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Abstract

Crystalline band insulators are described in the low temperature regime by a tight-
binding model. A mathematically precise notion of topological equivalence of tight-
binding models for insulators is formulated in terms of homotopy classes of maps.
For insulators without any symmetry requirements, we review the equivalence of the
homotopy classification of insulators in d spatial dimensions and the classification of
complex vector bundles over a d-dimensional sphere or torus. A proof is presented of
the fact that, in two spatial dimensions, the first Chern number is a Z-valued topo-
logical invariant that fully classifies the two-dimensional insulators. We also discuss
physical interpretations of the first Chern number in the context of the Hall con-
ductivity and the bulk-boundary correspondence. For insulators with time-reversal
symmetry, there is no Z invariant, but a Z2 invariant as shown by Fu, Kane and
Mele. The classification of time-reversal symmetric insulators has been shown to be
equivalent to the classification of “Quaternionic” vector bundles. Building on work
by DeNittis and Gomi, a proof that the Fu-Kane-Mele invariant fully classifies the
“Quaternionic” vector bundles associated to the continuum models of time-reversal
symmetric insulators is provided in the language of equivariant homotopy and equiv-
ariant Čech cohomology.
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9.1 Čech cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.2 Sheaf cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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B Equivalence of Čech and sheaf cohomology 97
B.1 Ordinary setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.2 Equivariant setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C Equivariant sheaf cohomology of S̃d 102
C.1 Proof of H2(S̃2;Z2, Z̃) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.2 Proof of H2(S̃d;Z2, Z̃) = 0 for d ≥ 2 . . . . . . . . . . . . . . . . . . . . . . 104
C.3 Proof of H2(S̃d, (S̃d)τ ;Z2, Z̃) ∼= Z2 for d ≥ 2 . . . . . . . . . . . . . . . . . . 106

3



1 Introduction

Heuristically, an insulator is a material that does not conduct electricity. We restrict
ourselves to the study of crystalline materials whose constituent atoms are arranged in
a periodic fashion in space. To describe the electrons inside the material we assume the
non-interacting electron approximation is valid. This means that all interactions of the
electrons with each other will be ignored. The electronic properties of such materials can
be understood in this approximation in terms of so-called band theory [1, 2], which provides
a systematic way of representing the single-electron states. The low-energy properties of
a crystalline material are captured within the framework of band theory by a matrix
Hamiltonian that is continuously parameterized by a momentum variable which takes
values in the Brillouin zone. The periodicity in real space is reflected in the fact that the
Brillouin zone is a d-dimensional torus, where d is the spatial dimension of the material.
At low temperature, the precise definition of an insulator can be formulated as being a
material for which the Fermi level lies within a band gap. Mathematically, this condition
translates into the requirement that the eigenvalues of the matrix Hamiltonian never vanish
as function of momentum. This is called the gap condition.

For an insulator then, there is a splitting of the single-electron states into bands above
the Fermi level, called the conduction bands, and bands below the Fermi level, called the
valence bands. In the ground state, the valence bands are occupied, but the conduction
bands are empty. For two-dimensional insulators a Z-valued topological invariant called
the first Chern number can be associated to the valence bands [3, 4]. Physically speaking,
the topological nature of this invariant means that it cannot be changed by adiabatic de-
formations of the insulator that preserve the gap [5]. Mathematically, these deformations
correspond to a notion of homotopy. The first Chern number has a physically measur-
able interpretation as the Hall conductivity of a two-dimensional insulator [6]. Moreover,
the bulk-boundary correspondence states that an insulator with a non-trivial first Chern
number necessarily has gapless, conducting edge states [7, 8, 9].

A natural question that arises is whether there are more topological invariants for
insulators in less than or equal to three dimensions than just the first Chern number for
two-dimensional insulators. It turns out that, in the absence of additional symmetries, the
answer to this question is negative; the first Chern number for two-dimensional insulators
is the only topological invariant possible. In the first part of this work, we will establish
this fact using basic tools from algebraic topology including homotopy, homology and
cohomology. First, we formulate the topological equivalence of insulators in terms of
homotopy classes of maps from the Brillouin zone into a Grassmannian manifold [10].
From this, it can already be concluded that the only topological invariant for insulators in
dimensions less than or equal to three is a Z invariant in two dimensions. However, it is not
obvious that this invariant coincides with the first Chern number. In order to establish that
this is indeed the case, we formulate the topological classification of insulators a second
time, but now in terms of the classification of complex vector bundles over the Brillouin
zone [11]. Because the Brillouin zone is a low dimensional torus, a full classification of the
complex vector bundles over it is readily obtained, and seen to be given precisely by the
first Chern number.

In the presence of time-reversal symmetry this story changes. First of all, it can be
shown that the first Chern number of a two-dimensional insulators with time-reversal
symmetry always vanishes [11]. Therefore, one would be tempted to conclude that there
are no topologically nontrivial insulators with time-reversal symmetry. This conclusion
would be correct with respect to the notion of topological equivalence that has been used
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so far. However, in the context of time-reversal symmetric insulators, a new notion of
topological equivalence that not only demands the preservation of the gap, but also of
the time-reversal symmetry itself has to be considered. Doing so, a Z2-valued topological
invariant for time-reversal symmetric insulators in both two, as well as three dimensions
has been discovered and developed by Fu, Kane and Mele in [12, 13, 14, 15], and is
therefore called the FKM invariant. We review the construction of this invariant and its
topological nature in detail in the so-called continuum limit. Physically, this limit captures
the response of the insulator to electric fields that vary slowly in space with respect to the
inter-atomic spacing. Mathematically, it has the effect of replacing the Brillouin torus by
a sphere [16], which simplifies the analysis.

Similar to the case without symmetries, one may ask whether there are more topo-
logical invariants for time-reversal symmetric insulators aside from the FKM invariant.
Again, the answer turns out to be negative. In the symmetry less case, the analogous
question could be answered by associating a complex vector bundle to an insulator and
studying the classification of complex vector bundles. It was realized by DeNittis and
Gomi [17, 18] that to treat the time-reversal symmetric case, one has to consider “Quater-
nionic” vector bundles, which are complex vector bundles with additional structure that
precisely captures the action of the time-reversal symmetry on the valence bands, and
is similar to Atiyah’s KR-theory [19]. By studying the classification of “Quaternionic”
vector bundles over low dimensional spaces using equivariant Borel cohomology, DeNittis
and Gomi established the fact that the FKM invariant is the only topological invariant for
time-reversal symmetric topological insulators. The main result of the second part of the
present work is a reformulation of this result specifically for spheres in terms of equivariant
homotopy and equivariant Čech cohomology.

The thesis is divided into two parts. The first part is dedicated to the study of topo-
logical insulators not constrained by any symmetries. The main subject of the first part is
the topological classification of insulators in one, two and three dimensions in terms of the
first Chern number. In Section 2, the mathematical formalism for insulators is introduced
in the language of band theory and the tight binding model, and a first classification in
terms of homotopy classes of maps is provided. In Section 3, we review the basic theory of
complex vector bundles and Chern classes. Then, in Section 4, we show how to associate
a complex vector bundle with a connection to an insulator. What is more, we show that
the first Chern number of this vector bundle has a physical interpretation as the Hall
conductivity of a two-dimensional insulator. In Section 5, the topological classification
of insulators is shown to be equivalent to the classification of complex vector bundles.
Subsequently, the classification of complex vector bundles over base spaces of dimension
less than or equal to three is shown to be realized by the first Chern number. We also
identify the two-dimensional, two-band model as the protoypical model for a topological
insulator, and study it in detail. The first part is brought to an end in Section 6, where we
provide an interpretation of the bulk-boundary correspondence based on a chiral-anomaly
argument.

In the second part, we treat the classification of topological insulators with time-
reversal symmetry, where we focus on continuum models. We start in Section 7 with
the construction of the FKM invariant for these insulators. In Section 8, we introduce
“Quaternionic” vector bundles, argue how they are related to time-reversal invariant in-
sulators, and show their classification in terms of a Z2 invariant, which can be constructed
only under certain special assumptions. Finally, in Section 9, we generalize Čech and sheaf
cohomology to an equivariant setting in order to prove that the assumptions needed in
Section 8 are met for continuum models of insulators.
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Part I

Topological Insulators
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2 Insulators and topological equivalence

The goal of this section is to establish a topological classification of insulators in terms of
homotopy classes of maps. In order to do this, it is necessary to restrict ourselves to one
specific choice of mathematical formalism for the description of insulators. The formalism
of choice will be that of electronic band theory. More precisely, it will be the so-called
tight-binding model, which is an approximation to band theory that is particularly suited
for insulators [1]. The notion of topological equivalence of insulators has been physically
formulated in terms of adiabatic deformations [5]. For tight-binding models this notion can
be reformulated in terms of homotopy, which yields the desired topological classification
of insulators [10].

We begin this section with a review of band theory for crystalline materials in terms
of the Zak and Bloch transforms along the lines of [11] and provide a precise definition
of what an insulator is in this context. Then, the tight-binding model is introduced as
an approximation to the general band theory and we establish our working definition of a
mathematical model for insulators. Finally, we define what it means for two insulators to
be topologically equivalent and the topological classification of insulators is exhibited in
terms of homotopy classes of maps from the Brillouin zone to a Grassmannian manifold.

2.1 Electronic band theory of crystalline materials

A crystalline material consists of positively charged atomic cores arranged in periodic fash-
ion in space and negatively charged electrons moving around these cores. In principle, all
the constituents interact with each other via the electromagnetic force. However, describ-
ing all these interactions is not feasible and also not necessary for our purposes. What we
will do instead is work with approximations. In particular, we assume that the interactions
of a single electron with the atomic cores and the other electrons can be approximated
by an effective periodic potential. This is a standard approximation in solid state physics
called the “non-interacting electron” or “independent electron” approximation. The non-
interacting electron approximation reduces the description of the electrons in the material
to a quantum mechanical single-particle problem. low-energy electronic properties of a
crystalline material can then be obtained from the so-called band structure, which is a
particularly useful representation of all the single-particle eigenstates as a function of a
momentum variable.

A block of crystalline material sits in three dimensional space. To study the bulk
properties of a block of crystalline material we often model the spatial extent of the block by
R3. The state of an electron inside such a three dimensional block has two parts: a spatial
part and a spin part. The spatial part is a complex valued function Ψ : R3 → C called
the wavefunction. The absolute value squared of the wavefunction gives the probability
distribution for finding the electron in a certain location. In order for this to make sense
as a probability distribution, one typically requires the wavefunction to be a normalized
element of L2(R3,C). The spin part is a two component vector in C2, which encodes the
orientation of the spin magnetic moment of the electron . The full single electron Hilbert
space for an electron in three spatial dimensions is the tensor product L2(R3,C) ⊗ C2 .
Sometimes, however, we want to model electrons restricted to move in a two-dimensional
plane, which changes the L2(R3,C) component of the Hilbert space into L2(R2,C). In
other situations, we want to model electrons whose spin is polarized by some external
magnetic field, which changes the C2 component of the Hilbert space into C. In what
follows, we will ignore the spin part of the electron states and consider an electron in d
spatial dimensions modeled by a single-particle Hilbert space H = L2(Rd,C) .
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Having specified the single-particle Hilbert space, we will now specify the single-particle
Hamiltonian for the spinless fermions in a periodic potential arising from the atomic
cores in the crystal. The periodicity of the crystal is encoded in a lattice Γ, which is
an additive subgroup of Rd that is isomorphic to Zd. The lattice Γ is generated by
d linearly independent vectors γ1, . . . ,γd ∈ Rd such that every element γ ∈ Γ can be
written uniquely as an integer linear combination γ =

∑d
i=1 aiγi with ai ∈ Z. For later

use we also define the dual lattice, or reciprocal lattice, Γ∗ to be the lattice generated by
the dual vectors γ∗

1, . . . ,γ
∗
d ∈ Rd that are defined such that γ∗

i ·γj = 2πδij . Moreover, for
a lattice Γ generated by {γ1, . . . ,γd} we define the unit cell Y to be

Y =

{
x ∈ Rd : x =

d∑
i=1

biγi for bi ∈ [−1/2, 1/2]

}
.

Similarly, we define a corresponding unit cell Y ∗ for the dual lattice Γ∗ . The unit cell
Y ∗ of the dual lattice is called the Brillouin zone. We also define the tori TY := Rd/Γ
and TY ∗ := Rd/Γ∗ . The dual space torus TY ∗ is called the Brillouin torus. The periodic
potential generated by the atomic cores in the crystal is described by a function VΓ : Rd →
R that satisfies VΓ(x + γ) = VΓ(x) for all x ∈ Rd and all γ ∈ Γ . For a single fermion of
mass m in the periodic potential VΓ the Hamiltonian is

H = − ℏ2

2m
∇2 + VΓ . (2.1)

The Hamiltonian is an operator on the Hilbert space H = L2(Rd,C). The VΓ part acts
by multiplication on a wavefunction Ψ ∈ H through (VΓΨ)(x) = VΓ(x)Ψ(x) for x ∈ Rd .
Strictly speaking, the Hamiltonian H cannot act on L2(Rd,C) because a function Ψ ∈
L2(Rd,C) need not be differentiable. The proper Hilbert space to work with would be the
Sobolev space W 2,2(Rd,C), consisting of functions whose derivatives up to order two are
L2(Rd,C). We will leave this distinction implicit. We are thus faced with having to solve
the eigenproblem

HΨ = ϵΨ , (2.2)

for all single-particle eigenstates of H. Just solving the eigenproblem in this form will
not yield a band structure though. In order to get the band structure, we exploit the
periodicity of the problem by performing the so-called Bloch-Floquet-Zak transform [11],
or just Zak transform, for short.

Morally, the Zak transform is an isometry from the single-particle Hilbert space of
arbitrary wavefunctions to a “Hilbert space of periodic wavefunctions”. Initially, one can
define the Zak transform of a rapidly decreasing function Ψ ∈ S(Rd,C), with S(Rd,C) the
Schwartz space,1 to be the function UZΨ : Rd × Rd → C given by

(UZΨ)(k,x) =
∑
γ∈Γ

e−ik·(x+γ)Ψ(x+ γ) , (2.3)

where x indicates a variable in real space and k indicates a variable in reciprocal space.
The function UZΨ has the following periodicity properties: In the real space variable

(UZΨ)(k,x+ γ) =
∑
γ′∈Γ

e−ik·(x+γ+γ′)Ψ(x+ γ + γ ′) = (UZΨ)(k,x) ,

1The Schwartz space consists of functions all of whose derivatives vanish faster than any polynomial at
infinity.
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for all γ ∈ Γ, and in the reciprocal space variable

(UZΨ)(k + λ,x) =
∑
γ∈Γ

e−i(k+λ)·(x+γ)Ψ(x+ γ) = e−iλ·x(UZΨ)(k,x) ,

for all λ ∈ Γ∗ . The first property tells us that for fixed k ∈ Rd, the function (UZΨ)(k, ·) is
periodic in the real space lattice Γ. In other words, (UZΨ)(k, ·) ∈ L2(TY ,C) is a function
on the torus TY . If we define the fiber Hilbert space Hf := L2(TY ,C) and a representation
of the dual lattice

τ : Γ∗ → U(Hf ), (τ(λ)ψ)(x) = eiλ·xψ(x) ,

then the second periodicity property implies that UZΨ is an element of the Hilbert space

Hτ = {ψ ∈ L2
loc(Rd,Hf ) : ψ(k − λ) = τ(λ)ψ(k) for all λ ∈ Γ∗} ,

where L2
loc(Rd,Hf ) are those functions that are square integrable on compact subsets of

Rd . The Hilbert space Hτ is equipped with the inner product

⟨φ,ψ⟩Hτ =

∫
Y ∗

dk

|Y ∗|
⟨φ(k), ψ(k)⟩Hf

,

where |Y ∗| is the volume of the reciprocal space unit cell. Note in particular that we
integrate k only over the unit cell Y ∗ since all information of an element of Hτ can be
recovered from its behaviour on the Brillouin zone Y ∗ . This Hτ is our Hilbert space of
periodic functions. It is now easy to check that the Zak transform extends to a unitary
operator

UZ : L2(Rd,C)→ Hτ .

Indeed, for Φ,Ψ ∈ L2(Rd,C), we compute2

⟨UZΦ,UZΨ⟩ =
∫
Y ∗

dk

|Y ∗|

∫
TY

dx
∑
γ,γ′

eik·(γ−γ′)Φ∗(x+ γ)Ψ(x+ γ ′)

=
∑
γ

∫
TY

dxΦ∗(x+ γ)Ψ(x+ γ) =

∫
Rd

dxΦ∗(x)Ψ(x) = ⟨Φ,Ψ⟩ .

Moreover, the inverse Zak transform is given by

(U−1
Z ψ)(x) =

∫
Y ∗

dk

|Y ∗|
eik·xψ(k, [x]) ,

where [x] ∈ TY is the class represented by x ∈ Rd .
We use the Zak transform to transport the single-particle problem in H over to Hτ .

In particular, we claim that, because of the periodicity of the Hamiltonian H : H → H,
the Zak transform of H decomposes as

UZHU−1
Z =

∫ ⊕

Y ∗

dk

|Y ∗|
Hf (k) , (2.4)

2We use the relation
∫
Y ∗

dk
|Y ∗| e

ik·(γ−γ′) = δγ,γ′ . For later use, the relation with the roles of k and γ

reversed is
∑

γ∈Γ ei(k−k′)·γ = δ(k − k′) .
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where Hf is a so-called fiber Hamiltonian . The
∫ ⊕

-notation means that Hf (k) acts on
the copy of Hf that is associated to the point k ∈ Y ∗. Explicitly doing the Zak transform

for H = − ℏ2
2m∇2 + VΓ makes this clear. If φ ∈ Hτ , then

(UZHU−1
Z )(φ)(k,x) =

∑
γ∈Γ

e−ik·(x+γ)(HU−1
Z φ)(x+ γ)

=
∑
γ∈Γ

e−ik·(x+γ)

(
− ℏ2

2m
∇2 + VΓ(x+ γ)

)∫
Y ∗

dl

|Y ∗|
eil·(x+γ)φ(l, [x])

=

∫
Y ∗

dl

|Y ∗|
∑
γ∈Γ

ei(l−k)·(x+γ)

(
− ℏ2

2m
(∇+ il)2 + VΓ(x)

)
φ(l, [x])

=

∫
Y ∗

dl

|Y ∗|
δ(l− k)ei(l−k)·x

(
− ℏ2

2m
(∇+ il)2 + VΓ(x)

)
φ(l, [x])

=
1

|Y ∗|

(
− ℏ2

2m
(∇+ ik)2 + VΓ(x)

)
φ(k, [x]) .

This computation shows that indeed, the output of UZHU−1
Z at momentum k only depends

on the input at k, and it yields the decomposition in Eq. (2.4) when we set

Hf (k) = −
ℏ2

2m
(∇+ ik)2 + VΓ(x) . (2.5)

The periodicity of the Hamiltonian crucially came in to allow us to perform the sum over
the γ’s yielding the δ(l − k) . One can think of k as a momentum, so the above compu-
tation is a variant of the familiar statement that translationally invariant Hamiltonians
are diagonal in momentum space. The single-particle eigenproblem Eq. (2.2) for a spin-
less fermion in a crystal can thus be transformed via the Zak transform to the family of
eigenproblems

Hf (k)u(k) = ϵ(k)u(k) , (2.6)

for k ∈ Y ∗ and u(k) ∈ Hf .
We are now in a position to say what a band structure is. The eigenproblem Eq. (2.6)

has multiple solutions ϵa(k) labelled by an index a ∈ A. Each solution ϵa(k) is called an
energy band and the index a is called the band index. The collection of all the {ϵa}a∈A
is the band structure. The band structure can be represented schematically in a diagram
like Fig. 1, where for simplicity we have assumed a to be discrete index. In fact, we will
argue later that for the low-energy physics it always suffices to consider a as a discrete
index and ignore any continuous portions of the spectrum.

As a final comment, the Zak transform is closely related to the so-called Bloch trans-
form. Whereas the Zak transform comes with periodicity in real space and “quasi-
periodicity” in reciprocal space, the Bloch transform makes the opposite tradeoff. The
Bloch transform of Ψ ∈ H can be defined to be

(UBΨ)(k,x) = eik·x(UZΨ)(k,x) =
∑
γ∈Γ

e−ik·γΨ(x+ γ) .

For Ψ ∈ H, the function UBΨ is periodic in k, but for fixed k it is an element of

Hk = {ψ ∈ L2
loc(Rd,C) : ψ(x+ γ) = eik·γψ(x) for all γ ∈ Γ} .

If u(k) is a Zak function that solves Eq. (2.6), then the Bloch function ψk(x) = eikxu(k,x)
solves Hψk = ϵ(k)ψk, with H the original single-particle Hamiltonian. The above dis-
cussion on Zak and Bloch transforms thus gives a result similar to the consequence of
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Figure 1: Schematic example of a band structure with three energy bands labelled by ϵ1,
ϵ2 and ϵ3 .

the Bloch theorem that there is a basis of H consisting of eigenfunctions of H of Bloch
functions ψk(x) [1] .

2.2 Conductors and insulators

The difference between conductors and insulators can be discerned by considering the
representation of the ground state in the band structure. Up to now, we have been
considering a crystal that extends out to infinity. However, for the arguments that follow
it is easiest to restrict to the physical situation of a finite size crystal. Let us say the crystal
is a cube made up of N unit cells, where N is some very large number. A consequence of
the finiteness of the crystal is that the momentum k becomes discretized. In particular,
each energy band now consists of a finite number of states.

To obtain the ground state, note that each atom in the crystal comes with a fixed
number of electrons so that there is in total a finite number of electrons in the crystal.
The ground state is the lowest possible energy configuration that can be obtained by dis-
tributing the electrons of the crystal over the single-particle states in accordance with the
Pauli principle. The band structure tells us what the states are that individual electrons
can occupy. By the Pauli exclusion principle all the electrons have to be in different states.
To obtain the ground state, we should thus start filling the single-particle states from the
lowest energy state up, until we are out of electrons.

The Fermi level is then roughly defined to be the highest occupied energy level in the
ground state. A crystal is a conductor when the Fermi level lies within a band. A crystal
is an insulator when the Fermi level lies at the top of a band. A more precise definition of
the Fermi level is that it coincides with the chemical potential at zero temperature. The
chemical potential µ as a function of temperature T is determined by particle conservation.
The number of particles in the system is Nparticles =

∫
dϵNFD(ϵ−µ(T ), T )ρ(ϵ) , where NFD

is the Fermi-Dirac distribution and ρ is the density of states. If T changes, the Fermi-Dirac
distribution changes and hence µ has to change to preserve the number of particles. The
limit µ(T → 0) defines the Fermi level uniquely, and for an insulator it will be somewhere
inside a band gap. We will always redefine the energy levels so that the Fermi level lies at
ϵ = 0 . See Fig. 2 for schematic examples of band structures for conductors and insulators.
As a note on terminology, the bands with negative energy are referred to as valence bands,
and the bands with positive energy are referred to as conduction bands.

Let us now reconcile this band theoretic definition of conductors and insulators with the
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Figure 2: (Left) Band structure of a conductor. (Right) Band structure of an insulator.
Energy bands are indicated with dotted line and occupied states with blue dots. The
Fermi level lies at ϵ = 0 by convention.

heuristic definition in terms of conduction of electricity. At zero temperature and without
any externally applied fields, the crystal will be in the ground state. The difference between
conductors and insulators is their response to a small external electric field. For simplicity,
consider a one-dimensional crystal with N unit cells lying along the x-axis. Suppose we
apply an electric field E in the x-direction. A vector potential that realizes this electric
field is At(t, x) = 0 and Ax(t, x) = Et . The electrons couple to the vector potential by
the minimal substitution

k → k − e

ℏ
Et .

Classically, this coupling reflects the fact the electric field acts as a force on the elec-
trons thereby accelerating them, or in other words, changing their momentum. Quantum
mechanically, if the electric field is small, then by the adiabatic theorem the electrons
will actually stay within their respective eigenstates, but the eigenstates themselves start
flowing along the bands according to the change in momentum. After some time, all
single-particle states will have shifted by one place as in Fig. 3.3 In this picture we have
properly taken into account that the energy bands are periodic functions on the Brillouin
torus. For a conductor, this shift results in a net balance of more right moving than left
moving electrons. Hence, there is a current. For an insulator, however, the occupation
of the states is invariant under the flow of the eigenstates, so there is no current when a
small electric field is applied to an insulator.

2.3 The tight-binding model and the continuum limit

The problem of finding the eigenstates of the single-particle Hamiltonian H = − ℏ2
2m∇2 +

VΓ in L2(Rd,C) has been reformulated to finding the eigenstates of the family of Zak

Hamiltonians Hf (k) = − ℏ2
2m(∇+ ik)2+VΓ in L2(TY ,C). Conceptually this reformulation

is desirable because it allows the solution to be interpreted in terms of a band structure.
Computationally, however, no progress has been made. It is not easier to find eigenstates
of Hf (k) than it is finding eigenstates of H. Approximate methods are needed.

First of all, we are not interested in all eigenstates. Our objective lies in capturing the
low-energy physics, which is dominated by the eigenstates close to the Fermi level. For all

3We repeat this argument in more detail in Section 6.
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Figure 3: (Left) Occupation of states after turning on electric field for some time in
conductor. There is a balance of more right moving and left moving electrons is disturbed,
hence there is a in current. (Right) Occupation of states after turning on electric field for
some time in insulator. There is no change, so no current.

k in the Brillouin zone Y ∗ the spectrum ofHf (k) contains both a discrete and a continuous
part. The continuous part corresponds to high energy scattering states associated to the
continuum outside the crystal. We will ignore these scattering states. The only states we
are interested in are those corresponding to a subset of the discrete part of the spectrum
of Hf (k) which are close the Fermi level. Recall that there is a one-to-one correspondence
between the eigenfunctions Hf (k) and the Bloch functions, which are eigenfunctions of H,
given by ψ(k,x) = eik·xu(k,x). The tight-binding model gives an approximate approach
to finding the Bloch functions around the Fermi level. We review the tight-binding model
here along the lines of [1] and [20].

The main assumption in the tight-binding model is that the electrons in the crystal are
“tightly bound” to the individual atomic cores that make up the crystal, in the sense that
the atomic orbitals of the isolated atoms are a good zeroth order approximation to the
Bloch functions. To be more precise, consider an isolated atom located at the origin in Rd.
The atom has a spherically symmetric potential Vat(x) and the Hamiltonian describing
non-relativistic electrons orbiting around the static core is

Hat = −
ℏ2

2m
∇2 + Vat(x) .

The eigenvectors ϕa(x) corresponding to the discrete part of the spectrum of Hat are the
atomic orbitals. To model the low-energy physics, let us consider a collection of atomic
orbitals labelled by a = 1, . . . ,M . Suppose we construct a crystal by placing copies of the
atom on a lattice Γ. The Hamiltonian describing an electron in the crystal is

H = − ℏ2

2m
∇2 +

∑
γ

Vat(x− γ) = Hat +∆V (x) , (2.7)

where ∆V (x) =
∑

γ ̸=0 Vat(x−γ) . If the lattice spacing were macroscopic, say one meter,
then the atoms would not notice each others presence. The overlap of their orbitals would
be astronomically small and effectively vanishes. In this limiting case, the orbitals of the
isolated atoms are extremely good approximations to the solutions of the eigenstates of
the crystal. Now imagine that we shrink the lattice down to the actual lattice spacing.
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The atomic orbitals will overlap nontrivially, however, the assumption of the tight-binding
model is that the overlaps are sufficiently small such that the orbitals of the isolated atoms
are still good zeroth order approximations to the eigenstates of the crystal.

The atomic orbitals can then be used to approximate the Bloch functions. In order
to regularize the computations, we restrict ourselves to a finite portion of the crystal of
N + 1 atoms corresponding to points {γj}Nj=0 in the lattice, where γ0 = 0. Recall that a
Bloch function ψ(k) has to be part of the Hilbert space Hk, which means that it has to
be periodic in momentum and quasi-periodic in space according to

ψ(k,x+ γ) = eik·γψ(k,x) .

The ansatz for a basis of Bloch functions is the linear combination of atomic orbitals
(LCAO),

ψa(k,x) =
1√
N + 1

N∑
j=0

eik·γjϕa(x− γj) , (2.8)

for a = 1, . . . ,M . An easy check shows that ψa(k) indeed satisfies the right periodicity
properties.

We assume that the Bloch functions {ψa}Ma=1 of the LCAO ansatz are independent so
that for each k they form a basis for an M -dimensional subspace of Hk. Restricted to
these subspaces, the Hamiltonian H in Eq. (2.7) can be expressed as a k-dependent matrix
h(k) with respect to the basis provided by the LCAO ansatz, whose matrix elements are

hab(k) = ⟨ψa(k), Hψb(k)⟩

=
1

N + 1

N∑
j,j′=0

eik·(γj′−γj)

∫
dxϕ∗a(x− γj) [Hat +∆V (x)]ϕb(x− γj′)

=
N∑
j=0

e−ik·γj

∫
dxϕ∗a(x− γj) [Hat +∆V (x)]ϕb(x)

= δabEb +

N∑
j=1

e−ik·γj1ab(γj) +

N∑
j=0

e−ik·γj∆Vab(γj) ,

where we have defined the matrix elements

1ab(γ) =

∫
dxϕ∗a(x− γ)ϕb(x) and ∆Vab(γ) =

∫
dxϕ∗a(x− γ)∆V (x)ϕb(x) .

If the tight-binding model is appropriate, then the overlap elements 1ab(γ) and ∆Vab(γ) fall
of quickly when γ goes further away from 0. A good approximation to the Hamiltonian
can then be obtained by taking only the first couple of terms from the sums over the
lattice vectors. For example, one might take only the nearest neighbours, or next-nearest
neighbours terms. Our discussion of the tight-binding model so far has been restricted to a
model for a collection M orbitals of one atom in a unit cell. However, the same approach
can be applied to the case of multiple atoms in a unit cell after introducing sublattice
indices next to the usual lattice indices, see [20]. It is important to note that the Bloch
functions of the LCAO ansatz do not diagonalize the Hamiltonian H. This means that
they are not the eigenstates corresponding to a single energy band. To obtain the energy
bands, one should find the eigenvectors of the matrices h(k). It is these eigenvectors that
correspond to the energy bands.
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From now on the tight-binding model will be our model of choice for any insulator.
In particular, we adopt the mathematical formalism that the single-particle Hamiltonian
of a crystal is modelled by a k-dependent matrix h(k). In order for h(k) to describe an
insulator, the Fermi level must be inside the gap. By redefining the energies we can always
assume the Fermi level to be at zero energy. Hence, h(k) describes an insulator if and
only if its eigenvalues never vanish. We will refer to this nonvanishing of the eigenvalues
when k ranges over the Brillouin zone as the gap condition. Abstractly speaking, a model
for insulator in d spatial dimensions that takes into account M bands thus takes the form
of a map

h : Td → Herm(M,C) , (2.9)

that satisfies the gap condition, where Herm(M,C) denotes theM×M Hermitian matrices.
The periodicity of the Bloch functions in momentum space has been used to reduce the
domain of h from Rd to the Brillouin torus Td. The fact that insulators can exhibit non-
trivial topological features can be traced back to the fact that the torus appearing as the
domain of h is topologically non-trivial.

The abstract tight-binding model Eq. (2.9) contains the low-energy physics of an insu-
lator. It can be used to describe the response of an insulator to an electric field that slowly
varies in time. An additional limit of interest is the limit in which the electric field varies
slowly in space as well. This is the so-called long-wavelength limit. A wavelenght is “long”
when it is large with respect to the interatomic spacing of the crystal. Or conversely, if
the interatomic spacing is small with respect to the wavelength of the external field. From
the latter point of view of the external field the crystal then approximates a continuum.
Hence, the long-wavelength limit is also called the continuum limit.

Given a periodic model h : Td → Herm(M,C) the continuum limit can be obtained by
expanding the matrix entries of h(k) to first or second order in k, since long wavelengths
correspond to small values of k . For example, in two dimensions one can write down the
periodic model

h(k) = sin(kx)σx + sin(ky)σy + (m+ cos(kx) + cos(ky))σz ,

where σi for i = x, y, z are the Pauli matrices. Expanding to second order in k yields the
continuum model4

hcont(k) = kxσx + kyσy +

(
m+ 2−

k2x + k2y
2

)
σz .

Clearly, hcont is no longer defined on the torus. It looks like hcont is defined on R2 and
although this is true, it cannot be the whole story. Indeed, R2 is topologically trivial which
would mean that the continuum model does not contain any topological information. This
is however not the case. There is non-trivial topology also in the continuum model. The
reason is that the behaviour of the eigenfunctions of hcont(k) as k → ∞ serves as a
boundary condition. The eigenfunctions of hcont(k) become independent of k as k →∞.
Therefore, we can compactify R2 to S2 by adding a point at infinity. As a general definition,
a continuum model for an insulator is given by a map

h : Sd → Herm(M,C) , (2.10)

that satisfies the gap condition.

4This model can actually be experimentally realized [21] .
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2.4 Homotopy classification of insulators

In the tight binding formalism, an insulator in d spatial dimensions is modelled by a
smooth map

h : X → Herm(M,C)

that satisfies the gap condition. Here, X is a d-dimensional smooth manifold that is taken
to be either the Brillouin torus Td or the sphere Sd, depending on whether we consider the
continuum limit or not. Without loss of generality, we will assume the Fermi level to be at
zero energy so that the gap condition can equivalently be stated as the requirement that
the eigenvalues of h(p) are nonvanishing for all p ∈ X. The solutions to the characteristic
equation

det(h− ϵ) = 0

are smooth functions ϵã : X → R labelled by band indices ã = 1, . . . ,M .
Physically speaking, two insulators are said to be topologically equivalent if they can

be adiabatically deformed into each other [5] . A deformation of a quantum mechanical
system is adiabatic if the system, whenever it is prepared in an eigenspace of the Hamil-
tonian corresponding to an eigenvalue separated from the rest of the spectrum by a finite
gap and the deformation occurs slowly enough, stays within that eigenspace during the
deformation. In an insulator there is always a gap between the negative energy states and
the positive energy states. Therefore, adiabatic deformations of insulators correspond to
continuous deformations that preserve the insulating gap. Indeed, whenever a continuous
deformation is possible one can then perform the deformation sufficiently slow so that, if
the gap is maintained, valence states, i.e. negative energy states, will stay valence states.
A continuous deformation of a map is called a homotopy. The definition of topological
equivalence of insulators we adopt in this work is the following:

Definition 2.1. Two insulators h, h′ : X → Herm(M,C) are said to be topologically
equivalent as insulators if there exists a homotopy from h to h′ that preserves the insulating
gap.

An important consequence of this definition is that for an insulator h the precise values
of the eigenvalues ϵa are topologically irrelevant. The only topological information they
contain is the distinction between valence and conduction bands. To see this, consider
an insulator h : X → Herm(M,C) with m < M valence bands. Denote by ϵ1, . . . , ϵm :
X → (−∞, 0) the negative eigenvalues of h and by ϵm+1, . . . , ϵM : X → (0,∞) the positive
ones. Since the Hamiltonian takes values in the Hermitian matrices, it can be diagonalized
pointwise by finding its eigenvectors. However, globally continuous eigenvectors over the
whole momentum space might not exist. The best we can do in general is to cover X with
contractible open sets {Uα}α∈A and find smooth orthonormal eigenvectors ψα,a : Uα → CM

corresponding to ϵa for a = 1, . . . ,M over each open Uα. The Hamiltonian may then locally
be represented as

h|Uα =
m∑
a=1

ϵa |ψα,a⟩ ⟨ψα,a|+
M∑

a=m+1

ϵa |ψα,a⟩ ⟨ψα,a| ,

where |ψα,a⟩ ⟨ψα,a| is the orthogonal projection onto the eigenspace of ϵa and we have
suggestively split the Hamiltonian into its negative and positive parts. If we change frame
by going from Uα to Uβ, then on the overlap Uαβ := Uα ∩ Uβ the negative eigenvectors
transform amongst themselves by a gauge transformation g−αβ : Uαβ → SU(m), while

the positive eigenvectors transform amongst themselves by a gauge transformation g+αβ :
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Uαβ → SU(M −m). It is then easy to see that the two projectors
∑m

a=1 |ψα,a⟩ ⟨ψα,a| and∑M
a=m+1 |ψα,a⟩ ⟨ψα,a| that appear in the Hamiltonian are invariant under this change of

frame from Uα to Uβ. We can thus unambiguously write

h =
m∑
a=1

ϵa |ψa⟩ ⟨ψa|+
M∑

a=m+1

ϵa |ψa⟩ ⟨ψa| ,

where to evaluate h at a point p ∈ X we have to pick an open Uα that contains p and use
the frame {|ψα,a⟩}Ma=1. At this stage, the Hamiltonian can be adiabatically connected to
the so-called “flat-band Hamiltonian”

hflat = −
m∑
a=1

|ψa⟩ ⟨ψa|+
M∑

a=m+1

|ψa⟩ ⟨ψa| , (2.11)

by deforming ϵa via negative functions to the constant function −1 for a = 1, . . . ,m and
via positive functions to the constant function 1 for a = m+ 1, . . . ,M .

The expression (2.11) for the flat band Hamiltonian is independent of the choice of
eigenvectors, and this independence can be made manifest using the notion of spectral
projectors. Recall that for a linear map A : CM → CM with eigenvalue λ ∈ C, the
spectral projector Pλ : CM → CM onto the eigenspace of λ can be represented as

Pλ =
1

2πi

∫
Cλ

dz [A− zI]−1 ,

where Cλ is a curve in C that encircles λ once in the counterclockwise direction and such
that the only eigenvalue of A contained in the interior of the curve C is λ . If we let C be a
fixed curve in C enclosing the negative part of the spectrum of h once counterclockwisely,
then the spectral projector onto the negative energy eigenspaces

P : X → Mat(M,C) , P (p) =
1

2πi

∫
C
dz [h(p)− zI]−1

is a smooth map. The flat band Hamiltonian can be expressed in terms of P as

hflat = (−1)P + (+1)(1− P ) = 1− 2P ,

which indeed gives energy −1 for the valence states and energy 1 for the conduction
states. There is thus a one-to-one correspondence between topological equivalence classes
of insulators and homotopy classes of spectral projectors P : X → Mat(M,C) .

It will turn out to be useful to reformulate this result as follows. The spectral projector
P (p) : CM → CM can be identified with the subspace it projects onto. In this way,
the family of spectral projectors P : X → Mat(M,C) gives rise to a smooth map X →
Gm(CM ), whereGm(CM ) is the Grassmannian ofm-dimensional subspaces of CM . Letting
[X,Gm(CM )] denote the homotopy classes of maps X → Gm(CM ), the final form in which
we would like to present the topological classification of insulators with M total bands
and m valence bands is

{Topological equivalence classes of insulators} ←→ [X,Gm(CM )] .

For continuum models in d dimensions, X = Sd so that [X,Gm(CM )] = πd(Gm(CM )),
the d-th homotopy group. If M −m and m are sufficiently large with respect to d, then
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the homotopy groups of the Grassmannian are known to be5

πd(Gm(CM )) =

{
Z if d is even

0 if d is odd
.

This implies that in two spatial dimensions there is an ensemble of topological equivalence
classes of continuum models of insulators indexed by Z. Moreover, in one and three spatial
dimensions there are only trivial continuum models.

In Section 5, we study this classification more carefully. One issue with the formulation
above is that it is in general hard to determine whether two maps are homotopic or not.
In other words, given an explicit model for an insulator it is a difficult task to determine
what equivalence class it belongs to. Another problem is that the advanced tools used to
compute the homotopy classes [Sd, Gm(CM )] cannot be used to compute [Td, Gm(CM )].
A more systematic computational method for distinguishing insulators is by computing
a topological invariant called the Chern number. We will prove that the Chern number
distinguishes all topological equivalence classes of an insulator in d = 1, 2, 3. To properly
introduce this topological invariant, we will review the theory of Chern classes for vector
bundles in the next section.

3 Vector bundles and Chern classes

In this section we introduce the definition of Chern classes for complex vector bundles
in the Chern-Weil formalism. In this formalism the Chern classes are defined as deRham
cohomology classes represented by invariant polynomials of the curvature 2-form. In order
to make sense of this definition, we will first briefly review three preliminaries. First,
we review the basic definitions and examples of vector bundles. Second, we review the
definition of and try to give some intuition for the notion of deRham cohomology of a
smooth manifold. Finally, we review the notion of connections and curvature of a smooth
vector bundle as a generalization of the usual deRham complex associated to the exterior
derivative on a smooth manifold. More thorough introductions to these concepts can be
found in [24, 25, 26].

Although Chern classes are introduced in this section for smooth vector bundles, they
are actually topological invariants of the underlying topological vector bundles. Explicit
models of insulators are usually smooth so that the Chern classes can be computed by
the methods laid out in this section. The topological nature of the Chern classes will be
further explained in Section 5.

3.1 Vector bundles

Intuitively, a vector bundle is a family of vector spaces continuously parameterized by a
topological space X . The precise definition is as follows. Let K = R,C be the field of
real or complex numbers. A K-vector bundle of rank m is a triple (E,X, π), where E and
X are topological spaces and π : E → X is a continuous map such that for every point
p ∈ X,

1. π−1(p) is an m-dimensional K-vector space, called the fiber of E,

5For d ≤ 2(M − m) it can be shown that πd(Gm(CM )) ∼= πd−1(U(m)) using the fibration sequence
0 → U(m) → Vm(CM ) → Gm(CM ) → 0, where Vm(CM ) is the so-called Stieffel manifold, which is
2(M − m)-connected. For d ≤ 2m it is known that πd−1(U(m)) is isomorphic to Z for even d and 0 for
odd d. This result is obtained from Bott periodicity and so-called “stable range” considerations [22, 23].
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2. there is an open neighbourhood U of p and a homeomorphism φ : π−1(U)→ U×Km

covering the identity on U , meaning prU ◦φ = π for prU : U×Km → U the projection
onto U , which fiberwise restricts to a linear isomorphism φq : π−1(q) → {q} × Km

for all q ∈ U .

The homeomorphism φ : π−1(U)→ U ×Km in the second point of the definition is called
a local trivialization over U ⊂ X. A vector bundle is said to be trivial if there is a local
trivialization over X itself, which we then call a global trivialization.

If X is a smooth manifold, then a smooth vector bundle over X can be defined by only
minor alterations to the above definition of vector bundle. A smooth vector bundle is a
triple (E,X, π) with E and X smooth manifolds and π : E → X a smooth map such that
properties 1 and 2 above hold, with the alteration that the local trivialization must now
be a diffeomorphism instead of just a homeomorphism.

Given two vector bundles π : E → X and π′ : E′ → X, both over the same X, a map
φ : E → E′ is a morphism of vector bundles if π′ ◦ φ = π and φp : Ep → E′

p is a linear
map for every p ∈ X. A morphism of vector bundles is an isomorphism already if φp is a
linear isomorphism for all p ∈ X . For a fixed base space X we let VectmK (X) denote the
set of all K-vector bundles of rank m over X, up to isomorphism.

A basic question when one encounters a vector bundle is whether or not it is isomorphic
to the trivial vector bundle. In other words, whether or not it can globally be written as
a product X ×Km. An example of a trivial real line bundle, i.e. a rank 1 vector bundle,
over S1 is the cylinder S1 × R . In terms of the precise definition the cylinder as a vector
bundle is the triple (S1 × R, S1, prS1). For p ∈ S1, the fiber pr−1

S1 (p) is equal to R, which
is a one-dimensional vector space, and the identity id : pr−1

S1 (S
1) → S1 × R is a global

trivialization. Henceforth, we will often refer to a vector bundle (E,X, π) as just E and
let the base space X and the projection π be implicit.

An example of a non-trivial real line bundle over S1 is the Möbius bundle. The Möbius
bundle can be defined by taking the product space [0, 1] × R and gluing the copies of R
at {0} and {1} by identifying (0, t) with (1,−t) . It can be shown that the Möbius bundle
indeed does not admit a global trivialization. This is especially easy to see by studying
the behaviour of the so-called sections of the Möbius bundle.

For a general K-vector bundle π : E → X, a section of E is a map s : X → E such that
π◦s = idX . The set of all sections of E is denoted by Γ(E), or sometimes as Γ(X;E) if we
want to emphasize the base space. Actually, the set of all sections enjoys more structure
than just that of a set. Indeed, we can add sections fiberwise to get new sections, and
we can also multiply a section by a K-valued function. Hence, the sections Γ(E) have the
structure of a C∞(X;K)-module. A local section over an open set U ⊂ X is a section of
the restricted vector bundle E|U := π−1(U) . A local frame of E over an open set U ⊂ X
is a collection of local sections s1, . . . , sm : U → E|U such that at each point p ∈ U , the
vectors {s1(p), . . . , sm(p)} form a basis for the vector space π−1(p) . A global frame is a
local frame over X. It is straightforward to show that the existence of a local frame over U
is equivalent to the existence of a local trivialization over U . Another criterion for a vector
bundle π : E → X to be trivial is thus the existence of a global frame. In the case of a line
bundle, a global frame is the same thing as a global non-vanishing section. The cylinder
S1 × R has a global non-vanishing section. For example, one can take s(x) = (x, 1) . The
Möbius bundle, on the other hand, does not have a global non-vanishing section. Indeed,
global sections of the Möbius bundle correspond to continuous maps f : [0, 1] → R such
that f(0) = −f(1) . If f(0) > 0, then f(1) < 0 and so f has to vanish for some x ∈ (0, 1) .
This proves that the Möbius bundle is non-trivial.

An important aspect to the study of vector bundles are the local representations of
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global objects. For example, one can study global sections of vector bundles by comparing
representations of the sections with respect to different choices of local frame. For any
vector bundle π : E → X an open cover {Uα}α∈A together with local trivializations
φα : π−1(Uα)→ Uα×Km can be found. On the overlaps Uαβ := Uα∩Uβ one can compare
the trivializations φα and φβ . Consider the diagram

π−1(Uαβ)

Uαβ ×Km Uαβ ×Km

φα φβ

φβ◦φ−1
α

.

On the fibers, the trivialization are given by linear isomorphisms. Therefore, we can write

(φβ ◦ φ−1
α )(x, v) = (x, gαβ(x)v) ,

where the map gαβ : Uαβ → GL(m,K) is called a transition function. With respect to a
local frame {eα1 , . . . , eαn} over Uα a section s can be written as

s =
∑
a

saαe
α
a ,

where saα : Uα → K are the component functions of the section s. If {eβ1 , . . . , e
β
n} is any

other frame over Uβ such that Uαβ ̸= ∅, then it holds that

s =
∑
a

saαe
α
a =

∑
b

sbβe
β
b .

Therefore, the component functions saα and sbβ are related by the transition function gαβ
as

sbβ =
∑
a

(gαβ)
b
as

a
α . (3.1)

Conversely, if we are given functions {saα : a = 1, . . . ,m} for each Uα of the open cover,
then these are the components of a section of E if they satisfy Eq. (3.1).

We close this section with some more examples of vector bundles. Recall that the
complex projective plane CP 1 is defined as the space of all complex lines through the
origin in C2. The tautological line bundle τ → CP 1 is defined as

τ = {(ℓ, v) ∈ CP 1 × C2 : v ∈ ℓ} .

In other words, the fiber over the line ℓ ∈ CP 1 is taken to be precisely the line ℓ, viewed
as a subspace of C2 . The tautological line bundle plays a central role in the classification
of topological insulators as we will see in Section 5. All our examples so far have been
of line bundles. Examples of higher rank real vector bundles of course also exist. Some
notable examples are the tangent bundle TX and the cotangent bundle T ∗X of a smooth
manifold X. The rank of TX and T ∗X is equal to the dimension of X. Sections of the
tangent bundle are vector fields and sections of the cotangent bundle are covector fields,
also called differential one-forms.

3.2 DeRham cohomology

The deRham cohomology of a smooth manifold recovers topological information about
the manifold from its differential forms. We first illustrate by example the mechanism
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the deRham cohomology uses to obtain topological information from differential objects.
After the example, the technical definition is discussed.

Consider a rotation free vector field E on R2. It is a well-known fact that we can write
E as the gradient of some scalar potential V . To see this, fix a reference point x0 ∈ R2 at
which we set V (x0) = 0, and then define the potential at any other point x ∈ R2 to be

V (x) = −
∫ x

x0

dl ·E ,

where the integral is taken over the straight line segment from x0 to x . Using ∂Ex
∂y =

∂Ey

∂x
one can check that E = −∇V .

However, on R2 \{0} some rotation free vector fields cannot be written as the gradient
of a potential. Indeed, consider the vector field E on R2 \ {0} given by

E(x, y) =
−y√
x2 + y2

x̂+
x√

x2 + y2
ŷ .

It is easy to check that E is rotation free by computing ∇ ×E = 0 . Suppose then that
there is a potential V : R2 \ {0} → R such that E = −∇V . In polar coordinates E = θ̂.
Recall that the gradient in polar coordinates is given by

∇V = ∂rV r̂ +
1

r
∂θV θ̂ .

The equation E = −∇V requires ∂rV = 0 and ∂θV = −r . The latter implies V (r, θ) =
−rθ+ c(r), where c(r) is an integration constant that may still depend on r, but not on θ.
The equation ∂rV = 0, however, implies that c′(r) = θ. This is a contradiction. Therefore,
the vector field E, although it is rotation free, is not the gradient of a scalar potential.

What this example shows is that puncturing R2 at the origin destroys the property
that “rotation free vector fields are the gradients of scalar potentials”. The difference
between the plane R2 and the punctured plane R2 \ {0} is purely topological. Therefore,
the property that “rotation free vector fields are the gradients of scalar potentials” must
be a topological property.

The deRham cohomology of a manifold in some way measures the existence of holes
in the manifold by asking whether every closed differential form has a primitive. In the
example above, rotation free vector fields correspond to closed differential forms and the
potential would be its primitive. The precise construction is as follows. Let Ωk(X) denote
the real valued differential k-forms on X. The deRham complex is obtained by arranging
the differential forms in a cochain complex

0 Ω0(X) Ω1(X) Ω2(X) . . .d d ,

where the exterior derivative d maps from k-forms to k + 1-forms and d2 = 0.6 A form
ω ∈ Ωk(X) is called closed if dω = 0 and it is called exact if there is η ∈ Ωk−1(X)
such that ω = dη . The relation d2 = 0 implies that every exact form is closed. Hence,
im(d : Ωk−1(X)→ Ωk(X)) is a subvector space of ker(d : Ωk(X)→ Ωk+1(X)) . We define
the degree k deRham cohomology group of X with coefficients in R to be the vector space
quotient

Hk
dR(X;R) =

ker(d : Ωk(X)→ Ωk+1(X))

im(d : Ωk−1(X)→ Ωk(X))
.

6The reason we call this a complex is because d2 = 0. It is a cochain complex because d raises degrees
by one. A chain complex would be a sequence of spaces and maps that square to zero, but that lower the
degree by one.
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In the example above, the plane and the punctured plane have different degree one
deRham cohomology groups: H1

dR(R2;R) = 0, while H1
dR(R2 \ {0};R) ̸= 0 . To compute

degree one deRham cohomology, we compared the closed one-forms, i.e. rotation free
vector fields, to the exact one forms, i.e. those vector fields that are the gradient of
some potential. On R2, these are the same things, hence H1

dR(R2;R) = 0. However, on
R2 \{0}, there are rotation free vector fields that are not the gradient of a potential, hence
H1

dR(R2 \ {0};R) ̸= 0 .
The deRham cohomology can thus measure topological features of the underlying

manifold, but it is by no means clear from the definition that deRham cohomology is a
topological invariant, in the sense that it is the same for homotopy equivalent manifolds.
This is the content of the deRham Theorem, stated for example in [27]. The deRham
Theorem states that deRham cohomology is the same as so-called singular cohomology.
Singular cohomology is defined for any topological space, independent of any smooth
structures or differential forms. The equivalence of deRham and singular cohomology
thus means that, although the construction of the deRham cohomology heavily uses the
smooth structure, the result is only dependent on the underlying topology.

3.3 Connections and curvature

For a real valued function on a smooth manifold there is a canonical notion of “directional
derivative” in terms of the limit of a difference quotient. However, for sections of a vector
bundle no such canonical notion of directional derivative exists. The problem is that
one cannot subtract two vectors that live in fibers over different points, because even
though each fiber is isomorphic to Rn or Cn, this isomorphism is not canonical; it requires
the choice of a trivialization. A connection is a choice of directional derivative for the
sections of a vector bundle that is independent of the choice of trivialization. Nevertheless,
connections themselves are not unique. A vector bundle admits many connections, all
giving a different, but well-defined notion of directional derivative.

Let E be a real vector bundle over X, then a connection ∇ on E is a map

∇ : Γ(TX)× Γ(E)→ Γ(E), (V, s) 7→ ∇V (s)

that is C∞(X)-linear in Γ(TX), R-linear in Γ(E) and satisfies the Leibniz rule: if f ∈
C∞(X), V ∈ Γ(TX) and s ∈ Γ(E), then

∇V (fs) = df(V ) + f∇V (s) .

The derivational nature of the connection is precisely encoded in the Leibniz rule. It is
easy to see that if ∇ and ∇′ are two connections on E, then the difference ∇ − ∇′ is
C∞(X)-linear in Γ(E) since the correction terms coming from the Leibniz rule cancel each
other. The difference between two connections can thus be interpreted as a tensor, and
more precisely, as a so-called endomorphism valued one-form.

Let us briefly explain this terminology. An endomorphism is a map from a space to
itself that preserves the relevant structures. In the case of vector spaces, an endomorphism
is simply a linear map from a vector space to itself. We denote the space of endomorphisms
of a vector space W by EndW . The space of endomorphism of a vector space is again a
vector space, since one can add linear maps and multiply them by scalars. Given a vector
bundle E → X it thus make sense to define the endomorphism bundle EndE → X to be
the vector bundle whose fiber over a point p ∈ X is EndEp. Sections of the endomorphism
bundle correspond to C∞(X)-linear maps Γ(E) → Γ(E). An endomorphism valued one-
form is a C∞(X)-linear map from vector fields to sections of the endomorphism bundle.
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We denote the endomorpism valued one-forms by Ω1(X,EndE) . The difference between
two connections is in Ω1(X,EndE) because plugging in a vector field V into ∇−∇′ yields
a map ∇V − ∇′

V : Γ(E) → Γ(E) that is C∞(X)-linear. In fact, it is true that given
a fixed connection ∇ any other connection ∇′ can be obtained as ∇′ = ∇ + A, where
A ∈ Ω1(X,EndE) is an endomorphism valued one-form.

Endomorphism valued one-forms also come up when considering the local representa-
tion of a single connection. Consider a general vector bundle E with connection ∇ and
let {Uα} be a trivializing open cover with local frames {eαa} . The connection ∇ acts on a
section eαa to yield a new section over Uα, which can be expressed as

∇(eαa ) =
∑
b

(Aα)
b
ae

α
b , (3.2)

where Aα is an endomorphism valued one-form, which due to the choice of basis might as
well be called a matrix valued one-form. For a general section s =

∑
a s

a
αe

α
a over Uα we

use the Leibniz rule and Eq. (3.2) to see that the connection ∇ acts on s according to

∇(s) = ∇

(∑
a

saαe
α
a

)
=
∑
b

dsbαe
α
b +

∑
a

saα∇(eαa ) =
∑
b

(
dsbα +

∑
a

(Aα)
b
as

a
α

)
eαb .

The connection ∇ thus acts as d + Aα on the local coefficient functions. We call Aα a
local connection one-form. If Uαβ ̸= ∅, then the local connection one-forms Aα and Aβ are
related through the transition function gαβ by

Aβ = gαβAαg
−1
αβ + gαβdg

−1
αβ . (3.3)

Conversely, any collection Aα of matrix valued one-forms related by Eq. (3.3) defines a
connection on E that locally acts as d+Aα .

In the above discussion on the local representation of a connection we did not explicitly
plug in any vector fields into the connection. The point of view implicit when doing this
is that a connection ∇ : Γ(TX) × Γ(E) → Γ(E), by defining Ω1(X;E) := Γ(T ∗X ⊗ E),
can be interpreted as a map

∇ : Γ(E)→ Ω1(X;E)

that satisfies the Leibniz rule ∇(fs) = df ⊗ s + f∇(s). The elements of Ω1(X;E) are
called vector valued one-forms. In general, Ωn(X;E) := Γ(

∧n T ∗X ⊗ E) is the space of
vector valued n-forms. An analogue of the deRham complex can be defined using vector
valued forms. The differential ∇ : Ωn(X;E) → Ωn+1(X;E) in degree n can be defined
using the Koszul formula [26]. A crucial difference between the ordinary deRham complex
of real valued form and the generalized deRham complex of vector valued forms is that in
the deRham complex d2 = 0, but ∇2 ̸= 0 in the generalized setting. In fact, the failure
of ∇ to square to zero is what we define to be the curvature, F = ∇2. If the connection
is locally represented as d + Aα then the curvature is locally represented as the matrix
valued two-form Fα that acts on a section s of E as

Fα(s) = (d+Aα)(d+Aα)(s)

= d2s+Aα ∧ ds+ d(Aαs) + (Aα ∧Aα)(s)

= (dAα +Aα ∧Aα)(s) ,

where we have used that d2 = 0 and d(ω ∧ η) = dω ∧ η + (−1)degωω ∧ dη . The above
computation recovers the familiar local formula Fα = dAα + Aα ∧ Aα for the curvature.
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Using Eq. (3.3) one can check that the local curvature forms over Uα and Uβ are related
by the transition function gαβ through

Fβ = gαβFαg
−1
αβ . (3.4)

Note that the local curvature two-forms transform as sections of the endomorphism bundle
EndE so that the local curvature two-forms define a global object F ∈ Ω2(X,EndE) .

3.4 Chern classes

With the preliminaries out of the way we can now introduce the Chern classes. Chern
classes are topological invariants of a complex vector bundles that measure the nontriviality
of the vector bundle. For a fixed smooth manifold X, the Chern classes are natural
maps from the isomorphism classes of complex vector bundles over X into the deRham
cohomology of X. We provide a construction of the Chern classes that uses the curvature
two-form F reviewed above.

Fundamental to the construction of the Chern classes from the curvature two-form are
so-called invariant polynomials. An invariant polynomial P is a polynomial function P :
Mat(m,C)→ C such that P (gMg−1) = P (M) for anyM ∈ Mat(m,C) and g ∈ GL(m,C) .
Two common examples of invariant polynomials are the trace and the determinant of a
matrix.

Let E → X be a vector bundle of rank m with a connection ∇. We have seen
that the local curvature two-form Fα changes as Fα → Fβ = gαβFαg

−1
αβ under a change of

trivialization by the transition function gαβ : Uαβ → GL(m,C) . Hence, if P is an invariant
polynomial, then P (Fα) is actually independent of any choice of trivialization over Uα. The
collection {P (Fα)}α∈A thus defines a global, complex valued two-form P (F ) ∈ Ω2(X,C).
The complex valued forms are defined as Ωk(X;C) := Ωk(X)⊗C. Concretely, a complex
valued form is of the type ω + iη, where both ω and η are real forms. The key result
in the construction of the Chern classes as invariant polynomials of the curvature is the
Chern-Weil theorem.

Theorem 3.1 (Chern-Weil). If F ∈ Ω2(X;C) is the curvature of a connection ∇ on a
complex vector bundle E, then for any invariant polynomial P the following hold:

1. dP (F ) = 0 ,

2. if F ′ is the curvature corresponding to some other connection ∇′ on E, then P (F )−
P (F ′) ∈ H∗

dR(X;C) is exact.

The first part of the Chern-Weil Theorem implies that P (F ) defines a cohomology
class in H∗

dR(X;C) and the second part shows that this cohomology class is independent
of the choice of connection. The independence of the choice of connection means that the
cohomology class P (F ) ∈ H∗

dR(X;C) is a topological invariant of the vector bundle E.
Suppose now that E is a rank m complex vector bundle and fix a connection ∇ on E.

The total Chern class c(E) is defined to be the deRham cohomology class of the invariant
polynomial M 7→ det(I + i

2πM),

c(E) =

[
det

(
I +

i

2π
F

)]
,

where F is the curvature. Since F is of degree 2, the total Chern class can be written as

c(E) = I + c1(E) + · · ·+ cm(E) ,
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where each ci(E) is a degree 2i cohomology class. The class ci(E) called the i-th Chern
class. Note that since the determinant of an m × m matrix is a degree m polynomial,
ci(E) = 0 for i > m. Explicit formulas for the Chern classes can be obtained by first
diagonalizing the curvature and then expanding the determinant, see [24] for details. The
results for the first and second Chern classes are

c1(E) =
i

2π
tr[F ]

c2(E) =
1

2

(
i

2π

)2 (
tr[F ]2 − tr[F 2]

)
.

The above definition of the Chern classes establishes them as maps from the isomor-
phism classes of vector bundles to the cohomology ringH∗

dR(X;C) . That the Chern classes
only depend on the isomorphism type of a vector bundle can be seen as follows. The claim
is that if φ : E → E′ is an isomorphism between vector bundles E and E′ over X, then
c(E) = c(E′). Indeed, one can always find an open cover {Uα}α∈A over which E and E′

can be simultaneously trivialized. If Aα are the local connection one-forms of a connection
∇ on E, then the local one-forms A′

α := φαAαφ
−1
α +φαdφ

−1
α , where φα : Uα → GL(m,C)

is the representation of the isomorphism with respect the trivialization, define a connec-
tion on E′. The curvature of this connection is determined by the local curvuture forms
F ′
α = φαFαφ

−1
α . Hence,

c(E′) =

[
det

(
I +

i

2π
F ′
)]

=

[
det

(
I +

i

2π
F

)]
= c(E) .

The Chern classes are also natural in the sense that if f : X ′ → X is a map between
smooth manifolds and E → X is a complex vector bundle, then f∗(c(E)) = c(f∗E) . This
follows from the following observation. Let Aα be the local connection one-forms of a
connection ∇ on E with respect to some trivialization over {Uα}α∈A. The pullbacks of
the trivializations over {Uα} of E along f give a trivialization over {f−1(Uα)} of f∗E .
Moreover, the pullbacks f∗Aα of the local connection one forms of the connection ∇ define
a connection ∇′ on f∗E, which is called the pullback connection. The curvature of this
pullback connection is the pullback of the curvature. Indeed, since Fα = dAα + Aα ∧ Aα

and the pullback commutes with d and respects the wedge product, it follows that

F ′
α = d(f∗Aα) + f∗Aα ∧ f∗Aα = f∗(dAα +Aα ∧Aα) = f∗Fα .

From this the naturality of the Chern classes follows immediately.
Using the naturality property of the Chern classes it can be shown that the Chern

classes of a trivial vector bundle vanish. Indeed, if E → X is a trivial complex vector
bundle of rank m, then E ∼= f∗({p0} × Cm), where f : X → p0 is the constant map to
some point p0 ∈ X . The isomorphism can be established by picking a global trivialization
{e1, . . . , em} for E, and then defining φ : E → f∗({p0} × Cm) by∑

a

vaea(p) 7→ (v1, . . . , vm) .

This is an isomorphism of vector bundles because it is a smooth map that is a linear
isomorphism Ep → Cm on each fiber. By the naturality property of the Chern classes,
ci(E) = f∗(ci({p0} × Cn)) = 0 for i > 0, since all deRham cohomology groups of the
point vanish in positive degree. We conclude that for a trivial vector bundle all the Chern
classes vanish. The Chern classes can thus be used to determine the non-triviality of a
vector bundle.
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For example, it can be shown that the first Chern class of the tautological line bundle
τ → CP 1 is nonzero. Therefore, the tautological line bundle is a nontrivial bundle. In
fact, in proving this one finds that ∫

CP 1

c1(τ) = ±1 , (3.5)

where the sign of the answer depends on the choice of orientation on CP 1 . In either case,∫
CP 1 c1(τ) is an integer. The fact that this integral is an integer is not a coincidence.
We will revisit the Chern classes in Section 5 and show that for vector bundles over a
two-dimensional base space, the integral of the first Chern class is always an integer.

4 Berry curvature, valence bundle and Hall conductivity

As motivated in Section 2, the low-energy physics of a d-dimensional insulator can be
modelled by a tight binding Hamiltonian h : X → Herm(M,C) that satisfies the gap
condition. The effective momentum space manifold X is either a torus, called the Brillouin
torus, or a sphere, depending on whether we consider the continuum limit or not. The
gap condition entails that the eigenvalues of h(p) never vanish as a function of p ∈ X. As
we will see in this section, the eigenvectors corresponding to the negative eigenvalues of
h span a possibly non-trivial subvector bundle of X × CM which refer to as the valence
bundle of the insulator. The valence bundle naturally comes equipped with the so-called
Berry connection. It was realized back in the eighties by Thouless, Kohmoto, Nightingale
and Den Nijs [6] that the Berry connection has physically measurable implications. They
found that the integral of the curvature of the Berry connection over the Brillouin torus
is equal to the Hall conductivity of a two-dimensional insulator, implying that the Hall
conductivity is quantized.

In this section, we will first introduce the adiabatic connection in the general context
of parameterized quantum systems due to Kato [28], which was later realized by Simon
[29] to be exactly the same thing as the Berry connection [30]. Secondly, we construct
the valence bundle of an insulator and show how the construction of the adiabatic/Berry
connection applies to this. Finally, we show by a path integral computation that the
Hall conductivity of a two-dimensional insulator is the integral of the Berry curvature
over the momentum space X, reproducing the result of [6]. In fact, in Section 5, we will
mathematically prove that the integral of the Berry curvature over X is always an integer,
which then establishes that the Hall conductivity is indeed quantized.

4.1 The adiabatic connection

Consider a quantum mechanical system consisting of a separable Hilbert space H and a
manifold X serving as a space of control parameters. Suppose H : X → Herm(H) is a
smooth map that assigns to each p ∈ X a Hamiltonian H(p) . Assume there is a smooth
function ϵ : X → R such that for each p ∈ X, ϵ(p) is an eigenvalue of H(p) that is
separated from the rest of the spectrum of H(p) by a finite gap. More precisely,

∆ := inf
p∈X

dist(ϵ(p), σ(H(p)) \ {ϵ(p)}) > 0 , (4.1)

where σ(H(p)) is the spectrum of H(p). Eq. (4.1) is referred to in this context as the gap
condition. At a point p ∈ X the spectral projector P (p) onto the eigenspace of ϵ(p) may
be expressed as

P (p) =
1

2πi

∫
Γp

[H(p)− z]−1 ,
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where Γp is a curve encircling ϵ(p) once in the counterclockwise direction and whose
interior contains no points of the spectrum except for ϵ(p) . Because of the gap condition,
the curves Γp can be chosen to vary smoothly with respect to changes in p .

Let p0 ∈ X be a fixed initial parameter configuration and assume the system is prepared
in an eigenstate ψ0 of ϵ(p0) . Let γ : [0, 1] → X be a smooth curve in parameter space
starting at p0. We want to study the evolution of a state ψ0 when the parameters of the
system are slowly changed along the curve γ. Denote by s ∈ [0, 1] the parameter of the
curve γ and introduce the short hand notations H(s) := H(γ(s)) and P (s) := P (γ(s)) .
We consider traversing the path γ in a large, physical time T , which will be referred to as
the adiabatic time scale, and define the physical time t ∈ [0, T ] through t = sT . In terms
of the physical time t, the Schrödinger equation is

iℏ
d

dt
ψ(t) = H(t/T )ψ(t) , (4.2)

In terms of the parameter s ∈ [0, 1] the Schrödinger equation thus becomes

iℏ
d

ds
ψT (s) = TH(s)ψT (s) , (4.3)

where ψT (s) := ψ(sT ) . Changing our point of view from the Schrödinger picture to the
Heisenberg picture we can define the physical time evolution operator UT (s) as the solution
to

iℏ
d

ds
UT (s) = TH(s)UT (s) . (4.4)

For finite T the physical evolution UT (s) does not stay within the eigenspace of ϵ(s).
More precisely, if at t = 0 the system is prepared in an eigenstate ψ0 with energy ϵ(0),
then at t = sT , the state UT (s)ψ0 might not be an eigenstate with energy ϵ(s). Physically
speaking, the finiteness of the time interval in which the parameters are changed allows
the change in parameters to induce excitations of the system out of the gapped states cor-
responding to ϵ(s). It turns out, however, that limT→∞ UT (s) does preserve the eigenspace
of ϵ(s) . We will show this by proving that in the limit T →∞ the physical time evolution
UT (s)P (0) of the system starting in a state with energy ϵ(0) tends to the so-called adia-
batic time evolution UA(s)P (0) . The adiabatic evolution UA(s) is constructed precisely
so that P (s)UA(s) = UA(s)P (0), i.e. so that it preserves the eigenspace of ϵ(s) . The
original construction of the adiabatic evolution operator is due to Kato [28]. We follow
the construction as described by Simon in [31].

The fundamental insight of Kato is the following Theorem.

Theorem 4.1 (Kato dynamics). If UA : [0, 1] → L(H) is a solution to the initial value
problem

d

ds
UA(s) = [Ṗ (s), P (s)]UA(s), subject to UA(0) = 1 ,

then UA(s) is unitary and UA(s)P (0) = P (s)UA(s) for all s ∈ [0, 1] .

Proof. Let A(s) := [Ṗ (s), P (s)] and assume UA(s) solves d
dsUA(s) = A(s)UA(s) with

UA(0) = 1 . The fact that UA(s) is unitary follows from standard existence and uniqueness
theorem for ordinary differential equations in Banach spaces and the anti-Hermiticity of
A(s), see [31, Proposition 17.1]. The interesting part of the theorem is to prove

UA(s)P (0) = P (s)UA(s) . (4.5)
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This is done by showing that the left hand side and the right hand of Eq. (4.5) side solve
the same initial value problem. The equality then follows from uniqueness of solutions to
ordinary differential equations.

Since UA(0) = 1 the left and right hand sides of Eq. (4.5) agree at s = 0 . Furthermore,
W (s) := UA(s)P (0) clearly solves

d

ds
W (s) = A(s)W (s) .

The claim is that P (s)UA(s) is also a solution. Note that P 2(s) = P (s) implies Ṗ (s) =
Ṗ (s)P (s) + P (s)Ṗ (s), which in turn implies P (s)Ṗ (s)P (s) = 0. Using these facts, we
compute

d

ds
(P (s)UA(s)) = Ṗ (s)UA(s) + P (s)

d

ds
UA(s)

= Ṗ (s)UA(s) + P (s)[Ṗ (s), P (s)]UA(s)

= (Ṗ (s)P (s) + P (s)Ṗ (s))UA(s)− P (s)Ṗ (s)UA(s)

= [Ṗ (s), P (s)]P (s)UA(s) .

We conclude that UA(s)P (0) and P (s)UA(s) both solve d
dsW (s) = [Ṗ (s), P (s)]W (s) with

the same initial value, so UA(s)P (0) = P (s)UA(s) for all s ∈ [0, 1] .

By adding the term iℏ
T [Ṗ (s), P (s)] from the Kato dynamics, the Hamiltonian H(s) can

be augmented to the adiabatic Hamiltonian

HA(s) = H(s) +
iℏ
T
[Ṗ (s), P (s)] .

The time evolution generated by HA is the adiabatic time evolution. If UA(s) is as in
Theorem 4.1, then it can be shown that (see the proof of [31, Theorem 17.2])

||e−iT
∫ s
0 ϵ(s)dsUA(s)P (0)− UT (s)P (0)|| = O(1/T ) . (4.6)

The first term is the time evolution generated by the adiabatic Hamiltonian when starting
in the eigenspace of ϵ(0). By the fact that UA(s)P (0) = P (s)UA(s) it follows that this
evolution preserves the eigenspaces of ϵ(s). The second term is the physical time evolution
on the eigenspace of ϵ(0) generated by the usual Hamiltonian. Therefore, Eq. (4.6) implies
that in the adiabatic limit T → ∞, the physical evolution agrees with the adiabatic
evolution on the eigenspaces of ϵ(s).

Let us now assume that ϵ ≡ 0. This assumption gets rid of the standard dynamical
phase factor e−iT

∫ s
0 ϵ(s)ds in the adiabatic evolution and leaves only contributions due to

UA. If we let the system evolve adiabatically along a loop γ based at p0, then the system
eventually returns to the same eigenspace as that it started in. If the eigenspace of ϵ(p0)
is of dimension one and if ψ0 ∈ im P (p0), then one would expect that after traversing the
loop in a very large time T , the vector ψ0 returns to itself, up to O(1/T ) terms. It was
realized by Berry that this is not the full story. Under adiabatic evolution, the system
picks up an additional phase which is purely geometrical. This is Berry’s phase.

The mathematical interpretation of the Berry phase is as the holonomy of the so-called
adiabatic connection (or Berry connection) in the bundle of eigenstates of ϵ(p) . Consider
the trivial bundle X ×H and define the subbundle

E = {(p, ψ) ∈ X ×H : P (p)ψ = ψ} (4.7)
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of the eigenspaces of ϵ(p) . A connection on E can be defined in such a way that parallel
sections correspond to adiabatic evolutions. The connection that does the job is the
adiabatic connection

∇ = d− [dP, P ] , (4.8)

where d is defined to take the exterior derivative of the components of sections with respect
to some fixed basis of H and [dP, P ] is an L(H)-valued one-form on X. It is clear that
∇ satisfies the appropriate linearity conditions and the Leibniz rule making it at least a
connection on X × H. What is not clear, is that it actually restricts to a connection on
E . Let ψ be a section of E, then P (p)ψ(p) = ψ(p) for all p ∈ X . Using Pψ = ψ and
PdPP = 0 we compute

P (∇ψ) = P (dψ − [dP, P ]ψ) = Pdψ − P [dP, P ]Pψ = Pdψ

and
∇ψ = dψ − [dP, P ]ψ = d(Pψ)− (dP )ψ = Pdψ ,

where we have used the product rule to see that d(Pψ) = (dP )ψ+Pdψ . Hence, P (∇ψ) =
∇ψ for ψ ∈ Γ(E), so that ∇ indeed takes sections of E to sections of E . Moreover, we
learn that the connection ∇ is really just Pd acting on sections of E.

The relation between parallel sections and adiabatic evolution is as follows. If γ :
[0, 1]→ X is a curve, then a section ψ : X → E is parallel along γ if

∇γ̇(s)(ψ)(s) = 0 for all s ∈ [0, 1] .

Writing out the definition of ∇, this is equivalent to

∇γ̇(s)(ψ)(s) = dψγ(s)(γ̇(s))− [dPγ(s)(γ̇(s)), P (γ(s))]ψ(γ(s)) .

In our shorthand notation P (s) = P (γ(s)) , the condition to be parallel thus becomes

d

ds
ψ(s)− [Ṗ (s), P (s)]ψ(s) = 0 ,

which is precisely the adiabatic evolution of ψ(0) . In conclusion, adiabatic evolution is
the same thing as parallel transport with respect to ∇ = d− [dP, P ] .

We can also compute the curvature of the adiabatic connection. The curvature as-
sociated to the connection ∇ is F = ∇2 . If Pψ = ψ, then we compute using ∇ = Pd
that

Fψ = ∇2ψ = (Pd)(Pdψ) = PdP ∧ dψ = PdP ∧ d(Pψ) = PdP ∧ dP ψ = PdP ∧ dPPψ ,

where we judiciously use the identities dP = PdP + dPP and PdPP = 0. It follows that
the curvature two-form corresponding to the adiabatic connection is

F = P (dP ∧ dP )P . (4.9)

This expression is globally valid and does not depend on any choice of trivializations.
As a final comment, it is standard terminology to refer to the adiabatic connection and
curvature as the Berry connection and curvature. From now on, we adopt the standard
terminology.
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4.2 The valence bundle

Consider now an insulator modelled by a tight binding Hamiltonian h : X → Herm(M,C),
where M is the number of bands around the Fermi level that we take into account and
the manifold X is a torus or a sphere depending on whether we consider a periodic or
a continuum model. We can interpret X as a parameter manifold so that h corresponds
to a family of Hamiltonians for a parameterized quantum system modelled by the trivial
bundle X × CM . The characteristic equation det(h − ϵ) = 0 may be solved to obtain M
smooth functions ϵã : X → R for ã = 1, . . . ,M , which at each p ∈ X are the eigenvalues
of h(p) . Suppose that the first m functions ϵa for a = 1, . . . ,m are the negative energy
solutions that correspond to the valence bands in the given model.

The eigenvectors corresponding to the negative energy eigenvalues span a possibly
non-trivial subbundle of the trivial bundle X ×CM called the valence bundle. Recall that
P (p) = 1

2πi

∫
C dz[h(p)− z]

−1, where C is a curve in C enclosing the negative real axis once
in the counterclockwise direction, denotes the spectral projection onto the negative energy
eigenspaces. The valence bundle is defined to be

Eval = {(p, ψ) ∈ X × CM : P (p)ψ = ψ} . (4.10)

Note the similarity between the valence bundle and the subbundle of X × H defined in
Eq. (4.7). An equivalent definition of the valence bundle is that Eval = imP , where P is
viewed is a bundle map P : X×CM → X×CM . Completely analogous to the constructions
below Eq. (4.7), we can define the Berry connection ∇ = Pd on the valence bundle Eval .
By exactly the same computations as before, the curvature of the Berry connection, i.e.
the Berry curvature, is given by F = PdP ∧ dPP .

The above expressions for the Berry connection and Berry curvature in terms of the
abstract spectral projector P have the advantage that they are well-defined independent
of any choice of trivializations or frames. However, quantum mechanical computations
are often made more concrete using an explicit choice of “basis of wavefunctions”, i.e. a
frame. It is thus desirable to also obtain the local connection one-forms and curvature
two-forms of the Berry connection and curvature with respect to a choice of local frame
of eigenvectors.

Let ψ1, . . . , ψm be a local orthonormal frame for Eval over an open set U ⊂ X, where
orthonormality is required with respect to the inner product on the fibers of Eval induced
from the standard inner product on CM . The spectral projector P |U onto the valence
states over U can then be written as

P |U =
m∑
a=1

⟨ψa, ·⟩ψa .

The local connection one-form AU of the Berry connection ∇ = Pd, with d the deRham
derivative of components with respect to the standard global frame e1, . . . , eM of X×CM ,
can be deduced from Eq. (3.2) . We have

∇ψb = P |Udψb =
m∑
a=1

⟨ψa, dψb⟩ψa ,

which using Eq. (3.2) implies that the local connection one-form of the Berry connection
is

(AU )
a
b = ⟨ψa, dψb⟩ . (4.11)

30



Eq. (4.11) is the local connection one-form of the Berry connection with respect to the
frame {ψa} for the valence bundle .7 To emphasize how to interpret d in Eq. (4.11): The
vector ψb can be expressed in terms of the standard orthonormal frame e1, . . . , eM of
CM as ψb =

∑
ã(ψb)

ãeã and the deRham derivative dψb yields the vector in CM whose
components are d(ψb)

ã . A local expression for the curvature with respect to the frame
{ψa} can now be obtained from FU = dAU +AU ∧AU as

(FU )
a
b = ⟨dψa, dψb⟩+

m∑
c=1

⟨ψa, dψc⟩ ∧ ⟨ψc, dψb⟩ . (4.12)

In the particular case of m = 1, the local frame of Eval consists of only one vector
ψ : U → CM . If we choose coordinates {ki} on the open set U ⊂ X, we can write the
curvature two-form in components as

FU =
1

2
(FU )ijdk

i ∧ dkj = 1

2
(⟨∂iψ, ∂jψ⟩ − ⟨∂jψ, ∂iψ⟩)dki ∧ dkj .

If X is two-dimensional, then the integral of F over U is given by∫
U
F =

∫
k(U)

dk1dk2(FU )12 =

∫
k(U)

dk1dk2 (⟨∂iψ, ∂jψ⟩ − ⟨∂jψ, ∂iψ⟩) , (4.13)

where k(U) ⊂ R2 is the image of U under the coordinate chart k = (k1, k2) . It is in the
form of Eq. (4.13) that the Berry connection will come up in the Hall conductivity of a
two-dimensional insulator.

4.3 Hall conductivity of a two-dimensional insulator

For a general two-dimensional material, the electric current J in the material due to an
applied external electric field E is given in linear response theory by

Ji =
∑
j

σijEj , (4.14)

where σij for i, j = x, y are the components of the conductivity tensor. If the material
is rotationally symmetric, which is generally a valid assumption in the bulk of a slab of
material, then the components of the conductivity tensor satisfy σxx = σyy and σxy =
−σyx . For an insulator, the longitudinal component σxx of the conductivity vanishes.
However, the transverse component σxy may be nonzero. The transverse component σxy
is also called the Hall conductivity because of its relation to the Hall effect. We will show
that in the low-energy, long-wavelength and low-temperature limit, the Hall conductivity
of a two-band insulator is proportional to the integral of the Berry curvature of the valence
bundle over the momentum space. In the next section we will prove that this integral of
the Berry curvature is an integer topological invariant making the Hall conductivity into
a topological effect. The next section will also show that the two-band model, although it
seems like a very narrow model, is in some precise sense the most general case we have to
consider in a study of topological effects of two-dimensional insulators.

Consider then a two-dimensional insulator h : X → Herm(2,C) with X = S2 orT2. To
compute the conductivity tensor we have to subject the insulator to an external electric

7Usually, in the physics literature there is an additional factor of i in the Berry connection and/or a
minus sign. These factors are remnants of how one wants to define the local connection one-forms. In
physics, one usually writes ∇ = d± iA instead of ∇ = d+A for local expressions of the connection.
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field that is constant in time and uniform in space. However, for the calculations it turns
out to be useful to first consider a time varying electric field Ej(t) = e−iωtEj and take
the constant field limit, or DC-limit, at the end of the calculation. We work in a gauge in
which A0 = 0 and Aj(t) =

1
−iωe

−iωtEj such that Ej(t) = ∂tAj(t) .
8

In the absence of any external field the electrons in the insulator are described by the
action

Smatter[ϕ
∗, ϕ] =

∑
n,a,a′

∫
X

dk

(2π)2
ϕ∗a(k, iωn) [−iℏωn + haa′(k)]ϕa′(k, iωn) ,

where ϕa are complex Grassmann valued fields,
∑

n is a sum over the Matsubara fre-
quencies iωn and

∫
X

dk
(2π)2

is an integral over the two-dimensional momentum space. All

momentum integrals will be over X, so we will drop the subscript X on the integral signs.
Coupling to the electromagnetic field is obtained by the minimal substitution k→ k+ e

ℏA
in the Hamiltonian. For reasons that will be clarified shortly, the linear response is con-
tained in the terms of the action at most quadractic inA . After incorporating conservation
of energy and momentum the relevant part of the action is

S[ϕ∗, ϕ;A] =
∑
n

∫
dk

(2π)2
ϕ∗a(k, iωn) [−iℏωn + haa′(k)]ϕa′(k, iωn)

+
e

ℏ
1√
ℏβ

∑
n,m

∫
dkdq

(2π)4
ϕ∗a(k + q, iωn + iωm)

[
Ai(q, iωm)

∂haa′(k)

∂ki

]
ϕa′(k, iωn)

+
1

2

( e
ℏ

)2 1

ℏβ
∑
n,m,r

∫
dkdqdp

(2π)6
ϕ∗a(k + q + p, iωn + iωm + iωr)

×
[
Ai(q, iωm)Aj(p, iωr)

∂2haa′(k)

∂ki∂kj

]
ϕa′(k, iωn) , (4.15)

where the sum over repeated indices of type i (the directions in momentum space) and a
(the band labels) is implicit. The action is quadratic in the fermionic fields and can be
written suggestively in the form

S[ϕ∗, ϕ;A] = −ℏ
∑
n,n′

∫
dkdk′

(2π)2
ϕ∗a(k, iωn)G

−1
aa′(k, iωn;k

′, iωn′)ϕa′(k
′, iωn′) ,

where the inverse Green function G−1 can be written as a sum G−1 = G−1
0 +G−1

1 +G−1
2

so that G−1
0 contains the terms without A, G−1

1 contains the terms linear in A and G−1
2

contains the terms quadratic in A . Integrating out the fermions yields the effective action
for the electromagnetic theory

−1

ℏ
Seff [A] = Tr[log(−G−1)] = Tr[log(G−1

0 )] + Tr[log(1 +G0(G
−1
1 +G−1

2 ))] . (4.16)

The current can be obtained from this effective action by computing the variational deriva-
tive

J i(p, iωr) =
δSeff [A]

δAi(p, iωr)
. (4.17)

From Eq. (4.17) we can in first instance derive the frequency and momentum dependent
polarization tensor πij(p, iωr) defined through J i(p, iωr) =

∑
j πij(p, iωr)Aj(−p,−iωr).

8We also work in units where c = 1 .
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Figure 4: (Left) The Kubo diagram corresponding to −1
2 Tr[G0G

−1
1 G0G

−1
1 ]. (Right) The

fish diagram corresponding to Tr[G0G
−1
2 ].

From the above definition, it is clear that the polarization tensor is completely de-
termined by the terms in Eq. (4.16) that are quadratic in A. After Taylor expanding
the logarithm one finds that the only two terms quadratic in A are −1

2 Tr[G0G
−1
1 G0G

−1
1 ]

and Tr[G0G
−1
2 ] . These terms can be represented diagramatically, as done in Fig. 4. The

first term corresponds to the “Kubo” diagram and the second term to the “fish” diagram.
Since the Hamiltonian describes an insulator, we expect only an antisymmetric contribu-
tion to the conductivity tensor. The antisymmetric contribution must be contained in the
Kubo diagram because the fish diagram is invariant under exchange of Ai and Aj . The
contribution to the polarization tensor coming from the Kubo diagram is

−ℏ δ

δAi(p, iωr)

(
−1

2
Tr[G0G

−1
1 G0G

−1
1 ]

)
= πKubo

ij (p, iωr)Aj(−p,−iωr)

with, in the uniform field limit p→ 0,

πKubo
ij (iωr) =

( e
ℏ

)2 1

β

∑
n

∫
dk

(2π)2

{
[−iℏωn + h(k)]−1

aa′
∂ha′a′′(k)

∂ki
×

[−iℏωn + iℏωr + h(k)]−1
a′′a′′′

∂ha′′′a(k)

∂kj

}
.

Further simplification of this expression can be realized by expressing the Hamiltonian
with respect to a basis of eigenvectors. A global basis of eigenvector does not necessarily
exist, however, whether the momentum space X is the sphere S2 or the torus T2, it is
in both cases possible to find a frame ψ− : U → C2 for the valence bundle over a chart
U ⊂ X with coordinates (k1, k2) that covers X up to a set of measure zero. Similarly, we
can find a frame ψ+ for the conduction states. Let us use the braket notation

ψ±(k) = |k±⟩ and ⟨ψ±(k), ·⟩ = ⟨k±|

to denote these frames. The Hamiltonian can then be written over U in diagonal form as

h(k) = ϵ+(k) |k+⟩ ⟨k+|+ ϵ−(k) |k−⟩ ⟨k−| .

In the |k±⟩-basis, the Green function G0 takes the form

−1

ℏ
G0(k, iωn) = [−iℏωn + h(k)]−1 =

|k+⟩ ⟨k+|
−iℏωn + ϵ+(k)

+
|k−⟩ ⟨k−|

−iℏωn + ϵ−(k)
,
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as can be checked by direct multiplication with ℏG−1
0 . Hence, the Kubo diagram yields

πKubo
ij (iωr) =

( e
ℏ

)2 1

β

∑
n

∫
dk

(2π)2
Tr

{[
|k+⟩ ⟨k+|

−iℏωn + ϵ+(k)
+

|k−⟩ ⟨k−|
−iℏωn + ϵ−(k)

]
∂h(k)

∂ki

×
[

|k+⟩ ⟨k+|
−iℏωn + iℏωr + ϵ+(k)

+
|k−⟩ ⟨k−|

−iℏωn + iℏωr + ϵ−(k)

]
∂h(k)

∂kj

}
. (4.18)

Then, after working out the Matsubara sums, it can be shown that in the low-temperature
limit the only relevant terms will be

πKubo
ij (iωr) = −

( e
ℏ

)2 ∫ dk

(2π)2
Mij(k)

(
nFD(ϵ+(k))

ϵ−(k)− ϵ+(k) + iℏωr
+

nFD(ϵ−(k) + iℏωr)

ϵ+(k)− ϵ−(k)− iℏωr

)
−
( e
ℏ

)2 ∫ dk

(2π)2
Mji(k)

(
nFD(ϵ−(k))

ϵ+(k)− ϵ−(k) + iℏωr
+

nFD(ϵ+(k) + iℏωr)

ϵ−(k)− ϵ+(k)− iℏωr

)
,

(4.19)

where we have introduced the short hand

Mij = ⟨k + |∂h(k)
∂ki

|k−⟩ ⟨k − |∂h(k)
∂kj

|k+⟩ .

In principle, there are two more terms in πKubo
ij , but these are proportional to derivatives

of the Fermi-Dirac distribution evaluated, in the low-energy limit, away from 0 and thus
they vanish in the low-energy and low-temperature limit .

So far, we have been working in imaginary time and Matsubara frequencies, but at
this point we can go back to real time by analytically continuing πKubo

ij (z) to the whole

of C. The real time response is πKubo
ij (ω + iη+) , where η+ means that we let η approach

0 from above. This factor of η+ is needed to get the proper time ordering in the path
integral, see [32]. After the analytic continuation, the response is

πKubo
ij (ω) = −

( e
ℏ

)2 ∫ dk

(2π)2
(ϵ+(k)− ϵ−(k)) (MijnFD(ϵ−(k) + ℏω) +MjinFD(ϵ−(k)))

(ϵ+(k)− ϵ−(k))2 − (ℏω)2

−
( e
ℏ

)2 ∫ dk

(2π)2
ℏω(MijnFD(ϵ−(k) + ℏω)−MjinFD(ϵ−(k)))

(ϵ+(k)− ϵ−(k))2 − (ℏω)2
. (4.20)

Here we have used that limη↓0
1

(ϵ+−ϵ−)−ω−iη+
= 1

((ϵ+−ϵ−)−ω)2
+ iπδ((ϵ+− ϵ−)−ω) and that

due to the gap condition ϵ+− ϵ− > 0, the argument of the δ-function will not become zero
in the low-energy limit ω → 0 .

To get to the conductivity tensor, recall that Aj = 1
−iωe

−iωtEj so that the frequency

dependent conductivity can be obtained from the polarization through σij(ω) =
1

−iωπij(ω).

The first term in πKubo
ij will thus yield a divergence in the conductivity in the limit ω → 0.

However, in Appendix A it is shown that this divergence is precisely cancelled by the
fish diagram. The cancellation of the divergences in the longitudinal conductivity reflects
the fact that we consider an insulator. The conductivity tensor in the low-energy, long-
wavelength and low-temperature limit is thus

σij = −
ie2

ℏ

∫
dk

(2π)2
Mij −Mji

(ϵ+(k)− ϵ−(k))2
.

It remains to compute the matrix elements Mij = ⟨k + |∂h(k)
∂ki
|k−⟩ ⟨k − |∂h(k)

∂kj
|k+⟩ .
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Using 1 = |k+⟩ ⟨k+|+ |k−⟩ ⟨k−|, it follows that

⟨k + |∂h(k)
∂ki

|k−⟩ = ⟨k + | ∂
∂ki

(
ϵ+(k) + (ϵ−(k)− ϵ+(k)) |k−⟩ ⟨k−|

)
|k−⟩

= (ϵ−(k)− ϵ+(k)) ⟨k + | ∂
∂ki

(
|k−⟩ ⟨k−|

)
|k−⟩

= (ϵ−(k)− ϵ+(k)) ⟨k+|
∂

∂ki
(|k−⟩)

and, similarly,

⟨k − |∂h(k)
∂kj

|k+⟩ = (ϵ−(k)− ϵ+(k))
∂

∂kj
(⟨k−|) |k+⟩ .

Hence,

Mij = (ϵ−(k)− ϵ+(k))2 ⟨k+|
∂

∂ki
(|k−⟩) ∂

∂kj
(⟨k−|) |k+⟩

= (ϵ+(k)− ϵ−(k))2
∂

∂kj
(⟨k−|) |k+⟩ ⟨k+| ∂

∂ki
(|k−⟩)

= (ϵ+(k)− ϵ−(k))2
(

∂

∂kj
(⟨k−|) ∂

∂ki
(|k−⟩)− ∂

∂kj
(⟨k−|) |k−⟩ ⟨k−| ∂

∂ki
(|k−⟩)

)
.

Note that the second term in the brackets is symmetric in i and j and, therefore, drops
out when taking the difference of Mij −Mji in the conductivity tensor. It follows that

σij = −
ie2

ℏ

∫
X

dk

(2π)2

[
∂

∂kj
(⟨k−|) ∂

∂ki
(|k−⟩)− ∂

∂ki
(⟨k−|) ∂

∂kj
(|k−⟩)

]
.

In the square brackets we now recognize the local expression of the Berry curvature
Eq. (4.12). The conductivity tensor can thus be finally expressed as

σij =
i

2π

e2

h

∫
X
dkFij(k) , (4.21)

where Fij is the Berry curvature of the valence bundle. Although the computations above
have been performed in a gauge with A0 = 0, we argue in Appendix A that the result
Eq. (4.21) is independent of this choice of gauge.

In the next section we will prove that the quantity C1 = i
2π

∫
X dkF12(k), called the

first Chern number, is always an integer, and that this integer topologically classifies the
two-dimensional insulators. We also argue that a two-band model is in some particular
sense the most general model needed in the study of topological effects in two-dimensional
insulators. Therefore, Eq. (4.21) shows that the Hall conductivity of any two-dimensional
insulator is quantized in units of e2/h.

5 Topological classification of insulators

Tight-binding models of d-dimensional insulators withM total bands andm valence bands
are topologically classified by the homotopy classes [X,Gm(CM )], where X = Td, Sd de-
pending on whether we study periodic or continuum models. On the other hand, to every
such insulator we can associate its valence bundle, which is a rankm subbundle of X×CM .
The relation between these two facts is that the set of homotopy classes [X,Gm(CM )] is
in bijection with the set of isomorphism classes VectmC (X), provided that the number M
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is large enough. Under this bijection, the topological equivalence class of an insulator
is the same thing as the isomorphism class of its valence bundle. In one dimension and
three dimensions, all complex vector bundles are trivial, whilst in two dimensions, com-
plex vector bundles are fully classified by their first Chern class. A key fact in these low
dimensional cases is that the non-triviality of a vector bundle of arbitrary rank over a low
dimensional base space can only be contained in a low rank subbundle. In particular, the
non-triviality over a two- or three-dimensional base can only be contained in a line bundle.
In this way, the two-band model then becomes the universal model for topological effects
in two and three dimensions. As a bonus, the Chern number for two-band models has an
easy-to-compute interpretation in terms of a winding number.

5.1 Homotopy classification of complex vector bundles

Insulators with M total bands and m valence bands are topologically classified by the
homotopy classes [X,Gm(CM )], where X = Td or Sd and Gm(CM ) is the Grassmannian.
On the other hand, we will argue below that whenever M is sufficiently large with respect
tom and d, complex vector bundles of rankm over a compact base space X of dimension d
are also classified by [X,Gm(CM )]. Studying topological equivalence classes of insulators
is thus equivalent to studying isomorphism classes of complex vector bundles. We show
that the valence bundle construction of Eq. (4.10) connects the two points of view.

The main object in the topological classification of complex vector bundles is the so-
called tautological bundle over a Grassmannian. Recall that the Grassmannian Gm(CM )
consists of the m-dimensional linear subspaces of CM , or the m-planes in CM . The
tautological bundle π : τm,M → Gm(CM ) is defined as follows. The total space τm,M is
realized as a subspace of Gm(CM )× CM via

τm,M = {(ℓ, v) ∈ Gm(CM )× CM : v ∈ ℓ} .

In words, the total space τm,M consists of all pairs (ℓ, v) where ℓ is an m-plane in CM and
v is a vector in the m-plane ℓ . The projection π is given by π(ℓ, v) = ℓ . If ℓ ∈ Gm(CM )
is an m-plane, then a local trivialization around ℓ can be constructed over the open

Uℓ = {ℓ′ ∈ Gm(CM ) : dimπℓ(ℓ
′) = m} ,

where πℓ : CM → ℓ denotes the orthogonal projection, by defining9

φ : π−1(Uℓ)→ Uℓ × ℓ ∼= Uℓ × Cm, (ℓ′, v) 7→ (ℓ′, πℓ(v)) .

The importance of the tautological bundles is that vector bundles over compact base
spaces X can be obtained as the pullback of a tautological bundle along a map f : X →
Gm(CM ). Recall that if π : E → Y is a vector bundle and f : X → Y a map, then the
pullback bundle f∗E → X is defined to be the bundle with fibers (f∗E)x = Ef(x) . The
homotopy classification of complex vector bundles can be stated in the following theorem,
for the proof of which we refer to [33].

Theorem 5.1. If X is a paracompact topological space, then

[X,Gm(C∞)]→ VectmC (X) , [f : X → Gm(C∞)] 7→ [f∗τm,∞]

is a bijection.

9See [33, Lemma 1.15] for the details concerning continuity.
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A few comments about the statement are in order. First of all, any compact space is
also paracompact so the statement applies in particular to X = Td or Sd, which are the
spaces we care about for the physics of insulators. Secondly, Gm(C∞) and τm,∞ are the
direct limits of Gm(CM ) and τm,M asM →∞. The advantage of formulating the theorem
in terms of the direct limit is that we get a statement independent ofM . We call Gm(C∞)
the classifying space and τm,∞ the universal bundle for complex vector bundles of rank m.

The statement in Theorem 5.1 is designed so as to become independent of the base
space X and the rank m. However, for specific combinations of X and m it is possible
to discern an M such that [f : X → Gm(CM )] 7→ [f∗τm,M ] already yields a bijection of
[X,Gm(CM )] with VectmC (X), without the need for the direct limit. Suppose then that P
is the spectral projector of an insulator for a sufficiently large total number of bands M .
The valence bundle of the insulator is defined as the image of P , when interpreted as a
bundle map P : X × CM → X × CM . On the other hand, we can also view P as a map
P : X → Gm(CM ) by identifying the projection P (p) : CM → CM with its image in CM .
In this way, the fiber of P ∗τm,M over the point p ∈ X gets identified with the image of P (p)
in CM . It follows that P ∗τm,M is isomorphic to the valence bundle. This isomorphism
combined with the bijection [X,Gm(CM )] → VectmC (X) establishes the correspondence
between topological equivalence classes of insulators and the isomorphism classes of their
valence bundles.

As we will argue later in this section, the case of interest for the physics of insulators
in d ≤ 3 is the classification of rank m = 1 complex vector bundles, i.e. complex line
bundles. For the case of line bundles we can make precise how large M has to be in
order for G1(CM ) to classify line bundles over Sd or Td. It turns out that we need
2(M − 1) ≥ d. To see this, we use some basic considerations about CW-complexes. First
of all, by definition, G1(CM ) is equal to the 2(M − 1)-dimensional CW-complex CPM−1.
Recall that CPM is obtained from CPM−1 by attaching a cell of dimension 2M . If X is
a CW-complex of dimension d, then it follows from the Cellular Approximation Theorem
that the inclusion CPM−1 → CPM induces a bijection [X,CPM−1] → [X,CPM ] as long
as d ≤ 2(M − 1) . Hence, by induction, the inclusion CPM−1 → CP∞ induces a bijection
[X,CPM−1] → [X,CP∞] . So, as long as we work with d ≤ 2(M − 1) it does not matter
whether we use CP∞ or CPM−1 in Theorem 5.1. In particular, for d = 2 it suffices to
consider maps X → CP 1 in the classification of line bundles over X. We will exploit this
fact when developing the theory of the two-dimensional, two-band model.

However, the classification of complex line bundles in terms of CP∞ contains crucial
information at an abstract level. One of the special properties of CP∞ is that it is the so-
called Eilenberg-MacLane space K(Z, 2) . If one is not familiar with Eilenberg-MacLane
spaces, then this may seem like a rather arbitrary property. It has an important implication
though. Namely, that for CW-complexes X, like Td and Sd, there is an isomorphism

[X,CP∞]→ H2(X;Z)

given by the Representability of Cohomology [34]. Here, H2(X;Z) denotes the degree two
integral cohomology of X. The isomorphism implies that the topological equivalence class
of an insulator can be determined from a certain cohomology class. Our purpose is now
to prove that this cohomology class can be determined from the Berry curvature.

5.2 Integrality of the Chern classes

Recall that the Chern classes have been introduced as topological invariants for smooth
vector bundles over a manifold X in terms of complexified deRham cohomology classes in
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H∗
dR(X;C), computed from the curvature. However, from the purely topological point of

view the Chern classes can be defined axiomatically as integer cohomology classes taking
values in the singular cohomology ring H∗(X;Z). The definition in terms of integral
singular cohomology makes clear the integral nature of the Chern classes. Moreover, for
smooth vector bundles the two different definitions agree. One of the consequences of this
result is that the first Chern number as it appears below Eq. (4.21) is always an integer.

The axiomatic definition of the Chern classes proceeds as follows. The Chern classes
are the maps ci : VectC(X)→ H2i(X;Z) for i = 1, 2, . . . that are uniquely determined by
the following four axioms:

1. (Naturality) ci(f
∗E) = f∗ci(E)

2. (Whitney sum) c(E1⊕E2) = c(E1)⌣ c(E2), where c = 1+ c1+ c2+ · · · ∈ H∗(X;Z)

3. ci(E) = 0 if i > rankE

4. c1(τ1,∞) ∈ H2(CP∞;Z) is a generator.

The idea behind these axioms is that once we fix c1(τ1,∞) ∈ H2(CP∞;Z), then all the
Chern classes of all other complex vector bundles are determined. Axioms three and four
together determine all the Chern classes of τ1,∞ → CP∞. Indeed, the first Chern class is
taken to be one of the two generators of H2(CP∞;Z) ∼= Z, and the higher order Chern
classes vanish. As we have seen, every complex line bundle over X is isomorphic to the
pullback of the tautological line bundle τ1,∞ → CP∞ via a map f : X → CP∞ . The
first axiom thus determines the Chern classes for all line bundles. Finally, “the splitting
principle” [33, Propostion 3.3] states that for any vector bundle E → X there is a space
F (E) and a map p : F (E) → X such that p∗(E) → F (E) is isomorphic to a direct sum
of line bundles, and p∗ : H∗(X;Z) → H∗(F (E);Z) is injective. The Chern classes of
p∗(E)→ F (E) in H∗(F (E);Z) are determined by the second axiom and the fact that we
know all Chern classes of line bundles. The Chern classes of p∗(E) are the images of the
Chern classes of E under p∗. Since p∗ is injective, these images uniquely determine the
Chern classes of E .

From the discussion in Section 3.4, it can be seen that the deRham cohomology for-
mulation of the Chern classes satisfies all the four axioms. The first axiom, naturality,
and the third axiom, that the Chern classes vanish when i > rankE, have been veri-
fied explicitly. Moreover, the second axiom is easily seen to hold after replacing the cup
product (⌣) of singular cohomology by the wedge product (∧) of deRham cohomology.
Finally, Eq. (3.5) states something resembling the fourth axiom, be it formulated in terms
of CP 1 rather than CP∞. This is not a problem, because the inclusion ι : CP 1 → CP∞

induces an isomorphism ι∗ : H2(CP∞;Z)→ H2(CP 1;Z) . Moreover, the tautological line
bundle τ1,1 over CP 1 is the pullback of the tautological line bundle τ1,∞ over CP∞ along
the inclusion ι . Fixing the first Chern class of τ1,∞ to be a generator of H2(CP∞;Z) is
thus equivalent to fixing the first Chern class of τ1,1 to be a generator of H2(CP 1;Z) .
The reason for a priori formulating the fourth axiom in terms of CP∞ is that it is then
immediately applicable in the determination of the first Chern class for all line bundles
via [X,CP∞] ∼= Vect1C(X) . However, by the discussion above, knowing the first Chern
class of τ1,1 → CP 1 together with the first three axioms also allows one to determine the
Chern classes for all vector bundles.

Consider now the composite

H2(CP 1;Z) H2(CP 1;C) H2
dR(CP 1;C) ,j∗ ∼= (5.1)
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where the first map is induced by the inclusion j : Z → C and the second map is the
deRham isomorphism [27]. To show the equivalence of the Chern classes in the deRham
formulation to the Chern classes in the integral cohomology formulation we will argue that
the composite Eq. (5.1) is injective and maps the integer first Chern class c1(τ1,1) to the
curvature class i

2π [F ] of τ1,1 . The first step is to note that by the Universal Coefficient
Theorem, the canonical homomorphism

j∗ : H
2(CP 1;Z)→ H2(CP 1;C)

fits into a commutative diagram

H2(CP 1;Z) H2(CP 1;C)

Hom(H2(CP 1);Z) Hom(H2(CP 1);C)

∼=

j∗

∼=
j∗

,

where the homology groups are with Z coefficients, the vertical arrows are the isomor-
phisms of the Universal Coefficient Theorem and the lower horizontal arrow is given by
postcomposition with j, which is injective since j is injective. Therefore, the upper hori-
zontal arrow j∗ : H

2(CP 1;Z)→ H2(CP 1;C) is injective.
Now, H2(CP 1) ∼= Z and is generated by an orientation class µCP 1 . Therefore, a map

in Hom(H2(CP 1), R) for R = Z,C is uniquely determined by where it sends µCP 1 . The
first Chern class c1(τ1,1) ∈ H2(CP 1;Z) maps under the isomorphism of the Universal Co-
efficient Theorem to a map c1(τ1,1)⌢ − that sends µCP 1 to ±1 ∈ Z, since an isomorphism
sends generators to generators. The sign depends on the choice of orientation class µCP 1 .
For definiteness, let us assume that c1(τ1,1) ⌢ µCP 1 = 1 ∈ Z. Postcomposing with the
inclusion j : Z → C, we get the map j(c1(τ1,1) ⌢ −) that maps µCP 1 to 1 ∈ C . From
the commutative diagram, it then follows that j∗c1(τ1,1)⌢ − is the map that sends µCP 1

to 1 ∈ C . We conclude from the fact that
∫
CP 1

i
2πF = 1, cf. Eq. (3.5), that under the

deRham isomorphism, j∗(c1(τ1,1)) corresponds to i
2π [F ] . This proves that c1(τ1,1) maps

to i
2π [F ] under the composite Eq. (5.1) .
The first Chern class of the tautological line bundle in the deRham formulation is thus

the image of the axiomatic first Chern class c1(τ1,1) under j∗ . Using the first three axioms,
the Chern classes of all other vector bundles are determined in terms of c1(τ1,1). Therefore,
the axiomatic definition of the Chern classes coincides with the curvature definition. The
fact that the Chern classes in H∗

dR(X;C) correspond to the Chern classes in H∗(X;Z)
implies that the integral of the top Chern class over an even dimensional X is always an
integer. In particular, for a two-dimensional base space X this implies that

C1(E) =
i

2π

∫
X
[F ]

is always an integer, which proves that indeed the Hall conductivity discussed previously
is quantized.

5.3 Classification of insulators in spatial dimensions d = 1, 2, 3

We show that complex line bundles over a compact base space are completely classified
by their first Chern class. Furthermore, we show that the topological classification of rank
m complex vector bundles over a base space X of dimension d ≤ 3 is equivalent to the
classification of complex line bundles because every rank m vector bundle over such an
X can be decomposed into a direct sum of m − 1 trivial line bundles and one possibly
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non-trivial line bundle. Combination of these results yields a complete classification of
complex vector bundles, and thus of topological insulators, in d ≤ 3 in terms of the first
Chern class.

The classification of complex line bundles in terms of their first Chern class is summa-
rized in the following theorem.

Theorem 5.2. The map Vect1C(X)→ H2(X;Z) given by E 7→ c1(E) is an isomorphism.

Proof. There is a chain of isomorphisms

Vect1C(X) [X,CP∞] H2(X;Z)
∼= ∼= .

The first map is the isomorphism [f ] 7→ f∗τ1,∞ from the homotopy classification of line
bundles. The second map is the representability of cohomology, which is explicitly given
by [f ] 7→ f∗c1(τ1,∞). If E ∼= f∗τ1,∞, then by the first axiom of the Chern classes,

f∗c1(τ1,∞) = c1(f
∗τ1,∞) = c1(E) .

Hence, the assignment E 7→ c1(E) is an isomorphism.

This is a very special property of line bundles. Higher rank bundles are in general not
fully classified by all their nonzero Chern classes. However, over base spaces of dimensions
less than or equal to three, it is actually true that arbitrary rank complex vector bundles
are classified by their first Chern class. The key point is that for a complex vector bundle
E → X of rank m over a base space X of dimension d ≤ 3, we can decompose E as

E ∼= L⊕ Cn−1 ,

where L is a, possibly non-trivial, line bundle and C denotes the trivial line bundle over X .
The decomposition E ∼= L⊕ Cm−1 is straightforward to derive in the smooth world from
transversality considerations [26], and the result is collected in the Proposition below.

Proposition 5.3. Let E → X be a smooth real vector bundle such that rankE > dimX,
then E has non-vanishing smooth section.

One might be worried about the smoothness assumption, since we are purporting to
derive a topological classification. However, by the Whitney Approximation Theorem in
combination with the homotopy classification of complex vector bundles, any isomorphism
class of topological complex vector bundles may be represented by a smooth complex
vector bundle. For the topological classification of complex vector bundles it thus suffices
to consider smooth complex vector bundles.

Although stated for real vector bundles, Proposition 5.3 can be used to find a non-
vanishing section of a complex vector bundle as well. Given a complex vector bundle
E → X, the underlying real vector bundle ER → X has a complex structure

J : ER → ER .

We can apply the proposition to the real vector bundle ER to obtain a non-vanishing
section s : X → ER. Using the complex structure, we define a second non-vanishing
section J ◦ s : X → ER. Now, s and J ◦ s span a trivial complex line bundle Ls in ER.
Going back to the actual complex bundle E, this yields E ∼= E′ ⊕ C , where we take C to
be the trivial complex line bundle spanned by s, and E′ to be the orthogonal complement
of this trivial bundle in E. If d = 1, then we can repeat this procedure all the way down
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until we have E ∼= Cm. There are thus no non-trivial complex vector bundles over a one-
dimensional base space, which implies that there are no topological insulators in d = 1.
On the other hand, if d = 2, 3, then we can only repeat the procedure until we arrive
at E = L ⊕ Cm−1, where L is still a possibly non-trivial line bundle. Suppose then that
we have a rank m complex vector bundle E over a d = 2, 3 dimensional base space X,
and that we have decomposed E ∼= L⊕ Cm−1. The first Chern class of E is equal to the
first Chern class of L by the Whitney sum axiom. Moreover, all higher Chern classes are
zero. For a different decomposition E ∼= L′ ⊕ Cm−1, we have c1(L) = c1(L

′) since both
equal c1(E). Since line bundles are classified by their first Chern class, it follows that L′

is isomorphic to L. So, rank m complex vector bundles over a d = 2, 3 base space are
equivalent to complex line bundles, and are thus classified by the first Chern class.

The valence bundle is a vector bundle over Td or Sd. The first Chern class thus takes
values in H2(Td;Z) or H2(Sd;Z). These cohomology groups are known and have been
collected in Table 1. The Z entries for T2 and S2 mean that H2(T2;Z) and H2(S2;Z) are

d H2(Td;Z) H2(Sd;Z)
2 Z Z
3 Z3 0

Table 1: Second degree cohomology of Td and Sd in low dimensions.

isomorphic to Z. In both cases, the isomorphism is explicitly realized by Poincaré duality,
i.e. by integrating the first Chern class, viewed as a two-form, over the base manifold.
This integral the first Chern number. This shows that insulators in two dimensions, for
both periodic and continuum models, are classified by their first Chern number.

The Z3 entry for H2(T3;Z) is due to the Künneth formula. More concretely, each
copy of Z in the Z3 is actually just the Z invariant of a copy of T2 embedded in T3. The
three copies of Z correspond to the three inequivalent ways of embbedding T2 into T3.
In physical terms, each copy of Z in the Z3 invariant corresponds to a stacking together
of two-dimensional insulators. It is thus not a truly a new three-dimensional invariant.
That there is no truly three-dimensional invariant for topological insulators is reflected in
the fact that H2(S3;Z) = 0, which means that continuum models in three dimensions are
always trivial.

5.4 The two-band model

Let us use the tools we have developed for the classification of complex line bundles to
develop a detailed understanding of the two-dimensional, two-band model

h : X → Herm(2,C), h(p) = B(p) · σ ,

where X = S2 or T2, B = (Bx, By, Bz) : X → R3 and σ = (σx, σy, σz) are the Pauli
matrices. Writing h in this form gives the most general two-band Hamiltonian with Fermi
level at 0. However, this specific representation of the two-band model as a dot product of
some vector B with a vector of Pauli matrices induces some very nice coincidences. Most
importantly, we can obtain an expression for the first Chern number as a simple integral
over some derivatives of B. This is of great use, because it means that to compute the
first Chern number of the two-band model we do not even have to compute any Berry
curvatures. We only have to plug in the coefficients B that appear in the Hamiltonian
into a simple formula.
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First note that the eigenvalues of the Hamiltonian h(p) = B(p) · σ are ±||B(p)||.
Therefore, h describes an insulator if and only if B(p) := ||B(p)|| > 0 for all p ∈ X . In
other words, to model an insulator one has to require B : X → R3 \ {0} . The space
R3 \{0} is homotopy equivalent to S2. We are interested in homotopy invariant properties
and so, without loss of generality, we assume B is normalized such that B(p) = 1 for
all p ∈ X. The Hamiltonian is thus fully determined by a map B : X → S2. We have
noted before that for dimX = 2, complex line bundles over X are classified by [X,CP 1].
Since CP 1 is homeomorphic to S2, one might suspect that B is the classifying map of the
valence bundle of h(p) = B(p) · σ. This suspicion turns out to be correct.

The valence bundle of h can be realized as the pullback of the tautological line bundle
τ1,1 → CP 1. The tautological line bundle τ1,1 itself actually corresponds to a physical
system. We will argue that τ1,1 is the bundle of negative energy eigenstates of a spin-1/2
particle in a magnetic field, described by the family of Hamiltonians H(B) = B · σ for
B ∈ S2. It is important to stress that in the case of the spin-1/2 particle in a magnetic
field, B itself as a unit vector in R3 already plays the role of the parameters in the system.
The full Hilbert space of the spin-1/2 particle is C2, and so the parameterized quantum
system is described by the trivial bundle S2×C2. We let EH ⊂ S2×C2 denote the bundle
of negative energy eigenstates of H(B) = B ·σ . We will see that EH corresponds to τ1,1
under the identification of S2 with CP 1.

In matrix notation, the Hamiltonian for a spin in a magnetic field takes the form

H(B) =

(
Bz Bx − iBy

Bx + iBy −Bz

)
.

Let U = {B ∈ S2 : Bz ̸= 1} and let V = {B ∈ S2 : Bz ̸= −1} be an open cover for S2 .
The normalized negative energy eigenvectors u− and v− over U and V , respectively, are

u−(B) =
1√

2B(B −Bz)

(
−B +Bz

Bx + iBy

)
and v−(B) =

1√
2B(B +Bz)

(
−Bx + iBy

B +Bz

)
.

The homeomorphism from S2 → CP 1 can be realized via stereographic projection. The
complex projective space CP 1 can be coverd by two charts

Ũ = {(−1 : w) : w ∈ C} and Ṽ = {(w : 1) : w ∈ C} .

These charts are chosen so that they are orientation preserving with respect to the inward
pointing orientation on S2 and the standard orientation on C2 . Orientation preserving
stereographic projection from the north pole gives the homeomorphism U → Ũ by

U ∋ (Bx, By, Bz) 7→
(
−1 :

Bx + iBy

B −Bz

)
∈ Ũ .

Hence, the vector u−(B) lies in the line corresponding to B under the identification of S2

with CP 1 via sterographic projection . Similarly, the orientation preserving stereographic
from the south pole gives

V ∋ (Bx, By, Bz) 7→
(
−Bx + iBy

B +Bz
: 1

)
∈ Ṽ .

Again, the vector v−(B) lies in the line corresponding to B under the identification of S2

with CP 1 . It is straightforward to check that the above identifications of S2 with CP 1

agree whenever Bz ̸= ±1. Therefore, the bundle over S2 of the negative energy eigenstates
of H(B) = B · σ is isomorphic to the tautological line bundle τ1,1 → CP 1 .
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Let us then turn to the Hamiltonian h(p) = B(p) · σ describing the two-dimensional,
two-band insulator. The fiber of the valence bundle over p ∈ X can be identified with the
fiber of the tautological line bundle τ1,1 → CP 1 over the image of the point B(p) in CP 1

under the homeomorphism S2 → CP 1 . Hence, the valence bundle of h is isomorphic to
pullback bundle B∗τ1,1 . The map B : X → S2 can thus indeed be identified with the
classifying map for the valence bundle for h : X → Herm(2,C) .

The only topological invariant of the two-dimensional topological insulator is thus the
homotopy class of B : X → S2 . The homotopy class can be computed by the degree of
B. However, we have argued above that insulators in two dimensions are fully classified
by their first Chern number. As a consistency check, we show that the degree of B and
the first Chern number coincide.

The valence bundle Eh → X of the two-band model is the pullback of the bundle
EH → S2 of the negative energy eigenstates of the spin in a magnetic field along the map
B : X → S2 . This is pretty much a tautology. A more lowbrow way of expressing this
tautology is that the negative energy eigenstate of h(p) at p ∈ X is the negative energy
eigenstate of a spin subject to the magnetic field B(p) . Now, if p runs around a loop in
the momentum space X, then this corresponds to a loop on the magnetic field space S2

via the map B. The Berry phase that corresponds to this loop on the momentum space
is precisely the Berry phase of the loop on S2. The picture one should have in mind is
that there is a curved bundle EH → S2 corresponding to the spin in a magnetic field and
that h(p) = B(p) ·σ “probes” this bundle as a function of p. According to Eq. (4.11), the
Berry connection AH on EH over the chart U is

AH
U (B) = ⟨u−(B), du−(B)⟩ ,

where d is the deRham differential on S2 and is taking derivatives with respect to B . The
Berry connection Ah on Eh over B−1(U) is

Ah(p) = ⟨(u− ◦B)(p)), d(u− ◦B)(p)⟩ ,

where now d is the deRham differential on X and is taking derivatives with respect to p.
Similar relations hold over V and B−1(V ) . The upshot is that Ah = B∗AH , where we use
the pullback operation on one-forms. This relation carries through to the Berry curvature
since d commutes with B∗ , i.e.

F h = dAh = d(B∗AH) = B∗(dAH) = B∗FH .

This is actually just a restatement of the fact that the first Chern class of Eh is indeed
the pullback of the first Chern class of EH along B , which could have already concluded
from the fact that B is the classifying map of Eh .

Recall that the first Chern number of the insulator h is i
2π

∫
X F h, where F h is the Berry

curvature of the valence bundle Eh → X . Since F h = B∗FH , it follows by definition of
the degree of a map that ∫

X
F h =

∫
S2

B∗FH = degB

∫
S2

FH ,

where degB is the degree of the map B. Since B : X → S2, one can think of degB as
the number of times that X wraps around S2 under B . A straightforward computation
establishes that

∫
S2 F

H = −2πi . Therefore, the degree of B coincides with the first Chern
number

C1 =
i

2π

∫
X
F h = degB . (5.2)
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Finally, an explicit formula for the degB can be obtained because

degB =

∫
X B∗ω∫
S2 ω

for any 2-form ω , not only the Berry curvature. In particular, we can pick the volume
form ω = xdy ∧ dz − ydx ∧ dz + zdx ∧ dy on S2. The integral

∫
S2 ω = 4π just gives the

area of the unit sphere. If we let BZ denote the Brillouin zone with coordinates (kx, ky),
then

B∗ω|BZ = B · (∂kxB × ∂kyB)dkx ∧ dky .

Since the Brillouin zone covers the full momentum space X up to a set of measure zero,

C1 = degB =
1

4π

∫
BZ

B · (∂kxB × ∂kyB)dkx ∧ dky . (5.3)

In conclusion, the two-band model h(p) = B(p) · σ over a two-dimensional space is fully
classified by the first Chern number, and Eq. (5.3) gives an expression for the first Chern
number purely in terms of the parameters B(p) that appear in the Hamiltonian.

6 Bulk-boundary correspondence

On the interface between two topologically inequivalent insulators, there must exists gap-
less edge states. This is the bulk-boundary correspondence. Let us restrict ourselves to
two-dimensional insulators. The interface between a pair of two-dimensional insulators is
a one-dimensional system. The gapless edge states on the one-dimensional interface turn
out to be massless chiral fermions. The quantitative version of the bulk-boundary corre-
spondence states that the difference between the number of right and left chiral fermions
on the interface equals the difference in Chern numbers between the two insulators. Proofs
of the bulk-boundary correspondence using Green’s functions are given in [7, 8].

In this section, we derive the bulk-boundary correspondence in the specific case of a
two-band insulator in two dimensions using the so-called chiral anomaly. This argument
is inspired by [9]. We first introduce the Chern-Simons theory as the effective low-energy
theory for the linear response of the two-band model. The Chern-Simons theory is not
gauge invariant in the presence of a spatial boundary, which indicates a non-conservation
of electric current. A one-dimensional theory of massless chiral fermions also has a non-
conserved electric current. It turns out that combining the bulk Chern-Simons theory with
the massless chiral fermions on the boundary restores the conservation of electric current in
the full system a topological insulator with boundary. The existence of the massless chiral
edge states is also explicitly verified in a simple Dirac model with a spatially dependent
mass term that models the interface between a trivial and a non-trivial insulator.

6.1 Effective Chern-Simons theory

In Section 4.3 we have derived the linear response of a two-dimensional, two-band bulk
insulator to an external electric field, in the limit of low energy, low temperature and long
wavelength, to be

J i
bulk = σHϵ

ijEj , (6.1)

where i, j = x, y and σH = C1
e2

h is the Hall conductivity with C1 denoting the first Chern
number. This result has been obtained through a path integral calculation in a gauge with
A0 = 0 . Nonetheless, the result is true in any gauge (see Appendix A). The continuity
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equation for electric charge in the bulk leads to the following equation for the charge
density ρbulk of the system

∂tρbulk = −∂iJ i
bulk = −σHϵij∂iEj = σH∂tB ,

where B is the magnetic field perpendicular to the insulator. This implies ρbulk(B)−ρ0 =
σHB, where ρ0 is the charge density in the ground state for B = 0 [4] . Absorbing ρ0 into
ρbulk(B) the two bulk response equations

ρbulk = σHB and J i
bulk = σHϵ

ijEj

together describe a bulk theory with charge conservation. They can be combined into one
covariant equation

Jµ
bulk = σHϵ

µνρ∂νAρ , (6.2)

where µ, ν, ρ = t, x, y . The effective action that describes the bulk electromagnetic re-
sponse Eq. (6.2) of the insulator is the Chern-Simons action

SCS [A] =
σH
2

∫
R×Σ

dtd2x ϵµνρAµ∂νAρ , (6.3)

where Σ denotes the spatial extent of the insulator in the plane.
The Chern-Simons action is not obviously gauge invariant because it depends directly

on the potential Aµ. In fact, under a gauge transformation Aµ → Aµ + ∂µχ, the action
changes by a total derivative

δχSCS [Aµ] =
σH
2

∫
R×Σ

dtd2x ϵµνρ∂µ(χ∂νAρ) .

To model the bulk of an insulator we take Σ = R2 and we assume that the fields vanish
at spatial infinity. The bulk theory is thus gauge invariant. However, if the insulator is
only extended in a finite region Σ with a nonempty boundary, then gauge invariance fails
when χ is nonzero on the boundary. By Stokes’ theorem,

δχSCS [Aµ] =
σH
2

∫
R×Σ

dtd2x ϵµνρ∂µ(χ∂νAρ) =
σH
2

∫
R×∂Σ

dtdx̃ n̂µϵ
µνρχ∂νAρ ,

where n̂µ is the normal vector pointing out of Σ and x̃ is the coordinate on the boundary
∂Σ induced from the coordinates x on Σ .

The failure of the effective Chern-Simons theory to be gauge invariant at the boundary
spurs us to reconsider the conservation of the current in Eq. (6.2). The key observation of
[9] is that spatial dependence of the Hall conductivity σH spoils the conservation of the
current, because then

∂µJ
µ
bulk = (∂µσH)ϵµνρ∂νAρ .

For a bulk theory, σH is constant and so the current is still conserved. However, at the
interface between two insulators with different Chern number σH changes. Therefore, at
the interface, the current is not conserved. For example, let us consider a situation where
Σ ⊂ R2 corresponds to the spatial extent of an insulator with Chern number C1 and
R2 \ Σ corresponds to the vacuum with Chern number 0. At the boundary ∂Σ, the Hall

conductivity drops from σH = C1
e2

h to zero, so that near the boundary the derivative
∂µσH takes the form of a δ-function times the unit normal vector to the boundary. The
violation of current conservation is thus∫

R×Σ
dtd2x ∂µJ

µ =

∫
R×∂Σ

dtdx̃ σH n̂µϵ
µνρ∂νAρ =

∫
R×∂Σ

dtdx̃ C1
e2

h
ϵµ̃ν̃∂µ̃Aν̃ . (6.4)
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In order for current conservation to be restored, we need a theory on the boundary that
satisfies

∂µ̃J
µ̃
boundary = −C1

e2

h
ϵµ̃ν̃∂µ̃Aν̃ , (6.5)

where the index µ̃ runs over t and the boundary coordinate x̃, so as to cancel the integrand
on the right hand side of Eq. (6.4). Note that ϵµ̃ν̃∂µ̃Aν̃ is just the component of an external
electric field parallel to the boundary of Σ.

6.2 Restoring current conservation

When quantizing the theory of massless 1 + 1-dimensional fermions there is a so-called
chiral anomaly. Massless fermions in 1+1 dimension come in two different chirality species:
a left moving and a right moving species. The chiral anomaly is generally associated to
a non-conservation of the chiral current, which is the difference between right and left
moving currents. The form of the chiral anomaly is very similar to Eq. (6.5). It is given
by

∂µ̃J
µ̃
5 =

2e2

h
ϵµ̃ν̃∂µ̃Aν̃ ,

where we let µ̃ label the spacetime indices of the 1+ 1-dimensional theory and J5 denotes
the chiral current. This does not look immediately useful, however, because we are looking
for a non-conserved electric current, not a chiral current. But, when reducing to just one
chirality species, say right chirality, it is actually the electric current which becomes non-
conserved precisely following the requirement of Eq. (6.5) in the case C1 = 1. Similarly,
restricting to left chirality yields Eq. (6.5) in the case C1 = −1. Appropriate combinations
of copies of left and right massless chiral fermions allows for the restoration of current
cosnservation for any difference in Chern numbers.

Heuristically, the picture is as follows. In one spatial dimension, massless chiral
fermions are massless fermions that can only move in one direction. There are right
chiral fermions, that only move to the right, and, similarly, there are left chiral fermions
that only move to the left. Let us focus on right chiral fermions. The dispersion relation
for a right chiral fermion is ϵ(k) = vfk , where vf > 0 is the speed of the fermion inside
the material. Imagine chiral fermions in a one-dimensional box of length L with periodic
boundary conditions. The Hamiltonian is

H = −iℏvf∂x .

The eigenstates of H are |k⟩ = 1√
L
eikx for k = 2π

L n with n ∈ Z . In order to study

∂µ̃J
µ̃ = ∂tρ+ ∂xj for the chiral fermion, where ρ is the charge density and j is the current

density, consider applying a constant external electric field E in the negative x-direction.
Since the electric field is uniform in space, ∂xJ will be zero. The interesting behaviour is
contained in the time derivative of the charge density.

We choose a gauge such that At = 0 and Ax = −Et . After minimal substitution, the
Hamiltonian becomes time dependent and takes the form

H(t) = −iℏvf (∂x + i
e

ℏ
Et) .

Let us assume that E is small enough so that H(t) can be viewed as an adiabatic defor-
mation of H. The instantaneous eigenstates of H(t) are the wavefunctions |k⟩ for k = 2π

L n
with n ∈ Z and the instantaneous spectrum of H(t) is

σ(t) =

{
ℏvf

(
2π

L
n+

e

ℏ
Et

)
: n ∈ Z

}
.
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At t = 0, the instantaneous ground state corresponds to all states with nonpositive mo-
mentum being filled, see Fig. 5. The ground state is gapped out from the rest of the
spectrum. By the adiabatic theorem, the system will thus remain in the instantaneous
ground state as time progresses. After t = 2π

L
ℏ
eE , all the filled eigenstates |k⟩ will have

shifted to |k + 2π
L ⟩. Within this model of a single one-dimensional system, one can in-

terpret this as a single unit of charge coming from the “Dirac sea” that has entered the
system, see Fig. 5 . A less confabulatory explanation of this effect is possible when we
consider the one-dimensional theory as being just one of two edges of a rectangular piece
of insulator along which the electric field is parallel. The unit charge appearing on one
edge is compensated by a unit of charge disappearing from the opposite edge. Focusing

Figure 5: Instantaneous ground states ofH(t) = −ivf (∂x+i eℏEt) before and after adiabatic
evolution from t = 0 to t = 2π

L
ℏ
eE .

again on one edge, the change after ∆t = 2π
L

ℏ
eE in the charge density is ∆ρ = −e/L.

Hence, in the limit L→∞, the time derivative of the charge density is

∂tρ = lim
L→∞

∆ρ

∆t
= −e

2

h
E .

We conclude that the massless right chiral fermion satisfies

∂µ̃J
µ̃ = ∂tρ = −e

2

h
E = −e

2

h
ϵµ̃ν̃∂µ̃Aν̃ .

A right moving chiral fermion on the one-dimensional edge can thus compensate for the
non-conserved charge on the edge of a two-dimensional Hall insulator with Chern number
C1 = 1 .

The dispersion for a left moving chiral fermion is ϵ(k) = −vfk. The same calculation
as above shows that a left chiral fermion has to appear on the edge of a Hall insulator
with C1 = −1. For general C1 ∈ Z, an appropriate number of species of left or right chiral
fermions on the edge restores current conservation. For example, if C1 = −3, then there
have to be three left moving chiral fermion species on the edge.

6.3 Chiral fermions in Dirac model with domain wall

The current conservation argument layed out above shows that at the boundary of a
non-trivial topological insulator in two spatial dimensions there should be massless chiral
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fermions. We illustrate this principle for the interface between continuum two-band Dirac
models with a mass parameter m, which are described by the Hamiltonian

h(kx, ky) = kxσx + kyσy + (m+ ηk2)σz =

(
m+ ηk2 kx − iky
kx + iky −m− ηk2

)
, (6.6)

for (kx, ky) ∈ R2 and η > 0 a regularization constant. The regularization constant is
needed to ensure that the eigenvectors at k = ∞ agree so that the momentum space R2

can be compactified to S2 . For m ̸= 0 Eq. (6.6) describes an insulator and the Chern
number of h can be computed using the winding number formula Eq. (5.3) to be

C1 =

{
0 ifm < 0

1 ifm > 0
.

The interface between a trivial and a non-trivial insulator can be modelled by making
the mass in the Dirac model spatially dependent. In particular, consider a “domain wall”
structure for the mass given by m(x) = sgn(x)m, where m > 0 is fixed. For x < 0, this
models a trivial insulator and for x > 0 this models a non-trivial insulator with C1 = 1.
According to the bulk-boundary correspondence, there should thus be one right chiral
fermion species moving in the positive y-direction on the interface at x = 0. We will
argue its existence here directly from the solutions to the time-independent Schrödinger
equation.

First of all, in the low-energy limit, the massless chiral edge states are to be found
near k = 0. The topological nature of the Chern number implies that the regularization
parameter η in Eq. (6.6) can be made arbitrarily small, as long as it remains nonzero,
without changing the Chern numbers. Near k = 0, it then suffices to study the non-
regularized Hamiltonian

h(kx, ky) =

(
m kx − iky

kx + iky −m

)
, (6.7)

since its eigenvectors differ from those of Eq. (6.6) at order O(ηk2) . Secondly, if we
introduce a mass term that explicitly depends on x, then translational invariance in x-
direction is broken. The kx dependence of the bulk model Eq. (6.7) thus has to be reverted
to −i∂x as the Fourier transform in the x-direction is no longer valid.

The above considerations imply that we should study the spectrum of the one-dimensional
domain wall Hamiltonian

h(x, ky) =

(
m(x) −i∂x − iky

−i∂x + iky −m(x)

)
, (6.8)

where ky, which is the momentum along the interface, is treated as a parameter. We will
look for energy eigenstates of the form ψ(x, y) = u(x, ky)e

ikyy that are plane waves in the
y-direction. This yields a family of one-dimensional eigenproblems parameterized by ky,

h(x, ky)u(x, ky) = ϵ(ky)u(x, ky) . (6.9)

We are interested in finding solutions to Eq. (6.9) that are localized near x = 0 because
those localized solutions are the edge states. Hence, we fix a ky and look for solutions
u(x, ky) of the one-dimensional problem that decay exponentially away from zero. The
solutions u(x, ky) are required to be continuous, but there will be a discontinuity in the
first derivative because m(x) is discontinuous at x = 0 and h(x, ky) contains only first
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derivatives in x. We shall thus look for exponentially decaying eigenvectors for x < 0 and
x > 0 separately, and then restrict ourselves to solutions that can be glued continuously
at x = 0. Many decaying solutions exist for x < 0 and x > 0 separately, but it is only
possible to glue the solutions for x < 0 and x > 0 continuously at x = 0 for some special
energy eigenvalues. By finding the energies for which decaying solutions glue, we end up
with the spectrum of a chiral edge fermion. The details are worked out below.

For notational convenience, we drop the explicit ky dependence from the notation for
now. For x < 0 we take the ansatz uL(x) = eλLxvL for some λL > 0 and vL a two-
component spinor. Plugging the ansatz uL(x) into Eq. (6.9), we see that the spinor vL
has to satisfy (

−m− ϵ −iλL − iky
−iλL + iky m− ϵ

)
vL = 0 . (6.10)

A non-trivial solution for vL exists if and only if the determinant of this matrix in Eq. (6.10)

is zero. Hence, non-trivial solutions for vL exist if and only if λL =
√
m2 + k2y − ϵ2 . For

this λL, we have that

vL =

(
−iλL − iky
m+ ϵ

)
is a solution to Eq. (6.10) . Similarly, for x > 0 we take the ansatz uR(x) = e−λRxvR with
λR > 0 . The spinor vR has to satisfy(

m− ϵ iλR − iky
iλR + iky −m− ϵ

)
vR = 0 . (6.11)

Again, non-trivial solutions for vR exists if and only if λR =
√
m2 + k2y − ϵ2 . A solution

to Eq. (6.11) is

vR =

(
m+ ϵ

iλR + iky

)
.

We now check for which values of ϵ we can combine uL and uR to obtain a wavefunction
that is continuous at x = 0 . First note that the solutions vL and vR above are not unique.
Any nonzero complex multiple of vL and vR is also a valid solution. The norms of the vL
and vR given above are the same, so we need not normalize these spinors further. However,
we might have to alter the phase to be able to glue the solutions at x = 0. In other words,
we want to find ϵ such that vL = eiφvR for some φ ∈ [0, 2π] .

Note that λL = λR, so we can drop the subscripts and just write λ . We first need to
know for which values of relative phase φ the equation(

−iλ− iky
m+ ϵ

)
= vL = eiφvR = eiφ

(
m+ ϵ
iλ+ iky

)
can hold. The equality of the first components means λ + ky = ieiφ(m + ϵ). Using the
equality m+ ϵ = ieiφ(λ+ ky) due to the second component, we conclude that

ei2φ = −1 .

Hence, vL = eiφvR can only hold for φ = π/2 or φ = 3π/2 . For φ = π/2, we need to solve(
−iλ− iky
m+ ϵ

)
=

(
im+ iϵ
−λ− ky

)
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for ϵ . Both components lead to the same equation λ = −m−ϵ−ky . Squaring this equality
and recalling the definition of λ, we find

m2 + k2y − ϵ2 = m2 + ϵ2 + k2y + 2mϵ+ 2mky + 2ϵky ,

hence,
ϵ2 + ϵ(m+ ky) +mky = 0 .

The solutions for ϵ are thus

ϵ±(φ = π/2) =
1

2

(
−(m+ ky)±

√
(m+ ky)2 − 4mky

)
= −1

2
(m+ ky)±

1

2
|m− ky| =

{
−m±m

2 +
−ky∓ky

2 if ky ≤ m
−m∓m

2 +
−ky±ky

2 if ky > m
.

A similar computation applies to φ = 3π/2 . In this case, we need to solve(
−iλ− iky
m+ ϵ

)
=

(
−im− iϵ
λ+ ky

)
,

leading to λ = m + ϵ − ky. Squaring the equation and substituting the definition of λ2

yields

ϵ±(φ = 3π/2) =

{
−m∓m

2 +
ky∓ky

2 if ky ≤ −m
−m±m

2 +
ky±ky

2 if ky > −m
.

The various branches of possible solutions for ϵ as a function of ky for the two angles

Figure 6: Energies ϵ for which vL and vR agree at x = 0 .

φ = π/2 and φ = 3π/2 are plotted in Fig. 6. Not all branches constitute valid solutions
though. Indeed, λ has to be positive and the spinors vL and vR should be continuous in
ky. The regions of positive and negative λ have been indicated in Fig. 6. For φ = π/2,
there is no continuous solution for ϵ as a function of ky that satisfies λ > 0. For φ = 3π/2,
it is clear that at least for ky > −m, the ϵ+ branch consitutes a valid solution. We have
to deal, however, with the peculiar behaviour at ky = −m.

The issues that occur at ky = −m become apparent when we try to normalize the
spinor vL(ky). Normalizing and using λ+ ky = m+ ϵ as required for φ = 3π/2, yields

v̂L(ky) = [(λ+ ky)
2+(m+ ϵ(ky))

2]−1/2

(
−iλ− iky
m+ ϵ(ky)

)
=

1√
2
sgn(m+ ϵ(ky))

(
−i
1

)
, (6.12)
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where sgn(x) = x/|x| . There is a possible problem when ϵ(ky) = −m, because there
the sign function is not well-defined. The solution branch ϵ+(φ = 3π/2) for ky < −m is
constantly −m. We cannot define sgn(m + ϵ(ky)) unambiguously as a function of ky on
this branch. We could try to take the limit of ϵ(ky)→ −m, but depending on the direction
from which we approach −m, this leads to different results for sgn(m+ ϵ(ky)) . Hence, the
phase of vL(ky) is ill-defined on this branch and we thus discard it.

Our only possibility is then to take the ϵ+(φ = 3π/2) solution for ky > −m and the
ϵ−(φ = 3π/2) solution for ky < −m. The issue with the sign function when ϵ(ky) = −m
seemingly still persists when ky = −m though. However, well-definition of vL(ky) at
ky = −m can be ensured by continuously extending the solution of vL(ky) from the ϵ+
and ϵ− branch. This is not completely obvious since in Eq. (6.12) it seems as though
vL(ky) has to flip sign when passing through ky = −m. The problem is resolved by
recalling that we have only fixed the relative phase of vL and vR, but never the absolute
phases. Therefore, the ostensible phase flip in vL(ky) when ky goes through −m can be
remedied by altering the phase of our original, arbitrary, choice for the phase of vL(ky) .
The final solution to Eq. (6.9) is then

u(x, ky) =


1√
2

(
−i
1

)
e−mx if x < 0

1√
2

(
−i
1

)
emx if x > 0

with dispersion ϵ(ky) = ky . This corresponds precisely to the one right moving chiral
fermion the bulk-boundary correspondence predicts.
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Part II

Topological Insulators with time-reversal
symmetry
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7 Topological insulators with time-reversal symmetry

Two insulators have been defined to be topologically equivalent whenever their momen-
tum space Hamiltonians can be continuously deformed into each other while preserving the
insulating gap. There is a subset of insulator consisting of those insulators that are invari-
ant under the operation of time reversal. These are the so-called time reversal symmetric
insulators. In less than or equal to three spatial dimensions, a time reversal symmetric
insulator can always be continuously deformed to a trivial insulator while preserving the
gap. One would therefore think that these systems are of no topological interest. How-
ever, if one requires the deformation to preserve the time-reversal symmetry, then it turns
out that some insulators cannot be deformed into the trivial insulator anymore. This
behaviour is encoded in a Z2 invariant due to Fu-Kane-Mele (FKM) [12, 14, 15], which
will be reviewed in this section.

7.1 time-reversal symmetry

Time reversal is a discrete operation that reverses the direction of the time parameter in
a dynamical theory. In quantum mechanics, it turns out that time reversal is represented
on the Hilbert space by an antiunitary operator T : H → H. For the single-particle
physics of condensed matter systems embedded in three-dimensional space, the time-
reversal operator is explicitly realized as T = eiπSy/ℏK, where Sy is the spin operator in
the y direction and K is the complex conjugation operator. We briefly review these facts
here following [35, 36], and interpret them in the context of insulators.

Consider first a spinless quantum-mechanical particle with Hilbert space H and time
evolution described by a Hamiltonian H. Suppose that |ψ(t)⟩ solves the Schrödinger
equation

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ . (7.1)

Simply reversing the direction of time by replacing t by −t yields

−i d
dt
|ψ(−t)⟩ = H |ψ(−t)⟩ . (7.2)

Now, Eq. (7.2) is not the Schrödinger equation for the Hamiltonian H because of the
minus sign on the left-hand side. However, we can take the complex conjugate of Eq. (7.2)
to obtain

i
d

dt
|ψ(−t)⟩∗ = H∗ |ψ(−t)⟩∗ , (7.3)

which is the Schrödinger equation for the complex conjugated HamiltonianH∗ . In general,
a dynamical theory is called time-reversal symmetric if, for any solution to the equations
of motion, traversing the solution in the negative time direction is also a solution to the
equations of motion. Using this criterion, the quantum-mechanical theory is to be called
time-reversal symmetric if H∗ = H, since in this case Eq. (7.3) shows that the reversed
solution |ψR(t)⟩ := |ψ(−t)⟩∗ is a solution to the original Schrödinger equation Eq. (7.1).
Note that although the wavefunction of the reversed solution does not retrace the original
wavefunction due to the additional complex conjugation, it does retrace the physical state
of the original solution. More precisely, if |ψ(t)⟩ and |ϕ(t)⟩ are two physical evolutions,
then their overlap at time −t is the same as the overlap at time t of the reversed evolutions
|ψR(t)⟩ and |ϕR(t)⟩ according to

| ⟨ψR(t)|ϕR(t)⟩ |2 = | ⟨ψ(−t)|ϕ(−t)⟩∗ |2 = | ⟨ψ(−t)|ϕ(−t)⟩ |2 .
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The most general operation on the state |ψ(t)⟩ that has the property that it preserves
the overlaps when reversing the direction of time is T = UTK, where UT ∈ U(H) is some
unitary and K is the complex conjugation operator. The unitary UT depends on the
type of system under consideration. The reality condition H∗ = H in the general setting
becomes the condition that [H,T ] = 0, or equivalently, H = UTH

∗U †
T .

For a particle with spin s, a useful representation of T on the Hilbert space C2s+1 is

T = eiπSy/ℏK ,

where Sy is the spin in the y-direction. For a spin-1/2 particle, Sy = ℏ
2σy so that T = iσyK.

One can check explicitly that in this case T has the effect of flipping the direction of a
spin, which is precisely what we would expect when we flip the direction of time. The
reason for rotating around the y-axis is that Sy is by convention completely imaginary so
that eiπSy/ℏ commutes with K. It is then easy to check that for integer spins T 2 = 1 and
for half integer spins T 2 = −1 . Indeed, T 2 = ei2πSy/ℏ is a 2π-radians rotation around the
y-axis so that a particle of spin s picks up a phase ei2πs under T 2.

In a tight-binding model with M bands the time-reversal operator is represented on
the effective fiber Hilbert space CM as T = UTK for some unitary UT ∈ U(M), which
depends on the model . Because in physical space the operation of time reversal flips the
sign of time, it flips the sign of momentum in reciprocal space. If the momentum space
is X, then this flipping of the sign of momentum can be encoded in a map τ : X → X
that satisfies τ2 = id. In other words, when applying the time-reversal operation, we not
only act with T on the Hilbert space, but we also act with τ on the momentum space. In
periodic models, the momentum space is the torus. Viewing the torus as a square with its
edges identified, the action of τ is given by [k] 7→ [−k], where the square brackets indicate
equivalence classes due to the identification of the boundary. In the continuum model, the
momentum space Rd comes equipped with the action τ : k 7→ −k. After compactification
to Sd this becomes

τ : (k1, . . . , kd, kd+1) 7→ (−k1, . . . ,−kd, kd+1) ,

where the compactification happens along the d + 1-th direction. Properly taking into
account the action of time reversal on the momentum space of a condensed matter system
modelled by a tight binding Hamiltonian h : X → Herm(M,C), the condition for h to be
time-reversal invariant can be stated as

h(τ(p)) = Th(p)T−1 = UTh(p)
∗U †

T for all p ∈ X . (7.4)

We end our preliminary discussion on time-reversal symmetry by deriving the so-
called Kramers’ degeneracy. Let h : X → Herm(M,C) be a tight-binding model for an
insulator, let τ : X → X be the time reversal involution on the momentum space and let
T : CM → CM , given by T = UTK, be the time-reversal operator on the effective Hilbert
space. Assume that h is time reversal symmetric. If ψ ∈ CM is an eigenstate of h(p) with
energy ϵ(p), i.e. if h(p)ψ = ϵ(p)ψ, then by Eq. (7.4)

h(τ(p))Tψ = ϵ(p)Tψ .

Hence, Tψ is an eigenstate of h(τ(p)) with energy ϵ(p) . The spectrum of h as a function of
p is thus symmetric under τ in the sense that for any solution ϵ : X → R of det(h− ϵ), the
function ϵ ◦ τ is also a solution. At a time-reversal invariant momentum p ∈ X, meaning
p = τ(p), the spectrum of h thus to degenerates. Moreover, at a time-reversal invariant
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momentum it makes sense to compute the inner product of ψ and Tψ because they live in
the same fiber. Using the property of the antiunitary operator T that ⟨Tψ, Tφ⟩ = ⟨φ,ψ⟩
and the fact that for fermions T 2 = −1, it follows that

⟨ψ, Tψ⟩ = ⟨T 2ψ, Tψ⟩ = −⟨ψ, Tψ⟩

so that ⟨ψ, Tψ⟩ = 0. The spectrum of h is thus not only degenerate at the time reversal
momentum, but any eigenvector ψ is orthogonal to Tψ. This is Kramers’ degeneracy.

7.2 The first Chern number is zero

We have seen that two-dimensional insulators are classified by their first Chern number.
Below, we prove that the first Chern number of a two-dimensional, time reversal symmetric
insulator always vanishes.10

Let h : X → Herm(M,C) be a time reversal symmetric insulator. Recall that the first
Chern number can be computed as

C1 =
i

2π

∫
X
dk1dk2Tr[F12] , (7.5)

where F12 is the (1, 2)-component of the Berry curvature with respect to coordinates
(k1, k2) on the momentum space X. The spectral projector P onto the valence states can
be expressed pointwise through

P (p) =
1

2πi

∫
C
dz [h(p)− z]−1 ,

where the curve C encloses the negative real axis once in the counterclockwise direction.
A coordinate free form of the Berry curvature is F = PdP ∧ dPP . Its (1, 2)-component
can thus be written as F12 = P [∂1P, ∂2P ]P . The time-reversal symmetry of h given in
Eq. (7.4) carries through to P via

P (τ(p)) =
1

2πi

∫
C
dz[Th(p)T−1 − z]−1 = −T−1

(
1

2πi

∫
C
dz̄[h(p)− z]−1

)
T = T−1P (p)T .

We have picked up two minus signs in this computation. One due to pulling 1
2πi into

T−1. The other due to pulling dz into T−1, which turns the integral into
∫
C dz̄ =

∫
C dz =

−
∫
C dz, where C is orientation reversed version of the curve C . The pointwise relation

P (τ(p)) = T−1P (p)T can be restated as relation of maps X → L(CM ) by

P ◦ τ = T−1PT . (7.6)

Note that by the chain rule d(P ◦ τ)p = dPτpdτp , which implies dPτp = d(P ◦ τ)pdτ−1
p =

d(P ◦τ)pdττp , where we have used that τ is its own inverse. For the physical case ofX = S2

or T2, there are standard coordinates (ki) on X that cover X up to a set of measure zero.
Moreover, in these coordinates, τ is given by k 7→ −k, so that ∂iτ

j(p) = −δji for all p ∈ X .
We thus compute

∂iP (τ(p)) = ∂j(P ◦ τ)(p)∂iτ j(τ(p)) = −∂i(P ◦ τ)(p) = −T−1∂iP (p)T .

10The proof is inspired on the treatment in [11].
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This result can be used to relate Tr[F12(τ(p))] to Tr[F12(p)] through

Tr[F12(τ(p))] = Tr[P (τp)[∂iP (τp), ∂jP (τp)]]

= Tr[T−1P (p)TT−1[∂iP (p), ∂jP (p)]T ]

= Tr[(P (p)[∂iP (p), ∂jP (p)])
†]

= Tr[F21(p)]

= −Tr[F12(p)] ,

where in the third line we have used a subtlety in manipulating the traces in the presence
of antiunitary operators. Namely, that for A,B ∈ L(CM ) with B antiunitary, and {ψa}
an orthonormal basis for CM , we have

Tr[B−1AB] =
∑
a

⟨ψa, B
−1ABψa⟩ =

∑
a

⟨ABψa, Bψa⟩ = Tr[A†] ,

where the last inequality holds since {Bψa} is an orthonormal basis for CM whenever {ψa}
is. The upshot is that Tr[F12] is odd under time reversal. Therefore, integrating Tr[F12]
over S2 or T2 will yield zero. The first Chern number of a two-dimensional, time reversal
symmetric insulator thus vanishes.

Seemingly then, we must conclude that time reversal symmetric insulators are topolog-
ically trivial. And, with respect to the notion of topological equivalence we have considered
so far, this conclusion is correct. However, for the class of time reversal symmetric insula-
tors a more stringent notion of topological equivalence is necessary. Whereas Definition 2.1
only requires the adiabatic deformation between insulators to preserve the insulating gap,
we should for time reversal symmetric insulators additionally require that during the en-
tire deformation the time-reversal symmetry is preserved. With respect to that notion
of topological equivalence it turns out that there are distinct equivalence classes of time
reversal symmetric insulators.

7.3 Fu-Kane-Mele invariant

In their study of the Quantum Spin Hall effect, which is the time reversal symmetric
version of the Quantum Hall effect, Kane and Mele noted a form of Z2 topological order
[13, 12]. The idea of a Z2 topological invariant for time reversal symmetric insulators has
since been developed further by Fu, Kane and Mele to what is now known as the Fu-Kane-
Mele (FKM) invariant. We review the construction of the Fu-Kane-Mele invariant [14],
and prove its well-definedness in the context of continuum models. Furthermore, we show
how it simplifies for systems with inversion symmetry [15].

Consider a Hamiltonian h : X → Herm(2M,C) for a two- or three-dimensional system
that is time reversal symmetric. Due to Kramers’ degeneracy there is necessarily an even
number 2M of total bands and also an even number 2m of valence bands. Let us assume
that there are no other degeneracies than Kramers’ degeneracy. Since the first Chern
number vanishes, the valence bundle is trivial. Hence, we can find a global continuous
basis of eigenvectors {ψa}2ma=1 for the valence bundle. The action of time reversal on this
basis can be captured in a unitary matrix valued function w : X → U(2m) defined by

wab(k) = ⟨ψa(−k), Tψb(k)⟩ .

At the time-reversal invariant momenta λi = −λi ∈ X, the matrix wab(λi) is antisym-
metric. Therefore, the Pfaffian Pf w(λi) is defined. The key property of the Pfaffian of
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an antisymmetric matrix is that it squares to the determinant. For a unitary matrix, the
determinant has unit modulus, and so the Pfaffian and square root of the determinant can
differ only by a sign. For two time-reversal invariant momenta λi and λj , one can then
define the so-called time reversal polarization νij to be

(−1)νij =
√
detw(λi)

Pf w(λi)

√
detw(λj)

Pf w(λj)
. (7.7)

It is crucial in this definition that the branch cuts of the square root are chosen such that√
detw is continuous on a path connecting λi to λj .
By construction νij is only well-defined modulo 2 . However, we explicitly chose a frame

{ψa} in the construction of νij . It has to be argued that νij mod 2 does not depend on
this choice of frame. Let us focus our attention on two-dimensional continuum models for
which X = S2, viewed as a compactification of R2 by identifying the points at infinity.
There are two time-reversal invariant momenta, namely λ0 = 0 and λ∞ = ∞ , which in
the compactification S2 are the north and south pole, respectively.

Consider a second global frame {ψ′
a} for the valence bundle related to {ψa} via a gauge

transformation g : S2 → U(2m) through

ψa(k) = gab(k)ψ
′
b(k) .

According to [14, Eq. 3.23], the time reversal polarization ν ′0∞ of Eq. (7.7) with respect
to the frame {ψ′

a} can be equivalently expressed as

ν ′0∞ =
1

2πi

∫ π

0
dk

d

dk
log det[w′(k)]− 1

πi
log

(
Pf[w′(π)]

Pf[w′(0)]

)
, (7.8)

where w′ is the time reversal matrix with respect to the frame {ψ′
a} . The integral is

performed over any loop γ : [−π, π] → S2 such that γ(0) = 0 and γ(−π) = γ(π) = ∞ .
From the definition of w(k) it is straightforward to verify that the matrices of the time-
reversal operation in the two frames are related as

w′(k) = gT (−k)w(k)g(k) .

Their determinants are then related as

detw′(k) = det(g(−k)) det(w(k)) det(g(k)) ,

where we used that detAT = detA. Furthermore, using the relation Pf(BTAB) =
det(B) Pf(A), their Pfaffians at the time-reversal invariant momenta are related as

Pf w′(λi) = (det g(λi)) Pf w(λi) ,

for i = 0,∞ . Hence, the time reversal polarizations ν ′0∞ and ν0∞ are related as

ν ′0∞ =
1

2πi

∫ π

0
dk

d

dk
log det[w′(k)]− 1

πi
log

(
Pf[w′(π)]

Pf[w′(0)]

)
=

1

2πi

∫ π

0
dk

d

dk
log det[g(−k)w(k)g(k)]− 1

πi
log

(
det[g(π)] Pf[w(π)]

det[g(0)] Pf[w(0)]

)
= ν0∞ +

1

2πi

∫ π

0
dk

d

dk
(log det[g(−k)] + log det[g(k)])− 1

πi
log

(
det[g(π)]

det[g(0)]

)
.
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Let us fix a branch cut for the logarithm. Performing the integrals then yields

ν ′0∞ − ν0∞ = n− + n+ +
1

πi
log

(
det[g(π)]

det[g(0)]

)
− 1

πi
log

(
det[g(π)]

det[g(0)]

)
= n− + n+ ,

where n− is the signed number of times det g(−k) crosses the branch cut and n+ is the
signed number of times det g(k) crosses the branch cut, when k goes from 0 to π. Restricted
to any loop on S2 the continuous function det g has zero winding number because any loop
on S2 is contractible. Therefore, we must have that n+ − n− = 0. Hence,

ν ′0∞ − ν0∞ = 2n− ∈ 2Z

which means that the time reversal polarization on S2 is well-defined mod 2 . This justifies
Eq. (7.7) as a Z2 invariant for time reversal symmetric continuum models h : S2 →
Herm(2M,C). The argument to establish the gauge invariance only relied on the fact that
π1(S

2) = 0. Since π1(S
d) = 0 for d ≥ 2 it immediately generalizes to continuum models

in any dimension d ≥ 2. For continuum models then, the FKM invariant is defined to
be (−1)ν0∞ which as we have argued above is a Z2 valued topological invariant, i.e. it is
independent of any choice of gauge.

For periodic models the definition is more complicated since there are more time-
reversal invariant momenta. For example, T2 has 4 time-reversal invariant momenta:
(0, 0), (0, π), (π, 0) and (π, π). One can divide the time-reversal invariant momenta into
pairs {(0, 0), (0, π)} and {(π, 0), (π, π)}, and compute the time reversal polarizations for
each of these pairs. The sum over all time reversal polarization of the pairs modulo 2 is the
FKM invariant for the periodic model. A similar method defines the FKM invariant over
T3. We refer to [14] and [15] for the details. For the remainder of this section, however,
we focus on continuum models.

Evaluation of the FKM invariant for specific models is constrained by the fact that
finding a global continuous choice of frame for the valence bundle is in general hard to
do explicitly. However, if the Hamiltonian, in addition to time-reversal symmetry, also
has so-called parity symmetry, then the evaluation of the Z2 invariant can be stated in
a different way [15], which is much easier to compute. In particular, if {ψa(λ0)}2ma=1 and
{ψa(λ∞)}2ma=1 are bases for the negative energy eigenstates at the time-reversal invariant
momenta consisting of eigenvectors of the parity operator, then

(−1)ν0∞ =
m∏
a=1

ξ2a(λ0)ξ2a(λ∞) , (7.9)

where ξ2a(λi) is the parity eigenvalue of ψ2a(λi) with i = 0,∞. This is a significant
simplification, because we only need to find eigenvectors at finitely many isolated points.

Let establish Eq. (7.9) more firmly. On a wavefunction |x, s⟩ with a spatial part and
a spin part describing a particle in three spatial dimensions, the parity operator has the
effect of inverting space, but preserving spin so that

|x, s⟩ 7→ |−x, s⟩ .

For this reason, we sometimes refer to parity symmetry as inversion symmetry. On the
effective Hilbert space bundle X ×C2M , the parity operator is represented by an operator
that maps from fibers over k to fibers over −k by a unitary P ∈ U(C2M ) that squares to
the identity. A Hamiltonian h : Sd → Herm(2M,C) is parity symmetric if

h(−k) = Ph(k)P−1 . (7.10)
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Note that this means that h(λi) commutes with P at the time-reversal invariant momenta.
Hence, at each λi the operators h(λi) and P have a common basis of eigenvectors.

These common bases at the time-reversal invariant momenta can be extended to a
global frame for the valence bundle whenever d ≤ 3 . To see this, recall first that we
have assumed that Kramers’ degeneracies are the only degeneracies in our model. This
implies that the valence bundle splits as a direct sum of U(2) bundles, where each factor
corresponds to one Kramers’ pair. Due to time-reversal symmetry, the first Chern number
of each of these U(2) bundles vanishes. This means, on the one hand, that the U(2) bundle
corresponding to a Kramers’ pair is trivial and, on the other hand, that its determinant
line bundle is also trivial. The triviality of the determinant line bundle implies that the
U(2) bundle reduces to an SU(2) bundle. It thus follows that the valence bundle for a
time reversal symmetric insulator with no degeneracies other than Kramers’ splits as a
direct sum of trivial SU(2) bundles.

Let us consider a single trivial SU(2) bundle over Sd with a global frame {φa}2a=1.
Assume that for each time-reversal invariant momentum, we have found a basis of parity
eigenvectors {ψa(λi)}2a=1. For each λi, we can extend {ψa(λi)} to a frame over a little open
ball around λi. Because πd−1(SU(2)) = πd−1(S

3) = 0 for d ≤ 3, an arbitrary global frame
{φa} outside the fixed points can be glued continuously to the local frames {ψa} along
the boundaries of the balls around the λi. In this way, a global trivialization is obtained
which at the time-reversal invariant momenta coincides with the bases {ψa(λi)}2a=1.

Suppose then that we have constructed a global orthonormal frame {ψa}2ma=1 such that
ψa(λi) is a an eigenstate of P with parity eigenvalue ξa(λi) and that the energy eigenvalues
of {ψ2a−1, ψ2a} at λi are equal. Because of the gauge invariance of the FKM invariant, we
may assume without loss of generality that ψ2a(λi) = Tψ2a−1(λi). Indeed, at λi, the states
ψ2a−1(λi) and ψ2a(λi) are orthogonal within the two-dimensional eigenspace of ϵ2a(λi), but
so are ψ2a−1(λi) and Tψ2a−1(λi) . Therefore, ψ2a(λi) = eiθa(λi)Tψ2a−1(λi) for some phase
θa(λi). Defining {

ψ′
2a−1 = e−iθaψ2a−1

ψ′
2a = ψ2a

for some continuous extension of θa from the fixed point set to the full momentum space,
makes {ψ′

2a−1(λi), ψ
′
2a(λi)} into a Kramers pair. This gauge transformation does not

change the fact that the ψ′
a(λi) are still parity eigenvectors with the same parity eigenvalues

ξa(λi) as the original ψa(λi).
Let us then assume that we have a frame {ψa} of the valence bundle, which at the

time-reversal invariant momenta consists of parity eigenvectors that form Kramers’ pairs
{ψ2a−1(λi), ψ2a(λi)} . Note that [T,P] = 0 because T acts only on spin while P acts
only on space. Therefore, ξ2a−1(λi) = ξ2a(λi) for the parity eigenvalues of ψ2a−1(λi) and
ψ2a(λi) = Tψ2a−1(λi). Recall that in the construction of the FKM invariant we defined
the matrix

wab(k) = ⟨ψa(−k), Tψb(k)⟩ .

With P available in addition to T we can define another matrix

vab(k) = ⟨ψa(k),PTψb(k)⟩ .

These two matrices are related through

v(−k) = w(k)v(k)∗w(k)T . (7.11)
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The matrix v is antisymmetric for all k and hence Pf v(k) is defined for all k . Moreover,
v is unitary, because

2m∑
b=1

v†abvbc =

2m∑
b=1

⟨ψb(k),PTψa(k)⟩⟨ψb(k),PTψc(k)⟩

=
2m∑
b=1

⟨PTψa(k), ψb(k)⟩⟨ψb(k),PTψc(k)⟩

=
2m∑
b=1

⟨PTψa(k),PTψc(k)⟩

= δac .

Therefore, Pf v(k) = eiϕ(k) for some continuous phase ϕ . After performing the gauge
transformation {

ψ′
1 = eiϕψ1 a = 1

ψ′
a = ψa a ̸= 1

,

we have that Pf v′ ≡ 1. Note that although this gauge transformation messes up the
Kramers’ pair structure, it preserves the parity eigenvalues ξa(λi) . Using Eq. (7.11), we
see that Pf v′(−k) = detw′(k) Pf[v′(k)]∗, so that in the present gauge we have

detw′ ≡ 1.

The issue of choosing branches for the square root in Eq. (7.7) can thus easily be dealt
with and we obtain

√
detw′ ≡ 1 .

To evaluate ν0∞ from Eq. (7.7) it only remains to obtain an expression for Pf w′(λi) .
Since P2 = 1, we have that

w′
ab(k) = ⟨ψ′

a(−k),P(PT )ψ′
b(k)⟩

so that at the time-reversal invariant momenta

w′
ab(λi) = ξa(λi)v

′
ab(λi) .

Then, (Pf w′(λi))
2 = detw′(λi) = det v′(λi)

∏2m
a=1 ξa(λi) . Recall that the parity eigenval-

ues ξ2a−1(λi) and ξ2a(λi) are equal. So, taking the square root we obtain

Pf w′(λi) = Pf v′(λi)
m∏
a=1

ξ2a(λi) =
m∏
a=1

ξ2a(λi) ,

where the sign of the square root is fixed by the fact that in the case that all ξa(λi) = 1,
we would have w′(λi) = v′(λi) . Because of the gauge invariance of ν0∞ mod 2, this proves
the equivalence of Eq. (7.7) and Eq. (7.9).

In conclusion, for continuum models of time reversal symmetric insulators, the FKM
invariant is the Z2-valued topological invariant (−1)ν0∞ . This invariant can in general
be computed using Eq. (7.7). If the system has an additional parity symmetry, then the
simpler formula Eq. (7.9) applies.
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7.4 Example: A low-energy model for Bi2Se3

As an example of a time-reversal symmetric insulator we study a low-energy model for
Bi2Se3. Bi2Se3 is a three-dimensional insulator that has both time reversal and inversion
symmetry. It also has a three-fold rotation symmetry around what is conventionally taken
to be the z axis. Based on these symmetry constraints, a low-energy effective tight-binding
model taking into account the four bands closest to the Fermi level has been constructed
in [37]. The effective tight-binding Hilbert space is C4 and Hamiltonian is given by

hBi2Se3(k) = ϵ0(k)I4 +


M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0
0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)

 , (7.12)

where k± = kx ± iky, M(k) = M − B1k
2
z − B2k

2
⊥ and ϵ0(k) = C + D1k

2
z + D2k

2
⊥,

with k2⊥ = k2x + k2y. This Hamiltonian is written with respect to the ordered basis
{|↑,Bi+⟩ , |↑, Se−⟩ , |↓,Bi+⟩ , |↓, Se−⟩}, where Bi+ indicates a positive parity orbital cor-
responding to a Bismuth atom and Se− indicates a negative parity orbital corresponding
to a Selenide atom. The arrows ↑ and ↓ indicate the spin in the z direction of the electron
in the orbital. To study the topology of Eq. (7.12) we can ignore the ϵ0(k)I term since this
does not affect the eigenvectors. For Bi2Se3 the parameters A1, A2, B1, B2 and M are all
positive. To simplify the calculations, let us rescale the first four parameters A1, A2, B1

and B2 to 1. This rescaling is just a homotopy that preserves all the symmetries, so it
does not alter the topological invariant of the model. The model we will thus be studying
is

h(k) =


M − k2 kz 0 k−
kz −M + k2 k− 0
0 k+ M − k2 −kz
k+ 0 −kz −M + k2

 , (7.13)

with M > 0 . Our goal is to compute the FKM invariant of this model using Eq. (7.9). In
order to do this, we need to obtain a basis of eigenvectors of h(k = 0) and h(k =∞) that
are also parity eigenstates.

Let us introduce the gamma matrices

Γ1 = σx ⊗ τx, Γ2 = σy ⊗ τx, Γ3 = σz ⊗ τx, Γ4 = I2 ⊗ τz ,

where σi denotes a Pauli matrix in spin space and τi denotes Pauli matrix in orbital space.
In terms of these gamma matrices, the Hamiltonian (7.13) can be written as

h(k) = kxΓ1 + kyΓ2 + kzΓ3 + (M − k2)Γ4 . (7.14)

Moreover, with respect to the basis {|↑,Bi+⟩ , |↑, Se−⟩ , |↓,Bi+⟩ , |↓,Se−⟩}, the time-reversal
operator and parity operators are

T = (iσy ⊗ I2)K and P = I2 ⊗ τz .

As a first step towards a global basis of eigenvectors for Eq. (7.13) we compute the eigen-
values and eigenvectors of the generic Dirac Hamiltonian

hD =
4∑

j=1

djΓj . (7.15)
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Straightforward computation of the characteristic polynomial det(hD − λI4) shows that
the eigenvalues of hD are ±d, where d2 =

∑4
j=1 d

2
j and that both eigenvalues are doubly

degenerate. We are in particular interested in the eigenspace of λ = −d. By definition,
this eigenspace is the kernel of the matrix

hD + d I4 =


d4 + d d3 0 d1 − id2
d3 −d4 + d d1 − id2 0
0 d1 + id2 d4 + d −d3

d1 + id2 0 −d3 −d4 + d

 . (7.16)

Two vectors in the kernel are

ṽ1 =


−d3
d4 + d
−d1 − id2

0

 and ṽ2 =


d4 − d
d3
0

d1 + id2

 .

These vectors are independent as long as d1+id2 ̸= 0 . However, we can make two different
orthonormal bases of the negative energy eigenspace by performing the Gramm-Schmidt
algorithm, depending on whether we start from ṽ1 or from ṽ2. Starting the Gramm-
Schmidt algorithm from ṽ1, we obtain

u1 =
1√

2d(d+ d4)


−d3
d+ d4
−d1 − id2

0

 and u2 =
1√

2d(d+ d4)


−d1 + id2

0
d3

d+ d4

 .

On the other hand, starting from ṽ2 yields

u′1 =
1√

2d(d− d4)


0

d1 − id2
d4 − d
−d3

 and u′2 =
1√

2d(d− d4)


d4 − d
d3
0

d1 + id2

 .

Although they have been constructed rather ad hoc, it is a straightforward check that
{u1, u2} and {u′1, u′2} are indeed two orthonormal bases for the −d eigenspace of hD .
Moreover, the SU(2) matrix

g =
1√

d2 − d24

(
d1 − id2 −d3
d3 d1 + id2

)
(7.17)

transforms {u1, u2} into {u′1, u′2} according to u′i =
∑

j gijuj .

Let us now specialize to d(k) = (kx, ky, kz,M − k2) which corresponds to (7.13).
However, instead of taking M > 0 as is required for Bi2Se3, we will first consider M < 0 .
If M < 0, then d4(k) =M − k2 < 0 for all k ∈ R3. Therefore, the basis {u′1(k), u′2(k)} is
well-defined for all k ∈ R3. Indeed, d(k)− d4(k) > 0 for all k ∈ R3 so there are no issues
with the normalization. However, it remains to study the behaviour of {u′1, u′2} in the
limit k → ∞ . In this limit, the quadratic term d4 will dominate the linear terms d1, d2
and d3. In particular, d→ −d4 when k →∞, and hence,

u′1 →
(
0 0 −1 0

)T
and u′2 →

(
−1 0 0 0

)T
.
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The basis {u′1, u′2} thus extends to k =∞ and we conclude that {u′1, u′2} actually provides
a global continuous frame for the valence bundle over S3. The parity operator is

P = I2 ⊗ τz = diag(1,−1, 1,−1) .

At k = 0, the vectors {u′1, u′2} become

u′1(0) =
(
0 0 −1 0

)T
and u′2(0) =

(
−1 0 0 0

)T
.

These are already parity eigenvectors with parity ξ′1(0) = ξ′2(0) = 1 . Meanwhile, as
k →∞, the vectors {u′1, u′2} become

u′1(∞) =
(
0 0 −1 0

)T
and u′2(∞) =

(
−1 0 0 0

)T
,

which are again parity eigenvectors with parity ξ′1(∞) = ξ′2(∞) = 1 . The Z2 invariant is
the product of the parities of u′2(0) and u

′
2(∞), which is

(−1)ν0∞ = ξ′2(0)ξ
′
2(∞) = 1 · 1 = 1 .

For M < 0, the model Eq. (7.13) thus describes a trivial insulator.
Now let us consider the situation in which M > 0. In this case, the basis {u′1, u′2} is

problematic at k = 0. Indeed, d→ d4 as k→ 0, so we might expect some trouble from the
singularity of the normalization factor. The problem that occurs can be seen as follows.
Suppose we set kx = ky = 0 and let kz approach 0. The first three components of u′1 will
tend to zero, but for kz small, the fourth component behaves as

(u′1)4(0, 0, kz) =
−d3√

2d(d− d4)

∣∣∣
k=(0,0,kz)

≃ −kz√
k2z

and thus has a discontinuity at kz = 0, as can be seen on the left in Fig. 7 . Therefore,
{u′1, u′2} cannot be used as a frame around k = 0 . On the other hand, the unprimed basis
{u1, u2} is well-defined at k = 0, because d + d4 > 0 at k = 0, but it is ill-defined when
k → ∞. Indeed, if kx = ky = 0 and we let kz → ∞, then the first component of u1
behaves as

(u1)1(0, 0, kz) ≃
−kz√
k2z
,

for large kz, as illustrated on the right in Fig. 7 . Hence, (u1)1 converges to −1 if kz → +∞
and to +1 if kz → −∞, and so does not extend continuously to k =∞. To compute the

Figure 7: Left: The fourth component of u′1(0, 0, kz) is discontinuous at kz = 0 . Right:
The first component of u1(0, 0, kz) is discontinuous at kz =∞ .

FKM invariant we should thus use the basis {u1, u2} around k = 0 and use the basis

63



{u′1, u′2} around k =∞. The parity of u2(0) = (0, 0, 0, 1)T is ξ2(0) = −1 and the parity of
u′2(∞) = (−1, 0, 0, 0)T is ξ′2(∞) = 1. The product gives the Z2 invariant

(−1)ν0∞ = ξ2(0)ξ
′
2(∞) = −1 · 1 = −1 .

The case M > 0 thus describes the non-trivial phase, which means that Bi2Se3 is a
topologically non-trivial insulator.

Figure 8: Left: Band structure for M < 0. Right: Band structure for M > 0. The +
and − labels indicate the parity of the bands. For M > 0, the + and − parity bands are
inverted near k = 0.

The above computations of the Z2 invariant of the low-energy Bi2Se3 model can be
summarized in a simple physical picture. There are two Kramers degenerate valence
bands and two Kramers degenerate conduction bands. For M < 0, the valence bands
have positive parity and the conduction bands, therefore, must have negative parity. The
product of the parities of one copy of the valence bands at k = 0 and k =∞ is 1. When
M is increased from negative to positive, the bands cross atM = 0 in the point k = 0 and,
subsequently, for M > 0 they are “inverted”; The positive parity band now has positive
energy at k = 0 while the negative parity band has negative energy. Physically, this band
inversion is due to spin-orbit coupling [37]. Now, for M > 0 the bands would have to
cross at nonzero values of k, but in reality this degeneracy will be lifted by the “avoided
crossing” mechanism. This yields a final band structure as in Fig. 8. It is seen that now
for M > 0 the parity at k = 0 of the valence bands is −1 while at k =∞ it is still 1. The
product of the two parities is −1, i.e. we have non-trivial insulator.

8 Classification of “Quaternionic” vector bundles

The first Chern number of a time reversal symmetric insulator vanishes. In mathematical
terms, the complex vector bundle associated to a time reversal symmetric insulator via the
valence bundle construction is trivial. However, the time-reversal operation induces extra
structure on the valence bundle. With this extra structure, the valence bundle becomes
a “Quaternionic” vector bundle. The goal of this section is to introduce “Quaternionic”
vector bundles and define the so-called FKMM invariant for “Quaternionic” vector bundles
over sufficiently simple base spaces. We prove that for continuum models in dimensions two
and three the FKMM invariant fully classifies “Quaternionic” vector bundles. Moreover,
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we show that the FKMM invariant is equivalent to the Fu-Kane-Mele invariant in the
continuum models.

8.1 “Quaternionic” vector bundles

The operation of time reversal introduces extra structure on the valence bundle of an
insulator. On the one hand, the momentum space becomes endowed with an involution
τ : X → X that corresponds to the action k 7→ −k of time reversal on momentum. On
the other hand, there is an antilinear transformation T = UTK on the Hilbert space CM .
This extra structure can be formalized by the notion of “Quaternionic” structure on a
complex vector bundle over an involutive base space.

An involutive space is a pair (X, τ) of a topological space X together with a homeo-
morphism τ : X → X such that τ2 = id . Let π : E → X be a complex vector bundle. A
“Quaternionic” structure on E is a homeomorphism Θ : E → E such that

(Q1) Θ lifts the involution τ , in the sense that π ◦Θ = τ ◦ π ,

(Q2) Θ|Ex : Ex → Eτ(x) is antilinear, meaning Θ(λe+ f) = λ̄Θ(e) + Θ(f) for λ ∈ C and
e, f ∈ Ex ,

(Q3) Θ2 = −id .

Closely related to the notion of “Quaternionic” structure is the so-called “Real” structure.
A “Real” structure on a complex vector bundle over an involutive base space is defined in
exactly the same way as a “Quaternionic” structure, except that the third property (Q3)
in the above is changed to

(R3) Θ2 = id .

A pair (E,Θ) of a complex vector bundle E together with a “Quaternionic” structure will
be referred to as a “Quaternionic” vector bundle. If Θ is a “Real” structure, then we call
(E,Θ) a “Real” vector bundle. If E is the valence bundle associated to some insulator,
i.e. if E is a trivial subbundle of X × CM , then Θ : (x, ψ) 7→ (τ(x), Tψ) clearly defines
a “Quaternionic” structure on E because T is antilinear and squares to −1. Implicit
in our notion of insulator is that the single-particle problem describes fermions so that
indeed T 2 = −1. If the single-particle problem would be bosonic, then T would square
to 1 and we would obtain a “Real” vector bundle. However, our actual interest in “Real”
vector bundles is that they play a key role in the development of the FKMM invariant for
“Quaternionic” vector bundles, as will be discussed later.

The reason for putting the putting the word “Quaternionic” in quotations is that one
must not confuse the above defined notion of “Quaternionic” vector bundle with the more
standard notion of quaternionic vector bundle, namely, a vector bundle whose fibers are
quaternionic vector spaces. The two notions are related though. In particular, the newly
defined “Quaternionic” vector bundle is a generalization of the usual quaternionic vector
bundle. A quaternionic vector bundle E → X is naturally endowed with two complex
structures I, J : E → E, which are bundle automorphism of the underlying real vector
bundle ER encoding the multiplication by i and j respectively. Endowing the underlying
real vector bundle with only one of the two complex structure, say I, the pair (ER, I) can
be thought of as a complex vector bundle EC. The second complex structure J becomes
a fiberwise antilinear map on EC that squares to minus the identity. Therefore, J is a
“Quaternionic” structure on EC → X, where X is endowed with the trivial involution
τ = id. The pair (EC, J) is then a “Quaternionic” vector bundle.
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In the converse spirit, if (E,Θ) is a “Quaternionic” vector bundle over (X, τ) and
x ∈ X is a fixed point of τ , then the fiber Ex is isomorphic to Hm, where H denotes
the quaternions. Indeed, Θ|Ex : Ex → Ex is an antilinear map that squares to −1, so it
plays the role of the quaternionic unit j in Ex. A particular consequence of this fact is
that E has complex rank 2m. We will be interested in “Quaternionic” bundles over base
spaces with fixed points, namely the time-reversal invariant momenta, so we will study
“Quaternionic” bundles whose underlying complex vector bundle has even complex rank.

We now develop the notions of morphism, triviality and frames for “Quaternionic”
bundles. To distinguish these from the corresponding notions of the underlying complex
vector bundle they should receive the adjective “Quaternionic”. To tighten up the nota-
tion, we will often abbreviate these adjectives to just Q.

A Q-morphism between two Q-bundles (E,Θ) and (E′,Θ′) is a morphism φ : E → E′

of the underlying complex vector bundles that satisfies

φ ◦Θ = Θ′ ◦ φ .

If φ satisfies the equivariance condition φ ◦Θ = Θ′ ◦ φ and is an isomorphism of complex
vector bundles, then it is a Q-isomorphism. The Q-isomorphism classes of rank 2m Q-
bundles over an involutive space (X, τ) will be denoted by Vect2mQ (X, τ), where we stress
that 2m is the complex rank of the underlying complex vector bundle. For X ×C2m → X
the trivial complex vector bundle of rank 2m over an involutive space (X, τ), we define
the trivial Q-structure to be

Θ0(x, v) = (τ(x), Qv̄) , where Q =

(
0 −Im
Im 0

)
,

where the matrix Q is written with respect to the standard basis of C2m. A Q-bundle
of rank 2m is Q-trivial if it is Q-isomorphic to the trivial Q-bundle (X × C2m,Θ0). A
Q-bundle is locally Q-trivial if for each x ∈ X there exists a Q-isomorphism between
φ : (E|U ,Θ|U )→ (U ×C2m,Θ0) over a neighbourhood U of x that is τ -invariant, meaning
that τ(U) = U .

Just like for ordinary complex vector bundles triviality can also be understood in terms
of frames, Q-triviality can be understood in terms of Q-frames. A Q-structure Θ induces
a map τΘ : Γ(E)→ Γ(E) on sections given by

τΘ(s) = Θ ◦ s ◦ τ .

A Q-frame over a τ -invariant open set U ⊆ X is defined to be a frame of E of the form

{s1, . . . , sm, τΘ(s1), . . . , τΘ(sm)} .

In physics lingo, a Q-frame is a frame consisting of Kramers’ pairs (sa, τΘ(sa)). The
standard basis {e1, . . . , e2m} of C2m is a global Q-frame for the trivial Q-bundle (X ×
C2m,Θ0).

11 Indeed, for a = 1, . . . ,m, we have Qēa = Qea = em+a. We have used that
ea = (0, . . . , 1, . . . , 0) with the 1 appearing in the a-th slot to see that ēa = ea. More
generally, a Q-bundle is Q-trivial if and only if it admits a global Q-frame. To see this,
suppose we are given a Q-trivialization φ : E → X × C2m and define sa = φ−1(ea). For
a = 1, . . . , 2m it follows that

sm+a = φ−1(em+a) = φ−1(τΘ0ea) = (φ−1 ◦Θ0)(ea ◦ τ) = (Θ ◦ φ−1)(ea ◦ τ) = τΘ(sa) .

11We do not distinguish in notation between the vector ea ∈ C2m and the section ea : X → X × C2m

defined as x 7→ (x, ea).
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Conversely, it can be checked that given a Q-frame {s1, . . . , sm, τΘ(s1), . . . , τΘ(sm)} we can
construct aQ-trivialization φ : E → X×C2m by defining φ(sa) = ea and φ(τΘ(sa)) = em+a

for a = 1, . . . ,m and extending linearly.
Whereas complex vector bundles are locally trivial by definition, it actually requires

some work to show that Q-bundles are locally Q-trivial.

Proposition 8.1. A Q-bundle is locally Q-trivial .

Proof. Let (E,Θ) be a Q-bundle over an involutive space (X, τ) and let x ∈ X. The goal
is to obtain a Q-frame over a τ -invariant neighbourhood of x. We treat the two cases
τ(x) = x and τ(x) ̸= x separately.

Suppose τ(x) = x . The main task is to construct a Q-basis for Ex. This can be done
inductively. We start by picking a vector s1(x) ∈ Ex nonzero. We claim that acting with
the Q-structure Θ yields a linearly independent vector Θ(s1(x)) ∈ Ex . If it were not
linearly independent, then Θ(s1(x)) = λs1(x) for some λ ∈ C \ {0}. Applying Θ on both
sides gives −s1(x) = λ̄Θ(s1(x)) which implies that λ = −λ̄−1. This is a contradiction,
since writing λ = reiϕ the requirement λ = −λ̄−1 is equivalent to r = −1/r, which cannot
be satisfied for r > 0 .

By way of induction, suppose that s1(x), . . . , sk(x) and Θ(s1(x)), . . . ,Θ(sk(x)) are all
independent and pick one more independent vector sk+1(x). The claim is that Θ(sk+1(x))
is independent of all these vectors. Again, we argue by contradiction. Suppose we can
write

Θ(sk+1(x)) =
k∑

i=1

λaΘ(sa(x)) +
k∑

b=1

µbsb(x) + µk+1sk+1(x) ,

for some λa, µb ∈ C with at least one of them nonzero . Applying Θ to both sides yields

−sk+1(x) = −
k∑

a=1

λ̄asa(x) +
k∑

b=1

µ̄bΘ(sb(x)) + µ̄k+1Θ(sk+1(x)) .

Plugging in the expression of Θ(sk+1(x)) from the first equation into the second equation
we obtain

k∑
a=1

αaΘ(sa(x)) +
k∑

b=1

βbsb(x) + (1 + |µk+1|2)sk+1(x) = 0 , (8.1)

for some αa, βb ∈ C, whose precise form is not important. By the induction hypothesis,
s1(x), . . . , sk+1(x) and Θ(s1(x)), . . . ,Θ(sk(x)) are independent. Therefore, all coefficients
in Eq. (8.1) must be zero. This is a contradiction since 1 + |µk+1|2 > 0 for any µk+1 ∈ C.
Hence, Θ(sk+1(x)) is also independent. This inductive process thus leads to a Q-basis
{s1(x), . . . , sm(x),Θ(s1(x)), . . . ,Θ(sm(x))}.

We now extend the vectors sa(x) ∈ Ex to global sections sa ∈ Γ(E). Since x is a fixed
point, Θ(sa(x)) = Θ(sa(τ(x)) = τΘ(sa)(x) and so the set of sections {s1, , . . . , τΘ(sm)}
is linearly independent at the fixed point x, because there it reduces to the basis we
constructed above. Since being linearly independent is an open condition, there is an
open neighbourhood U of x on which {s1, . . . , sm, τΘ(s1), . . . , τΘ(sm)} are still linearly
independent. We can shrink U to a τ -invariant neighbourhood by considering U ′ = U ∩
τ(U). We have thus constructed a Q-frame over a τ -invariant neighbourhood U ′ of the
fixed point x .

If τ(x) ̸= x, we construct a Q-frame over the closed set Y = {x, τ(x)} in a similar
fashion to the above . Start by picking s1(x) ∈ Ex and s1(τ(x)) ∈ Eτ(x). This defines
a section s1 over Y . The map τΘ squares to minus one and is antilinear, so exactly the
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same algebra as in the case τ(x) = x leads to an inductive construction of a Q-frame
{s1, . . . , sm, τΘ(s1), . . . , τΘ(sm)} over Y . We extend to global sections and subsequently
restrict to an open U on which the extended sections are linearly independent. We thus
obtain a Q-frame over U ∩ τ(U) .

Every Q-bundle is locally Q-trivial, but not every Q-bundle is Q-trivial, globally, that
is. It turns out that Q-triviality is exactly the property we need to distinguish the different
phases of the time-reversal invariant insulator in dimensions two and three. In the next
section, we develop an invariant which tells us whether or not a given Q-bundle is Q-trivial.

8.2 Homotopy formulation of the FKMM invariant

Classifying Q-bundles over an arbitrary base space (X, τ) is a difficult task. Luckily, the
spaces that come up when dealing with topological insulators are quite simple. We will
capture this simplicity in the following technical assumptions. Firstly, we assume that
all the fixed points of τ are isolated and that there are a finite, but nonzero, amount of
them. Secondly, we assume that all “Real” line bundles over (X, τ) are R-trivial. In [18],
DeNittis and Gomi have developed an invariant for Q-bundles over these types of base
spaces called the FKMM invariant.12 Let us review their construction.

Let (X, τ) be an involutive space satisfying the two assumptions above and (E,Θ)
a Q-bundle over (X, τ). By the first assumption τ has fixed points, so the underlying
complex vector bundle E has even rank 2m for some m ∈ N. The associated determinant
line bundle detE :=

∧2mE is then endowed with a “Real” structure detΘ . To see this,
let {s1, . . . , s2m} be a local frame of E such that s1 ∧ · · · ∧ s2m is a local frame of detE.
Note that any local frame of detE is of this form. On this frame, we have by definition
that

(detΘ)(s1 ∧ · · · ∧ s2m) := Θs1 ∧ · · · ∧Θs2m .

Since Θ is a homeomorphism that is antilinear on fibers, the same holds for detΘ. More-
over, since Θ2 = −1, it follows that (detΘ)2 acts as (−1)2m = 1. Therefore, detΘ is
indeed a “Real” structure.

By the second assumption, the “Real” line bundle (detE,detΘ) must be R-trivial.
This means that it has a global nonvanishing section s that satisfies the equivariance
property

(detΘ) ◦ s = s ◦ τ .

Such an equivariant section is also referred to as an R-section. At a fixed point x ∈ Xτ , an
R-section s satisfies s(x) = (detΘ)(s(x)). Since detΘ|Ex is antilinear and squares to the
identity, it acts as complex conjugation in the fiber and, in this sense, s can be thought of
as being real at the fixed points. The idea behind the FKMM invariant is to compare the
global sections of (detE,detΘ) to a canonical orientation of the real lines over the fixed
points Xτ coming from the Q-structure on E. The existence of this canonical orientation
is the content of the following Proposition.

Proposition 8.2. If (X, τ) is a space with trivial involution τ = idX and (E,Θ) is Q-
bundle over X, then (detE,detΘ) has a canonical orientation.

Proof. Let (E,Θ) be a Q-bundle over an involutive space (X, τ) with trivial involution.
Let (Uα, {sα1 , . . . , sα2m}) be a collection of trivializing Q-frames of (E,Θ). By equivariance,
we know that the section sαdet := sα1 ∧ · · · ∧ sα2m of detE|Uα is real. We claim that the

12DeNittis and Gomi have named the FKMM invariant after Furuta, Kametani, Matsue and Minami,
whose unpublished work [38] was a main source of inspiration for [18].
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collection (Uα, s
α
det) defines an orientation. What has to be shown is that on overlaps

Uα ∩ Uβ the signs of sαdet and s
β
det agree.

Let (gαβ : Uα ∩Uβ → GL(C2m)) denote the transition functions of the Q-trivialization
(Uα, {sα1 , . . . , sα2m}). The transition functions are equivariant with respect to the Q-
structure Θ0 on the product bundle U × C2m . Therefore,

g(x) = −Qg(τx)Q = −Qg(x)Q .

If g(x)v = λv, then, using the above equation,

g(x)Qv̄ = −Qg(x)Q2v̄ = Qg(x)v = λ̄Qv̄ .

The eigenvalues of g(x) thus appear in conjugate pairs which makes the determinant of g(x)
strictly positive. The transitions functions of (detE,detΘ) are precisely the determinants

of the transition functions of (E,Θ). It follows that on Uα ∩Uβ, the sections sαdet and s
β
det

are positive multiples of one another, which proves the claim.
There is thus a well-defined orientation induced by the Q-trivialization (Uα, {sα1 , . . . }).

The orientation is independent of choice of Q-trivialization since two Q-trivializations are
again related by equivariant transition functions which have positive determinant. The
orientation is thus independent of the chosen Q-trivialization and thus it is canonical.

For any involutive space (X, τ), the fixed point set Xτ is a space with trivial involution.
Therefore, if (E,Θ) is a Q-bundle over (X, τ), the determinant bundle (detE|Xτ , detΘ|Xτ )
restricted to Xτ has a canonical orientation. If t : X → detE is a global R-section, then
at the fixed points it is real and we can compare it to the canonical orientation.

Let sXτ be an equivariant section of detE|Xτ that agrees with the canonical orienta-
tion. Any Q-trivialization of (E,Θ) gives rise to such a section. Since t is an equivariant
section, there is an f : Xτ → C∗ that is equivariant with respect to τ on Xτ and complex
conjugation on C∗ such that

t|Xτ = f · sXτ .

Indeed, for x ∈ Xτ , the equivariance of t and sXτ with respect to detΘ implies

t(x) = (detΘ)(t(x)) = (detΘ)(f(x)sXτ (x)) = f(x)(detΘ)(sXτ (x)) = f(x)sXτ (x)

so that f(τ(x)) = f(x) = f(x).
The function f depends on the choice of t . If t′ is another nonvanishing equivariant

section of detE, then t′ = g · t for some equivariant function g : X → C∗ and we have

t′|Xτ = g|Xτ · t|Xτ = (g|Xτ · f) · sXτ .

This construction of comparing a global section to the canonical orientation as represented
by sXτ thus yields an equivariant map f : Xτ → C∗, which is defined up to multiplication
by the restriction of global equivariant maps g : X → C∗ . Of course, f also still depends
on the choice of sXτ . Another choice of sXτ corresponds to rescaling f by a positive real
function. To take this redundancy into account, we consider the equivariant homotopy
class [f ] ∈ [Xτ ,C∗]Z2 , where we recall that two equivariant maps are equivariantly homo-
topic if and only if they are homotopic via a homotopy that consists of equivariant maps
for all times. The definition of the FKMM invariant can now be stated as follows.

Definition 8.3 (FKMM invariant). Let (E,Θ) be a Q-bundle, let t be a global equivariant
section of (detE,detΘ), let sXτ represent the canonical orientation of detE|Xτ , and let
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f : Xτ → C∗ be such that t|Xτ = f · sXτ . The FKMM invariant of (E,Θ) is defined to
be the class

[f ] ∈ [Xτ ,C∗]Z2/[X,C
∗]Z2 ,

where the action of [g] ∈ [X,C∗]Z2 on [f ] ∈ [Xτ ,C∗]Z2 is given by [g|Xτ · f ] .

To see that this construction really yields an invariant for “Quaternionic” vector bun-
dles, it must be shown that the class [f ] only depends on the isomorphism type of (E,Θ) .
Suppose that φ : (E,Θ) → (E′,Θ′) is a Q-isomorphism. Then, detφ : (detE,detΘ) →
(detE′, detΘ′) is an R-isomorphism. Let t be global equivariant section of (detE,detΘ)
and let f : Xτ → C∗ be such that

t|Xτ = f · sXτ .

The section t′ = (detφ)(t) is a global nonvanishing equivariant section of (detE′,detΘ′)
since by the equivariance of φ,

t′(τ(x)) = (detφ)(t(τ(x))) = (detφ)(detΘ)(t(x)) = (detΘ′)(detφ)(t(x)) = (detΘ′)(t′(x)).

Moreover, recall from the proof of Proposition 8.2 that sXτ is constructed locally as the
wedge product of a local Q-frame {s1, . . . , s2m} for (E,Θ). Since {φ(s1), . . . , φ(s2m)} is a
local Q-frame for (E′,Θ′), it follows that

s′Xτ = (detφ)(sXτ ) .

Therefore,

t′|Xτ = (detφ)(t)|Xτ = (detφ)(f · sXτ ) = f · (detφ)(sXτ ) = f · s′Xτ ,

which means that [f ] also represents the FKMM invariant for (E′,Θ′) . The FKMM
invariant is thus a proper invariant for “Quaternionic” vector bundles over an involutive
space X satisfying the two technical assumptions stated earlier, in the sense that it defines
a map

κ : Vect2mQ (X, τ)→ [Xτ ,C∗]Z2/[X,C
∗]Z2 .

It is actually the case that if dimX ≤ 3, then the map κ is even injective. For the proof
of this fact we refer to [18, Theorem 1.1] . We note here that a useful ingredient in the
proof is that for dimX ≤ 3, it is enough to consider rank 2 Q-bundles (i.e. m = 1) [18,
Theorem 2.5]. The reason is that rank 2m Q-bundles (E,Θ) for m > 1 always split as a
direct sum

(E,Θ) ∼= (E′,Θ′)⊕ (X × C2m−2,Θ0) ,

were E′ is rank 2. The proofs of both the injectivity and the reduction to the case of rank
2 when dimX ≤ 3 heavily rely on X having a so-called Z2-CW structure. This is not a
very stringent condition and, in particular, the time reversal sphere and torus satisfy it.

8.3 The FKMM invariant for time reversal spheres

Recall that the time reversal sphere S̃d = (Sd, τ) is the sphere endowed with the involution

τ : (k1, . . . , kd, kd+1) 7→ (−k1, . . . ,−kd, kd+1) .

The FKMM invariant for Q-bundles over S̃d takes values in the quotient of equivariant
homotopy classes [(Sd)τ ,C∗]Z2/[S

d,C∗]Z2 , where it is understood that the equivariance is
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with respect to the involution τ on Sd and complex conjugation on C∗. The quotient
[(Sd)τ ,C∗]Z2/[S

d,C∗]Z2 turns out to be very simple. For d = 1 it is trivial while for
d ≥ 2 it is Z2 . It is easy to evaluate [(Sd)τ ,C∗]Z2 . First, by normalizing a representative
in [f ] ∈ [(Sd)τ ,C∗]Z2 we see that [Sd,C∗]Z2

∼= [Sd, U(1)]Z2 . Secondly, the time reversal
sphere S̃d has only two fixed points, the north pole N = (0, . . . , 0, 1) and the south pole
S = (0, . . . , 0,−1). Moreover, at these fixed points, equivariance with respect to complex
conjugation requires that f(N) and f(S) be real valued. Therefore, the set of equivariant
homotopy classes [(Sd)τ ,C∗]Z2 is isomorphic to Map({N,S}, {1,−1}). Since the constant
map −1 is in [Sd,C∗]Z2 there are at most two classes in the quotient so that

[(Sd)τ ,C∗]Z2/[S
d,C∗]Z2 ⊆ Z2 .

The two possible classes are represented by maps f0, f1 : (S
d)τ → U(1) defined through

f0(N) = f0(S) = 1 and f1(N) = −f1(S) = 1 .

If d = 1, then there is a map in g ∈ [S1,C∗]Z2 such that g(N) = −g(S) = 1. To see
this, picture rotating the time reversal circle S̃1 with its involution (k1, k2) 7→ (−k1, k2)
clockwise by π/2-radians so that it becomes the unit circle in C with complex conjugation
as its involution. In other words, the rotated version of the time reversal circle is U(1) .
The identity map g = id : U(1)→ U(1) is equivariant with respect to complex conjugation
and has opposite signs at the two fixed points. Therefore,

[(S1)τ ,C∗]Z2/[S
1,C∗]Z2

∼= {0} ,

which means that all Q-bundles over S̃1 are trivial.
Let us now consider the case d = 2. The claim is that the two classes defined by f0

and f1 are really distinct in this case. To show this, we have to argue that [S2,C∗]Z2
∼=

[S2, U(1)]Z2 does not contain a map g with the property g(N) = 1 and g(S) = −1 . We do
this by contradiction. Suppose g : S2 → U(1) is equivariant with respect to (k1, k2, k3) 7→
(−k1,−k2, k3) on S2 and complex conjugation on U(1), and satisfies g(0, 0, 1) = 1 and
g(0, 0,−1) = −1 . Consider a great circle C through the north and south poles. Because
of the equivariance, the value of g on half of the great circle from N to S determines g on
the other half. As we move k from N to S along the first half great circle, g(k) follows
a path γ in U(1) which winds around a half integer amount of times since it has to start
at 1 but end at −1 . As we go from N to S along the opposite half great circle, g(k)
winds around U(1) again a half integer amount of times, because we just have follow the
complex conjugated path γ̄. Now let’s reverse the orientation of the conjugated path, so
that it corresponds to going from S to N . Then, as we move k around the great circle,
we first follow the path γ on U(1) and then the path (γ̄)−1 . Crucially, the half integer
portions of the winding do not cancel each other but rather add up to one full rotation
around U(1), as is illustrated in Fig. 9 . The result is that g|C : C → U(1) winds an odd
number of times around U(1) . We conclude that that g|C : C → U(1) has a nonzero
winding number.

However, g : S2 → U(1) is continuous. If we let D denote one of the hemispheres
bounded by the great circle C, then the restriction g|D : D → U(1) induces a homotopy
from g|C , a map with nonzero winding number from S1 → S1, to a constant map. But
we know that such a homotopy cannot exist, so we have reached a contradiction. We
have thus established that there is no equivariant g : S2 → U(1) such that g(N) = 1 and
g(S) = −1 . The same argument applies for Sd with d ≥ 3 since we can reach the same
contradiction as above by just considering the restriction g to Sd ∩ ({0}d−2 × R3) ∼= S2.
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Figure 9: Left: Half integer winding portions of the paths γ and γ̄ corresponding to moving
k from N to S along the two different halves of the great circle C. Right: Concatenating
half integer winding portions of γ and γ̄−1 leads to one full rotation around U(1) .

We have shown that when d ≥ 2, maps in [Sd, U(1)]Z2 necessarily have the same sign
at the north and south poles, either both 1 or both −1 . This means that we cannot
change the relative sign of a map in [(Sd)τ , U(1)]Z2 by multiplying with the restriction
of a map from [Sd, U(1)]Z2 . In other words, the classes of f0 and f1 in the quotient
[(Sd)τ ,C∗]Z2/[S

d,C∗]Z2 are distinct which implies that

[(Sd)τ ,C∗]Z2/[S
d,C∗]Z2

∼= Z2 .

The FKMM invariant for time reversal spheres in d ≥ 2 is thus Z2 valued.
Recall that the Fu-Kane-Mele (FKM) invariant for time reversal symmetric topological

insulators is also Z2 valued. However, it is not obvious that the FKM invariant and the
FKMM invariant agree. Indeed, the FKM invariant has been called an “invariant” because
it is independent of the choice of frame used in its construction. This only makes reference
to the complex vector bundle structure though. To show that the FKM invariant agrees
with the FKMM invariant, it must be shown the FKM invariant is actually invariant under
Q-bundle isomorphisms.

Let us first note that the FKM invariant has ostensibly been defined in a more restric-
tive setting than the FKMM invariant. Indeed, the FKM invariant has been defined for
valence bundles corresponding to time reversal symmetric topological insulators with no
degeneracies other than Kramers’. When a Q-bundle (E,Θ) comes from such a valence
bundle construction, then it is naturally equipped with a bundle metric with respect to
which the time-reversal operator Θ is antiunitary. Moreover, since the first Chern num-
ber of E vanishes, the determinant line bundle is trivial so that, restricting to a single
Kramers’ pair, we may assume without essential loss of generality that E is a trivial SU(2)
bundles over Sd . However, in d = 2, 3 it is always the case that Q-bundles correspond
to SU(2) bundles such that the “Quaternionic” structure is antiunitary with respect to a
bundle metric [18]. We may thus safely restrict ourselves to this case.

Suppose (E,Θ) and (E′,Θ′) are two Q-bundles over S̃d for d = 2 or 3 . Choose global
orthonormal frames {ψ1, ψ2} and {ψ′

1, ψ
′
2} for E and E′ respectively. With respect to

these frames, a Q-isomorphism φ : (E,Θ) → (E′,Θ′) can be interpreted as a matrix
valued function Φ : Sd → SU(2) whose components are defined through

ψ′
a′(k) =

2∑
a=1

Φa′a(k)ψa(k) .
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The FKM invariant Eq. (7.7) of E′ is constructed from the matrix

w′
a′b′(k) = ⟨ψ′

a′(−k),Θ′ψ′
b′(k)⟩ .

Using the equivariance φ ◦Θ = Θ′ ◦ φ it follows that

w′
a′b′(k) = (Φ∗)a′a(−k)wab(k)(Φ

T )bb′(−k) . (8.2)

Since Φ is a unitary matrix, the matrices Φ∗(−k) and ΦT (−k) are inverses of each other
and so Eq. (8.2) implies

detw′(k) = detw(k) .

Therefore,
√
detw′(0)

√
detw′(∞) =

√
detw(0)

√
detw(∞) .

To show that the FKM invariants of (E,Θ) and (E′,Θ′) agree we need to gain control
over the Pfaffians as well. Now, Pfaffians are only well-behaved with respect to orthogonal
transformations, not similarity transformations as the one above. However, the Pfaffian
Pf w(k) is a purely local quantity so we will show that we can always alter the frame
{ψ1, ψ2} by a gauge transformation U : Sd → SU(2) on E so that Φa′a(0) = Φa′a(∞) =
δa′a . This then shows that w(k) and w′(k) are identical at the fixed points and thus their
Pfaffians agree.

The way to choose the gauge transformation U is as follows. At k = 0, we have that

ψ′
a′(0) =

2∑
a=1

Φa′a(0)ψa(0) .

We thus need to choose U(0) = Φ−1(0) . Similarly, at k =∞, we need U(∞) = Φ−1(∞) .
It only remains to find a continuous extension to Sd. Since SU(2) is path connected, there
is a continuous path from Φ−1(0) to the identity matrix I. If we consider a little disk
around k = 0, then parameterizing the path in SU(2) by the radius inside the disk gives
us a continuous deformation of Φ−1(0) at k = 0 to I on the boundary of the disk. The
same construction applies around k =∞. Simply extending U by the identity outside the
two little disks around 0 and ∞ we obtain global continuous gauge transformation with
the property that in this gauge, Pf w(0) = Pf w′(0) and Pf w(∞) = Pf w′(∞) . By the
gauge invariance of the FKM invariant over time reversal spheres, we have thus proven
that the FKM invariants of (E,Θ) and (E′,Θ′) agree.

We conclude that the FKM invariant and the FKMM invariant both measure the non-
triviality of a Q-bundle over the time reversal sphere. In physical terms, they are both
an obstruction to finding a global basis of Kramers’ pairs. Since they are Z2 invariants,
they necessarily agree. Moreover, in d = 2, 3, the FKMM invariant even provides an
isomorphism

κ : Vect2Q(S
d, τ)→ Z2,

because, on the one hand, it is injective, and, on the other hand, non-trivial Q-bundles
exist so that Vect2Q(S

d, τ) ̸= 0. For example, in d = 2 there is the quantum spin Hall effect
and in d = 3 we have the Bi2Se3 model.13

8.4 The FKMM invariant for time reversal tori

We have established the FKMM in detail for “Quaternionic” bundles over the time reversal
spheres. Let us here briefly discuss the FKMM invariant for Q-bundles over the time rever-
sal torus T̃d = (Td, τ). In d = 2, the torus Td is represented as the square [−π, π]× [−π, π]

13DeNittis and Gomi [18] establish the equivalence of FKM and FKMM in a slightly more general setting,
which among other things includes the time reversal torus.
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with opposite sides identified in the usual way, and the involution is given by τ(k) = −k.
There are four fixed points of τ , namely, (0, 0), (π, 0), (π, π) and (0, π). The FKMM invari-
ant takes values in the quotient [(T2)τ , U(1)]Z2/[T2, U(1)]Z2 . Using elementary equivariant
homotopy arguments, we can show that [(T2)τ , U(1)]Z2/[T2, U(1)]Z2

∼= Z2.
First of all, [(T2)τ , U(1)]Z2 consists of all different configurations ±1’s at the fixed

points. In order to compute the quotient by [T2, U(1)]Z2 , we have to check how many of
these configurations of signs can be attained by a global equivariant map g : T2 → U(1).
It turns out that only sign configurations for which the product of all the signs is 1 can be
attained by such a g. Since the constant map −1 : T2 → U(1) is in [T2, U(1)]Z2 , we may
always fix the sign at k = (0, 0) to be 1. There are then four distinct sign configurations for
which the product of all the signs is 1. The three nontrivial configurations corresponding
to nonconstant maps are listed in Fig. 10.

Figure 10: Sign configurations at the fixed points of T̃2 that can be realized by globally
equivariant maps. The fixed points are represented here as the vertices of the square
[0, π]× [0, π].

However, there are no global equivariant maps g : T2 → U(1) that have an odd number
of minus signs at the fixed points. To see this, consider the sign configuration displayed in
Fig. 11, where now we display the full time reversal torus. Suppose now that g : T2 → U(1)
is a globally continuous map that restricts to the sign configuration displayed in Fig. 11.
Restricted to kx = 0, the equivariance of g implies g(0,−ky) = g(0, ky). As ky goes from 0
to π, the map g(0, ky) winds an integer number of times around U(1). As ky goes from 0 to

−π, the map g(0, ky) = g(0,−ky) winds the same integer number times around U(1), but
now in the opposite direction. Reversing the orientation on the [0,−π] segment, we find
that g(0, ky) winds an even number of times around U(1) as ky winds around the circle
at kx = 0. Now, at kx = π, the map g(π, ky) winds a half integer amount of times around
U(1). The map g(π, ky) winds a half integer amount of times in the opposite direction,
because

g(π, ky) = g(−π,−ky) = g(π,−ky).

Similar to what we saw for the sphere in Fig. 9, the half integer winding portions add up
when considering g(π, ky) as ky goes from −π to π, and so g winds around U(1) an odd
number of times when ky winds around the circle at kx = π. This is a contradiction. The
winding number of g must be the same around kx = 0 and kx = π because g is continuous.
Therefore, no global equivariant g exists that realizes a sign configuration at the fixed
points with an odd number of minus signs. We conclude that

[(T2)τ , U(1)]Z2/[T
2, U(1)]Z2

∼= Z2 ,

where the two distinct classes correspond to sign configuration with an even or odd number
of minus signs.

74



Figure 11: Sign configuration at the fixed points of T̃2 displayed on the square [−π, π] ×
[−π, π]. Opposite sides of the square are identified. The blue and red lines indicate
restrictions of a global equivariant map g : T2 → U(1).

The above argument generalizes to higher dimensional tori roughly as follows. The
set [(Td)τ , U(1)]Z2 of all the sign configurations at the fixed points is isomorphic to Z2d

2 .
Indeed, a d-dimensional cube has 2d vertices and for each vertex we can pick either 1 or
−1 in Z2. Just like in the two-dimensional case, every map gj(k) = eikj for j = 1, . . . , d
and the constant map −1 identifies pairs of sign configurations. In fact, each of these
d+1 maps reduces the total number of sign configurations by a factor of 2. This leads to
following result for the quotient

[(Td)τ , U(1)]Z2/[T
d, U(1)]Z2

∼= Z2d

2 /Zd+1
2
∼= Z2d−d−1

2 .

This answer is in correspondence with the result of [18], which is obtained using advanced
cohomological tools. In d = 2 our proof is complete, however, for d > 2 it should be
established more convincingly that the maps gj and −1 are the only maps that may be
used to identify configurations.

The key ingredient in the construction of the FKMM invariant as a quotient of equiv-
ariant homotopy groups is that the determinant bundle associated to (E,Θ) is a trivial
“Real” line bundle. So far, we have dealt with this simply by assuming that all “Real” line
bundles over (X, τ) are trivial. It is, however, not obvious that this is the case for the time
reversal sphere or torus. In the next section we will develop a cohomological classification
of “Real” line bundles which allows us to justify this assumption, at least in the case of
spheres.

9 Classification of “Real” line bundles

A “Real” line bundle (L,Θ) over an involutive space (X, τ) is a complex line bundle L
together with a “Real” structure. Recall that the “Real” structure Θ is a homeomorphism
Θ : L→ L that lifts the involution τ , acts antilinearly on fibers and squares to the identity.
A key assumption in the construction of the FKMM invariant for “Quaternionic” vector
bundles is the triviality of the associated determinant line bundle as a “Real” line bundle.
In this section, we develop a classification of “Real” line bundles based on a generalization
of Čech and sheaf cohomology to an equivariant setting. The main result is that “Real”
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line bundles over an involutive space are classified by the equivariant cohomology group
H2(X;Z2, Z̃) . For time reversal spheres, we can explicitly show that this cohomology
group vanishes which means that all “Real” line bundles over the time reversal sphere are
trivial. This justifies the construction of the FKMM invariant in the previous section for
continuum models.

9.1 Čech cohomology

Čech cohomology is a tool to recover topological information about a space from combi-
natorial data associated to an open cover of the space. The combinatorial data consists of
so-called “sections of sheaves” over the overlaps of open sets in the cover. Hence, before we
can define Čech cohomology we have to introduce the notion of a sheaf. Sheaves capture
a particular property of functions. Namely, if X is a topological space and f1 : U1 → R
and f2 : U2 → R are two functions such that f1|U1∩U2 = f1|U1∩U2 , then there is a unique
function f : U1∪U2 → R that restricts to f1 on U1 and to f2 on U2 . We say that functions
defined over different open set can be “glued” together when they agree on the overlaps.
Sheaves axiomatize this notion of gluing, and generalize it to more general objects than
just real valued functions.

It is customary to introduce sheaves in two stages. The first stage is to define what is
called a presheaf. A presheaf F of abelian groups over a topological space X consists of
the following data:

1. an abelian group F(U) for every open set U ⊆ X,

2. a map ρUV : F(U)→ F(V ) for every inclusion of opens V ⊆ U .

The maps ρUV are called “restriction” maps and they are required to satisfy ρUU = id and
ρVW ◦ρUV = ρUW for any three opensW ⊆ V ⊆ U . The elements of F(U) are called “sections
over U” and we will sometimes denote the abelian group F(U) by Γ(U,F). For us the
most important presheaves are the presheaves of functions with values in some abelian
group A. For example, if X is any topological space, the constant functions with values in
Z are a presheaf. We denote this presheaf by Z0

X . The continuous functions with values
in Z are also a presheaf that we denote by ZX . Another example of a presheaf is the
continuous functions with values in the abelian group (C,+). We denote this presheaf by
OX . Explicitly,

1. for U ⊆ X open, OX(U) = C0(U,C),

2. for V ⊆ U an inclusion of opens, ρUV : OX(U) → OX(V ) is just given by the
restriction of functions.

The second stage is to restrict the notion of presheaf to that of sheaf. Let F be a
presheaf, then F is called a sheaf if it satisfies the following two properties. Let U ⊆ X
be open and let U = {Uα}α∈A be an open cover of U ,

1. if s, t ∈ F(U) are sections such that ρUUα
(s) = ρUUα

(t) for all α ∈ A, then s = t ,

2. if {sα ∈ F(Uα)}α∈A is a collection of sections such that ρUα
Uα∩Uβ

(sα) = ρ
Uβ

Uα∩Uβ
(sβ)

for all α, β ∈ A, then there is s ∈ F(U) such that ρUUα
(s) = sα for all α ∈ A .

The first property states that if two sections agree everywhere locally, then they agree
globally. The second property states that if we have a collection of local sections that agree
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on overlaps, then they glue to a global section. The combination of the two properties
states that this gluing is unique.

The presheaf OX introduced above satisfies both of these properties and so OX is a
sheaf. The presheaf Z0

X of constant integer valued functions is in general not a sheaf
because if X contains two disjoint opens subsets,14 then the second sheaf property fails.
For example, if X is the set {0, 1} with the discrete topology, then the sets {0} and {1}
are two opens whose union is X. Consider the local sections s0 = 7 and s1 = 3 on {0}
and {1}, respectively. There is no section s : {0, 1} → Z that restricts to 7 on {0} and to
3 on {1} because any global sections s has to be constant on X. On the other hand, the
presheaf ZX , of continuous, integer-valued functions, does not have this problem. Indeed,
the sections of ZX are the locally constant functions, which may take different values on
disjoint opens, and so ZX does form a sheaf.

The sheaves we will deal with are usually of the type of locally constant functions or
continuous functions with values in some abelian group such as Z or C. The advantage of
still using the language of abstract sheaves is two-fold. On the one hand, we can develop
the theory of Čech cohomology with coefficients in an arbitrary sheaf F and then at the
end plug in OX or ZX or a similar sheaf. On the other hand, Čech cohomology can be
viewed as an approximation to the more abstract notion of sheaf cohomology, which will be
a useful tool later for proving theorems about Čech cohomology and doing computations.

With this short introduction to sheaves out of the way, let us now define Čech coho-
mology with coefficients in a sheaf. The story of Čech cohomology starts with the notion
of Čech cohomology “with respect to an open cover”. Fix a topological space X and a
sheaf F on X . Choose an open cover U = {Uα}α∈A of X. To this data we associate a
cochain complex (Č∗(U ;F), δ) called the Čech cochain complex with respect to the open
cover U . The Čech cochain group in degree n is

Čn(U ;F) =
{
(fα0...αn) ∈

∏
α0,...,αn

Γ(Uα0...αn ,F) : fα0...αiαi+1...αn = −fα0...αi+1αi...αn

}
where the notation Uα0...αn means to take the intersection Uα0 ∩· · ·∩Uαn . In other words,
an n-Čech cochain is defined by taking a section of the sheaf F over every n + 1-fold
overlap of the cover in an antisymmetrized way.

The Čech differential δ : Čn(U ;F)→ Čn+1(U ;F) is given by the formula

(δf)α0...αn+1 =

n+1∑
i=0

(−1)iρi(fα0...α̂i...αn+1) ,

where ρi is the restriction from Uα0...α̂i...αn to Uα0...αn , and the hat on top of an index
indicates that we skip that index. The Čech cohomology with respect to the open cover U
with values in the sheaf F is the cohomology of the Čech cochain complex (Č∗(U ;F), δ)
for the cover U . We denote this cohomology by Ȟ∗(U ;F) .

The Čech cohomology in degree 0 is equal to the global sections of the sheaf F . Let’s
see how this comes about. By definition,

Ȟ0(U ;F) = ker(δ : Č0(U ;F)→ Č1(U ;F)) .

Let (fα) ∈ Č0(U ;F), i.e. for every open Uα ∈ U , we specify a section fα of F over Uα .
For every double overlap Uα0α1 , we have

(δf)α0α1 = ρα1
α0α1

(fα1)− ρα0
α0α1

(fα0) .

14Pretty much any sensible topological space which is not the point contains two disjoint opens.
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The cochain (fα) is in the kernel of δ if and only if (δf)α0α1 = 0 for all double overlaps
Uα0α1 . Now notice that (δf)α0α1 = 0 if and only if ρα1

α0α1
(fα1) = ρα0

α0α1
(fα0) . So, if (fα) is

in ker δ, then the collection (fα) of local sections agree on overlaps. By the sheaf property
there is thus a unique global section f ∈ Γ(X,F) such that f |Uα = fα for all α ∈ A. In
other words, Ȟ0(U ;F) = Γ(X,F) .

Interestingly, the degree zero Čech cohomology with respect to the cover U is indepen-
dent of the cover. This is not true in higher degrees. In general, the cohomology H∗(U ;F)
depends on the choice of open cover. To obtain a topological invariant that is intrinsic to
the space X we need to consider what happens to Ȟ∗(U ;F) when we make the cover U
arbitrarily fine so that it captures all the topological features of X.

If U = {Uα}α∈A and V = {Vβ}β∈B are two open covers of X , then we say that U
refines V if for every α ∈ A we can find a β ∈ B such that Uα ⊆ Vβ . Any such choice of
association of β’s to α’s defines a map r : A → B, which we call a refinement map. We
also say U ≥ V if U refines V. A refinement map r defines a map r∗ on Čech cochains,

r∗ : Čn(V;F)→ Čn(U ;F) , (r∗f)α0...αn = ρVU (frα0...rαn) ,

where ρVU is the restriction from Vrα0...rαn to Uα0...αn . It is easily seen that r∗ commutes
with the differential δ, so that r∗ is in fact a map of cochain complexes. Therefore, there
is an induced map in cohomology

r∗ : Ȟ∗(V;F)→ Ȟ∗(U ;F) , [f ] 7→ [r∗f ] .

It can be shown that the induced map on cohomology is independent of the choice of
refinement map r : A → B . If r and r̃ are two refinement maps for U ≥ V, then

k : Čn+1(V;F)→ Čn(U ;F) , (kf)α0...αn =
n∑

i=0

(−1)iρVU (frα0...rαir̃αi...r̃αn) ,

where ρVU is the appropriate restriction map, can be verified to be a cochain homotopy
from r∗ to r̃∗ by a direct, but somewhat lengthy computation [39] . This implies that
r∗ = r̃∗ .

The notion of “arbitrarily fine cover” is defined as the limit of refinements of covers.
Consider the directed set (KX ,≤) of all open covers

KX = {U : U is open cover ofX}

together with the refinement relation ≤ .15 We define the Čech cohomology of X with
coefficients in F as

Ȟ∗(X;F) = lim
−→

Ȟ∗(U ;F) ,

where the limit is a direct limit taken over refinements of open covers of X. The direct
limit is defined as follows. We take the disjoint union of the cohomologies Ȟ∗(U ;F) over
all open covers and divide out by an equivalence relation induced by the refinement maps.
More precisely,

lim
−→

Ȟ∗(U ;F) =
⊔

U∈KX

Ȟ∗(U ;F)/ ∼ ,

where [f ] ∈ Ȟ∗(U ;F) is equivalent to [g] ∈ Ȟ∗(V;F) if there is some common refinement
W of U and V with refinement maps r∗ : Ȟ∗(U ;F) → Ȟ∗(W;F) and s∗ : Ȟ∗(V;F) →

15Technically, the open covers of a space X do not form a set, because there are too many open covers.
This issue can be dealt with. For the sake of explaining the ideas, we will ignore this technicality here and
refer for the details to [40].
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Ȟ∗(W;F) such that r∗[f ] = s∗[g] . Intuitively, two elements are equivalent if they even-
tually become equal when the open cover is fine enough.

To check that ∼ is actually an equivalence relation we use the following key observation.
We have seen that if V ≤ U then there is a map r∗ : Ȟ∗(V;F) → Ȟ∗(U ;F) which is
induced by choosing any refinement map r : U → V . So , if U and V are equal, we can
take id : A → A as refinement map which induces the identity on cohomology as well. This
will give the reflexivity of ∼. Moreover, if U ≥ V ≥ W for some third coverW = {Wγ}γ∈C
and we have refinement maps r : A → B and s : B → C, then s ◦ r : A → C is a refinement
map for U ≥ W . We have that (s◦ r)∗ = r∗ ◦s∗ for the induced maps in cohomology since
this holds already at the cochain level. This will give the transitivity of ∼ . The fact that
∼ is symmetric follows immediately from the construction.

Let us now demonstrate what the Čech cohomology defined above can do for us. Our
primary interest in Čech cohomology is that it is a useful tool for classifying line bundles.
Recall that we classified complex line bundles over a space X by the first Chern class in
H2(X;Z) . As we will see now, Čech cohomology also gives a classification of complex line
bundles.

Proposition 9.1. Let X be a space and let O∗
X be the sheaf of non-vanishing, continuous

complex valued functions on X. There is a canonical bijection

Vect1C(X) ∼= Ȟ1(X;O∗
X) .

Proof. We first construct a map L : Ȟ1(X;O∗
X) → Vect1C(X) that associates a complex

line bundle to a class c ∈ lim−→ Ȟ1(U ;O∗
X) . Let c ∈ Ȟ1(X;O∗

X) . A basic property of the
direct limit is that the class c in the direct limit can be represented by a single cocycle
(gαβ) ∈ Ȟ1(U ;O∗

X) for some cover U = {Uα}α∈A . We construct a line bundle from this
cocycle by gluing copies of Uα × C together using the gαβ . More precisely, we define the
space

L̃(g) =
⊔
α∈A

Uα × C

and the equivalence relation

Uα × C ∋ (x, z) ∼ (y, w) ∈ Uβ × C ⇐⇒ (y, w) = (x, gαβ(x)z) .

The relation ∼ is an equivalence relation precisely because (gαβ) is a Čech cocycle. Indeed,
∼ is reflexive since gαα = 1, the identity element in the multiplicative group C∗, by skew-
symmetry of the Čech indices. It is symmetric since gαβgβα = gαα = 1 by (δg)αβα = 1 .
It is transitive since gβγgαβ = gαγ because (δg)αβγ = 1 . We can thus take the quotient of

L̃(g) by ∼. We claim that the map

c 7→ L(c) := L̃(g)/ ∼

is well-defined, in the sense that a different choice of (gαβ) to represent c yields an isomor-
phic line bundle. Suppose (g′αβ) is another cocycle over the same cover U that represents

the same class in Ȟ1(U ;O∗
X) then there is an (fα) ∈ Č0(U ;O∗

X) such that g′αβ = fβgαβf
−1
α .

Indeed, this is precisely saying that g′ = g + δf , but then in multiplicative notation. The
map F̃ : L̃(g′)→ L̃(g) defined by

Uα × C ∋ (x, z) 7→ (x, fα(x)z) ∈ Uα × C

descends to the quotients by ∼ and gives an isomorphism between the line bundles L̃(g)/ ∼
and L̃(g′)/ ∼ . Now suppose that (g′α′β′) is a cocycle over some possibly different cover
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U ′ = {Uα′}α′∈A′ such that (g′α′β′) ∈ Ȟ1(U ′;O∗
X) also represents c ∈ Ȟ1(X;O∗

X) . In that
case, there must be a some cover V = {Vi}i∈I and refinement maps r : A → I and
r′ : A′ → I such that rg and r′g′ differ by a coboundary δf . So by the same argument as
above, we will at least have (L̃(rg)/ ∼) ∼= (L̃(r′g′)/ ∼). It remains to argue that the line
bundle L̃(g)/ ∼ is stable under refinement. In other words, that L̃(g)/ ∼ and L̃(rg)/ ∼
are isomorphic. This is indeed the case because the refined bundle is obtained from the
original bundle by just restricting the transition functions we already had. This does not
change the line bundle. The map L : c 7→ L̃(g)/ ∼ is thus well-defined.

The map L is injective because if c and c′ are two cochain represented by g ∈ Ȟ(U ;OX)
and g′ ∈ Ȟ(U ′;OX), respectively, such that L̃(g)/ ∼ and L̃(g′)/ ∼ are isomorphic, then
over a common refinement of U and U ′ this isomorphism gives rise to a cochain (f) such
that r′g′ = rgδf . Finally, the map L is surjective because given any line bundle E we can
pick a trivializing cover (U , (φα)) with transition functions (gαβ) and show that L̃(g)/ ∼
is isomorphic to E via

Uα × C ∋ (x, z) 7→ φ−1
α (x, z) .

We conclude that the map L constructed above realizes the required bijection.

9.2 Sheaf cohomology

We have defined the Čech cohomology Ȟ∗(X;F) of the space X with coefficients in the
sheaf F by taking the direct limit over Čech cohomologies of open covers U of X. However,
even for a topological space as simple as Sd we can never compute this direct limit because
there are just way to many open covers to consider. Also, it might be very hard to
even compute Ȟ∗(U ;F) for a single open cover because there could be intractably many
overlaps to consider. If we ever want to compute something, we need more tools. To get
to these tools, we will review sheaf cohomology, which provides another point of view on
the cohomology Ȟ∗(X;F) .

We start by defining the proper notion of a map between sheaves. Let F and G be
two sheaves, then a morphism of sheaves φ : F → G is given by specifying a morphism
of abelian groups φ(U) : F(U) → G(U) for every open U ⊆ X such that the φ(U) are
compatible with the restriction maps of F and G . More precisely, if V ⊆ U is an inclusion
of opens, we require

(ρG)
U
V ◦ φ(U) = φ(V ) ◦ (ρF )UV ,

where ρF and ρG are the restriction maps of F and G, respectively.
To formulate the notions of injectivity and surjectivity for maps of sheaves, we need to

introduce the notion of stalks. Let F be a sheaf over X. We define the stalk Fx of F at
the point x ∈ X by describing its elements which are called germs. A germ of F at x ∈ X
is an equivalence class [(U, s)] of pairs consisting of an open neighbourhood U of x and a
section s over U . Two pairs (U, s) and (U ′, s′) are equivalent if there is a neighbourhood
V ⊆ U ∩ U ′ of x such that

ρUV (s) = ρU
′

V (s′) .

The stalk of F at x ∈ X is the set of all germs at x. If F is a sheaf of abelian groups, then
the stalk Fx is an abelian group. Indeed, the group operation on sections carries over to
the germs.16

16The definition of stalk can be phrased more concisely in terms of the direct limit that we saw before
when defining Čech cohomology. The stalk Fx of F at a point x ∈ X can be defined as

Fx = lim
−→

F(U) ,
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A map of sheaves φ : F → G induces maps on stalks φx : Fx → Gx for all x ∈ X. If
[(U, s)] ∈ Fx, then

φx([(U, s)]) = [(U,φ(U)(s))] .

We say that φ : F → G is injective whenever φx : Fx → Gx is injective for all x ∈ X .
Similarly, φ is surjective if φx is surjective for all x ∈ X. Moreover, if F → G → H is a
sequence of sheaves, then it is exact if and only if the sequence of stalks Fx → Gx → Hx

is exact for all x ∈ X .17

The key ingredient in the definition of sheaf cohomology is that of an injective resolu-
tion of a sheaf. If F is a sheaf, then a resolution of F is an exact sequence of sheaves of
the form

0 F F0 F1 F2 . . .d d .

A resolution of F is an injective resolution if each Fn is an injective sheaf. An injective
sheaf is a sheaf satisfying a certain universal property. At the moment, it is not so
important what this universal property precisely entails. The important points are the
following. First of all, injective sheaves have some nice properties with regards to extending
local sections to global sections. We will get into this later. Secondly, any sheaf F injects
into an injective sheaf I [41]. This fact is usually referred to by saying that the category
of sheaves has “enough injectives”.

A sheaf F always admits a resolution of injective sheaves. Indeed, since there are
enough injectives we can find an injective sheaf I0 such that F injects into I0. There is
thus a short exact sequence

0 F I0 C0 0 ,

where C0 = I0/ imF is the cokernel of F → I0. The definition of the cokernel sheaf can
be made precise by the method of so-called sheafification. However, for our purposes it
suffices to know that it exists, because now we can find I1 such that C0 injects into I1 .
We can thus extend the diagram above to the following diagram

0 F I0 C0 0

I1 C1 0
d

,

where C1 is the cokernel of C0 → I1 . Since C0 → I1 is injective, the kernel of the dashed
arrow d is precisely the kernel of I0 → C0. It then follows from the exactness of the top
row that

ker(I0 → I1) = im(F → I0) .

The sequence 0→ F → I0 → I1 → C1 → 0 is thus exact. Repeating the construction we
end up with an exact sequence of sheaves

0 F I0 I1 I2 . . .d d d (9.1)

which is the injective resolution of F we were looking for.

where the direct limit is taken over all open neighbourhoods U of X .
17One might wonder why we choose to define these notions of injectivity and surjectivity via stalks. And

indeed, injectivity can also be defined via the so-called kernel sheaf and surjectivity via the image sheaf.
The definition of the image sheaf, however, uses the notion of sheafification. Sheafification, in turn, uses
stalks. For ease of presentation, we gave the definitions immediately in terms of stalks.
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Sheaf cohomology is now defined as follows. Let F be a sheaf over a space X and take
an injective resolution of F as constructed above. Since the injective resolution is exact,
d2 = 0 as a map between sheaves so that

0 I0(X) I1(X) I2(X) . . .
d(X) d(X) d(X)

(9.2)

defines a cochain complex. Although the injective resolution Eq. (9.1) is an exact sequence
of sheaves, the cochain complex (9.2) is in general not an exact sequence. The exactness
of the resolution only implies that the sequence of stalks

I0x I1x I2x . . .
dx dx dx

is exact for all x ∈ X. A section s ∈ In(X) in the kernel of d(X) thus locally always
has a primitive, in the sense that for each x ∈ X there is tx ∈ In−1

x such that dxtx = sx .
However, these local primitives (tx)x∈X might not glue to a global section t ∈ In−1(X) .
The cochain Eq. (9.2) therefore possible has non-trivial cohomology and this cohomology
is what we define to be the sheaf cohomology H∗(X;F) . The construction of sheaf coho-
mology is a special case of the construction of a so-called “right derived functor” and is
therefore independent of the choice of injective resolution [40].

It is a nontrivial fact, of which we sketch the proof in Appendix B, that sheaf co-
homology and Čech cohomology are isomorphic over paracompact Hausdorff spaces [40,
Theorem 6.88] . We thus restrict ourselves to paracompact Hausdorff spaces from now on.

Using the definition we can now compute the sheaf cohomology of the sheaf Z{∗} over
the point. The first task is to construct an injective resolution. The sheaf Z{∗} can be
identified with the abelian group Z, and for groups being injective is the same as being
divisible [42, Tag 01D6]. A group G is divisible if for every g ∈ G and n ∈ N there exists
y ∈ G such that ny = g. For example, the additive group of rational numbers Q is divisible
and, hence, injective. The quotient Q/Z is also injective. So, the short exact sequence

0 Z Q Q/Z 0

realizes an injective resolution of Z . The sheaf cohomology H∗({∗};Z{∗}) is thus equal to
the cohomology of Q → Q/Z → 0 . The zeroth degree cohomology is H0({∗};Z{∗}) = Z
and all cohomology groups in positive degree vanish. In fact, the same proof works for
any abelian group, because we can always embed an abelian group into an injective group
and a quotient of an injective group is injective.

A resolution of the sheaf ZX over a space X which is not just a point could yield an
unwieldy object. However, if X is contractible, then the following theorem still allows us
to compute the sheaf cohomology of ZX .

Theorem 9.2. Sheaf cohomology with values in a constant sheaf is homotopy invariant.

See [41] for a proof. The implication of Theorem 5.1 is that if X is a contractible
space, then Hn(X;ZX) = Hn({∗};Z{∗}), which we have just computed above.

Getting your hands on an injective resolution of a sheaf F is in general a difficult task.
So, just like Čech cohomology, computing sheaf cohomology is thus also difficult and it
seems as though we have not made any progress. However, as is usual in cohomology
theory one does not use the definitions to compute cohomology, we want to use theorems
to compute cohomology. Remember that one of the issues holding us back from computing
Čech cohomology is that we cannot take the direct limit over all refinements of covers of a
space, unless maybe the space consists of a countable number of points. By relating Čech
and sheaf cohomology, it turns out that it is possible to choose a “good” cover of X which
already gives us the full Čech cohomology. This is the content of Leray’s theorem.
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Theorem 9.3 (Leray). If U is an open cover of X such that Hn(Uα0...αk
;F) = 0 for all

k ≥ 0 and n ≥ 1, then Ȟn(U ;F) ∼= Hn(X;F) for n ≥ 0 .

This statement can for example be found in [43]. It can be proven by considering
the double complex Cp,q = Čp(U ; Iq), where 0 → F → I∗ is an injective resolution.
The cohomology of this double complex can be computed by means of spectral sequences.
Below, we will adapt Leray’s Theorem to an equivariant setting and provide the details of
the proof in that case. Presently, we note that, as we have seen above, if F is a constant
sheaf, then the Čech cohomology of a contractible open set U vanishes in positive degree
by homotopy invariance for constant sheaves. So, if we are dealing with constant sheaves
and we can find an open cover U such that all finite intersections Uα0...αk

are contractible,
then there is no need to take the limit because the Čech cohomology of this cover already
gives us the Čech cohomology of the space X . What is more, for some spaces one can
already realize a “good” cover with only a few open sets. This can make the computation
of Čech cohomology a much more tractable problem.

9.3 Equivariant Čech and sheaf cohomology

Our objective is now to generalize Čech cohomology and sheaf cohomology to an equivari-
ant setting, or, in other words, to a setting where our topological spaces and the sheaves
on them come equipped with a Z2 action.

First, let us generalize the notion of sheaf over a space X to that of equivariant sheaf
over an involutive space (X, τ). For an ordinary sheaf F over (X, τ), we let τ∗F denote the
pullback sheaf, which is defined through (τ∗F)(U) = F(τ(U)) for opens U ⊆ X. The stalk
at x ∈ X of the pullback sheaf is isomorphic to the stalk at τ(x), i.e. (τ∗F)x ∼= Fτ(x) . An
equivariant sheaf (F , θ) over an involutive space (X, τ) is a sheaf F over X together with
a sheaf isomorphism θ : F → τ∗F such that the induced map on stalks θx : Fx → Fτ(x)

satisfies θτ(x) ◦ θx = idx . For example, the sheaves ZX and O∗
X can be easily upgraded

to equivariant sheaves when they are defined over an involutive space (X, τ) by defining
θx on stalks to be multiplication by −1 or complex conjugation, respectively. This is
possible, because the stalks are canonically isomorphic to Z and C . We will denote these
two equivariant sheaves by Z̃X and Õ∗

X .
We would now like to define a notion of equivariant Čech cohomology over an open

cover U with coefficients in an equivariant sheaf F̃ := (F , θ). However, this is not going to
work for just any open cover U of X. The cover itself also has to be equivariant in some
way [44]. Let (X, τ) be an involutive space such that all fixed points of X are isolated. A
cover U = {Uα}α∈A of (X, τ) is called a Z2-cover if there is an involution on the index set
A, that we shall denote by τ : A → A, such that

Uτ(α) = τ(Uα) .

We say the Z2-cover U is without fixed points if the involution τ : A → A on the index
set has no fixed points. From now on, we will assume our Z2-covers to be without fixed
points.

Čech cohomology then generalizes as follows. Let (F , θ) be an equivariant sheaf and
U = {Uα}α∈A a Z2-cover without fixed points. There is an action of Z2 on the Čech
cochains (f) ∈ Čn(U ; F̃) given by

τ : Čn(U ; F̃)→ Čn(U ; F̃) , (τ(f))α0...αn = θ(fτ(α0)...τ(αn)) .

The cochains that are invariant under this Z2 action are called the Z2-invariant cochains,
which we denote by Čn(U ; F̃)Z2 . The equivariant Čech cohomology Ȟ∗(U ;Z2, F̃) of the
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Z2-cover U is defined to be the cohomology of the cochain complex of Z2-invariant cochains
Č∗(U ; F̃)Z2 . By taking the direct limit over refinements of Z2-covers we obtain the equiv-
ariant Čech cohomology Ȟ∗(X;Z2, F̃) .

Sheaf cohomology also has an equivariant version. Recall that we defined sheaf co-
homology as the cohomology of the global sections of an injective resolution. The key
ingredient for this definition was the fact that every sheaf of abelian groups can be em-
bedded injectively in an injective sheaf. This result remains true in the equivariant setting
as proven by Grothendieck in [45, Proposition 5.1.2] . The definition of equivariant sheaf
cohomology now proceeds exactly like the definition of sheaf cohomology, but now all
sheaves and maps involved are equivariant. So, if F̃ := (F , θ) is an equivariant sheaf over
an involutive space (X, τ), then the equivariant sheaf cohomology H∗(X;Z2, F̃) is defined
to be the cohomology of

Ĩ0(X) Ĩ1(X) Ĩ2(X) . . . ,

where 0 → F̃ → Ĩ∗ is an injective resolution of equivariant sheaves. Again, by viewing
the equivariant sheaf cohomology as a right derived functor, we obtain its independence
on the choice of resolution. The proof that establishes the equivalence of sheaf and Čech
cohomology can be extended to the equivariant world. The technicalities are deferred to
Appendix B.

Computing equivariant sheaf cohomology and Čech cohomology suffers at least from
the same difficulties as ordinary sheaf and Čech cohomology. Namely, how do we get
our hands on a resolution? And, can we compute the direct limit over refinements of
Z2-covers? In the ordinary setting the Leray theorem got rid of the problem of the direct
limit over refinements. The Leray theorem states that the Čech cohomology with respect
to a “good” cover is isomorphic to the Čech cohomology. An equivariant generalization
of the Leray theorem is possible. Suppose we are given an equivariant sheaf F̃ . By a
“good” Z2-cover we mean a Z2-cover U = {Uα}α∈A without fixed fixed points such that
Hn(Uα0...αk

;F) = 0 for all k ≥ 0 and n ≥ 1 . Note that this condition is a condition
in ordinary sheaf cohomology, just like in the original Leray theorem. The following
generalizes the Leray theorem to the equivariant setting.

Theorem 9.4. Let (X, τ) be an involutive space and F̃ = (F , θ) a Z2-sheaf over (X, τ)
and U a “good” Z2-cover. Then, Ȟ

n(U ;Z2, F̃) ∼= Hn(X;Z2, F̃) for all n ≥ 0 .

The proof uses techniques involving double complexes and spectral sequences of double
complexes covered for example in [46].

Proof. Let 0 → F̃ → Ĩ∗ be an injective resolution of Z2-sheaves. Define the double
complex

Cp,q := Cp(U ; Ĩq)Z2 =
( ∏

α0,...,αp

Γ(Uα0...αp , Ĩq)
)Z2

with differentials
δ : Cp,q → Cp+1,q and d : Cp,q → Cp,q+1 ,

where δ is the Čech differential and d is the differential induced by the maps of the
resolution. The total differential of the double complex is D = δ+(−1)pd , which is a map

D :
⊕

p+q=n

Cp,q →
⊕

p+q=n+1

Cp,q .
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It can be checked that D2 = 0, so that
(⊕

p+q=nC
p,q, D

)
is a cochain complex. The co-

homology of this cochain complex is, by definition, the cohomology of the double complex.
We can compute the cohomology of the double complex by means of a spectral sequence
in two ways, namely taking “horizontal filtrations” or “vertical filtrations”.

Let us first go horizontally by computing the δ-cohomology for fixed q. This yields the
Čech cohomology of the cover U with coefficients in the Z2-sheaf Ĩq. The first page of the
spectral sequence when using the horizontal filtration is thus

Ep,q
h,1 = Ȟp(U ;Z2, Ĩq) .

Since Ĩq is an injective Z2-sheaf, its Z2-Čech cohomology vanishes for any Z2-cover in
positive degrees, see Proposition B.5. Hence, Ep,q

h,1 = 0 for p > 0. On the other hand,

for p = 0, we have the zeroth degree Z2-Čech cohomology, which are just the global
Z2-invariant sections,

E0,q
h,1 = Ȟ0(U ;Z2, Ĩq) = ΓZ2(X, Ĩq) .

By the theory of spectral sequences, it follows that the cohomology of the double complex
is equal to the cohomology of (ΓZ2(X, Ĩ∗), d), which is H∗(X;Z2, F̃) by definition of the
Z2-sheaf cohomology.

We now compute the double cohomology again by first going vertically. We claim that
computing the d-cohomology for fixed p ≥ 0 yields

Ep,q
v,1 =

( ∏
α0...αp

Hq(Uα0...αp ; F̃)
)Z2

,

for all q ≥ 0 . The Z2-invariance requirement here means that a sequence of cocycles
(fα⃗) representing a product of cohomology classes has to be Z2 invariant as a sequence of
cochains. For q = 0,

Ep,0
v,1 = ker d :

( ∏
α0...αp

Γ(Uα0...αp , Ĩ0)
)Z2

→
( ∏

α0...αp

Γ(Uα0...αp , Ĩ1)
)Z2

.

An invariant cochain (fα⃗) is in this kernel if and only if dfα⃗ = 0 for all α⃗, so that by
definition of the degree 0 sheaf cohomology

Ep,0
v,1
∼=
( ∏

α0...αp

H0(Uα0...αp ; F̃)
)Z2

.

For q > 0 the argument is more involved. We have by definition that

Ep,q
v,1 =

ker d :
(∏

α0...αp
Γ(Uα0...αp , Ĩq)

)Z2

→
(∏

α0...αp
Γ(Uα0...αp , Ĩq+1)

)Z2

im d :
(∏

α0...αp
Γ(Uα0...αp , Ĩq−1)

)Z2

→
(∏

α0...αp
Γ(Uα0...αp , Ĩq)

)Z2
.

It is again the case that a cochain (fα⃗) ∈
(∏

α0...αp
Γ(Uα0...αp , Ĩq)

)Z2

is in the kernel of

d if and only if dfα⃗ = 0 for all α⃗ . However, before we can conclude that each fα⃗ defines
a cohomology class in Hq(Uα⃗; F̃), it has to be checked that demanding Z2-invariance
commutes with taking the quotient. In other words, we have to prove that two sequences of
Z2-invariant cocycles (fα⃗) and (f ′α⃗) of degree q represent the same elements in cohomology
for every α⃗ if and only if there is a Z2-invariant cochain (gα⃗) in degree q − 1 such that
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fα⃗ − f ′α⃗ = dgα⃗ for all α⃗ . From right to left the statement is trivial, but from left to right
it is not.

Assume (fα⃗) and (f ′α⃗) are two Z2-invariant cochains in degree q > 0 that represent the
same cohomology classes, meaning that for every α⃗ we can find gα⃗ in degree q − 1 such
that fα⃗ − f ′α⃗ = dgα⃗ for all α⃗ . The cochain formed by (gα⃗) may not be Z2 invariant. We
will deform it such that it becomes so.

Since d is a Z2-map, it commutes with θ so that d(θgα⃗) = θ(dgα⃗) for all α⃗ . The
Z2-invariance of f and f ′ implies that

θ(dgα⃗) = θ(fα⃗ − f ′α⃗) = (τ(f − f ′))τα⃗ = (f − f ′)τα⃗ = dgτα⃗ .

Therefore, d(θgα⃗− gτα⃗) = 0 . The resolution 0→ F → I∗ is an exact sequence of sheaves.
By the assumption that H∗(Uα⃗;F) = 0 in positive degrees, it follows that the sequence

0→ F(Uα⃗)→ I∗(Uα⃗) (9.3)

is exact in all degrees. Note that exactness at F(Uα⃗) and I0(Uα⃗) always holds due to left
exactness of the section functor Γ(Uα⃗,−). The exactness in higher degrees is secured by
the assumption. We can thus find a primitives for θgα⃗ − gτα⃗ in this sequence. Let hα⃗ in
degree q − 2 of the sequences of the type (9.3) be such that

θgα⃗ = gτα⃗ + dhτα⃗ . (9.4)

If q = 1, then q − 2 = −1 and the hα⃗ is drawn from F(Uα⃗) . Applying θ to (9.4) yields
gα⃗ = θgτα⃗ + θdhτα⃗, since θ

2 = 1 . We obtain the relation

gα⃗ − θdhτα = θgτα⃗ = gα⃗ + dhα⃗

which implies
dhα⃗ = −θdhτα⃗ . (9.5)

Since we assume a cover without fixed points, we can partition the indices α⃗ in two disjoint
sets A+ and A− such that τA+ = A−, for example by partitioning on the first index of
α⃗ = (α0 . . . αn) . Define now the cochain (g′) as follows,

g′α⃗ =

{
gα⃗ if α⃗ ∈ A+

gα⃗ + dhα⃗ if α⃗ ∈ A−
.

It is clear that dg′α⃗ = dgα⃗ = fα⃗ − f ′α⃗, since d
2 = 0 . Moreover, (g′) is Z2 invariant. Indeed,

if α⃗ ∈ A+, then
θg′α⃗ = θgα⃗ = gτα⃗ + dhτα⃗ = g′τα⃗ ,

and if α⃗ ∈ A−, then

θg′α⃗ = θ(gα⃗ + dhα⃗) = gτα⃗ + dhτα⃗ + θdhα⃗ = gτα⃗ = g′τα⃗ ,

where we have used (9.5) (after relabelling the indices). This proves that indeed, if two
invariant cocycles are cohomologous, then they differ by the image under d of a Z2-invariant
cochain, which proves the claim.

The assumption that Hq(Uα0...αn ;F) = 0 for all q > 0 yields that Ep,q
v,1 = 0 for q > 0 .

Computing the δ-cohomology of Ep,0
v,1 yields again the cohomology of the double complex,

but this time in the guise of the Z2-Čech cohomology Ȟ∗(U ;Z2, F̃) . We thus conclude
that Ȟ∗(U ;Z2, F̃) ∼= H∗(X;Z2, F̃) since both of these compute the cohomology of the
same double complex.
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The assumptionHn(Uα0...αk
;F) = 0 for all k ≥ 0 and n ≥ 1 in Theorem 9.4 is in general

not straightforward to verify. However, if we consider coefficients in the equivariant sheaf
Z̃X , then the assumption is true for Z2-covers all of whose intersections are contractible
to a point. Recall that Z̃X is the sheaf ZX endowed with the Z2 action θ that acts
on stalks via multiplication by −1. Forgetting the Z2 structure, the sheaf Z̃X is just the
constant sheaf ZX , and, for constant sheaves, the sheaf cohomology is homotopy invariant.
So, Theorem 9.4 says that when we want the compute the Z2-Čech cohomology of some
involutive space (X, τ) with coefficients in Z̃X , then it suffices to compute the Z2-Čech
cohomology on a cover all of whose finite intersections are contractible.

We can thus compute the cohomology with coefficients in Z̃X for some simple spaces
X. In the following, let us drop the space X from the notation of the sheaf Z̃X and
just denote this sheaf by Z̃ with the space under consideration being understood. The
simplest space is of course just a point with the trivial involution τ : {∗} → {∗} . A
Z2-cover without fixed points and all of whose finite intersections are contractible is given
by U = {∗+, ∗−}, i.e. two copies of the point indexed by + and −. The involution on the
index set {+,−} acts as τ(+) = − . The Z2 action on a cochain (a) is

(τ(a))+ = θ(a−) = −a− and (τ(a))− = θ(a+) = −a+ .

The degree zero Z2-invariant cochains are

C0(U ; Z̃)Z2 = {(a+, a−) ∈ Z⊕ Z : a− = −a+} ∼= Z .

The degree one Z2-invariant cochains are

C1(U ; Z̃)Z2 = {b+− ∈ Z} ∼= Z .

Note that by skew symmetry in the indices of the Čech cochain, it suffices to specify only
b+− in the above. The skew symmetry constraint and the Z2-invariance are compatible,
since both require b−+ = −b+− . There are no triple overlaps, so all higher cochain groups
are zero. The equivariant Čech cochain complex for the cover {∗+, ∗−} of the point is thus

0 Z Z 0δ ,

where if (a) = (a+, a−) ∈ C0(U ; Z̃)Z2 , then (δa)+− = a− − a+ = 2a− . So, ker δ = 0 and
im δ = 2Z . The cover U and the sheaf Z̃ satisfy the assumptions of Theorem 9.4. The
cohomology of the point is thus

Hn(∗;Z2, Z̃) ∼= Hn(U ;Z2, Z̃) =

{
Z2 if n = 1

0 if n ̸= 1
.

A peculiarity of the equivariant cohomology of the point with Z̃ coefficients is that the
first cohomology of the point is not zero, but it is Z2 .

We can also compute the Z2-cohomology with coefficients in Z̃ for the time reversal cir-
cle. Recall that the time reversal circle S̃1 is the circle S1 with involution τ(x, y) = (−x, y) .
A Z2-cover U of S̃1 without fixed points and with all finite intersections contractible is
shown in Fig. 12. The index set of U is A = {N+, N−, S+, S−, x+, x−}. The open set
corresponding to N± is the northern hemisphere, to S± the southern hemisphere, to x+
the right hemisphere and to x− the left hemisphere. The fixed points are the north pole
and the south pole, which is why we need two copies of the northern hemisphere and two
copies of the southern hemisphere. We have single, double and triple overlaps, all of which
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Figure 12: Schematic representation of the “good” cover of the time reversal circle with
the six opens labelled by A = {N+, N−, S+, S−, x+, x−} .

are contractible. The involution on the index set sends a subindex + to a subindex −, e.g.
τ(N+) = N− . The degree zero cochains are

C0(U ; Z̃)Z2 = {(aN+ , aN− , aS+ , aS− , ax+ , ax−) ∈ Z6 : ai+ = −ai− for i = N,S, x} ∼= Z3 .

For the higher degree cochains, we note that to specify a cochain in Cp(U ; Z̃)Z2 , we only
need to specify an integer for each element of a “generating set of overlaps”, that is, for
a set of overlaps such that taking permutations of the indices or τ on all of the indices
yields all possible combinations. For the double overlap, for example, we know that
bN−x− = −bN+x+ , so we only need to specify an integer for one of these two. Doing so,
the degree one and two cochains are

C1(U ; Z̃)Z2 ∼= {(bN+N− , bS+S− , bN+x+ , bN+x− , bS+x+ , bS+x−) ∈ Z6} ,

C2(U ; Z̃)Z2 ∼= {(cN+N−x+ , cS+S−x+) ∈ Z2} .

All higher order cochains are zero because we do not have higher order overlaps. The
cochain complex for S̃1 thus looks like

0 Z3 Z6 Z2 0δ0 δ1 .

For a = (aN+ , aS+ , ax+) ∈ C0(U ; Z̃)Z2 , we have that δ0a is given by

(δ0a)N+N− = −2aN+ (δ0a)N+x+ = ax+ − aN+ (δ0a)N+x− = −ax+ − aN+

(δ0a)S+S− = −2aS+ (δ0a)S+x+ = ax+ − aS+ (δ0a)S+x− = −ax+ − aS+ ,

and for b = (bN+N− , bS+S− , bN+x+ , bN+x− , bS+x+ , bS+x−) ∈ C1(U ; Z̃), we have that δ1b is
given by

(δ1b)N+N−x+ = −bN+x− − bN+x+ + bN+N−

(δ1b)S+S−x+ = −bS+x− − bS+x+ + bS+S− .

It is clear that δ1 : Z6 → Z2 is surjective, so the second cohomology vanishes. It is also
straightforward to see that ker δ0 = 0. Indeed, δ0a = 0 if and only if all its components
vanish. The vanishing of theN+N− component requires aN+ = 0 and the S+S− component
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requires aS+ = 0. The fact that ax+ = 0 then follows for example from the vanishing of
the N+x+ component. The zeroth cohomology thus also vanishes.

To deduce the first cohomology we really have to work out ker δ1/ im δ0 . A cochain
(b) ∈ C1(U ; Z̃)Z2 is a cocycle if and only if δ1b = 0, which is true if and only if bN+x− =
bN+N−−bN+x+ and bS+x− = bS+S−−bS+x+ . We can use these relations to eliminate bN+x−

and bS+x− . Therefore,

ker δ1 ∼= {(bN+N− , bS+S− , bN+x+ , bS+x+) ∈ Z4} .

The image of δ0 contains two independent copies of 2Z in theN+N− and S+S− components
which come from the aN+ and the aS+ degrees of freedom in degree zero. Quotienting by
aN+ and aS+ reduces Z4 to (Z2)

2 ⊕ Z2 . The ax+ degree of freedom appears diagonally in
the Z2 corresponding to the N+x+ and S+x+ components and so quotienting by it will
reduce Z2 to Z . We thus conclude that

Hn(S̃1;Z2, Z̃) ∼=

{
(Z2)

2 ⊕ Z if n = 1

0 if n ̸= 1
. (9.6)

9.4 Classification of “Real” line bundles

Similar to how complex line bundles are classified by a Čech cohomology group, “Real” line
bundles are classified by an equivariant Čech cohomology group. A priori, the classification
is in terms of Čech cohomology with coefficients in ÕX , the Z2-sheaf of continuous complex
valued functions endowed with the Z2-action of complex conjugation. However, using the
so-called exponential sequence, the classification can be reformulated in terms of Čech
cohomology with values in Z̃X . In Appendix C, the relevant Čech cohomology groups for
time reversal spheres are computed. It is found that “Real” line bundles over time reversal
spheres are always trivial, therefore justifying the construction of the FKMM invariant for
“Quaternionic” vector bundles over time reversal spheres.

The classification of “Real” line bundles over an involutive space (X, τ) is given by the
following proposition, which is adapted from [44, Proposition 1.1.1].

Proposition 9.5. Let (X, τ) be an involutive space. There is a canonical isomorphism

Vect1R(X, τ)
∼= Ȟ1(X;Z2, Õ∗

X) ,

where Ȟ1(X;Z2, Õ∗
X) is the Z2-Čech cohomology.

Proof. Given a cohomology class c ∈ Ȟ1(X;Z2, Õ∗
X) we construct from it a complex

line bundle L(c) in exactly the same fashion as in the non-equivariant case treated in
Proposition 9.1. The complex line bundle L(c) constructed there now has to be endowed
with a “Real” structure. Suppose (gαβ) ∈ Ȟ1(U ;Z2, Õ∗

X) represents the class c for some

Z2-cover U = {Uα}α∈A. Recall that L(c) ∼= L̃(g)/ ∼ , where L̃(g) =
⊔

α∈A Uα × C and

Uα × C ∋ (x, z) ∼ (y, w) ∈ Uβ × C ⇐⇒ (y, w) = (x, gαβ(x)z) .

Define the “Real” structure Θ̃ : L̃(g) → L̃(g) to be Θ̃(x, z) = (τ(x), z̄) . This “Real”
structure induces a “Real” structure on the quotient by ∼ , precisely because (gαβ) is a
Z2-invariant cocycle. To see this, suppose Uα × C ∋ (x, z) ∼ (y, w) ∈ Uβ × C , then we
have to show that Uτα ×C ∋ (τ(x), z̄) ∼ (τ(y), w̄) ∈ Uτβ ×C . In other words, we have to
prove that w̄ = gτατβ(τ(x))z̄ . We know that w = gαβ(x)z. Taking the complex conjugate

yields w̄ = gαβ(x)z̄ . The Z2-invariance of (g) means that θx(gαβ(x)) = gτατβ(τ(x)) . The
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action of θx on the stalks of O∗
X is complex conjugation. Hence, the Z2-invariance gives

us
gαβ(x) = θx(gαβ(x)) = gτατβ(τ(x)) ,

so that, indeed, w̄ = gαβ(x)z̄ = gτατβ(τ(x))z̄ proving that (τ(x), z̄) ∼ (τ(y), w̄) . The map

Θ̃ thus induces a “Real” structure on L(c) .
By the same arguments as before, the “Real” line bundles that we obtain for different

choices of representatives (gαβ) of c are isomorphic as “Real” line bundles. Indeed, different
representatives are related by a Z2-invariant boundary, which gives rise to an equivariant
isomorphism. The proofs of injectivity and surjectivity also proceed in the same way,
where surjectivity now rests on the fact that a “Real” line bundle always has a “Real”
trivializing Z2-cover.

To show that “Real” line bundles over some involutive space (X, τ), and thus the
determinant bundles associated to “Quaternionic” vector bundles of even rank, are trivial
then amounts to proving that Ȟ1(X;Z2, Õ∗

X) = 0 . Computing Čech cohomology for the
sheaf O∗

X is rather impractical, because the spaces of sections are infinite-dimensional
function spaces. We would rather deal with finite-dimensional spaces. The trick is to
consider the short exact sequence of Z2-sheaves

0 Z̃ ÕX Õ∗
X 0 .

2πi(·) exp(·)
(9.7)

The short exact sequence Eq. (9.7) is called the exponential sequence. It is important
to note that the sheaf OX , with group operation of addition of functions, is made into
an equivariant sheaf ÕX by endowing it with the Z2 action of multiplication by −1,
whilst the sheaf O∗

X , with group operation of multiplication of functions, is made into

an equivariant sheaf Õ∗
X by endowing it with the Z2 action of complex conjugation. The

exponential sequence gives rise to a long exact sequence in Čech cohomology that contains
the following portion

Ȟ1(X;Z2, ÕX) Ȟ1(X;Z2, Õ∗
X) Ȟ2(X;Z2, Z̃) Ȟ2(X;Z2, ÕX) . (9.8)

The ordinary sheaf OX is fine, meaning that it has partitions of unit. Therefore, its
ordinary sheaf cohomology H∗(X;OX) in positive degree vanishes for all spaces X. A
“good” cover of (X, τ) is then realized by taking a cover U = {X+, X−} consisting of
two copies X. Now we can use Theorem 9.4 to compute Ȟ∗(X;Z2, ÕX) by computing
Ȟ∗(X;Z2, ÕX) for the cover U = {X+, X−} . The cochain groups in degree zero and one
are

Č0(U , ÕX)Z2 = {(f+, f−) : f+(x) = −f−(τ(x))}

Č1(U , ÕX)Z2 = {(g+−, g−+) : g+−(x) = −g−+(τ(x)) = g+−(τ(x))} ,

where for the degree one cochains we have used both the equivariance as well as the usual
skew-symmetry of Čech cohomology. Since there are no higher order overlaps, the cochain
complex is

0 Č0(U , ÕX)Z2 Č1(U , ÕX)Z2 0δ ,

where δ(f+, f−)+−(x) = f−(x)− f+(x) = f−(x) + f−(τ(x)) . The degree zero cohomology
consists of cochains (f+, f−) in the kernel of δ satisfying f−(x) = −f−(τ(x)), and can thus
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be identified with equivariant sections of ÕX , as expected. Since there are no cochains
in degrees n ≥ 2, it follows immediately that Ȟn(X;Z2, ÕX) = 0 for n ≥ 2 . Finally,
the degree one cohomology Ȟ1(X;Z2, ÕX) also vanishes. To see this, note that im δ and
Č1(U , ÕX)Z2 are both given by the functions h : X → C such that h(x) = h(τ(x)) .

By the vanishing of Ȟn(X;Z2, ÕX) for n ≥ 1 and the exactness of the sequence in
Eq. (9.8), it follows then that Ȟ1(X;Z2,O∗

X) ∼= Ȟ2(X;Z2,Z) . This allows us to restate
the classification of “Real” line bundles in the following Corollary.

Corollary 9.6. Let (X, τ) be an involutive space. There is an isomorphism

Vect1R(X, τ)
∼= Ȟ2(X;Z2, Z̃) .

We have already seen that Ȟ2(S̃1;Z2, Z̃) = 0 in Eq. (9.6) . In Appendix C, we prove
that also Ȟ2(S̃d;Z2, Z̃) = 0 for time reversal spheres with d ≥ 2 . These results show that
all “Real” line bundles over the time reversal spheres in d ≥ 1 are trivial and this justifies
the construction of the FKMM invariant over time reversal spheres.

For the time reversal tori, however, the combinatorics of the Čech cohomology, even
after restricting to the smallest possible “good” cover, remain rather unwieldy. Therefore,
to justify the construction of the FKMM invariant for Q-bundles over the time reversal
torus we must still rely on the more advanced cohomological tools of [18].

9.5 Cohomology formulation of the FKMM invariant

The FKMM invariant has been constructed as taking values in a quotient of equivariant
homotopy classes of maps. These equivariant homotopy classes are actually isomorphic to
equivariant cohomology groups. This allows for a reformulation of the FKMM invariant
in terms of equivariant cohomology. For time reversal spheres, the relevant cohomology
group is computed in Appendix C and gives another proof of the Z2 valuedness of the
FKMM invariant.

The isomorphism between equivariant homotopy and equivariant cohomology is due
to the long exact sequence associated to the exponential sequence.

Proposition 9.7. Let (X, τ) be an involutive space. There is an isomorphism

[X,C∗]Z2
∼= Ȟ1(X;Z2, Z̃) .

Proof. The Čech cohomology of ÕX vanishes in positive degree so the long exact sequence
coming from the exponential sequence contains the portion

Ȟ0(X;Z2, ÕX) Ȟ0(X;Z2, Õ∗
X) Ȟ1(X;Z2, Z̃) 0 .

exp

The degree zero Čech cohomology is just the equivariant sections. Then, by exactness,

Ȟ1(X;Z2, Z̃) ∼= Γ(X, Õ∗
X)Z2/ expΓ(X, ÕX)Z2 ,

where the action of expΓ(X, ÕX)Z2 on Γ(X, Õ∗
X)Z2 is by multiplication. We thus have to

show that
Γ(X, Õ∗

X)Z2/ expΓ(X, ÕX)Z2 ∼= [X,C∗]Z2 .

In other words, we have to show that two equivariant maps f, g : X → C∗ are Z2-homotopic
if and only there is an equivariant h : X → C such that g = f exp(h) .

Let us first consider the implication from right to left. Assume we are given an h :
X → C such that g = f exp(h). We decompose the map h into its real and imaginary
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parts h = hR + ihI . Note that h is equivariant with respect to multiplication by −1,
because we view C as an additive group. Therefore,

h(τ(x)) = −h(x) .

On the other hand, we view C∗ as a multiplicative group with Z2 action given by complex
conjugation, so that ||f(x)|| = ||f(τ(x))|| and ||g(x)|| = ||g(τ(x))|| . The relation g =
f exp(h) then implies that

exphR(x) =
||g(x)||
||f(x)||

=
||g(τ(x))||
||f(τ(x))||

= exphR(τ(x)) .

The real part of h thus has to be both symmetric and antisymmetric under τ , which can
only be true if hR ≡ 0 . An equivariant homotopy from f to g is then readily constructed
by defining

H : X × [0, 1]→ C∗ , H(x, t) = f(x) exp(ithI(x)) .

Conversely, if H : X × [0, 1]→ C∗ is an equivariant homotopy from f to g , then H/f
is a homotopy from 1 to g/f . So, g/f is null-homotopic. Therefore, h := log(g/f) is
well-defined and satisfies g = f exp(h) . We have thus established the chain of bijections

Ȟ1(X;Z2, Z̃) ∼= Γ(X, Õ∗
X)Z2/ expΓ(X, ÕX)Z2 ∼= [X,C∗]Z2 ,

which proves the result.

The FKMM invariant takes values in the quotient [Xτ ,C∗]Z2/[X,C∗]Z2 . The previ-
ous Proposition relates the equivariant homotopy groups to the equivariant cohomology
groups. In principle, we can thus interpret the FKMM invariant in terms of a quotient of
cohomology groups. However, the final form in which we would like to present the coho-
mological formulation gets rid of the quotient in favor of so-called relative cohomology.

In the non-equivariant context, if F is a sheaf over X and Y ⊂ X is subspace, then
we can define the relative Čech cohomology Ȟ∗(X,Y ;F) of X relative to Y as follows.
For a cover U = {Uα}α∈A of X, let U ′ = {Uα}α∈A′ be all those sets that have nonempty
intersection with Y . Let ι : A′ → A be the inclusion. The map ι induces a map in cochains.
The relative Čech cochains Č∗(U ,U ′;F) are the cokernels of ι : Č∗(U ′;F) → Č∗(U ;F) .
The relative Čech cohomology with respect to the cover U , denoted Ȟ∗(U ,U ′;F), is the
cohomology of the relative Čech cochains. The relative Čech cohomology Ȟ∗(X,Y ;F) of
the pair (X,Y ) is the direct limit over covers U of X of the Ȟ∗(U ,U ′;F).

By definition of the relative Čech cochains, there is a level wise short exact sequence
of cochain complexes

0 C∗(U ′,F) C∗(U ;F) C∗(U ,U ′;F) 0 .

This short exact sequence induces a long exact sequence by the usual construction,

. . . Ȟn(U ;F) Ȟn(U ′;F) Ȟn+1(U ,U ′;F) Ȟn+1(U ;F) . . . .

Taking the direct limit preserves exactness. The long exact sequence thus carries over to
the relative Čech cohomology of the pair (X,Y ) . The construction for equivariant Čech
cohomology is exactly the same, the only extra assumption we need is that Y is to be a
τ -invariant subspace.

Now we can present the final cohomological formulation of the FKMM invariant. Recall
that we constructed the FKMM invariant for spaces with finitely many isolated fixed points
and only trivial “Real” line bundles, which, as we now know, means that Ȟ2(X;Z2, Z̃) = 0.
Under these assumptions, we have to following identification.
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Lemma 9.8. Let (X, τ) be a space such that Ȟ2(X;Z2, Z̃) = 0, then

[Xτ ,C∗]Z2/[X,C
∗]Z2
∼= Ȟ2(X,Xτ ;Z2, Z̃) .

Proof. The long exact sequence for the pair (X,Xτ ) gives

Ȟ1(X;Z2, Z̃) Ȟ1(Xτ ;Z2, Z̃) Ȟ2(X,Xτ ;Z2, Z̃) 0r .

It follows that

Ȟ2(X,Xτ ;Z2, Z̃) ∼= Ȟ1(X;Z2, Z̃)/r(Ȟ1(Xτ ;Z2, Z̃)) ∼= [Xτ ,C∗]Z2/[X,C
∗]Z2 ,

where the second isomorphisms is due to Proposition 9.7 and the action of [g] ∈ [X,C∗]Z2

on [f ] ∈ [Xτ ,C∗]Z2 is given by multiplying f by the restriction of g, i.e. ([g], [f ]) 7→
[g|Xτ · f ] .

We can thus view the FKMM invariant as taking values in the relative cohomology
Ȟ2(X,Xτ ;Z2, Z̃). In Appendix C, we prove that for time reversal spheres in d ≥ 2,

Ȟ2(Sd, (Sd)τ ;Z2, Z̃) ∼= Z2 ,

thus establishing again the Z2 nature of the FKMM invariant in this case.
In [18], DeNittis and Gomi present a similar cohomological formulation of the FKMM

invariant. The difference with the formulation here is that, where we use equivariant Čech
and sheaf cohomology, DeNittis and Gomi use the so-called equivariant Borel cohomology.
In a later work [47] they use this cohomological formulation of the FKMM invariant to
further generalize it to a more general class of involutive spaces, whose fixed point set is
not restricted to be a finite collection of points and may even be empty. The homotopy
formulation is clearly not suited for such a generalization since if the fixed point set is
empty, there can be no FKMM invariant in the homotopy formulation.
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10 Outlook

In this thesis we have studied the topological classification of insulators. In the first part,
we have restricted ourselves to insulators without any discrete symmetry requirements. A
precise mathematical “model of choice” for insulators based on band theory and the tight
binding approximation has been formulated. A classification of insulators with a certain
fixed number of valence bands can be achieved within this formalism, as long as the
total number of bands that we take into account is large enough. However, it has turned
out that all topological information for insulators in less than or equal to three spatial
dimensions is already contained in the two-dimensional, two-band model. This model has
been studied extensively, and it has been shown that the most general two-dimensional,
two-band model, of the form h = B · σ, is completely classified by the winding number
of B : X → S2, where X = T2 or S2. This result was already known, for example in [4].
In our presentation of the proof of this interpretation of the classification of topological
insulators we have emphasized that this result relies heavily on some nice coincidences,
most importantly the fact that B : X → S2 can be identified with the classifying map
of the valence bundle of the two-band model. Concrete models for topological insulators,
however, might not be presented in a two-band form, but could naturally arise as models
with many bands. Although it is abstractly speaking always possible to reduce to a two-
band model, it would be desirable to have a concrete, computational method of reducing
a higher-band model to a two-band model.

In the second part, we have studied time reversal symmetric insulators, with a focus on
continuum models. Using methods readily available from the original construction of the
Fu-Kane-Mele (FKM) invariant in the context of periodic models, we have proven its well-
definedness also in the context of continuum models. The FKM invariant has been shown
to be equivalent to the FKMM invariant for “Quaternionic” vector bundles by DeNittis
and Gomi. Inspired by this work, the classification of “Quaternionic” vector bundles over
time reversal spheres in terms of the FKMM invariant has been derived using elementary
arguments in equivariant homotopy, and also less elementary tools from equivariant Čech
and sheaf cohomology. These results imply that the physically motivated FKM invariant is
the only topological invariant for continuum models of time reversal symmetric insulators.
However, in the classification of “Quaternionic” bundles over the time reversal torus, it
still remains to use our methods to prove that all “Real” line bundles over the time reversal
torus are trivial. The proof of this fact is more difficult for the torus than for the sphere
because of a significant increase in combinatorial overhead. In the case of the sphere, the
combinatorics also seemed to get out of hand in d ≥ 3, but these issues have been neatly
avoided by a Mayer-Vieteris sequence argument. Even if the equivariant cohomology of
the two-dimensional time reversal torus could be computed from the combinatorics, it
remains to be seen how to extend the argument inductively to higher-dimensional tori.
The development of a Künneth-type formula for equivariant Čech cohomology would be
of great use here.

Finally, the ordinary insulators and the time reversal symmetric insulators are just
two of ten topological phases of matter in the so-called tenfold-way [48]. Within these
ten phases of matter, there are two more phases that correspond to topological insulators.
Their classifications can be readily understood in terms of what has been presented in
this work. However, six of the ten classes correspond to superconducting phases. One
could ask whether the strategy of associating a vector bundle to an insulator and then
classifying the vector bundle also works to classify the superconducting phases, and what
types of vector bundles would arise in that case.
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A Gauge invariance of the polarization tensor

In Section 4.3 we compute the Hall conductivity of a two-dimensional, two-band insulator
in a gauge with A0 = 0. We also work in the low-energy, low-temperature and long-
wavelength limit. In this Appendix, we argue that the result of this computation is gauge
invariant. We do this by arguing that the two diagrams that we have taken into account
provide a gauge invariant theory in the limits under consideration. To do this, we use
the following observation. Under a gauge transformation Aµ → Aµ + ∂µχ the physically
measurable current Jµ should be invariant.18 In other words, it must be true that

Jµ = πµνAν = πµν(Aν + pνχ).

Hence, at the level of currents, gauge invariance is equivalent to πµν(ω,p)pν = 0. What
we will show is that in the long-wavelength and low-temperature limit, the polarization
tensor coming from the “fish” and the “Kubo” diagrams satisfies

lim
p→0

πµν(p, ω)pν = 0 . (A.1)

The low-energy limit ω → 0 imposes the additional requirement that σij(ω) =
1

−iωπij(ω)
be well-defined. In first instance, let us ignore this additional requirement.

In a general gauge, the action of the two-band model up to quadratics terms in Aµ

is given by Eq. (4.15) with one additional term due to the minimal coupling −iℏωn →
−iℏωn + eA0(k, iωn),

S[ϕ∗, ϕ;A] =
∑
n

∫
dk

(2π)2
ϕ∗a(k, iωn) [−iℏωn + haa′(k)]ϕa′(k, iωn)

+
e

ℏ
1√
ℏβ

∑
n,m

∫
dkdq

(2π)4
ϕ∗a(k + q, iωn + iωm)A0(q, iωm)ϕa′(k, iωn)

+
e

ℏ
1√
ℏβ
∑
n,m

∫
dkdq

(2π)4
ϕ∗a(k + q, iωn + iωm)

[
Ai(q, iωm)

∂haa′(k)

∂ki

]
ϕa′(k, iωn)

+
( e
ℏ

)2 1

ℏβ
∑
n,m,r

∫
dkdqdp

(2π)6
ϕ∗a(k + q + p, iωn + iωm + iωr)

×
[
Ai(q, iωm)Aj(p, iωr)

∂2haa′(k)

∂ki∂kj

]
ϕa′(k, iωn) . (A.2)

The extra A0 terms have the effect of introducing an extra Green function

−ℏG−1
1′;ab(k, iωn;k

′, iωn′) =
e

ℏ
1√
ℏβ

∑
m

∫
dq

(2π)2
A0(q, iωm)δabδ(k−k′−q)δ(iωn−iωn′−iωm).

into the expansion G−1 = G−1
0 +G−1

1 +G−1
1′ +G−1

2 . There are now two extra terms coming
from the Kubo diagram that contribute to the polarization tensor, namely,

−1

2
Tr[G0G

−1
1′ G0G

−1
1′ ] and − 1

2
Tr[G0G

−1
1 G0G

−1
1′ ].

18The index µ = 0, 1, 2 is that of a vector in three-dimensional Minkowski space with metric η =
diag(−1, 1, 1). In principle, we should be careful about index placement. For the present computation,
however, this turns out to be a non-issue and so we will not worry about index placement. Moreover, the
convention below is that repeated indices are summed over, irregardless of their positioning.
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From these terms, we may compute completely analogously to Eq. (4.18) that in the
long-wavelength limit p→ 0,

π00(iωr) =
( e
ℏ

)2 1

β

∑
k,n

Tr

[(
|k+⟩ ⟨k+|

−iℏωn + ϵ+(k)
+

|k−⟩ ⟨k−|
−iℏωn + ϵ−(k)

)

×
(

|k+⟩ ⟨k+|
−iℏωn + iℏωr + ϵ+(k)

+
|k−⟩ ⟨k−|

−iℏωn + iℏωr + ϵ−(k)

)]
and, similarly,

πi0(iωr) =
( e
ℏ

)2 1

β

∑
k,n

Tr

[(
|k+⟩ ⟨k+|

−iℏωn + ϵ+(k)
+

|k−⟩ ⟨k−|
−iℏωn + ϵ−(k)

)

×
(

|k+⟩ ⟨k+|
−iℏωn + iℏωr + ϵ+(k)

+
|k−⟩ ⟨k−|

−iℏωn + iℏωr + ϵ−(k)

)
∂h(k)

∂ki

]
.

Indeed, from the action Eq. (A.2) we see that a vertex with index i should come with

a factor e
ℏ
∂h(k)
∂ki

whilst a vertex with index 0 only comes with a factor e
ℏ . Analogously

to Eq. (4.19), only mixed terms with one ϵ+ and one ϵ− in the denominator survive in
the low-temperature limit after working out the Matsubara sums and doing the analytic
continuation iωr → ω + iη+. In the present case, however, terms with mixed ϵ+ and
ϵ− denominators contain a factor ⟨k + |k−⟩ = 0 in the numerator. Therefore, πµ0(p, ω)
for µ = 0, 1, 2 vanishes in the long-wavelength, low-temperature limit. The vanishing of
these components means that it is always possible to gauge away A0 without changing
the resulting current Jµ. It follows that the computation of the Hall conductivity in
Section 4.3 is independent of A0. Therefore, the result obtained in the gauge A0 = 0 is
completely general.

For completeness sake, let us also establish the complete gauge invariance of the cur-
rent. In order to show that Eq. (A.1) is satisfied, it remains to show that

lim
p→0

πij(p, ω)pj = 0. (A.3)

As the limit of a product is the product of a limit, it suffices to prove that limp→0 π
ij(p, ω)

exists. In fact, we need to check a slightly stronger requirement than Eq. (A.3) because
the conductivity tensor σij(ω) =

1
−iωπij(ω) needs to be well-defined. We thus need that

limp→0 πij(p, ω) = O(ω) in the long-wavelength, low-temperature limit. In Section 4.3 we
have claimed this to be the case because the constant term contributing to πij(ω) coming
from the Kubo diagram is cancelled by the contribution from the fish diagram. Let us
prove this claim here.

Recall from Eq. (4.20) that the contribution to πij(ω) from the Kubo diagram is

πKubo
ij (ω) = −

( e
ℏ

)2 ∫ dk

(2π)2
(ϵ+(k)− ϵ−(k)) (MijnFD(ϵ−(k) + ℏω) +MjinFD(ϵ−(k)))

(ϵ+(k)− ϵ−(k))2 − (ℏω)2

−
( e
ℏ

)2 ∫ dk

(2π)2
ℏω(MijnFD(ϵ−(k) + ℏω)−MjinFD(ϵ−(k)))

(ϵ+(k)− ϵ−(k))2 − (ℏω)2
.

The second term is O(ω), the first term is not. In the limit ω → 0, the first term becomes

πKubo,first
ij = −

( e
ℏ

)2 ∫ dk

(2π)2
Mij +Mji

ϵ+(k)− ϵ−(k)
, (A.4)
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where we recall that

Mij = ⟨k + |∂h(k)
∂ki

|k−⟩ ⟨k − |∂h(k)
∂kj

|k+⟩ .

On the other hand, the contribution to the polarization coming from the fish diagram
Tr[G0G

−1
2 ] is

πfishij (p, iωr) = −
( e
ℏ

)2 1

β

∑
n

∫
dk

(2π)2
[−iℏωn + h(k)]−1

ab

∂2hba(k)

∂ki∂kj
. (A.5)

Note that this term does not depend on p or iωr. Diagonalizing the Hamiltonian in the
basis |k±⟩ and working out the Matsubara sums yields

πfishij =
( e
ℏ

)2∑
n

∫
dk

(2π)2
⟨k − |∂

2h(k)

∂ki∂kj
|k−⟩ (A.6)

for the contribution in the low-temperature limit. Using h(k) = [ϵ+(k)−ϵ−(k)] |k+⟩ ⟨k+|+
ϵ−(k), a straightforward calculation shows that the matrix element in the integrand can
be computed to yield

πfishij =
( e
ℏ

)2∑
n

∫
dk

(2π)2

[
Mij +Mji

ϵ+(k)− ϵ−(k)
+

∂2

∂ki∂kj
ϵ−(k)

]
. (A.7)

The first term precisely cancels Eq. (A.4). The second term also vanishes. Indeed, ϵ− :
X → R is a scalar function on a space X with no boundary, namely either T2 or S2.
Therefore, the integral of the total derivative vanishes. This establishes that taking into
account both the Kubo and the fish diagram, the polarization tensor satisfies

lim
p→0

πij(p, ω) = O(ω)

in the low-temperature limit, thus proving the gauge independence of the computations
of the conductivity done in Section 4.3.

B Equivalence of Čech and sheaf cohomology

The constructions of Čech cohomology and sheaf cohomology have been reviewed and gen-
eralized to an equivariant setting in Section 9. Although their constructions are completely
different, it turns out that Čech cohomology and sheaf cohomology are equivalent. More
precisely, if we fix a topological space X that is nice enough, say paracompact Hausdorff,
then Čech and sheaf cohomology are naturally equivalent as functors Sh(X) → Ab from
the category of sheaves over X to the category of abelian groups. The proof is based on
the following theorem, which is Corollary 6.49 in Rotman’s book on Homological Algebra
[40].

Theorem B.1 ([40, Corollary 6.49]). Let (Fn : A → B)n≥0, (G
n)n≥0 be sequences of

additive covariant functors, where A and B are abelian categories and A has enough
injectives. If,

(i) for every short exact sequence 0→ A→ B → C → 0, there are long exact sequences
with natural connecting homomorphisms,

(ii) F 0 is naturally isomorphic to G0 ,
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(iii) Fn(E) = 0 = Gn(E) for all injective objects E and all n ≥ 1 ,

then Fn is naturally isomorphic to Gn for all n ≥ 0 .

The intuition behind this result is roughly the following. For any object A ∈ A we can
find E ∈ A such that A injects into E and we thus get a short exact sequence

0→ A→ E → C → 0 , (B.1)

where C is the cokernel of A→ E . By (i), the short exact sequence Eq. (B.1) gives rise to a
long exact sequences. From (ii) and a Five Lemma type argument one deduces that F 1(A)
is isomorphic to G1(A). This establishes the base case in an inductive proof. Indeed, in
positive degree, many terms vanish in the long exact sequences because of (iii) and this
will provide the rest of the isomorphisms Fn(A) → Gn(A) . The naturality assumptions
are needed for the relevant diagrams to commute.

We will first apply Theorem B.1 to the two sequences (Ȟn(X;−) : Sh(X) → Ab)n≥0

and (Hn(X;−) : Sh(X) → Ab)n≥0 of Čech and sheaf cohomology groups. The technical
assumption of being an additive functor between abelian categories in this case just means
that cohomology behaves well when taking direct sums of sheaves. We have also seen that
the category of sheaves of abelian groups has enough injectives. The important thing is
thus to check that assumptions (i), (ii) and (iii) in the Theorem are satisfied. We then
indicate how to adapt the proofs of assumptions (i), (ii) and (iii) in the equivariant case
to also establish the equivalence there.

B.1 Ordinary setting

Let (Ȟn(X;−) : Sh(X) → Ab)n≥0 and (Hn(X;−) : Sh(X) → Ab)n≥0 be the Čech and
sheaf cohomology functors. To verify assumption (i) of Theorem B.1, it has to be argued
that given a short exact sequence of sheaves, there is a long exact sequence in cohomology.
For sheaf cohomology, the result can be found in [41] and is based on purely categorical
arguments. For Čech cohomology, the result has been proven by Serre in [49] in the
case that X is paracompact Hausdorff. We will henceforth restrict to this case. In both
cohomology theories, the underlying reason for the existence of the long exact sequence is
that the section functor Γ(X,−) : Sh(X) → Ab is left exact, but not right exact. In the
case of Čech cohomology, given a short exact sequence of sheaves

0→ F → G → H → 0

this only gives rise to the exact sequence

0→ Č∗(U ;F)→ Č∗(U ;G)→ Č∗(U ;H)

on the level of Čech cochains. Indeed, the last map may fail to be surjective because a
section of H(Uα) may fail to have a primitive in G(Uα). However, by the exactness of
the sequence of sheaves, which is an exactness at the level of stalks, primitives do always
exist on sufficiently small neighbourhoods. Roughly speaking, Serre showed that for any
(fα0...αn) ∈ Čn(U ,H), there always exists a refinement V = {Vβ}β∈B of U , consisting of
small enough opens, so that f has primitives over the Vβ. Appropriate use of this fact
leads to the long exact sequence in cohomology.

To verify assumption (ii), we note that degree zero Čech cohomology and degree zero
sheaf cohomology are both naturally isomorphic to the global sections. For Čech cohomol-
ogy with coefficients in a sheaf F , we have shown in Section 9 that Ȟ0(X;F) ∼= Γ(X,F) .
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It is straightforward to verify that this isomorphism is natural, since sheaf morphisms play
well with restrictions. To show that H0(X;F) ∼= Γ(X;F), we pick any injective resolution
0→ F → I0 → I1 → · · · . The left exactness of the global section functor implies that

0→ F(X)→ I0(X)→ I1(X)

is exact. Therefore, denoting the inclusion of F into I0 by i,

H0(X;F) = ker d(X) = im i(X) ∼= F(X) = Γ(X,F) .

By general properties of injective resolutions, the isomorphism is natural [41]. We thus
conclude that there is a chain of natural isomorphisms

Ȟ0(X;F) ∼= Γ(X,F) ∼= H0(X;F),

which verifies (ii).
Let us then consider assumption (iii), which states that the cohomology of injective

sheaves vanishes in positive degree cohomology. In the case of sheaf cohomology, this is
immediate. If I is an injective sheaf, then

0→ I → I → 0

is an injective resolution. The sheaf cohomology is thus the cohomology of the complex

0→ I(X)→ 0 ,

which clearly vanishes in positive degree.
To show that Čech cohomology of an injective sheaf vanishes in positive degree requires

significant work, however. Let U ⊂ X be an open set and define the sheaf ZU by

ZU (V ) =

{
Z if V ⊆ U
0 else

.

This sheaf can be used to express the sections of F over U in the form of a Hom-group
between sheaves.

Lemma B.2. Let F be a sheaf over X and let U ⊂ X be open, then there is an isomor-
phism of groups

Hom(ZU ,F) ∼= F(U) .

Proof. Given a sheaf morphism φ : ZU → F we can construct a section of F over U by
evaluating φ(U) on the constant 1 section of ZU (U) ∼= Z . This defines a map

J : Hom(ZU ,F)→ F(U) φ 7→ φ(U)(1) .

The claim is that J is an isomorphism of groups. To show injectivity, suppose that
φ ∈ Hom(ZU ,F) is such that J(φ) = φ(U)(1) = 0. Since 1 ∈ ZU (U) is a generator, this
implies that φ(U) = 0 . For any V ⊆ U , it follows that φ(V ) = ρUV φ(U) = 0. Moreover, it
also holds that φ(V ) = 0 for any V ̸⊆ U , since ZU (V ) = 0. Therefore, φ : ZU → F is the
zero morphism. This proves injectivity.

For surjectivity, suppose s ∈ F(U) is a section. The requirement φ(U)(1) = s defines
a morphism φ ∈ Hom(ZU ,F) . Indeed, if V ⊆ U , then compatibility with restriction fixes
φ(V ) = φ(U)ρUV and if V ̸⊆ U , then the fact that ZU (V ) = 0 fixes φ(V ) = 0 . This
establishes the isomorphism Hom(ZU ,F)→ F(U) .
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For any sheaf F and open cover U = {Uα}α∈A, the degree n Čech cochain group can
be expressed as

Čn(U ;F) =
∏

⟨α0...αn⟩∈An+1

F(Uα0...αn) ,

where An+1 is the set of all n+ 1-overlaps and the ⟨. . . ⟩ remind us that cochains need to
be antisymmetric in their indices. Using the Lemma above and properties of Hom, we can
rewrite this as

Čn(U ;F) ∼=
∏

⟨α0...αn⟩

Hom
(
ZUα0...αn

,F
) ∼= Hom

( ⊕
⟨α0...αn⟩

ZUα0...αn
,F
)
, (B.2)

where the indices α0 . . . αn run over the n + 1-fold overlaps An+1 and elements are still
antisymmetric in their indices . Let us briefly explain the antisymmetry in the Hom-group
in the case of one overlap U1 ∩ U2 . If (φ12, φ21) ∈ Hom(

⊕2
⟨α0α1⟩=1 ZUα0α1

,F), then, for
U = U12, the map φ12(U) : Z = ZU12(U) → F(U) is minus the map φ21(U) : Z =
ZU21(U)→ F(U) .

Let us define the sheaf ZU ,n :=
⊕

⟨α0...αn⟩ ZUα0...αn
. We collect all the sheaves (ZU ,n)n≥0

in a chain complex

. . . ZU ,2 ZU ,1 ZU ,0 0∂ ∂ , (B.3)

where the differential ∂ is the sum of the maps ZUα0...αn
→ ZUα0...α̂i...αn

given by (−1)i

times the canonical map. The Čech cochain complex is recovered from (B.3) by applying
Hom(−,F) . The fact that applying Hom(−,F) gives the right cochain groups follows from
the isomorphism in Eq. (B.2). What we still have to argue is that under the Hom(−,F)
isomorphism, the Čech differential δ is given by precomposition with ∂ . To this end,
consider the following diagram

Hom(ZU ,n,F) Hom(ZU ,n+1,F)

Čn(U ;F) Čn+1(U ;F)

∼=

∂∗

∼=

δ

,

where the vertical arrows are the isomorphisms induced by φ 7→ φ(U)(1) as in Lemma B.2.
We have to show that the diagram commutes. To do this, let (fα0...αn) ∈ Čn(U ;F) be a
cochain. Under the vertical isomorphism, this cochain (f) maps to the sheaf morphism

φ :
⊕

⟨α0...αn⟩

ZUα0...αn
→ F ,

which sends 1α⃗ ∈ ZU (Uα⃗) to fα⃗ ∈ F(Uα⃗). Here, 1α⃗ is the section in
⊕

⟨β⃗⟩ ZU
β⃗
(Uα⃗) which

is 1 in the β⃗ = α⃗ slot and zero in all the other slots. Then,

(∂∗φ)(Uα0...αn+1)(1α0...αn+1) = φ(Uα0...αn+1)(∂(Uα0...αn+1)(1α0...αn+1))

= φ(Uα0...αn+1)

(
n+1∑
i=0

(−1)i1α0...α̂i...αn+1

)

=

n+1∑
i=0

(−1)iφ(Uα0...αn+1)(1α0...α̂i...αn+1)

=

n+1∑
i=0

(−1)ifα0...α̂i...αn+1 ,
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where the appropriate restrictions of 1α0...α̂i...αn and fα0...α̂i...αn are implicit. This proves
that Hom(ZU ,∗,F) together with the differential ∂∗ is isomorphic to the Čech cochain
complex Č∗(U ,F). The merit of this reformulation is that the chain complex ZU ,∗ is exact
in positive degrees [42, Lemma 03AT], so that we can now prove the desired result.

Proposition B.3. Let X be a space and let I be an injective sheaf on X. Then,
Ȟn(X; I) = 0 for n > 0 .

Proof. Let U be an open cover of X. By the discussion above, the Čech cochain complex
Č∗(U ; I) is isomorphic to Hom(ZU ,∗, I) . Since I is injective, the functor Hom(−, I)
preserves both left and right exactness. In fact, left exactness always holds, but the
injectivity also provides the right exactness. But then because ZU ,∗ is exact in positive
degrees, it follows that Hom(ZU ,∗, I) is exact in positive degrees. Therefore, its cohomology
in positive degrees vanishes and so also the Čech cohomology vanishes in positive degree.

B.2 Equivariant setting

Let (X, τ) be an involutive space and denote by (Ȟn(X;Z2,−) : ShZ2(X, τ) → Ab)n≥0

and (Hn(X;Z2,−) : ShZ2(X, τ)→ Ab)n≥0 the equivariant Čech and equivariant sheaf co-
homology functors. Just like in the ordinary setting, the equivalence of these two functors
is established by checking conditions (i), (ii) and (iii) of Theorem B.1.

One can view the equivariant sheaf cohomology H∗(X;Z2,−) as the right derived
functor of the equivariant section functor Γ(X,−)Z2 . The proofs of assumption (i) and
(iii) then follow from exactly the same homological algebra arguments as in the ordinary
case. Furthermore, the degree zero equivariant sheaf cohomology is seen to be naturally
isomorphic to the global equivariant sections. It also follows from very similar arguments to
the ordinary case that the degree zero equivariant Čech cohomology is naturally isomorphic
to the global equivariant sections too. Hence, we have the chain of natural isomorphisms

H0(X;Z2,−) ∼= Γ(X,−)Z2 ∼= Ȟ0(X;Z2,−) ,

which establishes (ii).
To show that a short exact sequence of equivariant sheaves give rise to a long exact

sequence in equivariant Čech cohomology one can straightforwardly generalize the proof
by Serre in the ordinary case [49]. The only alteration that has to be made is to change
all the covers in Serre’s proof into Z2-covers. This then proves (i) for equivariant Čech
cohomology.

Finally, it has to be argued that Ȟn(X;Z2, Ĩ) = 0 for n > 0 and Ĩ and injective
Z2-sheaf. The key point is to generalize the isomorphism Eq. (B.2) of Čech cochains with
Hom-sets. Let U = {Uα}α∈A be a Z2-cover of (X, τ). To do so, we have to upgrade the
sheaf ZU ,n to Z2-sheaf. Define the sheaf morphism θZn : ZU ,n → τ∗ZU ,n through

θZn(Uα⃗)(1α⃗) = 1τα⃗ , (B.4)

where again 1α⃗ denotes the section in ZU ,n(Uα⃗) =
⊕

⟨β⃗⟩ ZU
β⃗
(Uα⃗) that is the constant 1

section in the α⃗-component of the direct sum and zero in all the other components. By
the same arguments as in Lemma B.2, Eq. (B.4) leads to a well-defined sheaf morphism.
The morphism θZn defines a Z2-structure on ZU ,n . We denote the resulting Z2-sheaf by

Z̃U ,n . The differential ∂ of the chain complex Eq. (B.3) is equivariant with respect to the
Z2-structure θ

Z so that we obtain a chain complex of Z2-sheaves

. . . Z̃U ,2 Z̃U ,1 Z̃U ,0 0∂ ∂ . (B.5)
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Lemma B.4. Let F̃ = (F , θF ) be a Z2-sheaf over an involutive space (X, τ) and let
U = {Uα}α∈A be a Z2-cover. Then, there is an isomorphism of cochain complexes

Č∗(U ; F̃) ∼= HomZ2(Z̃U ,∗, F̃) .

Proof. Recall that, by definition, Čn(U , F̃) = (
∏

⟨α⃗⟩F(Uα⃗))
Z2 , where (fα⃗) is a Z2-invariant

cochain if θF (Uα⃗)(fα⃗) = fτα⃗ . Given a Z2-invariant cochain (fα0...αn) we can construct an
element Φ of HomZ2(Z̃U ,∗, F̃) by defining Φ on the α0 . . . αn-component of the direct sum
in ZU ,n through

Φ(Uα⃗)(1α⃗) = fα⃗ .

To see that the element Φ constructed this way is indeed a Z2-sheaf morphism note that
for any α⃗, we have

θF (Uα⃗)Φ(Uα⃗)(1α⃗) = θF (Uα⃗)(fα⃗) = fτα⃗ = Φ(Uτα⃗)(1τα⃗) = Φ(τUα⃗)θ
Z(Uα⃗)(1α⃗) .

Therefore, on all generators Φ is compatible with the Z2-structures θ
Z and θF , which

means that Φ is in fact a Z2-morphism. Define then the map

Č∗(U ; F̃)→ HomZ2(Z̃U ,∗, F̃), (fα⃗) 7→ Φ ,

where Φ is as constructed above.
We claim that this map gives the required isomorphism. Injectivity is clear, since Φ

is the zero morphism if and only if it vanishes on all the generators 1α⃗ and Φ(U)(1α⃗) = 0
for all U ⊂ X if and only if fα⃗ = 0 . Surjectivity is also straightforward, since any
Z2-morphism in HomZ2(Z̃U ,∗, F̃) is fully determined by what it does on the generators
1α⃗ .

By exactness of HomZ2(−, Ĩ) for injective sheaves, we then immediately get the ana-
logue of Proposition B.3.

Proposition B.5. Let (X, τ) be an involutive space and let Ĩ be an injective Z2-sheaf on
(X, τ). Then, Ȟn(X;Z2, Ĩ) = 0 for n > 0 .

C Equivariant sheaf cohomology of S̃d

In this Appendix, we compute some important equivariant sheaf cohomology groups of the
time reversal sphere S̃d = (Sd, τ) in the case d ≥ 2. For d = 1, the equivariant cohomology
groups are already given by Eq. (9.6) . Since Čech and sheaf cohomology are equivalent,
we will compute whichever one is easiest in the case at hand.

C.1 Proof of H2(S̃2;Z2, Z̃) = 0

Consider the time reversal sphere S̃2 with its involution τ : (x, y, z) 7→ (−x,−y, z) . In
the same way as we covered S̃1 by six contractible opens, we can cover S̃2 with eight
contractible opens indexed by open hemispheres indexed by

A = {N+, N−, S+, S−, x+, x−, y+, y−} .

The involution τ : A → A acts again on the index set by changing a subindex from + to
− and vice versa. The cochain groups are determined by specifying a generating set of
indices for the overlaps, i.e. a set of indices such that any index is obtained by permutation
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or action of τ . The cover itself is generated by {N+, S+, x+, y+} . The double overlaps are
generated by

N+N− S+S− x+y+ x+y−

N+x+ N+x− N+y+ N+y−

S+x+ S+x− S+y+ S+y− .

The triple overlaps are generated by

N+N−x+ N+x+y+ S+x+y+

S+S−x+ N+x+y− S+x+y−

N+N−y+ N−x+y+ S−x+y+

S+S−y+ N−x+y− S−x+y− .

The quadruple overlaps are generated by

N+N−x+y+ N+N−x+y−

S+S−x+y+ S+S−x+y− .

There are no higher order overlaps. The equivariant Čech cochain complex for S̃2 thus
takes the form

0 Z4 Z12 Z12 Z4 0δ0 δ1 δ2 .

Since the cover indexed by A satisfies the assumptions of Theorem 9.4, we have that

Ȟ2(S̃2;Z2, Z̃) ∼= ker δ2/ im δ1 .

The kernel of δ2 is computed as follows. For a cochain (a) ∈ Č2(U , Z̃)Z2 , we can look at
its image under δ2:

(δ2a)N+N−x+y+ = aN−x+y+ − aN+x+y+ + aN+N−y+ − aN+N−x+

(δ2a)N+N−x+y− = aN−x+y− − aN+x+y− + aN+N−y+ − aN+N−x+

(δ2a)S+S−x+y+ = aS−x+y+ − aS+x+y+ + aS+S−y+ − aS+S−x+

(δ2a)S+S−x+y− = aS−x+y− − aS+x+y− + aS+S−y+ − aS+S−x+ ,

where we have used equivariance and antisymmetry to write aN+N−y− = aN+N−y+ and
aS+S−y− = aS+S−y+ . The reason for writing it like this is because we want to use only
the triple overlaps from our generating list. Now, (a) ∈ ker δ2 if and only if (δ2a) = 0, i.e.
the left hand side of the above four equations must vanish. We can thus get rid of four
components of (a) by expressing them in terms of the remaining eight using the kernel
equations. Let’s eliminate N−x+y+, N−x+y−, S−x+y+ and S−x+y−, which are the left
most terms in each equation. The kernel of δ2 is thus generated by the remaining eight
independent components.

To prove that ker δ2/ im δ1 = 0 we have to show that δ1 is surjective onto ker δ2 . This
can be shown by listing out the eight independent triple overlaps of ker δ2 and listing out
the double overlaps in some specific order. Then, we write

δ1 : Č2 ∼= Z12 → Z8 ∼= ker δ2

as a matrix with respect to the chosen ordering of the double and triple overlaps. This
yields an 8 × 12 matrix. Row reducing this matrix δ1 by only doing integer operations
shows that δ1 is surjective onto ker δ2. We thus conclude that Ȟ2(S̃2;Z2, Z̃) = 0 .
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C.2 Proof of H2(S̃d;Z2, Z̃) = 0 for d ≥ 2

To compute H2(S̃d;Z2, Z̃) for d > 2 one could try to repeat the Čech cohomology compu-
tation performed in the previous section. The amount of sets we need to cover S̃d grows
linearly with d. However, the amount of overlaps we have to consider grows in exponential
fashion. In fact, the amount of overlaps one has to consider in d = 3 is already quite un-
wieldy. There is a more efficient way to proceed now. We will set up a Mayer-Vietoris-type
sequence to inductively prove that H2(S̃d;Z2, Z̃) = 0 for d ≥ 2. The Čech computation in
the case d = 2 serves as the base case for the induction argument.

In ordinary sheaf cohomology one has a Mayer-Vietoris sequence [42, Section 01E9].
Since the proof is purely categorical, it can be repeated verbatim in the equivariant case.
The only subtlety is that one uses that in the ordinary case it is true that injectives
sheaves are “flasque”, meaning that any local section extends to a global section. It is not
immediately obvious that this carries over to the equivariant setting, but it is nonetheless
true [50] . This leads to the following statement of the Mayer-Vietoris sequence.

Lemma C.1. Let X̃ = (X, τ) be an involutive space and let U and V be two Z2-invariant
opens such that X = U ∪ V . For any Z2-sheaf F̃ , there is a long exact sequence in
cohomology

. . . Hn−1(U ∩ V ) Hn(X) Hn(U)⊕Hn(V ) Hn(U ∩ V ) . . . ,

where Hn(−) is shorthand for Hn(−;Z2, F̃) .
We will now prove H2(S̃d;Z2, Z̃) = 0 for d ≥ 2 by induction on d. The base case d = 2

has already been established in the previous section. Suppose then that H2(S̃d;Z2, Z̃) = 0
for some d ≥ 2 . The time reversal sphere S̃d+1 is obtained from S̃d by attaching two cells
{−} × Dd+1 and {+} × Dd+1 of dimension d + 1 as in Fig. 13. Let’s take U to be the

Figure 13: Attachment of free d+1-cells to S̃d+1. The coordinate system in the lower left
corner indicates the x0 direction, the xd+1 direction and the unlabelled axis represents the
other directions.

interior of the two attached cells, i.e.

U = {(x0, x1, . . . , xd, xd+1) ∈ Sd+1 : x0 ̸= 0} .

The convention is that the Z2 action is (x0, x1, . . . , xd, xd+1) 7→ (−x0,−x1, . . . ,−xd, xd+1) .
We take V to be a fattened up version of the S̃d that we attach to,

V = {(x0, x1, . . . , xd, xd+1) ∈ Sd+1 : x0 ∈ (−1/2, 1/2)} .
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The opens U and V are Z2-invariant and cover S̃d+1. From the Mayer-Vietoris sequence
we obtain the exact sequence

H1(U ∩ V ;Z2, Z̃) H2(S̃d+1;Z2, Z̃) H2(U ;Z2, Z̃)⊕H2(V ;Z2, Z̃) . (C.1)

The claim is that H1(U ∩ V ), H2(U) and H2(V ) are all zero.
Let’s start with H1(U ∩V ;Z2, Z̃). The set U ∩V consists of two disjoint opens. There

is one component with x0 > 0 and one with x0 < 0. The Z2-action maps points with
x0 > 0 to points with x0 < 0 and vice versa. Therefore, an open cover W of the x0 > 0
component can be extended by the Z2-action to a cover W ⊔ τW of U ∩ V . In fact, any
Z2-cover of U ∩ V will be of this form. Furthermore, there is an isomorphism of cochain
complexes

Č∗(W ⊔ τW; Z̃)Z2 ∼= Č∗(W;Z) ,

which from left to right is given by restriction and from right to left by equivariant exten-
sion. We conclude that

H∗(U ∩ V ;Z2, Z̃) ∼= H∗((U ∩ V )x0>0;Z) ,

where the right hand side is ordinary sheaf cohomology with coefficients in the constant
sheaf Z . The x0 > 0 component of U ∩ V is homotopy equivalent to Sd. Hence, by
Theorem 9.2, i.e. homotopy invariance of sheaf cohomology with coefficients in a constant
sheaf, it follows that

H1(U ∩ V ;Z2, Z̃) ∼= H1(Sd;Z) ∼= H1
sing(S

d;Z) = 0 ,

where we have also invoked the equivalence of sheaf and singular cohomology for constant
sheaves over paracompact spaces [51] . The same argument establishes that

H2(U ;Z2, Z̃) ∼= H2(Dd+1;Z) ∼= H2
sing(D

d+1;Z) = 0 .

Finally, we have to show that H2(V ;Z2, Z̃) = 0 . We can obtain a “good” Z2-cover of V
by taking the “good” Z2-cover of S̃

d indexed by

A = {N+, N−, S+, S−, (x1)+, (x1)−, . . . , (xd)+, (xd)−} ,

analogous the Z2-covers we have used for S̃1 and S̃2 before, and fattening it in the x0
direction. In this way, we obtain a “good” cover of V indexed by A . The Čech cochain
complex associated to this cover of V with Z̃ coefficients is isomorphic to the correspond-
ing one of S̃d, because their index sets have the same combinatorics. Hence, the Čech
cohomologies of V and S̃d agree. By the induction hypothesis, we conclude that

H2(V ;Z2, Z̃) ∼= H2(S̃d;Z2, Z̃) = 0 .

The portion of the Mayer-Vietoris sequence in Eq. (C.1) thus becomes

0→ H2(S̃d+1;Z2, Z̃)→ 0.

Exactness of this sequence implies H2(S̃d+1;Z2, Z̃) = 0 . This concludes the inductive
proof that H2(S̃d;Z2, Z̃) = 0 for d ≥ 2 .
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C.3 Proof of H2(S̃d, (S̃d)τ ;Z2, Z̃) ∼= Z2 for d ≥ 2

We show that Ȟ2(S̃d, (S̃d)τ ;Z2, Z̃) ∼= Z2 when d ≥ 2. Because Ȟ2(S̃d;Z2, Z̃) = 0 for d ≥ 2,
it follows from the long exact sequence of the pair (S̃d, (S̃d)τ ) that

Ȟ2(S̃d, (S̃d)τ ;Z2, Z̃) ∼= H1((S̃d)τ ;Z2, Z̃)/rH1(S̃d;Z2, Z̃) ,

where r denotes the map induced in cohomology by the inclusion (S̃d)τ → Sd .
We first give the argument for d = 2 . The degree one equivariant cohomology of the

point with coefficients in Z2 has been computed to be Z2 . Since (S̃2)τ is just the disjoint
union of two points, namely, the north and south pole within S̃2, it follows that

H1((S̃2)τ ;Z2, Z̃) ∼= Z2 ⊕ Z2 .

Computing H1(S̃2;Z2, Z̃) requires some more effort. We use the same “good” cover U
indexed by A as in Appendix C.1 . Recall that the cochain complex for this cover is

0 Z4 Z12 Z12 Z4 0δ0 δ1 δ2 .

To shorten the notation, we will represent a cochain (b) ∈ Č1(U , Z̃)Z2 in terms of its indices
only. For example, instead of writing bN+N− , we simply write N+N− . We claim that

ker δ1 = {(N+N−, S+S−, N+x+,S+x+, N+y+, S+, y+) :

N+N− = S+S−, N+x+ = N+y+, S+x+ = S+y+} .

This follows from the twelve kernel equations

N+x− = N+x+ −N+N− x+y+ = N+y+ −N+x+ x+y+ = S+y+ − S+x+
N+y− = N+y+ −N+N− x+y− = N+y− −N+x+ x+y− = S+y− − S+x+
S+x− = S+x+ − S+S− x+y+ = N−y+ −N−x+ x+y+ = S−y+ − S−x+
S+y− = S+y+ − S+S− x+y− = N−y− −N−x+ x+y− = S−y− − S−x+ .

From the first column, we see that we can express N+x−, N+y−, S+x− and S+y− in terms
of indices we claim to be in the kernel. This already reduces the kernel from Z12 to Z8 .
We can also completely get rid of x+y+ and x+y−, since these too can be expressed in
terms of the indices we claim to be in ker δ1 . We now prove the relations between the
variables of ker δ1. From the second and third column of equations above, it follows that

N+y+ −N+x+ = S+y+ − S+x+ , (C.2)

N+y− −N+x+ = S+y− − S+x+ . (C.3)

Using the first column, we can express Eq. (C.3) as

N+y+ −N+N− −N+x+ = S+y+ − S+S− − S+x+ .

Invoking Eq. (C.2), it follows that

N+N− = S+S− .

From the second and third column we also get

N+y+ −N+x+ = N−y+ −N−x+ .
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By equivariance and the first column, the right hand side becomes

N−y+−N−x+ = −N+y−+N+x− = −N+y++N+N−+N+x+−N+N− = −(N+y+−N+x+) .

Hence, N+y+ = N+x+ and similarly we prove S+y+ = S+x+ . This establishes the claimed
form of the kernel. The image of δ0 is fully determined by

(δ0a)N+N− = −2N+ , (δ0a)N+x+ = x+ −N+ and (δ0a)S+y+ = y+ − S+ .

From the N+N− and S+S− entries, we get a Z/2 and all other entries cancel when taking
the quotient because we can use x+ to cancel N+x+ and y+ to cancel S+y+. Therefore,

H1(S̃2;Z2, Z̃) = ker δ1/ im δ0

∼= diag(Z⊕ Z)3/(diag(2Z⊕ 2Z)⊕ diag(Z⊕ Z)2)
∼= diag(Z2 ⊕ Z2) ,

where the remaining direct sum pertains to the N+N− and S+S− components.
The relative cohomology H1(S2, (S2)τ ;G, Z̃) can now be computed. Recall that

H1((S̃2)τ ;Z2, Z̃) ∼= Z/2⊕ Z/2 ,

where the first Z/2 corresponds to N+N− and the second to S+S−. The restriction of
H1(S̃2;Z2, Z̃) to the fixed points is precisely the diagonal in Z/2⊕ Z/2. Hence,

H2(S̃2, (S̃2)τ ;Z2, Z̃) ∼= H1((S̃2)τ ;Z2, Z̃)/rH1(S̃2;Z2, Z̃)
∼= (Z/2⊕ Z/2)/diag(Z/2⊕ Z/2)
∼= Z/2 .

This establishes the result for d = 2 . However, the computation for S2 can be immediately
extended to Sd for d > 2. Taking the same cover, with more directions xi’s, we get by
considering just x1 and x2 already the relation N+N− = S+S− from exactly the same
equations as above. This then deals already with all things we need, since we are only
interested in the restriction to the fixed points.

This combinatoric argument for the Z2 valuedness very much has the same structure as
the homotopy argument given in Section 8.3. For the sphere S̃2 we argue the Z2 valuedness
from the fact that behaviour at the north pole is linked to behaviour at the south pole.
In the homotopy argument, the relation between north and south pole is reflected by the
fact that global continuous equivariant sections need to have the same signs at the north
and south pole. In the Čech cohomology argument, the relation is that for an equivariant
cochain (b) in the kernel of δ1 it must be that bN+N− = bS+S− . The argument for higher

dimensional spheres S̃d follows by just restricting to a copy of S̃2.
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