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Abstract

This thesis delves into the Carroll limit of the Dirac Lagrangian, a concept
in theoretical physics that describes physical behavior when the speed of
light approaches zero while keeping all other quantities finite. This limit
is the opposite of the Galilean limit, where the speed of light is considered
infinite. The Carroll limit has been instrumental in the study of null hy-
persurfaces, such as the event horizons of black holes or null boundaries of
asymptotically flat spacetimes. This thesis contributes to a larger effort
to find mathematical formulations of the Carroll limit for different parti-
cles. This thesis contains a thorough derivation of the Carroll limit of the
Dirac Lagrangian and the arising Carroll symmetries. The study identifies
that two different Carroll limits of the metric result in two distinct Car-
roll theories. This divergence arises because two different Carroll Clifford
algebras can be defined. The study also identifies a fourth invariant term
under Carroll transformations that is not mentioned in earlier work on
four dimensional Carroll fermions.
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1 Introduction

The Carroll limit characterizes physical phenomena when the speed of light
approaches zero, while all other quantities remain finite. This limit was first
introduced by Lévy-Leblond [1] and Sen Gupta [2] in the mid-1960s. The term
pays homage to Lewis Carroll, renowned author and mathematician, best known
for his novel Alice’s Adventures in Wonderland, due to the strange and coun-
terintuitive effects of this limit. After approximately half a century of relative
obscurity, the Carroll limit has recently gained attention due to its applica-
tions in the study of quantum gravity. Aside from that, it forms a part of the
broader endeavor to explore Non-Lorentzian physics, a field that also includes
the better-known Galilean limit, where the speed of light is considered infinite.
A comprehensive overview of non-Lorentzian theories is given in the article by
Bergshoeff et al. [3].

The Carroll limit is associated with several interesting phenomena, such as
the closure of the lightcone and a degeneracy of the spacetime metric [4]. It plays
a role in the study of null hypersurfaces, which are Carroll manifolds. Particu-
larly interesting are the null boundaries of asymptotically flat spacetimes, which
serve as the foundation for the emerging field of flat space holography. This new
area of research extends the principles of holography, originally developed in the
context of black holes and AdS/CFT correspondence, to flat spacetime. The
idea is to represent all the information contained in a volume of space by a
theory located on the boundary of that space. For research on the relationship
between the Carroll limit and asymptotically flat spacetimes, see [5–14].

Another application of the Carroll limit is in the study of black hole event
horizons. The emergence of Carrollian symmetries on these horizons has been a
subject of recent research. These symmetries provide a new perspective on the
structure and dynamics of black holes, and have potential implications for our
understanding of quantum gravity. For a breakdown of Carrollian symmetries
on black hole event horizons, see [15–18]. Other aspects of Carrollian gravity
have also been explored, see works [19–30].

The Carroll limit has also found relevance in various other research areas.
Several models with tachyonic aspects that respect Carrollian symmetries have
been found [31–33]. The study of Carrollian fluids has also seen a rise of inter-
est [34–37]. Additionally, recent findings have showed connections between the
Carroll limit and cosmology, dark energy, and inflation [38]. Lastly, the Carroll
limit has been found to intersect with the study of fractons [39].

Carroll field theories, which describe particle behavior on null hypersurfaces,
have gained importance. They could potentially shed light on particle behavior
on black hole event horizons and the null boundaries of asymptotically flat space-
times. The dynamics of Carroll particles were first mentioned by Bergshoeff et
al. [40]. For additional work on Carroll field theories, including work on scalars,
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see [38, 41–46].

This thesis aims to contribute to the understanding of particle dynamics in
the Carroll limit by examining the Carroll limit of the Dirac Lagrangian in four
dimensions. The Dirac Lagrangian [47] is a fundamental component of quan-
tum field theory that describes fermion behavior. It had not been a subject of
study yet in the context of the Carroll limit when this thesis started, and was a
natural next step in the endeavour of uncovering the particle dynamics on null
hypersurfaces. However, during the course of this thesis, four articles discussing
Carroll fermions appeared on arxiv [48–51]. This highlights the relevance of the
study of Carroll fermions. The results of this thesis have been produced in close
but critical consultation of those papers. Specifically the paper by Bagchi et
al. [48] has been of importance, because they examine the dynamics of Carroll
fermions in four dimensions. We will discuss the findings of this research pa-
per, comparing and contrasting them with the outcomes of this thesis and the
reported observations therein.

To set the stage for subsequent discussions, we will start in chapter 2 with
a recap of the mathematical structure of the Dirac Lagrangian. Chapter 3 will
introduce key concepts in Carrollian physics, by treating the Carroll limit of
Lorentz boosts, the algebra of Carroll generators, the ultra-relativistic parametriza-
tion of the metric and the Carroll invariant Lagrangians of scalar fields. Building
on this foundation, we will delve into Carroll fermions and compare the obtained
results to recent literature in chapter 4. Finally, chapter 5 will conclude this
thesis and propose potential areas for future research.
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2 Relativistic Dirac Lagrangian

We start off by treating the relativistic Dirac Lagrangian to refresh our knowl-
edge on the mathematical structure of fermions. This is the basis from which
we start to work our way toward the Carroll Dirac Lagrangian and its dynam-
ics. This chapter closely follows the treatise of fermions from Quantum Field
Theory lecture notes by Tong [52].

The Dirac Lagrangian describes the behavior of fermionic particles, the par-
ticles that make up all matter. It is given by

L = iΨ̄γµ∂µΨ−mΨ̄Ψ,

where Ψ is the four-component Dirac spinor and Ψ̄ the Dirac adjoint, defined
as Ψ̄ = Ψ†γ0. The gamma matrices form the Clifford algebra

{γµ, γν} = −2ηµν ,

where in this thesis we focus on 4-dimensional flat spacetimes with metric con-
vention ηµν = diag(−1, 1, 1, 1). One representation of the gamma matrices that
obey the Clifford algebra are

γ0 =

(
0 1
1 0

)
and γi =

(
0 σi

−σi 0

)
where σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

The Pauli matrices have the following properties

σiσj = iϵijkσk and (σi)2 = 1,

where 1 is 2x2 identity matrix. In this representation γ0 = γ0† is hermitian and
γi = −γi† is anti-hermitian, and we can see that (γ0)2 = 14 and (γi)2 = −14,
where 14 is the 4x4 identity matrix. We have the following definition for the
spinor generators:

Σµν =
1

4
[γµ, γν ].

The generators obey identity

[Σµν , γρ] = γνηµρ − γµηνρ, (1)

and close the Lorentz algebra:

[Σµν ,Σρσ] = −Σµσηνρ +Σνσηµρ − Σνρηµσ +Σµρηνσ.

Because γ0 = γ0† is hermitian and γi = −γi† is anti-hermitian, we have the
following property for all µ = 0, 1, 2, 3:

γ0γµγ0 = γµ†.
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This allows us to relate the generator to its hermitian conjugate

Σµν† = −γ0Σµνγ0.

The spinor transformation is given by

S = e
1
2ΘµνΣ

µν

.

The hermitian conjugate of the spinor transformation S can then be expressed
as follows:

S† = e
1
2ΘµνΣ

µν†
= γ0e−

1
2ΘµνΣ

µν

γ0 = γ0S−1γ0.

The Dirac spinors transform under Lorentz transformations as

Ψ → S(Σ)Ψ

Ψ̄ → Ψ̄S−1(Σ).

Or, differently stated as

Ψ → e
1
2Θ

µνΣµνΨ

Ψ† → (e
1
2Θ

µνΣµνΨ)† = Ψ†e
1
2Θ

µνΣ†
µν

Ψ̄ → Ψ†e
1
2Θ

µνΣ†
µνγ0 = Ψ̄γ0e−

1
2γ

0ΘµνΣµνγ
0

γ0.

For an infinitesimal transformation we get the following variations for Ψ and Ψ̄

δΨ = Θµνxν∂µΨ+
1

2
ΘµνΣµνΨ

δΨ̄ = Θµνxν∂µΨ̄− 1

2
ΘµνΨ̄Σµν .

By using these transformation rules and expression (1), one can show that both
terms in the Dirac Lagrangian are Lorentz invariant. The Dirac action is

S =

∫
d4x iΨ̄γµ∂µΨ−mΨ̄Ψ.

Using the Euler-Lagrange equations for Ψ̄ leaves us with the Dirac equation

(iγµ∂µ −m)Ψ = 0,

which describes the dynamics of fermionic particles.

Chirality in quantum field theory refers to a certain property of the solutions
of the Dirac equation. We can define two projection operators, called chirality
operators, by

PL =
1

2
(14 − γ5)

PR =
1

2
(14 + γ5)
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where γ5 is another gamma matrix. This γ5 defined by

γ5 = iγ0γ1γ2γ3,

where in our representation

γ5 =

(
−1 0
0 1

)
.

Here we have (γ5)2 = 14 and γ5 = γ5† is hermitian. The γ5 matrix also has the
property that it anticommutes with the other gamma matrices:

{γ5, γµ} = 0.

The projection operators have the following properties

PL + PR = 14

PLPR = PRPL = 0

P 2
L = PL

P †
L = PL

P 2
R = PR

P †
R = PR.

The operators project out independent components of the Dirac spinor. If we
decompose the Dirac spinor in Weyl spinors

Ψ =

(
ψL

ψR

)
,

and then use the projection operators on Ψ, we obtain

PLΨ =

(
ψL

0

)
and PRΨ =

(
0
ψR

)
.

We label the states projected out by PL as left-handed and the states projected
out by PR as right-handed. The Weyl spinors transform in the same way as the
Dirac spinor, because γ5 anticommutes with γµ. We can see that therefore it
commutes with the generator. The variations of these components are

δPRΨ = PR(Θ
µνxν∂µΨ) +

1

2
PR(Θ

µνΣµνΨ)

= Θµνxν∂µ(PRΨ) +
1

2
ΘµνΣµνPRΨ = δψR

δPLΨ = PL(Θ
µνxν∂µΨ) +

1

2
PL(Θ

µνΣµνΨ)

= Θµνxν∂µ(PLΨ) +
1

2
ΘµνΣµνPLΨ = δψL,
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which are the same transformations as for the Dirac spinor.

In chapter 4 we will look at which of these different components and prop-
erties of the fermionic algebra change under the Carroll limit. All of the above
described properties will be used to compare our Carroll fermions to. This is to
illuminate the differences that appear in these two theories. We will now head
over to an introduction on Carrollian physics, describing some of the fundamen-
tals we will need in later discussions.
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3 Introduction to Carrollian physics

This chapter will treat some of the important preliminaries of Carrollian physics.
We first shortly describe the algebra of Carroll boosts, by taking the limit of
Lorentz boost transformations. Then we proceed by explaining the Carroll al-
gebra of boosts and rotations, and how they differ from their Lorentzian coun-
terparts. Next, we discuss the ’pre-ultra-local’ parametrization of the metric,
which is the small speed of light expansion of the Lorentzian geometry. Lastly,
we treat the algebra of Carroll scalar fields and the two Carroll theories that
arise from taking the limit.

3.1 Carroll boost transformations

In this paragraph we treat the Carroll boost transformations, following [38]. We
start by reviewing the Lorentz boosts and taking the limit of the speed of light
going to zero. We denote the Lorentz boost transformation parameter by β.
Under a Lorentz boost in x-direction, we have

ct′ =
1√

1− β2
(ct− βx) , x′ =

1√
1− β2

(x− βct) , y′ = y, z′ = z,

where

γ =
1√

1− β2

is the Lorentz boost factor. To get the Carroll transformations, we first use the
following scaling

β → cb,

where the parameter b becomes the Carroll boost parameter. Keeping it fixed
in the limit c→ 0 results in the Carroll boosts:

t′ = t− bx, x′ = x, y′ = y, z′ = z.

This can be contrasted with taking the non-relativistic Galilei limit, which can
be found by setting β = c−1b and then letting c→ ∞. This results in the Galilei
transformations:

t′ = t, x′ = x− bt, y′ = y, z′ = z.

In a universe governed by Galilei transformations, time is an absolute, while
in a Carroll universe, space is absolute. As the Lorentz boost factor γ → 1
in the Carroll limit, Lorentz length contraction does not occur. While a Car-
roll spacetime doesn’t have time dilation, it does exhibit a time shift for events
that occur at different spatial locations. The transformations show that time
is relative in a Carroll universe, whereas space is a relative in a Galilean universe.
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As the speed of light approaches zero, spacetime distances transition to
spatial distances. This results in a simplification of the Minkowski metric, where
if c → 0 we obtain ds2 = −c2dt2 + dx2 + dy2 + dz2 → dx2 + dy2 + dz2. The
Carroll group maintains the invariance of these spatial distances. The Lorentz
invariant expression −c2t2 + x2 + y2 + z2 transforms to the Carroll invariant
expression x2 + y2 + z2 in the Carroll limit. Light rays, characterized by this
invariant being zero, adopt a different behavior in Carroll spacetime, where
they are expressed as x⃗ = 0 and any given time, t. This indicates that the time
coordinate t parametrises the light cone. When x⃗ = 0, light does not move in
space and the light cone closes up. This stands in contrast to what happens
in the Galilean limit, where the speed of light is assumed infinite and the light
cone opens up towards the x-axis.

3.2 Carrollian boost and rotation generators

In this paragraph we discuss how to get the Carroll boost and rotation gener-
ators from taking the Carroll limit of the Lorentzian counterparts. We start
off by considering the Lorentz boost an rotation generators. The Lorentz boost
generators are given by

Li =
1

c
xi∂t + ct∂i

and the rotation generators by

Jij = xi∂j − xj∂i.

The Lorentz algebra commutation relations of the boost Li and rotation gener-
ators Jij are

[Li, Lj ] = −Jij
[Jij , Lk] = −δjkLi + δikLj

[Jij , Jkl] = −δjkJil + δikJjl − δilJjk + δjlJik.

To get to the Carroll boost generators, we first define new generators Ci ≡
cLi. Upon taking the limit of c→ 0 of these generators, we find expression

Ci = xi∂t.

While the Carroll boosts change compared to Lorentz boosts, Carroll rotation
generators remain the same as their Lorentzian counterparts. The Carroll alge-
bra commutation relations are given by

[Ci, Cj ] = 0

[Jij , Ck] = −δjkCi + δikCj

[Jij , Jkl] = −δjkJil + δikJjl − δilJjk + δjlJik.

We see that the Carroll boost commutation relation becomes zero, due to the
spatial derivative term dropping out of the boost generator definition. These
relations become important in our discussion of the Carroll spinor generator
algebra in chapter 4.
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3.3 ‘Pre-ultra-local’ parametrization

We will proceed with showing how to obtain an expression for the Carroll flat
space metric. This paragraph follows the geometry conventions presented by
Hansen et al. [53] In this paper a ’pre-ultra-local’ metric is introduced, which
is the small speed of light expansion of the Lorentzian geometry. This PUL
parametrization corresponds to a split of the tangent bundle in ‘temporal’ and
‘spatial’ components. In leading order terms the following metric is considered

ηµν = −c2τµτν + hµν

where τµ = (−1, 0, 0, 0)

and hµν = diag(0, 1, 1, 1)

ηµν = − 1

c2
vµvν + hµν

where vµ = (1, 0, 0, 0)

and hµν = diag(0, 1, 1, 1).

Where we have

τµv
µ = −1, τµh

µν = 0, hµνv
ν = 0, δµν = −vµτν + hµρhρν .

The last identity can be shown using

ηµρηρν = δµν

(− 1

c2
vµvρ + hµρ)(−c2τρτν + hρν) = δµν

− 1

c2
vµvρhρν + vµvρτρτν + hµρhρν − c2hµρτρτν = δµν

− vµτν + hµρhρν = δµν .

We will use this metric in chapter 4 to take the Carroll limit, where we find
two degenerate metrics which we can use to define our Carroll Clifford algebras
with.

3.4 Carroll scalar fields

To illuminate the behavior of fields in the Carroll limit, and give an insight
into earlier work done on Carroll fields, we will discuss the Carroll invariant
Lagrangians of scalar fields in this paragraph. We will closely follow the deriva-
tion by de Boer et al. [38]. We can start off by considering the Lagrangian of
relativistic real scalar field ϕ:

L =
1

2c2
(∂tϕ)

2 − 1

2
(∂iϕ)

2.

To take the Carroll limit, we first rescale ϕ → cϕ and then take c → 0. This
leaves us with Carroll invariant Lagrangian

Lc =
1

2
ϕ̇2.
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We can see that in this theory the spatial derivative terms drop out of the
equation. However, we can find a second Carroll theory. This is done by first
defining an auxiliary field χ as

χ = − 1

c2
∂tϕ.

Using this auxiliary field in our relativistic Lagrangian gives

L = −c
2

2
χ2 + χ∂tϕ− 1

2
(∂iϕ)

2.

We can now take the Carroll limit c→ 0 to obtain

Lc = χ∂tϕ− 1

2
(∂iϕ)

2.

We can see that there are two types of Carroll theories. The authors note in the
paper that these two types of Carroll limits generally seem to exist, where the
first Lagrangian arises due to the electric limit and the second Lagrangian to the
magnetic limit. The terminology originates from the Galilean analogues, par-
ticularly from the non-relativistic theory of electromagnetism where two unique
limits exist: the electric and magnetic limits. In these limits, either the electric
effects dominate over the magnetic ones, or the magnetic effects dominate over
the electric effects.
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4 Carroll Fermions

Now we will head over to treating the algebra of Carroll fermions. We start
by taking the Carroll limit of the metric, which leaves us with two distinct
metric terms. One will form the basis of our theory of lower fermions, which
will be discussed in paragraph 4.1. The other will give us the theory for upper
fermions, which will be discussed in paragraph 4.2. We dub these different
theories as lower and upper, following nomenclature used in current literature
[46]. Then lastly we will discuss recent developments in the literature on Carroll
fermions and compare our results to the findings demonstrated there.

4.0.1 Taking the limit c→ 0 of the metric tensor

First we want to find the Carroll metric tensors to define our new Clifford
algebras with. We start with the PUL parametrization described in paragraph
3.3, and take the c→ 0 limits of this metric. For the lower indices we have

ηµν = −c2τµτν + hµν ,

where taking the limit of c→ 0 gives us ηµν → hµν , with h
µν = diag(0, 1, 1, 1).

We are thus left with the spatial component of the metric. For the upper indices
we have

ηµν = − 1

c2
vµvν + hµν .

First we rescale the metric by using ηµν → −c2ηµν . Then when taking the limit
of c → 0, we obtain −c2ηµν → vµvν , with vµvν = diag(1, 0, 0, 0). Now just the
time component remains. For these two metrics we get two different Carroll
theories, one for lower fermions, and one for upper fermions.

4.1 Lower fermions

Due to the degeneracy of the metric, we proceed with working out two different
Carroll theories. We start by treating the fermion algebra for the metric with
lower indices.

4.1.1 Carroll Clifford algebra

For the lower Carroll fermions the Carroll Clifford algebra can be defined using

{γ̃µ, γ̃ν} = −2hµν ,

where hµν = (0, 1, 1, 1). We put forward two representations that satisfy these
constraints, but note that these two are not the only possible representations.
The first one, from how on dubbed representation A, is given by

γ̃A0 =

(
0 0
1 0

)
, γ̃Ai =

(
iσi 0
0 −iσi

)
.
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The second representation, dubbed representation B, is given by

γ̃B0 =
1

2

(
i1 1
1 −i1

)
, γ̃Bi =

(
0 σi

−σi 0

)
.

For both representations we have that γ̃0 is non-hermitian and γ̃†i = −γ̃i is
anti-hermitian. The transformation between these two representations is given
by

γAµ U = UγBµ

where

U =
1√
2

(
i1 1
1 i1

)
.

Now we want to move forward by finding the Carroll spinor generator algebra.
We define

Σ̃µν ≡ 1

4
[γ̃µ, γ̃ν ],

where we want to find the commutation relations of the generators

[Σ̃µν , Σ̃ρσ].

We will make use of the following identities

Σ̃µν =
1

2
(γ̃µγ̃ν + hµν) (2)

[γ̃µ, γ̃ν ] = 2(γ̃µγ̃ν + hµν) (3)

γ̃ν γ̃µ = (−2hµν − γ̃µγ̃ν) (4)

2Σ̃µν − hµν = γ̃µγ̃ν . (5)

We start with, using relation (2),

[Σ̃µν , Σ̃ρσ] =
1

2
[Σ̃µν , γ̃ργ̃σ] +

1

2
[Σ̃µν , hρσ]

=
1

2
([Σ̃µν , γ̃ρ]γ̃σ + γ̃ρ[Σ̃µν , γ̃σ]).

Where we see that, using relations (3) and (4),

[Σ̃µν , γ̃ρ] =
1

2
[γ̃µγ̃ν , γ̃ρ] +

1

2
[hµν , γ̃ρ]

=
1

2
(γ̃µ[γ̃ν , γ̃ρ] + [γ̃µ, γ̃ρ]γ̃ν)

=(γ̃µ(γ̃ν γ̃ρ + hνρ) + (γ̃µγ̃ρ + hµρ)γ̃ν)

=(γ̃µγ̃ν γ̃ρ + γ̃µhνρ + γ̃µγ̃ργ̃ν + hµργ̃ν)

=(γ̃µγ̃ν γ̃ρ + γ̃µhνρ + γ̃µ(−2hνρ − γ̃ν γ̃ρ) + hµργ̃ν)

=γ̃νhµρ − γ̃µhνρ.
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Using this and relation (5), we see that

[Σ̃µν , Σ̃ρσ] =
1

2
((−γ̃µhνρ + γ̃νhµρ)γ̃σ + γ̃ρ(−γ̃µhνσ + γ̃νhµσ))

=
1

2
(−γ̃µγ̃σhνρ + γ̃ν γ̃σhµρ − γ̃ργ̃µhνσ + γ̃ργ̃νhµσ)

=
1

2
(−(2Σ̃µσ − hµσ)hνρ + (2Σ̃νσ − hνσ)hµρ

− (2Σ̃ρµ − hρµ)hνσ + (2Σ̃ρν − hρν)hµσ)

=− Σ̃µσhνρ + Σ̃νσhµρ − Σ̃νρhµσ + Σ̃µρhνσ.

Looking at metric hµν = diag(0, 1, 1, 1) we have

h00 = 0, h0i = 0, hij = δij .

We can use these identities to get the following Carroll spinor generator com-
mutation relations:

[Σ̃0i, Σ̃0j ] = 0

[Σ̃0i, Σ̃jk] = −δijΣ̃0k + δikΣ̃0j

[Σ̃ij , Σ̃kl] = −δjkΣ̃il + δikΣ̃jl − δilΣ̃jk + δjlΣ̃ik.

These close the same algebra as the generators stated in paragraph 3.2, where
we see that the commutator between the boost generators becomes zero. We
can therefore see that the used definition renders a faithful representation of the
Carroll spinor generators.

4.1.2 Carroll invariant Lagrangians

Using this definition of the Carroll generators, we proceed by defining the Carroll
invariant Lagrangians for lower fermions. In the Lorentz invariant case, Dirac
adjoints are defined as Ψ̄ = Ψ†γ0. This definition is needed such that under
Lorentz transformations the Dirac spinor and its adjoint change as

Ψ → S(Σ)Ψ

Ψ̄ → Ψ̄S−1(Σ).

In the Carroll theory we need to define a new Dirac adjoint that serves the same
purpose. Therefore we define new Dirac adjoint Ψ̄ = Ψ†Λ. This matrix Λ has
to obey the following relation:

γ̃†µ = Λγ̃µΛ.

A suitable representation for Λ for both γ̃µ representations A and B is

Λ =

(
0 1
1 0

)
,
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which is the same as the representation of the γ0 matrix in the Lorentzian
Clifford algebra stated in chapter 2. We can see that Λ = Λ−1 and Λ2 = 14.
Because of the relation we found between γ̃µ and γ̃†µ, we can find a relation

between Σ̃†
µν and Σ̃µν , using

Σ̃†
µν =(

1

4
[γ̃µ, γ̃ν ])

†

=
1

4
[γ̃†ν , γ̃

†
µ]

=
1

4
(Λγ̃ν γ̃µΛ− Λγ̃µγ̃νΛ)

=− ΛΣ̃µνΛ.

Knowing this, we can find the Carroll transformations of the Dirac spinor and
its adjoint

Ψ → e
1
2Θ

µνΣ̃µνΨ

Ψ† → (e
1
2Θ

µνΣ̃µνΨ)† = Ψ†e
1
2Θ

µνΣ̃†
µν

Ψ̄ → Ψ†e
1
2Θ

µνΣ̃†
µνΛ = Ψ̄Λe−

1
2ΛΘµνΣ̃µνΛΛ.

This gives us as variations for Ψ and Ψ̄

δΨ = Θµνxν∂µΨ+
1

2
ΘµνΣ̃µνΨ

δΨ̄ = Θµνxν∂µΨ̄− 1

2
ΘµνΨ̄Σ̃µν .

We can then find four Carroll invariant terms

δ(Ψ̄Ψ) =Θµνxν(∂µΨ̄)Ψ− 1

2
Ψ̄ΘµνΣ̃µνΨ+ΘµνxνΨ̄(∂µΨ) +

1

2
Ψ̄ΘµνΣ̃µνΨ

=∂µ[Θ
µνxνΨ̄Ψ]

δ(Ψ̄vργ̃ρΨ) =Θµνxν(∂µΨ̄)vργ̃ρΨ− 1

2
Ψ̄ΘµνΣ̃µνv

ργ̃ρΨ

+ΘµνxνΨ̄v
ργ̃ρ(∂µΨ) +

1

2
Ψ̄vργ̃ρΘ

µνΣ̃µνΨ

=− 1

2
Ψ̄Θµν [Σ̃µν , γ̃ρ]v

ρΨ+ ∂µ[Θ
µνxνΨ̄v

ργ̃ρΨ]

=− 1

2
Ψ̄Θµν(γ̃νhµρ − γ̃µhνρ)v

µΨ+ ∂µ[Θ
µνxνΨ̄v

ργ̃ρΨ]

=∂µ[Θ
µνxνΨ̄v

ργ̃ρΨ]

δ(iΨ̄vρ∂ρΨ) =iΘµνxν(∂µΨ̄)vρ∂ρΨ− i

2
Ψ̄ΘµνΣ̃µνv

ρ∂ρΨ

+ iΘµνxνΨ̄v
ρ∂ρ(∂µΨ) +

i

2
Ψ̄ΘµνΣ̃µνv

ρ∂ρΨ

=∂µ[Θ
µνxνiΨ̄v

ρ∂ρΨ]

16



δ(iΨ̄vργ̃ρv
σ∂σΨ) =iΘµνxν(∂µΨ̄)vργ̃ρv

σ∂σΨ− i

2
Ψ̄ΘµνΣ̃µνv

ργ̃ρv
σ∂σΨ

+ iΘµνxνΨ̄v
ργ̃ρv

σ∂σ(∂µΨ) +
i

2
Ψ̄vργ̃ρΘ

µνΣ̃µνv
σ∂σΨ

=− i

2
Ψ̄Θµν [Σ̃µν , γ̃ρ]v

ρvσ∂σΨ+ ∂µ[Θ
µνxνiΨ̄v

ργ̃ρv
σ∂σΨ]

=− i

2
Ψ̄Θµν(γ̃νhµρ − γ̃µhνρ)v

ρvσ∂σΨ+ ∂µ[Θ
µνxνiΨ̄v

ργ̃ρv
σ∂σΨ]

=∂µ[Θ
µνxνiΨ̄v

ργ̃ρv
σ∂σΨ].

For δ(Ψ̄vργ̃ρΨ) and δ(Ψ̄vργ̃ρv
σ∂σΨ) we used that hµνv

µ = 0. All these terms
leave us with total derivatives, which ensure the Lagrangian to be Carroll invari-
ant. We can see that the first two terms are two mass terms, while the latter
two contain time derivatives. For lower fermions we have no invariant terms
which contain spatial derivatives.

By using found invariant terms we can make the following Carroll invariant
Lagrangians for massless fermions

L1 = iΨ̄vµ∂µΨ = iΨ̄∂tΨ

L2 = iΨ̄vµγ̃µv
ν∂νΨ = iΨ̄γ̃0∂tΨ.

And for massive fermions we can define the following Lagrangians

L3 = iΨ̄vµ∂µΨ−mΨ̄Ψ = iΨ̄∂tΨ−mΨ̄Ψ

L4 = iΨ̄vµγ̃µv
ν∂νΨ−mΨ̄vµγ̃µΨ = iΨ̄γ̃0∂tΨ−mΨ̄γ̃0Ψ

L5 = iΨ̄vµ∂µΨ−mΨ̄Ψ = iΨ̄∂tΨ−mΨ̄γ̃0Ψ

L6 = iΨ̄vµγ̃µv
ν∂νΨ−mΨ̄vµγ̃µΨ = iΨ̄γ̃0∂tΨ−mΨ̄Ψ.

These combinations of terms will later on allow us to find specific field equations
for the components of the Carroll-Dirac spinor.

4.1.3 Equations of motion and Hamiltonians

We now want to proceed by finding the equations of motion for the different
Lagrangians and find the Hamiltonian densities. We start defining the Carroll-
Dirac spinor as

Ψ =

(
ϕ
χ

)
.

For the equations of motion we use convention A for our representation of γ̃0.

We then have that the equation of motion for L1 is given by

i∂tΨ = 0
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and the equation of motion for L2 is given by

iγ̃0∂tΨ = 0.

We can see here that the field equations for L1 are

ϕ = ϕ(x⃗) and χ = χ(x⃗),

and for L2 are

ϕ = ϕ(x⃗) and χ = 0.

Both Hamiltonian densities H1 and H2 give zero.

We move on by looking at the Lagrangians with mass terms. For these
Lagrangians we get different field equations. We first start by working out the
equation of motion for L3:

i∂tΨ = mΨ.

This gives field solutions

ϕ = e−imtϕ(x⃗) and χ = e−imtχ(x⃗).

For the Hamiltionian density H3 we have

ΠΨ =
∂L3

∂Ψ̇
= iΨ̄

H3 = ΠΨΨ̇− L3 = mΨ̄Ψ.

The equation of motion for L4 with convention A for our representation of
γ̃0 is

iγ̃0∂tΨ = mγ̃0Ψ,

which gives field solution
ϕ = e−imtϕ(x⃗).

For the Hamiltionian density H4 we get

ΠΨ =
∂L4

∂Ψ̇
= iΨ̄γ̃0

H4 = ΠΨΨ̇− L4 = mΨ̄γ̃0Ψ = mϕ†ϕ.

For massive Carroll fermions the Hamiltonian is nonzero.

The equation of motion for L5 with convention A for our representation of
γ̃0 is

i∂tΨ = mγ̃0Ψ,

which gives field solution

χ = −imtϕ(x⃗) + χ(x⃗).
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For the Hamiltionian density H5 we get

ΠΨ =
∂L5

∂Ψ̇
= iΨ̄

H5 = ΠΨΨ̇− L5 = mΨ̄γ̃0Ψ = mϕ†ϕ.

The equation of motion for L6 with convention A for our representation of
γ̃0 is

iγ̃0∂tΨ = mΨ,

which gives field solutions

ϕ = 0 and χ = 0.

This is therefore not a good physical representation.

4.1.4 Notes on Carroll chirality

In this paragraph we describe some steps taken towards defining Carroll projec-
tion operators. We will use the chiral convention for Lorentzian gamma matrices
γµ and γ5, which is

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, and γ5 =

(
−1 0
0 1

)
.

We then start by using our representation B for γ̃µ, which is

γ̃0 =
1

2

(
i1 1
1 −i1

)
, γ̃i =

(
0 σi

−σi 0

)
.

We can see that for these representations, the following relations hold

γ0 = γ̃0 + γ̃†0

γ5 = i(γ̃0 − γ̃†0)

γ̃0 =
1

2
(γ0 − iγ5)

γ̃†0 =
1

2
(γ0 + iγ5)

γ̃i = γi.

We first try and start by defining γ̃5 in a similar way as its Lorentzian counter-
part. This gives us

γ̃5 ≡ iγ̃0γ̃1γ̃2γ̃3

=
i

2
(γ0 − iγ5)γ1γ2γ3

=
i

2
(γ0 − iγ5)

= iγ̃0.
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We see here that γ̃5 can be defined in terms of γ̃0, and it therefore not linearly
independent like its Lorentzian counterpart. Defining an projection operator
P̃ = 1

2 (14−iγ̃5) does not work, because for this definition P̃ 2 ̸= P̃ . We therefore
need to find different candidates for projection operators. We propose

P̃L =
1

2
(14 − i(γ̃0 − γ̃†0))

P̃R =
1

2
(14 + i(γ̃0 − γ̃†0)).

These new operators obey the same properties as the Lorentzian projection
operators:

P̃L + P̃R = 14

P̃ 2
L =

1

4
(14 − 2i(γ̃0 − γ̃†0)− (γ̃0 − γ̃†0)(γ̃0 − γ̃†0))

=
1

4
(14 − 2i(γ̃0 − γ̃†0) + (γ̃0γ̃

†
0 + γ̃†0γ̃0))

=
1

2
(14 − i(γ̃0 − γ̃†0)) = P̃L

P̃ 2
R =

1

4
(14 + 2i(γ̃0 − γ̃†0)− (γ̃0 − γ̃†0)(γ̃0 − γ̃†0))

=
1

4
(14 + 2i(γ̃0 − γ̃†0) + (γ̃0γ̃

†
0 + γ̃†0γ̃0))

=
1

2
(14 + i(γ̃0 − γ̃†0)) = P̃R

P †
L,R = PL,R

In our representation B, these operators take the following matrix form:

P̃L =

(
1 0
0 0

)
P̃R =

(
0 0
0 1

)
.

These operators however do not commute with our Carroll generator Σ̃µν , and
therefore the different components of the Carroll-Dirac spinor do not transform
independently under Carroll transformations. Therefore chirality does not seem
to be trivially conserved for Carroll fermions.
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4.2 Upper fermions

Now that we have treated the theory of lower fermions, we move on to the
algebra for the fermions with the upper index metric.

4.2.1 Carroll Clifford algebra

First we define the upper Carroll Clifford algebra using the timelike invariant
metric component vµvν :

{γ̂µ, γ̂ν} = −2vµvν ,

where vµvν = diag(1, 0, 0, 0). A viable matrix representation that satisfies the
constraints is

γ̂0 =

(
i1 0
0 −i1

)
, γ̂i =

(
0 0

−σi 0

)
where (γ0)2 = −14 and (γi)2 = 0. We can use this to define the Carroll
generator for spinors as

Σ̂µν ≡ 1

4
[γ̂µ, γ̂ν ].

However, defining this as the generator for the upper gamma matrices, contrary
to the lower gamma matrices, renders a problem. In this definition the rotation
generators become zero, so Σ̂ij = 0. In a paper by Bagchi et al. [46] a way to
work around this problem is proposed. We will treat this in paragraph 4.3.
We will still proceed with this definition to find a Carroll boost invariant La-
grangian. We can follow very similar steps as for the lower gamma matrices to
get an expression for the commutator of the generator and the upper gamma
matrix

[Σ̂µν , γ̂ρ] = γ̂νvµvρ − γ̂µvνvρ.

For the boost generators and the upper gamma matrices we find the following
two commutation relations

[Σ̂0i, γ̂0] = γ̂i, and [Σ̂0i, γ̂j ] = 0. (6)

The commutation relations between the generators all become zero

[Σ̂µν , Σ̂ρσ] = −Σ̂µσvνvρ + Σ̂νσvµvρ − Σ̂νρvµvσ + Σ̂µρvνvσ = 0,

Because vµvν = diag(1, 0, 0, 0) and Σ̂ij = 0. This therefore does not close the
Carroll algebra and does not form a true Carroll generator structure, due to
the vanishing rotation operator. However, we can still find a boost invariant
Lagrangian for upper fermions. Using the matrix representation stated above
for γ̂0 and γ̂i, we obtain the following expression for the Carroll boost generators

Σ̂0i =
1

2

(
0 0
iσi 0

)
.
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In this representation, we can again find a Λ matrix that satisfies the following
conditions. Given

Λ =

(
0 1
1 0

)
, we have that γ̂†µ = Λγ̂µΛ such that Σ̂†0i = −ΛΣ̂0iΛ.

We can use this Λ to define the Carroll-Dirac adjoint Ψ = Ψ̄†Λ. We proceed by
looking at how the spinors change under these Carroll boosts.

4.2.2 Carroll boost invariant Lagrangian

Under the Carroll boosts, the spinor and its adjoint change as

δΨ = Θ0ix
i∂tΨ+Θ0iΣ̂

0iΨ

δΨ̄ = Θ0ix
i∂tΨ̄−Θ0iΨ̄Σ̂0i

We can then show Carroll boost invariance for the term iΨ̄γ̂µ∂µΨ and mΨ̄Ψ.
We will start with the former. Varying this term gives

δ(iΨ̄γ̂µ∂µΨ) = δ(iΨ̄(γ̂0∂t + γi∂i)Ψ),

where we will treat the terms separately. The first term gives

δ(iΨ̄γ̂0∂tΨ) =iΘ0ix
i∂tΨ̄γ̂

0∂tΨ− iΨ̄Θ0iΣ̂
0iγ̂0∂tΨ

+ iΨ̄γ̂0∂t(Θ0ix
i∂tΨ) + iΨ̄Θ0iγ̂

0Σ̂0i∂tΨ

=∂t[iΘ0ix
iΨ̄γ̂0∂tΨ]− iΨ̄Θ0i[Σ̂

0i, γ̂0]∂tΨ

=∂t[iΘ0ix
iΨ̄γ̂0∂tΨ]− iΨ̄Θ0iγ̂

i∂tΨ,

where we use [Σ̂0i, γ̂0] = γ̂i. The second term gives

δ(iΨ̄γ̂j∂jΨ) =iΘ0ix
i∂tΨ̄γ̂

j∂jΨ− iΨ̄Θ0iΣ̂
0iγ̂j∂jΨ

+ iΨ̄γ̂j∂j(Θ0ix
i∂tΨ) + iΨ̄Θ0iγ̂

jΣ̂0i∂jΨ

=∂t[iΘ0ix
iΨ̄γ̂j∂jΨ] + iΨ̄Θ0iγ̂

i∂tΨ− iΨ̄Θ0i[Σ̂
0i, γ̂j ]∂jΨ

=∂t[iΘ0ix
iΨ̄γ̂0∂tΨ] + iΨ̄Θ0iγ̂

i∂tΨ,

where we use [Σ̂0i, γ̂j ] = 0. We then can see that the total variation gives

δ(iΨ̄γ̂µ∂µΨ) = δ(iΨ̄(γ̂0∂t + γi∂i)Ψ) = ∂t[iΘ0ix
iΨ̄(γ̂0∂t + γ̂i∂i)Ψ].

This leave us with total time derivative, which ensures the Lagrangian to be
Carroll boost invariant. Now we proceed with mΨ̄Ψ:

δ(Ψ̄Ψ) =Ψ̄Θ0ix
i(∂tΨ) + Ψ̄Θ0iΣ̂

0iΨ+Θ0ix
i(∂tΨ̄)Ψ−Θ0iΨ̄Σ̂0iΨ

=∂t[iΘ0ix
iΨ̄Ψ].
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This also leave us with total time derivative. Now we can proceed to define the
Carroll boost invariant Lagrangian for massless upper fermions as

L7 = iΨ̄γ̂µ∂µΨ = iΨ̄(γ̂0∂t + γ̂i∂i)Ψ,

and for massive upper fermions as

L8 = iΨ̄γ̂µ∂µΨ−mΨ̄Ψ = iΨ̄(γ̂0∂t + γ̂i∂i)Ψ−mΨ̄Ψ.

These retain their spatial derivatives, in contrast with the Lagrangians for lower
fermions.

4.2.3 Equations of motion and Hamiltonians

We first start by working out the equation of motion for L7:

iγ̂µ∂µΨ = 0.

For the Hamiltionian density H7 we have

ΠΨ =
∂L7

∂Ψ̇
= iΨ̄γ̂0,

H7 = ΠΨΨ̇− L7 = −iΨ̄γ̂i∂iΨ.

We note here that the Hamiltonian is nonzero, in contrast to the massless lower
fermion Hamiltonian densities. Working out the equation of motion for L8 gives:

(iγ̂µ∂µ −m)Ψ = 0.

For the Hamiltionian density H8 we have

ΠΨ =
∂L8

∂Ψ̇
= iΨ̄γ̂0,

H8 = ΠΨΨ̇− L8 = −iΨ̄γ̂i∂iΨ+mΨ̄Ψ.

The massive upper fermion Hamiltonian is nonzero.
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4.3 Relevant research on Carroll fermions

We now move on to compare our findings to recent literature on Carroll fermions.
The important paper to compare our results to is the work done by Bagchi et
al. [46], that appeared during the course of this thesis. In this paper four-
dimensional Carroll fermions are treated. The research in this thesis overlaps
to a large extent with the article.

The paper starts the formulation of a Carroll fermion theory with the same
metric conventions we have used. They define the lower and upper matrices
in a similar way as our convention. For the lower fermions, the generator is
defined equivalent to what we have reported. They also note that it closes the
homogeneous part of the Carroll algebra. After that they move on to define
a new Dirac spinor adjoint, using a new matrix Λ. They report the following
terms to be invariant under Carroll tranformations:

Ψ̄γ̃0∂tΨ

mΨ̄Ψ

mΨ̄γ̃0Ψ.

We can see that these three terms match three of the four invariant terms we
have found, however we have also found invariant term

iΨ̄∂tΨ,

of which there is no mention in the paper. They proceed by showing that the
Hamiltonian for the massless fermion is zero.

Then for the upper index fermion, they report the same problem, that defin-
ing the generator as

Σ̂µν ≡ 1

4
[γ̂µ, γ̂ν ],

results in a vanishing rotation generator Σ̂ij = 0. They propose a new generator

Σ̂ij
c ≡ 1

4
[γ̂i, γ̂jc ] +

1

4
[γ̂ic, γ̂

j ],

where γ̂ic is defined as
γ̂ic = −Cγ̂iC−1,

with

C =

(
0 iσ2

iσ2 0

)
.

They then report to find a rotation matrix of the form

Σ̂ =
i

2
ϵijk

(
σk 0
0 σk

)
.

We have not been able to recover the same result, due to σ2 commuting with
itself and and anticommuting with σ1 and σ3. The explicit matrix representa-
tions that they have given however do close the homogeneous part of the Carroll
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algebra.

If we redefine the rotation matrix as

Σ̂ij
t ≡ 1

4
[γ̂i, γ̂j†] +

1

4
[γ̂i†, γ̂j ],

we do find proper explicit matrix representations for our rotation generators.
This together with the former boost generator

Σ̂0i ≡ 1

4
[γ̂0, γ̂i],

does close the homogeneous part of the Carroll algebra

[Σ̂0i, Σ̂0j ] = 0

[Σ̂0i, Σ̂jk
t ] = −δijΣ̂0k + δikΣ̂0j

[Σ̂ij
t , Σ̂

kl
t ] = −δjkΣ̂il

t + δikΣ̂jl
t − δilΣ̂jk

t + δjlΣ̂ik
t .

The open question remains if the boost invariant Lagrangian that we have found
is also invariant under the newly defined rotation operator. Apart from this,
it remains to be seen if this is a proper way to redefine the rotation generator,
and if another way can be found to solve the problem of the vanishing rotation
generator.

The authors do note that under their redefinition of the rotation generator,
the found Lagrangian is rotation invariant, and go on to find that the Hamil-
tonian for upper fermions is non-vanishing. They remark that lower fermions
seem to correspond to the electric Carroll theory, and upper fermions to the
magnetic Carroll theory.

25



5 Conclusions and outlook

We have seen in this thesis that the two different Carroll limits of the metric
result in two different Carroll theories, one for lower fermions and one for upper
fermions. This split arises because two different Carroll Clifford algebras can
be defined for the two metrics. We have treated the algebra for lower fermions
and upper fermions in four dimensions.

We started with defining a new Clifford algebra for lower fermions, for which
we found two different matrix representations of the lower Carroll gamma ma-
trices that satisfy the constraints. Using the newly defined gamma matrices, we
constructed a Carroll spinor algebra that closes the algebra for Carroll boosts
and rotations. This definition of the Carroll spinor generator has the property
that the commutator between the boosts becomes zero, which is in line with
the formulation of the Carroll algebra in earlier literature. We then went on to
define a new Carroll-Dirac adjoint spinor, that allowed us to find four Carroll
invariant components. With these components we formed four Carroll invariant
Lagrangians, two describing massless Carroll fermions and four describing mas-
sive Carroll fermions. In these invariant terms, all spatial derivatives drop out.
We found that the massless Carroll fermions have a zero Hamiltonian density,
while the massive Carroll fermions have a nonzero Hamiltonian density. We also
discussed that chirality does not seem to be trivially conserved in the Carroll
limit.

Then we proceeded with defining the Clifford algebra for upper fermions.
We stated a matrix representation that satisfied the constraints, from which we
went on to define the Carroll generators in a similar fashion as for the lower
gamma indices. However, here we ran into a problem, because using this defi-
nition causes the rotation matrices to vanish. This thus is not a valid definition
for the Carroll generators, because it does not recover the Carroll algebra. How-
ever, it did render a proper expression for the boost generators, which we used
to find a Carroll boost invariant term for the upper fermions. We have also
found a boost invariant mass term. We went on to define a boost invariant
Lagrangian for massless upper fermions and for massive upper fermions. The
Hamiltonian densities for massless and massive upper fermions are both nonzero.

We then went on to discuss relevant work on Carroll fermions, and comparing
our results earlier results. Our research on Carroll fermions aligns significantly
with the work of Bagchi et al., which also explores four-dimensional Carroll
fermions. Both studies use the same metric conventions and define the lower
and upper Carroll Clifford algebras similarly. Bagchi et al. also define the gen-
erator for lower fermions in a manner equivalent to our approach, noting its
closure of the homogeneous part of the Carroll algebra. They further define a
new Dirac spinor adjoint and identify three invariant terms under Carroll trans-
formations, which match three of the four invariant terms we found. However,
they do not mention the fourth term we identified.
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For upper fermions, Bagchi et al. encounter the same issue of a vanishing ro-
tation generator. They propose a new generator and find a rotation matrix that
closes the Carroll algebra. We were unable to replicate this result due to the
commuting and anticommuting properties of the matrices involved. However,
by redefining the rotation matrix, we found proper explicit matrix representa-
tions for our rotation generators that close the homogeneous part of the Carroll
algebra. It remains to be seen whether the boost invariant Lagrangian we found
is also invariant under the newly defined rotation operator and whether this
redefinition of the rotation generator is appropriate. This is an open question
that requires further exploration.

Bagchi et al. find their Lagrangian to be rotation invariant under their
redefined rotation generator and note a non-vanishing Hamiltonian for upper
fermions. They suggest that lower fermions correspond to the electric Carroll
theory and upper fermions to the magnetic Carroll theory. Further research is
necessary to increase our understanding of the Carroll limit of fermions and how
the structures we have discussed emerge from their relativistic parent theories.
This would clarify the origin of the two distinct fermion species we have identi-
fied. Determining whether the lower and upper fermions correspond to electric
and magnetic theories, as per current nomenclature, would further elucidate the
properties of the theories we have uncovered.

It is still unclear how and if there is a form of chirality for Carroll fermions.
This remains up for further study. Another next step in research could be find-
ing Carroll invariant interaction terms to add to the Lagrangians. Lastly, the
natural path now is to progress towards quantization of the theory of Carroll
fermions.
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