝛾,𝛾 ′) ∈ RG⟦Γ⟧𝜌 . The
definition also ensures that the substituents have the correct type, and that 𝛾 and 𝛾 ′ map variables to values that are

related for 𝑘 steps at normal types.

1 Definition env := list (name * Term).
2 Definition tass := list (name * Ty).
3 Inductive RG (rho : tymapping) (k : nat) : tass -> env -> env -> Prop :=
4 | RG_nil :
5 RG rho k nil nil nil
6 | RG_cons : forall x T v1 v2 c e1 e2,
7 RV k T rho v1 v2 ->
8 normal_Ty T ->
9 RG rho k c e1 e2 ->
10 RG rho k ((x, T) :: c) ((x, v1) :: e1) ((x, v2) :: e2).

In our implementation, we again do not directly relate type contexts to term substitutions. Instead, we relate type
assignments to two term environments. We can use a type assignment ct to represent a type context by using mupdate,
and we can use the term environments e1 and e2 to represent multi-substitutions on terms using the msubst_term
function from section 4.3:

1 Check mupdate empty ct : Gamma.
2 Check msubst_term e1 : Term -> Term.
3 Check msubst_term e2 : Term -> Term.

We say that a term 𝑒 logically approximates a term 𝑒′ with respect to Δ, Γ and𝑇𝑛
if the following two properties hold: (i)

both 𝑒 and 𝑒′ must be well-typed with respect to Δ, Γ and𝑇𝑛
, and (ii) we require that the closed instantiations of 𝑒 and 𝑒′,

if such closed instantiations exist, are related as computations at the type 𝑇𝑛
for some 𝑘 steps. We employed the same

approach of reasoning about closed instantiations of terms instead of reasoning about closed terms directly in chapter 3.

We achieve closed instantiations by applying the syntactic type annotation substitutions and term substitutions, which

we obtain from the relational interpretations of kind and type contexts, to 𝑒 and 𝑒′. This should yield closed terms, since

(i) the domains of the substitutions match the domains of the contexts, since (ii) the free (type) variables of 𝑒 and 𝑒′

should be subsets of the context domains, and since (iii) we only substitute closed types and terms. Note also that we

only substitute values that are related for 𝑘 steps at normal types.

We denote logical approximation as Δ; Γ ⊢ 𝑒 ≤ 𝑒′ : 𝑇𝑛
. Two terms are logically equivalent if they both logically

approximate each other, which we denote by Δ; Γ ⊢ 𝑒 ∼ 𝑒′ : 𝑇𝑛
.

1 Definition LR_logically_approximate (Delta : partial_map Kind) (Gamma : partial_map Ty)
2 (e e’ : Term) (T : Ty) :=
3 (Delta ,, Gamma |-+ e : T) /\
4 (Delta ,, Gamma |-+ e’ : T) /\
5 forall k rho env env’ ct ck,
6 Delta = mupdate empty ck ->
7 Gamma = mupdate empty ct ->
8 RD ck rho ->
9 RG rho k ct env env’ ->
10 RC k T rho
11 (msubst_term env (msubstA_term (msyn1 rho) e))
12 (msubst_term env’ (msubstA_term (msyn2 rho) e’)).
13

14 Definition LR_logically_equivalent (Delta : partial_map Kind) (Gamma : partial_map Ty)
15 (e e’ : Term) (T : Ty) :=
16 LR_logically_approximate Delta Gamma e e’ T /\
17 LR_logically_approximate Delta Gamma e’ e T.
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5.2.4 Monotonicity and Validity
Monotonicity and Validity are important lemmas that we prove about our implementation. Monotonicity states that RC,
RV and RG aremonotone – that is, RC, RV and RG are “closed with respect to a decreasing step-index”[1]. As a consequence,
we can freely replace a step-index with a smaller step-index without invalidating the corresponding relation.

1 Lemma RC_monotone : forall k rho T i e e’ ck,
2 RD ck rho -> RC k T rho e e’ -> i <= k -> RC i T rho e e’.
3 Proof. (* hidden *). Qed.

The fact that RV is monotone follows easily from the fact that RC is monotone, since RV is implemented as a special case

of RC.

1 Lemma RV_monotone : forall k rho T i v v’ ck,
2 RD ck rho -> RV k T rho v v’ -> i <= k -> RV i T rho v v’.
3 Proof. (* proof using RC_monotone hidden *). Qed.

The fact that RG is monotone follows easily from the fact that RV is monotone, since we relate values by RV in the

definition of RG.

1 Lemma RG_monotone : forall c ck rho i k env env’,
2 RD ck rho -> RG rho k c env env’ -> i <= k -> RG rho i c env env’.
3 Proof. (* proof using RV_monotone hidden *). Qed.

With the Monotonicity lemmas proven, we can prove the Validity lemma. This lemma states that all types are valid –

that is, the relational interpretation of values at any type 𝑇𝑛
is in 𝑅𝑒𝑙𝜌𝑚𝑠𝑦𝑛1 (𝑇𝑛 ),𝜌𝑚𝑠𝑦𝑛2 (𝑇𝑛 ) . More formally, we prove that

RV⟦𝑇𝑛⟧𝜌 ∈ 𝑅𝑒𝑙𝜌𝑚𝑠𝑦𝑛1 (𝑇𝑛 ),𝜌𝑚𝑠𝑦𝑛2 (𝑇𝑛 ) .
Recall from the definition of 𝑅𝑒𝑙𝑇1,𝑇2 that three properties must hold for some set 𝜒 = (𝑘, 𝑣, 𝑣 ′) such that 𝜒 ∈ 𝑅𝑒𝑙𝑇1,𝑇2 :

(i) 𝑣 and 𝑣 ′ are values, (ii) 𝑣 and 𝑣 ′ are closed and well-typed with respect to the normalised versions of 𝑇1 and 𝑇2
respectively, and (iii) 𝜒 must be monotone. We can extract (i) and (ii) directly from RV⟦𝑇𝑛⟧𝜌 , and we have (iii) by the

Monotonicity lemmas.

1 Lemma validity : forall ck rho T,
2 RD ck rho ->
3 Rel (msubstT (msyn1 rho) T) (msubstT (msyn2 rho) T) (fun k e e’ => RV k T rho e e’).
4 Proof. (* proof using RV_monotone hidden *). Qed.

5.2.5 Fundamental Property
The last and most vital part of defining a logical relation is to prove the Fundamental Property, which states that the

logical relation is reflexive. If the logical relation is not reflexive, then we can not prove that a term is logically related

to itself, and therefore not contextually equivalent to itself, which is nonsensical. We will prove that a well-typed term

𝑒 logically approximates itself.

Theorem 5.3 (Fundamental Property (i)). Given that Δ; Γ ⊢ 𝑒 : 𝑇𝑛 , then Δ; Γ ⊢ 𝑒 ≤ 𝑒 : 𝑇𝑛 .

Proof. We prove the Fundamental Property by induction on the typing judgement for 𝑒 .

1 Lemma LR_reflexivity : forall Delta Gamma e T,
2 Delta ,, Gamma |-+ e : T ->
3 LR_logically_approximate Delta Gamma e e T.
4 Proof. (* hidden *). Qed.

To make the proof go through, we depend on a range of lemmas and theorems. These lemmas include, amongst others:

lemmas that state that our various kinds of substitution preserve typing and kinding, lemmas that state that the type-

level language has the Preservation and Strong Normalisation properties, lemmas that state that our big-step operational

semantics is deterministic, lemmas that prove congruence for multi-substitutions, and many more. Most importantly,

we define a set of compatibility lemmas. Each compatibility lemma generally proves a single case of the reflexivity proof.

For example, we prove a compatibility lemma for the proof case that corresponds to the T-Apply rule from Figure 4.12.
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1 Lemma compatibility_Apply : forall Delta Gamma e1 e2 e1’ e2’ T1n T2n,
2 LR_logically_approximate Delta Gamma e1 e1’ (Ty_Fun T1n T2n) ->
3 LR_logically_approximate Delta Gamma e2 e2’ T1n ->
4 LR_logically_approximate Delta Gamma (Apply e1 e2) (Apply e1’ e2’) T2n.
5 Proof. (* hidden *). Admitted.

The meaning of this compatibility lemma can be summarised: applying approximating functions to approximating

arguments results in an approximation. If we define a compatibility lemma for roughly each type rule, then the proofs

for most cases of the LR_reflexivity lemma follow almost directly from the corresponding compatibility lemmas. By

proving the Fundamental Property, we have also fully defined the logical relation.

□

From Theorem 5.3, it follows directly that any well-typed term 𝑒 is logically equivalent to itself.

Corollary 5.4 (Fundamental Property (ii)). Given that Δ; Γ ⊢ 𝑒 : 𝑇𝑛 , then Δ; Γ ⊢ 𝑒 ∼ 𝑒 : 𝑇𝑛 .

5.2.6 From logical approximation to semantics preservation
Finally, we can update our definition of dynamic semantics preservation. We consider a translation relation to be dy-

namic semantics preserving if the pre-translation term logically approximates the post-translation term. This new

definition does not seem to be in line with our earlier statement that logically related terms are not necessarily con-

textually equivalent. However, since we have not yet proven any soundness and completeness results, we will use the

logical relation in our definition for now. A proof of dynamic semantics preservation typically proceeds by induction

on the type derivation.

Definition 5.5 (Dynamic semantics preservation). For all 𝑡𝑖 and 𝑡𝑖+1, if 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1) and Δ𝑖 ; Γ𝑖 ⊢ 𝑡𝑖 : 𝑇𝑛
𝑖 , then Δ𝑖 ; Γ𝑖 ⊢ 𝑡𝑖 ≤

𝑡𝑖+1 : 𝑇𝑛
𝑖 .

If future work were to prove that the logical relation is sound and/or complete with respect to contextual equivalence,

that work should update the definition of dynamic semantics preservation to incorporate contextual equivalence instead

of logical approximation. As such, instead of being used in definition directly, the logical relation would primarily be a

means to prove contextual equivalence.

Lastly, we can gather from the new definition that we can not yet prove theorems that are based on Definition

5.5 for translation relations that change contexts and/or types. However, we feel that a solution to this limitation

will mostly consist of technical overhead. It is probable that this solution will make a distinction between strong and

weak dynamic semantics preservation, which is similar to how we made a distinction between strong and weak static

semantics preservation.



Chapter 6

Proofs of semantics preservation

In this chapter, we will prove strong static semantics preservation and dynamic semantics preservation for an example

translation relation: the desugaring of non-recursive let-bindings. This translation relation characterises a real compiler

pass in the Plutus Tx compiler. We will first describe the translation relation, after which we prove the two types of

semantics preservation.

Note on proof completeness. The results in section 6.3 depend on the same lemmas and theorems that the results

from section 5.2 depend on. As such, we hope that this paragraph and the Note on proof completeness paragraph at

the start of chapter 5 offer sufficient transparency with regards to the completeness of the results.

6.1 The translation relation

Figure 6.1 defines the translation relation 𝑅𝐶𝑁𝑅 that describes the desugaring of non-recursive let-bindings. The com-

piler pass that this translation relation characterises compiles non-recursive binding sequences consisting of just strict

term bindings to explicit applications of lambda abstractions. The CNR-Binding rule defines how a strict term binding

that binds a term 𝑡𝑏 can be translated to a function 𝑓𝑏 . This function is defined such that, given an argument 𝑡 , we add the

compiled term binding on top of 𝑡 . The CNR-Bindings-Nil and CNR-Bindings-Cons rules define how non-recursive

sequences of strict term bindings can be translated to sequences of functions that add compiled term bindings on top

of an argument term. In the CNR-Let rule, we compose the functions in the sequence 𝑓𝑏 and apply them to the body

of the let-binding. Furthermore, the CNR-Cong rule defines that any term, binding or binding sequence can also be

related as a congruence. For example, Figure 6.2 shows the conclusion of an example desugaring derivation where one

let-binding is desugared, whereas the other is not.
We implement the translation relation as an inductive datatype. Bindings are related to functions on terms through

CNR_Binding, while lists of bindings are related to lists of functions on terms through CNR_Bindings. Terms are related

to terms through CNR_Term, where we have the choice of either relating the terms as a desugaring or as a congruence.

We use right folds over lists to compose the functions on terms that result from desugaring, and we use the Cong relation
to express congruence with respect to CNR_Term.

1 Inductive CNR_Term : Term -> Term -> Type :=
2 | CNR_Let : forall {bs t_body t_body’ f_bs},
3 CNR_Term t_body t_body’ ->
4 CNR_Bindings bs f_bs ->
5 CNR_Term (Let NonRec bs t_body) (fold_right apply t_body’ f_bs )
6 | CNR_Cong : forall {t t’}, Cong CNR_Term t t’ -> CNR_Term t t’
7 with CNR_Bindings : list Binding -> list (Term -> Term) -> Type :=
8 | CNR_Nil : CNR_Bindings nil nil
9 | CNR_Cons : forall {b bs f_b f_bs},
10 CNR_Binding b f_b ->
11 CNR_Bindings bs f_bs ->
12 CNR_Bindings (b :: bs) (f_b :: f_bs )
13 with CNR_Binding : Binding -> (Term -> Term) -> Type :=
14 | CNR_Desugar : forall {v t_bound t_bound’ ty},
15 CNR_Term t_bound t_bound’ ->
16 CNR_Binding
17 (TermBind Strict (VarDecl v ty) t_bound)
18 (fun t_bs => Apply (LamAbs v ty t_bs) t_bound’).

44
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⊢ 𝑡0 ⊲ 𝑡 ′0 ⊢ 𝑏 ⊲ 𝑓𝑏
CNR-Let (i)

⊢ let (NonRec) 𝑏 in 𝑡0 ⊲ (𝑓𝑏 ◦ id) 𝑡 ′
0

Cong 𝑡 𝑡 ′
CNR-Cong (ii)

⊢ 𝑡 ⊲ 𝑡 ′

CNR-Bindings-Nil (iii)⊢ 𝜀 ⊲ 𝜀
⊢ 𝑏 ⊲ 𝑓𝑏 ⊢ 𝑏′ ⊲ 𝑓𝑏′ CNR-Bindings-Cons (iv)

⊢ 𝑏, 𝑏′ ⊲ 𝑓𝑏, 𝑓𝑏′

⊢ 𝑡𝑏 ⊲ 𝑡 ′𝑏 𝑓𝑏 (𝑡)
𝑑𝑒𝑓
= ((𝜆𝑥 : 𝑇 .𝑡) 𝑡 ′

𝑏
)
CNR-Binding (v)

⊢ (𝑥 : 𝑇 (Strict) = 𝑡𝑏) ⊲ 𝑓𝑏

Figure 6.1: Desugaring of non-recursive let-bindings (𝑅𝐶𝑁𝑅)

...

⊢ ((let (NonRec) 𝑏1 in 𝑡1) (let (NonRec) 𝑏2 in 𝑡2)) ⊲ ((let (NonRec) 𝑏′
1
in 𝑡 ′

1
) ((𝑓𝑏2◦ id) 𝑡 ′2))

Figure 6.2: Conclusion of an example derivation for 𝑅𝐶𝑁𝑅

6.2 A proof of static semantics preservation

We prove the following Theorem:

Theorem 6.1 (𝑅𝐶𝑁𝑅 is strongly static semantics preserving). For all 𝑡1 and 𝑡2, if 𝑅𝐶𝑁𝑅 (𝑡1, 𝑡2) and Δ; Γ ⊢ 𝑡1 : 𝑇𝑛 , then
Δ; Γ ⊢ 𝑡2 : 𝑇𝑛 .

Proof. The type rules as we implemented them in section 4.2 are mutually defined, which means we also need a mutual

induction principle if we want to prove Theorem 6.1 by induction on the typing derivation. We use the Scheme command

to generate the mutual induction principle for us.

1 Scheme has_type__ind := Minimality for has_type Sort Prop
2 with constructor_well_formed__ind := Minimality for constructor_well_formed Sort Prop
3 with (* hidden *).

In order for us to use the generated induction principle for our proof, we need to define a proposition for each of the

inductive datatypes that make up the implementation of the type rules. This is reflected in the type of the induction

principle.

1 Check has_type__ind
2 : forall
3 (P : Delta -> Gamma -> Term -> Ty -> Prop)
4 (P0 : Delta -> constructor -> Ty -> Prop)
5 (P1 P2 : Delta -> Gamma -> list Binding -> Prop)
6 (P3 : Delta -> Gamma -> Binding -> Prop),
7 (* hidden *).

For example, we define the proposition for the main has_type inductive datatype as the main result that we aim to

prove. This proposition does not have to include an assumption that t1 is well-typed since well-typedness follows from
the fact that we apply the induction principle to a typing derivation. The same is true for the other propositions.

1 Definition P_has_type Delta Gamma t1 T : Prop :=
2 forall t2,
3 CNR_Term t1 t2 ->
4 Delta ,, Gamma |-+ t2 : T.

The proposition for the well-formedness of a single binding (binding_well_formed) is more interesting. In this propo-

sition, we must make a distinction between congruence proof cases and interesting proof cases.
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1 Definition P_binding_well_formed Delta Gamma b1 : Prop :=
2 ( forall b2,
3 Delta ,, Gamma |-ok_b b1 ->
4 Congruence.Cong_Binding CNR_Term b1 b2 ->
5 Delta ,, Gamma |-ok_b b2 /\
6 binds_Delta b2 = binds_Delta b1 /\ binds_Gamma b2 = binds_Gamma b1
7 ) /\ (
8 forall f_b2 t T bs1Gn,
9 Delta ,, Gamma |-ok_b b1 ->
10 CNR_Binding b1 f_b2 ->
11 map_normalise (binds_Gamma b1) bs1Gn ->
12 mupdate Delta (binds_Delta b1) ,, mupdate Gamma bs1Gn |-+ t : T ->
13 Delta ,, Gamma |-+ (f_b2 t) : T
14 ).

In the case of a congruence relation, we just aim to prove that the post-translation binding is still well-formed with

respect to the same kind and type contexts. Moreover, we need to prove that the term and type variable bindings

produced by the pre- and post-translation bindings are equal. If they would not be equal, then we would not be able to

prove that 𝑅𝐶𝑁𝑅 has the strong static semantics preservation property. In particular, recall that we update the kind and

type contexts with these term and type variable bindings, and different term and type variable bindings would lead to

different kind and type contexts, which goes against the definition of strong static semantics preservation.

Before we discuss the interesting disjunct of the proposition that we listed above, note that we did not introduce the

map_normalise relation before. The relation models a List.map function for type indices and it does exactly what its

name suggests: it maps the normalisation relation over all its “arguments” to obtain a list of term variable bindings that

now contain normalised types.

In the case of a desugaring relation, we aim to prove that the application of the post-translation function is well-typed

with respect to the same kind and type contexts. In pursuit of this proof, we consider some well-typed term to which

we apply the function, such that we can prove the well-typedness of the result. For non-recursive binding sequences,

we aim to prove a similar proposition in the case of desugaring.

1 Definition P_bindings_well_formed_nonrec Delta Gamma bs1 : Prop :=
2 ( (* hidden *) ) /\ (
3 forall f_bs2 t T bs1Gn,
4 Delta ,, Gamma |-oks_nr bs1 ->
5 CNR_Bindings bs1 f_bs2 ->
6 map_normalise (flatten (map binds_Gamma bs1)) bs1Gn ->
7 (mupdate Delta (flatten (map binds_Delta bs1))) ,, (mupdate Gamma bs1Gn) |-+ t : T ->
8 Delta ,, Gamma |-+ (fold_right apply t f_bs2) : T
9 ).

Note that we have not seen the flatten function before: it makes sure to collect and reorder the term and type variable

bindings of all bindings in the binding sequence such that we can update the contexts with them.

After defining propositions for the constructor_well_formed and bindings_well_formed_rec datatypes, we can
apply the mutual induction principle and prove Theorem 6.1. Most of the proof cases only require inversion and some

proof automation using eauto to go through. More interesting cases, such as the proof case corresponding to the W-
Term rule from Figure 4.12, require some more work. We do not list the full proof here.

1 Theorem CNR_Term__SSP : forall Delta Gamma t1 T,
2 Delta ,, Gamma |-+ t1 : T ->
3 P_has_type Delta Gamma t1 T.
4 Proof with ( (* hidden *) ).
5 apply has_type__ind with
6 (P := P_has_type) (P0 := P_constructor_well_formed)
7 (P1 := P_bindings_well_formed_nonrec) (P2 := P_bindings_well_formed_rec)
8 (P3 := P_binding_well_formed).
9 (* hidden *).
10 Qed.

□
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6.3 A proof of dynamic semantics preservation

We prove the following Theorem:

Theorem 6.2 (𝑅𝐶𝑁𝑅 is dynamic semantics preserving). For all 𝑡1 and 𝑡2, if 𝑅𝐶𝑁𝑅 (𝑡1, 𝑡2) and Δ; Γ ⊢ 𝑡1 : 𝑇𝑛 , then
Δ; Γ ⊢ 𝑡1 ≤ 𝑡2 : 𝑇𝑛 .

Proof. We prove Theorem 6.2 by mutual induction on the typing derivation. Again, we need to define a proposition for

each of the inductive datatypes that make up the implementation of the type rules. First and foremost, the proposition

for the has_type datatype is defined to be our main proof goal.

1 Definition P_has_type Delta Gamma e T : Prop :=
2 forall t’,
3 CNR_Term t t’ ->
4 LR_logically_approximate Delta Gamma t t’ T.

The interesting proposition that we define is for the binding_well_formed datatype, where we have to make a distinc-

tion between congruence proof cases and interesting proof cases.

1 Definition P_binding_well_formed Delta Gamma b : Prop :=
2 ( forall b’,
3 Congruence.Cong_Binding CNR_Term b b’ ->
4 forall Delta_t Gamma_t bsGn t t’ T bs bs’,
5 Delta_t = mupdate Delta (binds_Delta b) ->
6 map_normalise (binds_Gamma b) bsGn ->
7 Gamma_t = mupdate Gamma bsGn ->
8 LR_logically_approximate Delta_t Gamma_t (Let NonRec bs t) (Let NonRec bs’ t’) T ->
9 LR_logically_approximate Delta Gamma
10 (Let NonRec (b :: bs) t) (Let NonRec (b’ :: bs’) t’) T
11 ) /\ (
12 forall fb’,
13 CNR_Binding b fb’ ->
14 forall Delta_t Gamma_t bsGn t t’ T bs fbs’,
15 Delta_t = mupdate Delta (binds_Delta b) ->
16 map_normalise (binds_Gamma b) bsGn ->
17 Gamma_t = mupdate Gamma bsGn ->
18 LR_logically_approximate Delta_t Gamma_t
19 (Let NonRec bs t) (fold_right apply t’ fbs’) T ->
20 LR_logically_approximate Delta Gamma
21 (Let NonRec (b :: bs) t) (fold_right apply t’ (fb’ :: fbs’)) T
22 ).

In the case of congruence, we aim to prove that we can safely add related bindings 𝑏 and 𝑏′ to the binding sequences

of two logically approximating, non-recursive let-bindings such that the new let-bindings are still logically approxi-

mating. We update kind and type contexts similarly to how we discussed updating them in section 6.2. In essence, we

define this disjunct of the proposition as an inductive argument, where line 8 is the induction hypothesis.

In the case of desugaring, we aim to prove that we can safely desugar a binding 𝑏 to a function 𝑓𝑏 . Given some non-

recursive let-binding that logically approximates a desugared, non-recursive let-binding, we can add 𝑏 to the binding

sequence of the let-binding and we can apply 𝑓𝑏 to the desugared let-binding such that the results are still logically

approximating. Again, we have defined this disjunct of the proposition as an inductive argument, where lines 18-19 form

the induction hypothesis. The proposition for non-recursive binding sequences is similar in the case of desugaring.

1 Definition P_bindings_well_formed_nonrec Delta Gamma bs : Prop :=
2 ( (* hidden *) ) /\ (
3 forall fbs’,
4 CNR_Bindings bs fbs’ ->
5 forall Delta_t Gamma_t bsGn t t’ T,
6 Delta_t = mupdate Delta (flatten (List.map binds_Delta bs)) ->
7 map_normalise (flatten (List.map binds_Gamma bs)) bsGn ->
8 Gamma_t = mupdate Gamma bsGn ->
9 LR_logically_approximate Delta_t Gamma_t t t’ T ->
10 LR_logically_approximate Delta Gamma (Let NonRec bs t) (fold_right apply t’ fbs’) T
11 ).
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Having defined propositions for the constructor_well_formed and bindings_well_formed_rec inductive datatypes,
we can apply the mutual induction principle and prove Theorem 6.2.

1 Theorem CNR_Term__DSP : forall Delta Gamma e T,
2 Delta ,, Gamma |-+ e : T ->
3 P_has_type Delta Gamma e T.
4 Proof with ( (* hidden *) ).
5 apply has_type__ind with
6 (P := P_has_type)
7 (P0 := P_constructor_well_formed) (P1 := P_bindings_well_formed_nonrec)
8 (P2 := P_bindings_well_formed_rec) (P3 := P_binding_well_formed).
9 (* hidden *).
10 Qed.

Conveniently, we can reuse the set of compatibility lemmas that we have implemented in section 5.2 to prove all

the congruence cases! For example, consider the proof case that corresponds to the T-Apply rule from Figure 4.12,

where we have to prove Δ; Γ ⊢ (𝑡1 𝑡2) ≤ (𝑡 ′
1
𝑡 ′
2
) : 𝑇𝑛

2
assuming that we are proving a congruence case such that

Cong (𝑡1 𝑡2) (𝑡 ′1 𝑡 ′2). After some proof scripting we find through inspection of Cong and the use of induction hypotheses

that 𝑡1 logically approximates 𝑡 ′
1
and that 𝑡2 logically approximates 𝑡 ′

2
. This is exactly the information that we need to

apply the compatibility_Apply lemma from section 5.2.

For the interesting cases of the proof, we must instead prove some new compatibility lemmas. These compatibility

lemmas are, for the most part, similar to ones that have defined before when we proved the Fundamental Property in

section 5.2. For example, consider the desugaring proof case for theW-Term rule from Figure 4.12. For the proof of the

Fundamental Property, we proved a compatibility lemma compatibility_TermBind.

1 Lemma compatibility_TermBind : forall Delta Gamma stricty x Tb Tbn tb tb’ b b’ bs bs’ t t’ Tn,
2 Delta |-* Tb : Kind_Base ->
3 normalise Tb Tbn ->
4 forall Delta_ih Gamma_ih bsGn,
5 b = TermBind stricty (VarDecl x Tb) tb ->
6 b’ = TermBind stricty (VarDecl x Tb) tb’ ->
7 Delta_ih = mupdate Delta (binds_Delta b) ->
8 map_normalise (binds_Gamma b) bsGn ->
9 Gamma_ih = mupdate Gamma bsGn ->
10 LR_logically_approximate Delta_ih Gamma_ih (Let NonRec bs t) (Let NonRec bs’ t’) Tn ->
11 LR_logically_approximate Delta Gamma tb tb’ Tbn ->
12 LR_logically_approximate Delta Gamma
13 (Let NonRec (b :: bs) t) (Let NonRec (b’ :: bs’) t’) Tn.
14 Proof with (* hidden *). (* hidden *). Qed.

For our current proof, we must prove a new compatibility lemma for term bindings that are desugared. Since we have

proved compatibility lemmas for term bindings, applications and lambda abstractions before, we can reuse parts of their

proofs to finish the proof of the new compatibility lemma without problems.

1 Lemma compatibility_TermBind__desugar : forall Delta Gamma t t’ Tn b bs fbs’ tb tb’ x Tb Tbn,
2 Delta |-* Tb : Kind_Base ->
3 normalise Tb Tbn ->
4 forall Delta_ih Gamma_ih bsGn,
5 b = TermBind Strict (VarDecl x Tb) tb ->
6 Delta_ih = mupdate Delta (binds_Delta b) ->
7 map_normalise (binds_Gamma b) bsGn ->
8 Gamma_ih = mupdate Gamma bsGn ->
9 LR_logically_approximate Delta_ih Gamma_ih
10 (Let NonRec bs t) (fold_right apply t’ fbs’) Tn ->
11 LR_logically_approximate Delta Gamma tb tb’ Tbn ->
12 LR_logically_approximate Delta Gamma
13 (Let NonRec (b :: bs) t) (Apply (LamAbs x Tb (fold_right apply t’ fbs’)) tb’) Tn.
14 Proof with (* hidden *). (* hidden *). Qed.

The collection of old and new compatibility lemmas is then sufficient to prove Theorem 6.2.

□
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Conclusion

The field of formal compiler verification has seen extensive research contributions for good reasons: (i) compiler veri-

fication is a hard problem to solve since compilers are pieces of advanced software that carry out a range of non-trivial

tasks, and (ii) compiler verification is crucial if we want to offer formal guarantees about the code that they produce.

We argued in our introduction that compiler verification can be seen as even more vital in the context of safety-critical

software such as smart contracts, since past experience has made clear how safety issues in smart contract systems

can result in substantial (financial) damages. Moreover, we specifically argued that rigorous formal methods such as

compiler verification can not be passed over directly when we consider security of smart contract systems.

As justified by these motivations, Krijnen et al. started the development of a certification engine, developed in the

Coq Proof Assistant, for the Plutus Tx compiler[17]. The compiler, which is part of the Plutus Platform for the Cardano

blockchain, compiles a subset of Haskell, using PIR as an intermediate language, to Plutus core, the latter of which is

a slight superset of System 𝐹
𝜇
𝜔 : System 𝐹 extended with higher-order kinds and iso-recursive types. The certification

engine itself falls in the category of certifying compilers, as it verifies individual runs of the Plutus Tx compiler and

produces machine-checkable certificates of the compiled code’s correctness.

While most of the ongoing development on the engine has concerned itself with recognising admissible behaviour

of compiler passes through the use of translation relations, it remained an open problem to show that the translation

relations, and per extension the compiler passes, are well-behaved. More formally, it remained an open problem to show

that the semantics of terms are preserved across translation relations, which lead us to the main research question of

this thesis:

Research question: Can we formally verify that translation relations are semantics preserving?

In chapter 3, we discussed the results of a preliminary study in which we set out to answer the research question in the

context of a simply typed lambda calculus. We achieved positive results by identifying and working out three main goals

on paper and in Coq: (i) constructing a formal static and dynamic semantics, (ii) defining static and dynamic semantics

preservation and (iii) proving our previously defined concepts of semantics preservation for example translation rela-

tions. Most importantly, we used the logical relations proof technique, the implementation of which is based on the

Normalisation chapter of the Programming Language Foundations book[30], to express and prove dynamic semantics

preservation. The positive results lead us to believe that we could scale up the methods to the Plutus Tx compiler, seeing

as the languages upon which the Plutus Tx compiler operates are based on a simply typed lambda calculus.

For the main study, we laid out the same goals that we set for ourselves in the preliminary study, but now in

the context of the PIR and Plutus Core languages. In chapter 4, we formally defined the syntax, static semantics and

dynamic semantics of the PIR and Plutus Core languages. The static semantics is designed to represent kind and type

checking algorithms where we make sure that we only type check for normal types, which simplifies reasoning about

typing judgements. The dynamic semantics is defined and implemented as a big-step operational semantics (evaluation

relation) since such a dynamic semantics emphasises results of computations. As an added advantage, the big-step style

allows us to incorporate the counting of evaluation steps into the semantics directly.

In chapter 5, we defined the concept of (strong/weak) static semantics preservation, and we defined dynamic seman-

tics preservation by adapting and extending step-indexed logical relations[1]. We made a distinction between strong

and weak static semantics preservation in order to accommodate for a wide variety of static semantics preservation

theorems. Step-indexing offered a solution to problematic aspects of the PIR and Plutus Core languages that prevented

us from easily scaling up the methods that we used in the preliminary study. On one hand, higher-order kinds allow

for computations in types, which means we could not implement the logical relation by straightforward induction on

the syntax of types. On the other hand, iso-recursive types allow for non-termination on the term-level. Step-indexing

gives us both a well-foundedness measure that we can use to prove well-foundedness of the logical relation, and it gives

us a way to compare terms in the presence of non-termination. After defining the logical relation, we proved the Fun-
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damental Property, which states that the logical relation is reflexive. We prove reflexivity by defining and proving a set

of compatibility lemmas that each apply to one case of the reflexivity proof.

Finally, we proved strong static semantics preservation and dynamic semantics preservation for a translation re-

lation that characterises the desugaring of non-recursive let-bindings in chapter 6. Interestingly, we could reuse the

compatibility lemmas that we defined in chapter 5 and parts of their proofs to prove dynamic semantics preservation.

As such, the compatibility lemmas allow for a modular approach to dynamic semantics preservation proofs: we only

have to prove new compatibility lemmas for non-congruence cases of the proof, and we can reuse compatibility lemmas

that we have defined before.

As we accomplished the goals that we laid out, we believe that these positive results imply that we can answer the

research question affirmatively:

Conclusion: We can formally verify that translation relations are semantics preserving.

The primary contribution of this thesis is therefore that we show that we can formally verify semantics preservation

properties for translation relations. Moreover, we have given a practical implementation of step-indexed logical relations

that is reusable for proofs of dynamic semantics preservation within the certification engine. We also suspect that the

implementation can be adapted to work for similar Coq-implemented projects such as compilers or other verification

tools.

Secondary contributions. Throughout chapters 4, 5 and 6we rely on and adapt a number of previousworks, amongst

which Krijnen et al.[17], Peyton Jones et al.[15], Chapman et al.[7], Ahmed[1] and the Software Foundation books[29,

30], but we also add to and extend some works with secondary contributions:

• We implement the formal static and dynamic semantics of the PIR and Plutus Core languages in Coq. Furthermore,

we define a formal dynamic semantics of some PIR- and Plutus Core-specific language constructs for which a

formal dynamic semantics did not previously exist. (Section 4)

• We implement step-indexed logical relations in Coq, and we extend step-indexed logical relations to work in the

context of higher-order kinds. Moreover, we implement step-indexed logical relations for functional languages

that are intended for practical use. (Section 5)

7.1 Discussion

Several aspects of the thesis warrant a discussion. Aspects such as limitations of results and proof completeness have
already been discussed throughout the thesis, though we find it useful to give a comprehensive overview of our remarks

here. Lastly, we spend some words on our trusted codebase.

7.1.1 Limitations of results
We aim to only discuss the limitations of our definitions and implementations here, and not the limitations that concern

themselves with proofs and their completeness. The limitations of our results, proofs and their completeness aside,

can be put into roughly two categories. On one hand, we have that our definitions and implementations of the static

semantics differ slightly from the compiler implementation. On the other hand, our results with respect to the dynamic

semantics and the step-indexed logical relation are not always complete. We refer to the first category as category (i),

and the second category as (ii).

Escaping type bindings (i). We do not allow type bindings to escape let-bindings, whereas the compiler allows this

if the let-binding is top-level. For the sake of proof simplicity, it is beneficial to disallow or allow escaping

altogether, so we opted not to allow escaping at all.

Typing of errors (i). Errors have type annotations that signal the type of the error. If the error would not have a type
annotation, thenwe can not produce a principal type for the error. A sensible catch-all typewould be∀𝑋 :: ∗.𝑋 , but
this type is not necessarily the most general. Nonetheless, we ignore the type annotation in our implementation

since we can not define a type-preserving dynamic semantics otherwise. More specifically, the type annotations

on terms do not carry the necessary information to make sure that the error has the correct type annotation after

error propagation.

Incomplete evaluation rules (ii). We did not give evaluation rules for datatype bindings.

Strictness and laziness (ii). In the evaluation of term bindings, we ignore strictness flags.
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Semantics of built-in functions (ii). The semantics of somemore complex built-in functions can not yet be modelled

in Coq. For example, the VerifySignature built-in function has a complex Haskell implementation that we can

not reproduce in Coq, so we let this built-in function return true by default.

Built-in functions in the logical relation (ii). (Partially applied) built-in functions are not handled as of yet in the

logical relation. A crucial difference between lambda abstractions and built-in functions is that we can reason

about the body of a lambda abstraction since we reason about closed instantiations of terms. Built-in functions

have no body, so instead we must somehow express in the logical relation that fully applying a built-in function

to related arguments leads to related results. We have not found a satisfying solution to this yet.

Strong and weak dynamic semantics preservation(ii). As of yet, the logical relation can only be used to prove

dynamic semantics preservation for translation relations that are strongly static semantics preserving.

We do not think that the limitations undermine our results. The results that we do show are sufficiently substantiated,

and we have no reason to believe that resolving the abovementioned issues should invalidate our previous results. In

fact, we expect that solutions to these problems will consist mostly of technical overhead, though we expect that adding

built-in functions to the logical relation and implementing weak dynamic semantics preservation will require some new

insights. We did not resolve these issues due to time constraints. Given more time, we are confident that we could have

resolved these issues in a satisfactory manner.

7.1.2 Proof completeness
Proofs of logical approximation that we discuss in chapters 5 and 6, which are the proofs of the Fundamental Property

(reflexivity) and dynamic semantics preservation for𝑅𝐶𝑁𝑅 , depend on a range of different lemmas and theorems. Because

of time constraints, we were not able to fully prove all the lemmas and theorems on which the logical approximation

proofs depend: they are Admitted. We take care to admit only lemmas and theorems that should logically hold. For

example, we know that our different types of substitution should preserve typing and kinding, we know that our type-

level language should be strongly normalising, we know that our normalisation relation should preserve kinding, and so

on. In spite of that, it could still be the case that, for example, our implementation of term substitution does not preserve

typing, though this would probably signal an error in the implementation of term substitution, and not an error in our

judgement. Again, given more time, we are confident that we could have completed the proofs in a satisfactory manner.

7.1.3 Trusted codebase
A detail that we have purposely not mentioned throughout the thesis is that, in order for some of our proofs to go

through, we need the property that (type) binders are unique. That is, a term or type should bind a (type) variable

only once. The compiler implementation makes sure that variables are unique through a compiler pass that performs

renaming. How then, do we prove dynamic semantics preservation for the translation relation that corresponds with

renaming? Maybe more generally, how can we make sure that we always reason about terms for which the uniqueness

property holds? One solution would be to define a function that performs renaming, such that we can apply renaming to

terms after which we know that the uniqueness property holds. Another solution would be to axiomatise the uniqueness

property, which is arguably justified since we could always apply a renaming function when needed. An advantage over

the first solution is that axiomatisation would lead to simpler proofs. One way or the other, both solutions may require

us to add to our trusted codebase: code that we do not or can not verify, but instead trust to function correctly.

Adding to the trusted codebase is always a trade-off. The more we add to our trusted codebase, the less formal our

guarantees are. Currently, the trusted codebase of this thesis consists of the axiomatisation of the uniqueness property,

and in addition the coqc compiler for Coq. Nevertheless, we can not really prevent the fact that we we must trust the

coqc compiler. Lastly, we could also view limitations of our results and proof completeness as some form of trusted

codebase. After all, we trust that both do not greatly influence the validity of the results.

7.2 Future work

Solving the issues with respect to limitations of results, proof completeness and the trusted codebase are one item

of future work that is necessary. Naturally, as the correctness of compiler passes depends on the correctness of the

translation relations that characterise them, it is also a justified goal to prove semantics preservation for more translation

relations. Lastly, one interesting piece of future work would be to prove soundness and completeness of our logical

relation with respect to a definition of contextual equivalence. Such soundness and completeness results will strengthen

the formal guarantees that proofs of dynamic semantics preservation give.



Appendix A

Preliminary study: Notation commands
for abstract syntax

1 Declare Custom Entry stlc.
2 Declare Custom Entry stlc_ty.
3

4 Notation "<{ e }>" := e (e custom stlc at level 99).
5 Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
6 Notation "( x )" := x (in custom stlc, x at level 99).
7 Notation "( x )" := x (in custom stlc_ty, x at level 99).
8 Notation "x" := x (in custom stlc at level 0, x constr at level 0).
9 Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0).
10 Notation "S -> T" := (ty_arrow S T) (in custom stlc_ty at level 50, right associativity).
11 Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity).
12 Notation "\ T , t" := (tm_abs T t) (in custom stlc at level 90,
13 T custom stlc_ty at level 99,
14 t custom stlc at level 99,
15 left associativity).
16 Coercion tm_var : ref >-> tm.
17 Notation "{ x }" := x (in custom stlc at level 1, x constr).
18 Notation "{ x }" := x (in custom stlc_ty at level 1, x constr).
19

20 Notation "’Bool’" := ty_bool (in custom stlc_ty at level 0).
21 Notation "’if’ x ’then’ y ’else’ z" :=
22 (tm_if x y z) (in custom stlc at level 89,
23 x custom stlc at level 99,
24 y custom stlc at level 99,
25 z custom stlc at level 99,
26 left associativity).
27 Notation "’true’" := true (at level 1).
28 Notation "’true’" := tm_true (in custom stlc at level 0).
29 Notation "’false’" := false (at level 1).
30 Notation "’false’" := tm_false (in custom stlc at level 0).
31

32 Notation "’let’ t1 ’:’ T1 ’in’ t2" := (tm_let t1 T1 t2) (in custom stlc at level 0,
33 T1 custom stlc_ty at level 99).
34

35 Notation "’Unit’" := (ty_unit) (in custom stlc_ty at level 0).
36 Notation "’unit’" := tm_unit (in custom stlc at level 0).
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