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Abstract

Spintronics has been gaining attention due to its possible technical applications. A central topic
in spintronics is magnetization dynamics, often described by the Landau-Lifshitz-Gilbert equation.
This equation accurately describes the dynamics of many spin systems, and has been experimen-
tally confirmed. However, there have been theoretical predictions that this equation is not com-
plete, and should be expanded with inertial terms. Recently, this prediction has been confirmed by
the observation of nutation on top of the precessional magnetization dynamics by various exper-
imental studies, which suggest that more investigation into spin inertia is needed. In this thesis,
we demonstrate that spin inertia is an effect due to the environment of the spins. Moreover, we
consider an explicit example of a phonon bath as the environment. Our results demonstrate that
there is indeed spin inertia, and we provide a calculation of the inertial constant in the case of a
ferromagnetic thin film in contact with a bulk phonon bath. To experimentally validate our results
we propose investigating an Yttrium Iron Garnet film in contact with a bulk Gadolinium Gallium
Garnet substrate.
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1. Introduction
Spintronics is focused on the manipulation of the spin degree of freedom of electrons in addition
to their charge degree of freedom and it is becoming more relevant over time. The increased at-
tention is largely due to the possible technical applications for spintronics, such as data storage
and information-transferring devices. These applications are promising due to the possibility of
increasing the memory and processing capabilities of electronic devices, while reducing the need of
power and heat generation. Due to Joule heating, conventional electronic devices based on charge
carriers stumble upon a problem, whereas spintronic devices do not face this. Spintronic devices
transfer information using spin current carriers. The spin current is carried by quasiparticles called
magnons also known as spin waves.

A spin wave is a propagating disturbance of the spins in a magnetic material. Hence, to exhibit spin
waves, the material should have regions, often called domains, where the spins are aligned. This is
the case for ferromagnetic materials such as Yttrium Iron Garnet (YIG). The collective magnetiza-
tion dynamics of the collection of spins in such a domain, also known as the macrospin, are often
described by the Landau-Lifshitz-Gilbert equation [1],

Ṡ = S×H− α0S× Ṡ. (1.1)

After solving the LLG equation one could see that the term containing the external magnetic field H
leads to precession of the spin as depicted in Fig. 1.1a. Physically, this corresponds to the rotation of
the spin around the axis defined by the external magnetic field. The second term on the right hand
side describes the damping of the spin toward the external field direction due to its interaction with
the environment, with α0 the Gilbert damping parameter (Fig. 1.1b). Gilbert damping describes
the dissipation of the energy of the spin system into its environment, also known as the bath.

The LLG equation is a phenomenological equation, which accurately describes the magnetization
dynamics of many spin systems, as confirmed by a number of experimental studies. However, there
are numerous theoretical studies [2–4] suggesting an additional inertial term. This prediction was
confirmed experimentally by Neeraj et al. [5] and Unikandanunni et al. [6]. They found evidence
of inertial spin dynamics by observing nutation of the magnetization, which confirms the assertion
to include inertial terms in the inertial LLG equation. The inertial LLG equation then reads

Ṡ = S×H− α0S× Ṡ− IS× S̈, (1.2)

where the third term is the inertial term, with I the spin inertia. As a consequence, the spin
dynamics change to include nutation as depicted in Fig. 1.1c.

S S S H

(a) (b) (c)

Figure 1.1: (a) Depiction of a spin precessing around the direction of the external magnetic field H. (b)
Depiction of a spin precessing including Gilbert damping. (c) Depiction of a sping pressing including both Gilbert
damping and spin inertia.

2



CHAPTER 1. INTRODUCTION

0 2 4 6 8 10 12 14
/Bz

0

1

2

3

4

5

6

Im
(B

z
11

/S
)

Without Inertia
With Inertia

Figure 1.2: The figure illustrates the dimensionless absorption behavior of the magnetic system as a function of
the dimensionless frequency, showcasing two different calculations: one incorporating inertial terms in red and
the other excluding them in blue. The absorbtion is calculated from the imaginary part of the susceptibility as
defined in Eq. (1.4).

Nutation results in another resonance spike in the absorption spectrum of a magnetic system in
the high frequency domain, in addition to the first resonance peak also known as the ferromagnetic
resonance. In experiments, the ferromagnetic resonance is determined by measuring the amplitude
and phase of the response of the magnetization as a function of the frequency of the driving field.
Neeraj et al. [5] observed an additional peak in a higher frequency regime. To understand the
ferromagnetic resonance theoretically, we consider a driving field H(t) constant in the z-direction
driving a spin predominantly aligned in the z-direction. Mathematically, the spin and driving field
are then given by

S(t) =

Ö
Sx(t)
Sy(t)
Sz

è
, H(t) =

Ö
Hx(t)
Hy(t)
Hz

è
, (1.3)

where we have linearized the spin in the z-direction. We calculate the absorbtion by rewriting the
LLG equation, using Fourier transforms, toÇ

Sx(t)
Sy(t)

å
=

Ç
χ11 χ12

χ21 χ22

åÇ
Hx(t)
Hy(t)

å
, (1.4)

with χij the components of the susceptibility tensor. The χ11 component for the ordinary LLG
Eq. (1.1), i.e. I = 0, is given by

Hzχ11

S
=

Ä
−i ωHz

ä
α0S + 1

− ω
Hz

+
Ä
−i
Ä
ω
Hz

ä
α0S + 1

ä2 , (1.5)

and for the inertial LLG Eq. (1.2) the χ11 component is given by

Hzχ11

S
=

Ä
−i ωHz

ä
α0S + 1− ISHz

Ä
ω
Hz

ä2
− ω
Hz

+
(
−i
Ä
ω
Hz

ä
α0S + 1− ISHz

Ä
ω
Hz

ä2)2 , (1.6)
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CHAPTER 1. INTRODUCTION

and we have plotted both in Fig. 1.2. The second peak of the red graph suggests a regime where
also nutation effects are relevant, the high-frequency regime. Therefore, further investigation of
the underlying theory is necessary. Despite numerous theoretical studies on this topic, the source
of the second derivative term in Eq. (1.2) is still unclear.

Only recently, a deeper theoretical understanding of the origin of spin inertia in the form of a second
derivative term was provided in Gaspar Quarenta master thesis [7]. They theoretically discovered
that spin inertia can arise from the high frequency modes of the environment using the Caldeirra-
Leggett approach. In this approach, one assumes that the spin system is linearly coupled to a bath
of harmonic oscillators. In turn, one can prove the existence of spin inertia by investigating the
so-called bath spectral density function J(ε). This function yields the damping kernel α(ω) in the
generalized LLG equation,

Ṡ(t) = S(t)×H(t) + S×
∫

dt′α(t− t′)S(t′). (1.7)

While the Caldeirra-Leggett approach has given valuable insights into spin inertia, the physical
interpretation of the bath modes in a ferromagnet assumed by Gaspar Quarenta [7] remains to
be studied. Hence, in this thesis, we continue their work by providing proof of existence of spin
inertia in a more realistic system: a spin system coupled to a phonon bath. Here we consider a
realistic spin-phonon coupling in a ferromagnetic system and derive a generalized LLG equation
microscopically by eliminating the phonon degree of freedom from the equations of motion of the
coupled spin-phonon system. Then, we compare this equation with the one suggested by Gaspar
Quarenta [7]. in (1.7) and derive the spectral density function of the phonon bath. Moreover,
we provide an explicit calculation of the spin inertia in a specific configuration. This configuration
contains a two-dimensional magnetic plate coupled to a three-dimensional phonon bath subject to
a perpendicular external magnetic field. In this system, we recover Gilbert damping in the long
wavelength limit. Additionally, we find spin inertia in the short wavelength limit and that it is
linearly dependent on the size of the bulk phonon bath.

The rest of the thesis is structured as follows. We begin with chapter 2 demonstrating how to obtain
the generalized LLG equation as in Verstraten et al. [8] and Ref. [7]. Additionaly, we show how
to obtain Gilbert damping and spin inertia from the generalized LLG equation. Next, Chapter 3
reveals the main result of the thesis, where we use the approach by Rückriegel and Kopietz [9] to
find spin inertia in a spin system coupled to a phonon bath. We conclude this thesis with a discus-
sion, conclusion and outlook section.
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2. Spin inertia from high frequency bath modes
In this chapter, we demonstrate how spin inertia arises from high frequency bath modes. To do so,
we start with a Hamiltonian describing a spin coupled to a bath. From this Hamiltonian, we derive
the generalized Landau-Lifshitz-Gilbert equation using the Keldysh formalism in its path integral
form. The Keldysh formalism allows us to derive an action and, in turn, the equations of motion,
thereby yielding the generalized LLG equation. Once we have the generalized LLG equation, we
will have a discussion on a function which contains all the information related to the spin coupling
to its bath; the bath spectral density function. As we will show, the bath spectral density is key in
retrieving Gilbert damping and spin inertia [7]. The notion that Gilbert damping is a phenomenon
due to the environment is unsurprising, as energy dissipates into the bath. Remarkably, also spin
inertia is a phenomenon due to the environment.

2.1 Generalized Landau-Lifshitz-Gilbert equation

We deduce both the Gilbert damping and spin inertia from the generalized LLG equation. Hence,
in this section, we rederive the calculations from Ref. [8] obtaining the generalized LLG equation.
We obtain the generalized LLG equation by calculating the equations of motion from the action.
This action is derived from the Keldysh partition function starting from the Hamiltonian. We con-
sider a system of a macrospin coupled to multiple harmonic oscillators as depicted in Fig. 2.1. In
the Caldeira Leggett approach [10–13], one considers a system linearly coupled with a bath of
harmonic oscillators. The dynamics are then described by the Hamiltonian,

Ĥ = Ĥs + Ĥc + Ĥb, (2.1)

with

Ĥs = −H · Ŝ; (2.2)

Ĥc =
∑
α

γαŜ · x̂α; (2.3)

Ĥb =
∑
α

Ç
p̂2
α

2mα
+
mαω

2
α

2
x̂2
α

å
. (2.4)

Here, Ĥs contains the Zeeman term with macrospin Ŝ and external magnetic field H. The second
term Ĥc describes the linear coupling between the macrospin and the harmonic oscillators of the
bath with coupling constant γα, the index of the bath oscillators α and the position operator of the
harmonic oscillator x̂α. Finally, Ĥb describes the harmonic oscillators with momentum operator
p̂α, mass mα and eigenfrequency of the oscillator ωα.

H
S

Figure 2.1: Schematic depiction of the system we consider. Here H is the external magnetic field and S is the
macrospin
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CHAPTER 2. SPIN INERTIA FROM HIGH FREQUENCY BATH MODES

We find the action by reading it off from the Keldysh partition function. Before writing down the
Keldysh partition function, we discuss some background on the Keldysh formalism as explained
in [15]. In the Keldysh formalism, to describe the quantum state of the system, one starts from
the equilibrium density matrix in the distant past ρ̂(−∞). The current density matrix ρ̂(t) is then
described by the equilibirum density matrix in the distant past evolved with the time evolution
operator,

ρ̂(t) = Ût,−∞ρ̂(−∞)Û−∞,t, (2.5)

where the evolution operator is defined by

Ût,t′ = T exp

Ç
−i
∫ t

t′
dtĤ(t)

å
. (2.6)

To calculate the expectation value of an observable Ô at a time t we use

〈Ô〉(t) ≡ Tr{Ôρ̂(t)}
Tr{ρ̂(t)}

=
1

Tr{ρ̂(t)}
Tr{Û−∞,tÔÛt,−∞ρ̂(−∞)}

=
1

Tr{ρ̂(−∞)}
Tr{Û−∞,+∞Û+∞,tÔÛt,−∞ρ̂(−∞)}, (2.7)

where we have used the cyclicity of the trace and used the trace of the density matrix at a distant
past for the denominator [15]. The Keldysh partition function is defined by

Z =
Tr{ÛC ρ̂(−∞)}

Tr{ρ̂(−∞)}
, (2.8)

where the evolution operator UC = Û−∞,+∞Û+∞,−∞ goes over the Keldysh contour C as depicted
in Fig. 2.2. Basically, we have defined the Keldysh partition function to be the expectation value of
the identity operator as could be seen from (2.7).

t

+∞ −∞
1 ρ(−∞)

Figure 2.2: Figure containing the Keldysh closed time contour C, adapted from [15, 16]. The Keldysh contour
describes the evolution of the density matrix from a distant past, to time t =∞ and back to the distant past.

To calculate the Keldysh partition function, we use the following expression of the trace

Tr{ÛC ρ̂} =

∫
dg
∏
α

∫
dxα

∫
dpα e

ipαxα〈pα, g|ÛC ρ̂|xα, g〉. (2.9)

where we have introduced the spin coherent states |g〉 [16], and the position xα and momentum
pα fields. Following the standard path-integral construction, we split the time-evolution operator
into many steps and insert a complete set of eigen states, to obtain the following expression of the
Keldysh partition function in path integral form,

Z =

∫
Dg

∏
α

∫
Dxα

∫
Dpα exp

[
i

∮
K

dt
(
− i〈ġ|g〉+ 〈g|H · S|g〉 − γα〈g|S · ẋ|g〉

+ pαẋα −
p2
α

2m
− mω2

2
x2
α

)]
, (2.10)
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CHAPTER 2. SPIN INERTIA FROM HIGH FREQUENCY BATH MODES

referring to appendix A and appendix B for more detailed calculations. TheK indexed time integral
in the exponent integrates over the Keldysh closed time contour as shown in Fig. 2.2. We can rewrite
the Keldysh integral as a regular time integral over the forward and backward contour. Then, the
Keldysh partition function can be written as

Z =

∫
Dg

∏
α

∫
Dxα

∫
Dpα exp

[
i

∫
dt
(
− i〈ġ+|g+〉+ 〈g+|H · Ŝ+|g+〉 − γα〈g+|S+ · ẋ+|g+〉

+ p+
α ẋ

+
α −

(p+
α )2

2m
− mω2

2
(x+
α )2

+ i〈ġ−|g−〉 − 〈g−|H · Ŝ−|g−〉+ γα〈g−|S− · ẋ−|g−〉

− p−α ẋ−α +
(p−α )2

2m
+
mω2

2
(x−α )2

)]

=

∫
Dg

∏
α

∫
Dxα

∫
Dpα exp

[
i

∫
dt

(
[−i〈ġ|g〉]q + [〈g|H · Ŝ|g〉]q −

î
γα〈g|Ŝ · ẋ|g〉

óq
+

ñ
pαẋα −

p2
α

2m
− mω2

2
x2
α

ôq )]
,

(2.11)

where the upper index + and − denote the forward and backward contour respectively. The
backward contour goes in the opposite direction as the forward contour, leading to an additional
minus sign because of the integration direction. Also, we have introduced notation such that, for
example,

[−i〈ġ|g〉]q = −i〈ġ+|g+〉+ i〈ġ−|g−〉. (2.12)

Splitting the Keldysh integral into a forward and backward contour is somewhat misleading. It gives
the impression that the fields in the forward and backward contour are uncorrelated. However, they
must be correlated, intuitively depicted by the points where the forward and backward contour
meet in Fig. 2.2. Before solving this problem, we will integrate out the position and momentum
fields of the Keldysh partition function to find

Z =

∫
Dg exp

[
i

∫
dt
(
[−i〈ġ|g〉]q + [〈g|H · Ŝ|g〉]q − 1

2
ST (t)

∫
dt′ α(t− t′)S(t′)

)]
, (2.13)

where the tensor α(t − t′) is the kernel function containing information about the bath and the
vector S(t) ≡ 〈g|Ŝ(t)|g〉 equals

S(t) =

Ç
S+(t)
S−(t)

å
. (2.14)

Now we apply a coordinate transformation defined by the Keldysh rotation matrix,

L =
1√
2

Ç
1 1
1 −1

å
(2.15)

on (2.14) to obtain

S(t) =
√

2

Ç
Sc
Sq

2

å
. (2.16)

We have defined

S+ = Sc +
1

2
Sq (2.17)

S− = Sc − 1

2
Sq. (2.18)

7



CHAPTER 2. SPIN INERTIA FROM HIGH FREQUENCY BATH MODES

where Sc and Sq represent the classical and quantum components of the spin respectively. In the
basis of Sc and Sq, the kernel function α(t− t′) is given by

α(t− t′) =

Ç
0 αA

αR αK

å
(t−t′)

=
∑
α

γ2
α

4

Ç
0 GAα
GRα GKα

å
(t−t′)

, (2.19)

dependent on the advanced GAα , retarded GRα and Keldysh GKα Green’s functions of the bath modes
(see appendix C for expressions). The entry of the matrix containing the Keldysh Green’s function
takes into account the correlations between the forward and backward part of the contour.

We carry out the matrix product in Eq. (2.13) and rewrite the advanced and retarded part of the
kernel function in the action such that,

S =

∫
dt − i〈ġ|g〉]q + [〈g|H · Ŝ|g〉]q

+

∫
dt

ï
Sq(t)

∫
dt ′ αdiss(t− t′)Sc(t′) + Sq(t)αK(t− t′)Sq(t′)

ò
, (2.20)

where we have essentially factored out the Sq and defined.

αdiss = αA(t′ − t) + αR(t− t′). (2.21)

To obtain the equations of motion, we vary the action with respect to the quantum components.
Therefore, the quadratic term in quantum components will not matter, because it will vanish in the
equation of motions1. We then are allowed to consider the following

S =

∫
dt

Å
[−i〈ġ|g〉]q + [〈g|H · Ŝ|g〉]q + Ŝq(t)

∫
dt′ αdiss(t− t′)Ŝc(t′)

ã
. (2.22)

To proceed, we have to understand the relation between |g〉 and S = 〈g|Ŝ|g〉. The spin coherent
states |g〉 can be represented by the Euler angles [16] in the following way,

|g〉 = g| ↑〉
= e−iφSze−iθSye−iψSz | ↑〉, (2.23)

where | ↑〉 is an eigenstate of Ŝ with maximum eigenvalue S. As a result, we write

|g〉 = e−iφSze−iθSy | ↑〉e−iψS , (2.24)

from which we see that ψ just acts as a phase factor. The remaining two angles φ and θ are true
rotations depicted in figure 2.3.

1If one wants to include noise effects, one needs to be more careful [8,17]
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CHAPTER 2. SPIN INERTIA FROM HIGH FREQUENCY BATH MODES

z

y

x

S

φ

θH

ψ

Figure 2.3: The two remaining Euler angles φ and θ are true rotation angles. The third Euler angle ψ is just a
phase factor. Figure adapted from [16].

Then, for S = 〈g|Ŝ|g〉 it holds that

S = S

Ö
sin θ cosφ
sin θ sinφ

cos θ

è
. (2.25)

As a result, we rewrite the action (see appendix D) such that we can read off the equations of
motion for φc and θc,

Sθq =

∫ ∞
−∞

dtθq

[
− φ̇c sin θc +H ′x cos θc cosφc +H ′y cos θc sinφc −H ′z sin θc

]
, (2.26)

and

Sφq =

∫ ∞
−∞

dtφq

[
θ̇c sin θc −H ′x sin θc sinφc +H ′y sin θc cosφc

]
, (2.27)

where we have defined an effective magnetic field H′,Ö
H ′x
H ′y
H ′z

è
=

Ö
Hx +

∫∞
−∞ dt′ αdiss(t− t′)Scx(t′)

Hy +
∫∞
−∞ dt′ αdiss(t− t′)Scy(t′)

Hz +
∫∞
−∞ dt′ αdiss(t− t′)Scz(t′)

è
. (2.28)

From this we get the following equations of motion

φ̇c sin θc = H ′x cos θc cosφc +H ′y cos θc sinφc −H ′z sin θc; (2.29)

θ̇c = H ′x sinφc −H ′y cosφc. (2.30)

Filling these equations of motion into Eq. (2.25), we get for Ṡ,

Ṡ = S×H′

= S×H + S×
∫ ∞
−∞

dt′ αdiss(t− t′)S(t′), (2.31)

which is the generalized Landau-Lifshitz-Gilbert equation, describing the spin dynamics of the sys-
tem. The kernel function αdiss contains information about the bath, which we will use to retrieve
Gilbert damping and spin inertia in the following two sections.

9



CHAPTER 2. SPIN INERTIA FROM HIGH FREQUENCY BATH MODES

2.2 Origin of Gilbert damping

In this section, we derive the ordinary LLG Eq. (1.1) from the generalised Landau-Lifshitz-Gilbert
equation,

Ṡ(t) = S(t)×H + S(t)×
∫

dt′ αdiss(t− t′)S(t′), (2.32)

for a macrospin S subject to an external magnetic field H and coupled to some bath. By defining
the bath spectral density function J(ε) as

J(ε) = π
∑
α

γ2
α

2mαωα
δ(ε− ωα), (2.33)

we rewrite the kernel function such that,

αdiss(ω) = − 2

π

∫ ∞
−∞

dε
εJ(ε)

(ω + i0)2 − ε2
. (2.34)

The bath spectral density function J(ε) contains all the information related to the coupling of the
spin system to its bath and it is closely related to the density of stats of the phonons. In general, this
function can take any form. However, we assume the bath spectral density function to be linear for
now; the bath is assumed to be Ohmic. This approximation is often realistic for lower frequencies
and will lead us to the ordinary LLG equation. To see this, we apply contour integration and find
that the kernel function is linear in ω,

αdiss(ω) = − 2

π

∫ ∞
−∞

dε
α0ε

2

(ω + i0)2 − ε2

= iα0ω. (2.35)

The kernel function in the generalized LLG Eq. (2.32) is in time space. Hence, we Fourier transform
Eq. (2.35), and obtain

αdiss(t− t′) =

∫
dω

2π
iα0ωe

−iω(t−t′) (2.36)

= α0∂t′δ(t− t′), (2.37)

to plug it in Eq. (2.32), which returns the ordinary LLG equation,

Ṡ = S×H− α0S× Ṡ. (2.38)

To arrive at the inertial LLG Eq. (1.2), we will assume that the bath spectral density function is
linear for low frequencies, but will deviate from the linear approximation for higher frequencies.
This is justified, because the bath spectral density function should go to zero for infinite frequency;
the bath should not be able to absorb an infinite amount of energy.

2.3 Origin of spin inertia

In the previous section, we considered the case that the bath spectral density function is linear. In
this section we relax this assumption and demonstrate that spin inertia arises from the non-linear
contributions of J(ε). We start our analysis with substracting the zero frequency contributions from
the kernel function

α̃(ω) = αdiss(ω)− αdiss(0)

= − 2

π

∫ ∞
−∞

dε
εJ(ε)

(ω + i0)2 − ε2
− 2

π

∫ ∞
−∞

dε
J(ε)

ε

= − 2

π

∫ ∞
−∞

dε
ω2

ε

J(ε)

[(ω + i0)2 − ε2]
. (2.39)
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CHAPTER 2. SPIN INERTIA FROM HIGH FREQUENCY BATH MODES

We are allowed to use this kernel function, because the additional term does not contribute to
the generalised LLG Eq. (2.32); it has no effect on the physics. This can be seen by recalling that
the Fourier transform of a constant function in ω equals a delta function δ(t − t′), which in turn
gives us Ŝ(t) × Ŝ(t) = 0. An important assumption that we make now, which will be justified in
Sec. 3.3, is that the bath spectral density function is linear for just low frequencies and not for high
frequencies. An example is given in Fig. 2.4.

J(ε)

ε

Figure 2.4: Depicted are the Ohmic bath spectral density in red and the general bath spectral density in blue.
The general bath spectral density function has the only requirement, that it is approximately linear for low
frequencies. If the bath spectral density function is non-Ohmic for higher frequencies, spin inertia would arise
and roughly corresponds to the area between the red and blue graphs apart from the factor of 1

ε3
.

Due to this linear low frequency behaviour, we introduce a linear function Jlf(ω) and split the
kernel function into a low and high frequency part,

α̃(ω) = − 2

π

∫ ∞
−∞

dε
ω2 [Jlf(ε) + J(ε)− Jlf(ε)]

ε [(ω + i0)2 − ε2]

= − 2

π

∫ ∞
−∞

dε
ω2Jlf(ε)

ε [(ω + i0)2 − ε2]︸ ︷︷ ︸
αlf

− 2

π

∫ ∞
−∞

dε
ω2 [J(ε)− Jlf(ε)]

ε [(ω + i0)2 − ε2]︸ ︷︷ ︸
αhf

. (2.40)

The low frequency term, αlf , gives us Gilbert damping back, as Jlf is Ohmic. For the high frequency
term, αhf , we define εc such that J(ε) ≈ Jlf(ε) for ε < εc. For ε > εc, we assume that ω � εc.
Exploiting these approximations in their respective regimes gives us

αhf(ω) = − 2

π

∫ εc

0
dε
ω2 [J(ε)− Jlf(ε)]

ε [(ω ± i0)2 − ε2]
− 2

π

∫ ∞
εc

dε
ω2 [J(ε)− Jlf(ε)]

ε [(ω ± i0)2 − ε2]

≈ 0 +
2ω2

π

∫ ∞
εc

dε
J(ε)− Jlf(ε)

ε3

= Iω2, (2.41)

where

I ≡ 2

π

∫ ∞
0

dε
J(ε)− Jlf(ε)

ε3
, (2.42)

is the spin inertia constant, independent of ω. Returning to time space, the Fourier transform of the
high frequeny part of the kernel function in (2.40) yields

αhf(t− t′) =

∫
dω

2π
e−iω(t−t′)Iω2

= −I∂2
t′δ(t− t′), (2.43)

and by filling this in Eq. (2.32), we obtain

Ṡ = S×H− α0S× Ṡ− IS× S̈. (2.44)

11



CHAPTER 2. SPIN INERTIA FROM HIGH FREQUENCY BATH MODES

So, unless the bath is Ohmic up to arbitrarily high frequencies, we find spin inertia I given by
Eq. (2.42). This constant roughly corresponds to the area between the low and high frequency part
of the bath spectral density function, apart from the factor of 1

ε3
. In the next chapter, we explicitly

consider a phonon bath and provide an expression for the spin inertia.

12



3. Phonon bath
In this chapter, we show our main results; spin inertia in ferromagnets in contact with a phonon
bath. For this, we use the results by Rückriegel and Kopietz [9] who did not consider spin inertia,
but wrote down the appropriate coupling between spins and phonons that we use as a starting
point. Rückriegel and Kopietz found, among other things, that the properties of dissipation are
determined by the phonon dynamics captured by the generalized LLG equation. We adapt their
generalized LLG equation to align with our own generalized LLG Eq. (2.31), enabling us to obtain
information about the coupling between the ferromagnet and the phonon bath. This information is
contained in the bath spectral density function J(ε), which we need to identify from the generalized
LLG equation. From J(ε) we are able to show spin inertia explicitly in example configurations
containing a ferromagnetic thin film in contact with a bulk phonon bath subject to an external
magnetic field.

3.1 Rederivation of the generalized Landau-Lifshitz-Gilbert equation

In this section, we rederive the results by Rückriegel and Kopietz [9], with the generalized LLG
equation as the destination. To arrive at the generalized LLG equation, we will calculate the spin
equations of motion from the Hamiltonian. This Hamiltonian models the spin dynamics in YIG
using a spin lattice coupled to a phonon bath subject to an external magnetic field, which can be
described by,

H(t) = Hs(t) +Hc +Hp. (3.1)

The magnetic part Hs(t) is described by an exchange interaction and Zeeman term,

Hs(t) = −1

2

∑
ij

∑
αβ

δαβJijŜ
α
i Ŝ

β
j −

∑
i

H(t) · Ŝi, (3.2)

where α, β are indices for the x-,y- or z-direction, Jij is the ferromagnetic exchange coupling, H(t)

is the time-dependent external magnetic field and Ŝi is the operator for the spin localized at site
Ri of a cubic lattice. Note that, unlike Rückriegel and Kopietz, we disregard dipolar interactions,
because we want to focus on the effects of the environment, and eventually develop a theory for a
macrospin. The elastic (phonon) part is described by

Hp(t) =
1

N

∑
kλ

ï
P−kλPkλ

2M
+
M

2
ω2
kλX−kλXkλ

ò
, (3.3)

where N is the number of sites, M is the effective mass of a unit cell, ωkλ is the dispersion of
the acoustic phonons with wavevector k and polarization λ, and Pkλ and Xkλ are the canonical
momentum and position operators associated with the bath modes. Finally, the magnetoelastic
coupling term is desribed by

Hc =
1

S2

∑
i

∑
αβ

BαβŜ
α
i Ŝ

β
i X

αβ
i , (3.4)

where Bαβ is the eα, eβ-directional magnetoelastic coupling constant and Xαβ
i is the eα-directional

strain tensor of the phonon displacements at site Ri,

Xαβ
i =

1

2

ñ
∂Xα(r)

∂rβ
+
∂Xβ(r)

∂rα

ô
r=Ri

. (3.5)

13



CHAPTER 3. PHONON BATH

The magnetoelastic coupling describes the coupling between the spin and the lattice degrees of
freedom. The coupling leads to interactions between magnons and phonons and it can be de-
scribed by a scattering process (see appendix E).

Now that we have the Hamiltonian of the system, we can calculate the equations of motion by
using the Heisenberg equations of motion. The Heisenberg equation for the spin operator Ŝi reads

d

dt
Ŝγi (t) =

i

~
î
H(t), Ŝγi (t)

ó
, (3.6)

for each component. Using the commutation relations for the spin operators,
î
Ŝj , Ŝk

ó
= i~εjklŜl,

we obtain the following for the commutator on the right hand side,î
H(t), Ŝγi

ó
= −i~

Ä
Ŝi(t)×H(t)

äγ − i~ÑŜi(t)×
∑
j

JijŜi(t)

éγ

(3.7)

+
i~
S2

∑
αβ

BαβX
αβ

Ñ
Ŝαi (t)

∑
k

εβγkŜ
k
i (t) +

∑
j

εαγjŜ
j
i (t)Ŝ

β
i (t)

é
. (3.8)

The third term can be rewritten using

− 2

S2

∑
αβ

BαβX
αβ
i

∑
j

εαγjS
j
i S

β
i =

Ä
Ŝi × F̂i

ä
γ

; (3.9)

− 2

S2

∑
αβ

BαβX
αβ
i

∑
k

εβγkŜ
α
i Ŝ

k
i =

Ä
F̂i × Ŝi

ä
γ
, (3.10)

where we have defined the magnetoelastic field,

F̂i(t) ≡ −
2

S2

∑
αβ

BαβeαX
αβ
i (t)Ŝβ, (3.11)

which describes the impact of the magnetoelastic coupling on the spin-dynamics. Plugging these
expressions into the Heisenberg Eq. (3.6) for the spin yields

˙̂
Si(t) = Ŝi(t)×

H(t) +
∑
j

JijSj

+
1

2

î
Ŝi(t)× F̂i(t)− F̂i(t)× Ŝi(t)

ó
. (3.12)

Similarly, we calculate the equations of motion for the canonical momentum and position operator
of the phonons. Next, we plug the solution into these equations of motion into the spin equations
of motion (3.12) to arrive at the generalized LLG equation of motion. The Heisenberg equations
for the canonical momentum and position operator respectively read

Ẋkλ = i [H(t), Xkλ] (3.13)

Ṗkλ = i [H(t), Pkλ] . (3.14)

By using the canonical commution relations [Xkλ, Pk′λ′ ] = iNδk,−kδλλ′ , [Xkλ, Xk′λ′ ] = 0 and
[Pkλ, Pk′λ′ ] = 0, we obtain the following for the right hand side of Eq. (3.13),

i [H(t), Xkλ] =
Pkλ

M
, (3.15)

from which the equation of motion for the canonical position follows,

Ẋkλ =
Pkλ

M
. (3.16)
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For the right hand side of (3.14) we get

i [H(t), Pkλ] = −Mω2
kλXkλ +MAkλ, (3.17)

where

Akλ(t) =
i

2MS2

∑
i

∑
αβ

e−ik·RiBαβ(kαβ · e−kλ)Ŝαi (t)Ŝβi (t), (3.18)

and

kαβ = kαeβ + kβeα. (3.19)

The equation of motion for the canonical momentum directly follows,

Ṗkλ = −Mω2
kλXkλ +MAkλ(t). (3.20)

By taking an additional time derivative of the equations of motions (3.16) and (3.20), we arrive at
the following second order differential equationÄ

∂2
t + ω2

kλ

ä
Xkλ = Akλ(t). (3.21)

For this differential equation, the general solution reads

Xkλ(t) = Xkλ(0) cos(ωkλt) +
Pkλ(0)

Mωkλ
cos(ωkλt) +

∫ t

0
dt′

sin [ωkλ(t− t′)]
ωkλ

dAkλ(t′)

dt′
, (3.22)

with the initial conditions of the phonon coordinates and momenta Xkλ(0) and Pkλ(0). We rewrite
the general solution to

Xkλ(t) = X̃kλ(0) cos(ωkλt) +
Pkλ(0)

Mωkλ
cos(ωkλt) +

Akλ(t)

ω2
kλ

−
∫ t

0
dt′

cos [ωkλ(t− t′)]
ω2
kλ

Akλ(t′), (3.23)

defining X̃kλ(0) through

X̃kλ(0) = Xkλ(0)− Akλ(0)

ω2
kλ

. (3.24)

Before plugging this solution into (3.12), we rewrite Eq. (3.12). We do this by approximating the
quantum mechanical spin operators Ŝi(t) by the classical vectors Si(t). This is justified, because
the saturation magnetization of YIG is quite high; the length S of the Si vectors is approximately
14. As a result, we may say

Si(t)× Fi(t) = −Fi(t)× Si(t). (3.25)

from which the following spin equation of motion follows,

Ṡi(t) = Ŝi(t)×

H(t) +
∑
j

JijSj

+ Si(t)× Fi(t). (3.26)

Comparing this equation to Eq. (2.31), we see that the magnetoelastic field strength Fi(t) must
contain information about the coupling of the spin to the bath. By plugging the solution (3.23) into
Eq. (3.11) we obtain,

Fi(t) =δhi(t) + h̄i(t)−
∫ t

0
dt′

∑
j

Gij(t, t
′)Ṡj(t

′), (3.27)
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where the first term is defined by

δhi(t) = − i

NS2

∑
αβ

Bαβeα
∑
kλ

eik·Ri(kαβ · ekλ)

[
X̃kλ(0) cos(ωkλt) +

Pkλ(0)

Mωkλ
sin(ωkλt)

]
Sβi (t).

(3.28)

The second term, the induced magnetic field h̄(t), is defined by

h̄(t) =
1

2S4

∑
αβ

∑
µν

eαBαβBµνS
β
i (t)

∑
j

Sµj (t)Sνj (t)
1

N

∑
kλ

(kαβ · ekλ)(kµν · e−kλ)

Mω2
kλ

(3.29)

and the third term contains the damping kernel function G with its components defined by

Gαβ(Ri −Rj , t− t′) =
1

NS2
BαzBβz

∑
kλ

eik·(Ri−Rj)(kαz · ekλ)(kβz · ekλ)
cos [ωkλ(t− t′)]

Mω2
kλ

. (3.30)

In the end we find the following generalized LLG equation

Ṡ(Ri, t) = S(Ri, t)×

H(t) + h(Ri, t) +
∑
j

JijS(Rj , t)

 (3.31)

− S(Ri, t)×
∫ t

0
dt′

∑
j

G(Ri −Rj , t− t′)Ṡ(Rj , t
′), (3.32)

by plugging Eq. (3.27) into Eq. (3.12), where we have defined hi(t) = h̄i(t) + δhi(t). We disregard
hi(t) for the rest of the thesis, as it does not have an effect on the spin inertia.

3.2 Extracting bath spectral density function from gLLG

To get information about spin inertia, extracting the bath spectral density function would be the
next step, because we have found the generalized Landau-Lifshitz-Gilbert Eq. (3.31) for the phonon
bath. However, this equation is not of the same form as (2.32). The latter is formulated for a
macrospin while (3.31) is formulated for a lattice of spins. We wish to approximate this system
with a macrospin. This is realised by Fourier transforming (3.31), which will result in an expres-
sion containing S(k). Here k is the wavevector of the precessing magnetization. We only allow for
homogeneous precession, i.e., k = 0, in the macrospin approximation.

The Fourier transform of the left hand side of (3.31) is∑
i

e−iRi·kṠ(Ri, t) ≡ Ṡ(k, t). (3.33)

Assuming that Jij only depends on the distance between spins Ri −Rj , the third term of the right
hand side of (3.31) becomes∑

ij

e−iRi·kS(Ri, t)× J(Ri −Rj)S(Rj , t) =
∑
k′

1

N
S(k′, t)× J(k− k′)S(k− k′, t). (3.34)

In the macro spin approximation, we are only interested in zero wavevectors, i.e., k = k′ = 0.
However, there is no exchange interaction between different directions; J(Ri−Rj) is proportional
to the identity matrix. As a result, we end up with a term S(t) × S(t) = 0. This is expected, be-
cause the exchange interaction takes place among different spins that are misaligned, while in the
macrospin approximation the entire spin system can be regarded as just one (macro)spin.
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Finally, the fourth term of (3.31) becomes

−
∑
i

e−iRi·kS(Ri, t)×
∫ t

0
dt′

∑
j

G(Ri −Rj , t− t′)Ṡ(Rj , t
′)

≈−
∫ t

0
dt′

1

N
S(k = 0, t)× G(k = 0, t− t′)Ṡ(k = 0, t′), (3.35)

in the macrospin limit. We calculate the damping kernel with

G(k = 0, t− t′) =
∑
i

G(Ri, t− t′), (3.36)

from which we find the following expression for the generalized LLG equation for phonon baths,

Ṡ(k = 0, t) = S(k = 0, t)×H(t)− S(k = 0, t)×
∫ t

0
dt′

1

N

∑
i

G(Ri, t− t′)Ṡ(k = 0, t′). (3.37)

As all wavevectors are zero, we will drop the k dependence in our notation. The final step, before
we can compare equations (3.31) and (2.32), is to apply partial integration on the second term of
Eq. (3.31),

−
∫ t

0
dt′

∑
i

1

N
G(Ri, t− t′)Ṡ(t′)

=

∫ ∞
−∞

dt′
1

N

(
δ(t− t′)

∑
i

G(Ri, t− t′) + Θ(t− t′)
∑
i

Ġ(Ri, t− t′))
)
S(t′) (3.38)

from which it follows, by comparison, that α(t− t′) equals

α(t− t′) = − 1

N
δ(t− t′)

∑
i

G(Ri, t− t′)−
1

N
Θ(t− t′)

∑
i

Ġ(Ri, t− t′). (3.39)

To extract the bath spectral density function, which contains information about Gilbert damping
and spin inertia, we write this kernel function in the form of Eq. (2.34) using Fourier transforma-
tions,

ααβ(ω) = − 1

N
G(t = 0)− 1

N

∑
i

∑
kλ

BαzBβz
MNS2

eik·Ri(kαz · ekλ)(kβz · e−kλ)
1

(ω + i0)2 − ω2
kλ

(3.40)

where we have used that∫
dω

2π
e−iωt

1

(ω + i0)2 − ε2
=

∫
dω

2π
e−iωt

1

ω + i0 + ε

1

ω + i0− ε

=

{
− eiεt

2iε + e−iεt

2iε t > 0

0 t < 0

= −Θ(t)
sin(εt)

ε
. (3.41)

The result of (3.41) can be proven using contour integration, with the concerning poles depicted
in Fig. 3.1. Also, we may disregard the − 1

NG(t = 0) term in (3.40), as it is constant in ω and hence
will not contribute to Eq. (2.32); a similar argument has been used in Eq. (2.39).

Now, to establish the connection between Eq. (3.40) and (2.34), we define the bath spectral density
function J(ε) to be

Jαβ(ε) =
π

N

∑
i

∑
kλ

2BαzBβz
MNS2ωkλ

eik·Ri(kαz · ekλ)(kβz · e−kλ)δ(ε− ωkλ). (3.42)
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Pluggin this back into Eq. (2.34) returns Eq. (3.40),

ααβ(ω) = −
∫

dε

π

ε

(ω + i0)2 − ε2
π

N

∑
i

∑
kλ

BαzBβz
MNS2ωkλ

eik·Ri(kαz · ekλ)(kβz · e−kλ)δ(ε− ωkλ)

= − 1

N

∑
i

∑
kλ

BαzBβz
MNS2

eik·Ri(kαz · ekλ)(kβz · e−kλ)
1

(ω + i0)2 − ω2
kλ

. (3.43)

The bath spectral density function allows us to calculate the Gilbert damping and spin inertia. The
spin inertia constant I will have a tensorial form, as the Gilbert damping ααβ(ω) has a tensorial
form. In the next section, we discuss a case where the spin inertia vanishes and two more cases
where it does not.

−i0

−ε ε

Im(ω)

Re(ω)

t < 0

t > 0

Figure 3.1: The red, solid contour is for t > 0 and the poles of the integral are then situated at ω = ε− i0 and
ω = −ε− i0. The red, dashed contour is for t < 0 and then the integral has no poles.

3.3 Existence spin inertia

In this section, we show a special case leading to vanishing spin inertia, and two cases showcasing
spin inertia. When considering a 3D spin system in contact with a 3D phonon bath, we will demon-
strate that there is no spin inertia from the bulk. When considering a 2D spin system in contact with
a 3D phonon bath, on the other hand, will will show that there is, indeed, spin inertia. Finally, for
two different realisations of this system, we provide an explicit calculation of spin inertia appearing
in the inertial LLG equation, which is the main result of this thesis.

3.3.1 3D spin system in contact with 3D phonon bath

In previous section 3.2, we found that in a 3D spin system in contact with a 3D phonon bath results
in a bath spectral density function as in Eq. (3.42). The sum over i runs over all the lattice sites in
the 3D lattice. Note the following identity∑

i

eik·Ri =
∑
m,n

eikxnxa+ikynya+ikznza

= Nxδkx,0Nyδky ,0Nzδkz ,0, (3.44)
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where m,n are integers, and Nx, Ny and Nz denote the number of lattice sites in the x, y and z
direction respectively. Filling this identity into (3.42) results in J(ε) = 0. This result can also be
obtained from a physical argument. The bath spectral density function scales with the phonon
momentum k. We find that this momentum should be the sum of the magnon momenta in the scat-
tering process due to momentum conservation (see Fig. E.1 in appendix E). However, the magnon
momenta should be zero, because of the macrospin approximation, and thus the phonon momenta
should also be zero. As a result, J(ε) vanishes. Then, we must conclude that there is no Gilbert
damping and spin inertia due to a phonon bath from the bulk in the macrospin approximation,
which follows directly from Eq. (2.39) when filling in the vanishing bath spectral density function.

3.3.2 Spin inertia for a magnetic plate perpendicular to the magnetic field

We saw that, in the macrospin approximation, the bath spectral density vanishes from the bulk. The
bath spectral density function does not vanish when reducing the spin system to just a 2D plane
perpendicular to the external magnetic fields. The new situation is depicted in Fig. 3.2.

Ferromagnet

Phonon bath

Phonon bath

z

y
x

H

L

Figure 3.2: Schematic visualisation of the system we consider. The ferromagnet is situated on the xy-plane and
is in contact with the bulk phonon bath subject to an external magnetic field in the z-direction.

Considering a 2D spin system instead of a 3D one, has consequences for the bath spetral density
function. The sum in the bath spectral density function, now, runs over just the lattice sites of the
spin; the xy-plane. As a result, we use∑

nx,ny

eikxnxa+ikynya = Nxδkx,0Nyδky ,0 . (3.45)

Here Nx and Ny denote the number of spins in the x and y direction respectively. For the bath
spectral density function in Eq. (3.42) we obtain

Jαβ = π
∑
kzλ

2BαzBβzNxNy

MS2N2ωkλ
(kαz · ekλ)(kβz · e−kλ)δ(ε− ωkλ), (3.46)

where we sum over the phonon momenta kz. This could have been predicted from physical argu-
ments as well. When considering a magnetic plate in the xy direction, the confinement in the z
direction is strict. As a result of Heisenberg’s uncertainty principle, the phonons can take all the
momenta in the z direction.

Now, we will calculate the bath spectral density function (3.46). In a simple cubic lattice consider-
ing nearest and next to nearest neighbour coupling (see Fig. 3.3), the dispersion in the z direction
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is known [18],

ωk1,2 =

 
4K2

M

∣∣∣∣sinÅ1

2
kza

ã∣∣∣∣ , (3.47)

ωk3 =

 
4K1 + 8K2

M

∣∣∣∣sinÅ1

2
kza

ã∣∣∣∣ , (3.48)

where M is the effective mass of each lattice site, K1 is the force constant for first neighboring
interactions, and K2 is the force constant for second neighboring interactions. The third dispersion
corresponds to the longitudinal polarization and the other two the transversal polarizations.

K1 K2

Figure 3.3: Depiction of nearest-neighbour (force constant K1) and next-to-nearest-neighbour (force constant
K2) interactions in a simple cubic lattice.

Using the fact that kx = ky = 0, we obtain

kαz =

{
kzeα α 6= z

2kzez α = z

= (1 + δα,z) kzeα. (3.49)

The polarization vectors are given by [19]

ek1 = (1, 0, 0)

ek2 = (0, i, 0)

ek3 = (0, 0, i)

e−k1 = (1, 0, 0)

e−k2 = (0,−i, 0)

e−k3 = (0, 0,−i),
(3.50)

where the third one corresponds to the longitudinal polarization and the other to the transversal
ones. Explicitly calculating the bath spectral density in (3.46), by filling in the dispersion and
polarization vectors, gives

Jxx(ε) = π
∑
kz

B2
⊥NxNy

MS2N2
»

4K2
M

∣∣∣sinÄ1
2kza

ä∣∣∣k2
zδ

(
ε−
 

4K2

M

∣∣∣∣sinÅ1

2
kza

ã∣∣∣∣) ; (3.51)

Jyy(ε) = π
∑
kz

B2
⊥NxNy

MS2N2
»

4K2
M

∣∣∣sinÄ1
2kza

ä∣∣∣k2
zδ

(
ε−
 

4K2

M

∣∣∣∣sinÅ1

2
kza

ã∣∣∣∣) ; (3.52)

Jzz(ε) = 4π
∑
kz

B2
‖NxNy

MS2N2
»

4K1+8K2
M

∣∣∣sinÄ1
2kza

ä∣∣∣k2
zδ

(
ε−
 

4K1 + 8K2

M

∣∣∣∣sinÅ1

2
kza

ã∣∣∣∣) , (3.53)

for the diagonal terms. The off diagonal terms vanish. Note that there are no phonon states
with frequency larger than the Debye frequency ωD = 2

»
K
M , and no phonon states with negative
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frequency. As a result, Jαα(ε) vanishes in those frequency regions. Defining the continuously

differentiable function h(k) = ε− 2
Ä
K
M

ä 1
2 sin

Ä
1
2ka
ä
, we see that

δ(h(k)) =
∑
n

δ (k − kn)∣∣∣dhdk (kn)
∣∣∣ , (3.54)

with kn such that h(kn) = 0. For 0 < ε < 2
»

K
M the only solutions to h(kn) = 0 are

k0 = ±2

a
sin−1

[
1

2

Å
M

K

ã 1
2

ε

]
. (3.55)

The derivative term in (3.54) equals,

∣∣∣∣dhdk (k0)

∣∣∣∣ = a

Å
K

M

ã 1
2

cos

Å
1

2
k0a

ã
. (3.56)

Using this, and after replacing the sum with an integral in the continuum limit, the bath spectral
density function becomes

Jxx(ε) = Jyy(ε) =
LB2
⊥NxNy

MS2N2ε

{
2

a
sin−1

[
1

2

Å
M

K2

ã 1
2

ε

]}2
1

a
»

K2
M −

1
4ε

2
(3.57)

Jzz(ε) =
4LB2

‖NxNy

MS2N2ε

{
2

a
sin−1

[
1

2

Å
M

K1 + 2K2

ã 1
2

ε

]}2
1

a
»

K1+2K2
M − 1

4ε
2
. (3.58)

To know the low frequency behaviour, we expand the bath spectral density and retain the lowest
order terms

Jxx(ε) = Jyy(ε) =
LB2
⊥NxNy

MS2N2ε

[
1

a

 
M

K2
ε+O(ε3)

]2
 1

a
»

K2
M

+O(ε2)


≈ LB2

⊥NxNy

S2a3N2

√
M

K3
2

ε; (3.59)

Jzz(ε) =
LB2
‖NxNy

MS2N2ε

[
1

a

 
M

K1 + 2K2
ε+O(ε3)

]2
 1

a
»

K1+2K2
M

+O(ε2)


≈
LB2
‖NxNy

S2a3N2

√
M

(K1 + 2K2)3
ε (3.60)

and see that the bath spectral densities are linear for low frequencies which indicates that we
recover Gilbert damping. The bath spectral density functions for each direction behave similarly.
To see how exactly they behave we have plotted the functions

J(x) = C

î
sin−1(x)

ó2
x
√

1− x2
, (3.61)

Jlf(x) = Cx, (3.62)

with constant C =
2B2LNxNy
a3KS2N2 and dimensionless energy x = ε

2
√

K
M

in Fig. 3.4. We have dropped

the tensorial indices, but C and J(x) are still tensors. For Jxx and Jyy we have that K = K2 and
for Jzz we have K = K1 + 2K2. As we can see in Fig. 3.4, the bath spectral density function has a
Van Hove singularity [20] at the Debye frequency and vanishes above the Debye frequency. Due to
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Figure 3.4: In blue the bath spectral density J/C as a function of the dimensionless frequency ε/ε0, with

ε0 = 2
√

K
M

the Debye frequency and C =
2B2LNxNy

a3KS2N2 and in red the low frequency approximation.

this non-linear high frequency behaviour, there must be spin inertia. In order to calculate it we use
Eq. (2.42) and see that

I ≡ 2

π

∫ ∞
−∞

dε
J(ε)− Jlf(ε)

ε3

=
1

2π
C

Å
K

M

ã−1
∫ 1

0

[sin−1(x)]2

x
√

1−x2 − x
x3

dx+

∫ ∞
1

−1

x2
dx


=

1

2π
C

Å
K

M

ã−1
ñ∫ π/2

0

x2 − sin2(y) cos(y)

sin4(x)
dx− 1

ô
, (3.63)

where we have used trigonometric identities to rewrite the integral. We calculate this integral
numerically,

I =
1

2π
C

Å
K

M

ã−1

[1.928...− 1]

≈ C

2π

Å
K

M

ã−1

. (3.64)

From Eq. (2.38) we see that the Gilbert damping α0, a tensor as well, equals C/2
»

K
M , as we have

Jlf(ε) =
C

2
»

K
M

ε, (3.65)

for the low frequency part of the bath spectral density function. For the spin inertia we then obtain
the main result of our thesis,

Iαβ ≈ ααβ0

π

 
M

K
, (3.66)

showing spin inertia for a ferromagnetic thin film in contact with a bulk phonon bath. Here,
»

M
K

has the dimension of time and is often called the angular momentum relaxation time in litera-
ture [2,5,6].
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Regarding spin inertia, the setup of the system play a crucial role. Consider, for example, the length
of the lattice L (see Fig. 3.2). The spin inertia tensor I scales, just as the Gilbert damping tensor,
with L. This could be interesting for experimental purposes. A typical experimental setup, which
would mirror our theory in this subsection, consists of a thin Yttrium Iron Garnet (YIG) film in
contact with a bulk Gadolinium Gallium Garnet (GGG) substrate subject to an external magnetic
field. The YIG film would correspond to the 2D ferromagnet and the GGG substrate to the 3D
phonon bath. Increasing the length of the GGG substrate should lead to an increase in spin inertia
and Gilbert damping.

In the next subsection, we give another example why the specific setup of the systems is important.

3.3.3 Spin inertia for a magnetic plate in plane of the magnetic field

In this subsection, we consider the magnetic plate to be in plane to the external magnetic field (see
Fig. 3.5), which gives slightly different results.

Ferromagnet

Phonon bath Phonon bath

z

y
x

H

L

Figure 3.5: Schematic visualisation of the system we consider. The ferromagnet is situated on the xz-plane and
is in contact with the bulk phonon bath with the external magnetic field in the z-direction.

Now, we use the following identity,∑
m,n

eikxma+ikyna = Nxδkx,0Nzδkz ,0 , (3.67)

because we consider the magnetic plate to be on the xz-plane. Here Nx and Nz denote the number
of spins in the x and z direction respectively. This results in the bath spectral density function,

Jαβ = π
∑
kλ

BαzBβzNxNz

MS2N2ωkzλ
(kαz · ekλ)(kβz · e−kλ)δ(ε− ωkλ), (3.68)

where we sum over the phonon momenta kz. The dispersion relation in this direction is given
by [18],

ωk2 =

 
4K1 + 8K2

M

∣∣∣∣sinÅ1

2
kza

ã∣∣∣∣ , (3.69)

ωk1,3 =

 
4K2

M

∣∣∣∣sinÅ1

2
kza

ã∣∣∣∣ , (3.70)
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where the first one corresponds to the longitudinal polarization and the other two the transversal
polarizations. Using the fact that kx = kz = 0, we obtain

kαz = δαykαez. (3.71)

For the polarization vectors we know [19]

ek1 = (0, 0,−1)

ek2 = (0, i, 0)

ek3 = (i, 0, 0)

e−k1 = (0, 0,−1)

e−k2 = (0,−i, 0)

e−k3 = (−i, 0, 0),

(3.72)

where the second one corresponds to the longitudinal polarization and the other to the transversal
ones. Explicitly calculating bath spectral density gives

Jxx(ε) = 0 (3.73)

Jyy(ε) = π
∑
ky

B2
⊥NxNz

MS2N2
»

4K2
M

∣∣∣sinÄ1
2kza

ä∣∣∣k2
yδ

(
ε−
 

4K2

M

∣∣∣∣sinÅ1

2
kza

ã∣∣∣∣) (3.74)

Jzz(ε) = 0, (3.75)

for the diagonal terms. The off diagonal terms vanish. Using similar calculations as for the xy plane
we obtain

Jxx(ε) = 0 (3.76)

Jyy(ε) =
LB2
⊥NxNz

MS2N2ε

{
2

a
sin−1

[
1

2

Å
M

K2

ã 1
2

ε

]}2
1

a
»

K2
M −

1
4ε

2
(3.77)

Jzz(ε) = 0, (3.78)

which lead to the following expression for the Gilbert damping tensor

ααβ0 =

{
B2LNxNzM1/2

a3K3/2S2N2 if α = y, β = y

0 else
, (3.79)

and for the spin inertia tensor

Iαβ ≈ ααβ0

π

 
M

K
. (3.80)

The difference regarding the spin inertia (and Gilbert damping) with respect to the setup of 3.3.2
is that there is no spin inertia in the x and the z direction, confirming that the specific setup of the
system is important. Also, this setup could be interesting for experiments, as only the direction of
the external magnetic field has to be changed with respect to the setup in 3.3.2.
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4. Discussion, conclusion and outlook
In this thesis, we calculated the spin inertia for the case of a ferromagnetic thin film in contact with
a bulk phonon bath. Our approach started by rederiving the result from Gaspar Quarenta’s mas-
ter’s thesis [7]; the high-frequency bath modes of the environment can lead to spin inertia, which
showcases itself in the inertial LLG equation. The rederivation involved the Keldysh formalism to
formulate the generalized Landau-Lifshitz-Gilbert equation containing the kernel function α(t− t′).
The kernel function is dependent on the bath spectral density function J(ε), which contains all the
information regarding the coupling of the spin system to its environment. From this function, we
found an expression for the spin inertia I. Our findings indicate the presence of spin inertia for any
non-Ohmic expression of the bath spectral density function.

To arrive at the main result of this thesis, we considered the phonon bath to get an explicit ex-
pression for the bath spectral density function. To obtain this expression, we calculated the kernel
function α(t − t′) using the approach from Rückriegel and Kopietz [9]. We have predicted that
there is spin inertia in magnetic systems in contact with a phonon bath. Furthermore, we explicitly
calculated the spin inertia tensor in a two dimensional ferromagnetic system coupled to a three
dimensional phonon bath perpendicular to the external magnetic field, and found that the inertial
constant scales linearly with the Gilbert damping. We also found spin inertia in a similar system,
but with an in-plane external magnetic field, leading to slightly different results; there is only spin
inertia perpendicular to the magnetic plate.

Despite the promising results, we have some matters to discuss. For the first point, we have to recall
that spin inertia is an effect originating from the higher frequency modes in the environment. We
have explicitly seen that a linear dispersion will only lead to Gilbert damping. Spin inertia arises
from the non-linear behaviour of the phonon dispersion for higher frequencies. This non-linear
phonon dispersion is adapted from Ref. [18], where the dispersion is obtained from a lattice model
(high-frequency or short-wavelength phonons) in a simple cubic lattice. However, our theory is
built upon the work by Rückriegel and Kopietz [9]. Although they worked with a lattice model as
well, they assume the long-wavelength limit for the phonon system. Therefore, it is unclear if the
magnetoelastic coupling and the phonon dispersion we used is compatible. We present two ways
of proceeding forward. The first way is to determine the phonon dispersion for higher frequencies
in the continuum model. The second way is to rederive the results by Rückriegel and Kopietz [9]
for a full lattice model for the spins and the lattice vibrations including a lattice version of the
magnetoelastic coupling.

The second topic that needs to be discussed involves one of the approximations we made. It is the
macrospin approximation and it simplified our calculations substantially for the case of a ferromag-
netic thin film in contact with a bulk phonon bath. If the external magnetic field is homogeneous,
the macrospin approximation is valid. However, it might be possible to consider a larger thin film
by regarding multiple spins. One does this by starting from the non-local generalized Landau Lif-
shitz Gilbert equation [21].

The final topic regards the possibility to pursue experiments as a result of the theoretical develop-
ments made in this thesis. In this thesis, we have emphasized the role of the specific setup of the
systems. Recall that we provided explicit calculations of the spin inertia in the example of a two
dimensional ferromagnet in contact with a three dimensional phonon bath in section 3.3. This can
be realised by placing a thin Yttrium Iron Garnet (YIG) film in a bulk Gadolinium Gallium Garnet
substrate (GGG) similar to the setup in Ref. [22]. Here YIG contains the magnetic system and the
GGG acts as the phonon bath. One could verify if changing the external magnetic field from per-
pendicular to an in-plane magnetic field has consequences for the spin inertia, as we have predicted
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theoretically. Also, one could verify if spin inertia scales linearly with the thickness of the phonon
baths.

A slightly different configuration would consist of a ferromagnetic thin film in contact with a bulk
phonon bath only on top of the film. Such a configuration is better feasable experimentwise. The-
oretically, however, one needs to be more careful. Defining the phonons in Fourier space is more
complicated, since the phonon lattice is only defined on the upper half volume. If one, nevertheless,
still manages to define the phonons, one can follow the calculations in Ch. 3 to obtain an expression
for the spin inertia. We would expect the difference to be a factor 1

2 with respect to the full phonon
bath case. On the thin film only phonons with positive wavevector would have been created and
implementing this into our calculations would lead to an inertial constant half as big as the inertial
constant for the case of a bulk phonon bath both on top and below of the ferromagnetic thin film.

Finally, a natural question to ask is if spin inertia could also arise from an electron bath as well.
The electron bath would originate from the electrons in the ferromagnet. Developments in this area
could help to gain a more deeper understanding of spin inertia as was observed in [5,6]. Moreover,
transferring the underlying theory behind spin inertia to antiferromagnets would be interesting as
well.
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A. Derivation spin dependent part Keldysh parti-
tion function

In this appendix, we will rederive the spin dependent part apparent following Keldysh partition
function

Z =

∫
Dg

∏
α

∫
Dxα

∫
Dpα exp

[
i

∮
K

dt
(
− i〈ġ|g〉+ 〈g|H · Ŝ|g〉 − γα〈g|Ŝ · ẋ|g〉

+ pαẋα −
p2
α

2m
− mω2

2
x2
α

)]
, (A.1)

from the Hamiltonian (2.1) and for notational reasons we define the effective field

H′ = H− γαẋ. (A.2)

We rederive the spin part of Eq. (A.1) and do this analogously to Ref. [16], but in the Keldysh
formalism in its path integral form. The definition of the Keldysh path integral is

Z =
Tr{ÛC ρ̂(−∞)}

Tr{ρ̂(−∞)}
. (A.3)

For the trace we have

Tr{Ô} = C

∫
dg 〈g|Ô|g〉, (A.4)

and note that

1̂S = C

∫
dgj |gj〉〈gj |, (A.5)

where 1̂S is the unit operator and C comes from the Haar measure. Following the standard path-
integral construction, we split the time evolution operator in (A.3) into N steps given by

〈gj |Û±δt |gj−1〉 = 〈gj | exp
Ä
∓iĤδt

ä
|gj−1〉

≈ 〈gj |1∓ iĤδt|gj−1〉, (A.6)

where δt is the length of the step. Working it out and re-exponentiating it gives us

〈gj |1∓ iĤspinδt|gj−1〉 = 〈gj |1∓ iH′ · Ŝδt|gj−1〉
= 〈gj |gj−1〉 ∓ 〈gj |iH′ · Ŝδt|gj−1〉
= 1− 〈gj |gj〉+ 〈gj |gj−1〉 ∓ iδt〈gj |H′ · Ŝ|gj−1〉
≈ exp

Ä
〈gj |gj−1〉 − 〈gj |gj〉 ∓ iδt〈gj |H′ · Ŝ|gj−1〉

ä
. (A.7)

For the forward contour, the matrix elements then read

〈gi+1|e+iH′·Ŝδt |gi〉 ≈ exp
Ä
〈gi+1|gi〉 − 〈gi|gi〉+ iδt〈gi+1|H′ · Ŝ|gi〉

ä
= exp

Ç
iδt

Ç
−i〈gi+1|gi〉 − 〈gi|gi〉

δt
+ 〈gi+1|H′ · Ŝ|gi〉

åå
, (A.8)

and for the backward contour, the matrix elements read

〈gi|e−iH
′·Ŝδt |gi+1〉 ≈ exp

Ä
〈gi|gi+1〉 − 〈gi+1|gi+1x〉 − iδt〈gi+1|H′ · Ŝ|gi〉

ä
= exp

Ç
iδt

Ç
−i〈gi|gi+1〉 − 〈gi+1|gi+1〉

δt
+ 〈gi|H′ · Ŝ|gi+1〉

åå
. (A.9)
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In the limit of N → ∞, we then obtain the spin part apparent in the following Keldysh partition
function,

Z =

∫
Dg

∏
α

∫
Dxα

∫
Dpα exp

[
i

∮
K

dt
(
− i〈ġ|g〉+ 〈g|H · Ŝ|g〉 − γα〈g|Ŝ · ẋ|g〉

+ pαẋα −
p2
α

2m
− mω2

2
x2
α

)]
, (A.10)

which is the desired result.
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B. Derivation harmonic oscillator part Keldysh par-
tition function

Similar to appendix A we rederive the harmonic oscillator part of Eq. (A.1). The one operator we
should consider for the path integral is

1̂ =

∫
dxj+1dpj |xj+1〉〈pj |eipjxj+1 , (B.1)

and for the trace we use

Tr{ÛC ρ̂} =

∫
dxdp eipx〈p|ÛC ρ̂|x〉. (B.2)

We plug in Eq. (B.1) N times into the evolution operator. For the matrix elements on the forward
contour, we have

〈pj |Ûδt |xj〉 ≈ e−ipjxj exp

Ç
−iδt

Ç
p2

2m
+
mω2

2
x2

åå
, (B.3)

and for the matrix elements on the backward contour, we have

〈pj | ˆU−δt |xj〉 ≈ e−ipjxj exp

Ç
iδt

Ç
p2

2m
+
mω2

2
x2

åå
. (B.4)

The harmonic oscillator part apparent in Eq. (A.1) then becomes

Z = lim
N→∞

∫ N∏
i=0

dxidpidp
′
idx
′
i exp

[
iδt

N−1∑
j=0

(
pjxj+1 − pjxj

δt
−

p2
j

2m
− mω2

2
x2
j

)

+ iδt

N−1∑
i=0

(
pjxj−1 − pjxj

δt
+

p2
j

2m
+
mω2

2
x2
j

)]

=

∫
DxDp exp

ñ
i

∮
K
dt

Ç
pẋ− p2

2m
− mω2

2
x2

åô
, (B.5)

which is the desired result.
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C. Integrating out the momentum and position
fields

Now, we integrate out the momentum field in the harmonic oscillator part of Keldysh partition
function (Ref. [15] Eq. (2.22))

ZHO =

∫
DxDp exp

ñ
i

∮
K

dt

Ç
pẋ− p2

2m

åô
exp

ñ
−i
∮
K

dt

Ç
mω2

2
x2

åô
=

∫
Dx exp

ñ
i

∮
K

dt

Ç
mẋ2

2

åô
exp

ñ
−i
∮
K

dt

Ç
mω2

2
x2

åô
=

∫
Dx exp

ñ
i

∮
K

dt

Ç
mẋ2

2
− mω2

2
x2

åô
, (C.1)

from which we read

S =

∮
K

dt

ñ
−i〈ġ|g〉+BS − γ

∑
α

Sxα +
∑
α

mα

2
(ẋ2
α − ω2

αx
2
α)

ô
. (C.2)

Subsequently, we split the fields xα and S into two components, x+
α (t) and x−α (t), defined on the

forward and backward branches of the contour respectively. For convenience, we define

SHO ≡
∮
K

dt

ñ
−γ

∑
α

Sxα +
∑
α

mα

2
(ẋ2
α − ω2

αx
2
α)

ô
, (C.3)

which then becomes

SHO =

∫ ∞
−∞

dt

ñ
−γ

∑
α

(S+x+
α − S−x−α ) +

∑
α

mα

2
((ẋ+

α )2 − (ẋ−α )2 − ω2
α(x+

α )2 + ω2
α(x−α )2)

ô
. (C.4)

The Keldysh rotation is defined as

xcl(t) =
1

2

î
x+(t) + x−(t)

ó
; (C.5)

xq(t) =
1

2

î
x+(t)− x−(t)

ó
, (C.6)

and applying this to the action in Eq. (C.4) yields

SHO =

∫ ∞
−∞

dt

ñ
−γ

∑
α

Sσ̂1xα +
∑
α

2mα

Ä
ẋclẋq − ω2

αx
clxq
äô

=

∫ ∞
−∞

dt

ñ
−γ

∑
α

ST σ̂1xα +
∑
α

2mα

Ä
−xclẍq − ω2

αx
clxq
äô

≡ Scoupl + SHO1, (C.7)

where we have used partial integration in the second line. From Ref. [15], we see that

SHO1 =
∑
α

2mαx
TG−1

α x, (C.8)

where

x ≡
Ç
xcl

xq

å
; G−1

α =

Ç
0 [G−1]A

[G−1]R [G−1]K

å
. (C.9)
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The retarded and advanced matrix components are given by

1

2
[G−1

α ]R/A = mα(i∂t ± i0)2 −mαω
2
α. (C.10)

and in the Fourier representation by

G−1
α (ω) =

mα

2
(ω2 − ω2

α). (C.11)

The inverse of (C.9) reads

Ĝαβ(t, t′) =

Ç
GK(t, t′) GR(t, t′)
GA(t, t′) 0

å
, (C.12)

and in the Fourier representation the advanced and retarded part yield

GR/A(ε) =
1

2

1

(ε± i0)2 − ω2
α

. (C.13)

The fluctuation dissipation theorem [15] implies

GK(ε) = coth
ε

2T

î
GR(ε)−GA(ε)

ó
, (C.14)

for the Keldysh part of the Greens function. For the total action, we then write

S =

∮
K

dt

ñ
−i〈ġ|g〉+BS − γ

∑
α

ST σ̂1xα +
∑
α

2mαx
TG−1

α x

ô
. (C.15)

Integrating out the position fields gives us

S =

∮
K

dt

ñ
−i〈ġ|g〉+BS +

∑
α

STi G
−1
ij Sj

ô
=

∮
K

dt

ï
−i〈ġ|g〉+BS +

∮
K

dt′ S(t)Tα(t− t′)S(t′)

ò
, (C.16)

with

α(t− t′) =

Ç
0 αA

αR αK

å
(t−t′)

=
∑
α

γ2
α

4

Ç
0 GAα
GRα GKα

å
(t−t′)

, (C.17)

which is the desired result.
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D. Euler angles
The spin coherent state dependent part of the action reads

Sg =

∮
K

dt[−i〈ġ|g〉+ 〈g|H · Ŝ|g〉], (D.1)

and we want to write this down in the Euler angle representation. We have

|g(φ, θ, ψ)〉 ≡ e−iφŜ3e−iθŜ2e−iψŜ3 | ↑〉

= e−iφŜ3e−iθŜ2 | ↑〉e−iψS , (D.2)

which means that we can ignore the e−iψŜ3 in the spin coherent state. For the time derivative of
the spin coherent state, we get

〈ġ| = 〈↑ |
[
eiθŜ2(iφ̇Ŝ3)eiφŜ3 + (iθ̇Ŝ2)eiθŜ2eiφŜ3

]
. (D.3)

Carrying out the inner product yields

〈ġ|g〉 = 〈↑ |
[
eiθŜ2(iφ̇Ŝ3)eiφŜ3 + (iθ̇Ŝ2)eiθŜ2eiφŜ3

] [
e−iφŜ3e−iθŜ2

]
| ↑〉e−iψS

= 〈↑ |
[
eiθŜ2(iφ̇Ŝ3)e−iθŜ2

]
| ↑〉+ (iθ̇)〈↑ |Ŝ2| ↑〉

= (iφ̇)〈↑ |Ŝ3 cos(−θ) + Ŝ2 sin(−θ)| ↑〉
= iφ̇ cos(θ)S. (D.4)

Now, we choose a different gauge (see Refs. [23,24]),∫
dt
î
Sφ̇ cos(θ)

óq
= −

∫
dt
î
Sφ̇(1− cos(θ))

óq
, (D.5)

and this choice has no physical impact on the theory. We obtain the following action

S =

∫
dt
î
−Sφ̇(1− cos θ) + H · S

óq − ∫ dt

∫
dt′ST (t)α(t− t′)S(t′). (D.6)

Also, we want to give the other parts in terms of Euler angles. Recall the spin in terms of Euler
angles (Fig 2.3). For the forward and backward part of the spin this, we have

S+ =

Ö
sin θ+ cosφ+

sin θ+ sinφ+

cos θ+

è
, S− =

Ö
sin θ− cosφ−
sin θ− sinφ−

cos θ−

è
. (D.7)

The classical and quantum components of the Euler angles are, similarly to the spin, defined by

θ± ≡ θc ±
θq
2

; (D.8)

φ± ≡ φc ±
φq
2
, (D.9)

and using trigonometric identities we obtain for the quantum components of the spin that

Sqx = 2 cos θc sin
θq
2

cosφc cos
φq
2
− 2 sin θc cos

θq
2

sinφc sin
φq
2

; (D.10)

Sqy = 2 sin θc cos
θq
2

cosφc sin
φq
2

+ 2 cos θc sin
θq
2

sinφc cos
φq
2

; (D.11)

Sqz = −2 sin θc sin
θq
2
. (D.12)
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For the classical part of the spin, we obtain

Scx = sin θc cos
θq
2

cosφc cos
φq
2
− cos θc sin

θq
2

sinφc sin
φq
2

; (D.13)

Scy = sin θc cos
θq
2

sinφc cos
φq
2

+ cos θc sin
θq
2

cosφc sin
φq
2

; (D.14)

Scz = cos θc cos
θq
2
. (D.15)

Rewriting the first part of the action (D.6) in terms of the classical components φc, φq, θc and θq
yields,∫

dt
î
−Sφ̇(1− cos(θ))

óq
=

∫ ∞
−∞

dtS

ñ
−2φ̇c sin θc sin

θq
2

+ φq sin θc cos
θq
2
θ̇c + φq cos θc sin

θq
2

θ̇q
2

ô
,

(D.16)

where we have used trigonometric identities partial integration. We are only interested in terms
linear to the quantum components. Hence,∫

dt
î
−Sφ̇(1− cos(θ))

óq
=

∫ ∞
−∞

dtS
î
−φ̇c sin θcθq + φq sin θcθ̇c

ó
, (D.17)

where we have used cos
θq
2 ≈ 1, cos

φq
2 ≈ 1, sin

θq
2 ≈

θq
2 and sin

φq
2 ≈

θq
2 , because we disregard

higher order terms. Similarly, the second part of (D.6) becomes∫
dt[H · S]q ≈ S

∫ ∞
−∞

dt

[
Hx {θq cos θc cosφc − φq sin θc sinφc}

+Hy {φq sin θc cosφc + θq cos θc sinφc}

−Hzθq sin θc

]
, (D.18)

up to linear order in quantum components. Before moving on to the third term in (D.6), we first
note that expanding in terms of quantum components and only retaining linear contributions of
those, has the following implications for the quantum part of the spin,

Sqx ≈ θq cos θc cosφc − φq sin θc sinφc; (D.19)

Sqy ≈ φq sin θc cosφc + θq cos θc sinφc; (D.20)

Sqz ≈ −θq sin θc, (D.21)

and for the classical part of the spin,

Scx = sin θc cosφc; (D.22)

Scy = sin θc sinφc; (D.23)

Scz = cos θc. (D.24)

Filling this in each term in the inner product (in x, y, z-space) of the third term in (D.6) gives us

Sqx(t)

∫ ∞
−∞

dt′ αdiss(t− t′)Scx(t′) = (θq cos θc cosφc − φq sin θc sinφc)

∫ ∞
−∞

dt′ αdiss(t− t′) sin θ′c cosφ′c;

(D.25)

Sqy(t)

∫ ∞
−∞

dt′ αdiss(t− t′)Scy(t′) = (φq sin θc cosφc + θq cos θc sinφc)

∫ ∞
−∞

dt′ αdiss(t− t′) sin θ′c sinφ′c;

(D.26)

Sqz(t)

∫ ∞
−∞

dt′ αdiss(t− t′)Scz(t′) = (−θq sin θc)

∫ ∞
−∞

dt′ αdiss(t− t′) cos θ′c. (D.27)
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The integral does not contain quantum components. As a result, we can rewrite the action such
that we can read off the equations of motion for φc and θc:

Sθq =

∫ ∞
−∞

dtθq

[
− φ̇c sin θc +Hx cos θc cosφc +Hy cos θc sinφc −Hz sin θc

+ cos θc cosφc

∫ ∞
−∞

dt′ αdiss(t− t′)Scx(t′)

+ cos θc sinφc

∫ ∞
−∞

dt′ αdiss(t− t′)Scy(t′)

− sin θc

∫ ∞
−∞

dt′ αdiss(t− t′)Scz(t′)
]
, (D.28)

and

Sφq =

∫ ∞
−∞

dtφq

[
θ̇c sin θc −Hx sin θc sinφc +Hy sin θc cosφc

− sin θc sinφc

∫ ∞
−∞

dt′ αdiss(t− t′)Scx(t′)

+ sin θc cosφc

∫ ∞
−∞

dt′ αdiss(t− t′)Scy(t′)
]
, (D.29)

which are the desired results. We present the equation of motion in the main text.
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E. Magnetoelastic coupling
The magnetoelastic coupling term in the Hamiltonian reads

Hc =
1

S2

∑
i

∑
αβ

BαβŜ
α
i Ŝ

β
i X

αβ
i , (E.1)

with S the length of the spin, i the index of the lattice site, α, β indexing the x, y or z-direction,
Bαβ the magnetoelastic coupling constant and Xαβ

i the strain tensor,

Xαβ
i =

1

2

ñ
∂Xα(r)

∂rβ
+
∂Xβ(r)

∂rα

ô
r=Ri

. (E.2)

After bosonizing the spin operators into magnon annihalation and creation operators (bk and b†k)
using the Holstein-Primakoff transformation and after going to momentum space, we obtain the
following Hamiltonian [19],

Hc =
∑
kλ

î
Γkλb−kXkλ + Γ∗−kλb

†
kXkλ

ó
+

1√
N

∑
k,q,q′

δq−q′−q,0
∑
λ

Γan
qq′,λb

†
qbq′Xkλ

+
1√
N

∑
k,q,q′

δq+q′+q,0

∑
λ

Γbbqq′,λbqbq′Xkλ +
1√
N

∑
k,q,q′

δq+q′−q,0
∑
λ

Γb̄b̄qq′,λb
†
qb
†
q′Xkλ, (E.3)

where the interaction vertices are given by

Γkλ =
B⊥√
2S

[
ikze

x
kλ + kze

y
kλ + (ikx + ky)e

z
kλ

]
; (E.4)

Γan
qq′,λ = Uq−q′,λ; (E.5)

Γbbqq′,λ = V−q−q′,λ; (E.6)

Γb̄b̄qq′,λ = V ∗−q−q′,λ, (E.7)

and

Uk,λ =
iB‖
S

[
kxe

x
kλ + kye

y
kλ − 2kze

z
kλ

]
; (E.8)

Vk,λ =
iB‖
S

[
kxe

x
kλ − kye

y
kλ

]
+
B⊥
S

[
kye

x
kλ + kxe

y
kλ

]
. (E.9)

The scattering processes described by the Hamiltonian in Eq. (E.3) are depicted in Fig. E.1. Note
that the interaction should obey the conservation of momentum.
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Figure E.1: Feynman diagrams depicting interactions between magnons (solid lines) and phonons (dashed lines)
coming from the Hamiltonian in Eq. (E.3) These interactions obey conservation of momentum.
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