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Abstract

Software cost estimation is a long-standing research area in software engineering. The diverse

array of cost-affecting factors, coupled with the dynamic nature of software development,

necessitates constant caution in this domain. Over the years, several strategies and models

were formulated to tackle this issue, each presenting different degrees of success and usability.

This study introduces a software cost estimation tool that significantly improves the current

scenario by automating the data extraction process from an online software project repository.

This tool, devised through extensive research and expert insights, collects, aggregates, and

stores project data in a dataset, creating a comprehensive knowledge base.

The automatic extraction and aggregation of project data overcome the manual and time-

consuming data collection processes prevalent in the current scenario, thereby enhancing

efficiency and precision. It provides an easily accessible and ready-to-use repository for re-

searchers, enabling them to experiment and identify critical factors affecting software costs

without being burdened by the data collection process.

Furthermore, our data repository allows for software effort estimation using various machine-

learning techniques. Within the scope of this study, we implemented and evaluated four

specific methods, offering researchers a launchpad for comparative analysis and refinement

of existing models.

The implementation and application of the developed tool showcase its potential to improve

the field. By offering a novel perspective and methodology for software cost estimation, it

contributes significantly to this research area. Furthermore, it lays the groundwork for future

researchers to further explore this domain with ease and precision, indicating a promising

direction for the evolution of software cost estimation methodologies.
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Chapter 1

Introduction

Software effort estimation or software cost estimation has been proven to be especially

important regarding software development (Jones, 2008). For this reason, the research area

in this field began in the 1960s, and since that time, a significant number of approaches

concerning software project cost estimation have been published (Boehm, Abts, & Chulani,

2000). These techniques and models mainly support problems such as budgeting, trade-off,

risk analysis, project planning, and software improvement investment analysis (Boehm et al.,

2000).

There were multiple attempts and approaches created in the past to solve these problems

and accurately predict the effort of software development. They vary from expert judgment

to machine learning approaches and algorithms. However, existing tools and techniques have

proven inefficient in estimating the cost, resources, and schedule (Tadayon, 2005). This is

why expert judgment remains the most popular method in software cost estimation (Shepperd

& Cartwright, 2001). The benefits of using expert review instead of algorithmic approaches

for this task are mostly related to estimates being customized to the specific organizational

culture. This directly contributes to the estimation’s accuracy since the experts’ final esti-

mation is subjective and based on feelings and logic (Tadayon, 2005). At the same time,

researchers claim that expert opinion’s personal and unstructured nature makes the estima-

tion method particularly vulnerable. One of the main dangers is unconscious prejudice made

by researchers and writers (Hughes, 1996).

With the arrival of Agile software development, researchers addressed the problem of cost

estimation by creating new techniques. One such approach is Planning Poker, introduced by

(Grenning, 2002), which uses group consensus to estimate. In general, the method combines

expert opinion, analogy, and disaggregation (Cohn, 2005). However, results showed that

Planning Poker could reduce estimation performance when the team lacks experience with

estimation or similar tasks.

In the past decades, several researchers addressed this issue and focused on designing a

model to predict the effort of software development accurately. This resulted in a large

number of prediction models (Aslam, Ijaz, Lali, & Mehmood, 2017). However, few achieved

satisfactory results under all circumstances since their performance changes with different

data sets, making them very unstable in practice (Shepperd & Kadoda, 2001).

For this reason, this research aims to create a machine learning-based approach to tackling

the problem of software effort estimation. The main goal is to analyze existing developers’

communities, mainly GitHub1, and then try to extract relevant data from this platform and

later use it for software effort estimation using state-of-the-art machine learning algorithms.

The motivation for using the machine learning approach is that it allows complete automation

1https://github.com/
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2 1.1. PROBLEM STATEMENT

of the data collection process, which usually can not be done manually and frequently.

Firstly, an overview of existing methods and approaches in software effort estimation will

be provided using a semi-systematic literature review. This will be followed by comparing

gathered data and extracting relevant features, KPIs, algorithms, and evaluation methods.

Moreover, several interviews with experts in this domain will be conducted to understand

better the research domain and our findings in the literature study. Based on the findings

mentioned in the above measures, an estimation model for software cost estimation was

developed using the following steps:

1. Data collection: The tool will automatically collect data from software project reposito-

ries based on metadata discovered in the literature study and expert interviews.

2. Knowledge base: The collected data will be stored in a dataset defined as the tool’s

knowledge base.

3. Cost estimation model: This model will be used to estimate the effort for software

development based on the data stored in the knowledge base and future requirements for

the software in development.

This thesis elaborates on the complete process of the creation of the tool and the rationale

of decisions that were made, as well as the findings that were recognized during this study.

1.1 Problem Statement

Software effort estimation (SEE) is a significant and challenging field in software develop-

ment. Over and underestimation of software effort and cost led to the failure of many past

projects (de A. Cabral, Oliveira, & da Silva, 2023). The authors (Ramasubbu & Balan,

2012) conducted field studies in three companies using industry-standard, metrics-driven,

regression-based cost estimation techniques. They discovered that early estimates for newly

starting projects were inaccurate and contained up to 300% variance in mean estimation er-

rors. This resulted in extremely inaccurate estimation, which led to significant losses as the

companies were using fixed-price contracting, and therefore projects could not be re-priced

after project initiation.

Underestimation of projects can lead to clients giving up on sponsoring the project. On

the other hand, overestimation can lead to increased resources that would otherwise be

unnecessary. This usually happens because of unrealistic goals, weak resource estimations,

and a poor understanding of the project’s complexity (de A. Cabral et al., 2023).

In the past, a wide variety of studies have been conducted concerning software development

effort estimation. At the same time, those studies produced limited success, which led to

some researchers criticizing SEE, claiming that it advocates more than it evaluates. Addi-

tionally, the role of SEE is to rely on past data to produce reliable results. However, that

data is often incomplete, uncertain, and noisy (Sehra, Brar, Kaur, & Sehra, 2017).

For this reason, one of the main issues at hand lies in the way that current software

effort estimation (SEE) techniques operate, which is largely dependent on specific,

often outdated, datasets. This dependence creates significant inaccuracies due to the

lack of a comprehensive, end-to-end approach that encompasses the whole process

from data collection to data processing, and finally, to estimation modeling. As a

result, the datasets in use quickly become obsolete in the rapidly evolving field of

software development, making it challenging to obtain timely and accurate project

inputs. This limitation of SEE techniques has been a contributing factor to its lack of

popularity and the high error rate seen in its predictions.

Therefore, our objective is to enhance the field of software effort estimation research by

designing an automated system. This comprehensive tool aims to streamline the entire

2



CHAPTER 1. INTRODUCTION 3

workflow, encompassing data extraction, manipulation, and ultimately, estimation modeling.

By integrating these steps, we aspire to increase the efficiency and accuracy of the estimation

process, thereby addressing the prevalent issues and shortcomings of current SEE techniques.

1.2 Related Work

A variety of methods have been employed historically to address the challenges inherent in

the software effort estimation (SEE) research domain. Predominantly, these methods can

be broadly divided into algorithmic and non-algorithmic categories.

Algorithmic models, for instance, include COCOMO (Boehm, 1984), SLIM (Putnam, 1978),

and function points (A. Albrecht & Gaffney, 1983). These models necessitate the provision

of initial inputs that are often difficult to acquire at the inception of a project. These inputs

typically encompass metrics such as the lines of code and the complexity of the project.

On the contrary, non-algorithmic approaches leverage soft computing techniques like neural

networks, regression, and fuzzy logic, demonstrating considerable potential in resolving more

intricate issues. These complexities encompass non-linear problems, optimization challenges,

and situations requiring intelligent control and decision-making (Suresh Kumar & Behera,

2020). These methods’ adaptability and learning capability make them a potent tool in SEE,

primarily when dealing with complex and uncertain software projects.

Numerous scholars have endeavored to enhance the field of software effort estimation (SEE)

by implementing soft computing techniques. However, as the results of our literature review

illustrate, most of these approaches have been applied to existing datasets and did not aim

to develop a comprehensive tool encompassing data collection and estimation concurrently.

As far as data collection is concerned, various projects and institutions have accumulated

data for this particular purpose. For instance, the International Software Benchmarking

Standards Group (ISBSG) (International Software Benchmarking Standards Group, 2022)

annually collates data from a variety of private institutions, thereby creating a database filled

with software metrics. This database enables researchers to conduct an array of different

investigations. Nevertheless, the ISBSG data is not freely accessible.

In contrast, the PROMISE repository (Sayyad Shirabad & Menzies, 2005) offers a collection

of publicly available datasets intended to aid researchers in constructing predictive software

models, which also encompasses SEE. However, the PROMISE repository does not reflect

contemporary software practices.

Concurrently, innovative strategies are being implemented to collect data for software effort

estimation. A notable example is the study conducted by (E. I. Mustafa & Osman, 2020),

where data from 120 software development projects spanning 42 organizations in Sudan were

aggregated to create a dataset.

An approach comparable to the one proposed in this study was carried out by (Qi et al., 2017),

who created and published a SEE dataset by extracting data from open-source projects

on the GitHub platform. However, this approach was limited to projects developed in a

single programming language: Java. Additionally, the comprehensive tool utilized for data

extraction and subsequent software cost estimation was not publicly accessible during this

study.

1.3 Research Questions

Relying on the problem statement, the following main research question was formulated:

3



4 1.3. RESEARCH QUESTIONS

• MRQ: How can a robust and systematic approach be developed to model the cost
estimation of software projects, considering the essential factors of stakeholder re-

quirements and priorities?

In support of this research question, the following sub-research questions were developed:

• RQ1: What are the state-of-the-art methodologies and techniques for cost estimation
in the literature?

• RQ2: What are the key parameters utilized by the cost estimation approaches docu-
mented in the literature?

To address the above questions, a semi-systematic literature review was conducted,

the details of which will be expounded upon in Chapter 3. The main objective is to gain

a more profound understanding of existing literature and identify significant elements

for consideration during this study.

• RQ3: What are the prevalent data acquisition techniques employed to automatically
extract software project requirements from developer communities such as GitHub?

This question will assist us in understanding and comparing the techniques that will

allow for the extraction of requirements and data from the GitHub platform. This data

will subsequently be utilized in the development of the estimation model.

• RQ4: What essential parameters should be considered when constructing a cost esti-
mation model for software projects?

A semi-systematic literature review was conducted to support this question. Identifying

the appropriate factors is a demanding yet crucial aspect of SEE. Discerning the right

factors will give us insight into key considerations for creating the estimation model.

• RQ5: How can automated techniques be employed to extract software project require-
ments from developer communities, facilitating the construction of a comprehensive

knowledge base?

To answer this question, the techniques identified in RQ3 will be applied to gather data

and establish a knowledge base for our estimation model.

• RQ6: How can the cost estimation of a software project be conducted by leveraging
its similarities and patterns identified through the analysis of existing projects in the

knowledge base?

The aim is to provide insights on drawing comparisons between new projects and those

pre-existing in the created knowledge base. This includes the modeling and creation of

the final estimation model.

• RQ7: What are the recommended evaluation methods to assess the performance and
effectiveness of the proposed cost estimation model?

A semi-systematic literature review was utilized to gather information on the most pop-

ular evaluation approaches in machine learning relevant to SEE. This information was

instrumental when we evaluated and compared our results with other methodologies.

4



CHAPTER 1. INTRODUCTION 5

1.4 Study Contributions

This research enhances our comprehension of software effort estimation (SEE) and its

methodologies. A semi-systematic literature review was adopted to offer comprehensive

insights into contemporary practices in SEE, along with their associated challenges.

Furthermore, the primary aim was assembling and creating an extensive dataset procured

from the GitHub development platform. This assembled dataset is aimed to facilitate future

researchers in this domain to experiment with various methodological approaches, leveraging

the gathered data. This also includes extracting new potential beneficial factors from the

accumulated data. Moreover, future scholars might utilize the developed tool to extract

new valuable repositories, resulting in an up-to-date dataset. Finally, the tool eliminates the

extensive effort to construct such a dataset.

In conclusion, this study seeks to construct a more reliable estimation model, which is de-

signed to aid stakeholders such as project managers, developers, and product owners in

planning and organizing their software development projects with improved efficiency.

1.5 Conceptual Model

The ultimate research goal, along with the development of the estimation model, is depicted

using a conceptual model as shown in Figure 1.1. The creation of this conceptual model was

influenced by the pipeline proposed by (Farshidi & Zhao, 2022).

Figure 1.1: Conceptual Model of the Software Effort Estimation Process.

5



6 1.5. CONCEPTUAL MODEL

The Software Project Repository denotes the GitHub repository leveraged for data mining

in this study. GitHub houses data from many software projects, with open-source projects

publicly available for data extraction. Despite the existence of numerous repositories on the

internet, GitHub was selected due to its prevalent usage and versatile API, which enables the

collection of a vast spectrum of data.

Web Crawling and Web APIs refer to the processes adopted for data extraction from

the repository. Web crawling involves a spider bot browsing repositories systematically via

a list of predefined links. The crawler identifies all hyperlinks in the retrieved documents,

subsequently adding them to the list for future visits. In contrast, Web APIs are interfaces

designed by the repository website (in this case, GitHub), providing an endpoint for direct

data collection without needing a crawler. The collected data is organized in a structured

format, such as fundamental values or JSON, regardless of the method.

Metadata Extraction constitutes the process of extracting metadata from the gathered

documents, tasked with managing influential features and properties, or textual content

within a document relevant to this study.

Metadata Features denote essential features collated through the semi-systematic literature

review detailed in Chapter 3. These features were further delineated and evaluated by domain

experts via numerous interviews.

Metadata Extraction Rules are human-made guidelines, predicated on metadata features,

aimed at enhancing the precision of metadata extraction. They refine potential extracted

values that can be ascribed to the metadata features.

The Language Model analyzes documents to transmute qualitative data into quantitative

data. It employs statistical and probabilistic methods to verify the likelihood of a specific

sequence of words appearing in a particular document.

Mapping involves adding external information (e.g., domain keywords) to the extracted

metadata features based on predefined rules. These rules were formulated using SLR, domain

experts’ insights, and language model predictions.

Quality Control signifies a stage that ensures the efficacy of the mapping process. It eval-

uates mapping based on the number of values correctly assigned to metadata features and

the number of potential topics. If the quality level is insufficient, the mapping function’s

threshold and the rules should be revised to enhance mapping quality.

Software Projects refers to the repository data extracted in a valuable format, which the

estimation model can later employ. It encompasses all factors and KPIs identified as crucial

in the preceding steps.

The Data Set of Software Projects is a repository where the extracted repositories will be

stored. The cost estimation model will utilize this data set to perform estimation based on

previous projects.

Requirements allude to the list of requirements that the development system ought to

possess. These requirements could include the system’s functional specifications, quality

attributes, and other critical factors that have been proven essential for the future software

project.

Mapping Factors to Requirements is an essential process to align the identified factors

with the project requirements necessary for model training. The alignment of the gathered

data with the requirements is critical for model training.

The Cost Estimation Model represents the final iteration of the developed model. This

model utilizes the factors of identified requirements for a prospective project as input to

predict the final cost or effort of the software. To accomplish this, the model employs the data

of past projects stored in the dataset. The model’s output is the Cost/Effort Estimation,

which is typically expressed in terms of the time needed for software development.

6



Chapter 2

Research Approach

This chapter delineates the methodology adopted for this study, outlines the initial research

plan, and discusses the approaches to address the research questions. The chapter begins by

providing an overview of the various research methods used, each of which will be clarified

subsequently, with justifications and rationales for their inclusion in the study.

2.1 Research Methods

The research questions presented in Section 1.3 were approached using a diversified set

of research methods. This multipronged approach ensured a holistic view of the research

problems, enhancing the findings’ robustness and reliability.

A total of four research methods were employed in this study: literature review, expert

interviews, design science, and case study. The respective roles of these methods in answering

each research question are presented in Table 2.1. An ”X” in the intersection of a method

and a research question indicates the use of that method to address the question.

2.2 Literature Study

A semi-systematic literature review (SLR) was conducted to collate pertinent research in-

formation pertaining to the study. This process helped identify trends in the field, focus the

direction of the study to better serve the scientific community, and gather essential features

and Key Point Indicators (KPIs) used in Software Effort Estimation (SEE) for training the

model in this study. The review also facilitated the selection of appropriate machine learning

models, algorithms, and evaluation methods.

The protocol proposed by (B. Kitchenham, 2004) was adhered to for conducting the SLR,

comprising eleven phases: problem formulation, research questions, review protocol (search

strategy), search process, searching, screening, inclusion/exclusion criteria, quality assess-

ment, data extraction, data analysis and synthesis, and reporting. Each of these phases will

be detailed subsequently.

The results, findings, and detailed procedure of the conducted SLR are documented in Chap-

ter 3.

Problem formulation and research questions are crucial for performing an effective SLR,

delivering optimal results and findings. The problem in the SEE scope and research questions

used during this research were elaborated in Chapter 1.

The review protocol (search strategy) delineates the approach to be followed during the

SLR. This study adopted a five-step SLR, leveraging the phases proposed by (B. Kitchenham,

2004). The first step encompassed the search process, searching, and screening; the second

7



8 2.2. LITERATURE STUDY

Research questions

Research methods
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MRQ How can a robust and systematic approach be developed to model the cost estimation of 
software projects, considering the essential factors of stakeholder requirements and 
priorities?

X X X X

RQ1 What are the state-of-the-art methodologies and techniques for cost estimation in the 
literature? X X

RQ2 What are the key parameters utilized by the cost estimation approaches documented in the 
literature? X X

RQ3 What are the prevalent data acquisition techniques employed to automatically extract 
software project requirements from developer communities such as GitHub? X X

RQ4 What essential parameters should be considered when constructing a cost estimation 
model for software projects? X X X

RQ5 How can automated techniques be employed to extract software project requirements from 
developer communities, facilitating the construction of a comprehensive knowledge base? X

RQ6 How can the cost estimation of a software project be conducted by leveraging its 
similarities and patterns identified through the analysis of existing projects in the 
knowledge base?

X

RQ7 What are the recommended evaluation methods to assess the performance and 
effectiveness of the proposed cost estimation model? X X

Table 2.1: Research Methods Employed.

step defined and implemented inclusion/exclusion criteria; the third step conducted a quality

assessment of selected papers; the fourth step extracted data from these papers, and the

fifth step analyzed and synthesized the collected data. Each step was performed in a separate

spreadsheet to maintain a clear record of progress.

The search process involved manually searching for pertinent papers in the selected domain

based on the initial hypothesis and understanding of the field. For this study, primary focus

was accorded to four online libraries: IEEEXplore1, Springer2, ACM DL3, and ScienceDirect4.

The study primarily focused on papers published post-2010, allowing for a contemporary

understanding of the field. Each collected paper was documented in a spreadsheet containing

relevant details (title, URL, authors, abstract, keywords, year of publication, citations, venue

of publication, and venue ranking.). This information then facilitated the generation of

relevant search terms, used in the subsequent searching phase.

The searching phase was initiated upon generating a search term from the previously col-

lected papers. This term was then used in the online libraries mentioned earlier, enabling the

collection of the most relevant papers in the research domain via their search engines. The

papers were exported into a CSV file and included in the same spreadsheet.

The screening phase entailed a cursory review of the collected papers, including screening

abstracts, keywords, and other potentially relevant information. Based on this information,

papers were ranked to indicate their relevance to the research. The ranking employed ordinal

values (None, Low, Medium, High).

Inclusion/Exclusion criteria were then defined to determine which papers should be consid-

ered in the subsequent steps. The criteria were defined based on the relevance determined

in the screening phase and also on venue ranking, citations, year of publication, and research

type.

1https://ieeexplore.ieee.org/
2https://www.springer.com/
3https://dl.acm.org/
4https://www.sciencedirect.com/
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A quality assessment was then conducted to evaluate the quality of each selected paper

following the inclusion/exclusion process. This included extracting pertinent information from

the papers, such as research method and type, data collection method, and the evaluation

method employed by the authors. Additionally, it was noted whether the paper had a clear

problem statement, research questions, research challenges, a clear statement of findings,

and real-world use cases. Based on these parameters, another criterion was defined to assess

the quality of the papers. Papers that met these criteria were considered in the SLR and,

consequently, this research study.

Data extraction was then conducted on the papers that met the quality assessment criteria.

Relevant data were extracted for the research, such as the features used by authors in their

software effort estimation, the models they used, and the evaluation methods they employed.

This helped garner insights into what is currently considered state-of-the-art in this research

field.

Analyzing and synthesizing data was conducted to comprehend the collected data, dis-

regard unpopular models or features, and group similar features with different names but

essentially the same meaning.

Finally, reporting provides the ultimate outcome of the conducted SLR, consisting of a

comprehensive report of the findings. The report, a detailed discussion of the results, and a

complete explanation of the executed SLR are elaborated in Chapter 3.

2.3 Design Science

This study adopted a design science methodology, as proposed by (Hevner & Chatterjee,

2010), specifically developed to support research projects in the field of information systems.

The principal aim of design science research is to introduce innovative artifacts and outline the

processes for constructing such artifacts in order to enhance the prevailing environment. In

the context of information systems, artifacts can encompass constructs, models, methods,

instantiations, algorithms, and more. Design science research encompasses three integral

cycles.

The first is referred to as the Relevance Cycle, which underscores the applicability of the

research within the context of its intended use. This cycle not only specifies requirements

for the research but also defines the acceptance criteria for evaluating the results. This cycle

provokes critical questions: Does the design artifact foster improvements in the environment,

and how can these enhancements be measured?

The second cycle, dubbed the Rigor Cycle, asserts that design science research builds upon

a substantial knowledge base comprising scientific theories and engineering methods. This

enables rigorous investigation within design science research. This knowledge base should

encapsulate the state-of-the-art expertise and experiences within the research domain, in

addition to existing artifacts and processes within the application domain.

The third, the Design Cycle, constitutes the nucleus of the research project. In this cycle,

activities oscillate between creating and evaluating the artifact, utilizing direct feedback to

refine the design further. Although this is where the core research is conducted, the researcher

must balance the effort expended on artifact construction and evaluation.

Recognizing all three cycles completes the design of an artifact that not only has a sturdy

place within the research environment but also withstands evaluations in the theoretical and

practical realms of the research area. Figure 2.1 depicts the Design Science model and the

life cycles it embodies.

9



10 2.4. CASE STUDY

Figure 2.1: Design Science Model Based on (Hevner & Chatterjee, 2010).

2.4 Case Study

A case study is recognized as an empirical research method that investigates a phenomenon

within its real-life context (Yin, 1981).

The fundamental objectives of conducting a case study encompass the description, explana-

tion, and evaluation of a hypothesis. This approach can be utilized to gather data about a

phenomenon, implement a specific tool, and evaluate its efficacy using interviews (Farshidi,

2020; Farshidi, Kwantes, & Jansen, 2023).

For this research, the guidelines proposed by Yin (Yin, 1981) were adhered to in the conduct

and planning of the case studies.

The case study was conducted within an organization that is or was engaged in software

production, enabling the testing of the created model using real-world data. Additionally,

test data for the model was extracted from an online platform that provides freelance work

worldwide, thereby enabling evaluation of the adopted approach.

The data collected offers insight into the model’s efficacy and its potential utility for in-

dividuals seeking to estimate software development efforts. A detailed examination of the

executed experiments and their corresponding results is delineated in Chapter 7.

10
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2.5 Expert Interviews

In a quest to gain deeper insights into the field of research and identify meaningful areas of

focus, several semi-structured interviews were conducted with experts in the field of SEE.

This step was undertaken after the systematic literature review provided a clear overview of

the research trends in this area.

The conducted interviews were semi-structured, meaning they included a predefined set of

questions. However, these were not followed strictly, enabling open communication and

fostering the generation of new ideas and suggestions for this research project. Furthermore,

to ensure that all relevant information was included in the research, the ACM SIGSOFT

standard was followed to guide the presentation and analysis of these interviews (Ralph et

al., 2020).

The ultimate objective of the interviews extended beyond acquiring in-depth knowledge per-

taining to software development and its associated cost estimation. It also aimed to appraise

the factors discovered during the Systematic Literature Review (SLR), and potentially identify

novel, significant elements that could contribute to this research. A comprehensive elabo-

ration of the interviews conducted and their subsequent results are presented in Chapter

4.

11



Chapter 3

Literature Review

This chapter elucidates the results of the systematic literature review (SLR) delineated in

Chapter 2. The SLR aimed to attain comprehensive knowledge of the software effort and

cost estimation research field, including its prevailing trends. Additionally, the SLR aimed

to address a number of research questions (RQ1-4) and collect relevant data that could

inform this research and the formulation of the final estimation model. This incorporates

factors and KPIs of significance in other research papers, models, and evaluation methods

they have deployed. The latter enabled a comparative analysis with other methodologies,

thereby facilitating the assessment of this study.

The guidelines proposed by (B. Kitchenham, 2004) were adhered to during the conduct of

the SLR. Furthermore, the systematic literature review performed by (Farshidi, Jansen, &

van der Werf, 2020) served as a reference when undertaking the SLR.

The ensuing sub-chapters elaborate on the process, rationale, and salient findings of the

executed SLR. Additionally, the comprehensive collection of research papers and resulting

findings from the SLR are documented in (Mrvar, 2023).

3.1 Data Sources and Search Strategy

The overall search strategy process was detailed in Chapter 2. It essentially comprised two

search methods: initial hypothesis and automatic search. The initial hypothesis search facil-

itated the collation of the initial set of papers, which subsequently generated a search term

from their common keywords. This search term was employed to automate data gathering.

The exhaustive search process will be explored in the following sub-chapter.

The primary sources harnessed in this search encompass digital libraries, namely ACM Digital

Library, Springer Publishing, IEEE Xplore Digital Library, and ScienceDirect. The focus was

predominantly on these four libraries as they offer high-quality papers, lending significant

value to the scientific community. It is noteworthy that Google Scholar1 was not utilized

during the automatic search process owing to its tendency to yield a high degree of irrelevant

studies and grey literature. Furthermore, its potential for overlap with the other libraries

employed in this SLR is substantial. However, Google Scholar was incorporated during the

initial hypothesis search phase as it provided an overview of papers, thereby enabling the

circumvention of grey literature.

1https://scholar.google.com/

12

https://scholar.google.com/


CHAPTER 3. LITERATURE REVIEW 13

3.2 Search Process

The procedural steps and the number of acquired papers throughout the search process are

depicted in Figure 3.1. It is important to note that the figure represents the aggregate

number of papers retrieved from the initial hypothesis and automatic search phases. During

the initial hypothesis search phase, a collection of papers was acquired, relying on our pre-

existing knowledge and theoretical underpinnings within this domain. To address the research

questions, the following initial search queries were implemented to procure relevant papers:

• Software cost estimation
• Software effort estimation
• Information extraction for software cost estimation
• Analysis of software cost estimation accuracy
• Software cost estimation parameters
• Data extraction from Github
• Requirements extraction from Github

Figure 3.1: SLR Search Process based on (Farshidi et al., 2020).

The initial hypothesis search phase yielded a repository of 223 papers, inclusive of 12 papers

sourced from Google Scholar, not depicted in Figure 3.1. These papers were meticulously

cataloged in a spreadsheet along with all relevant information as detailed in Chapter 2. Upon

assembling this collection, their generic keywords were leveraged to formulate a search term

subsequently used in the automatic search phase. The employed search term is provided

below:

(”software effort estimation” OR ”software cost estimation” OR ”effort estimation” OR

”cost estimation” OR ”software estimation” ) AND (”machine learning” OR ”neural net-

work” OR ”genetic algorithm” OR ”artificial neural network”) AND (”software development”

OR ”software engineering” OR ”agile software development” OR ”agile development”)

13
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This search term encapsulated the latest trends in software effort and cost estimation, along

with the most pertinent terms relative to this study, thereby automating the collection of

papers from the digital libraries discussed in the preceding section. The results of the au-

tomatic search were exported in CSV or Bibtex format, facilitating an efficient method for

collecting and cataloging those documents within the spreadsheet. Following this, duplicates

and incomplete or corrupted entries were removed. The automatic search phase amassed an

additional 623 papers, culminating in a total of 846 papers obtained throughout the manual

and automatic search phases. It is noteworthy that the emphasis was predominantly on pa-

pers published post-2010. However, a few older papers were included, deemed meaningful

during the manual search phase or the snowballing phase.

During the SLR, some papers were added through the application of various techniques.

The snowballing technique, for example, was employed, tracing the references of the already

assembled papers and incorporating them into the SLR, provided they were found to be

contributory to the identified research questions. This technique supplemented an additional

21 papers. A separate strategy entailed the manual addition of relevant papers discovered

at any phase of the SLR. An extra 11 papers were incorporated in this manner.

In total, 878 papers were considered in the SLR. Following the application of inclusion/exclusion

criteria and quality assessment, the final number of papers subjected to analysis was 188. The

procedural steps and criteria for paper selection will be detailed in the ensuing subsections.

3.3 Inclusion and Exclusion Criteria

Upon the completion of both manual and automated search stages, an evaluative phase

was initiated to investigate the assembled literature (inclusive of papers collected through

the snowballing methodology). During this phase, the abstract and keywords of each paper

were carefully analyzed, facilitating a preliminary judgment regarding their relevance to the

research study at hand. Each of these articles was classified on an ordinal scale featuring four

categories: None, Low, Medium, and High. The categorization of ’None’ signified complete

irrelevance of the paper to the research, whereas ’High’ implied a substantial degree of

relevance.

Following the completion of the screening process, the inclusion and exclusion criteria were

applied to filter the relevant from the non-relevant literature. Several factors were consid-

ered while determining the applicability of a publication to the Systematic Literature Review

(SLR). These encompassed the language of the paper (English), its availability, its relevance

(ranging from None to High), the year of publication, the number of citations, and the

ranking of the conference or journal where the paper was presented.

Subsequent to the contemplation of the above-mentioned parameters, a score was assigned

to each paper. For instance, the score decreased with each passing year since the paper’s

publication, while it escalated commensurate to the number of citations garnered by the

paper. Upon calculation of scores, a predetermined threshold was applied to shortlist the

literature for the SLR.

3.4 Quality Assessment

Post the application of the inclusion and exclusion criteria, the quality of the selected papers

necessitates evaluation (B. Kitchenham, 2004). This evaluation serves as an extension of

the inclusion and exclusion criteria, presenting a detailed, focused examination of each study.

The primary emphasis of this research was on the quality assessment criteria outlined in Table

3.1.

14
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Each paper was systematically reviewed and annotated by responding to quality assessment

questions with distinct dichotomous outcomes, ’Yes’ or ’No’. For instance, if a given paper

included research questions, the corresponding field in the datasheet was marked as ’Yes’ for

that paper.

Finally, scores were calculated based on these responses, and a cut-off threshold was estab-

lished to exclude papers that failed to meet the defined quality parameters. Consequently, a

total of 188 primary studies qualified for consideration in this SLR.

Quality assessment Definition
Clear problem statement Does the study contain a clear problem statement?
Research questions Does the study contain research questions?
Clear research challenges Are the clear research challenges of the study explained?
A clear statement of findings Are the research results and findings elaborated clearly and understandably?
Real-world use cases Does the study contains a real-world use case?

Table 3.1: Quality Assessment Criteria Predicated on (B. Kitchenham, 2004).

3.5 Data Extraction

In accordance with the directives proposed by (B. Kitchenham, 2004), the process of data

extraction and knowledge acquisition commenced subsequent to the implementation of the

inclusion and exclusion criteria, and the quality assessment. The primary objective was to

gather all relevant information from the shortlisted articles and catalog it systematically to

enable a comprehensive understanding of the research.

Relevant data that was considered for this SLR encompassed the variables utilized by the

studies to estimate software effort/cost, the employed models, and the evaluation method-

ologies. Additionally, it was ascertained that most studies harnessed existing datasets for

the execution of Software Effort Estimation (SEE). Hence, these datasets, along with their

distinctive attributes, were also extracted as they potentially harbor valuable information

for model development, particularly in terms of the factors and attributes they encapsulate.

Administrative details, which might prove to be instrumental in future investigations, were

also gathered. These included: the name of the approach, the learning type, the approach’s

category and domain, the data acquisition method (manual or automatic), and the GitHub

URL to the approach (or corresponding URLs for other platforms, if available).

The amassed information was intended to be employed subsequently in the design science

phase, especially if deemed significant post-expert consultations. The identified factors were

utilized to train our model and estimate the effort/cost associated with software development.

The same applicability pertains to the models and evaluation methods. The prevalence of

specific models could indicate their success and potential suitability for the approach under

consideration.

15



16 3.5. DATA EXTRACTION

3.5.1 Influential Variables and Key Performance Indicators

Within the confines of this study, we employ the term ”factors” to denote influential variables

or attributes that can markedly affect the cost estimation of software projects. These vari-

ables, determined through an exhaustive literature review, constitute an integral component

of this study. Our objective in identifying these variables and Key Performance Indicators

(KPIs) is to comprehend the aspects researchers have considered imperative while estimating

the cost of software projects. Additionally, certain identified variables were utilized to extract

data from online software repositories, thereby creating a dataset. This dataset subsequently

served as a foundation for the development of our final estimation model.

Throughout the SLR, 254 factors and KPIs were identified, which have been employed in the

analyzed approaches. Upon identification, these factors were systematically organized and

grouped, culminating in a finalized list of 106 factors. The complete process of the procedure

and the reasoning behind it will be elaborated on later.

Table 3.2 delineates the identified factors and KPIs, along with their corresponding frequency

of occurrence in the reviewed literature. The values in the table are arranged in decreasing

order of frequency, implying the most prevalent factors are positioned in the top left quadrant.

It is imperative to note that factors mentioned only once were dismissed and hence do not

feature in the table, as they were deemed infrequent and consequently, irrelevant.

While most factors are self-evident, a few warrant additional elucidation. For instance, a

Use Case Point is a methodology for estimating the size and effort of software development

based on the software’s Use Case (Effendi, Setiawan, & Rasjid, 2019). The function point,

as proposed by (A. J. Albrecht, 1979), serves as a ”unit of measurement” to quantify the

amount of business functionality provided to a user by an information system. Story points,

typically used in agile development, are defined as a unit of measure employed to express

an estimate of the overall effort necessary for the comprehensive implementation of a task

(Scott & Pfahl, 2018).

The comprehensive list and definitions of the factors depicted in the table are accessible in

(Mrvar, 2023).
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Factor/KPI # Factor/KPI # Factor/KPI # Factor/KPI #
Use Case Points 18 Special user training facilities 5 Collocation of the whole team 3 No. of days in one 

iteration
3

Team Experience 17 Concurrency 5 Facility with proper agile-style 
work environment

3 No. of working days per 
month

3

Effort time 16 Distributed Systems 5 Reward system appropriate 
for agile

3 No. of working hours 
per day

3

Function points 11 Provide direct access for third 
parties

5 Managers who have light-
touch or adaptive 
management style

3 Customer Type 3

Story point 10 Object oriented experience 5 Following agile-oriented 
requirement management 
process

3 Used Methodology 2

Language 9 Stable requirements 5 Following agile-oriented 
project management process

3 Language experience 2

Security 9 Part-time workers 5 Following agile-oriented 
configuration management 
process

3 Language type 2

Project size (KLOC) 9 Actor weight 4 Strong communication focus 
with daily face-to-face 
meetings

3 Required reliability 2

Environmental factors 9 Application Type 4 Honoring regular working 
schedule – no overtime

3 Platform volatility 2

Motivation 9 Manager Experience 4 Strong customer commitment 
and presence

3 Developer platform 2

Requirement 9 Developer familiarity 4 Customer having full authority 3 Business function size 2
Complexity 8 Technical factors 4 Well-defined coding 

standards up front
3 Target technology 2

Application experience 8 Easy installation 4 Pursuing simple design 3 Constraints 2
Reuse 8 No. of user stories 4 Rigorous refactoring activities 3 Scope 2
Type/domain 7 Management 4 Right amount of 

documentation
3 Usability 2

Operational ease 
for users

7 Actor Type 3 Regular delivery of software 3 Response adjectives 2

Resource constraints 6 Development Type 
(enchanement/ new 
development)

3 Delivering most important 
features first

3 Familiar with Objectory 2

Analyst capability 6 Personnel continuity 3 Correct integration testing 3 Estimated points from 
Planning Poker

2

Team cohesion 6 System size 3 Appropriate technical training 
to team

3 Story card priority 2

Customer 
communication

6 DBMS (database M system) 3 Project nature being non-life-
critical

3 BLI complexity 2

Complex internal 
processing

6 Personel capability 3 Project type being of variable 
scope with emergent 
requirement

3 Familiar with RUP 2

Task size / Storysize 6 Easy to change 3 Projects with dynamic, 
accelerated schedule

3 Commit (github) 2

Multisite development 5 Strong executive support 3 Projects with small team 3 Active day (github) 2
Transaction volume 5 Committed sponsor or manager 3 Projects with no multiple 

independent teams
3 Productivity factor 2

Team Size 5 Cooperative organizational 
culture instead of hierarchal

3 Projects with up-front cost 
evaluation done

3  Request Type 2

Portability 5 Oral culture placing high value 
on face-to-face communication

3 Projects with up-front risk 
analysis done

3

End user efficiency 5 Organizations where agile 
methodology is universally 
accepted

3 No. of SP completed in an 
iteration

3

Table 3.2: Identified factors and Key Performance Indicators (KPIs).
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18 3.5. DATA EXTRACTION

3.5.2 Models and Methods

Various techniques and models have been designed concerning software effort and cost esti-

mation. These range from model-based approaches like SLIM and COCOMO to regression

and learning-based ones such as neural networks and OLS (Boehm et al., 2000).

The SLR uncovered several learning approaches like regression, neural networks, and NLP

(Natural Language Processing), among others. In total, 178 distinct models and methods

were gathered and analyzed. Table 3.3 displays the most frequently utilized models and the

frequency of each method’s application in the literature. It’s important to note that models

and methods were only included if they were used at least twice.

Apart from learning-based approaches, a few feature selection algorithms were also collated,

including the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) (Bilgaiyan,

Mishra, & Das, 2016). The SLR also found instances of other algorithmic approaches and

models utilized in software effort and cost estimation. However, this study mainly emphasized

learning approaches that could be potentially useful for the estimation model intended to be

developed.

The exhaustive list and the definition of each gathered model can be found in (Mrvar, 2023).

3.5.3 Evaluation Methods

Evaluation methodologies were collected and analyzed to determine how the authors of

the selected papers assessed their approaches and the underlying rationale. Comprehending

these methods enabled us to juxtapose our results with other approaches, thereby facilitating

insights into the effectiveness of our estimation model with other models in this field.

In total, this SLR identified 86 evaluation methods, 43 of which were used more than once,

and 32 were employed more than twice. Figure 3.2 illustrates the distribution of the 20 most

frequently employed evaluation methods pinpointed during the SLR process. Other identified

methods were used less than five times.

The preeminent evaluation method is MMRE (Mean Magnitude Relative Error), utilized

in 78 papers. This is followed by PRED(p) (Prediction at Level p), used in 60 papers.

Subsequent in line are MAE (Mean Absolute Error), MRE (Magnitude of Relative Error), SA

(Standardized Accuracy), MdMRE (Median Magnitude Relative Error), and so forth.

The exhaustive list of the collected evaluation methods and their definitions can be accessed

in (Mrvar, 2023).

18



CHAPTER 3. LITERATURE REVIEW 19

Figure 3.2: Distribution of Collected Evaluation Methods.

Model/Method # Model/Method # Model/Method #

neural network estimation model 27 Tabu Search 5 Logistic model tree 2

KNN (K nearest neighbours) 19 Radial Basis Function Networks 
(RBFNs)

5  Bees optimization algorithm 2

MLP (Multi-layer perceptron Neural 
Network) 

19 Ada-Boost regressor (ABR) 4 BAT Algorithm 2

Support Vector Machines (SVM) 16 Ant Colony Optimization 4 Firefly Algorithm 2

Linear regression 16 Harmony Search 4 Greedy Stepwise Search 2

Genetic algorithm 16 COCOMO 3 PCA 2

Random Forest 15 Multiple Adaptive Regression Splines 
(MARS)

3 Optimal Trees Ensemble 2

Estimation by Analogy (Eba) 13 Bayesian network 3 Convolutional Neural network (CNN) 2

Fuzzy system 13 Radial Basis Function Neural Network 3 Multiagent techniques 2

Decision Tree 12 General Regression Neural Network 3 Adaptive Neuro-Fuzzy Modeling 2

Support Vector Regression (SVR) 11 ENN - Elman NN 3  STRAWBERRY ALGORITHM (SB) 2

Multiple linear regression model (MLR) 10 Cuckoo Optimization algorithm 3 DEEP NEURAL NETWORK (DNN) 2

Particle Swarm Optimization 10 Expert judgement 3  Random search 2

COCOMO II 8 Random Search 3  TF-IDF 2

Ensemble model 8 Best-First Search 3 Agglomerative hierarchical clustering 2

Naive Baye's 7 Subset Size Forward Selection 3 Decision Table 2

Classification and Regresssion Tree 
(CART)

7 Clustering 3 M5 Rules 2

Stochastic Gradient Boosting 7 Lasso 3 Rep Tree 2

Case-Based Reasoning (CBR) 7 Differential Evolution 3  Satin Bowerbird Optimization (SBO) 2

"standard"- regression – Ordinary Least 
Squares (OLS)

6 Function point analysis 3 LP4EE 2

Forward stepwise regression 6 Extreme Learning Machine (ELM) 3 relevance vector machine (RVM) 2

LSTM 6 Least Median Squares Regression 
(LMS)

2 automatically transformed linear model 
(ATLM)

2

Regression trees (TRs) 6 “Robust” regression 2 DYCOM 2

Ridge regression 5 Backward stepwise regression 2 Grid search 2

k means Clustered regression 5 Bayesian approach 2 Flash (FS) 2

Bagging (Bag) 5 generalized linear models 2 COSMIC method 2

CNN (Cascade NN) 5  Spiking Neural Network 2 Deep-SE 2

Table 3.3: Identified Methods and Models. 19
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3.5.4 Datasets

The SLR revealed that 123 out of the 188 analyzed articles employed existing datasets for

the estimation of software effort/cost. Consequently, these datasets were assembled and

analyzed. This rendered an option to subsequently test the developed estimation model us-

ing data from existing datasets, thereby facilitating a comparison of our results with other

approaches utilizing identical data. Additionally, the attributes of these datasets were identi-

fied and extracted, proving to be an informative resource when extracting comparative data

and creating the final prediction model.

In total, the conducted SLR identified 37 datasets, 25 of which were used at least twice. In

this study, we selected to focus on datasets that were used minimally twice, which suggests

that the dataset might be of value. It is noteworthy that datasets that couldn’t be retrieved

were excluded from further analysis and, therefore, are not featured in this study; this also

applies to datasets with only a singular occurrence in the SLR.

Table 3.4 illustrates the chosen datasets along with their annual frequency of use, indicating

the popularity of each dataset per annum. The data is sorted according to the total frequency

shown in the last row. Based on the conducted SLR, it is evident that the ISBSG dataset

emerged as the most popular, followed by the NASA2 dataset, etc.

Table 3.5 presents a description of the selected datasets (used at least twice). The table

showcases the name of the dataset and the number of records and attributes each dataset

comprises. Additionally, the source of each dataset, which also indicates the year of the

latest publication of each dataset, was incorporated into the table. The information was

arranged chronologically based on the frequency derived from the conducted SLR.
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2022 6 4 5 1 5 5 6 4 2 3 2 2 0 1 0 1 0 1 0 0 2

2021 3 8 5 8 5 7 7 7 5 4 2 1 1 0 0 0 1 0 0 0 0

2020 7 5 5 4 4 2 1 1 1 0 1 0 2 1 0 0 1 1 1 1 0

2019 9 3 8 4 4 3 4 3 3 1 1 1 0 3 0 1 0 0 0 0 0

2018 9 10 7 7 6 5 5 4 4 3 1 2 2 0 3 0 1 1 0 0 0

2017 5 6 4 6 4 2 3 4 2 1 0 0 0 0 1 1 1 0 1 1 0

2016 2 1 2 2 3 3 3 2 3 1 1 0 0 0 0 0 0 0 0 0 0

2015 1 3 2 2 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0

2014 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2013 1 1 2 2 1 2 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0

2012 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

2011 2 2 1 2 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0

2010 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 49 45 41 39 35 30 30 28 21 16 10 9 7 6 5 5 4 3 2 2 2

Table 3.4: Yearly Distribution of Identified Datasets.
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Data set Records Attributes Source

ISBSG 11,128 264 (International Software Benchmarking Standards Group, 2022)

NASA 2 (93) 93 24 (Sayyad Shirabad & Menzies, 2005)

Desharnais 81 12 (Sayyad Shirabad & Menzies, 2005)

COCOMO81 63 91 (Sayyad Shirabad & Menzies, 2005)

Albrecht 24 8 (A. J. Albrecht & Gaffney, 1983)

Maxwell 62 27 (Maxwell, 2002)

China 499 19 (Sayyad Shirabad & Menzies, 2005)

Kemerer 15 8 (Kemerer, 1987)

Miyazaki 48 9 (Miyazaki, Terakado, Ozaki, & Nozaki, 1994)

Kitchenham 145 10 (B. Kitchenham, Pfleeger, McColl, & Eagan, 2002)

Finnish 38 9 (Shepperd & Schofield, 1997)

Telecom 18 4 (Shepperd & Schofield, 1997)

NASA60 60 17 (Sayyad Shirabad & Menzies, 2005)

TUKUTUKU 67 43 (Mendes, Mosley, & Counsell, 2003)

USP05-TF 76 15 (Sayyad Shirabad & Menzies, 2005)

SDR 12 25 (Sayyad Shirabad & Menzies, 2005)

Zia 21 9 (Ziauddin & Zia, 2012)

Story point dataset 16 3 (Choetkiertikul et al., 2019)

Dataset1 28 5 (Silhavy, Silhavy, & Prokopova, 2015)

TAWOS 44 10 (Tawosi, Al-Subaihin, Moussa, & Sarro, 2022)

Table 3.5: Description of Datasets and Their Sources.

3.6 Data Analysis and Synthesis

The final step before presenting the findings involved analyzing and synthesizing the col-

lected data. This included the features, models, datasets, and evaluation methods that were

gathered. Additionally, the data was examined for accuracy and overall coherence.

The SLR yielded 254 features, making their organization a complex task, as different ap-

proaches employ different terminologies for what might essentially signify the same feature.

Hence, the goal was to concentrate on a systematic approach and minimize bias as much as

possible. First, features with only a single occurrence in the SLR were discarded since they

were deemed insignificant. Second, features that could possibly imply the same concept were

grouped. For instance, the following factors, mentioned across different approaches, were

consolidated into one factor named Team Experience:

(”Team Experience”, ”Personnel Experience”, ”Developer Experience”, ”Personnel Capa-

bility”, ”Team’s Prior Experience”, ”Developer Reputation”, ”Skill Level Development”)

Every modification and decision was meticulously documented in a separate sheet. This

approach trimmed down the number of features from 254 to 106.

In terms of analyzing and synthesizing data from models and evaluation methods, the primary

focus was on documentation and recording definitions and categories of each method. This

facilitated a clearer understanding of them and made their application more convenient when

required.
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Finally, different datasets were compared and their attributes were extracted. The goal was

to derive insights from those attributes and consider them as an additional set of factors

relevant to this research. (E. Mustafa & Osman, 2018) undertook an extensive comparison

of 31 datasets they had gathered. Consequently, their study served as a starting point for

comparing datasets discovered in this SLR. They notably extracted attributes from those

datasets and grouped them by category and significance. This led to the final set of 48

collected attributes in 6 categories. Our research extended their results by incorporating

additional datasets and attributes from the compiled datasets. Additionally, datasets that

were inaccessible to us or those that were used less than twice were excluded. The results of

(E. Mustafa & Osman, 2018) were expanded by including five additional features (Environ-

mental Factors, Story point, Number of issues, Number of Bugs, Number of versions, and

Number of sprints) and six datasets (Zia, TUKUTUKU, SDR, Story point dataset, Dataset1,

and TAWOS).

A comprehensive comparison of the selected datasets can be found in Figure 3.6.
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General information Project

Year of project 5 X X X X Development flexibility 1 X

Project duration 9 X X X X X X X Architecture/Risk resolution 2 X X

Industry sector 2 X Development environment adequacy 1 X

Organization type 12 X X X Tools availability 9 X X X X X X X X X

Application type 12 X X X X X Using of standards 7 X X X X X X X

Development type 4 X X X X Schedule tightness/constraints 0

Development platform 2 X Reusable code 1 X

Environmental Factors 2 X Multisite development 1 X

Users Hardware platform 4 X X X X

Availability of users 11 X X X X Programming language 7 X X X X X X X

End-user efficiency 4 X X DBMS used 2 X X

Requirements stability 4 X X Methodology used 2 X X

Developers Where developed 1 X

Precedentedness 2 X 1st data base system 1 X

Team experience 12 X X X X X X X X Constraints (memory, execution, …) 4 X X X X

Team capability 9 X X X X X Platform volatility 4 X X X X

Team continuity 2 X X Product

Team size 6 X X X X Required reusability 2 X X

Team cohesion 8 X X Product complexity 6 X X X X X X

Motivation 5 Reliability 5 X X X X X

Staff constraints 1 X Security required 0

Size Quality requirements 3 X X X

KSLOC 7 X X X X X X Documentation 1 X

Function points attributes 10 X X X X X X X X X Type of user interface 1 X

Objects points attributes 3 X Number of issues 2 X X

Use case points factors 2 X Number of Bugs 1 X

Database size 3 X X Number of versions 1 X

Object oriented programming 1 Number of sprints 1 X

Number of commits 1 X Effort (Unit of measure)

Story point 11 X X Person-Hours 9 X X X X X X X X X

Person-Months / man-months 8 X X X X X X X X

Story point 2 X X

Use case points effort 1 X

Table 3.6: Comparison of Attributes in Selected Software Cost Estimation Datasets.
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Chapter 4

Expert interviews

This chapter details the method employed for conducting and analyzing expert interviews,

a vital component of the data collection process in this research. These interviews yielded

significant insights into the realm of software cost estimation and aided in evaluating factors

identified through the literature review in the preceding chapter. They also facilitated a

better comprehension of the industry’s landscape and the key challenges plaguing software

cost estimation. The ACM SIGSOFT standard guided the presentation and analysis of these

interviews, ensuring all critical information was incorporated into the research (Ralph et al.,

2020).

The chapter begins by explaining the research method. This is followed by the process of

identifying and selecting expert interviewees, the demographics of the chosen experts, and

the execution of the interviews.

Subsequently, the Interview Protocol, outlined in appendix A, is discussed. This section

expounds on the structure of the interviews and the categories of questions asked, thereby

providing transparency in the data-gathering approach. It allows for a more comprehensive

understanding of the methodology and the planning that went into the interviews. This is

followed by a detailed account of how the interviews were conducted, which delves into the

practical aspects of the interview process, the subsequent data analysis and collection, and

the strategies for data recording and transcription. The communication methods utilized for

the interviews, the typical duration, and the ethical considerations taken into account are

also discussed. Furthermore, the methods for analyzing and interpreting the responses from

the experts are outlined.

Finally, the chapter presents the findings from the interviews. These findings form a crucial

part of the data employed in this study to develop a comprehensive estimation model for

software cost/effort estimation. By evaluating factors gathered in SLR, a judgment was

made on which factors should be included in the estimation model and which not.

4.1 Research Method

The research methodology employed for this study involved semi-structured interviews. This

method offers a combination of systematic data collection with the flexibility to delve deeper

into certain topics, guided by expert feedback and the natural progression of conversation

(Fylan, 2005). Such an approach proves particularly beneficial when interviewing experts

from varied domains or industries, where divergent opinions can potentially offer new insights

throughout the interview. This is especially true for information not widely available or

discussed in existing literature.
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24 4.2. SAMPLING STRATEGY AND SELECTION OF EXPERTS

4.2 Sampling Strategy and Selection of Experts

LinkedIn1, a professional networking platform, served as the primary medium for the selec-

tion of experts. The selection criteria included the individual’s professional title or position,

specific skills, academic qualifications, and years of experience in software development or

related domains. Potential experts were evaluated and ranked based on their relevance to the

research topic, primarily their direct involvement in software development and cost estimation

procedures within their respective organizations.

Following the ranking process, potential participants were contacted directly via email. This

correspondence introduced them to the study, inviting them to contribute their valuable

insights through the interview. The email invitation emphasized the significance of their

expertise to the study, assured them of confidentiality and discretion with their responses,

and detailed the format and expected duration of the interview.

The final selection of experts encompassed diverse roles within the field, ranging from CEOs

to product and project managers, as well as software developers. Such diversity ensured

a comprehensive array of perspectives on software cost estimation. Ten experts consented

to participate and were interviewed for this research. It is noteworthy that a total of 86

individuals were approached to partake in the interviews.

4.2.1 Participants’ Demographics and Work Roles

A total of 10 participants were incorporated into the study, comprising individuals from

different geographical locations, namely, the Netherlands (4 participants) and Slovenia (6

participants), to ensure a diverse representation.

An array of academic qualifications and professional roles were presented amongst the par-

ticipants. From an academic perspective, 20% of the participants (2 individuals) possessed

a Master’s degree, while the majority, 80% (8 individuals), held a Bachelor’s degree.

Analyzing their professional roles, the participants represented a broad spectrum of positions

within the software industry. At the executive level, there were 2 CEOs who lead companies

specializing in software production. Mid-management was represented by 4 participants who

held roles as either project or product managers. Consultancy, another vital domain in the

software landscape, was represented by 2 participants. The hands-on technical aspect was

covered by one software developer and one CTO, ensuring that the views of those who

actively create and oversee the technical architecture were also included.

The overarching intent in the selection of participants was to encompass a diverse set of

background knowledge. This heterogeneity facilitated the collection of varied perspectives

on the subject matter of software cost estimation, thereby enriching this study.

1https://www.linkedin.com/
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4.3 Interview Protocol

The interview protocol was designed to gather in-depth insights into the experts’ experiences

and viewpoints on software cost estimation. As detailed in Appendix A, the interview process

was divided into four main phases. The first phase involved a brief introduction to the project

and the primary objective of the interview, followed by initial questions to understand the

experts’ professional backgrounds and the contextual aspects of their work.

In the third phase, the focus shifted to cost estimation. Questions in this phase aimed to

elucidate the methods currently employed for cost estimation within the experts’ organiza-

tions, the frequency of these estimates, the tools or platforms utilized in this process, the

precision of these estimates, and the key factors or Key Performance Indicators (KPIs) con-

sidered crucial. During this phase, the experts were presented with a Google spreadsheet2

containing a list of factors identified from the literature review detailed in chapter 3. They

were requested to mark each factor as relevant (Y), potentially relevant (M), or not relevant.

The final phase of the interview comprised closing questions, encompassing feedback on the

research project, the experts’ willingness to adopt a model for estimating software cost/effort,

and preferences regarding the confidentiality of their responses and other personal informa-

tion.

4.4 Conducting the Interviews

The interviews were facilitated online via the Microsoft Teams3 and Google Meet4 platforms,

selected for their convenience for the interviewees and their functionality to record conver-

sations. These recordings were subsequently transcribed using the SharePoint5 transcription

feature to ensure accuracy in documenting the experts’ inputs. The interview protocol served

as the guiding structure throughout the interviews, enabling the experts to articulate their

expertise and views on the topic consistently. In addition to this, they were shown the Google

spreadsheet containing the list of factors identified from the literature review and asked to

provide their assessment on the relevance of each factor to software cost estimation, as

mentioned previously. Furthermore, GitHub metadata6 factors were incorporated into the

list of factors. These factors, derived directly from GitHub repositories, could potentially

be pertinent for software cost estimation and provide a comprehensive perspective for the

extraction of data for our estimation model.

Experts were also given the opportunity to contribute additional factors they deemed relevant

for software effort estimation. These factors were subsequently appended to the list under

the label ”Added after interviews”. This interactive element of the interviews permitted a

more thorough exploration of the experts’ perspectives, surpassing the scope of pre-structured

interview questions and the earlier conducted SLR.

2https://docs.google.com/
3https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
4https://meet.google.com/
5https://www.microsoft.com/en-ww/microsoft-365/sharepoint/collaboration
6https://docs.github.com/en/rest/meta
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26 4.5. RESULTS AND FINDINGS

4.4.1 Data Analysis

The comprehensive interview process included both audio recording and note-taking, ensur-

ing no significant details were missed. The primary aim of these interviews was to assess

and validate the factors identified during the Systematic Literature Review (SLR) and to

potentially uncover new factors deemed critical by the experts.

In order to streamline the vast amount of data gathered from the interviews, a systematic

approach was adopted. Participants were presented with a spreadsheet where each factor

could be classified as either irrelevant (ignored), potentially significant (marked as ”Maybe”),

or undoubtedly significant (marked as ”Yes”).

Subsequent to the completion of the interviews, the data was subjected to an analysis process

involving a simple arithmetic operation. Scores were assigned based on the frequency of the

”Maybe” and ”Yes” responses for each factor. This frequency-based scoring system was

adopted to identify the most commonly acknowledged factors across the participant group.

Following an exhaustive analysis, only factors that were identified as relevant (’Yes’ or

’Maybe’) at least three times were considered significant for the purpose of this study. Factors

that did not meet this threshold were classified as less relevant to our research.

This approach allowed us to isolate the most impactful factors and assured that our soft-

ware cost estimation model was grounded in the factors that industry experts considered

paramount. The comprehensive list of factors and the resulting data from the interviews are

presented in the subsequent section.

4.5 Results and Findings

The conducted interviews have afforded valuable insights into the landscape of software

development and associated cost estimation. Notably, the diversity in the participants’ back-

grounds underscored that priorities in this area could be significantly influenced by whether

or not an individual has a technical background.

The following section outlines the results from these interviews, capturing the most com-

pelling comments and quotes made by the professionals. Moreover, it presents the factors

relevant to software cost estimation, as identified through the SLR and later evaluated

through these discussions.

4.5.1 Insights Supporting Key Points

The expert interviews conducted during this study yielded valuable insights into the field

of software cost estimation. Broadly, the consensus underscored the significance of the

field in relation to software development, although some experts expressed concerns about

the feasibility of applying machine learning approaches for cost estimation, considering the

substantial impact of social factors on the final cost of software development. The range

of opinions on the efficacy of current estimation methods was diverse, with some reporting

satisfactory accuracy in their organizations, typically when factoring in risk elements into their

calculations, while others disclosed frequent discrepancies between estimates and actuals,

which can lead to significant operational challenges and client dissatisfaction. The following

section presents some of the noteworthy perspectives gathered during the interviews, each

illuminating a unique facet of software cost estimation. To maintain confidentiality, the

experts are anonymized and identified by numbers.

Expert 1, an individual working in a consultancy, shared their organization’s approach to cost

estimation: ”We usually make a work breakdown structure and try to estimate that, which

is not always ideal but it is a good estimation”. This expert indicated that they estimate
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the time needed for each smaller piece of work, subsequently factoring in a risk component.

They further noted, ”A lot of estimation is not only the actual coding, such as design,

configuration, looking at how things actually work, and idle time”, expressing skepticism

about the accuracy of machine learning techniques that solely rely on repository data for

estimation.

Expert 7, a CTO in a private organization, offered an alternative perspective on software cost

estimation: ”You can get pretty accurate with cost estimation, but for me, cost estimation

is only half of what you’re looking for. Because you are looking at your return on investment

which is more difficult and in my opinion far more important.” The expert emphasized the

idea that a company typically has more ideas than resources to implement them, hence

turning the challenge into a prioritization task—deciding what merits the time and effort of

development.

Lastly, Participant 4, a project manager in a consultancy company, expressed skepticism

about estimation, stating, ”My opinion is quite dismissive of the meaningfulness of estima-

tion.” They suggested that cost estimation might not be as pivotal in their line of work

as conventionally perceived and could even be more trouble than it’s worth due to inherent

unpredictability. They also raised the question, ”Why is this software needed?”, advocating

for the consideration of the business value of the software being built as a more pertinent

principle to follow.

4.5.2 Results from the Interviews

The expert interviews yielded significant insights into the relevance and importance of various

factors in software cost estimation. A summary of the experts’ evaluations on the identified

factors can be seen in table 4.1. This table enumerates the factors extracted from the

literature review and documents each expert’s assessment of these factors. Experts are

anonymized and represented in the header row for privacy reasons.

The numeral placed between the factor and its corresponding evaluations signifies the count

of ’Yes’ or ’Maybe’ indications, encapsulating the relative importance and credibility of each

factor based on the aggregated responses. The array of responses captured in the table is

notably diverse, mirroring the varied experiences and viewpoints of the experts consulted.

Certain factors, such as ’Project Duration’, ’Development type’, and ’Team experience’

were commonly indicated as significant by the experts, receiving either a ’Yes’ or a ’Maybe’

from the majority. This highlights their relative prominence in the domain of software cost

estimation.

Conversely, certain factors like ’Environmental Factors’ were often overlooked by the experts,

suggesting their potential lower impact on determining software development efforts.

The detailed evaluations from each expert, as presented in figure 4.1, establish a robust

foundation for our ensuing analysis and model formulation. It is worth noting that factors

incorporated after the interviews were treated identically as the prior ones. Owing to the

iterative nature of the data collection, there is a possibility that some interviewees may

have overlooked factors mentioned in subsequent interviews. Nevertheless, a majority of

participants expressed satisfaction with the quantity and diversity of the factors and attributes

already in place.
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General information 37 Added after interviews 25
Year of project 5 M M Y Y Y Project sponsor (CEO, customer) 3 Y Y Y
Project duration 8 Y Y Y Y Y Y Y Y Project manager 3 Y Y Y
Industry sector 5 Y Y Y Y Y Architect 4 Y Y Y Y
Application type (mobile, web...) 4 M M Y Y Technical lead 3 Y Y Y
Development type 9 Y Y Y Y Y Y Y M Y Person week 2 Y Y
Development platform (IDE, OS) 4 Y Y Y Y Uncertainty (example: high, medium, low) 5 Y Y Y Y Y
Environmental Factors 2 Y M Number of interfaces 2 Y Y
Users 28 Number of connections to the outside world 2 Y Y
Availability of users 7 Y Y Y Y Y Y M Customer feedback 1 Y
End-user efficiency 5 Y Y Y M Y Database structure 2 Y Y
Requirements stability 8 Y Y Y Y Y Y Y Y Code complexity 2 Y Y
Customer communication 8 Y Y Y Y Y Y Y Y Github Metada 138
Developers 92 Repository name 2 M Y
Precedentedness 8 M Y Y Y Y Y M Y Description 5 Y M Y M Y
Team experience 10 M Y Y Y Y Y Y Y M Y Number of stars 6 Y M Y Y Y Y
Manager Experience 4 Y Y Y Y Number of forks 6 Y M M Y M Y
Analyst Capability 6 Y Y Y Y Y Y Number of open issues 7 Y Y Y Y Y Y Y
Team capability 9 M Y Y Y Y Y Y Y M Number of closed issues 7 Y Y Y Y Y Y Y
Team continuity / context switching 8 M Y Y Y Y Y Y Y Number of contributors 8 M Y Y M Y Y Y Y
Team size 6 M M Y M Y Y Programming language 8 Y Y Y Y M Y Y Y
Team cohesion 9 M Y Y M Y Y Y M Y License 3 Y Y Y
Motivation 8 Y Y M M Y Y Y Y Last updated date 4 Y Y Y Y
Staff constraints 6 Y Y Y Y Y Y README file 6 Y M M Y M Y
Application experience 6 Y Y Y Y Y Y Code of conduct 3 Y Y M
Part-time workers 2 Y M Contributing guidelines 3 M Y M
Management (general) 6 Y M M Y Y Y Security policy 5 Y Y Y Y Y
Active day (github) 4 Y M Y Y Labels 4 Y Y Y Y
Size 46 Projects 5 Y M M Y Y
Project size (KSLOC) 10 M Y Y Y Y Y Y Y Y Y Milestones 6 Y Y Y M Y Y
Function points attributes 4 Y Y Y Y Issues 8 Y Y Y Y Y Y Y Y
Objects points attributes 4 Y Y Y Y Pull requests 5 Y Y Y M Y
Use case points factors 5 M Y M Y Y Wikis 7 Y Y Y M Y Y Y
Database size 4 M M Y Y Releases 6 Y Y M Y Y Y
Object oriented programming 2 Y Y Commits 7 Y M M Y Y Y Y
Number of commits 5 M M m Y Y Lines of code 6 Y M Y Y Y Y
Story point 5 Y Y M Y Y All of the packages 4 M Y Y Y
Task size / Story size 7 Y Y M Y Y Y Y Total hours used on repository 7 Y Y Y Y Y Y Y
Project 97 Product 92   
Development flexibility 7 Y Y Y Y Y Y Y Required reusability 9 M Y Y Y Y Y Y Y Y
Architecture/Risk resolution 9 Y Y Y Y Y Y Y Y M Product complexity 10 Y Y Y Y Y Y Y Y Y Y
Development environment adequacy 4 M Y Y M Required Reliability 8 Y Y Y Y Y Y Y Y
Tools availability 7 Y Y Y Y Y Y Y Security required 10 Y Y M Y Y Y Y Y Y Y
Using of standards 5 Y M Y Y Y Quality requirements 8 Y Y Y Y Y Y Y Y
Schedule tightness/constraints 6 Y Y Y Y Y Y Documentation 5 Y Y Y Y Y
Reusable code 9 M Y M M Y Y Y Y Y Type of user interface 5 Y Y Y M Y
Multisite development 4 Y Y Y Y Number of issues 4 Y Y Y Y
Hardware platform 5 Y M Y M Y Number of Bugs 5 Y Y Y Y Y
Programming language 6 Y M Y Y Y Y Number of versions 4 Y Y Y Y
DBMS used 4 Y Y Y Y Number of sprints 2 M Y
Methodology used 7 Y Y M Y Y Y Y Transaction volume 5 Y Y Y Y Y
1st data base system 3 Y Y Y Portability 5 Y Y Y Y Y
Constraints (memory, execution, …) 8 Y Y Y Y Y Y Y Y Easy installation 5 Y Y M Y Y
Platform volatility 3 Y Y Y Easy to change 7 Y Y Y y Y Y Y
Task/BLI Complexity 10 Y Y Y Y Y Y Y Y Y Y Effort (Unit of measure) 15

Effort time (general) 7 Y Y Y Y Y Y Y
Person-Hours 4 Y Y Y Y
Person-Months / man-months 2 Y Y
Story point 1 Y
Use case points effort 1 Y

Table 4.1: Interview Results.

4.6 Discussion

The primary aim of the interviews was to gather and evaluate a collection of factors, rather

than to encompass the actual practices of cost estimation and their efficacy. It is important

to note that during the Systematic Literature Review (SLR) phase, there were very few

studies identified that endeavored to evaluate the factors that could influence the cost of

a software project. However, several notable studies that were considered during the SLR

shared similarities with the final goals of the interviews conducted in this study.

Usman et al. (Usman, Mendes, & Börstler, 2015) conducted a survey focused on the impacts

28



CHAPTER 4. EXPERT INTERVIEWS 29

of agile practices on software cost, where the emphasis was primarily placed on techniques,

and to a lesser extent, effort predictors such as size and cost metrics.

Another study bearing resemblance to our interviews was carried out by (Chow & Cao,

2008), where the researchers aimed at identifying critical success factors in agile software

development projects. These success factors can potentially be related to the cost metrics

or factors considered in our study. Intriguingly, (Stankovic, Nikolic, Djordjevic, & Cao, 2013)

built upon the same factors to create a survey study in agile software projects in IT companies

in the former Yugoslavia. It is important to highlight that all of these mentioned studies were

reviewed in the SLR as detailed in Chapter 3.

The absence of studies evaluating cost-impacting factors underscores the potential value of

the approach taken in this research. It is our hope that future researchers may find this

method useful in their evaluation of different factors or in conducting a greater number

of interviews to generate more reliable results. Additionally, the insights llearned from the

interviews conducted for this study could potentially enhance the understanding of the factors

influencing the cost of software development.

4.7 Potential Researcher Bias and its Impact

Researcher bias can manifest in various forms and may inadvertently influence the findings

of a study. In this particular context, potential sources of bias may stem from our selection

process and the structure of the interview process.

Our selection of participants, predominantly approached through LinkedIn, could potentially

introduce a selection bias. As we reached out directly to potential interviewees, it is conceiv-

able that personal connections or networks might have played a role in our selection process,

inadvertently leading to a non-representative sample of experts in the field of software cost

estimation.

Another potential source of bias could stem from the structuring of our interviews. We

utilized a predefined set of questions for the interviews, which, while ensuring consistency

across interviews, may inadvertently introduce bias. It is possible that the formation of these

questions was influenced by our own preconceptions or hypotheses, introducing a form of

confirmation bias.

Additionally, the participants were presented with a predefined list of factors to evaluate.

The detailed explanation and analysis of these factors required substantial time from the

participants, which may have unintentionally constrained their capacity to express their opin-

ion adequately or consider other factors they previously deemed significant. This approach

might introduce bias in our findings as the opinions might not fully represent the experts’

viewpoints or may have inadvertently omitted other potentially relevant factors.

Recognizing these potential sources of bias is important to accurately interpret the findings

of our study. Further research could aim to address these potential biases, for instance, by

employing a more diverse selection process or adopting a more open-ended interview structure

that allows participants greater flexibility to express their perspectives.
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Chapter 5

Data Preparation and Extraction

This chapter delineates the initial stages of our estimation model development, commencing

with the crucial steps of data preparation and extraction. A thorough and comprehensive

data preparation phase is essential as it forms the groundwork for the ensuing software cost

estimation model. This phase categorizes factors identified from SLR and expert interviews

into two primary categories: manual and automatic. This categorization is contingent on

whether the factor can be directly or indirectly procured from the GitHub GraphQL API1.

Automatic factors can be either directly extracted or inferred from the API, whereas manual

factors necessitate manual calculation due to their qualitative nature and relative difficulty

in quantification. They typically encapsulate more socio-cultural elements, such as team

experience, which, despite being critical for software cost estimation, are inherently complex

to derive from Github repositories.

Subsequent sections delve into the data extraction process from GitHub via the GraphQL API.

This extraction process forms the cornerstone of our approach as it furnishes the raw data,

which, after suitable mapping with automatic factors, constitutes our dataset. The intention

is to transparently articulate the procedural steps involved in querying the requisite data via

the API, in addition to outlining the subsequent mapping of this data to the corresponding

automatic factors.

The concluding part of this chapter is dedicated to the creation of the dataset that will be

employed for model training. It primarily examines data preprocessing, an imperative step

that ensures the data is in a usable and appropriate format. A comprehensive description of

the resultant dataset is subsequently presented.

This chapter bridges the theoretical understanding derived from expert interviews and the

practical application of those insights in model development. The goal is to establish a

transparent and replicable process that will support the validity of the findings in the later

stages of this research.

5.1 Factor Classification

Identified factors from previous steps were broadly classified into Manual and Automatic

categories. Manual factors cannot be directly extracted or derived using GitHub API and

often depend on individual skills, experience, and human judgment. On the other hand,

Automatic factors can be directly measured and quantified or at least derived using GitHub

API.

As elaborated, the factors identified in this study are based on the analysis of an extended

semi-systematic literature review and expert interviews. Additionally, careful consideration of

1https://docs.github.com/en/graphql

30

https://docs.github.com/en/graphql


CHAPTER 5. DATA PREPARATION AND EXTRACTION 31

what information can be realistically obtained was considered. It is important to note that

this classification does not imply any hierarchy or priority among the factors.

5.1.1 Manual Factors

As discussed, manual factors are mostly qualitative and depend on human judgment and ex-

perience. These include factors related to project management, team dynamics, experience,

and the working environment. Table 5.1 lists identified manual factors.

Given the nature of these factors, they were not directly included in the machine-learning

model. However, they were considered during the cost estimation phase using the Construc-

tive Cost Model (COCOMO) II (Boehm et al., 1995), which is a widely accepted model for

software cost estimation that takes into account a variety of factors, including those that are

harder to quantify. However, in this study, only the basic model of COCOMO was used since

the priority was turned towards model development using data from GitHub repositories.

Requirements Stability Customer Communication
Precedentedness Team Experience
Manager Experience Analyst Capability
Team Capability Team Continuity / Context Switching
Team Cohesion Motivation
Staff Constraints Application Experience
Management (general) Database Size
Development Flexibility Development Environment Adequacy
Tools Availability Schedule Tightness/Constraints
Multisite Development Hardware Platform
Methodology Used 1st Database System
Constraints (memory, execution, etc.) Platform Volatility
Task/BLI Complexity Required Reusability
Product Complexity Required Reliability
Security Required Quality Requirements
Type of User Interface Portability
Project Sponsor (CEO, customer) Project Manager
Architect Technical Lead
Uncertainty (example: high, medium, low) Development Platform (IDE, OS)

Table 5.1: Manual Factors.

5.1.2 Automatic Factors

Automatic factors are more quantitative and can be directly measured using tools like APIs.

If direct measurement is not possible, NLP or other techniques can be used to derive such

factors from the data that was gathered. For example, using a readme file or description

of a repository to extract valuable information that could indicate for which industry the

software is being developed. As elaborated, the GitHub GraphQL API was used to extract

31



32 5.1. FACTOR CLASSIFICATION

such relevant data. The automatic factors are mostly related to the actual coding activity,

such as the number of commits, lines of code, issues, and contributors. Figure 5.2 provides

a visualization of the automatic factors considered in this study.

Not all automatic factors were used as input for the estimation model. The chosen factors

were selected based on their availability through the GitHub API and their potential impact

on the software development effort. Additionally, the choice of factors that served as input

for the estimation model was based on the opinion of the experts and the availability of the

corresponding data at the beginning of the software development itself. During this study,

the focus was turned towards the following automatic factors: Availability of users, End-user

efficiency, Industry sector, Application type, Development type (enhancement/ new devel-

opment), Reusable code, Documentation, Team size, Project size (KSLOC), Programming

language, and DBMS used (name).

All automatic factors, along with their corresponding GitHub API feature and how they were

derived, are listed in table 5.2. For example, the factor ”Development type” was calculated

from the following Github Api features: ”Number of closed issues”, ”last updated/pushed

date”, and ”created at”.
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Availability of users 8 X X X X X X X X
End-user efficiency 8 X X X X X X X X
Using of standards 2 X X

Number of issues 3 X X X
Number of Bugs 1 X
Easy installation 1 X

Easy to change 1 X X
Project duration 2 X X
Industry sector 1 X

Application type 1 X
Development type 3 X X X

Reusable code 1 X
Documentation 1 X
Year of project 1 X

Team size 1 X
Project size (KSLOC) 1 X
Number of commits 1 X

Programming language 1 X
DBMS used (name) 1 X
Number of versions 1 X

Technology Popularity 1 X
Effort time (general) 0

Table 5.2: Automatic factors.
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5.2 Data Extraction

Data extraction is a critical process in this project as it is the foundation for the rest of the

analysis. This process involves retrieving relevant data from the chosen data source, in this

case, GitHub. GitHub is an online platform that hosts software development and version

control using Git. It is a rich and main data source for our project, offering a variety of

metrics that can be used as automatic factors in our cost estimation model.

The data extraction process was performed using the Python programming language, known

for its extensive libraries and tools that facilitate data extraction and manipulation. A vital

component of this data extraction process was using the GitHub GraphQL API. This API

provides a flexible and efficient approach to data extraction, allowing for precise queries that

return only the data fields required for the analysis. This helps reduce the volume of data

transferred. An important thing to note is that a (Elmers, 2023) Github repository and

its corresponding code served as the baseline from where this project started with the data

extraction process.

For the data extraction, it was necessary to have a GitHub key. This key is required to

authenticate our data requests with the GitHub GraphQL API. The data obtained from

the API is in JSON format (Peng, Cao, & Xu, 2011). JSON is a format commonly used

in computer science for data sharing or storing, and it is easy to read and write. The

data extraction process was focused on the most recent data within the last year, from

January 1, 2022, to the present day (10th of April, 2023). The decision was made with

experts’ opinions since they argued that software development had changed significantly

in the last 10 years. Therefore, older repositories could indicate different processes and

thus render unexpected results. Additionally, 5000 repositories were marked as sufficient for

effort estimation. However, this number can be increased if further research in this area is

necessary. The choice of 5000 repositories was based on the desire to create a robust and

representative dataset that would produce statistically significant results. A larger dataset

ensures a wider variety of projects, enhancing the study’s generalizability. While a larger

dataset might provide additional insights, including 5000 repositories also considered the

feasibility and computational resources required for data scraping. Therefore, the choice was

made to balance data variety, statistical significance, and feasibility.

5.2.1 Utilizing the GitHub GraphQL API

The GitHub GraphQL API provides a robust and flexible platform for data extraction from

GitHub. The use of GraphQL offers several advantages over traditional RESTful APIs. It

allows for more precise and complex queries, leading to a more efficient data extraction

process, as you only request the specific data fields you need.

However, the GitHub GraphQL API comes with certain limitations, such as a restriction on

the number of repositories that can be retrieved with a single query. To overcome this, a

bisection method was used to divide the range of stars and dates into smaller regions, each

containing less than or equal to 1000 repositories. This ensured that the data extraction

process adhered to the API’s restrictions while still retrieving the maximum amount of data

possible. Moreover, only 100 repositories can be extracted in one request. Therefore pagi-

nation option was used to extract all repositories that fell into the range of one query. In this

project’s scope, we have encountered frequent errors with requests that included a larger set

of repositories. Therefore, the page size limit was set to 24 repositories at once.

The process of extracting data was saved using Pickle2, a Python module used for serializing

2https://docs.python.org/3/library/pickle.html
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and de-serializing Python object structures. This allows for easy extraction in case something

goes wrong during the process, which is crucial given the large volume of data involved.

In addition to the GitHub GraphQL API, data were extracted using other methods. The

CodeTabs API3 was used to retrieve the number of lines of code for each repository, while the

raw.githubusercontent.com4 URL was used to download the README file for each repository

in text format. The traditional GitHub API was also used to retrieve each repository’s total

number of contributors. The PyGithub5 library was used to extract this information, which

simplifies the process of interacting with the GitHub API.

In total, 5699 repositories were extracted from the API, which slightly surpasses the initially

planned threshold of 5000 repositories. The reason for this number being above 5000, a

threshold lies in the bisection of the range and stars. This means that the last API request

began when the final count was close to our threshold of 5000 repositories and returned a set

of repositories that pushed the total count to 5699 repositories. Given that a larger dataset

generally provides a broader basis for analysis and there is no inherent disadvantage in having

more data, the decision was made to include all retrieved repositories in the final dataset.

The complete list of extracted attributes is depicted in table 5.3.

Overall, the data extraction process was a complex but essential stage in developing the cost

estimation model. It required a careful selection of data sources and extraction methods.

Additionally, it presented a time-consuming operation in this research since extracting the

data takes a long time, especially with complications that occur during testing where ensuring

everything works as it should demands a lot of patience and planning. However, the result

was a comprehensive dataset rich in the metrics necessary for the subsequent phases of the

project.

Attribute Description Attribute Description
owner Owner of the repository. numberOfBugs Number of bugs reported in the repository.
name Name of the repository. description Description of the repository.
stars Star count of the repository. primaryLanguage Primary language used in the repository.
forks Fork count of the repository. createdAt Date the repository was created.
watchers Watcher count of the repository. pushedAt Date of the last push to the repository.
isFork Boolean indicating if the repository is a fork. defBranchName Name of the default branch in the repository.
isArchived Boolean indicating if the repository is archived. defaultBranchCommitCount Total number of commits in the default branch.
languages Languages used in the repository. license License associated with the repository.
languageCount Total number of languages used in the repository. assignableUserCount Number of users who can be assigned to issues in the repository.
topics Topics related to the repository. codeOfConduct Code of conduct associated with the repository.
topicCount Total number of topics related to the repository. forkingAllowed Boolean indicating if forking is allowed for the repository.
diskUsageKb Disk space used by the repository in kilobytes. nameWithOwner Full name of the repository with owner's name.
pullRequests Number of pull requests made to the repository. parent Parent repository if the current one is a fork.
TotalIssues Total number of issues associated with the repository. releasesCount Number of releases in the repository.
openIssues Number of open issues associated with the repository. milestonesCount Number of milestones associated with the repository.
closedIssues Number of closed issues associated with the repository.

Table 5.3: GitHub GraphQL API extracted attributes.

5.2.2 Mapping Data with Automatic Factors

Factors classified as retrievable from GitHub GraphQL API were then mapped with data

extracted from the API. Which Github metadata feature was essential for which factor can

be visible in the table 5.2. Some factors required no mapping, for example, the number of

bugs, issues, and year of the project; the rest were derived from various Github metadata

3https://api.codetabs.com/v1/loc/?github
4https://raw.githubusercontent.com/
5https://pypi.org/project/PyGithub/
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features. This subsection will mainly cover the factors chosen for the final estimation model

since they can be determined before the start of the project, or they represent a higher

impact on software cost/effort estimation. Moreover, the next section will describe factors

calculated using statistical operations.

The ”Industry sector” and ”Application type” of a repository were determined using NLP or,

more precisely, Spacys’ classy classification6 which provides a pre-trained model for classifica-

tion. The initial input for the model is a specific dictionary with labels and their corresponding

examples. After that, the model can classify any given text with these labels and also pro-

vide a likelihood score for such classification. Classification of the mentioned factors was

conducted using a description of every repository. The initial plan was to include a Readme

file; however, classification accuracy decreased since Readme files usually include plenty of

technical information.

The Global Industry Classification Standard GICS list of industries was used to configure the

model to classify each repository into the ”Industry sector” factor. The GICS list contains

eleven industries: Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples,

Health Care, Financials, Information Technology, Communication Services, Utilities, and Real

Estate. The main goal was to determine which industry sector a given repository belongs

to. The industry’s name represents a label served to the model. Additionally, a description

of an industry and its main keywords were provided for every label to improve classification

accuracy. Additionally, when comparing the dataset descriptions, the Information Technology

(IT) industry had a higher frequency. Therefore, if a result of classification was tied to IT

or if the score of the highest classification was not above 0.3, then IT was chosen as the

industry for that repository.

Each repository was classified into Application type or Software type using the same Spacy’s

classy classification. The taxonomy of software types proposed by (Forward & Lethbridge,

2008) was used as the list of labels for the model. Importantly, only the main types were used

in this research: Data-dominant software, Systems software, Control-dominant software, and

Computation-dominant software.

Development type (enhancement or new development) was determined as ”new develop-

ment” if the project duration of a repository was younger than 100 days. Otherwise, it was

marked as ”enhancement”. The documentation size was calculated using a simple arithmetic

approach by counting the number of chapters in the Readme File. Database management

system (DBMS) was extracted using the (DB-Engines Ranking, 2023) ranking list of the

most popular DBMS systems where the top 100 most popular systems were considered. The

process included searching for a given DBMS name in a Readme file and considering the

most frequent DBMS mentioned. Additionally, technology popularity was calculated using

the same DB-Engines list plus (TIOBE Index , 2023) of the most popular programming lan-

guages. The calculation of the popularity score was created using the average between the

ranking of the main programming language of a repository and the DBMS used. Finally,

before the actual creation of the dataset, the ”Using of standards” factor was calculated

based on the occurrence of licenses or codes of conduct in the specific repository. In case

any of them were present, using standards was set to true, otherwise false. It is important to

note that the decision was made to ignore this factor for the final effort estimation because

it is subject to bias since open-source projects that were used in our case usually have an

open-source license; therefore, it is difficult to find any correlation with the effort of specific

projects. For example, MIT License is used in 2025 repositories in our dataset, Apache

license 2.0 in 858 repositories, and GNU General Public License in 514 v3.0.

6https://github.com/davidberenstein1957/classy-classification
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5.3 Dataset Creation and Preprocessing

After the initial mapping, the dataset was created and ready to be expanded and preprocessed.

Pandas data and analysis tool 7 was used to preprocess our data. It is a free and open-

source tool built on the Python programming language. Additionally, all data operations

were conducted in Jupyter Notebook8 an open-source tool facilitating interactive data science

computation, which enables easy and clear manipulation of data.

Firstly, the format was changed from JSON to CSV since it had a faster processing time with

Pandas data frame. This was followed by removing the Readme file from the dataset since

it occupied unnecessary space in the dataset and made it difficult to read and understand.

Columns CreatedAt and PushedAt, which indicate the created date of the repository and the

final push date (last code submission) were also converted to date format for easier data

manipulation.

After the initial preprocessing of the data, the rest of the factors that required statistics were

calculated. This included end-user efficiency, user availability, reusable code, and ease of use.

All of the factors will be elaborated on in the following subsection. An important thing to

note is that the decision to calculate specific factors was made in cooperation with experts

in software development. Additionally, the process can later be adapted if future research

finds additional insights on this topic.

End-user efficiency and user availability were calculated from almost the same factors, where

each factor had a corresponding weight that can be found in table 5.4. The process included

calculating the score for these two factors, where the value of each attribute in the dataset

was multiplied by a corresponding weight and then summed together. Finally, the scores of

all repositories were divided into three quantiles, and based on that score, each repository

was later classified into low, medium, and high categories.

The calculation of reusable code followed the same principle where the number of stars was

considered as the indicator of code reusability since it implies the popularity of each repository

and the likelihood of it being downloaded and reused. The number of stars was therefore

split into three quantiles; based on that; each repository was classified into low, medium, and

high categories.

Factors of easy installation and easy to change were grouped into one factor called Ease of

Use, which indicates how simple it is to use a specific repository. This was calculated using

technology popularity and documentation size, where the emphasis was made on the docu-

mentation size. The score was again calculated where higher ease of use score indicates that

the repository has a larger documentation size and lower technology popularity (lower means

more popular), which suggests that it is easier to use since it has a lot of documentation

available. This score was later split into three quantiles and classified into low, medium, and

high for each repository.

Finally, the essential COCOMO II (Boehm et al., 1995) model was used to calculate the

effort of each repository. The calculation was made based on each repository’s lines of code

(LOC) and included Person Months (PM) as the final effort estimation for each repository.

An in-depth explanation of the basic COCOMO II model will be elaborated in the next

chapter.

7https://pandas.pydata.org/
8https://jupyter.org/
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Dataset attribute End User Efficiency User Availability
Stars 0,1 0,1
Forks 0,15 0,1
Watchers 0,05 0,05
Contributors 0,3 0,3
Closed Issues 0,05 --
Open Issues 0,05 --
Issues -- 0,15
Pull Requests 0,1 0,05
Commits 0,2 0,15
Assignable User Count -- 0,1

Table 5.4: Weights for End User Efficiency and User Availability factors.

5.3.1 Final Dataset Description

As already elaborated, the final dataset contains 5699 open-source software projects pub-

lished between January 1, 2022, and the 10th of April, 2023. Additionally, only repositories

that had more than 5 stars were considered. The table 5.5 indicates additional attributes

mapped and derived after the data was extracted from the API. The final dataset also in-

cludes the attributes extracted from the API, which can benefit future research in this area.

The complete list of extracted attributes was elaborated in subsection 5.2.1. Furthermore,

the final version of the created dataset is available in (Mrvar, 2023), which includes the initial

data collected from repositories and derived factors that were calculated additionally.

Dataset Attribute Description
ProjectDurationDays Duration of the project in days
IndustrySector Industry sector of the project
SoftwareType Type of software being developed
DBMS Database Management System used in the project
DocumentationSize Size of the documentation of the project
IsNewDevelopment Indicator of whether the project is a new development or enhancement
UsingOfStandars Indicator of whether the project uses standards
TechnologyPopularity Popularity score of the technology used in the project
end_user_efficiency_score Score indicating the efficiency of the end user
end_user_efficiency_category Category based on the end user efficiency score
availability_of_users_score Score indicating the availability of end users
availability_of_users_category Category based on the availability of end users score
reusable_code Indicator of whether the code is reusable or not
ease_of_use_score Score indicating the ease of use of the project
ease_of_use_category Category based on the ease of use score
Effort Effort required to develop the project in person months
Tdev Estimated time needed to develop the project in months

Table 5.5: Descriptions of Dataset Attributes.
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Chapter 6

Software Cost Estimation Modeling

6.1 Preliminary Considerations

Before delving into the details of the final software cost estimation model, several preliminary

considerations need to be discussed. These considerations pertain primarily to manual fac-

tors influencing software cost estimation and their integration within the COCOMO II model.

Subsequently, we present a justification for the handling of these factors in this study. Fur-

thermore, we delve into the applicability of COCOMO II and how the effort was calculated

in this study.

6.1.1 Consideration of Manual Factors

Manual factors, as discussed in subsection 5.1.1, constitute a set of variables that lean

heavily towards social elements, require expert judgment for determination, or are not directly

quantifiable. Despite the challenges they pose, their critical role in software cost/effort

estimation necessitates careful consideration, especially when deploying machine learning

techniques.

Within the confines of this research, we categorized factors such as team capability, the

methodology employed, team experience, manager experience, etc., as manual factors. These

factors, derived from both the literature study and expert interviews carried out in this

study (elaborated upon in the preceding chapters), exert significant influence on the software

development process and, by extension, the cost of software development. For instance,

a more experienced team can accelerate implementation and software development’s final

testing, leading to overall cost reduction.

Another salient manual factor is the methodology adopted during software development.

Methodologies can range from Agile to traditional waterfall development approaches. Agile

software development, for example, can foster improvements through more stable require-

ments, earlier fault detection, and enhanced communication, among others (Kumar & Bhatia,

2012), which can ultimately reflect positively on the final cost of software development.

Despite the focus of this study being primarily on automatic factors, owing to their feasible

extraction from the GitHub API, we did not entirely discount manual factors. For the final

estimation, we employed COCOMO II in conjunction with various machine-learning algo-

rithms to provide an estimate of the final effort required for software development. The

conceptual model of this study, and hence the developed estimation model, was elaborated

upon in section 1.5.
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6.1.2 Integration with the COCOMO II Model

The Constructive Cost Model 2 (COCOMO II), a pervasive algorithmic software cost es-

timation model established by Boehm et al. (Boehm et al., 1995), formulates effort as a

function of program size, expressed in thousands of lines of code (KLOC).

In this research, the COCOMO II model was integrated into our cost estimation approach

due to its robust methodology for estimating effort based on a repository’s size, which was

determined from the number of lines of code present in the repositories in our dataset. The

effort adjustment factor was also acknowledged to accommodate the aforementioned manual

factors influencing the development effort. It should be noted that not all manual factors

discovered during the literature study and expert interviews were included, as the COCOMO II

model accommodates only a select group of these factors, referred to as ”Effort Adjustment

Factors” (EAF). The COCOMO II cost model is represented by the following equations:

Effort = a × (Size)b × EAF (6.1)

Tdev = c × (Ef f ort)d (6.2)

Where:

• Effort: The cumulative effort required for software development, articulated in person-
months.

• a, b, c, and d: Constants for calibration based on defined modes as discussed below.
These constants are deduced from historical project data and vary depending on the

specific software being developed.

• Size: Denotes the software project’s size. In this research, the size was depicted in
lines of code (LOC).

• EAF: The Effort Adjustment Factor signifies the combined effect of cost drivers on
the overall project effort.

• Tdev: Represents the time frame for software development measured in months.

The COCOMO II model incorporates specific modes outlined in Table 6.1. The selection

of modes in this study was predicated on the project size. If the project size is between

2 and 50 KLOC, the Organic mode is selected, representing a simple and small project

with a relatively minor problem domain. For project sizes between 50 and 300 KLOC, the

Semi-detached mode, representing medium-sized projects, is selected. Lastly, for projects

exceeding 300KLOC, the Embedded mode is chosen, signifying large-scale and complex

projects. Thus, the A, B, C, and D constants were determined based on these modes and

utilized in the equations provided above.

Mode a b c d
Organic 2,4 1,05 2,5 0,38
Semi-Detached 3 1,12 2,5 0,35
Embedded 3,6 1,2 2,5 0,32

Table 6.1: COCOMO II parameters for each mode.
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Table 6.2 displays the EAF factors incorporated into the equation. These factors embody

effort adjustment factors and can be included in software cost estimation. However, during

the creation of the dataset for this study, these factors were not encompassed in the final

analysis, primarily due to their challenging extraction from GitHub repositories. Consequently,

the EAF was uniformly set to 1

Cost Driver Description
RELY Required Software Reliability
DATA Size of Application Database
CPLX Product Complexity
TIME Execution Time Constraint
STOR Main Storage Constraint
VIRT Machine Volatility
TURN Turnaround Time
ACAP Analyst Capability
AEXP Application Experience
PCAP Programmer Capability
VEXP Virtual Machine Experience
LEXP Language Experience
MODP Modern Programming Practices
TOOL Use of Software Tools
SCED Required Development Schedule

Table 6.2: COCOMO II Effort Adjustment Factors (EAF).

6.2 Machine Learning Approaches

The central objective of this study was to employ Machine Learning (ML) techniques to

locate the most akin projects from the compiled dataset, given specific input. The ultimate

aim was to provide end-users with a snapshot of the time frame involved in the development

of similar projects based on their requirements.

For this study, four distinct ML techniques were applied to the same dataset, including

K-Nearest Neighbors (KNN), Hierarchical Clustering, Autoencoders, and Support Vector

Machines (SVM). The decision on the selection of the model was informed by previous

literature studies where similar strategies were employed, coupled with their popularity and

demonstrated success in tasks such as clustering or identification of similarities. An important

thing to note is that the objective of this study was not to pinpoint the optimal ML technique,

but rather to validate the feasibility of the comprehensive process required for software cost

estimation.

Generally, the input for each ML technique remained consistent. This input encompassed pre-

determined factors elaborated upon in the preceding chapter, which were further segregated

into numerical and categorical variables. The numerical input factors included Documen-

tationSize, contributors count, and LOC. These factors represent quantifiable facets of

a software project, where Documentation size is gauged by the number of chapters in the

Readme file, contributors count denotes the number of contributors engaged in a project,

and LOC symbolizes lines of code. Conversely, the categorical input factors incorporated

were availability of users category, end user efficiency category, ease of use category,
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IndustrySector, SoftwareType, primaryLanguage, DBMS, and reusable code. All these

factors served as input to an ML model, aiming to return the ten most similar projects in our

dataset, along with the effort/time required to develop these projects. It’s vital to note that

LOC was excluded during ML clustering as it’s challenging to ascertain this value realistically

prior to the project’s commencement.

With the application of these four machine learning techniques, this study was able to gain

valuable insights from the dataset to assist in software cost estimation. Each approach

provided a different perspective on project similarity and development effort. Moreover, each

technique yielded different repositories, thus facilitating easier comparison and offering a

range of choices for the approach to employ in software cost estimation. The results are

anticipated to bridge the gap between project requirements and execution, yielding a more

efficacious and efficient estimation model.

The subsequent subchapters briefly delve into these four ML techniques utilized, focusing on

their specifics and underlying scientific principles.

6.2.1 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a non-parametric, supervised learning method known for its

simplicity in classification. KNN operates on the concept that patterns nearest to a target

pattern x, which requires labeling, deliver beneficial label information (Kramer & Kramer,

2013). The KNN method is generally used for classification or regression problems, but

within the scope of this study, it was utilized as an instance-based learning or similarity

search, instead of classification or regression. This means that the algorithm identifies the

nearest neighbors in the feature space without predicting specific classes or numerical values.

In this project, KNN was utilized to locate the most similar projects in our dataset. The

variable number of neighbors used for majority voting in identifying the closest instances was

set to 10.

6.2.2 Hierarchical Clustering

Hierarchical Clustering (HCA) is an extensively used unsupervised machine learning algorithm

that begins by treating each object as a singleton cluster and subsequently merges pairs of

clusters until one large cluster comprising all objects from the dataset is formed. This result

is depicted in a tree-like representation known as a dendrogram. This process is referred to as

an agglomerative or bottom-up approach, as opposed to a partitional or top-down approach,

which can also be used to obtain hierarchical clustering using repeated bisections (Zhao,

Karypis, & Fayyad, 2005). Hierarchical clustering is a widely used approach in software

effort estimation, with some studies demonstrating that analysis can significantly improve

when using agglomerative hierarchical clustering (Hai, Nhung, & Jasek, 2022).

In this study, Ward’s hierarchical agglomerative clustering method was used for clustering,

which aims to minimize the variance between clusters. The Euclidian metric was employed

to calculate the distance between samples.

6.2.3 Autoencoder

Autoencoders are a type of neural network designed to encode input into a compressed,

meaningful representation and then decode it to reconstruct information that closely resem-

bles the original (Bank, Koenigstein, & Giryes, 2020). They belong to the unsupervised

learning domain and primarily use two functions: encoding and decoding. Autoencoders have
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proven effective in classification tasks and are used to solve various problems, including text

and image classification (P. Zhou, Han, Cheng, & Zhang, 2019).

6.2.4 SVM

Support Vector Machines (SVM) were developed by (Cortes & Vapnik, 1995) for binary

classification. SVM represents a supervised machine learning algorithm that, similarly to

KNN, can be used for classification or regression problems. However, it is primarily used for

classification challenges.

The algorithm seeks the optimal separating hyperplane between two classes by maximizing

the margin between the closest points of these classes. The points on the boundaries are

known as support vectors, and the midpoint of the margin is called the optimal separating

hyperplane. Furthermore, data points on the wrong side of the margin are downweighted to

reduce their influence, a step known as ”soft margin”. Subsequently, kernel techniques are

used to project data points, typically into a higher-dimensional space, if a linear separator

cannot be found. This task can be formulated as a quadratic optimization problem that

known techniques can solve. The problem capable of performing all these tasks is called a

Support Vector Machine (Meyer & Wien, 2015).

Multiple extensions of SVM were developed, including v-classification, One-class classifica-

tion, and multi-class classification. This study uses One-class classification with a linear

kernel, enabling outlier or novelty detection. It establishes a boundary representing standard

data, then compares how far each data point is from this boundary.

6.3 Construction of the Estimation Model

The model for software effort estimation developed in this research is roughly illustrated in

Figure 6.1. Although it echoes the conceptual model outlined in Chapter 1, this graphical

depiction explains the actual estimation process.

The model’s initial part encompasses a data collection process, thoroughly detailed in Chapter

5. It involves data extraction from GitHub, data mapping to metadata attributes and KPIs,

and the application of COCOMO II for estimating each repository’s effort. Furthermore, all

the necessary automatic factors need to be calculated from the obtained data. Using this

information, the final dataset was generated with all the required details to commence the

effort estimation process.

Once the final dataset is compiled, the estimation can begin, utilizing software project spec-

ifications that can be supplied as manual or automatic factors discussed in Chapter 5. It’s

important to note that the estimation model doesn’t require human input/manual factors

since they aren’t incorporated into the dataset. Hence, similarities can’t be computed be-

tween the provided information and the actual repositories in the dataset. Consequently, the

estimation model only considers automatic factors representing the functional requirements

of the intended software product. Nevertheless, the manual factors are still factored in using

the COCOMO II and Lines of Code (LOC) estimation offered by the user conducting the

analysis.

Upon supplying the automatic factors, the cost estimation model can search for similar

projects in the dataset based on these factors. As previously stated, this process employed

four different ML techniques: KNN, Hierarchical clustering, Autoencoder, and SVM. The

effectiveness of each model will be demonstrated later in Chapter 7.

The cost estimation model’s final output is the ten most similar projects identified by the ML

technique. These ten projects are then evaluated for outliers using the Interquartile Range
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(IQR) method for outlier detection (Vinutha, Poornima, & Sagar, 2018), based on the effort

reported in person months by each project. This strategy was deemed effective as some

returned repositories during the testing phase were deemed anomalies. Hence, the decision

to normalize the results produced by the ML techniques was made. IQR is a technique that

aids in identifying outliers in continuously distributed data, calculated using the following

equation:

IQR = Q3−Q1 (6.3)

Where: Q1 represents the first quartile, and Q3 signifies the third quartile, which is recursively

calculated using the median value. After determining the IQR, Q1, and Q3, the boundaries

for outliers were established as:

Lower boundary = Q1− (1.5× IQR) (6.4)

Upper boundary = Q3 + (1.5× IQR) (6.5)

Subsequently, all values beyond these boundaries were discarded based on the returned effort

in person months.

Once the outliers were excluded, the final estimation was determined by averaging all remain-

ing repositories in the list of data returned by the ML model. The final output variables are

Effort, indicating the effort in person-months, and Tdev, representing the time needed for

software development. As previously stated, both values reflect the average of all repositories

identified as most similar to the data supplied to the model.

The final estimation model and the complete code utilized in this process can be found in

(Mrvar, 2023).

Figure 6.1: The cost estimation process.
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Chapter 7

Empirical Evidence

To substantiate the efficiency and applicability of the proposed cost estimation model, two

evaluation methods were deployed. The primary approach employed a case study conducted

in tandem with a small-scale IT firm based in Slovenia. As a secondary approach, an experi-

mental design was utilized, testing the estimation model against a set of randomly selected

projects listed on Freelancer.com1.

The comprehensive aim of these evaluations was to assess the proposed cost estimation model

in practical, real-world contexts. This methodology is intended to measure the success rate,

applicability, and generalizability of the model across a diverse range of projects.

This chapter outlines the conduct of the experiments, presents the resultant data and provides

an in-depth discussion of the findings.

7.1 Case study

As elaborated in Chapter 2, a case study is acknowledged as an empirical research method

designed to investigate a phenomenon within its real-life context (Yin, 1981). The guidelines

proposed by Yin (Yin, 1981) were strictly adhered to in both the planning and conduct of

the case studies for this research.

Objective: The central goal of this research, and consequently the case study, was the

construction and validation of the estimation model for software project cost estimation.

The case: The case analysis centered on a small IT company based in Slovenia.

Methods: Data collection encompassed multiple interviews and sessions to understand the

specifics of past software projects, their requirements, and their ultimate effort.

Selection strategy: A multiple case study approach (Yin, 1981) was utilized in this research

to facilitate data analysis. Examining three software projects provided a comprehensive un-

derstanding of individual cases and facilitated extensive exploration of the research questions.

Theory: The formulated estimation model can serve as a valid reference model to aid stake-

holders in cost estimation for software development processes.

Protocol: To appraise the estimation model and execute the case study, the following pro-

tocol was followed

1. Project Data Elicitation: Participants provided details about their past projects, in-

cluding requirements and development efforts.

2. Implementation of ML Models: The identified requirements were analyzed, and the

proposed ML models were applied to identify similar projects in our knowledge base

and their corresponding effort.

1https://www.freelancer.com/
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3. Results: The results were gathered and averaged as detailed in chapter 6.

4. Discussion and Analysis: The final results were examined and presented to stakehold-

ers for discussion.

In addition, the standards set by the ACM SIGSOFT for empirical research (Ralph et al.,

2020) were followed to ensure the rigor and relevance of the case study.

The case study undertaken in this research deployed real-life industry data from a small

tech enterprise based in Slovenia. This company’s core expertise lies in digitalizing business

processes for its clientele, offering various services, including custom web application devel-

opment, contemporary web page design, and mobile and desktop application development.

Furthermore, the company provides consulting services to its clients.

At the time of this research, the company had 6 employees, primarily specializing in software

development utilizing .NET technologies. The company’s primary focus was on digitalizing

industrial processes, a specialization that has attracted a significant client base from the

industrial sector.

7.1.1 Project Requirements

The principal objective of data elicitation was to collect extensive, relevant data pertaining to

past software projects conducted within the organization. This process can pose challenges,

particularly given the limited time availability of stakeholders, necessitating advanced planning

and organization. Privacy concerns further complicated the process, limiting the discussion

of specific project details, including pricing, individuals involved, client details, and specific

features and requirements.

Identifying the Data Source

Three past projects executed by the organization were discussed and presented. The process

and methodology of data collection will be detailed in the subsequent chapter.

The three projects presented by the organization all held similarities and were developed

for clients from the industrial sector. The principal aim for these clients was to digitize

labor-intensive or time-consuming business processes.

Each project was a web application, necessitating the company to commence development

largely from scratch, with no prior projects to base their code upon. However, certain

components from previously developed software were incorporated into the development,

including various forms that enabled CRUD (Create, Read, Update, Delete) operations and

other useful elements. Given the company’s expertise in .Net (C#) technologies, all projects

were built using this technology.

As mentioned, the specifics of each project were avoided to respect privacy concerns. Nonethe-

less, efforts were made to collect all relevant information that could be utilized in evaluating

the proposed estimation model. The complete data collection process and what was collected

will be presented in the next section.
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Data Collection Process

Multiple interviews were conducted to gather pertinent information about the software projects

under investigation for this study. Additional communication, especially when further clarifi-

cation was required from the participant, was conducted remotely via email or calls.

The majority of the communication was held directly with the CEO of the company, given

their comprehensive understanding of the development process. However, detailed explana-

tions of certain development aspects were discussed with developers as needed.

The core aspect of these discussions was to collect extensive information about their past

projects, including the time required for their development. As previously mentioned, any data

that could reveal private information was omitted from the discussions. The conversations

also facilitated a broader understanding of cost estimation, introducing new perspectives to

this study and the application of the proposed estimation model. The participant’s reactions

to the work proposed in this study will be detailed in the discussion section.

Upon the collection and analysis of information, the collected data were matched to the

attributes utilized in this study, as presented in chapter 6. The description of the collected

projects and their final mapping is shown in Table 7.1. In this table, each column represents

a specific project, indexed under a unique project ID. Additionally, it includes the majority of

relevant attributes used by the models to provide the effort estimation based on past projects,

such as DBMS, programming language, documentation size, number of contributors, etc.

The most crucial piece of data, however, is the final duration depicted in months, indicating

the company’s development timeline for each specific project. This data provided a basis

for a clear comparison and evaluation of the proposed estimation model. Upon initial data

collection and aggregation, the ML models described in chapter 6 were employed to render

the final estimation. Consequently, the data was housed in a Google Sheet document and

subsequently exported into a CSV file. This procedure facilitated the efficient extraction of

relevant data, which served as the input for the estimation model.

In alignment with the proposed approach, ML techniques were utilized to identify the most

similar repositories within the constructed dataset. The outcomes of the estimation process

are presented in the subsequent section.

Attributes ID: 1 ID: 2 ID: 3
availability_of_users_category Medium High High
end_user_efficiency_category Medium Medium High
ease_of_use_category Medium Medium Medium
IndustrySector INDUSTRIALS INDUSTRIALS INDUSTRIALS
SoftwareType Systems software Systems software Systems software
IsNewDevelopment TRUE TRUE TRUE
reusable_code Medium Medium High
DocumentationSize 10 10 10
contributors_count 3 1 2
primaryLanguage C# C# C#
DBMS MongoDB SQL SQL
Actual duration (months) 36 3 8

Table 7.1: Industry-based projects: attributes and actual durations.
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7.1.2 Results

As previously described, four ML approaches were utilized to perform effort estimation based

on the most similar repositories within the dataset created for this study. Table 7.2 displays

the outcome of each ML model for each collected project. The results in the table present

each project by ID (refer to table 7.1) and for each project, its corresponding ML method is

indicated. Values are represented in person-months (first row of each model) and the time

required to develop the software in months (second row of each model). As demonstrated

in table 7.1, the project with ID 1 required 36 months for completion, the project with ID

2 required 3 months, and the project with ID 3 required 8 months. The interpretation of

the results provided will be addressed in the following chapter. Nevertheless, it is noticeable

that the autoencoder was the most accurate compared to the other approaches employed.

Meanwhile, the SVM returned identical repositories, which can be attributed to the similarities

between the actual projects.

ID Method Autoencoder KNN Hierarchical Clustering SVM

1
Average Effort (pm) 17,44 61,63 12,25 163,88
Average Tdev (m) 6,33 8 5,5 11,5

2
Average Effort (pm) 4,44 31,63 464,5 163,88
Average Tdev (m) 3,78 7,5 15,5 11,5

3
Average Effort (pm) 34,56 38,33 316,33 163,88
Average Tdev (m) 8,67 8,44 14,67 11,5

Table 7.2: Industry-based case study results.

7.1.3 Analysis

As evidenced in table 7.2, the final results exhibit variance between each model and project.

The closest estimation to Project 1 was yielded by SVM, although it significantly diverges

from the actual duration, which was 36 months. The most accurate estimation for Project

2 was produced by the Autoencoder, which forecasted a development time of 3.78 months,

whereas the actual time required was 3 months. Regarding Project 3, both Autoencoder and

KNN provided comparable estimations of 8.67 and 8.55 respectively.

A pivotal point of consideration is that the organization rounded the total duration to whole

months, suggesting that the actual duration might deviate slightly from the values utilized

in this study.

Upon presentation of the results to the organization, the consensus was that such a model

could potentially augment their development process, as well as those of other organizations.

However, a stakeholder raised concerns regarding the substantial time and effort required

to develop such a tool with more reliable results, which would adequately cover most as-

pects necessary for cost estimation, especially when taking into account data collection and

development processes.

Regardless, the results demonstrated that the approach used in this study for cost estimation

could serve as a promising point of departure for future research in this field.
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7.2 Experiment

In addition to the case study, we have conducted another experimental assessment using

publicly available data via the Freelancer.com platform.

Freelancer.com is a platform where freelancers can find job opportunities of various sizes and

scopes, spanning a range of disciplines from writing and legal services to software develop-

ment. When a job is posted, freelancers can place bids indicating their expected compen-

sation for completing the task. Subsequently, the job poster can select a freelancer whom

they deem credible and dependable.

Analogous to the case study performed, the primary objective of this experiment was to

evaluate the proposed estimation model using real-world data.

7.2.1 Data Collection

In this investigation, multiple job postings on Freelancer.com were collected and mapped

using factors identified in our research. Job postings were selected if they pertained to

software development and featured an average bidding price exceeding $1000.
Upon implementing this pricing criterion, all projects falling beneath the specified cost were

systematically excluded. Furthermore, the considered projects were necessitated to encom-

pass comprehensive descriptions enabling the extraction of valuable factors. Moreover, we

solely included projects pertaining exclusively to software development, which exploited tech-

nologies concurrent with our dataset. Given the disparate nature of project descriptions

available on the platform, the selection process necessitated intricate filtering and manual

curation of relevant data. This procedure culminated in the identification of 35 suitable

projects.

When the projects were extracted, all relevant factors were cataloged in a spreadsheet,

which included details such as the language, DBMS, software type, industry sector, and so

on. Subsequently, the average bidding price for the listed job was also recorded.

Post the compilation of all pertinent factors and the estimated price, the average salary

per country was extrapolated from the Glassdoor.com platform2. This data was leveraged

to compute the average hourly wage for each country, thereby enabling us to estimate the

development time for specific tasks premised on the price and hourly wage. The final effort

was delineated in months for each project, premising on the assumption of 160 hours per

month as a full-time project duration. The average monthly salary per country was then

divided by 160 to obtain the hourly wage.

An additional critical consideration is the significant demographic of visitors to the Free-

lancer.com platform; data indicate a predominance of users from India (15,78%), Bangladesh

(11,66%), followed by the USA (11,07%), Pakistan (6,47%), and Egypt (3,09%) (Similarweb,

2023). As a result, the majority of freelancers are primarily situated in India, Bangladesh, and

neighboring countries exhibiting lower per capita income. Consequently, pricing standards on

the platform are adjusted to accommodate these economic circumstances, often resulting in

rates that are comparatively lower than those expected within the task’s originating country.

Therefore, the effort calculation factored in not only the average hourly wage of the country

where the project was posted (Country of Origin) but also the hourly wages from the most

represented countries on the platform: India, Pakistan, USA, and Bangladesh. Consequently,

the final dataset encompassed five effort columns: one delineating the effort assuming de-

velopment within the project’s originating country and four others representing the effort

assuming development in India, Pakistan, USA, and Bangladesh, respectively.

2https://www.glassdoor.com
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Once all the required factors were collected, the data was extracted into a CSV document,

similar to the approach taken in the previous case study. This data served as the input

for the machine-learning techniques elaborated upon in the preceding chapter. These ML

techniques were then employed to estimate the effort for each project. The estimated

effort was subsequently compared to the effort calculated from the average bidding price, as

discussed in the previous section.

7.2.2 Results and Evaluation

Table 7.3 encapsulates the conclusive results yielded by the machine learning (ML) models.

This table encompasses data from 35 projects, which includes details such as the originating

country of each project, the associated cost, and the calculated effort as explicated in the

preceding section. The final quartet of columns delineate the estimations derived from

each ML algorithm, where the effort is expressed in the time required for specific software

development.

An examination of the first project, posted in Saudi Arabia with an average bidding cost

of $4369, allows us to observe the calculated effort if developed in each corresponding
country: the country of origin (Saudi Arabia), India, Bangladesh, USA, and Pakistan. The

method for calculating the effort has been elaborated upon in the previous section. The

final four columns indicate the estimations provided by each ML model. The Autoencoder

model predicts an effort of 8,71 months, the KNN model estimates 4,3 months, Hierarchical

Clustering forecasts 6,24 months, and the SVM model predicts 8,09 months.

From these results, we note that the Hierarchical Clustering model provides the closest

estimation to the actual effort if the project was developed in Pakistan, and the KNN model

performs similarly if the project was developed in India. Both models would provide close

approximations if the project were developed in Bangladesh, with the Hierarchical Clustering

model slightly overestimating and the KNN model slightly underestimating the actual effort.

The experimental outcomes were evaluated employing three of the most widely used eval-

uation methods identified in the Systematic Literature Review (SLR), detailed in chapter

3. These evaluative methods comprise the Mean Magnitude of Relative Error (MMRE),

which is characterized as the mean of the absolute relative errors (Venkataiah, Mohanty,

& Nagaratna, 2019), the Mean Absolute Error (MAE), defined as the mean of the ab-

solute disparities between the predicted and actual values (Rai, Kumar, & Verma, 2020),

and Pred(25%), defined as the ratio of estimated values that lie within 25% proximity to

the actual values (Qi et al., 2017). The MMRE and MAE were computed employing the

subsequent equations:

MMRE =
1

n

n∑
i=1

Êi − Ei
Ei

(7.1)

where n represents the number of samples, Êi denotes the predicted effort for the i-th

instance or project, and Ei signifies the actual effort for the i-th instance or project.

MAE =
1

n

n∑
j=1

|yi − ȳt | (7.2)

where n denotes the number of samples, yi signifies the actual values, and ȳi denotes the

predicted values.

The table 7.4 presents the outcomes of the performed experiment for each country, complete

with MMRE, PRED, and MAE values. Lower MMRE and MAE indicate greater accuracy,
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Proj. Country Cost ($)
Time/Effort             
(Country of Origin)

Time/Effort 
(India)

Time/Effort 
(Bangladesh)

Time/Effort 
(USA)

Time/Effort 
(Pakistan) Autoencoder KNN

Hierarchical 
Clustering SVM

1 Saudi Arabia 4369 0,59 4,80 5,30 0,55 6,18 8,71 4,3 6,24 8,09
2 Turkey 3703 1,74 4,07 4,49 0,47 5,24 5,21 8,25 9,8 5,01
3 Australia 4123 0,62 4,53 5,00 0,52 5,83 6,51 3,86 7,59 6,82
4 Indonesia 2626 1,50 2,88 3,19 0,33 3,71 5,54 12,08 3,9 7,15
5 India 2.536,69 2,79 2,79 3,08 0,32 3,59 6,1 6,48 8,87 3,04
6 India 1.819,67 2,00 2,00 2,21 0,23 2,57 4,63 10,29 9,8 7,5
7 Saudi Arabia 1500 0,20 1,65 1,82 0,19 2,12 7,96 10,29 9,8 5,96
8 China 33956 7,87 37,30 41,21 4,27 48,01 5,61 6,18 7,59 5,72
9 UK 13879 2,88 15,24 16,84 1,74 19,63 5,44 6,47 7,74 5,71

10 China 14020 3,25 15,40 17,01 1,76 19,82 4,49 6,47 7,74 5,71
11 Colombia 11398 4,77 12,52 13,83 1,43 16,12 10,78 6,33 5,29 4,38
12 Italy 8417 2,97 9,25 10,21 1,06 11,90 5,2 2,27 4,47 5,54
13 Reunion 8395 2,40 9,22 10,19 1,06 11,87 7,37 6,73 4,49 5,3
14 India 6861 7,54 7,54 8,33 0,86 9,70 7,19 6,73 4,49 5,3
15 UK 5.084,87 1,05 5,59 6,17 0,64 7,19 6,56 2,85 7,59 7,18
16 UK 4046 0,84 4,44 4,91 0,51 5,72 5,35 2,89 4,47 8,14
17 USA 5045 0,63 5,54 6,12 0,63 7,13 7,04 3,59 7,86 7,17
18 India 4.792,83 5,27 5,26 5,82 0,60 6,78 8,5 5,03 7,72 5,68
19 Denmark 4669 0,42 5,13 5,67 0,59 6,60 7,73 4,96 4,89 7,36
20 Saudi Arabia 4350 0,59 4,78 5,28 0,55 6,15 5,3 5,7 8,48 4,31
21 India 4.325,06 4,75 4,75 5,25 0,54 6,12 5,29 6,27 4,32 4,46
22 Kenya 4177 2,01 4,59 5,07 0,53 5,91 9,35 5,03 7,72 5,68
23 USA 3972 0,50 4,36 4,82 0,50 5,62 4,76 6,45 5,29 5,03
24 Malaysia 3902 2,05 4,29 4,74 0,49 5,52 8,35 6,17 6,24 6,13
25 Egypt 3917 4,65 4,30 4,75 0,49 5,54 6,79 6,53 3,44 6,66
26 USA 3183 0,40 3,50 3,86 0,40 4,50 6,26 6,27 4,32 4,46
27 UK 2.855,47 0,59 3,14 3,47 0,36 4,04 8,09 6,53 3,44 6,66
28 UK 20.119,76 4,17 22,10 24,42 2,53 28,45 10,32 3,37 5,8 9,3
29 USA 7901 0,99 8,68 9,59 0,99 11,17 2,51 4,49 4,49 2,24
30 United Arab Emirates 7554 1,26 8,30 9,17 0,95 10,68 6,61 8,48 7,98 6,13
31 Argentina 5085 2,03 5,59 6,17 0,64 7,19 9,49 14,78 15,47 12,14
32 Peru 4494 2,34 4,94 5,45 0,56 6,35 4,26 6,58 6,58 5,89
33 Ireland 2400 0,41 2,64 2,91 0,30 3,39 6,58 6,02 2,61 10,16
34 Egypt 2401 2,85 2,64 2,91 0,30 3,40 3,9 4,51 7,04 7,41
35 USA 2301 0,29 2,53 2,79 0,29 3,25 7,61 6,65 27,24 5,54

Table 7.3: Results of the Experiment

while a higher PRED(25%) suggests that a larger percentage of the prediction will fall within

25% of the actual effort.

The experimental results are contrasted against the ’effort’ value calculated for each respec-

tive country. This benchmark was established by considering the average wage for software

developers within the specific nation in question. For instance, in the row corresponding to

’India’, the results in the table were obtained by comparing our experimental results against

the calculated effort based on the average salary of software developers working in India.

A similar procedure was implemented for ’Bangladesh’, and so forth for all the countries

included in the study.

A comprehensive discussion of the results, implications, and potential risks will be addressed

in the following subchapter. However, the full results of the experiment and the associated

repositories are available in (Mrvar, 2023).
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ML Algorithm Metric Country of origin India Bangladesh USA Pakistan

Autoencoder
MMRE 6,209 0,717 0,615 11,687 0,508
PRED25 0,057 0,286 0,286 0,000 0,314
MAE 4,497 4,187 4,354 5,806 4,845

KNN
MMRE 5,890 0,883 0,797 12,214 0,692
PRED25 0,143 0,229 0,286 0,000 0,257
MAE 4,261 4,733 5,071 5,477 5,746

Hierarchical Clustering
MMRE 7,987 1,040 0,929 14,105 0,791
PRED25 0,086 0,257 0,343 0,000 0,343
MAE 5,187 5,102 5,365 6,361 5,881

SVM
MMRE 5,784 0,739 0,642 11,389 0,538
PRED25 0,114 0,229 0,314 0,000 0,371
MAE 4,283 4,418 4,621 5,451 5,127

Table 7.4: Experiment Evaluation

7.2.3 Analysis

As illustrated in Table 7.4, the estimations are significantly more precise when the computed

effort is matched with the actual effort calculated from hourly wages in countries such as

India, Bangladesh, and Pakistan, compared to the effort derived from the country of origin or

the USA. This outcome suggests that projects posted on Freelancer.com could be primarily

intended for outsourcing to reduce costs, which consequently raises important questions

about the reliability of the bidding prices associated with each project.

It is, however, crucial to consider the performance of the Machine Learning (ML) techniques

utilized in this experiment. An examination of the evaluation metrics across the assembled

test data allows us to identify the algorithms that yielded the most accurate results. Models

that generate lower MMRE and MAE values, in addition to higher PRED25 scores, are

indicative of superior performance.

The evaluation metrics reveal that the Autoencoder algorithm consistently registers the low-

est MMRE among all methods, notably for countries like India, Bangladesh, and Pakistan.

This suggests superior performance of the Autoencoder model in terms of the MMRE metric

for these countries.

Upon observing the Pred(25%) metric, it is noteworthy that all models exhibit a value of 0

for the USA. This implies that none of the estimated projects fell within 25% of the actual

values when the effort was compared with that of the USA. This finding supports the notion

that the prices set on Freelancer.com are oriented towards outsourcing and cost reduction.

However, for India, Bangladesh, and Pakistan, the Autoencoder model exhibits the highest

Pred(25%) score, which further indicates its superior performance over the other models.

Considering the MAE, the models provide relatively weak results regarding the average abso-

lute error. This could suggest that the input data may be insufficient or noisy, considering that

the descriptions of the projects listed on Freelancer.com may not provide a comprehensive

explanation of the project requirements.

Upon reflection, it is clear that the data collection process posed significant challenges. This

is especially true considering that clients seeking freelancers tend to prefer the lowest bids.

Furthermore, it is difficult to determine the generalizability of the effort calculations since

they were based on the average hourly wage in a country, potentially leading to discrepancies

across different levels of expertise. Finally, it is important to acknowledge that project

descriptions on the platform are often vague and may not encompass the entire development

process. As a result, extracting the right requirements can prove to be a complex task.

Detailed discussions on the results, the efficacy of the developed model, and reflections on

the overall study will be further elaborated upon in Chapter 8.
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Chapter 8

Discussion

This chapter aims to critically assess this study and its implications within software cost

estimation research. Initially, the developed estimation model is rigorously investigated and

discussed. Subsequently, potential threats to the validity of the results and the overall analysis

are elucidated, along with relevant ethical considerations.

8.1 Final Estimation Model

The comprehensive process of utilizing machine learning (ML) techniques for estimation pur-

poses manifests as a cyclic, ongoing endeavor. As such, there is no definitive guarantee of the

model’s precision or the effectiveness of the approach adopted in this study. This research

study primarily targeted software cost estimation using GitHub repositories, wherein we relied

upon Systematic Literature Review (SLR) and expert interviews to collect the factors essen-

tial for executing such an estimation. Consequently, it is plausible that the factors proposed

in this study could be prone to a degree of bias; furthermore, we cannot assert with certainty

that the selected factors are the most optimal for conducting effort estimation. The same

applies to the ML techniques employed in the process. The SLR resulted in various ML

techniques, making selecting the most appropriate one quite challenging.

It is vital to underscore that only 5699 repositories were incorporated into the dataset. This

posed difficulties when evaluating, particularly when assessing smaller projects, given that

merely 146 repositories in the dataset feature software development durations of less than

one month. This limitation is primarily attributable to the dataset’s size. However, it can

also be ascribed to our focus on repositories with more than five stars on GitHub, which

suggests that only larger repositories were considered. It is crucial to note that the objective

of this study was to test the feasibility of data collection and estimation execution, not to

test the completeness of the dataset. Another notable point concerning the dataset is that

the data collected originates from open-source, publicly available projects. Consequently, it

is challenging to assert how generalizable the results of the estimation model can be in the

context of projects being developed within private organizations.

An additional challenge that became evident during the evaluation phase was that some

factors chosen for performing the estimation could be challenging to articulate accurately.

This factor could consume a considerable amount of time and result in biased decisions when

executing the estimation.

Acknowledging all these issues, the procedural steps and code necessary to reproduce the

process were made publicly available. We anticipate that future researchers in this domain

will find this availability helpful, simplifying their efforts when conducting studies in this field.

Therefore, we invite anyone to continue researching this complex and challenging field.
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8.2 Threats to Validity

Evidence-Based Software Engineering (EBSE), proposed by (B. A. Kitchenham, Dyba, & Jor-

gensen, 2004), advocates guidelines for evidence-based software production. Consequently,

the systematic literature review (SLR) has emerged as an essential technique for amassing

evidence and insights about this research field. To certify the scientific value of the results

yielded by the SLR, we must stringently assess its validity. Moreover, expert interviews, a

case study, and the design of the final artifact together form a complex trajectory that must

maintain a consistent level of scientific contribution from this study.

For these reasons, the validity of this study has been meticulously evaluated throughout its

course. However, akin to all research, potential threats to validity warrant careful consid-

eration when interpreting and applying the findings of this study. (X. Zhou, Jin, Zhang,

Li, & Huang, 2016) examined the standard practices of Threats to Validity (TTVs) in 316

SLRs concerning the software engineering research field. Subsequently, they compiled a list

of common threats to validity, illustrated in Table 8.1. The subsequent sections will explore

these threats in the context of this research project’s validity.

Category Definition
Construct Validity Identify correct operational measures for the concepts being studied.

Internal Validity Seek to establish a causal relationship whereby certain conditions are believed to lead to 
other conditions, as distinguished from spurious relationships.

External Validity Define the domain to which a study's findings can be generalized.

Conclusion Validity Demonstrate that the operations of a study, such as the data collection procedure, can be 
repeated, with the same results.

Table 8.1: Definitions of validities based on (X. Zhou et al., 2016)

8.2.1 Construct Validity

The construct validity, which pertains to identifying accurate operational measures for the

concepts discerned in the executed SLR, primarily hinges on the studies accumulated during

the SLR and their collection methodology. One potential threat could arise from online

libraries, where papers are collected, or un rigorous venues. Furthermore, the exclusion and

inclusion criteria that we have established could be biased. Therefore, each step undertaken in

the SLR was meticulously documented in Chapter 3. This research concentrated on methods

prevalent in recent research papers, which implies that the concepts had to be recurrent for

us to perceive them as significant.

Construct validity about expert interviews and the final artifact concerns whether the metrics

and information used during the process accurately represent the phenomena they aim to

measure. The methods and information employed during the research were precisely defined

to enhance the construct validity, and data from the SLR were organized and elucidated. In

addition, the questions posed during the interviews followed an interview protocol meticu-

lously devised to capture pertinent information. Furthermore, the final artifact was designed

and evaluated utilizing well-established methodologies in software engineering.
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8.2.2 Internal Validity

Threats to internal validity are primarily associated with case studies and interviews, wherein

our inherent bias could influence the selection of the participants, the organization, and the

definition of the questions. Hence, the selection procedure of participants was executed

rigorously, and risk was mitigated through systematic planning and consultation with all

participants involved in the research.

Internal threats to validity are also evident in calculating factors using Natural Language

Processing (NLP) and other tasks to derive a specific factor from a repository. As previously

stated, achieving a perfect solution to such tasks is unlikely. Therefore, it is crucial to

acknowledge that this aspect may carry a degree of bias.

Another threat to internal validity arises from potential bias from the researchers’ side during

the SLR, particularly during the screening phase, where the overview of the papers under

evaluation was constrained. Consequently, all decisions and their rationale were documented

in Chapter 3.

8.2.3 External Validity

The scope of this study is primarily concentrated on software development, rendering it fairly

specific. Consequently, the findings of this study can be generalized exclusively to software

development projects. This includes only coding projects; thus, extrapolating results to low-

code platforms or projects with significantly divergent approaches, especially those outside

software development, is complex and probably unfeasible.

Additionally, regarding the generalizability of the executed SLR, a minor percentage of studies

were not accessible during this investigation. However, given that the majority of papers were

accessible, we can reasonably conjecture that the missing papers would not considerably alter

our findings.

Finally, the case study’s nature and evaluation often circumscribe the generalizability of

the findings. Therefore, additional research is necessitated to ascertain whether the results

derived from this study can be extrapolated to other contexts.

8.2.4 Conclusion Validity

To illustrate and affirm the repeatability of the SLR results, each step was carefully docu-

mented, and a comprehensive description of those steps was elucidated in Chapter 3. Fur-

thermore, the results of the SLR were made publicly available after the completion of the

study, which will provide future researchers with additional insights into the execution of this

study. The complete output of the executed SLR can be found in (Mrvar, 2023).

This also applies to the final estimation model and data collection procedure, with the final

artifact available in (Mrvar, 2023). The code was made publicly accessible to facilitate

understanding of how this study was conducted and its underlying logic for future researchers.

This accessibility will also ease the replication of this study, should the need arise.
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8.3 Ethical Considerations

Ethical considerations constitute a critical component of the research process. With re-

gard to data privacy and security, all data that could potentially identify any individual were

anonymized and secured. The actual names of the experts were concealed, and the organi-

zation participating in the experiment was also obscured to uphold privacy.

Concurrently, results and conclusions were articulated as accurately as possible. The method-

ologies employed were transparent and were made publicly available to foster reproducibility.

This implies that future researchers in this area should be capable of replicating the study. In

addition, we have strived to acknowledge all limitations encountered during this study, which

should assist future researchers in identifying areas requiring further investigation.

Concerning intellectual property, all tools and papers utilized during this study were appro-

priately cited and acknowledged.
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Chapter 9

Conclusion

This chapter aims to critically evaluate the research conducted during this thesis and elucidate

its principal objectives. It responds to the research questions, assesses the achievement of

goals, and recommends future research directions and targets in this field.

9.1 Cost Modeling and Estimation (MRQ)

To address the main research question, ”How can a robust and systematic approach be

developed to model the cost estimation of software projects, considering the essential factors

of stakeholder requirements and priorities?” our research has developed an estimation model

exhaustively documented within this thesis. The conceptual model, elaborated in Chapter 1,

guided this process meticulously. Repositories were systematically scraped from GitHub and

mapped to factors identified in the systematic literature review (SLR) and expert interviews,

followed by dataset creation. The Constructive Cost Model (COCOMO) II (Boehm et

al., 1995) computed effort for each repository based on lines of code. Finally, machine

learning techniques were employed to find similar repositories based on the future project

requirements, enabling effort estimation for the anticipated software development.

The main research question is supported by several sub-questions. Addressing these will

provide a comprehensive picture and rationale behind the decisions made while crafting this

model.

9.2 Literature on Cost Estimation (RQ1)

The state-of-the-art cost estimation methodologies presented in the literature primarily rely

on existing datasets to perform effort estimation. This implies that the majority of ap-

proaches do not concentrate on gathering fresh data for effort estimation, instead, the focus

is predominantly on improving the modeling aspect rather than creating a complete pipeline

for effort estimation (encompassing both data extraction and modeling). This has been

thoroughly elaborated in the findings of the literature review in Chapter 3.

Nevertheless, the systematic literature review uncovered 178 distinct models and meth-

ods. The most frequently encountered approaches in the literature include neural networks

(Hammad & Alqaddoumi, 2018), K-nearest neighbors (KNN) (Shukla & Kumar, 2019),

and multilayer perceptron (MLP) (Ali & Gravino, 2021), among others. Machine learning

emerged as the most prevalent approach, followed by regression and neural networks.

With such a plethora of approaches, the decision on the most suitable one to address the

effort estimation problem can pose a significant challenge.
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9.3 Parameters in Estimation Approaches (RQ2)

In the systematic literature review (SLR), we observed that most approaches using machine

learning (ML) techniques did not prioritize gathering data for effort estimation. However,

a few methodologies did focus on manual data collection to assemble a dataset for effort

estimation (Senevirathne & Wijayasiriwardhane, 2020). Moreover, numerous papers specifi-

cally referenced parameters that could potentially impact the cost of software development,

even though some of these parameters are challenging to quantify or collect using extensive

data methodologies. For instance, (Suliman & Kadoda, 2017) identified factors that include

frequent changes in software requirements, political issues, management considerations, con-

flicts, and others.

Despite the challenges associated with gathering and identifying correct factors, we suc-

cessfully gathered 254 factors and key performance indicators (KPIs). After organization

and grouping, the final list comprised 106 factors. Additionally, we collected and analyzed

datasets used by various effort estimation approaches and identified their attributes. To

accomplish this, we extended the study conducted by (E. Mustafa & Osman, 2018), which

resulted in a final tally of 48 attributes obtained from the collected datasets.

The complete list of identified factors and potential parameters derived from this study can

be found in Chapter 3, and a comprehensive explanation is available in (Mrvar, 2023).

9.4 Data Acquisition Techniques (RQ3)

Throughout the project, we predominantly used the GitHub GraphQL API to extract repos-

itories from GitHub. The procedure was primarily informed by the API documentation avail-

able on GitHub’s official website, which also provides the GraphQL Explorer1. As outlined

in Chapter 5, no other scraping techniques were employed in this project, except for two

additional APIs that facilitated the extraction of lines of code and readme files for each

repository.

9.5 Parameters for Cost Estimation Model (RQ4)

In order to answer the question, ”Which parameters should be used to construct a cost

estimation model for software projects?” we conducted an extensive literature review detailed

in Chapter 3. As previously mentioned, we identified 106 factors through the SLR, all of

which could serve as parameters for the cost estimation model. Consequently, we conducted

several expert interviews to pinpoint the most valuable factors that could be parameters for

the final estimation model.

The interviews enriched our understanding of the collected factors and introduced new po-

tential factors for consideration. Furthermore, the list of factors was reduced, with less

significant attributes being removed. The entire process and outcome of the interviews are

presented in Chapter 4.

The final challenge involved determining which factors were feasible to acquire during data

extraction and mapping. Accordingly, they were divided into two categories, automatic and

manual factors. Manual elements were incorporated using the COCOMO II model, while

automatic factors were incorporated through machine learning. The rationale and procedure

behind these decisions are expounded in Chapters 4 and 5. It is essential to note that most

1https://docs.github.com/en/graphql/overview/explorer
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decisions were taken in consultation with domain experts, but this does not preclude the

possibility of residual bias in the results.

9.6 Extracting Project Requirements (RQ5)

Data extraction from GitHub occasionally made specific project requirements, indicative of

the final effort, plainly visible. This includes parameters such as programming languages, lines

of code, documentation size, standards, and others. We employed algorithmic techniques

like natural language processing (NLP) to identify less evident factors. For instance, an NLP

classifier was used to determine the industry sector and software type from the Readme

file. Similarly, the database management system (DBMS) was identified by counting the

occurrences of the most common DBMS in the readme file, thus indicating the probability of a

particular DBMS being utilized in the corresponding repository. A comprehensive explanation

of this process is provided in Chapter 5. However, it is essential to mention that using these

techniques to extract specific attributes or requirements from a repository does not guarantee

absolute accuracy.

9.7 Estimating Cost Based on Project Similarity (RQ6)

The systematic literature review (SLR) identified 178 unique models and methods for software

cost estimation. However, this study aimed to seek similarities between the input data

and the software projects within our knowledge base. As a result, we employed the K-

nearest neighbors (KNN) and hierarchical clustering algorithms, given their long-standing

and widespread use (Ogunleye, 2020). Additionally, we applied the Support Vector Machine

(SVM) method due to its prevalence in the SLR. We also utilized the Autoencoder algorithm,

a novel approach to software effort estimation, and proposed a variant of this approach (Qi

et al., 2021), thereby adding an innovative aspect to our study.

The estimation was conducted based on the similarity between the input data and the projects

within the knowledge base. This led to identifying the ten most similar repositories, from

which outliers were removed, and the average effort was computed. A detailed explanation

of the estimation process can be found in Chapter 6.

It should be noted that the final estimation depends on a multitude of factors, ranging

from the input values and attributes used to ascertain similarity to the models employed.

Nevertheless, this study’s primary objective was not to find the best model but to demonstrate

the feasibility of the complete process, which includes data extraction, mapping, and effort

estimation. Consequently, while we cannot assert that the approach produced the best

possible results, it does provide a valuable starting point for future research in this area.

9.8 Evaluating the Cost Estimation Model (RQ7)

Several methods are available for the evaluation of cost estimation models. Our extensive

SLR identified the most prevalent existing methods, resulting in 86 evaluation methods.

These findings are documented in Chapter 3.

Given that each evaluation method is unique and suited to different scenarios, selecting the

best one can present a challenge. However, we employed the most popular evaluation meth-

ods for this project based on their frequency in the SLR. Consequently, Pred(25), MMRE,

and MAE were the evaluation metrics used in this study.
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9.9 Future Research Directions

The findings of this research offer a platform for future investigation in software cost estima-

tion. One potential road lies in exploring and identifying novel factors that could improve the

existing models established in this study. Similarly, the machine learning (ML) models utilized

in this research could be replaced or augmented with alternative approaches to enhance cost

estimation accuracy.

Another promising area of future research lies in the exploration of time estimation strategies

that do not rely on the COCOMO II model for effort estimation per repository based on lines

of code. A potential solution could involve leveraging repositories or issue-tracking systems

that provide time frames for problem resolution. However, ensuring such tasks’ reliability and

adequate documentation can pose a significant challenge during data extraction.

Additionally, a more dynamic cost estimation model could be proposed that does not require

pre-defined factors. Such a model could work directly with GitHub repositories or similar

platforms, relying on comprehensive project descriptions.

Lastly, the rapidly evolving field of artificial intelligence continues to leave significant impacts

across all technological areas. A potentially exciting research direction, in the context of

software effort estimation, would be the exploration of emerging language models like the

Generative Pre-training Transformer (GPT)2. However, it is essential to mention that these

advanced models were not included in this study. We focused on employing open-source

methodologies to ensure wider accessibility and reproducibility of our work.

2https://openai.com/gpt-4
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Appendix A

Interview Protocol

The interview protocol employed in the expert interviews conducted within the scope of this

study is outlined in Table A.1.

Step Content

1. A brief description of the project and the main goal of the interview

2. Introductory questions

How long have you worked in software development (or a similar field)?

What kind of software is developed in your organization? (which area etc.)

Is your organization using agile practices?

Would you say cost estimation is an important part of software development?

Have you heard of any cost estimation techniques?

3. Cost estimation

How are you currently performing cost estimation?

How often are you performing cost estimation?

Are you using any tools/platforms for cost estimation?

How accurate are you currently with cost estimation?

Which factors/KPIs are important for software cost estimation (especially in the beginning)?

Considering the factors/KPIs we have gathered in the SLR, which ones would you say are the most

important?

Which factors would you consider to be useful in training the model?

How do you imagine using such a prediction model? Would you expect to provide a list of requirements

and then receive the prediction or maybe type in certain parameters to get the prediction?

What type of estimation are you expecting?

4. Closing

What do you think about our work?

Would you consider using a model for estimating the software cost/effort?

May we contact you if we have any questions?

Can we use your company’s name in the scientific paper, or do you prefer an anonymous name?

Do you have any questions or additional feedback?

Table A.1: Interview Protocol.
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