
Labeling Curved Nonograms

Eva Timmer

June 26, 2023

Abstract

A curved nonogram is a variation of a classic nonogram, which is a
type of logic pen-and-paper puzzle. While a classic nonogram takes the
shape of a uniform grid, a curved nonogram is an arrangement of curves.
The puzzler colors in certain cells or faces based on provided clues. A
correctly solved nonogram usually reveals a recognizable image. In a
curved nonogram, clues are placed in labels around the boundary of the
puzzle, in this thesis we implement three algorithms that automatically
place these labels. Each algorithm tries to find a valid labeling, where
each label is assigned a port and leader length, and none of the placed
labels overlap with each other.

The first algorithm uses 2-SAT to find a labeling by assigning each
label to one of two ports, but requires a given fixed leader length for
each label. The second algorithm uses dynamic programming to assign
a leader length to each label, but requires a given fixed port assignment.
The final algorithm uses MaxSAT to assign both a leader length and port
assignment.

Each algorithm is tested on several different input puzzles. The Dy-
namic Programming and MaxSAT algorithms are also tested on randomly
generated sets of labels that need to be placed on a single edge.

1 Introduction

Nonograms, also known as Paint by Numbers or Japanese puzzles, are a popular
type of logic pen-and-paper puzzle. The puzzler colors in cells of a grid, based
on the provided clues. The clues are a sequence of numbers for each column
and row, denoting the amount of consecutive squares that need to be colored.
Figure 1 shows an example of a simple nonogram puzzle, where the solution
shows an image of a smiley face.

1



1 2 1 2 1
1 1

1 1
1 1

1 1
3

1 2 1 2 1
1 1

1 1
1 1

1 1
3

Figure 1: An example of a simple nonogram puzzle.

A variation of the nonogram is the curved nonogram, introduced by De Jong
[8], where instead of a uniform grid, the puzzle consists of a set of nonogram
lines which are arbitrary curves enclosed by a boundary, see Figure 2. Each
nonogram line lies completely inside the boundary, and starts and ends on the
boundary. In addition, no more than two lines may intersect in the same point,
to avoid ambiguity.
Instead of a sequence of numbers for each row and column, there is a sequence
of numbers for each side of the line. The numbers denote which of the faces
that touch the line with an edge should be colored in on that side. These clues
are shown as labels and can be placed on either end of each line.

2



Figure 2: An example of a curved nonogram puzzle

Curved nonograms allow us to use more detailed images as a basis for creat-
ing a nonogram. However, doing this by hand takes a long time. Van de Kerkhof
[14] introduced an algorithm to automatically generate a curved nonogram from
a given image, that is aesthetically pleasing and unambiguous. However, this
algorithm only focuses on the puzzle itself, not the placement of the clue labels.
Placing the labels in a naive manner could result in labels overlapping with each
other, making them unreadable. This may be avoided by placing the labels on
the other endpoint of the nonogram line, or by extending the nonogram line
past the boundary.

Placing labels by hand is very tedious, so in this thesis we will look at
several algorithms outlined by Klute et al. [9] that provide a solution to the
problem of automatic label placement, in a way that is aesthetically pleasing
and unambiguous. To this end we define some criteria for the placement of
labels:

1. Labels should not overlap other labels.

3



2. The label leaders should extend in the same direction as the curve.

3. The labels should be placed as close to the boundary as possible.

2 Related Work

2.1 Nonograms

There have been several studies on generating and solving nonograms. Simple
nonograms are nonograms that have a unique solution and can be solved by
looking at only one row or column at a time. There is a classification of difficulty
of simple nonograms [2].

Different methods have been proposed for solving nonograms using heuristics
[11], depth-first search [16] and combining relaxations [3]. Solving nonograms
has been proven to be NP-hard [13].

There have been studies on the generation of classic nonograms as well as
on newer variations of nonograms, like colored nonograms, curved nonograms
[14] and sloped nonograms. With the latter two types, the problem of labeling
becomes considerably more complicated.

2.2 Labeling

The problem of labeling nonograms is related to the problem of boundary label-
ing. Algorithms have been proposed to solve the problem of boundary labeling.
There are algorithms that optimize different aspects, like minimizing bends or
minimizing length [5].

There have been defined several leader types, like straight (s), orthogonal (o),
perpendicular (p), diagonal (d) and variations thereof (op, opo) [4]. Nonogram
labeling is like boundary labeling with straight leaders that are restricted in
their direction, but can have variable length and are restricted to two possible
ports on either side of the line. With nonogram labeling whatever is going on
inside the boundary cannot be changed to suit the labeling.

2.3 Puzzle/label aesthetics

Vollick et al. [15] have defined several properties of good label layouts and state
that preventing overlap between labels is incredibly important for a readable
layout. Another property that could be applied to nonogram labeling is that
they should be as close to the boundary as possible. They also provide an energy
function that can be used to measure the quality of a label configuration.

3 Definitions

3.1 Nonograms

Classic nonograms are grid puzzles with a uniform grid, see Figure 1. Each
row and column has an associated clue, which is a sequence of numbers. Each
number represents an uninterrupted sequence of cells in that row or column that
should be colored in. Together these clues describe how the whole grid is to be
colored in. A simple nonogram has exactly one unique solution.

4



The clues for a classic nonogram are generally placed above or to the left of
the corresponding column or row.

Curved nonograms do not not adhere to a uniform grid, but consist of a
set of arbitrary curves, see Figure 2. In this case each nonogram line has two
descriptions, one for the adjacent cells above the line, and one for the adjacent
cells below the line. A curved nonogram may also include straight nonogram
lines.

3.2 Nonogram labeling

A set of clues for one line/row/column we call a label. Each label can be placed
on the boundary in one of two ways. For a classic nonogram, the label can be
placed on either side of each row or column. For curved nonograms, each label
can be placed on either intersection of the line with the boundary. These points
on the boundary are called ports. In the case of classic nonograms, the labels can
be placed at the start or end of a row/column and will never overlap, because
of the uniform grid. However, for the other two types, this is not usually the
case.

Unless the line is perpendicular to the boundary, it needs to be extended in
order to avoid overlapping the label with the boundary. This part of the line
that is extended past the boundary we call the leader. The leader can be further
extended to avoid overlapping between labels. A label that is assigned to one of
two ports of a nonogram line, and is assigned a leader extension length is called
a placed label. A labeling is a set of placed labels, a labeling that includes one
placed label for each nonogram line, and where no two labels overlap we call a
valid labeling. A curved nonogram may have several valid labelings. The valid
labeling for which the total extension length is minimized, we call a minimum-
length labeling.

3.3 Problem description

We describe a nonogram labeling problem as:

1. a simple polygon B which represents the nonogram frame;

2. a set of unplaced labels L, each ` ∈ L defining a pair (p`, q`) of ports and
a list of integer clues.

The output of an algorithm that solves this problem should be a valid
minimum-length labeling of L, such that:

1. each ` ∈ L is assigned to either p` or q`;

2. each ` ∈ L is assigned an extension length e;

3. no two labels ` ∈ L and k ∈ L intersect;

4. there exists no other labeling for L with a smaller total extension length.

5



4 Algorithms

4.1 Overview

There are three main parts of the nonogram labeling problem. First, each label
needs to be assigned to a port. Second, the extension length for each leader
in a minimum-length labeling needs to be determined. Finally, post processing
takes care of edge-cases like labels around boundary corners.

In this thesis we will implement three algorithms and compare the results.
The first algorithm uses a 2-SAT formula to find a port assignment for labels
that have a fixed leader length. The second uses dynamic programming to
determine the length of the leaders, given a fixed port assignment. We have im-
plemented two versions of this algorithm, one that can be used for inputs where
all leaders have a slope of ±1 and is optimized for such inputs, and one that is
not optimized but can be used for inputs with leaders of any slope. Finally, we
introduce a third algorithm that uses MaxSAT to both assign each label to a
port, and determine the length of each leader. See Table 1 for an overview of
these algorithms. In the next sections, we will explain the theory behind these
algorithms in more detail.

Algorithm Section Restrictions

2-SAT 4.2
No solution for puzzles that require
extendable leaders

Dynamic Programming
(optimized for slopes of ±1)

4.3 Restricted to inputs with only leaders with a slope of ±1

Dynamic Programming 4.3
Can try only a limited number of
port assignments due to time restrictions

MaxSAT 4.4 Requires the MaxHs program

Table 1: Algorithms

Figure 3: Example input

4.2 Fixed leader length (2-SAT)

The first algorithm uses 2-SAT to find a valid labeling, without extensible lead-
ers. That is, each label ` assigned to port p has exactly one possible extension
length. This is the length of the leader when the label touches the boundary,
but does not overlap with it.

6



Theorem 4.1. Given a nonogram labeling instance, we can decide in polynomial
time if a valid labeling with fixed leader length exists.

Proof. We can create a 2-SAT formula ϕ to describe this problem. For each
nonogram line l ∈ L with labels a and b above and below the line respectively,
we define two variables xal and xbl where xal = 1(xal = 0) if the label above l is
assigned to port pl(ql) and xbl = 1(xbl = 0) if the label above l is assigned to
port pl(ql).
First we need to ensure that the resulting label assignment does not include
overlapping labels. For each pair of labels that overlap when assigned to their
respective ports we ad a clause to exclude this combination from the solution.
For instance if the label above line l overlaps with the label below line l′ when
l is assigned to port pl and l′ is assigned to port ql′ , we add a clause ¬xal ∨ xbl′ .
In order to obtain a labeling that is also balanced, we can add two extra clauses
xal ∨ xbl and ¬xal ∨ ¬xbl for each l ∈ L.
Solving the 2-SAT instance takes linear time in the size of ϕ [1], and the number
of clauses is linear in the number of nonogram lines and the number of overlap-
ping label pairs.
Assuming that a satisfying assignment of ϕ is found, we can construct a valid
labeling as follows. For each nonogram line l ∈ L with labels a and b we place
label a at port p if xal = 1 and at port p if xal = 0, and place label b at port p if
xbl = 1 or at port q if xbl = 0.

4.3 Extensible Leaders, Fixed port assignment

The second algorithm uses dynamic programming to find a valid labeling with
extensible leaders. The algorithm consists of two parts, in the first part, one or
more label assignments are chosen. In the second part, the algorithm finds a
minimum length labeling (if such a labeling exists). We assume the boundary
B is a rectangle. We also assume all leaders have slopes of ±1 and that the
labels have a width of 1.

Choosing assignments As is the case with the algorithm in Section 4.2, in a
valid labeling each pair of labels belonging to each nonogram line l ∈ L needs to
be assigned to one of two ports, pl and ql. Again we can use a 2-SAT formula ϕ
to find such a labeling. We create two variables xal and xbl where xal = 1(xal = 0)
if the label above l is assigned to port pl(ql) and xbl = 1(xbl = 0) if the label
above l is assigned to port pl(ql).
Using only these two clauses, given n labels, there are 2n such assignments.
However, we can limit the number of assignments by adding additional clauses.
We can add clauses that exclude certain assignments that do not have a valid
labeling, irrespective of the extension length. There are situations where a pair
of labels belonging to two nonogram lines will always overlap, regardless of the
assigned extension lengths. For instance in Figure 4 the label ` above nonogram
line l and `′ above nonogram line l′ will always overlap, regardless of the assigned
extension length. In such cases we add a clause xal ∨ xal′ to ϕ.

To determine additional possible assignments, we add a clause that excludes
previously found assignments from the solution. So if the solution for the pre-
vious iteration is x1 = {0, 1}, . . . , xn = {0, 1} then the clause ¬x1 ∨ l . . . ,∨¬xn

7



`′

`

Figure 4: Labels ` and `′ will always overlap, irrespective of the assigned exten-
sion length.

is added to ϕ. This is repeated until no new solution can be found, or the
maximum amount of assignments is reached.

Observation 4.2. In a minimum length labeling with extensible leaders, where
all leaders have slopes of ±1, each label ` is blocked from being closer to the
boundary either by the boundary itself, in which case the extension length is
either 0 or 1 (depending on which side is labeled), or it is blocked by another
label `′.

Lemma 4.3. Given a nonogram labeling instance I with n nonogram lines
with slopes of ±1 and a fixed port assignment, we can reduce the set of possible
extension lengths for each label to O(n2) relevant extension lengths. If a solution
for I exists, we can find a minimum length labeling by assigning each label one
of these extension lengths. The first and last label on an edge of the boundary
have O(n) relevant extension lengths.

Proof. Without loss of generality we assume that the label ` on line l with slope
+1 is assigned to a port on the (horizontal) top edge of the boundary B. Label
` is blocked by a label `′ on line l′ which is assigned to a port on the same edge.
We can define two distinct cases in this situation, see Figure 6:

1. In the first case `′ belongs to a line l′ of a different slope (−1), this can
only occur if the label is on the right side of l. The extension length of ` is
then equal to the distance between the port p and the intersection point
of the lines l and l′, +1 if `′ is flipped to the right side of l′. There are
O(n) such extension points for `.

2. In the second case `′ belongs to a line l′ of the same slope. This can only
occur if ` is facing towards line l′. Here `′ can itself be blocked by another
label `′′, forming a chain of labels.

(a) If all labels have the same slope and are labeled on the same side,
then there is one possible extension length of ` that is equal to the
label lengths of all labels in the chain, +1 + x (See Figure 5 if the
labels are on the right side, or −x if the labels are on the left side.
Where x has one possible value that depends on the distance between
` and the label in the chain that is closest to the boundary.

(b) If all labels have the same slope but some of them are labeled on the
other side, then the extension length of ` is at least equal to the sum
of the lengths of the labels that are labeled on the same side (possibly
+1 ± x). However, any prefix of the labels that are labeled on the
other side can add their label length to the total extension length of
`. There are O(n) such possible extension lengths.

8



x

1

3

x
2
−
x

Figure 5: Extension length for a chain of labels.

`

`′
`

`′`′

` `
`′

Figure 6: Cases where label ` is blocked by another label `′.

(c) Thirdly, a chain can be interrupted by one or more orthogonal labels.
Such chains can be prefixed by a (b) chain and there are O(n) possi-
ble interrupting labels, therefore there are O(n2) possible extension
lengths.

Corners Finally, we consider the case where the port of a label ` is on the
far right side of the top edge of B and blocked by a label `′ on the right edge of B.

1. If the slope is +1 we have again three subcases:

• ` is blocked by a parallel (a) chain. There is one possible extension
length for `.

• ` is blocked by a parallel (b) chain. There are O(n) possible extension
lengths for `

• If `′ is labeled on the left side of a line l′ that has slope of −1, there
is one possible extension length.

2. If the slope of l is −1 and ` is on the right side it can only be blocked
by a label `′ on the left side of a line l′ with slope −1. There is one such
extension length.

This implies that the amount of extension lengths that need to be considered
for a label ` is at most O(n2). On this basis we can create a dynamic program-
ming algorithm that solves a sub-instance of the minimum label length problem
defined by one of the edges of B.

9



4.3.1 Algorithm

Lemma 4.4. Given a nonogram labeling instance I with a rectangular boundary
B, an edge e of the boundary that is crossed by n nonogram lines with slopes of
±1, a fixed side assignment for each label, and a fixed extension length for the
left- and rightmost label on e. We can decide in O(n9) time if a minimum-length
labeling exists.

Proof. We define a sub-instance of the minimum length labeling problem I as
the labeling of a single edge, with a fixed length for the two outer labels. With-
out loss of generality we assume e is the top edge of B and the nonogram lines
that cross this edge are indexed l1, . . . , ln in order from left to right, and that
each nonogram line has a slope of ±1. The corresponding ports on edge e are
p1, . . . , pn. For line l1 and ln the extension lengths δ1 and δn are defined in the
input. Any solution where the extension lengths of l1 and ln are not δ1 and δn
are considered invalid.
We also add two dummy lines l0 with slope −1 and port p0 one unit to the left
of the left endpoint of e and ln+1 with slope +1 and port pn+1 one unit to the
right of the right endpoint of e. We assign them a length δmax that is greater
than the maximum possible extension length of all lines on e.
For a line li let ∆i be the set of relevant extension lengths. For l1 and ln we set
∆1 = {δ1} and ∆n = {δn}, respectively.

We define further sub-instances of I by two boundary lines li and lj (i < j)
with assigned extension lengths a and b. Given n lines and O(n2) relevant
extension lengths for each line, there are O(n6) such sub-instances.
In each sub-instance, a line lk with a port pk (i < k < j) is restricted by the
region bounded by li and lj and the horizontal line through the top-most point
of the shortest of the two labels `i and `j .

Let T [i, j, a, b] be the minimum total extension length of the instance defined
by line li with extension length a and line lj with extension length b, if a valid
labeling exists, otherwise it is ∞.

To solve a sub-instance recursively we use dynamic programming and opti-
mize over all lines lk (i < k < j):
T [i, j, a, b] = min{T [i, k, a, c]+T [k, j, c, b]−c | i < k < j, c ∈ ∆k, c ≤min{a, b}, lkvalid}

The recursion ends when i = j − 1, where T [i, j, a, b] = a + b. Each entry
considers the O(n3) combinations of a line k and an extension length c ∈ ∆k

and verifies that the label `k with assigned extension length c is valid; it remains
within the bounded region as shown in Figure 7.
The minimum length of I is obtained from cell T [0, n + 1, δmax, δmax], which
takes O(n9) time to compute.

Finally, we compose a minimum-length solution for the full puzzle by com-
bining the solutions of the sub-instances for each of the four sides of the frame
B.

Theorem 4.5. Given a nonogram labeling instance I with n lines with slopes
of ±1 and a fixed side assignment for each label, we can decide in O(n11) time,
if a valid minimum-length labeling exists. We can also find a minimum-length
labeling in O(n11) time.

10



`i

`j

Figure 7: The bounded region defined by li, lj and the horizontal line through
the topmost point of the shortest of the two labels `i and `j

Proof. Given that computing a single instance I with a fixed length for the
outer labels takes O(n9), and there are O(n2) possible combinations of lengths
for the outer labels, all instances on all four edges take O(n11) time to solve.
This results in O(n2) sub-solutions for each edge, therefore there are O(n8)
combinations of sub-solutions in total.
For each of these combinations it remains to validate if this results in a valid
labeling for the complete puzzle, by checking if the outermost labels for each are
free of overlaps. This can be done in constant time. From all valid solutions,
we choose the one with the minimum total extension length.

4.4 No fixed assignment, extensible leaders

Now we have two algorithms, one for assigning labels to ports without using
extensible leaders (Section 4.2), and one for assigning an extension length to
labels with a fixed port assignment (Section 4.3). However, in many cases, it is
impossible to find a valid minimum-length labeling without extending leaders.
On the flip side, the chance of the dynamic programming algorithm finding a
solution depends heavily on the used port assignment.

In this section we will present an algorithm that both determines the port
assignment and the leader length for a minimum-length labeling by formulating
it as a MaxSAT problem and using MaxHs to solve it. MaxSAT is a general-
ization of the SAT problem that uses weighted clauses. There are two types of
clauses: soft clauses, which have a finite weight, and hard clauses which have
infinite weight. We use hard clauses for making sure each label is assigned to
one port, and for avoiding pairs of labels that overlap. We use soft clauses to
optimize the extension length.

For each label ` with possible port assignments p and q we define variables
xpe and xqe for e = 1, 2, . . . , emax (if step size is 1) where e is the extension length
and emax is the maximum extension length to try. We use similar clauses to the
2-SAT algorithm in Section 4.2. For each pair of variables (x, y) for the same
label we add a hard clause ¬x ∨ ¬y to ensure each label has only one assigned
port and extension length as well as a clause x1 ∨ x2 . . . x2e−1 ∨ x2e for each
label. For each pair of overlapping labels (p, p′) with extension lengths (e, e′)

another hard clause ¬xpe ∨ ¬x
p′

e′ is added to exclude this combination from the
solution.

11



For each extension length variable we add a soft clause with weight equal to
emax − e.

It is possible to reduce the amount of variables by using a step size larger
than 1.

5 Experiments

In this section the setup of the experiments is explained. We will discuss the
practical implementation of the algorithms in Section 5.1, the test set in Section
5.2 and parameters used when running the different algorithms in Section 5.3.

5.1 Practical Implementation

5.1.1 Impop pipeline

The algorithms are written in Haskell, making use of the Labeling Pipeline from
the Impop interface [10]. The pipeline provides the clues and port locations.
We also made extensive use of the HGeometry libraries [12].

Input format The pre-existing pipeline allows us to use ipe-files as input files.
These files consist of a set of curves enclosed by a frame. Different elements of
the puzzle are marked by colors. The frame is marked blue, the edges of the
solution picture are red, or if a curve is both part of the solution and the frame,
it is marked purple. All other curves should be black, see Figure 3.

5.1.2 Fixed leader length

For the implementation of the 2-SAT solution, the Haskell library mios is used,
which is a minisat based implementation.

5.1.3 Dynamic programming algorithm (optimized for ±1 slope)

We make use of Haskell’s lazy evaluation for implementing the Dynamic Pro-
gramming (±1 slope) algorithm described in section 4.3.1. We create an array
R, which stores the solution for each sub-instance T [i, j, a, b]. Then the solution
for an edge with dummy labels `0 and `(n+1) and maximum extension length
of M , will be found at R[`0, `(n+1),M,M ]. We did not implement the handling
of overlapping labels from different edges, but instead focused on implementing
and comparing the algorithms for one edge at a time.

5.1.4 Dynamic programming algorithm (not optimized)

We have implemented a second dynamic programming algorithm that can be
used for puzzles that have leaders with slopes other than ±1. In this algorithm
all extension lengths 0..emax are tried for each label.

12



5.1.5 MaxHS

We use the data we get from the pipeline to create an input file that follows the
wcnf format [7]. This file is then fed into the MaxHS solver created by Davies
[6], which will return a solution (if found). The MaxHS solver is a hybrid solver
that uses both SAT and Integer Programming to find a MaxSAT solution.

5.2 Test set

We use curved nonograms that are automatically generated from input vector
images as input files, as well as handcrafted puzzles. To facilitate testing and
comparing the Dynamic Programming and MaxSAT algorithms we also built a
generator that generates a set of labels to be placed on a single edge.

5.2.1 Generated Nonograms

We use the generator built by Van de Kerkhof [14] to generate (unlabeled)
curved nonogram puzzles from an input image. This program takes a set of
curves in the form of an svg-file as input. The program attempts to create a
curved nonogram that satisfies certain aesthetic requirements for publishing. It
does this by attempting to decrease visual ambiguity caused by, among other
things, small faces and intersections that are very close together, and extending
the curves onto the boundary.

We use 9 such generated curved nonograms in our test set, see Table 2. The
puzzles have between 8 and 34 labels and are of varying sizes. The test set also
includes several puzzles generated with the same input image “eye of horus”.
As the generated curves are random, running the generator on the same input
twice results in two different puzzles (“eye of horus 1” and “eye of horus 2”). We
also include two smaller scaled versions of “eye of horus 1”, the idea being that
a smaller puzzle presents a more complex problem as there is a bigger chance
that labels will overlap.

13



Puzzle Size Labels
Requires

extended labels
Total possible

port assignments

fox 623 × 692 20 No
1048576

(1 million)

flowers 320 × 320 34 Yes
17179869184
(17 billion)

hearts 1000 × 787 8 No 256
eye of horus 1 1000 × 832 16 No 65536

eye of horus 1 small 240 × 200 16 Yes 65536
eye of horus 1 smallest 112 × 93 16 Yes 65536

eye of horus 2 1000 × 832 16 No 65536

owl 1000 × 833 34 No
68719476736
(69 billion)

tree 528 × 480 44 Yes
17592186044416

(18 trillion)

Table 2: The characteristics of the different puzzle inputs, including whether
or not extended labels are required to find a valid labeling, and the amount of
different ways the labels can be assigned to ports.

5.2.2 Handcrafted Nonograms

We also made some simple puzzles by hand, in order to have more control over
the amount of nonolines and possible intersections in the puzzle.

5.2.3 Single edge

The nonogram generator may take several hours per puzzle to generate valid
input puzzles, and doing this by hand is also very tedious. However, the algo-
rithms only need a boundary B and a set of unplaced labels L, the nonogram
lines inside the boundary are not relevant to the problem.

Therefore, in addition to the generated and handcrafted nonogram puzzles,
we also use inputs where only a single edge needs to be labeled. This allows
us to compare the performance of the Dynamic Programming (Section 4.3) and
MaxSAT (Section 4.4) fairly. It is impossible to have a fair comparison on full
puzzles, as the Dynamic Programming algorithm requires ports to be assigned
first. To obtain this dataset we have created a program that generates a series of
unplaced labels based on several parameters. Each port has a direction with an
angle of between 1 and 179 degrees with the boundary. The number of different
directions ports are able to have and how they are distributed is decided by adir
and ddir, these directions can be either random, or uniformly distributed. For
example if adir = 3 and ddir = Uniform, then all ports will have a direction that
has an angle of either 45, 90 or 135 degrees with the boundary.
The parameters aports and dports decide the number of ports and how they are
distributed along the edge. We don’t want ports on the endpoints of the edge,
so for an edge of length 256 the ports can be between 1 and 255 distance from
the start of the edge. For example, if aports = 3 and dports = Uniform, the set
of possible port positions is 1, 128, 255.

14



Finally, rclues defines a range of number of clues for each label, for instance
rclues = (1, 3) means that all labels have 1,2 or 3 clues.

Name Description Values

adir
The amount of different directions ports
are able to have

Integer

ddir The distribution of the chosen directions Uniform or Random

aports The amount of ports that need to be labeled Integer

dports The distribution of the ports along the edge Uniform or Random

rclues
The range of number of clues for each
unplaced label

Tuple of integers

Table 3: Parameters

5.3 Test settings

In this section we detail the settings used for running the experiments. All sizes
are in Postscript points, which is the measurement unit used in ipe-files.

Clue size All clue boxes are of size 16x16, due to time constraints, we did
not include clue boxes of different sizes in our experiments. Instead, we have
included in the test set the same puzzle multiple times, each a different scale.

Maximum extension length We can also limit the amount of extension
lengths tried. We use maximum extension lengths emax of 64 and 100.
This does not apply to the dynamic programming algorithm that is optimized
for slopes of ±1, as emax is set by the algorithm itself.

Extension length step size We also limit the extension lengths by a step
size for some inputs. I.e., if the step size is set to 2 then the set tried extension
lengths is [0, 2, 4 . . . emax]. However, since not all relevant extension lengths are
tried, this does mean the solution may not actually be the minimum length
labeling. It is also possible that a solution is not found at all, even if a solution
does exist.
The step size is not used for the dynamic programming algorithm that is opti-
mized for slopes of ±1, as the algorithm already reduces the possible extension
lengths.

Assignments tried This only applies to the Dynamic Programming algo-
rithm in Section 4.3. Each puzzle has 2n possible assignments. It is not always
reasonable to run the Dynamic Programming algorithm for each of these possi-
ble assignments. We already limit the number of assignments tried by excluding
pairs of label assignments that will always overlap, regardless of the extension
length, and including label assignments that will never overlap with another
label. We also try assignments in order of how balanced they are. However, it
is still necessary to set a cap to the amount of assignments tried. We try at
most 500 assignments.
Unfortunately, if we limit the amount of assignments, it is possible that there
is a better solution possible with an assignment that hasn’t been tried. For

15



instance, the tree puzzle has 44 labels, this means there are over 17 trillion
possible port assignments. Even after reducing the number of assignments as
explained previously, the possibility that a valid labeling is found by trying only
500 assignments is incredibly small. And even if a valid labeling was found, it
is unlikely that this solution is a minimum length labeling.

6 Results

In this section we will discuss the results of the performed experiments. We first
discuss the results of the experiments with each of the puzzle inputs. Secondly
we go into detail about the results of the experiments using the generated single
edge inputs.

6.1 Puzzle inputs

The time it takes each algorithm to find (or not find) a solution for each of the
puzzle inputs can be seen in Table 6. The 2-SAT-algorithm in Section 4.2 is
fastest in each case, with a runtime between 102ms (for the hearts puzzle) and
526ms (for the “tree small” puzzle). However, only the triangle, hearts and fox
puzzles can be solved using the 2-SAT algorithm.

When extensible leaders are required for a valid labeling, the MaxSAT al-
gorithm in Section 4.4 is always fastest in finding a minimum length labeling.
The runtimes of the MaxSAT algorithm for the “eye of horus” puzzles are all
around 40 seconds.

The MaxSAT algorithm is also the only algorithm to find a minimum length
labeling for almost all inputs. The only input where no complete solution is
found with the MaxSAT algorithm is the “eye of horus 1 smallest” puzzle, how-
ever, a valid labeling where all labels are placed is impossible in this case. The
unoptimized Dynamic Programming algorithm finds a complete solution for 5 of
the 11 puzzles, and the 2-SAT algorithm finds a solution for 3 of the 11 puzzles
(these are the 3 puzzles that do not require extensible leaders).

6.2 Edge inputs

As explained in Section 5.2.3 it is beneficial to not only experiment with full
puzzles, but also try the algorithms on inputs where all ports lie on the same
edge of the frame, and the nonogram lines are all straight. As each nonogram
label can only be placed on one port, there is no need to assign the labels to
a port. This makes the problem much less complex. In addition, as the inputs
don’t have to be based on real puzzles, we can easily generate hundreds of in-
puts. This allows us to run experiments on a much larger test set.

6.2.1 Dynamic Programming (optimized for ±1 slope)

In order to compare the performance of the Dynamic Programming algorithm
described in Section 4.3 to the MaxSAT algorithm, we have generated a set of
796 edge inputs with 3 to 10 ports with random positions and a fixed direction

16



of either (1, 1) or (−1, 1). Of these inputs, 143 have a valid minimum length
labeling. For this experiment we used a step size of 1 and a maximum extension
length of 100 for the MaxSAT algorithm, to ensure that a minimum-length
labeling is always found, if one exists.

The Dynamic Programming algorithm was faster in finding a solution, or
determining that no solution is possible for all 796 inputs. The average runtime
per number of labels can be seen in Table 4. The table shows that the Dynamic
Programming algorithm was significantly faster in all cases, being between 5
and 6 times as fast for all inputs.

Ports Solved Unsolved All
MaxSAT DP Cases MaxSAT DP Cases MaxSAT DP

3 3767 702 68 3331 719 31 3631 708
4 6089 922 39 5313 966 60 5619 949
5 8816 1603 17 8214 1513 81 8318 1529
6 12628 2161 9 11694 2013 91 11778 2026
7 17231 2602 7 15767 2792 93 15870 2778
8 22729 3362 1 20695 3836 99 20715 3831
9 28378 1821 1 26401 4639 99 26421 4611
10 35471 2316 1 32500 6479 99 32529 6437
Total 143 653

Table 4: Comparison of run time in milliseconds for the MaxSAT and Dynamic
Programming (±1 slope) algorithms on generated single-edge inputs with a
maximum extension length of 100 and step size 1. The generated inputs have a
clue-box size of 16, random positions and directions of either (1, 1) or (−1, 1).

6.2.2 Dynamic Programming (not optimized)

We used a total of 3900 generated single edge of length 256 inputs with random
port positions and directions and ran both the MaxSAT and the Dynamic Pro-
gramming algorithms on all of these inputs. The average run time it takes the
MaxSAT and Dynamic Programming algorithm to find (or not find) a solution
for the single edge inputs can be seen in Table 7. The table shows that the Dy-
namic Programming algorithm is generally faster on inputs with a small amount
of ports (less than 6), and the MaxSAT algorithm is generally faster on inputs
with a larger amount of ports (more than 6), with MaxSAT being over 1.5 times
as fast for the inputs with 10 ports that were solved. However, for the inputs
with 10 ports that weren’t solved, MaxSAT was only 1.2 times as fast as the
Dynamic Programming algorithm. There are some cases where the MaxSAT al-
gorithm was able to find a solution, where the Dynamic Programming algorithm
was not.

As is illustrated in Figure 8, the runtime for unsolved inputs is generally
less than for solved inputs. Cases with 9 or more ports are not included in
this comparison, as these inputs have over 500 possible port assignments, so
the Dynamic Programming algorithm wouldn’t be able to consider all of them.
Therefore it wouldn’t be a fair comparison between the runtime of the Dynamic
Programming algorithm and MaxSAT algorithm, as the latter does consider all
possible port assignments.

17



There are also a few cases where the Dynamic Programming algorithm is
faster than the MaxSAT algorithm, even with 8 ports. There are 14 such cases
out of 45 inputs, see Table 5. The table also shows that the amount of possi-
ble intersections between labels where the Dynamic Programming algorithm is
faster, is higher than the amount of possible intersections where the MaxSAT
algorithm is faster.

Ports Cases DP is faster Avg. intersections Cases MS is faster Avg. intersections
2 250 125.65 0 -
3 201 430.94 0 -
4 121 823.09 0 -
5 121 1305.09 7 710.86
6 41 2198.34 36 1317.17
7 14 3546.50 31 2384.94
8 1 4675.00 18 2484.11
9 0 - 12 3217.50

Table 5: The amount of cases where each algorithm was faster and the average
amount of possible intersections in those cases.

7 Conclusions

In this thesis we implemented 4 algorithms to solve the problem of finding a
minimum length labeling for a curved nonogram. The algorithm in Section
4.2, which uses 2-SAT, is by far the fastest algorithm, never taking more than
a second to find a solution, or to determine that a solution can not be found
without using extensible leaders. Unfortunately, due to this algorithm being
restricted to using leaders of a fixed length, it is not always possible to find a
valid labeling.

The other two algorithms, the Dynamic Programming algorithm in Section
4.3 and the MaxSAT algorithm in Section 4.4, do use extensible leaders. As
evidenced by the results in Section 6 the MaxSAT has the best performance
for inputs where the labels can have any slope, while the (optimized) Dynamic
Programming algorithm is faster for inputs with only leaders of ±1 slope. For
the puzzle inputs the MaxSAT algorithm takes about 5 minutes to find a so-
lution for the most complicated inputs with leaders of any slope, while the
Dynamic Programming algorithm was still not able to find a solution after 6
hours. Besides the fact that the Dynamic Programming algorithm is not opti-
mized for inputs with leaders of any slope, this is also due to the fact that the
Dynamic Programming algorithm requires a fixed port assignment, and we have
not yet found an efficient way to predetermine which assignments will result in a
valid labeling. There is some evidence, as shown in Section 6.2.2 which suggests
that the Dynamic Programming algorithm performs better on more complicated
puzzle inputs, if a fixed port assignment is already given. Finally, the Dynamic
Programming algorithm is not able to avoid overlapping labels near corners (for
example in Figure 26), as this was not implemented due to time restrictions.

We conclude that the 2-SAT Algorithm is the most useful in applications

18



where a puzzle needs to be generated in real-time, due to its short running time
and the fact that it is able to find a solution for a significant amount of inputs.
In any case, the 2-SAT Algorithm could be used to determine if a solution
is possible using fixed leader lengths. For applications where it is acceptable
to have a longer running time, the MaxSAT algorithm is the most useful as
it is able to find a solution within reasonable time for puzzle inputs, with no
restrictions on the slopes the labels may have, and it is able to find a minimum
length labeling (if one exists) with or without using extensible leaders.

8 Future work

8.1 Improvements to Dynamic Programming algorithm

From Section 6.1 it is clear that the Dynamic Programming algorithm (Section
4.3) does not perform well on the puzzle inputs, which is mostly due to the fact
that it requires a fixed port assignment, and therefore each port assignment has
to be run through the algorithm separately.
There are several ways the Dynamic Programming algorithm can be improved,
but this did not fit in the scope of this thesis. Firstly, each assignment tried
is solved as a separate problem, even if this means that the same sub-instances
are solved many times over. The algorithm could be significantly sped up for
puzzles that have a large number of possible assignments if these solved sub-
instances are carried over to subsequently tried assignments.
Secondly, we could try to further reduce the amount of assignments that need
to be tried. For instance we could split up the set of labels into several subsets
of labels, such that all labels in a subset can only be blocked from being placed
closer to the boundary by other labels in the same subset. Then we can use
the Dynamic Programming algorithm on each subset separately, trying all the
assignments. Then we’d need to combine the separate solutions into all possible
complete labelings, for instance using a 2-SAT formula. Finally we would choose
the minimum length labeling from these labelings.
Thirdly, the Dynamic Programming algorithm is optimized for inputs with
slopes of ±1 by limiting the amount of possible extension lengths. It might
be possible to reduce the number of possible extension lengths for other inputs
as well.

8.2 Simplifying the problem

There are several ways the problem of finding a valid labeling could be simpli-
fied. While it is essential that labels do not overlap in order to be legible, it may
not be necessary to always have a minimum length labeling. In the experiments
we used a step size of 2 to reduce the amount of extension lengths that are tried.
We could further reduce the amount of extension lengths by using a large step
size, and repeating the algorithm with a smaller step size until a valid labeling
is found. Then we could still reduce the total extension length by shortening
the length of any label that is not blocked by the boundary or another label,
until it is blocked by the boundary or another label.

Another way of simplifying the problem would be to allow leaders to cross

19



up to a certain number of times, or to allow labels to overlap a little bit in a way
that the clues are still readable. As long as the clue boxes don’t overlap with
other leaders, the clues themselves will still be visible. It would be interesting to
see how much easier the problem becomes when allowing 1,2,3 or more crossing
leaders, and how this affects the legibility of the layout.

Thirdly, it is not always necessary that all nonogram lines are labeled in or-
der for the puzzle to be solved. In fact, removing redundant labels could make
the puzzle easier because there are less clues to focus on, or harder because there
is less information. Depending on the preference of the puzzler, this might even
make the puzzles more entertaining. It would be interesting to see how much
easier the problem becomes when labels are removed, and how the difficulty
changes.

Finally, in the case of nonograms with curved nonogram lines, instead of
having a fixed direction for each port, we could allow a range of directions for
the leader, or even a curved leader. Of course, this also increases the amount
of ways a label can be placed, which should be taken into account. This ap-
proach could also be used in combination with allowing some clue box overlap,
by changing the leader so the labels no longer overlap

8.3 Other boundary shapes

One advantage of sloped and curved nonograms is that the boundary does not
have to be a rectangle. However, in this thesis we only considered puzzles with
rectangular boundaries. It would be interesting to see how the algorithms need
to be adapted in order to work with other boundary shapes.

References

[1] Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan, A linear-time
algorithm for testing the truth of certain quantified boolean formulas, Infor-
mation processing letters 8 (1979), no. 3, 121–123.

[2] K Joost Batenburg, Sjoerd Henstra, Walter A Kosters, and Willem Jan
Palenstijn, Constructing Simple Nonograms of Varying Difficulty, 15.

[3] K.J. Batenburg and W.A. Kosters, Solving Nonograms by combining relax-
ations, Pattern Recognition 42 (2009), no. 8, 1672–1683.

[4] Michael A. Bekos, Michael Kaufmann, Martin Nöllenburg, and Antonios
Symvonis, Boundary Labeling with Octilinear Leaders, Algorithmica 57
(2010), no. 3, 436–461.

[5] Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander
Wolff, Boundary labeling: Models and efficient algorithms for rectangular
maps, Computational Geometry 36 (2007), no. 3, 215–236.

20



[6] Jessica Davies, Solving MAXSAT by Decoupling Optimization and Satis-
faction.

[7] Jessica Davies and Fahiem Bacchus, WDIMACS input format.

[8] Tim de Jong, The concept and automatic generation of the Curved Nono-
gram puzzle, Master’s thesis, Utrecht University, 2016.

[9] Fabian Klute, Maarten Löffler, and Martin Nöllenburg, Labeling Nono-
grams, 2020.

[10] Maarten Löffler, Impop, https://github.com/mloffler/impop.

[11] Sancho Salcedo-Sanz, Emilio G. Ortiz-Garcia, Angel M. Perez-Bellido, An-
tonio Portilla-Figueras, and Xin Yao, Solving Japanese Puzzles with Heuris-
tics, 2007 IEEE Symposium on Computational Intelligence and Games
(Honolulu, HI, USA), IEEE, April 2007, pp. 224–231.

[12] Frank Staals, HGeometry, https://hgeometry.org/.

[13] Nobuhisa Ueda and Tadaaki Nagao, NP-completeness Results for NONO-
GRAM via Parsimonious Reductions, 9.

[14] Mees van de Kerkhof, Improved Automatic Generation of Curved Nono-
grams, Master’s thesis, Utrecht University, 2017.

[15] Ian Vollick, Daniel Vogel, Maneesh Agrawala, and Aaron Hertzmann, Spec-
ifying Label Layout Styles by Example, 2007, p. 10.

[16] Chiung-Hsueh Yu, Hui-Lung Lee, and Ling-Hwei Chen, An efficient algo-
rithm for solving nonograms, Applied Intelligence 35 (2011), no. 1, 18–31.

21



A Results

Puzzle Time(ms) Length Labeled

Puzzle A
ss

ig
n

m
en

ts
tr

ie
d

M
a
x
S

A
T

D
P

2
-S

A
T

M
a
x
S

A
T

D
P

2
-S

A
T

M
a
x
S

A
T

D
P

2
-S

A
T

triangle 50 9389 22014 128 15 15 29 6/6 6/6 6/6
hearts 50 12750 70550 121 15 52 67 8/8 8/8 8/8

eye of horus 1 smallest 50 39508 322109 164 138 154 - 15/16 8/16 0/16
eye of horus 1 small 50 40217 395232 198 74 234 100 16/16 8/16 16/16

eye of horus 1 50 40651 607160 179 20 79 420 16/16 16/16 16/16
eye of horus 2 50 40559 635092 294 37 8 177 16/16 6/16 16/16

fox 50 63091 439518 221 34 48 96 20/20 15/20 20/20
fruit 50 119842 929521 282 115 74 248 28/28 18/28 28/28

flowers 50 175545 1451075 321 99 300 - 34/34 16/34 0/34
owl 50 195871 1956627 363 223 117 286 36/36 9/36 36/36
tree 500 302835 21403296 671 162 61 - 44/44 8/44 0/44

tree small 50 313944 - 622 291 - - 44/44 - 0/44

Table 6: Test results using puzzle inputs, time in ms, for all inputs a clue box
size of 16x16, step size 2 and maximum extension length of 64 was used

Ports MaxSAT DP
Solved Unsolved Solved Unsolved

Time Runs Time Runs Time Runs Time Runs
2 1293 250 1227 50 724 250 675 50
3 1488 201 1437 99 926 201 849 99
4 1695 121 1674 179 1220 120 1120 180
5 2394 128 2329 372 2108 127 1860 373
6 2820 77 2651 423 2719 77 2363 423
7 3321 45 3079 455 3501 45 2977 455
8 3620 19 3564 481 4491 18 3772 482
9 4643 12 4104 488 5979 12 4712 488
10 4636 2 4729 498 7505 2 5743 498

Table 7: Comparison of the run time in milliseconds for the MaxSAT and
Dynamic Programming algorithms for the generated single-edge inputs, using
labels of size 16, step size 2, and random positions and directions for the ports

22



Figure 8: Average run time for solved inputs divided by average run time for
unsolved inputs, per algorithm.

B Outputs

B.1 Triangle

Figure 9: The “triangle” puzzle input

Figure 10: The output of the Dynamic Programming algorithm with the “tri-
angle” input

23



Figure 11: The output of the MaxSAT algorithm with the “triangle” input

Figure 12: The output of the 2-SAT algorithm with the “triangle” input

24



B.2 Hearts

Figure 13: The “hearts” puzzle input

Figure 14: The output of the Dynamic Programming algorithm with the
“hearts” input

25



Figure 15: The output of the MaxSAT algorithm with the “hearts” input

Figure 16: The output of the 2-SAT algorithm with the “hearts” input

26



B.3 Eye of Horus

Figure 17: The “eye of horus” puzzle input

27



Figure 18: The output of the Dynamic Programming algorithm with the “eye
of horus” input

28



Figure 19: The output of the MaxSAT algorithm with the “eye of horus” input

29



Figure 20: The output of the 2-SAT algorithm with the “eye of horus” input

30



B.4 Eye of Horus small

Figure 21: The “eye of horus small” puzzle input

Figure 22: The output of the Dynamic Programming algorithm with the “eye
of horus small” input

31



Figure 23: The output of the MaxSAT algorithm with the “eye of horus small”
input

Figure 24: The output of the 2-SAT algorithm with the “eye of horus small”
input

32



B.5 Eye of Horus smallest

Figure 25: The “eye of horus smallest” puzzle input

Figure 26: The output of the Dynamic Programming algorithm with the “eye
of horus smallest” input

33



Figure 27: The output of the MaxSAT algorithm with the “eye of horus small-
est” input

B.6 Eye of Horus 2

Figure 28: The “eye of horus 2” puzzle input

34



Figure 29: The output of the Dynamic Programming algorithm with the “eye
of horus 2” input

35



Figure 30: The output of the MaxSAT algorithm with the “eye of horus 2”
input

36



Figure 31: The output of the 2-SAT algorithm with the “eye of horus 2” input

37



B.7 Fox

Figure 32: The “fox” puzzle input

38



Figure 33: The output of the Dynamic Programming algorithm with the “fox”
input

39



Figure 34: The output of the MaxSAT algorithm with the “fox” input

40



Figure 35: The output of the 2-SAT algorithm with the “fox” input

41



B.8 Fruit

Figure 36: The “fruit” puzzle input

Figure 37: The output of the Dynamic Programming algorithm with the “fruit”
input

42



Figure 38: The output of the MaxSAT algorithm with the “fruit” input

43



B.9 Flowers

Figure 39: The “flowers” puzzle input

44



Figure 40: The output of the Dynamic Programming algorithm with the “flow-
ers” input

45



Figure 41: The output of the MaxSAT algorithm with the “flowers” input

46



B.10 Owl

Figure 42: The “owl” puzzle input

47



Figure 43: The output of the Dynamic Programming algorithm with the “owl”
input

48



Figure 44: The output of the MaxSAT algorithm with the “owl” input

49



Figure 45: The output of the 2-SAT algorithm with the “owl” input

50



B.11 Tree

Figure 46: The “tree” puzzle input

51



Figure 47: The output of the MaxSAT algorithm with the “tree” input

52



B.12 Tree small

Figure 48: The “tree small” puzzle input

53



Figure 49: The output of the MaxSAT algorithm with the “tree small” input

54


