
MSc Business Informatics

A thesis presented for the degree of Master of Science

An adaptation of an evaluation framework
for software testing techniques and tools

Betül Sezer 0884065

First Supervisor: Dr. Fabiano Dalpiaz

Second Supervisor: Dr. Fernando Castor

2023

Utrecht University

Faculty of Science

Abstract

Software testing is essential for ensuring the quality and reliability of software systems. To make

informed decisions about testing techniques, there is a need for suitable evaluation frameworks. How-

ever, existing evaluation frameworks may not be applicable in limited scenarios, where conducting a

case study and fault injection are not possible.

The primary objective of this research is to adapt an existing evaluation framework to enable the

evaluation of software testing techniques experimentally. The focus is on redesigning this evaluation

framework, which proposes clear metrics to evaluate the effectiveness and efficiency of software test-

ing paradigms and validate the adapted framework to assess its applicability.

To validate the framework, a quasi-experiment was conducted, comparing GUI testing paradigms by

applying the adapted evaluation framework. Due to limitations in sample size, the quasi-experiment

does not provide statistical evidence but offers valuable insights and initial validation of the framework.

While statistical significance is not achieved, the findings contribute to understanding the strengths

and weaknesses of the redesigned treatment. Further research with larger samples and statistical

analysis is recommended to strengthen the validity and generalizability of the findings.

i

Acknowledgements

This research project concludes my very exciting and challenging journey of completing my Master’s

in Business Informatics at Utrecht University. During my time here, I have had the privilege of meeting

inspiring people from all over the world, which has shaped my personal growth. I am grateful for the

friendships I have made here and cherish the memories of our shared experiences.

First of all, I want to thank my second supervisor Fernando Castor, whose valuable feedback provided

me with crucial insights during critical moments. Moreover, I want to thank my first supervisor

Fabiano Dalpiaz for his patience and dedication throughout this project. Despite the challenges we

encountered, his motivation and enthusiasm helped to shape this research project into something

significant. I feel grateful for having the chance to work with him.

I am grateful for all the research participants who generously took part in my experiment. This study

would not be possible without them.

Lastly, I want to thank my friends and family who have been my strength and motivation throughout

these two years. Their unlimited support, encouragement, and belief in me have been the driving

force behind my academic journey.

i

Contents

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Problem statement . 1

1.2 Research objectives . 2

1.3 Contribution . 4

1.4 Thesis organization . 4

2 Background and Overview 5

2.1 Role of Testing . 5

2.2 Testing Levels . 6

2.2.1 Unit Testing . 6

2.2.2 Integration Testing . 6

2.2.3 System Testing . 7

2.2.4 Acceptance Testing . 7

2.3 White-box Testing . 7

2.4 Black-box Testing . 7

2.5 Test Case Generation . 8

2.6 Regression Testing . 8

2.7 Automated GUI Testing . 8

2.8 Related Work . 9

3 Research Method 11

3.1 Literature Study . 11

3.2 Design Science . 13

3.3 Quasi-Experiment . 14

4 Literature Review 15

4.1 Generations of Automated GUI Testing . 15

ii

CONTENTS iii

4.1.1 First generation . 16

4.1.2 Second generation . 16

4.1.3 Third generation . 17

4.2 Script-based GUI testing . 17

4.2.1 Capture & Replay . 17

4.2.2 Code-based Testing . 18

4.2.3 Model-based Testing . 19

4.3 Script-less GUI testing . 21

4.3.1 Random or Monkey Testing . 21

4.4 Challenges of GUI Testing . 22

4.4.1 General challenges of automated testing . 23

4.4.2 Challenges of script-based GUI testing . 24

4.4.3 Challenges of script-less GUI testing . 25

4.5 Evaluation frameworks for software testing techniques 26

4.5.1 State-of-the-art evaluation techniques . 27

5 Treatment Design 30

5.1 The experimental guidelines . 30

5.2 Experimental reporting . 31

5.3 The adapted evaluation framework . 32

5.3.1 The experiment process . 32

5.3.2 The execution process . 36

6 Treatment Validation 39

6.1 Quasi-Experiment . 39

6.1.1 Experimental Planning . 39

6.1.2 Execution . 47

6.1.3 Data Analysis . 50

6.1.4 Discussion . 53

6.1.5 Conclusion . 55

7 Discussion 57

7.1 Limitations . 57

7.2 Conclusion . 59

7.3 Future work . 60

References 61

A Reporting Guidelines 66

iii

CONTENTS iv

B Training Materials 70

B.1 Tosca Training . 70

B.2 Testar Training . 72

C Working Diaries 75

C.1 Group Testar . 75

C.2 Group Tosca . 76

D Bug Sheets 78

D.1 Group Testar . 78

D.2 Group Tosca . 78

iv

List of Figures

3.1 The Engineering Cycle by Wieringa (2014) . 13

4.1 Categorization of automated GUI testing by Aho, Alégroth, Oliveira, and Vos (2016) 16

5.1 Experiment process by Wohlin et al. (2012) . 31

5.2 PDD Model of the experiment process . 33

5.3 PDD Model of the execution process . 37

6.1 Modules and TestCases example retrieved from Tricentis Documentation (2023) . . 43

6.2 Testar principles (Testar, 2023) . 44

6.3 Tricentis Demo Web Shop (Tricentis, 2023) . 45

6.4 Filter settings on Testar . 48

B.1 Tosca Training - Table of contents . 71

B.2 Testar Training - Table of contents part 1 . 72

B.3 Testar Training - Table of contents part 2 . 73

B.4 Testar Training - Table of contents part 3 . 74

v

List of Tables

2.1 Example of metrics used in related work . 10

3.1 Research Questions and Methods . 11

3.2 Selected papers for the snowballing method . 12

4.1 Summary of the challenges of automated GUI testing 26

5.1 Activity table of the experiment process . 34

5.2 Concept table of the experiment process . 36

5.3 Activity table of the execution process . 37

5.4 Concept table of the execution process . 38

6.1 Variables and Metrics . 40

6.2 Description of the treatments following Vos, Maŕın, Escalona, Escalona, and Marchetto

(2012) . 42

6.3 Failures detected by using script-based and script-less GUI testing techniques 51

6.4 Time needed to execute testing activities . 53

A.1 Reporting guidelines part 1 . 67

A.2 Reporting guidelines part 2 . 68

A.3 Reporting guidelines part 3 . 69

C.1 Working Diary Testar . 75

C.2 Working Diary Tosca 1 . 76

C.3 Working Diary Tosca 2 . 76

C.4 Working Diary Tosca 3 . 77

D.1 Bug sheet Group Testar . 78

D.2 Bug sheet Tosca 1 . 78

D.3 Bug sheet Tosca 2 . 79

D.4 Bug sheet Tosca 3 . 79

vi

Chapter 1

Introduction

1.1 Problem statement

An increasing number of systems are more and more integrated with software, be it a life-critical

system, for which a failure in the software could result in death or big damage to the environment, or

other systems that could cause loss of money and time. According to a report by Synopsys (2022),

costs resulting from poor software quality are estimated to be 2.41 trillion USD alone for the U.S. in

2022. To avoid these costs and critical damages among other software engineering activities, software

needs to be properly tested. Studies estimate the overall cost of testing activities in a software devel-

opment project to exceed 40% of the total cost of the project (Rahikkala, Hyrynsalmi, & Leppänen,

2015). This shows how crucial the testing phase is in the Software Development Life-cycle (SDLC).

Testing is a complex process done through different levels of a system’s software. There are four

different testing levels: unit testing, integration testing, system testing, and acceptance testing. An

in-depth definition of the testing levels can be found in Chapter 4. This research focuses on auto-

mated testing of the Graphical User Interface (GUI) of a System Under Test (SUT). A GUI represents

the interface of a system designed for human-computer interaction and is considered as another ab-

straction level of system testing. A SUT is defined as the testing object, that can refer to a software

product, an application, or a system (Bourque, Fairley, & Society, 2014).

Testing activities can be done manually or semi-automatically by testing tools, that still require human

intervention in creating test oracles and assessing the outcome, see Section 4.4.1. Manual testing

is a process where a tester writes test cases and executes them manually. It is a time-consuming

activity that requires the tester to be patient to perform repetitive testing tasks that can become

even more difficult with larger software applications (Sharma, 2014). Manual testing is practical when

there is no need to repeatedly test an application. In cases where repeating tests over a long period is

necessary, repetitive tasks can become costly. Automating these testing tasks is a solution that aims

to reduce costs and time and minimize human error (Ammann & Offutt, 2016). Some automated

testing approaches, however, require technical knowledge that cannot be obtained very easily, espe-

cially script-based testing approaches that require programming knowledge like Selenium (Selenium,

1

CHAPTER 1. INTRODUCTION 2

2023a). In contrast, learning how to use a code-less test automation tool can be a lot easier in

this case. Additionally, test automation still requires human intervention and effort to maintain test

scripts for regularly changing test cases, especially in GUI testing.

Performing GUI testing activities is a challenging task itself as GUIs require constant changes which

also increases the complexity of GUI systems and their testing. There exist several test automation

tools with different levels of tolerance for GUI changes and different levels of automation that are

based on different testing techniques.

In this thesis, we divide them into two categories of testing paradigms: script-based and script-less

GUI testing. The aim is to evaluate the testing paradigms and to see how they differ in applicability

in a practical setting. To do so, two different test automation tools were selected, that are based on

each of the testing approaches. These tools will be applied in a practical setting to compare them

with each other.

However, while working on this problem, we encountered an additional challenge. The initial plan

was to apply the evaluation framework by Vos et al. (2012) to conduct a comparative study on GUI

testing paradigms, but the case study we were planning did not materialize. This was due to the fact,

that our specific context did not allow fault injection, and we did not have access to existing cases

that could be used for our study. This limited scenario made it not feasible to conduct the predefined

case study. Therefore, we turned this challenge into an opportunity to adjust the original evaluation

framework. which focuses on case studies, into an experimental design. Thus, the following design

problem can be defined:

How to adapt the evaluation framework proposed by Vos et al. (2012) that proposes guidelines to

measure the effectiveness and efficiency of software testing paradigms so that a reliable comparison

of software testing techniques can be done in a context where fault injection and conducting a case

study are not possible?

1.2 Research objectives

Given the above circumstances, the research objective of this research can be formulated as follows:

The research aims to adapt the original evaluation framework by Vos et al. (2012) into an experimental

design within the context of the limited scenario explained in the problem statement.

Relying on the research objective, the following main research questions and sub-research questions

were formulated:

1. How to compare software testing techniques experimentally in terms of effectiveness and

efficiency?

The answer to this research question should provide an adapted evaluation framework that follows

experimental guidelines and supports the evaluation of the effectiveness and efficiency of software

testing techniques and tools.

• RQ1.1: What are the state-of-the-art comparison approaches for software testing techniques

2

CHAPTER 1. INTRODUCTION 3

in the literature?

By answering this research question, this study aims to give an overview of the existing com-

parison approaches for software testing techniques and tools in the literature. Additionally, it

will investigate the problem stated in the problem statement.

• RQ1.2: How to compare multiple software testing techniques, without the possibility of fault

injection and conducting a case study, in terms of effectiveness and efficiency?

This research question contributes to the adaptation of the chosen evaluation framework for

the comparative study. The aim is to adjust the evaluation framework to fit the experimental

guidelines.

2. How do script-based and script-less testing paradigms compare in practical settings?

This research question aims to validate the redesigned evaluation framework by conducting a com-

parative study of script-based and scriptless testing paradigms.

• RQ2.1: What are the different automated GUI testing approaches in the literature?

This research question will be answered by the literature study in Chapter 4. The aim is to

create an understanding of the different terminologies that exist within this field and also to

study what different testing approaches exist in the literature. This research question focuses

on the different testing techniques that exist at the GUI level of system testing, more specifically

on automated GUI testing.

• RQ2.2: What are the challenges of automated GUI testing in the literature?

This research question should highlight the existing challenges of automated GUI testing known

and recognized in the literature. The goal is to create an understanding of the challenges

that exist within this field. Additionally, it aims to show the challenges of the different testing

paradigms that are mentioned in the study of the first research question.

• RQ2.3: How well does the adjusted method support the comparison of the GUI testing paradigms?

To validate the adjusted evaluation framework, a quasi-experiment was conducted in a practical

setting. This will be achieved by applying different test automation tools based on script-based

and script-less testing paradigms.

3

CHAPTER 1. INTRODUCTION 4

1.3 Contribution

This thesis addresses the challenge of evaluating software testing techniques and tools in scenarios

that are not covered by existing evaluation methodologies. By redesigning the original evaluation

framework by Vos et al. (2012), this research enables the comparison of software testing approaches

through experiments.

Furthermore, the adaptation of the evaluation framework provides a detailed and structured experi-

mentation and execution process, that follows reporting guidelines for controlled experiments in soft-

ware engineering. This ensures consistent and standardized reporting of experimental results, which

improves the reproducibility of empirical research in the field of software testing.

1.4 Thesis organization

The following chapter consists of a background of the topic. It will give the reader an overview of the

idea of software testing and the role of it in SDLC. Moreover, it will give the reader explanations of

specific terms within the field of software testing, to create a better understanding. The chapter will

conclude with a section about related work that consists of other existing studies that were conducted

within this field.

Chapter 3 will present the research method that was used to do this research. First, it will shortly

describe the method that was used to conduct the literature study and then it will continue with the

introduction of the design science method used to redesign the evaluation framework.

Furthermore, Chapter 4 consists of a literature study that should create a basis for the following

treatment redesign and validation. This chapter aims to answer research questions 1.1 (What are

the state-of-the-art comparison approaches for software testing techniques in the literature?), 2.1

(What are the different automated GUI testing approaches in the literature?) and 2.2 (What are the

challenges of automated GUI testing in the literature?).

Chapter 5 presents the adaptation of the evaluation framework and what guidelines were followed in

the process. The method is illustrated in a Process-Deliverable-Diagram together with activity and

concept tables. This chapter aims to answer the research question 1.2 (How to compare multiple

software testing techniques, without the possibility of fault injection and conducting a case study, in

terms of effectiveness and efficiency?).

The treatment validation can be found in Chapter 6. Here, the reader is presented with a quasi-

experiment report that discusses the experiment process and its results. This chapter focuses on

research question 2.3 (How well does the adjusted method support the comparison of the GUI testing

paradigms?).

Chapter 7 discuss the limitations of the study and give a summary of this research.

4

Chapter 2

Background and Overview

Over the years, the definition of Software Testing has evolved and taken different forms. Hetzel

(1988) provided the following definition of compliance of the system with its requirements:

“Testing is the process of establishing confidence that a program or a system is doing what is

supposed to do“.

Another definition by Myers (1979) focuses on the intention of finding errors and was defined as

follows:

”Testing is the process of executing a program with the intent of finding errors.”

Both of these definitions capture the basis of software testing as an activity that assesses the quality

of software and examines whether it meets the requirements and is ready for use by end-users with

the goal of identifying errors. Today, testing is a crucial part of the software development process,

and there are many different types and levels of testing that can be performed. One area of testing

that has gained significant importance in recent years is GUI testing, which focuses on evaluating the

graphical aspects of software applications (Rodŕıguez-Valdés, Vos, Aho, & Maŕın, 2021). This is due

to the fact that GUIs have become an everyday part of our lives through smart devices, evolving over

time.

This chapter provides a general understanding of software testing and explains basic terms that are

used throughout this thesis. Additionally, it gives an overview of the existing studies in the literature.

2.1 Role of Testing

Testing plays a significant role in the SDLC. The primary objective of Software Testing is to improve

and assure the quality of software. Quality of software is defined as the degree to which the system

meets its specified requirements, as stated by (IEEE, 1990). Quality Assurance (QA) is the process

that includes activities designed to provide assurance that software or a system conforms to its re-

quirements (IEEE, 1990). This process involves many different tasks with the goal of high customer

5

CHAPTER 2. BACKGROUND AND OVERVIEW 6

satisfaction and benefit.

Several techniques for software quality assessment and assurance exist, which can be classified into

two broad categories: static and dynamic analysis (Tripathy & Naik, 2011). Static analysis techniques

consist of an examination of the content and structure of software, including specification documents,

software models, and source code (Bourque et al., 2014). On the other hand, dynamic analysis tech-

niques are based on the execution of the actual source code in order to detect any failures of software

(Tripathy & Naik, 2011). Static analysis techniques are particularly useful during the early stages of

software development, where they can help identify potential issues before code execution. This can

save time and resources and prevent critical errors that can occur during software development. Dy-

namic analysis techniques, on the other hand, are more useful during the later stages of development

when code has been written and needs to be tested based on use cases from the perspective of the

end-users. These techniques can help to identify problems that may have been missed during static

analysis.

2.2 Testing Levels

Testing activities have different levels of abstraction. The differentiation of testing levels is very

important because each level has different testing objectives that require a different kind of knowledge

and skills (Graham, Black, & van Veenendaal, 2021). A testing process already starts very early in a

software development life cycle and its role is as important as the development process. The following

section describes each level of abstraction starting with the lowest level and continuing to the highest

level of abstraction.

2.2.1 Unit Testing

The first level of abstraction is Unit Testing. This level consists of testing software units or com-

ponents that have been implemented in the programming phase. Unit testing only focuses on single

software units and is solely based on component specifications and design (Graham et al., 2021).

This isolation of software units is very important to prevent any external influences on units. The

main testing objects are program units, such as functions, classes, and scripts. The detected failures

during unit testing are based on the software units themselves.

2.2.2 Integration Testing

The next level of testing is Integration Testing. While unit testing focuses on the isolation of each

unit during testing, testers combine several units into a subsystem and test the integration of these

combined units, which is called integration testing. The goal is to check if the interface that com-

bines different units works correctly and detects failures in the interaction of these units early in the

development phase (Graham et al., 2021). A test object of integration testing can enclose interfaces

6

CHAPTER 2. BACKGROUND AND OVERVIEW 7

that have database access and infrastructure components. In this case, integration testing examines

if units can access the database correctly.

2.2.3 System Testing

The third level after integration testing is System Testing. The goal of system testing is to check

if the system meets its specifications. The earlier levels were focusing on testing the system against

technical specifications, while system tests examine the product from a user perspective based on

functional and non-functional requirements (Graham et al., 2021). The test object for system testing

is a complete system, that also includes a GUI - if it has one. A system is considered as a whole and

is tested against functional and non-functional requirements. Thus, GUI testing can be considered as

another abstraction level of system testing. An in-depth explanation of GUI testing can be found in

Section 2.7.

2.2.4 Acceptance Testing

The last level of abstraction in testing is Acceptance Testing. In a software development project,

the produced system can be developed for a customer or for the developer’s own use. If there is a

customer or a third person involved, the acceptance tests are mostly done by the customer or third

person themselves. The testing activities of earlier testing levels are all the producer’s responsibility,

while the acceptance tests are the customer’s responsibility (Graham et al., 2021). The test object

is the system as a whole that is being tested from the customer’s or user’s perspective. The system

is being tested against all specifications that describe the customer or user viewpoint.

2.3 White-box Testing

A white box, on the other hand, is a system whose internal contents and implementations are known

and relevant to the test design (IEEE, 1990). White-box testing is based on the source code of the

SUT, thus it is also often called structure-based or code-based testing (Graham et al., 2021). It is

also possible to manipulate the source code for the white-box testing. Thus, white box testing is

mostly done by the developer to test code units.

2.4 Black-box Testing

A black box is a system whose general functions, like inputs and outputs are known, but whose

implementations are unknown (IEEE, 1990). Black box testing is solely based on the specifications

of a system that describes the inputs and expected outputs, on which the test cases are based. Thus,

black box testing is also called specification-based (Graham et al., 2021). The inner structure and

design of the SUT are unknown and irrelevant to the test design. Black box testing focuses on the

functionality of a SUT, which makes it a functional test.

7

CHAPTER 2. BACKGROUND AND OVERVIEW 8

2.5 Test Case Generation

To understand the testing process better, some terms related to testing activities need to be defined

and explained. An important part of testing is test case generation. A test case is the documentation

of test inputs, execution conditions, and expected results developed for a specific outcome to verify

compliance with a specific requirement (IEEE, 1990). Test cases can be generated manually, which

can be very time-consuming because manual creation of test cases needs maintenance and evaluation

of compliance with specifications (A. Memon, Pollack, & Soffa, 2001). To overcome these issues,

automated test generation techniques and tools were developed that are more efficient and reliable.

Testing a complete GUI can be done by creating several test cases. A set of test cases is called

a test suite. A test case execution results in a test outcome, which is called the test result, that

differentiates between a failed and passed test result. To distinguish between these two outcomes

there is a method or a mechanism called a test oracle, that defines the expected behavior of a SUT.

In manual testing, a test oracle is a human, who decides on the result of a test execution, while on

the other hand, in automated testing a test oracle is the mechanism that distinguishes between the

outcomes (Baresi & Young, 2001). Test automation tools generate test suites based on different

techniques. These techniques are part of script-based testing techniques. A detailed study of these

techniques on the GUI level can be found in Chapter 4.

2.6 Regression Testing

Regression testing is defined as the ”selective retesting of a SUT to verify that modifications have not

caused unintended effects and that the SUT still complies with its specified requirements” (Bourque

et al., 2014). Regression testing can be performed at all test levels and has to be documented well to

make it reusable (Graham et al., 2021). There are many reasons to run regression tests, which are:

• defect retests, which are done after fixing a previously found bug,

• testing altered functionality, which is done after a specific functionality was changed or corrected,

• testing new functionality, which consists of testing newly integrated system parts,

• complete regression test, which is about testing the whole system.

Regression testing can be done both manually and automatically. Manual regression testing can be

very time-consuming and tiresome, so automating repetitive test cases can save lots of time. That

is why test automation is important during regression testing.

2.7 Automated GUI Testing

GUI testing, also known as GUI-based testing, is part of the system testing of software. The tests are

executed to examine the front-end of software the user interacts with (Banerjee, Nguyen, Garousi, &

Memon, 2013). Through GUI events like mouse clicks, selections, and typing, inputs are taken from

8

CHAPTER 2. BACKGROUND AND OVERVIEW 9

users, which change the state of GUI widgets like buttons, drop-down menus, and text fields, and

provide output in a graphical form (Banerjee et al., 2013). Every event that can be made on GUIs,

creates an outcome, which depends on its internal state and external environment. Thus, each event

executed on GUIs generates a different outcome in different states. Additionally, different sequences

of an event can again create different outcomes. Relying on these characteristics, each event exe-

cuted on GUIs needs to be tested on different states and with different sequences, which makes GUI

testing a complex and challenging task (Banerjee et al., 2013).

To ensure effective GUI testing, testers should have an in-depth understanding of the software’s re-

quirements and functionality. Furthermore, there has to be a clear understanding of the different

states that the software can have and the possible sequences of GUI events. This knowledge can pro-

vide a complete test coverage of a system. Overall, GUI testing is a crucial aspect of software testing

on the system level that ensures that the software behaves correctly according to its requirements.

It is a complex and challenging task that requires a comprehensive understanding of the software’s

requirements, functionalities, different states, possible outcomes, and sequences of GUI events.

2.8 Related Work

Automated GUI testing is a highly anticipated and continuously growing field that is evolving within

software testing (Rodŕıguez-Valdés et al., 2021). There have been several case studies conducted that

compare the script-less testing tool Testar against manual testing practices of industrial companies

(Bauersfeld, Vos, Condori-Fernández, Bagnato, & Brosse, 2014; Martinez, Esparcia, Rueda, Vos,

& Ortega, 2016; Chahim, Duran, Vos, Aho, & Condori-Fernández, 2020). In two of these studies,

the researchers focused on the test effectiveness, efficiency, and learnability of the script-less tool.

The results showed that the script-less testing approach outperformed the manual testing approach

regarding test effectiveness and functional coverage and detected some critical failures.

Furthermore, a similar study to our research was conducted by Bons, Maŕın, Aho, and Vos (2023),

where the researchers compared Testar with Selenium, a scripted testing tool. The metrics that were

measured are test effectiveness, efficiency, and subjective satisfaction of the tools. The aim of the

study was to measure the complementarity of different testing tools to perform automated system

testing at the GUI level. The experiment was performed in a Dutch company, where the testing team

was doing the regression tests manually. The study was divided into three different phases:

1. The first phase is the set-up and learning phase, where the subjects had to download, and install

both of the tools and then learn how to use both of them.

2. The second phase is the testing phase, which consists of running tests and analyzing the results

obtained by both tools.

3. The last phase is the subjective evaluation phase, where the researchers measured the subjective

satisfaction of the subjects. The result showed that Selenium is better at detecting process

failures, whereas Testar is better at detecting visible failures and reached a higher event coverage.

9

CHAPTER 2. BACKGROUND AND OVERVIEW 10

Regarding test efficiency, both tools showed similar results and overall, both of the tools were perceived

as useful for the company and complementary. The authors concluded that scripted and script-less

approaches can improve manual testing.

Another study compares a testing tool that is based on a script-less approach against three other open-

source scripted tools (Di Martino, Fasolino, Tramontana, & Starace, 2020). The authors measured

the effectiveness of the code coverage achieved by the different tools used during the experiments.

The study was divided into two experiments done with computer science students. During the first

experiment, the subjects (students) were not provided with any information about the SUT and were

instructed to perform exploratory testing using all the tools. The results showed that the script-less

tool showed similar code coverage to one of the scripted tools. The second experiment showed an

increase in code coverage, which was obtained by providing more information about the SUT. The

results of the second experiment showed that combining manual exploratory testing and automated

testing can result in higher testing effectiveness.

A study that compared random, model-based, and systematic automated GUI testing techniques

was done by Pezzè, Rondena, and Zuddas (2018). The authors selected multiple tools for each

testing technique, one for the random technique, six for the model-based technique, and three for the

systematic testing technique. The objective of the study relies on comparing automatically generating

and executing GUI test cases for desktop applications that do not require any additional information

but the SUT itself. The selection of the tools was mainly based on the public accessibility of each

of them. The tools then were evaluated regarding their effectiveness in terms of the ability to reveal

faults, sample the SUT execution space, and efficiency. The results of the study revealed that random

test case generators are better at fault detection than testing techniques that are based on GUI models

or machine learning algorithms. Moreover, the authors indicated that the performance of the current

techniques could be enhanced in regard to their definition of automated oracles, which could detect

more complex failures than crashes and uncaught exceptions. The study concludes by suggesting

investigating the oracle problem for GUI testing more in the future.

Table 2.1 depicts some example metrics used in the aforementioned comparative studies.

Variables Metrics

Effectiveness Number of failures observed (+ injected faults)

Number of failures discovered

Code/Functional/Event coverage

Number of test cases generated

Severity and type of the detected failures

Efficiency Time needed to design test suites

Time needed to set up and configure tools

Time needed to execute tests

Reproducibility of the failures detected

Time needed to analyze failures

Subjective satisfaction Satisfaction

Perceived usefulness

Learnability Reaction to the learning process

Learning (knowledge growth)

Maintainability

Table 2.1: Example of metrics used in related work

10

Chapter 3

Research Method

This thesis is divided into two different phases. The first phase consists of a literature study, that

aims to study the existing different approaches of script-less and scripted testing and additionally,

the existing challenges of GUI testing in the literature. The second phase includes the redesign of a

treatment and its validation with the help of a quasi-experiment, that will be conducted in a practical

setting. Table 3.1 depicts the research question together with the research method that will be used

to obtain the outcome, that it is intended to achieve. The design of both phases is elaborated on

further in the following sections of this chapter.

Research Question Research Method Outcome

RQ1.1 Literature Study Existing evaluation framework approaches

RQ1.2 Design Science Treatment design

RQ2.1 Literature Study Existing automated GUI testing techniques

RQ2.2 Literature Study Existing challenges of automated GUI testing

RQ2.3 Quasi-Experiment Treatment validation

Table 3.1: Research Questions and Methods

3.1 Literature Study

A literature study will be conducted to investigate the problem and the existing approaches in more

depth. The reviewed literature will include existing testing approaches in script-based and script-less

testing fields and state-of-the-art automated GUI testing tools. To understand the problem better,

the literature review will consist of the challenges recognized in the literature. Furthermore, the study

will include state-of-the-art evaluation approaches for software testing techniques. Relying on this

literature study, we aim to address research questions 1.1 (What are the state-of-the-art comparison

approaches for software testing techniques in the literature?), 2.1 (What are the different automated

GUI testing approaches in the literature?) and 2.2 (What are the challenges of automated GUI testing

in the literature?). The snowballing method will be used for the literature review. The method makes

11

CHAPTER 3. RESEARCH METHOD 12

use of the reference list of papers or/and the citations to the paper to identify more papers (Wohlin,

2014). For this literature study, the two-way snowballing method was used, which makes use of

both the reference list and the citations of the selected papers. This was essential to reach all the

connected papers on the relevant topic. Google Scholar was used to find the citations of the papers.

The list of papers from which additional papers will be identified is listed below.

Title Author Content

Scripted and scriptless GUI testing for

web applications: An industrial case

Bons et al. (2023) Related comparative study

Evolution of Automated Regression

Testing of Software Systems Through

the Graphical User Interface

Aho et al. (2016) History of GUI Testing

Practical Model-based Testing: A tools

approach

Utting and Legeard

(2010)

Definition of Model-based

Testing

Why many challenges with GUI test au-

tomation (will) remain

Nass, Alégroth, and

Feldt (2021)

Recent mapping study

about challenges of GUI

Testing

A Methodological Framework for Evalu-

ating Software Testing Techniques and

Tools

Vos et al. (2012) The evaluation framework

to be adapted

Table 3.2: Selected papers for the snowballing method

Inclusion/exclusion criteria

Regarding the inclusion and exclusion criteria, it was important that the papers were discussing au-

tomated GUI testing techniques and evaluation techniques for software testing. Papers regarding

automated GUI testing, that were published before 2000, were excluded since the testing techniques

themselves evolved over time and it was important for this literature study to have the latest defini-

tions and explanations of the testing techniques. Regarding the literature on evaluation techniques,

we had to include papers that were published before 2000, since the first experiments in this field were

conducted in the late 80s, which contributed to the evaluation of software testing techniques a lot.

Further Search

To find standardized definitions of important terminologies, we made use of glossaries and books that

cover important aspects within the software testing field. The glossaries, that were used for stan-

dardized definitions are the “IEEE Standard Glossary of Software Engineering Terminology” (IEEE,

1990) and “SWEBOK V3.0” (Bourque et al., 2014). Additionally, the book “Foundations of Software

Testing, ISTQB Certification, 4th edition” was used to get specific additional information about the

terminologies used in the literature review to provide the reader with a more in-depth understanding.

12

CHAPTER 3. RESEARCH METHOD 13

3.2 Design Science

The adaptation of the evaluation framework will be done by following the Design Science Methodology

by Wieringa (2014). The Design Science Methodology supports the design and investigation of a

problem within a given context. This methodology proposes three different tasks, namely, problem

investigation, treatment design, and treatment validation. This set of tasks is called the design cycle,

which is part of a bigger cycle, in which the validated treatment from the design cycle is implemented

and evaluated in the real world. This larger cycle is called the engineering cycle, which is depicted in

Figure 3.1.

Figure 3.1: The Engineering Cycle by Wieringa (2014)

Problem Investigation

This task aims to investigate the problem in a given context. The problem this research is investigating

is about how the existing evaluation framework by Vos et al. (2012) can be adapted, so a reliable

comparison of software testing techniques and tools is possible, in a context where fault injection and

conducting a case study are not possible. This task aims to answer research question 1.1.

Treatment Design

Treatment design has the objective of adapting the evaluation framework by Vos et al. (2012) following

the results gained in the first task. This task aims to answer research question 1.2.

Treatment Validation

This task aims to answer the question if the designed treatment would solve the problem. This

research will validate this question by conducting a quasi-experiment, which is being discussed further

in the following section. This task aims to answer research question 2.3.

13

CHAPTER 3. RESEARCH METHOD 14

3.3 Quasi-Experiment

A quasi-experiment is an investigation to establish a quantitative relationship between several variables

or alternatives under examination (Stol & Fitzgerald, 2018). This experiment is a quasi-experiment

since the investigation consists of independent and dependent variables and the subjects are not

randomly assigned to the treatments (Easterbrook, Singer, Storey, & Damian, 2008). The subjects

will be able to select the treatment they want to apply during the experiment. The selection of the

subjects is based on non-random sampling as their participation depends on their availability during

the time of the execution of the quasi-experiment. The quasi-experiment will be conducted to validate

the treatment designed for the sake of this research by evaluating different automated GUI testing

approaches in a practical setting. To do so, two automated testing tools will be selected, that will

represent each of the testing approaches, namely model-based for the script-based approach and

monkey testing for the script-less approach.

Goals

The objective of this comparative experiment is to compare two different automated GUI testing

paradigms in a practical setting and to validate the adjusted evaluation framework. The two selected

testing approaches will be evaluated and compared by their test effectiveness, and efficiency. The

research questions are formulated and elaborated on in Section 1.2.

14

Chapter 4

Literature Review

As mentioned in Section 2.1, testing covers many roles in SDLC. Software Testing is a broad field

with different methods, abstraction levels, techniques, and terminologies. It is important to highlight

that the literature review starts with the history of automated GUI testing, which is also called the

generation of automated GUI testing. It gives an overview of a categorization, that is used within

this field. This thesis focuses on script-based and script-less GUI testing. Thus, the literature study

encompasses mainly automated software testing, disclosing manual methods. Software testing is a

process that has different levels of abstraction and other abstraction levels within these levels. This

chapter aims to give an overview of all the different testing approaches of the GUI level of system

testing. Furthermore, it discusses the challenges of GUI-based system testing in the literature. The

goal of this literature review is to answer research questions 1 (What are the different automated

GUI testing paradigms in the literature?) and 2 (What are the challenges of automated GUI testing

in the literature?).

4.1 Generations of Automated GUI Testing

The history of automated GUI testing goes back to the late 80s (Rodŕıguez-Valdés et al., 2021).

A categorization of the different automated GUI testing techniques has been proposed by Alégroth

and Feldt (2014), classifying existing GUI testing approaches in three chronological generations.

Furthermore, Aho et al. (2016) made a more in-depth categorization of the existing GUI testing

techniques which is depicted in Figure 4.1. The vertical axis represents the tolerance for change in

the GUI/SUT, which is divided into four levels and is also called the generation of GUI-based testing.

The fourth highest level ”combining visual and widget-based approaches” was added by the authors,

but as it does not bring any novel approach to the field, it is called the 3.5th generation.

The horizontal axis shows the level of automation in regression testing through the GUI. These testing

approaches are elaborated on and studied in-depth in the literature study in the following sections.

15

CHAPTER 4. LITERATURE REVIEW 16

Figure 4.1: Categorization of automated GUI testing by Aho et al. (2016)

4.1.1 First generation

In their first paper Alégroth and Feldt (2014) refer to the first level of GUI-based testing as the first

generation which they then later also call ”the tolerance of changes in the GUI”. The first generation

or the first tolerance level of changes in the GUI is called as coordinate-based GUI-based testing, as it

uses exact coordinates on the screen to interact with the SUT’s GUI. The earliest versions of Capture

& Replay (C&R) tools recorded user actions using exact mouse coordinates to generate and execute

test scripts. This approach is not supported anymore by the current tools that are on the market

and is categorized in the lowest level of tolerance for changes, just because even changing the screen

resolution would break the generated test scripts, which requires a lot of maintenance.

4.1.2 Second generation

An upper level of tolerance for changes in GUI, or the second generation of automated GUI testing,

is based on components or widgets of the GUI. A widget of a GUI can be defined as functionality

for user input, e.g. button, text field, or drop-down menus. In contrast, a component or a property

of a GUI is e.g. a background color, size or font of a widget (A. Memon, Banerjee, & Nagarajan,

2003). This level of abstraction consists of API-based approaches, which is more beneficial than

the coordinate-based approach, as all the recorded user interactions are mapped into components or

widgets of the GUI. This way the test scripts are more robust against GUI changes, which also lowers

the maintenance costs of the test scripts.

16

CHAPTER 4. LITERATURE REVIEW 17

4.1.3 Third generation

The third generation and the highest level of tolerance for change in the GUI is Visual GUI Testing

(VGT). This approach uses image recognition on the screen captures in order to identify and inter-

act with the GUI. This way of GUI interaction, also called bitmap interaction, allows for mimicking

user behavior, where automated mouse and keyboard commands are given to the SUT, the output is

observed and then compared to expected results (Borjesson & Feldt, 2012). This makes VGT more

robust to layout changes, but also more dependent on the graphical representation of the GUI, e.g.

change of image size, shape or color, than the second generation.

The following sections concentrate on the horizontal axis of Figure 4.1, which represents the level of

automation of the GUI testing techniques by differentiating between script-based and script-less GUI

testing.

4.2 Script-based GUI testing

A classification of automated GUI testing techniques has been presented in Section 4.1. The proposed

classification by (Aho et al., 2016) is illustrated in Figure 4.1. The vertical axis of this graph, which

represents the level of tolerance for GUI changes, also called generations of automated GUI testing,

was discussed. This section of the literature review elaborates on the horizontal axis of the graph,

which depicts the level of automation in regression testing through the GUI. As mentioned in the

problem statement, this thesis is differentiating between script-based and script-less GUI testing.

Starting with the script-based approaches in this section, which are also mentioned by (Aho et al.,

2016), additionally, other GUI and script-based testing are discussed. A script-based testing technique

is an automated testing technique that generates test scripts while executing test cases. It is important

to note that a code-less test automation tool is not equal to a script-less tool. A tool that is code-less

can also be script-based, as it might generate and run test scripts in the background. The following

sections elaborate on the existing script-based GUI testing techniques in the literature.

4.2.1 Capture & Replay

The first level of automation in Figure 4.1 and one of the earliest and widely used approaches in auto-

mated regression testing is Capture & Replay (C&R), also called Record & Play. In C&R approaches,

the tool acts as the name says as a recorder, that logs all the inputs, which is done by a manual

tester. These inputs are various GUI events like a mouse click or a textual input, that are saved as

a test script. The test script can be executed automatically by simply ”playing it back” (Graham

et al., 2021). These tools have two different modes: capture and replay mode. In capture mode,

the tool captures and saves any kind of input given by the tester, which can be an event as well as

an object’s attributes like the color, position, name, etc., to identify the selected object. All these

captured attributes are saved in a test script, which can be replayed several times in replay mode. In

17

CHAPTER 4. LITERATURE REVIEW 18

C&R approaches, the expected result of a use case can be incorporated as checkpoints, that compare

the expected result with the actual result. This way, it determines if the SUT is behaving correctly

(Graham et al., 2021). This can happen during the capture mode or by editing the test script. A test

fails when the actual result differs from the expected result at a checkpoint in the test script. More

advanced and modern C&R tools can also record the behavior of the GUI, thus are able to notice

changes in GUI in later versions (Aho et al., 2016).

The C&R approaches are generally easy to use, decrease the manual effort for regression testing, and

deliver faster results. However, the problem with these approaches is that they are not tolerant of

GUI changes. The test script, captured from the earlier versions, has to be maintained and it has to

be re-captured for the new GUI. The maintenance of these scripts requires additional manual effort.

There exist several open source and commercial C&R tools, like Ranorex (Ranorex, 2023), QF-Test

(QFS, 2023), Squish (Squish, 2023), which not only support C&R testing but also code-based testing,

that is further explained in the following section.

4.2.2 Code-based Testing

Another scripted testing approach is the one where test scripts have to be written manually. Two

of the most popular test automation tools, that are based on manually written scripts are Selenium

(Selenium, 2023a) for web applications, and Appium (Appium, 2023) for mobile applications. Sele-

nium supports the automation of web browsers through a WebDriver, which is an API that defines

an interface for controlling the behavior of web browsers. Implementing a WebDriver into a script

enables the communication between Selenium and the browser. The open-source tool supports five

programming languages: Ruby, Java, Python, JavaScript, and C#. Selenium also offers a C&R tool,

which is the Selenium IDE (SeleniumIDE, 2023). Another scripted testing framework is the AutoIt

(AutoIt, 2023), which has its own scripting language and supports only Windows applications.

An example of a code snippet of Selenium written in Java is given below. Line 5 creates a new

session by defining the Driver with the WebDriver class object. On line 6 the navigation to the SUT

is being created, which is the Selenium webpage in this case. Line 8 extracts the title of the webpage,

where this title is compared to the expected result on line 9. Moving forward to line 10, this code line

makes sure that the WebDriver will wait the browser to load the certain element, that is tried to be

extracted. By doing so, WebDriver requests the DOM for a certain duration when trying to find any

element (Selenium, 2023b). Lines 12 and 13 are commands that find an element and save them in

the WebElement object. The command on line 15 sends an input ”Selenium” in the text box and the

input is submitted by the command on line 16. The expected output is compared with the element

that has been found after submitting the input on line 20. The connection to the driver is closed by

the command on line 22.

18

CHAPTER 4. LITERATURE REVIEW 19

Listing 4.1: Selenium example extracted from Selenium (2023b)

1 public class FirstScriptTest –

2

3 @Test

4 public void eightComponents() –

5 WebDriver driver = new ChromeDriver();

6 driver.get(”https://www.selenium.dev/selenium/web/web-form.html”);

7

8 String title = driver.getTitle();

9 assertEquals(”Web form”, title);

10 driver.manage().timeouts().implicitlyWait(Duration.ofMillis(500));

11

12 WebElement textBox = driver.findElement(By.name(”my-text”));

13 WebElement submitButton = driver.findElement(By.cssSelector(”button”));

14

15 textBox.sendKeys(”Selenium”);

16 submitButton.click();

17

18 WebElement message = driver.findElement(By.id(”message”));

19 String value = message.getText();

20 assertEquals(”Received!”, value);

21

22 driver.quit();

23 ˝

24 ˝

4.2.3 Model-based Testing

Another approach, that is widely used is model-based testing (MBT). This approach differs from

the previously mentioned approaches, as it creates the test scripts automatically. That means that

not every codeless automation tool is a script-less tool at the same time, as it might generate test

scripts in the background as MBT tools do. To understand MBT better, it is important to highlight

all the different meanings of MBT. Model-based testing is an approach that has different meanings

for different test generation techniques. It includes four different approaches, which are defined by

Utting and Legeard (2010) as follows:

1. Generation of test input data from a domain model

2. Generation of test cases from an environment model

3. Generation of test cases with oracles from a behavior model

4. Generation of test scripts from abstract tests

The first approach is about automatic test input generation and involves the selection and combination

of a subset of input values to produce test input data. Model-based testing for test input generation

creates a model with information about the input values’ domains. However, this approach does not

19

CHAPTER 4. LITERATURE REVIEW 20

create any information for test oracles, so it does not provide a test result.

The second approach of MBT creates a model, that describes the expected environment of the SUT.

These environment models enable the generation of sequences of calls, that are made to the SUT.

Like the previous approach, it is not possible to determine if the test fails or passes, as the environment

model does not provide any information about the behavior of the SUT, so the output values can not

be predicted.

The third approach of MBT generates test cases with oracles, that specify the expected output values

of the SUT. The model that is created is called the behavior model, as the generated test cases include

oracles, that define the behavior of the SUT, which is the relation of the input and output values.

Unlike the other approaches, in addition to the input generation, it provides the tester with whole

test cases and a test result.

The last approach focuses on the abstraction of a description of a test case, such as a UML or a

sequence diagram, into a low-level test script that is executable. The model that is being created

includes information about the API and the structure of the SUT.

An example of a test automation tool that is based on the model-based approach is Tosca by Tricentis

(Tosca, 2023), for which a detailed explanation can be found in Section 6.1.1. As the main focus of

this thesis is on test case generation and the whole test design of automated testing, the approach

that is relevant for this research is the third approach of MBT. Relying on the categorization proposed

by Aho et al. (2016) there are two different approaches to test case generation that are based on

models. These are test case generation-based on manually created and automatically inferred models,

which are explained further below.

Test case generation based on manually created models

As for the categorization proposed by Aho et al. (2016) MBT is also divided into two different

categories. The first category is MBT which is used for test case generation and is based on manually

created models. The focus here is on test automation tools where the test designer has to create a

model of the GUI and its expected behavior. The tool then automatically generates the test cases

based on the manually created behavior model. There are several techniques that require the manual

creation of models and automatically generate test cases from them, like a keyword-driven model,

faulty event sequence graph, AI planning, genetic models, probabilistic event-flow graph, latin squares,

coverage arrays, hierarchical finite state machines, and UML diagram-based technique, for which an

explanation can be found in A. M. Memon and Nguyen (2010).

Test case generation based on automatically inferred models

More modern approaches were introduced in MBT where GUI models are automatically extracted,

also called model extraction, model inference, or GUI ripping (Aho et al., 2016). Earlier techniques for

model extraction mostly used static analysis on the source code of the system, which couldn’t capture

the dynamic behavior of the GUI. Thus, dynamic analysis was introduced and the behavior of the GUI

20

CHAPTER 4. LITERATURE REVIEW 21

was analyzed during user interaction with the SUT, similar to C&R tools. Here, the interaction is able

to simulate the user interaction, which makes it possible to automatically interact with the widgets of

the GUI. There are many approaches to automatically extract models, like an event-flow graph, event

interaction graph, and the feedback-based model extraction technique (A. M. Memon & Nguyen,

2010).

4.3 Script-less GUI testing

The script-less testing approach refers to a technique that does not require test case generation, unlike

script-based approaches. Thus, there are no scripts generated that execute test cases, which makes

them script-less. A script-less approach automatically generates sequences of user actions during run-

time to explore the SUT by selecting and executing the actions of the discovered GUI states (Pastor

Ricós, Slomp, Maŕın, Aho, & Vos, 2023). A typical tool that is based on a script-less approach works

with the following techniques as explained in Vos, Aho, Pastor Ricós, Rodriguez-Valdes, and Mulders

(2021). Script-less approaches and tools that are based on a script-less approach, first identify the

available GUI widget of the SUT. Then, all the possible actions that can be performed with those

GUI widgets are derived. The next step is to select some of these actions to build the test sequences

by using an Action Selection Mechanism (ASM). This ASM is being performed randomly which is the

random testing approach. The next section discusses this approach more in detail.

4.3.1 Random or Monkey Testing

Random testing, also called monkey testing or stochastic testing, is a script-less software testing

approach where test cases are generated purely at random and during the test execution (Bourque et

al., 2014). This technique involves exploring the SUT by generating random inputs and performing

random actions with the goal of finding system failures. In most cases, test cases that are generated

during testing are not being saved, since this approach only focuses on sequences that find failures

in the SUT (Vos et al., 2021). The advantage of this approach is that there is no creation and

maintenance of test cases. Unlike script-based approaches, monkey testing can discover bugs that

cannot be discovered by scripted approaches. Microsoft reported that 10% to 20% of the bugs are

found by test monkeys (Moreira, Paiva, Nabuco, & Memon, 2017). We use the term “test monkeys”

to refer to test automation tools that are based on the random testing approach. These test monkeys

usually explore the SUT in a different way in every test run, which makes them observe the SUT from

a different perspective than a human tester. The main goal of test monkeys is to create test sequences

that are purely random to make the SUT unresponsive and crash. A tool that is based on the monkey

testing technique is Testar by Vos et al. (2021), for which an in-depth explanation can be found

in Section 6.1.1. Monkey testing is differentiated into two types of test monkeys, which are smart

monkeys and dumb monkeys (Nyman, 2000).

21

CHAPTER 4. LITERATURE REVIEW 22

Smart monkeys

Smart monkeys are called “smart” because they have some knowledge about the SUT. They know in

what action sequences a simple functionality can be done and how that one functionality should result

(Nyman, 2000). If a functionality does not result with the expected result, it reports a failure. The

first step of smart monkeys is to make them obtain knowledge about the SUT (Vos et al., 2021).

A way to do this is to get the programmatic structure of the layout and widgets of the GUI using a

technical API or image recognition to detect visible widgets of the GUI.

The second phase involves detecting and extracting the state of the GUI using the information obtained

in the first phase. After the monkey obtains some knowledge about the GUI, it can derive a set of

actions that will be executed. The aim of smart monkeys is to generate arbitrary input sequences

to crash or hang the GUI (Vos et al., 2021). The knowledge about the SUT can be obtained by a

state model, which guides the smart monkey through the GUI and helps with action selection. This

is done by the action selection mechanism (ASM) (Vos et al., 2021). Selecting the right actions

is a crucial step in script-less testing, as detecting failures depends on the actions that are being

executed. Action selection can be done purely randomly or there can be put some intelligence on

action selection to tell the test monkey what to do next. There are some strategies to make a smart

monkey smarter, for example using techniques like reinforcement learning, ant colony optimization

(ACO), and meta-heuristics (Vos et al., 2021). All these techniques have the objective of calculating

the most optimal action to take by a test monkey in a given state of a GUI.

Dumb monkeys

Dumb monkeys, on the other hand, possess no knowledge about the SUT and act ignorantly through-

out the testing process. They do not have a state model, thus, have no knowledge about what state

the SUT is in, or what to expect after an action is executed. They act ignorant toward bugs, which

create an unexpected result, that cannot be recognized by the dumb monkey. What they can rec-

ognize is for example obvious bugs, like crashes and hangs. The first dumb monkey test tool was

created in the late 80s by Apple, to test how robust their application was in their operating environ-

ment (Nyman, 2000). Dumb monkeys are usually used to detect operating system bugs, but they

can find application errors as well. These applications are cheap and easy to develop since they are

completely automatic, which makes them more attractive to testers (Vos et al., 2021).

4.4 Challenges of GUI Testing

In the previous sections, we mentioned that GUI testing is a challenging task, as it is a continuously

growing field within software testing. A recent systematic literature review by Aho and Vos (2018)

presents the challenges within the GUI testing field, which we used to discuss the main challenges

found by them. This section will address the existing challenges found in the literature and give an

overview of the disadvantages of the aforementioned testing approaches. The first section talks about

22

CHAPTER 4. LITERATURE REVIEW 23

the general challenges of test automation that also impact automated GUI testing. The following

sections focus on the challenges that are more specific to the aforementioned automated GUI testing

techniques.

4.4.1 General challenges of automated testing

A major problem for system-level testing through the GUI is caused by the short development cycles

of iterative and incremental processes and continuous integration practices in software development

(Aho & Vos, 2018). Shorter development cycles like those used when following agile methodologies

lead to iterative and incremental development, which also requires testing to take place in incremental

stages. This shortens the quality assurance activities drastically, which involves the maintenance of

test cases and scripts and regression testing. Insufficient time for regression testing can decrease the

quality of testing and can cause inefficient test runs (Aho & Vos, 2018). Additionally, there is not

enough time to automate test cases, thus, regression tests are being done manually which increases

the time and costs used for the testing activities in a development cycle.

Furthermore, the increasing complexity of software systems that are supported by multiple devices

and platforms increases testing activities, since every test run has to be done on every platform and

device that is supported by the software system (Aho & Vos, 2018). This includes cross-browser

testing, which is testing through different browsers that are supported by the SUT, and compatibility

testing, which verifies whether the SUT can collaborate with different hardware and software facilities

or with different versions or releases (Bourque et al., 2014).

Another challenge is the test oracle problem which is one of the main problems of test automation.

A test oracle can be defined as an activity or functionality that determines whether a given activity

sequence is an acceptable behavior of the SUT or not. A survey by Barr, Harman, McMinn, Shahbaz,

and Yoo (2014) differentiates the test oracle problem into four different categories: specified, derived,

implicit, and human test oracles. Specified test oracles are defined by mathematical logic, thus it re-

quires a specification language. A derived test oracle can distinguish a SUT’s correct behavior from

incorrect behavior by deriving various artefacts like documentation or system executions and different

system versions. Lastly, an implicit test oracle relies on implicit knowledge to distinguish between

the correct and incorrect behavior of a SUT and does not require any domain knowledge and formal

specifications. The human oracle is the tester who decides if the behavior of the SUT is correct or

incorrect.

The main challenge Barr et al. (2014) address is that there is less attention and research for au-

tomating test oracles to achieve more test automation in software testing. Human intervention is still

needed, to check and review the behavior of SUTs. For the aforementioned test oracle approaches

the disadvantage is that there is a lack of a formal specification, which relies on the abstraction of

models that can be imprecise or contain irrelevant behavior of, for example, the GUI model, that is

not required. Another challenge of these approaches is to interpret the abstract outputs, which makes

23

CHAPTER 4. LITERATURE REVIEW 24

it hard to read the test results and thus requires human intervention.

One challenge for scripted testing approaches is defining oracles manually. Test oracles that are

defined manually, can result in ambiguous test results since defining expected behavior for any SUT

state is not feasible (Aho & Vos, 2018).

4.4.2 Challenges of script-based GUI testing

The following section will elaborate on the challenges of script-based testing and each testing approach

within that field. Additionally to the test oracle problem, issues that can be faced when using these

testing approaches are discussed below.

Capture & Replay

Capture & Replay tools have the drawback that the maintenance of the test scripts is high and so are

the costs for the maintenance of scripts (Moreira et al., 2017). As shown in Figure 4.1 and explained

in Section 4.1, this approach has the lowest level of tolerance for GUI changes and also offers the

lowest level of automation in regression testing. Hence, this approach has high maintenance and

requires high manual effort to update test scripts, especially in regression testing. For this reason,

C&R tools are mostly used for the first software releases to get faster feedback and are then discarded

after new versions of the SUT (Moreira et al., 2017).

Another challenge that a tester might face when testing with C&R tools is when there is a need to

add new test cases to a ready test suite (Nass et al., 2021). Merging new test cases into ready

test suites might require programming and skills to do so, which again requires manual effort and

additional programming skills. Considering the fact that C&R tools are being selected to get faster

feedback for the first versions of a SUT, this challenge shows that new versions of a SUT can take

more time to run tests and result in higher costs.

Code-based Testing

Code-based testing consists of writing test scripts in a scripting language as explained in Section 4.2.2.

As the other script-based approaches, code-based testing also has the challenge of not being robust

for GUI changes. For any update on the SUT, the test script needs to be manually extended with

new test cases, and the increasing number of test cases will make the maintenance of these scripts

even more complex which can make it prone to errors (Aho & Vos, 2018). A significant change in

the GUI of a SUT might result in breaking the test execution as whole (Nass et al., 2021).

Additionally, scripted testing requires expertise and knowledge in programming. With this limitation,

it is not possible for everyone to generate test scripts, thus experts and specialists with programming

skills are needed for testing and maintaining extensive test suites (Nass et al., 2021).

A challenge of tools that are based on the code-based approach is that some tools still do not

automatically detect GUI widgets, where the tester has to locate them according to their ID and

24

CHAPTER 4. LITERATURE REVIEW 25

class name (Karam, Dascalu, & Hazimé, 2006). A change of these class names or IDs can crash the

whole script and then it is required to update those attributes manually, which can take lots of time

and be costly.

Model-based Testing

Model-based testing is a very popular testing approach, that is being adopted in many test automation

tools, although its application depends a lot on tool support (Aho, Suarez, Memon, & Kanstrén, 2015).

MBT approaches, like the other script-based testing techniques, are also not robust for GUI changes

as test scripts have to be maintained regularly for regression testing. Test automation tools, that

adopt the manually crafted GUI models technique, which is explained in Section 4.2.3, still require

manual effort and specialized expertise to create the models. Usually, the tester has to take intense

training on these tools to obtain the required knowledge. The needed high manual effort to learn how

to use the tool and to create the GUI models to generate test cases automatically can be very costly

and time-consuming (Grilo, Paiva, & Faria, 2010; Utting & Legeard, 2010).

Automated model extraction methods, on the other hand, face the challenge of requiring human

intervention. For example, certain inputs, such as usernames and passwords, need to be manually

predefined by a tester (Grilo et al., 2010). To reach the desired coverage of GUI models, the

automatically generated model usually needs to be manually reviewed and corrected by a person, which

shows that even though the manual effort is reduced, there is still a need for human intervention.

Another challenge is that irrelevant behavior of models are also being extracted, where a tester is only

interested in the expected and required behavior of the SUT (Aho, Kanstrén, Räty, & Röning, 2014).

Validating the correctness of such models is another challenge that needs to be mitigated in the field

of MBT approaches.

4.4.3 Challenges of script-less GUI testing

Random or monkey testing is a script-less testing approach, that works on random action selection

as explained in Section 4.3. The following section discusses the disadvantages of this approach found

in the literature in addition to the test oracle problem explained in Section 4.4.1.

Monkey Testing

A major challenge for the monkey testing approach is created by its execution time being very long.

A test automation tool that is based on this approach can have test runs that can last for many days

since it tries to find the vulnerability that makes the SUT crash (Aho & Vos, 2018). A high execution

time is necessary for monkey testing to achieve high testing coverage. A solution to overcome this

issue is to enhance the resources and make parallel executions, which still do not guarantee a test

execution time as fast as the other approaches. Many papers were published that experimented with

the monkey testing approach and discuss its inefficiency in system level testing (Girard & Rault, 1973;

25

CHAPTER 4. LITERATURE REVIEW 26

Thayer, 1978; Myers, 1979). These researchers are not convinced that monkey testing can detect

severe bugs and see this approach as the least optimal testing approach comparing it to other existing

approaches.

One major challenge of monkey testing following the long execution time is the reproducibility of the

detected bugs (Nyman, 2000). It can take a test monkey several days to crash a SUT, which results

in long and randomly created testing sequences by arbitrary events on the GUI. It can be very difficult

to recreate these bugs for debugging purposes, which can be challenging for the developer to fix the

found bug (Vos et al., 2021).

Monkey testing is differentiated between smart and dumb monkeys. Dumb monkeys don’t have any

knowledge about the SUT and its state. They do not have any idea what input and output are

allowed or not allowed. Therefore, they are unable to recognize a bug when they detect one (Moreira

et al., 2017). For smart monkeys, on the other hand, giving and maintaining SUT-specific knowledge

increases the maintenance effort, which is a challenge that is tried to be mitigated by script-less test-

ing approaches (Vos et al., 2021). Furthermore, the quality of a smart test monkey depends on the

quality and accuracy of the state model and the action selection mechanism, which requires expertise

and effort to develop (Moreira et al., 2017).

Overall, both automated GUI testing techniques have challenges that can be found summarized in

the table below:

GUI testing technique Challenges

General challenges of automated testing Short development cycles

Increasing complexity and number of supported platforms

Test oracle problem

Script-based High maintenance of test scripts

High manual effort to create test scripts

Requires technical knowledge

Requires manual effort to detect GUI widgets

Requires high effort to learn the tool/programming language

Script-less Long execution time

Difficult reproducibility of bugs

Smart monkey: requires technical knowledge to create a test oracle

Table 4.1: Summary of the challenges of automated GUI testing

4.5 Evaluation frameworks for software testing techniques

In order to make an informed decision on what software technique 1 to apply, practitioners must

have a comprehensive understanding of the software technique itself first. Then, they have to know

which software technique performs better regarding effectiveness and efficiency. To compare software

techniques, several evaluation frameworks are based on different evaluation methods. First, it is

important to know the available methods to conduct scientific research in software engineering. In

1A software testing technique describes how the test cases are being generated (Bourque et al., 2014).

26

CHAPTER 4. LITERATURE REVIEW 27

the field of software engineering, four research methods were presented by Basili (1993), which are

the following:

• Scientific: “The world is observed and a model is built based on the observation, for example,

a simulation model.”

• Engineering: “The current solutions are studied and changes are proposed, and then evalu-

ated.”

• Empirical: “A model is proposed and evaluated through empirical studies, for example, case

studies or experiments.”

• Analytical: “A formal theory is proposed and then compared with empirical observations.”

The following section gives an overview of existing evaluation techniques and the research method

they are based on.

4.5.1 State-of-the-art evaluation techniques

In empirical studies within software engineering, two primary types of research methods are commonly

distinguished: case studies and experiments. There exist several different studies that are based on

the analytical method, but this research focuses on the empirical research methods, hence this section

will focus more on techniques that propose an empirical method.

Empirical methods

An experiment in software engineering is designed as a controlled study. An experiment involves ma-

nipulating variables and imposing controls to systematically investigate the studied setting (Wohlin,

2014). It aims to establish cause-and-effect relationships by comparing different conditions or treat-

ments and measuring their impact on specific outcomes. Unlike the case study, an experiment provides

a more controlled environment. In contrast to an experiment, a case study in software engineering

is a research method that examines a specific real-world software engineering situation using various

sources of evidence (Runeson, Höst, Rainer, & Regnell, 2012). It focuses on understanding a par-

ticular software engineering phenomenon within its practical context. Guidelines for conducting case

studies in software engineering are discussed further in several studies, such as Kitchenham, Pickard,

and Pfleeger (1995), Verner, Sampson, Tosic, Bakar, and Kitchenham (2009) and Runeson, Höst,

et al. (2012).

1. Repeatable Software Engineering Experiments for Comparing Defect-Detection Tech-

niques by Lott and Rombach (1997) and a replication of Basili, Selby, and Hutchens (1986)

proposes a characterization schema for software testing experiments, that was adapted from

the scheme in Basili et al. (1986) for software testing evaluations. The schema is divided into

four parts: scope definition, experimental planning, operation, and interpretation. It follows the

27

CHAPTER 4. LITERATURE REVIEW 28

guidelines of experimentation in software engineering, however, it does not provide any metrics

or guidelines on how to measure the software testing techniques.

2. Supporting Controlled Experimentation with Testing Techniques: An Infrastructure and

its Potential Impact by Do, Elbaum, and Rothermel (2005), which builds upon their earlier

work Do, Elbaum, and Rothermel (2004), propose an infrastructure called the Software Artifact

Infrastructure Repository (SIR) to support controlled experiments. SIR provides a repository

of benchmark programs that can be used to evaluate testing techniques, however, no clear

guidelines are given on the measurements.

3. A Framework for Comparing Efficiency, Effectiveness and Applicability of Software Test-

ing Techniques by Eldh, Hansson, Punnekkat, Pettersson, and Sundmark (2006) focuses on

comparing the efficiency, effectiveness, and applicability of testing techniques using fault injec-

tion. It involves steps such as preparing code samples with known faults, selecting a testing

technique, performing experiments, collecting and analyzing data, and potentially repeating the

experiment. Although it proposes clear steps to evaluate software testing techniques, it is

restricted to fault injection.

4. A Methodology for Evaluating Software Engineering Methods and Tools by Kitchenham

(1993) is an organizational framework that targets the industry rather than the researchers.

It is organization-dependent, meaning that the measurements are defined depending on the

context of the study. The methodology provides guidance on nine different research methods

and advises on which method to use for what context (Runeson, Host, Rainer, & Regnell, 2012).

The guidance mostly focuses on how to conduct an empirical study in an industrial setting, but

no specific metrics on how to measure certain variables are given.

5. A Methodological Framework for Evaluating Software Testing Techniques and Tools by

Vos et al. (2012) proposes a guideline for conducting a case study to compare software testing

techniques and tools. It provides a case study design with clear metrics that allows a better

comparison of the results. The authors focus on the effectiveness, efficiency, and subjective

satisfaction measurements of the software testing techniques and tools, and define clear metrics

to measure them. It offers a case study protocol for seven different scenarios where scenario 1

consists of the most limited context and suggests a qualitative analysis of the software testing

techniques or tools. The scenario depends on the answers given to some questions like “Ability

to inject faults?” or “Known faults in the SUT?”. However, these scenarios are limited in

context and are only focused on case studies.

Analytical methods

In addition to the empirical study methods, there exist several methods for evaluating software testing

techniques. A recent paper by Kumar and Kaur (2022) presents a hybrid method to evaluate software

testing techniques that is based on a Multi-Criteria-Decision-Making (MCDM) approach. This method

28

CHAPTER 4. LITERATURE REVIEW 29

considers multiple factors such as cost, schedule, and resources. One paper by Neto and Travassos

(2014) that uses the MCDM approach is restricted to model-based testing techniques only and aims

to support the combined selection of model-based techniques for software engineering projects.

Another approach that is commonly used to evaluate test cases is called mutation analysis or mutation

testing. A mutant in this case is a modified version of the SUT, that differs by artificial changes

(Bourque et al., 2014). Each test case is tested by both versions and if a test case can identify

the difference between the original SUT and the mutant, then the mutant is “killed”. The ratio of

killed mutants to the total number of generated mutants is used to measure the effectiveness of the

generated test cases (Bourque et al., 2014). However, this approach is also only restricted to fault

injection. Software testing technique evaluation approaches based on mutation analysis can be found

in Gupta and Jalote (2008); Belli, Beyazit, Hollmann, and Guler (2011); Gopinath, Alipour, Ahmed,

Jensen, and Groce (2016).

29

Chapter 5

Treatment Design

The need for adaptation of the methodological framework proposed by Vos et al. (2012) arises from

the requirement to evaluate software testing techniques in a specific scenario not covered by the

existing case study protocol scenarios. The methodological framework was designed to conduct case

studies following case study design guidelines, and providing a structured approach applicable to various

treatments, subjects, and objects. As mentioned in the problem statement, in a particular scenario,

where fault injection and conducting a traditional case study were not feasible or applicable, the

framework required adaptation to enable the comparison of software testing methodologies through

experiments. This chapter presents the adaptation of the methodological framework.

5.1 The experimental guidelines

The experiment process in software engineering by Wohlin et al. (2012) follows a structured approach

that allows for its instantiation in different contexts within the field of software engineering. Figure 5.1

provides an overview of the entire experiment process, which can be divided into several key activities.

1. Scope Definition: First, the scope of the experiment should be defined, encompassing the

object of study, the purpose of the experiment, the quality focus, the perspective, and the

context in which the study is conducted. These elements are crucial for the goal definition of

the experiment.

2. Experiment Planning: Planning is a critical step to ensure the usefulness and validity of the

experiment. It involves defining the variables, hypotheses, and experimental design, which in-

cludes choosing a suitable experimental design. Thorough planning is essential to avoid potential

pitfalls and biases that could compromise the reliability of the results.

3. Experiment Operation: The operation phase contains three main steps: preparation, execu-

tion, and data validation. In the preparation step, subjects and necessary materials, such as data

collection forms, are prepared. Participants are informed about the experiment’s intentions and

their consent is obtained. The execution phase involves conducting the experiment according

30

CHAPTER 5. TREATMENT DESIGN 31

to the predetermined plan and design, including data collection. Data validation is carried out

to verify the correctness and validity of the collected data, ensuring its reliability.

4. Analysis & Interpretation: The collected data is given as input for the analysis and interpre-

tation phase. Descriptive statistics are often employed to gain a better understanding of the

data, providing visualizations and aiding in the informal interpretation of the results. This step

allows researchers to uncover meaningful insights and draw conclusions from the data.

5. Presentation & Packaging: The final activity involves documenting and presenting the ex-

periment’s findings. This can take the form of a research paper for publication, a lab package

for replication purposes, or inclusion in a company’s experience base. Effective documentation

ensures that the lessons learned from the experiment are properly captured and presented.

Figure 5.1: Experiment process by Wohlin et al. (2012)

5.2 Experimental reporting

The integration of study results into a body of knowledge faces a significant challenge due to the het-

erogeneity of study reporting. Inconsistent and non-standardized reporting often leads to difficulties

in finding relevant information and missing contextual details, that are essential for further general-

izability of the results (Wohlin, Höst, & Henningsson, 2003; Sjøberg et al., 2005; Dyb̊a, Kampenes,

& Sjøberg, 2006; Kampenes, Dyb̊a, Hannay, & Sjøberg, 2007). To address this issue, Jedlitschka,

Ciolkowski, and Pfahl (2008) have developed a unified reporting guideline specifically tailored for re-

porting controlled experiments and quasi-experiments. The guideline, presented in a structured table

format, summarizes the essential elements that a report should include, which are further elaborated

upon in its sub-elements. The detailed table of the reporting guideline can be found in Appendix A.

31

CHAPTER 5. TREATMENT DESIGN 32

5.3 The adapted evaluation framework

As described in the problem statement, to evaluate software testing techniques in a limited scenario

that is not covered in the case study protocol scenarios proposed by Vos et al. (2012), certain actions

to adapt the methodological framework was needed. The original framework by Vos et al. (2012)

was designed to execute case studies that follow the guidelines of case study designs. The adaptation

of this framework will make it possible to compare software testing techniques by conducting experi-

ments in a scenario where fault injection and conducting a case study is not possible.

To do so, the case study design in the original framework was transformed into an experimental design

proposed by Wohlin et al. (2012). In addition, the adaptation will address the issues regarding the

reporting of the experiments and will allow the reporting of the experiment designed by this frame-

work in a standardized and consistent way. This was achieved by following the reporting guidelines by

Jedlitschka et al. (2008). This adaptation ensures consistency in the evaluation process of software

testing techniques by following established guidelines and standards for conducting controlled experi-

ments in software engineering.

The adapted methodological framework is presented in a Process-Deliverable-Diagram (PDD) (van de

Weerd & Brinkkemper, 2009). Modeling the framework in a PDD allows us to have an overview of

the whole of the experiment and execution process (left) and the deliverables each activity of the

process create (right). Furthermore, the activity and concept tables provide a detailed explanation of

the activities and deliverables. The modeling of the adapted framework was divided into two different

PDDs. Figure 5.2 presents the experiment process that consists of ten different phases, where one

of the phases is an open activity, that is further discussed in a separate PDD, see in Figure 5.3.

5.3.1 The experiment process

The first phase of the adapted framework in the experiment process starts with the scope definition,

as proposed by Wohlin et al. (2012) and depicted in Figure 5.2. This phase and the following four

phases are essential for the experimental planning, which is a crucial part of the experiment itself

and also the experiment report as suggested by Jedlitschka et al. (2008). Apart from that, the

metrics for the dependent variables proposed by Vos et al. (2012) are defined in the first phase

of the experiment. Moreover, the third phase consists of the definition of experimental material

that delivers the treatment description table as proposed by Vos et al. (2012), alongside the SUT

description and the relevant training material. The experiment operation is defined by the sixth and

seventh phases, where the seventh phase is an open activity and is modeled and described further

in Figure 5.3. The analysis and interpretation of the results are depicted in phases eight and nine.

The last activity encompasses the definition of the conclusion, for which the researcher needs to

follow the guidelines by Jedlitschka et al. (2008). The experiment process delivers the experimental

protocol or the experiment report as the main deliverable. Further description of the activities and

32

CHAPTER 5. TREATMENT DESIGN 33

their sub-activities can be found in Table 5.1. For a detailed explanation of the deliverables, readers

are referred to Table 5.2.

Figure 5.2: PDD Model of the experiment process

33

CHAPTER 5. TREATMENT DESIGN 34

Activities of the experiment process

Table 5.1: Activity table of the experiment process

34

CHAPTER 5. TREATMENT DESIGN 35

Concepts of the experiment process

35

CHAPTER 5. TREATMENT DESIGN 36

Table 5.2: Concept table of the experiment process

5.3.2 The execution process

The execution process encompasses three phases: setup, training, and the execution phase as seen

in Figure 5.3. These phases include activities that are part of the experimental tasks specified for the

participants. The deliverables of these activities consist of the working diary, test report, and bug

sheet, from which the working diary and the bug sheet are prepared and delivered by the researcher

during the experiment process. The test report is generated by executing tests during the execution

phase. Table 5.3 offers a deeper understanding of the activities and their sub-activities. Further

description of the deliverables can be found in Table 5.4.

36

CHAPTER 5. TREATMENT DESIGN 37

Figure 5.3: PDD Model of the execution process

Activities of the execution process

Table 5.3: Activity table of the execution process

37

CHAPTER 5. TREATMENT DESIGN 38

Concepts of the execution process

Table 5.4: Concept table of the execution process

38

Chapter 6

Treatment Validation

This chapter focuses on the validation of the adapted methodological framework for evaluating soft-

ware testing techniques and tools. It provides the reader with the experimental protocol and report

of the conducted quasi-experiment to validate the redesigned treatment. The goal of this treat-

ment validation is to answer research question 2.3 (How well does the adjusted method support the

comparison of the GUI testing paradigms?).

6.1 Quasi-Experiment

This quasi-experiment aims to compare the script-based and script-less testing techniques within the

GUI testing paradigm. By following the adjusted experimental guideline, this study investigates the

relationship between the selected GUI testing techniques and their effectiveness and efficiency by

utilizing software testing tools that are based on these selected software testing techniques.

6.1.1 Experimental Planning

Goals, Variables, and Hypotheses

The goal of conducting this experiment is to answer research questions 3 and 4. The research ob-

jective defined in the introduction is derived from the main research question. This section of the

experimental planning will refine the specific goals of this experiment to answer research questions 3

and 4. The refined goals are defined as follows:

Goal 1: Analyze script-based and script-less GUI testing techniques

For the purpose of understanding their effectiveness

With respect to the number of defects detected, type of failures, and severity of failures.

Goal 2: Analyze script-based and script-less GUI testing techniques

For the purpose of understanding their efficiency

39

CHAPTER 6. TREATMENT VALIDATION 40

With respect to the time needed for designing and executing test cases, analyzing found failures,

finishing the training, setting up the environment, and configuring the testing tool.

To reach these specific goals, two testing tools were selected, representing each of the GUI testing

techniques this research is comparing. Table 6.1 gives an overview of the independent, moderating,

and dependent variables that this experiment is investigating. Furthermore, the metrics that show

how the variables will be measured are displayed in a separate column of the table. The independent

variable is defined as the variable that influences and brings some variations of the dependent variable

(Rogers & Revesz, 2019). On the other hand, moderating variables represent the variable that mod-

ifies the relationship between an independent variable and a dependent variable (Rogers & Revesz,

2019). The independent variable this experiment is investigating is the “GUI testing paradigms” that

is expected to influence the dependent variables “effectiveness” and “efficiency” by using two different

GUI testing paradigms, namely script-based and script-less GUI testing technique.

Independent

Variable

Moderating Vari-

able

Dependent

Variable

Metrics

GUI testing

paradigms

Script-based test-

ing with TOSCA

Script-less testing

with TESTAR

Effectiveness

• Number of failures detected
• Type of failures
• Severity of failures

Efficiency

• Time needed to design the test cases
• Time needed to execute the test
cases

• Time needed to analyze the found
failures

• Time needed to finish the training
• Time needed to set up
• Time needed to configure

Table 6.1: Variables and Metrics

Additionally, to investigate the research questions and allow this study to reach its specific goals, the

following hypotheses were formulated:

• RQ1: How do script-based and script-less testing paradigms compare in terms of test

effectiveness? Test effectiveness represents the ability of the selected approach to detect

failures in the SUT (Vos et al., 2012). The metrics for measuring this variable can be found in

Table 6.1.

– H1.0 There is no significant difference between the script-based and script-less GUI testing

approach in terms of test effectiveness.

– H1.1 The script-less testing approach can detect more system failures like software crashes,

40

CHAPTER 6. TREATMENT VALIDATION 41

than the script-based GUI testing approach.

• RQ2: How do script-based and script-less testing paradigms compare in terms of effi-

ciency? Test efficiency depicts the time required for the test activities, including activities from

setting up the environment to analyzing the test results.

– H2.0 There is no significant difference between the script-based and script-less GUI testing

approaches in terms of efficiency.

– H2.1 The script-based testing approach requires more time for the execution phase, which

includes test case design and failure analysis, than the script-less GUI testing approach.

Experimental Units

The initial plan to conduct this quasi-experiment was to collaborate with a Quality Assurance team of

a consulting company, that would make it possible to perform the experiment with many experienced

testers and novice testers to reach a reasonable sample size. Due to time limitations and the avail-

abilities of the potential subjects, only two testers were available at the time when the experiment was

planned to be executed. For this reason, two other subjects outside of the company were included in

the experiment.

One subject, who has testing experience of nine years and several years of test automation experience

with Tosca, decided to participate in this experiment by applying Testar. He is part of the Quality

Assurance team of the collaborating company for over a year now and has worked on several projects

for test automation with Selenium.

Another subject, who has testing experience for more than a year, has started test automation with

Selenium and has also gained some experience in manual testing. He selected Tosca for this exper-

iment, as he had no experience with the tool, and was also suggested by supervisors to learn test

automation with Tosca for his future projects within the company.

Two other Ph.D. students were willing to participate in the experiment, as they are currently focusing

on their studies within the field of software testing and requirements engineering and wanted to gain

experience in test automation with Tosca.

Experimental Material

There are several objects that this quasi-experiment requires. First of all, the treatments that are

being used by the participants of the experiment. Moreover, there is the test object that is being

tested. Last but not least, the training material, was used to prepare the subjects for the testing

phase.

Treatments

The treatments that were used for this quasi-experiment represent the two different software testing

tools Tosca and Testar. Tosca was selected to represent the script-based GUI testing technique and

41

CHAPTER 6. TREATMENT VALIDATION 42

Testar for the script-less GUI testing technique. An overview of both of the tools can be obtained in

table 6.2. The following sections provide a more in-depth description of the tools.

Prerequisites Tosca [6.1.1] Testar [6.1.1]

SUT type
Desktop, Web, API, Database,

Browser, Mobile (Android and iOS)
Desktop, Web, Android

Lifecycle phase GUI, API and Load testing GUI testing

Environment
Tosca Engine 3.0 includes different

Engines for different environments

Desktop (Windows),

Web (Chromedriver),

Android (Appium)

Input Test suites including test cases, test

steps, test data and test oracles

Protocol and configuration of action se-

lection and test oracles

Knowledge Knowledge in test case design and exe-

cution

Knowledge in GUI element structure

Experience Advanced Tester Advanced Tester

Results

Output Test cases, Test reports, Failures
Test sequences, Test reports,

Failures, State models

Completeness Depends on the number of the designed

test cases

Investigated by van der Brugge, Pastor-

Ricós, Aho, Maŕın, and Vos (2021)

Effectiveness Investigated by this quasi-experiment Investigated by van der Brugge et al.

(2021); Bons et al. (2023); Bauersfeld

et al. (2014); Martinez et al. (2016);

Chahim et al. (2020) and this quasi-

experiment

Defect types Depends on the designed test cases Failures, crashes, suspicious titles

Test suite size Depends on the number of the designed

test cases

Depends on the number of sequences

and actions configured

Operation

Information/Support Webpage of the tool
Webpage of the tool, support by

developers

Task applicability Integration and System testing System testing

Maturity Widespread use outside of own organi-

zation

Academic research tool under develop-

ment

Obtaining the tool Commercial Open source

Table 6.2: Description of the treatments following Vos et al. (2012)

Tosca by Tricentis

Tosca by Tricentis is a model-based test automation tool that supports continuous testing for DevOps

and agile management. It is a codeless automation framework, that scans the application’s UI to

42

CHAPTER 6. TREATMENT VALIDATION 43

create a business-readable automation model, which is needed to create test cases. These models

can be combined and reused through the tests. Tosca supports not only GUI testing but also API

and Load Testing. Tosca TBox Framework allows the application to test different environments and

GUIs steering all Engines 3.0, like the XBrowser Engine 3.0, Excel Engine 3.0, SAP Engine 3.0, etc.

The XBrowser Engine 3.0 is used for web applications and supports browsers like Internet Explorer,

Firefox, Chrome, and Edge (Tricentis Documentation, 2023).

There are three elements that are needed to create automated tests with Tosca: Scanning, Modules,

and TestCases (Tricentis Documentation, 2023). A test case design, first, starts with scanning

through the GUI of the SUT. While scanning through the GUI, Tosca retrieves all the technical

information on these GUI elements and saves all this information as a Module. These Modules

contain the technical information that Tosca needs to interact with the SUT. A TestCase can be

created by using the Modules, that were saved through the scan. After specifying a Module for a

TestCase, TestSteps are created. Figure 6.1 shows an example of a Module used in a TestCase. Then,

the test steps need to be defined in the ”Value” column. All these elements create an automated

test on Tosca.

Figure 6.1: Modules and TestCases example retrieved from Tricentis Documentation (2023)

Testar

Testar is an open-source tool that applies a script-less approach for completely automated test gen-

eration at the GUI level for Web, Android, and Windows desktop applications (Vos et al., 2021).

The script-less testing technique allows Testar to create test cases only during the test execution,

meaning that no test case design is needed. The underlying principles as shown in Figure 6.2 are as

follows.

Firstly, it starts with detecting all the available widgets in the current state. A state of a GUI is

represented by a widget tree that consists of a widget that has properties with values (Vos et al.,

2021). Then, it derives all possible actions, starting with deriving all ”actionable widgets”. These are

widgets, that are enabled, unblocked, not filtered by the user, and expect user interaction (click, drag

and drop, etc.). The next steps are selecting an action and executing it. Action selection happens

randomly since Testar is based on the random testing technique. Before starting Testar, the number

of sequences and actions needs to be defined. So, a test sequence ends after reaching the defined

length of actions or after detecting a faulty state, and a test run ends after reaching the defined

length of sequences. The last step is to check the test oracles in the new state. After every execution

43

CHAPTER 6. TREATMENT VALIDATION 44

of an action, Testar creates a new state of the GUI. The Testar oracle checks each of these states,

to determine whether or not it is a faulty state.

A faulty state can

• be a crash, that returns a verdict of an unexpected close,

• be a freeze, that returns a verdict of an unresponsive state, or

• contain a suspicious title, that is defined in the Testar oracle (Vos et al., 2021).

Figure 6.2: Testar principles (Testar, 2023)

System Under Test

System Under Test (SUT) refers to a test object, that can be a program, a software product, an

application, or a system (Bourque et al., 2014). The test object that was used for this quasi-

experiment is the Demo Web Shop that was developed by Tricentis. This Demo Web Shop is a

web application that represents a web shop that includes products like books, computers, electronics,

apparel and shoes, digital products, jewelry, and gift cards. It is a demo website, as the name says,

that is mainly used for training purposes. It has the main functionalities of a web shop, like registering,

logging in and logging out, putting products into a shopping cart and wish list, ordering products,

adding reviews on items, etc. Figure 6.3 shows the main page of the web shop.

Training Material

The training materials used during the experiment are all suggested by experts and developers of

the tools. The training for Tosca is proposed by the developer company Tricentis on their website

called Tricentis Academy. This online platform consists of different training and course materials

regarding different functionalities and test levels that Tosca comprises. According to the training

manager of the quality assurance team of the company, there is a training package for novices, that is

suggested by Tricentis and covers topics, like GUI testing, requirements and test data management,

and API testing. The training starts with courses for GUI testing and continues with courses about

44

CHAPTER 6. TREATMENT VALIDATION 45

Figure 6.3: Tricentis Demo Web Shop (Tricentis, 2023)

requirements and test data management. The training that covers the course material of GUI testing

and was used during this experiment with Tosca is Automation Specialist 1 (Tricentis Academy,

2023). It consists of multiple video materials and exercises, that need to be done in order to be able

to succeed in the quizzes, which are given to the student after each section to assess their state of

knowledge.

The training for Testar consists of following a hands-on training manual created by the developers

of Testar (Testar, 2023). It contains tasks that need to be executed to familiarize oneself with the

tool’s features and functionalities. It starts with instructions on how to install the tool and/or how to

configure a remote environment of the tool and continues with tasks that specify the functionalities

of the tool. The table of contents of both of the training materials can be found in appendix ??.

Tasks

The experiment was divided into three different phases. Each phase has a contribution to reach the

goal of the experiment and at each phase, different metrics were measured to reach the goal. Both

treatment groups will have to follow each phase carefully by executing the activities step by step as

suggested by the researcher. The three phases of the experiment are explained in further detail below.

• First Phase: Setup of the environment

This phase includes tasks like installing the tool, requesting and activating the license, and

requesting access to the remote testing environment. It is important to note that some tasks

are tool specific like requesting and activating a license is a task that is Group Tosca specific,

and requesting access to the remote testing environment is only a task that Group Testar has to

45

CHAPTER 6. TREATMENT VALIDATION 46

execute. Additionally, the phase includes following installation instructions, and ensuring that all

dependencies are met. The installation instructions are all given by the corresponding websites

of both of the tools.

• Second phase: Training

The training phase consists of similar tasks for both of the treatment groups, however, they

differ in training materials. Group Tosca will follow an online course, whereas Group Testar will

follow the hands-on training created by the developers of Testar. Both treatment groups will

have to study the training material thoroughly to understand the tool’s features, capabilities,

and usage guidelines.

• Third phase: Execution

For Group Tosca, this phase involves creating models that represent the SUT’s behavior and

designing test cases based on these models. Additionally, they will define the expected outcomes

or test oracles for each test case, specifying the conditions that determine whether the test

passes or fails. Group Testar will have three iterations. The first iteration will start with a basic

test oracle and depending on the behavior of the SUT and the test results, the test oracle will

be defined in more detail to detect more failures for the next iterations.

Throughout all of these phases, all subjects will document every task they executed in a working diary

they were provided by the researcher. The working diary will be in a form of a spreadsheet, that will

also consist of a bug sheet, where the subjects will have to report the bugs found during the test

execution. The working diaries can be found in appendix C. Furthermore, all subjects will be asked

to document the time they have spent on each of the tasks, the problems they have encountered

throughout the experiment, the bugs they have detected, and any kind of screenshots or test reports

the tool provides. For the bug sheets, the reader is referred to appendix D.

Design

A quasi-experimental design will be employed using a between-subject design due to the context of

the experiment and the limited number of participants. The between-subject design ensures that

each participant belongs to only one group and will exclusively utilize the designated testing technique

(Rogers & Revesz, 2019). This approach allows for a comparison between the two treatment groups.

In this design, participants will be divided into two distinct groups: Group Tosca and Group Testar.

The distribution of participants to these groups will be non-randomized due to the limited number of

samples available and the limited availability of the participants for the study.

Group Testar will consist of a single participant, chosen to employ the monkey testing technique of

Testar, which eliminates the need for human intervention. The decision to have only one subject

running Testar is based on the understanding that having multiple subjects would not significantly

impact the test outcomes, but it may impact their interpretation and create a validity threat. This

experimental design aims to avoid potential biases associated with the former experiences of the

46

CHAPTER 6. TREATMENT VALIDATION 47

testers by not configuring more advanced test oracles within Testar. Hence, the tool will run tests as

a dumb monkey, that has no specific knowledge about the behavior of the SUT, see section 4.3.1 for

a detailed explanation. By adopting this experimental design and having a single participant in Group

Testar, the test results gained by the tool will remain unaffected by the participant’s experience or

subject-specific knowledge.

Group Tosca, on the other hand, will consist of three subjects, who have different backgrounds and

experiences. All of the subjects, however, do not have any test automation experience with Tosca,

which is important to gain comparable test outcomes.

By utilizing a between-subject design within the quasi-experimental framework, this study aims to

explore and compare the effectiveness and efficiency of the script-based testing technique with Tosca

and the script-less testing technique with Testar. While a random assignment is not feasible due

to the limited sample size, this design allows for a practical approach to investigate the research

questions under the given context.

6.1.2 Execution

This section discusses the execution of the quasi-experiment. It starts with the procedure of how the

experiment was executed. The first section explains the whole process of the experiment execution

precisely. It describes every activity, that the subjects performed from the beginning until the end.

The section continues with the preparations that were carried out by the researcher to execute the

experiment. It concludes with deviations from the experimental planning.

Procedure

The experiment for both of the treatment groups started with setting up the environment. Group

Testar got the instructions on how to set up the remote environment from the hands-on training

manual. The request for access to the remote environment of Testar was made by the researcher.

After receiving the login information, it was provided to the subject, and the setup phase began by

following the instruction in section 2 of the hands-on manual. The training began after finishing the

exercises in section 2 and the subject followed every task in each section until section 11, since testing

Android systems is out of the scope for this experiment. The reader is asked to refer to appendix B

for a detailed overview of the sections of the training.

The next and last phase of the experiment was the test execution phase. This phase began after the

subject finished the training and was ready to start with the test execution. The first activity in this

phase was to configure Testar for the test of the SUT, that was selected for this experiment. During

the training for Testar, an example website was tested, for which a protocol was already provided

by Testar. The subject took this existing protocol and adjusted it to the SUT of this experiment.

After testing, if the protocol was working successfully, the first iteration of the execution phase

with Testar started. The first iteration consisted of a basic test oracle, and a filter, that disabled

the action ”logout”, which would limit the main functionalities of the website considerably. Testar

47

CHAPTER 6. TREATMENT VALIDATION 48

was configured to have 50 sequences and 25 actions per sequence for each of the iterations. The

failure analysis followed the successful test run of the first iteration. This failure analysis consisted

of tasks like analyzing bugs, if they are reproducible or duplicates, and, bug reporting. The bugs

were documented in a spreadsheet, where information like the title, description, reproducibility, and

additional comments were recorded.

The next two iterations had a similar procedure, where, in addition, only the test oracle and filters

had to be refined after the failure analysis of the previous iterations. Some actions, that seemed to

perform without failure, were filtered out, so it would limit the selection of actions, including actions,

that were faulty and detected multiple times by Testar, and actions, that were executed multiple times

in a row by Testar. The filtered actions included, product category pages, external links, or product

tags, that were detected as faulty in the previous iterations. Figure 6.4 shows all the filtered actions

on the last iteration.

Figure 6.4: Filter settings on Testar

The experiment for Group Tosca started with requesting a training license on the company’s website

and installing the application following the instructions on their website. After receiving the license,

it needed to be activated within the application. The activation of the license made the tool ready

to use and start the training. The training on the online platform of Tricentis Academy starts with

48

CHAPTER 6. TREATMENT VALIDATION 49

navigating through the application and creating a workspace. The training is divided into modules,

and after every module, there is an exercise and a quiz to complete. At the end of the training, there

is a final exam, which needs to be positive in order to be eligible to receive a certification that the

training was completed successfully. Taking the final exam, was not a requirement by the researcher,

since the training consisted of modules, that were not necessary for the execution phase and some

subjects decided to skip those modules. The first three modules of the training were relevant to the

experiment, so it was expected to finish the first three modules only. One subject finished 5 out of

6 modules, and the other subjects finished 3 out of 6 modules. One subject, however, finished the

training, since it was also suggested by the company to receive the certification at the end of the

training. Here, the reader is referred to appendix B for the overview of the training.

After finishing the training, the subjects were ready to start with the execution. The subjects were

asked to create a test design, that would encompass an end-to-end process on the webshop. They

were provided with all the time they needed to create a test design, so there was no time limitation.

At the end of this phase, a failure analysis was done, similar to Group Testar. The subjects also used

the bug sheet to report bugs.

All subjects were told to record their time spent on each activity on a working diary, that was provided

by the researcher. This working diary could also be used to record problems, the subjects encountered

during the experiment. The data needed for the experimental analysis was collected through these

working diaries and bug sheets and the test reports, the tools generated.

Preparation

The experiment required some preparations, that were needed to conduct the experiment successfully.

These preparations were performed by the researcher, to make the execution run smoothly.

As mentioned in the previous sections, it was important to find subjects for the experiment. Addi-

tionally, the planning of the training and the training material required some preparations.

For the Testar experiment, it was required to request access to the remote environment of the test-

ing tool. This was done by the researcher, following the information provided on the tool’s website.

The response from the developer team containing the login information was received within a week.

During this time frame, the working diary and bug sheets were prepared for the documentation that is

needed for data collection. The researcher also undertook the training for Testar, to be familiar with

the tool and also to be able to support the subject during the experiment. This was also important to

be able to interpret the results. In the case of the Tosca experiment, this was not necessary, since the

researcher was already familiar with the tool and had the same training two years ago. The experience

does not include practical experience with the tool.

A schedule for the experiment was not defined, since the availability of the subjects was limited, and

it was important to avoid any time pressure on the subjects, so the quality of the experiment outcome

wouldn’t be influenced in any way.

49

CHAPTER 6. TREATMENT VALIDATION 50

Deviations

The main deviation from the initial plan was the sample size of the quasi-experiment. An ideal sample

size could not be reached, because the experiment required a serious amount of time and availability of

the subjects. The time needed to conduct the whole experiment for Group Tosca was approximately

one working week. The time needed for the training alone is suggested to be 24 hours. The design

of the test cases depends on the subjects. The time needed for the Testar experiment was less than

the Tosca experiment since the training was shorter and no test case design was needed. Considering

these factors, the sample size was kept small, as it was impossible to acquire more subjects for the

experiment due to time limitations.

6.1.3 Data Analysis

This section presents the results of the quasi-experiment. It focuses on the data obtained to measure

the effectiveness and efficiency of the script-based and script-less GUI testing tools. The working

diaries and bug sheets that were used for data collection can be found in the appendix C and D.

Effectiveness of script-based and script-less GUI testing

To measure the effectiveness of both of the GUI testing paradigms, specific metrics were used. These

are the number of detected failures, type, and severity of the failures. The severity of the found failures

was assigned based on usability and visibility. Considering the main functionality of the demo webshop,

high severity was assigned to failures when it blocked any access to a product on the website, a page

failed to load, or the ordering process of a product contained a failure that blocked the user from

buying it. Low severity was assigned to failures that are not visible to the user.

Table 6.3 presents the failures found by the different testing tools used in this experiment and shows

the severity, type, and description of each of the failures. Testar found in its three iterations 16 bugs

in total, from which 9 failures were decided to be either a duplicate or not a bug after the failure

analysis by the participant. The 7 failures that are presented in Table 6.3 are all system failures, that

are described either as a system failure, which can also be described as a crash, or a freeze. The

failure with ID 1, has been described as not reproducible and a concurrent bug, that has no severity.

4 bugs out of 7 were assigned a high severity, which made the website either freeze or crash. 2 bugs

were assigned a low severity since both of the bugs were only visible in the web console and not to

the user. The functionality of the website was not impacted by the error message in the web console,

therefore low severity was assigned.

Overall, Testar has detected in its three iterations, and a total of 147 test sequences, each with 25

actions, 4 bugs of high severity, 2 of low, and one with no severity.

Group Tosca has detected 16 bugs in total, from which 3 were decided to be duplicates after the

failure analysis. Table 6.3 presents 13 bugs found by Tosca, from which two of them are categorized as

system bugs and the rest as functional bugs. One of the system bugs was detected by both treatment

50

CHAPTER 6. TREATMENT VALIDATION 51

ID Tosca Testar Severity Type Description

1 x none system Suspicious tag ”title” after every first login, a

concurrent bug that is not reproducible

2 x high system Access to a blog entry failed to load and caused

an unexpected close

3 x low system Twitter call responded with 403() error in the

console

4 x low system Twitter call responded with 401() error in the

console

5 x high system Access to a product tag failed to load and an

empty page was opened

6 x high system Another blog entry page failed to load and

caused an unexpected close of the website

7 x x high system Downloaded products page failed to load, no

access to downloaded products

8 x high functional Missing ”add to cart” button for the product

”Fiction EX”, even though the product is ”in

stock”

9 x high functional Product price for desktops does not update af-

ter changing options on the product page but

on the last page of the order

10 x low functional Missing ”add to cart” button for the prod-

uct ”Computing and Internet EX”, but ”out of

stock”

11 x high functional Missing ”add to cart” button for the product

”Desktop PC with CDRW”, even though the

product is ”in stock”

12 x high functional Missing ”add to cart” button for the product

”Elite Desktop PC”, even though the product

is ”in stock”

13 x high functional Missing ”add to cart” button for the prod-

uct ”1MP 60GB Hard Drive Handycam Cam-

corder”, even though the product is ”in stock”

14 x high functional Missing ”add to cart” button for the product

”Camcorder”, even though the product is ”in

stock”

15 x low functional Missing ”add to cart” button for the product

”Digital SLR Camera 12.2 Mpixel”, but no in-

formation about stock availability

16 x high functional Missing ”add to cart” button for the product

”High Definition 3D Camcorder”, even though

the product is ”in stock”

17 x high functional ”Cash on delivery” as an option for payment for

”downloadable products” should not be possible

18 x high system Comments page for products is not responding

and failed to load

19 x low functional ”Add to cart” buttons on a product category

page don’t work. The user has to open the

product page and then it is possible to click on

it.

Table 6.3: Failures detected by using script-based and script-less GUI testing techniques

groups, which has a high severity since it causes a system crash. 3 out of the 13 bugs are low-severity

bugs since it has no major impact on the order process of an available product. The rest of the bugs

found by Group Tosca are of high severity since it blocks the order process of an available product.

The majority of the high-severity bugs are caused by missing ”add to cart” buttons, for which the

51

CHAPTER 6. TREATMENT VALIDATION 52

webshop shows a stock availability. Bug with ID 15 has a low severity compared to the bug with ID 8,

11-14 because there is no information about its stock availability, which could mean that the product

is out of stock. In contrast, bugs with ID 8, 11-14 are in stock and have to be purchasable in the

webshop. In general, Group Tosca was able to detect 13 failures, of which 11 of them are functional

and 2 of them are system bugs. Regarding the number of test cases, one participant designed 10 test

cases that represented an end-to-end test of one order process, where one bug was found. Another

participant also designed 10 test cases, that covered multiple functionalities of the webshop, and

discovered 12 bugs, where one of which was a duplicate of the bug found by the other participant.

The last participant of the Group Tosca designed 9 test cases and detected 4 bugs, where two of

which were duplicates of an already existing bug.

Efficiency of script-based and script-less GUI testing

Table 6.4 represents the data obtained to measure the efficiency of the software testing techniques.

The data contains the time spent on executing the testing activities defined in Section 6.1.1. The

first column depicts the metrics to measure the efficiency and the rest of the columns represent the

data obtained from each of the participants.

The setup phase, which consisted of the setup and configuration activities, required 45 minutes in

total for Group Testar, whereas Group Tosca required an average time of 40.33 minutes for the first

phase. It has to be mentioned, that for Group Testar no installation of the tool was needed since the

participant connected with the remote environment of Testar, where the tool was already installed and

set up. So, this activity consisted of setting up the remote environment and configuring a successful

connection.

For the training phase, Group Testar required 6 hours and 7 minutes to finish the suggested training

material. The training material consisted of 11 sections, from which the first 9 sections were relevant

for the context of this experiment, so Group Testar completed the training after finishing section 9.

On the other hand, Participant 1 of Group Tosca finished the whole training material in 18 hours

and 40 minutes, which also consisted of the time spent on the final exam of the training. Participant

2 completed 69% of the entire training by finishing the first 5 modules in 7 hours and 30 minutes.

Similarly, Participant 3 completed 59% of the training by completing the first 3 modules in 8 hours and

56 minutes. The suggested training that covered the material relevant to the experiment consisted

of the first 3 modules.

During the execution phase, Group Tosca focused on designing test cases, while Group Testar focused

on executing tests. Participant 1 from Group Tosca spent 4 hours designing test cases specifically

for an end-to-end test of the order process. Participant 2 from the same group dedicated 15 hours

to test case design, covering core functionalities and additional features like navigating through blog

and comment pages. Similarly, Participant 3 spent a total of 13 hours designing test cases, including

more functionalities compared to Participant 1. In contrast, Group Testar spent a total of 3 hours

and 57 minutes executing tests during three iterations. In addition to designing and executing test

52

CHAPTER 6. TREATMENT VALIDATION 53

cases, the execution phase also involved failure analysis. Group Testar spent 2 hours and 20 minutes

analyzing and documenting the identified failures in the bug sheet. Participant 1 from Group Tosca,

who discovered one bug, spent 2 hours on failure analysis and reporting. Participant 2 spent 9 hours

and 30 minutes analyzing the identified bugs and reporting them, while Participant 3 spent a total of

9 hours on the same activity.

Metrics Testar Tosca 1 Tosca 2 Tosca 3

Set up 10 min 30 min 30 min 16 min

Configuration 35 min 20 min 15 min 10 min

Training 6h 7 min 18h 40 min 7h 30 min 8h 56 min

Designing test cases - 4h 15h 13h

Executing test cases 3h 57 min - - -

Analyzing failures 2h 20 min 2h 9h 30 min 9h

Table 6.4: Time needed to execute testing activities

6.1.4 Discussion

This section provides an evaluation of the results of this quasi-experiment and some implications

related to existing studies in this field. Furthermore, it explains the threats to the validity that this

quasi-experiment could not mitigate due to its context. It concludes with some inferences and lessons

learned.

Evaluation of results and implications

In terms of effectiveness (RQ1), Testar and Tosca demonstrated their ability to detect failures in the

demo webshop. Regarding the severity of the failures, 57 % of the bugs found by Testar were of high

severity, whereas for Tosca, 77 % of the bugs were of high severity. Tosca is particularly effective in

identifying high-severity bugs related to the order process of available products. Testar was effective

in discovering system failures, such as crashes and freezes, and was able to identify both visible failures

that impacted the user experience and non-visible failures that were only visible in the web console.

This aligns with findings from previous comparative studies on Testar, see Section 2.8. On the other

hand, Tosca detected a mix of system and functional bugs, including one bug that was also detected

by Testar.

When considering efficiency (RQ2), Testar showcased its efficiency in terms of setup and execution

time. The setup phase for Testar, which involved configuring the remote environment, required less

time compared to the average setup time of Tosca. Additionally, Testar spent relatively less time

executing tests during the three iterations, which depends on the configured amount of executed

test sequences and actions. Increasing the number of test sequences and actions would subsequently

increase the execution time of Testar and possibly the number of found failures.

On the other hand, Group Tosca invested a significant amount of time in designing test cases, resulting

53

CHAPTER 6. TREATMENT VALIDATION 54

in a longer execution phase. The results imply that investing effort in comprehensive test case design

can enhance the effectiveness of testing, especially when aiming to cover multiple functionalities of

an application. Previous comparative studies on Testar indicate that, in general, this software testing

technique typically spends more time on failure analysis compared to other testing techniques, except

when compared to Tosca which is based on model-based testing. However, it is important to note

that a considerable amount of the time spent on failure analysis by Group Tosca participants was due

to analyzing bugs that were caused by erroneously designed test cases and fixing those test cases.

This suggests that the increased time spent on failure analysis for Group Tosca was partly influenced

by the need for adjustments and improvements in the test case design. Furthermore, the fact that

Group Testar consisted of only one participant has implications for the interpretation of the results

and introduces a threat to the validity of the study. The limited sample size of Group Testar reduces

the generalizability of the findings and raises concerns about the reliability of the observed differences

between the two groups.

In conclusion, these findings lead us to reject the null hypothesis H1.0, as a noticeable difference is

evident in the number of detected system failures between both software testing approaches. This

indicates that the tested approaches have varying effectiveness in detecting system failures. However,

it is important to mention, that these results should be interpreted with caution considering the

threats to the validity. Regarding H2.0, it is not possible to draw a definitive conclusion. Due to

the inconsistent training, the participants received during the training phase, the results cannot be

compared since the discrepancy in the amount of training the participants received is relatively high.

This discrepancy may have influenced the time spent on failure analysis and could introduce bias into

the results. Therefore, the null hypothesis H2.0 cannot be either rejected or accepted based on the

available evidence.

Threats to validity

Conclusion Validity

Due to the limited sample size, descriptive statistics could not be applied to quantify and compare

the results obtained from Testar and Tosca. The qualitative nature of the comparison may introduce

subjectivity and limitations in drawing definitive conclusions. Therefore, the findings should be inter-

preted with caution, and further studies with larger sample sizes are needed to provide more robust

and statistically significant conclusions.

Internal Validity

The skills and experience of the participants using Testar and Tosca may have influenced their per-

formance and results. However, it is important to note that Group Testar consisted of only one

participant. This is due to the nature of the software testing technique employed by Testar, which

does not require any human intervention during test execution. Adding more subjects to Group

Testar would have an impact on the first two phases of the experiment, which are the setup and

54

CHAPTER 6. TREATMENT VALIDATION 55

training phases, but since creating an advanced test oracle was not asked for this experiment, which

requires advanced programming skills, there would be no impact on the results of the execution phase.

External Validity

The findings are specific to the one SUT used in the experiment, and the generalization of the results

on other applications should be done carefully. Different applications may show distinct character-

istics that can affect the performance of the software testing techniques. In this study, two of the

participants from Group Tosca were students, which introduces potential biases and limits the gener-

alizability of the results to a more experienced population of software testers.

Construct Validity

Variation in the time spent on training among participants introduces potential differences in skills

and understanding of the use of the software testing techniques, which hinders the comparison of

the results. Additionally, the specific implementation and configuration of Testar and Tosca in the

experiment may differ from real-world scenarios, potentially affecting the construct validity of the

findings. An example could be choosing to download and configure Testar on a local environment,

which can make the setup phase more complex.

Furthermore, the SUT was developed primarily to serve as a training platform for Tosca. This raises

the question of whether the SUT adequately represents the real-world systems typically encountered

in software testing scenarios.

Inferences and Lessons Learned

Inferences and lessons learned from this study should be interpreted within the context of these poten-

tial threats to validity. The limited sample size highlights the need for future studies, so a statistically

significant conclusion can be drawn with a larger sample size that makes statistical hypothesis testing

possible. This is necessary to mitigate validity threats and will enhance the generalizability of the

findings. Furthermore, conducting experiments with diverse applications can provide a more compre-

hensive understanding of the effectiveness and efficiency of different software testing techniques.

6.1.5 Conclusion

This quasi-experiment aimed to compare script-based and script-less GUI testing techniques in regard

to their effectiveness and efficiency. The effectiveness was evaluated based on the number, severity,

and of failures detected, while efficiency was assessed by measuring the time spent on various testing

activities. For the effectiveness evaluation, Group Testar detected a total of 7 bugs, with 4 categorized

as high severity, 2 as low severity, and 1 with no severity assigned. On the other hand, Group Tosca

detected 13 bugs, with 11 categorized as functional and 2 as system bugs. Although script-less

testing detected more system failures, the difference in effectiveness between the two software testing

techniques requires further statistical analysis. Regarding efficiency, Group Testar required 3 hours

55

CHAPTER 6. TREATMENT VALIDATION 56

and 57 minutes for test execution and 2 hours and 20 minutes for failure analysis. Group Tosca spent

considerable time on test case design and failure analysis. The qualitative comparison suggests that

script-based requires more time for the execution phase since it requires additional effort in failure

analysis due to issues arising from test case design.

56

Chapter 7

Discussion

7.1 Limitations

As with every study, this research also has its limitations. The threats to the validity of the study are

differentiated into four categories: conclusion validity, internal validity, external validity, and construct

validity (Wohlin et al., 2012). This section discusses the threats to the validity of the results in this

research.

Conclusion Validity

The adapted framework was validated through a quasi-experiment with limited sample size. The small

number of participants may restrict the generalizability of the findings. The small sample size also

prevents the application of statistical analysis to obtain the significance of the results and validate

the adapted framework. Thus, the conclusions drawn from the study should be interpreted with

caution and may not be fully representative of the broader population or applicable in all contexts.

Moreover, the framework incorporates subjective interpretation in some parts of the experiment,

such as severity assignment and qualitative comparisons of testing techniques. The assessment of

severity levels and the subjective evaluation of the effectiveness and efficiency of the testing techniques

introduce the potential for bias. Different individuals may have varying interpretations and judgments

based on their own perspectives and experiences, which can impact the objectivity and reliability of

conclusions, that were obtained by following this adapted framework. The subjectivity involved in the

interpretation of the findings creates a threat to the conclusion validity of the guideline. To address

these conclusion validity threats, future research can focus on expanding the sample size. This would

allow statistical analysis and enhance the generalizability of the findings. Additionally, efforts can be

made to minimize subjectivity by providing clearer guidelines and criteria for severity assignment and

qualitative comparisons. Incorporating multiple evaluators can help mitigate the potential impact of

subjective bias on the conclusions drawn by applying this framework.

57

CHAPTER 7. DISCUSSION 58

Internal Validity

The small sample size and specific characteristics of the participants may introduce selection bias,

limiting the generalizability of the findings. In this research study, the participants consisted of

two software testing professionals and two Ph.D. students, with varying levels of software testing

experience. The inclusion of participants from these specific backgrounds may not fully represent

the broader population of software testers, introducing potential biases in the findings. Furthermore,

variations in the completion of the training among the participants could impact the reliability of the

outcomes that were achieved by following the adapted framework. In the treatment validation, there

were discrepancies in the extent to which the participants completed the suggested training material

due to some time limitations. One participant from Group Tosca completed the entire training,

while the other two participants finished different amounts of modules. These differences in training

completion and understanding may influence the outcomes. To mitigate these internal validity threats,

future research should aim to increase the sample size and the diversity of participants to include a

wider range of software testers. Additionally, efforts should be made to ensure consistency in the

training received by participants, such as providing clear guidelines and instructions for completing the

training material. This could include adding an evaluation of the training, which could be achieved

through assessments or practical exercises at the end of the training phase. This would help to reduce

the variability caused by differences in training completion and understanding, enhancing the internal

validity of the research and improving the generalizability of the findings.

External Validity

The adapted framework was primarily validated in a specific context, focusing on the domain of auto-

mated GUI testing and specifically targeting a web application as the SUT. As a result, the external

validity of the adapted framework may be limited in terms of its applicability to different contexts

beyond automated GUI testing or other types of software systems. The findings of this research may

have been influenced by the unique characteristics of the automated GUI testing paradigm and the

specific web application used in the study. Different industries, organizations, or software systems

with different technologies or user interfaces may present varying challenges that could affect the

applicability of the adapted framework. To enhance the external validity of the adapted framework,

future research should consider validating the framework in a broader range of contexts, such as

mobile applications, desktop applications, or different industries. By including diverse contexts, the

framework can be evaluated for its applicability to various software testing paradigms, allowing for

more generalizable recommendations that consider a wider range of contexts and systems. This would

increase the external validity and ensure that the framework remains valuable for the evaluation of

different software testing paradigms.

58

CHAPTER 7. DISCUSSION 59

Construct Validity

During the preparation for the quasi-experiment, participants were provided with working diaries to

track the time spent on different activities. The diaries were intended to capture the exact time

spent on each activity. However, it was observed that some participants did not provide precise time

entries and instead provided rough estimates, especially for the time spent on training activities. This

discrepancy in reporting may introduce a threat to the construct validity of the study. One possible

reason for the estimated time entries could be the length and time-consuming nature of the training

materials. Participants might have faced difficulties in accurately tracking and reporting the exact

time they spent on each training activity due to the extensive duration of the specific activities. As a

result, the reported time values may not reflect the actual time invested in the training phase, which

potentially impacts the efficiency measurements of the software testing techniques. To mitigate this

threat, future adaptations of the working diary suggested by the guideline could be considered. For

example, providing participants with clearer instructions on how to track time accurately or using

automated time-tracking tools, that can capture the duration of each activity. These options could

enhance the accuracy of the efficiency measured by this experiment.

7.2 Conclusion

In this research, the primary goal was to compare script-based and script-less GUI testing techniques.

However, an additional problem was encountered, which was the lack of an evaluation framework for a

specific scenario where conducting a case study and fault injection was not possible. To address this,

an adaptation to an existing methodological framework was made to create an experimental guideline

that enables experiments using measurements and metrics proposed by the original framework, while

following a standardized reporting guideline. This research has two main research questions and five

sub-research questions, which will be answered below:

• RQ1.1: What are the state-of-the-art comparison approaches for software testing techniques

in the literature?

There exist different evaluation methods for software testing techniques that are based on

empirical and analytical methods. However, they lack either a clear procedure or metrics to

measure the effectiveness and efficiency of software testing techniques.

• RQ1.2: How to compare multiple software testing techniques, without the possibility of fault

injection and conducting a case study, in terms of effectiveness and efficiency?

The methodological framework presented by Vos et al. (2012) was adapted to align with the

experimental guidelines proposed by Wohlin et al. (2012), following the standardized reporting

guidelines outlined by Jedlitschka et al. (2008). This adaptation facilitates the conduction of

controlled experiments in a limited scenario as described in the problem statement.

• RQ2.1: What are the different automated GUI testing approaches in the literature?

59

CHAPTER 7. DISCUSSION 60

The GUI testing approaches are differentiated into two testing paradigms: script-based and

script-less GUI testing. A script-based GUI testing is an automated testing technique that is

based on test case generation, which generates test scripts while executing the test cases. The

literature differentiates between three different script-based GUI testing techniques: Capture

& Replay, code-based testing, and model-based testing. In contrast, script-less GUI testing

does not require any test cases and generates them during the test execution, which makes it

script-less. Random testing, also called monkey testing, is a script-less testing technique.

• RQ2.2: What are the challenges of automated GUI testing in the literature?

In addition to the automated GUI testing-specific challenges, it is impacted by the general chal-

lenges of test automation, which are caused by shorter development cycles, increasing software

complexity, and the test oracle problem. Furthermore, script-based GUI testing techniques face

challenges due to high maintenance and the requirement of technical knowledge. In contrast,

script-less GUI testing techniques have long execution time, which also makes it difficult to

reproduce failures, which usually requires the following of long test sequences.

• RQ2.3: How well does the adjusted method support the comparison of the GUI testing paradigms?

The adapted methodological framework ensures a consistent and standardized comparison and

evaluation of software testing techniques while following experimental guidelines, which allows

a controlled comparison of GUI testing paradigms. Furthermore, it specifies the variables and

metrics required for data collection. However, it is important to acknowledge that further

research is necessary to address the limitations discussed in Chapter 7.

7.3 Future work

In future work, it is recommended to expand the sample size to improve the statistical validity of

the findings. A larger sample would allow for a more robust quantitative analysis to determine the

applicability of the adapted method. Additionally, exploring a wider range of applications and systems

would provide insights into the generalizability of the findings obtained by applying this adapted

method. Furthermore, it is suggested that future research should focus on ensuring consistency in

the training phase. This would help to reduce the high variability in training, which would have a

negative impact on the execution phase. Finally, some adaptations in tracking the time of testing

activities might be necessary to enhance the accuracy of the efficiency measured by this adapted

framework.

60

References

Aho, P., Alégroth, E., Oliveira, R., & Vos, T. (2016). Evolution of automated regression testing of

software systems through the graphical user interface. In S. Hamrioui & J. Lloret Mauri (Eds.),

Accse 2016 (pp. 16–21). International Academy, Research, and Industry Association (IARIA).

Aho, P., Kanstrén, T., Räty, T., & Röning, J. (2014). Chapter two - automated extraction of gui

models for testing. In A. Memon (Ed.), (Vol. 95, p. 49-112). Elsevier.

Aho, P., Suarez, M., Memon, A., & Kanstrén, T. (2015). Making gui testing practical: Bridging

the gaps. In 2015 12th international conference on information technology - new generations

(p. 439-444). doi: 10.1109/ITNG.2015.77

Aho, P., & Vos, T. (2018). Challenges in automated testing through graphical user interface. In

2018 ieee international conference on software testing, verification and validation workshops

(icstw) (p. 118-121).

Alégroth, E., & Feldt, R. (2014). Industrial application of visual gui testing: Lessons learned. In

J. Bosch (Ed.), Continuous software engineering (pp. 127–140). Cham: Springer International

Publishing.

Ammann, P., & Offutt, J. (2016). Introduction to software testing. Cambridge: Cambridge University

Press.

Appium. (2023). Appium. Retrieved 2023-03-11, from https://appium.io/

AutoIt. (2023). Autoit. Retrieved 2023-03-11, from https://www.autoitscript.com/site/

Banerjee, I., Nguyen, B., Garousi, V., & Memon, A. (2013, 10). Graphical user interface (gui)

testing: Systematic mapping and repository. Information and Software Technology , 55 .

Baresi, L., & Young, M. (2001). Test oracles. Technical Report CIS-TR-01-02, University of Oregon,

Dept. of Computer and

Barr, E., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2014, 01). The oracle problem in

software testing: A survey. IEEE Transactions on Software Engineering, 41 , 1-1.

Basili, V. R. (1993). The experimental paradigm in software engineering. In H. D. Rombach,

V. R. Basili, & R. W. Selby (Eds.), Experimental software engineering issues: Critical assessment

and future directions (pp. 1–12). Berlin, Heidelberg: Springer Berlin Heidelberg.

Basili, V. R., Selby, R. W., & Hutchens, D. H. (1986). Experimentation in software engineering.

IEEE Transactions on Software Engineering, SE-12(7), 733-743.

Bauersfeld, S., Vos, T. E., Condori-Fernández, N., Bagnato, A., & Brosse, E. (2014). Evaluating

the testar tool in an industrial case study. In Proceedings of the 8th acm/ieee international

symposium on empirical software engineering and measurement (pp. 1–9).

Belli, F., Beyazit, M., Hollmann, A., & Guler, N. (2011, 08). Statistical evaluation of test sets using

mutation analysis. In (p. 180 - 183).

61

https://appium.io/
https://www.autoitscript.com/site/

References 62

Bons, A., Maŕın, B., Aho, P., & Vos, T. E. (2023). Scripted and scriptless gui testing for web

applications: An industrial case. Information and Software Technology , 158 , 107172.

Borjesson, E., & Feldt, R. (2012). Automated system testing using visual gui testing tools: A

comparative study in industry. In 2012 ieee fifth international conference on software testing,

verification and validation (pp. 350–359).

Bourque, P., Fairley, R. E., & Society, I. C. (2014). Guide to the software engineering body of

knowledge (swebok(r)): Version 3.0 (3rd ed.). Washington, DC, USA: IEEE Computer Society

Press.

Chahim, H., Duran, M., Vos, T., Aho, P., & Condori-Fernández, N. (2020). Scriptless testing at the

gui level in an industrial setting. In Research challenges in information science (pp. 267–284).

Springer Nature Switzerland AG. (The 14th International Conference on Research Challenges

in Information Science, RCIS 2020)

Di Martino, S., Fasolino, A., Tramontana, P., & Starace, L. (2020, 10). Comparing the effectiveness

of capture and replay against automatic input generation for android graphical user interface

testing. Software Testing Verification and Reliability , 31 .

Do, H., Elbaum, S., & Rothermel, G. (2004). Infrastructure support for controlled experimentation

with software testing and regression testing techniques. In Proceedings. 2004 international

symposium on empirical software engineering, 2004. isese ’04. (p. 60-70).

Do, H., Elbaum, S. G., & Rothermel, G. (2005). Supporting controlled experimentation with testing

techniques: An infrastructure and its potential impact. Empirical Software Engineering, 10 ,

405-435.

Dyb̊a, T., Kampenes, V. B., & Sjøberg, D. I. (2006). A systematic review of statistical power in

software engineering experiments. Information and Software Technology , 48(8), 745–755.

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting empirical methods for

software engineering research. In F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to

advanced empirical software engineering (pp. 285–311). London: Springer London.

Eldh, S., Hansson, H. A., Punnekkat, S., Pettersson, A., & Sundmark, D. (2006). A framework

for comparing efficiency, effectiveness and applicability of software testing techniques. Testing:

Academic & Industrial Conference - Practice And Research Techniques (TAIC PART’06), 159-

170.

Girard, E., & Rault, J. (1973). A programming technique for software reliability. In Proceedings of

1973 ieee symposium on computer software reliability (pp. 44–50).

Gopinath, R., Alipour, A., Ahmed, I., Jensen, C., & Groce, A. (2016). Measuring effectiveness of

mutant sets. In 2016 ieee ninth international conference on software testing, verification and

validation workshops (icstw) (p. 132-141).

Graham, D., Black, R., & van Veenendaal, E. (2021). Foundations of software testing istqb certifi-

cation, 4th edition. Cengage Learning.

Grilo, A. M. P., Paiva, A. C. R., & Faria, J. P. (2010). Reverse engineering of gui models for testing.

In 5th iberian conference on information systems and technologies (p. 1-6).

Gupta, A., & Jalote, P. (2008). An approach for experimentally evaluating effectiveness and efficiency

of coverage criteria for software testing. International Journal on Software Tools for Technology

Transfer , 10 , 145-160.

Hetzel, B. (1988). The complete guide to software testing. QED Information Sciences.

IEEE. (1990). Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990 ,

1-84.

62

References 63

Jedlitschka, A., Ciolkowski, M., & Pfahl, D. (2008). Reporting experiments in software engineering. In

F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to advanced empirical software engineering

(pp. 201–228). London: Springer London.

Kampenes, V. B., Dyb̊a, T., Hannay, J. E., & Sjøberg, D. I. (2007). A systematic review of effect

size in software engineering experiments. Information and Software Technology , 49(11-12),

1073–1086.

Karam, M. R., Dascalu, S. M., & Hazimé, R. H. (2006). Challenges and opportunities for improving

code-based testing of graphical user interfaces. Journal of Computational Methods in Sciences

and Engineering, 6(s2), S379–S388.

Kitchenham, B. (1993). A methodology for evaluating software engineering methods and tools. In

H. D. Rombach, V. R. Basili, & R. W. Selby (Eds.), Experimental software engineering issues:

Critical assessment and future directions (pp. 121–124). Berlin, Heidelberg: Springer Berlin

Heidelberg.

Kitchenham, B., Pickard, L., & Pfleeger, S. (1995). Case studies for method and tool evaluation.

IEEE Software, 12(4), 52-62.

Kumar, A., & Kaur, K. (2022). Bw-topsis: A hybrid method to evaluate software testing techniques.

Journal of Communications Software and Systems, 18(4), 336–342.

Lott, C., & Rombach, D. (1997, 06). Repeatable software engineering experiments for comparing

defect-detection techniques. Empirical Software Engineering, 1 .

Martinez, M., Esparcia, A. I., Rueda, U., Vos, T. E., & Ortega, C. (2016). Automated localisation

testing in industry with testar. In Testing software and systems: 28th ifip wg 6.1 international

conference, ictss 2016, graz, austria, october 17-19, 2016, proceedings 28 (pp. 241–248).

Memon, A., Banerjee, I., & Nagarajan, A. (2003). What test oracle should i use for effective

gui testing? In 18th ieee international conference on automated software engineering, 2003.

proceedings. (p. 164-173). doi: 10.1109/ASE.2003.1240304

Memon, A., Pollack, M., & Soffa, M. (2001). Hierarchical gui test case generation using automated

planning. IEEE Transactions on Software Engineering, 27(2), 144-155.

Memon, A. M., & Nguyen, B. N. (2010). Advances in automated model-based system testing of

software applications with a gui front-end. In Advances in computers (Vol. 80, pp. 121–162).

Elsevier.

Moreira, R. M. L. M., Paiva, A. C. R., Nabuco, M., & Memon, A. (2017). Pattern-based GUI testing:

Bridging the gap between design and quality assurance. Softw. Test., Verif. Reliab., 27(3).

Myers, G. J. (1979). The art of software testing. John Wiley & Sons.

Nass, M., Alégroth, E., & Feldt, R. (2021). Why many challenges with gui test automation (will)

remain. Information and Software Technology , 138 , 106625.

Neto, A., & Travassos, G. (2014, 10). Supporting the combined selection of model-based testing

techniques. IEEE Transactions on Software Engineering, 40 , 1025-1041.

Nyman, N. (2000). Using monkey test tools – how to find bugs cost-effectively through random

testing. Software Testing & Quality Engineering, 18–21.

Pastor Ricós, F., Slomp, A., Maŕın, B., Aho, P., & Vos, T. E. (2023). Distributed state model

inference for scriptless gui testing. Journal of Systems and Software, 200 , 111645.

Pezzè, M., Rondena, P., & Zuddas, D. (2018). Automatic gui testing of desktop applications: An

empirical assessment of the state of the art. In Companion proceedings for the issta/ecoop

2018 workshops (p. 54–62). New York, NY, USA: Association for Computing Machinery.

QFS. (2023). Qf-test. Retrieved 2023-03-11, from https://www.qfs.de/en/index.html

63

https://www.qfs.de/en/index.html

References 64

Rahikkala, J., Hyrynsalmi, S., & Leppänen, V. (2015, 10). Accounting testing in software cost

estimation: A case study of the current practice and impacts..

Ranorex. (2023). Ranorex. Retrieved 2023-03-11, from https://www.ranorex.com/

Rodŕıguez-Valdés, O., Vos, T. E. J., Aho, P., & Maŕın, B. (2021). 30 years of automated gui testing:

A bibliometric analysis. In A. C. R. Paiva, A. R. Cavalli, P. Ventura Martins, & R. Pérez-Castillo

(Eds.), Quality of information and communications technology (pp. 473–488). Cham: Springer

International Publishing.

Rogers, J., & Revesz, A. (2019, 07). Experimental and quasi-experimental designs. In (p. 133-143).

Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case study research in software engineering:

Guidelines and examples. John Wiley & Sons.

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case study research in software engineering

– guidelines and examples. doi: 10.1002/9781118181034

Selenium. (2023a). Selenium. Retrieved 2023-02-15, from https://www.selenium.dev/

Selenium. (2023b). Selenium. Retrieved 2023-04-14, from https://www.selenium.dev/

documentation/webdriver/getting started/first script/

SeleniumIDE. (2023). Seleniumide. Retrieved 2023-03-11, from https://www.selenium.dev/

selenium-ide/

Sharma, R. M. (2014, July). Quantitative analysis of automation and manual testing. In (Vol. 4).

International Journal of Engineering and Innovative Technology (IJEIT).

Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic, A., Liborg, N.-K., &

Rekdal, A. C. (2005). A survey of controlled experiments in software engineering. IEEE

transactions on software engineering, 31(9), 733–753.

Squish. (2023). Squish. Retrieved 2023-03-11, from https://www.qt.io/product/quality

-assurance/squish

Stol, K.-J., & Fitzgerald, B. (2018, sep). The abc of software engineering research. ACM Trans.

Softw. Eng. Methodol., 27(3).

Synopsys. (2022). [analyst report] 2022 the cost of poor quality software. Retrieved

2023-02-15, from https://www.synopsys.com/software-integrity/resources/analyst

-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22

Testar. (2023). Testar hands-on training 2.6.4. Retrieved 2023-06-02, from https://github.com/

TESTARtool/TESTAR dev/releases/tag/prev2.6.4#:˜:text=Hands on TESTAR 2.6.4

.pdf

Thayer, T. A. (1978). Software reliability. TRW Series of Software Technology .

Tosca, T. (2023). Tricentis tosca. Tricentis. Retrieved 2023-03-02, from https://www.tricentis

.com/de/plattform/automate-continuous-testing-tosca

Tricentis. (2023). Tricentis demo web shop. Retrieved 2023-05-30, from https://demowebshop

.tricentis.com/

Tricentis Academy. (2023). Automation Specialist Level 1. Retrieved 2023-06-02, from https://

academy.tricentis.com/automation-specialist-level-1

Tricentis Documentation. (2023). Tricentis documentation. Retrieved 2023-06-02, from

https://documentation.tricentis.com/tosca/1400/en/content/first steps/

get to know tosca.htm

Tripathy, P., & Naik, K. (2011). Software testing and quality assurance: Theory and practice. John

Wiley & Sons.

Utting, M., & Legeard, B. (2010). Practical model-based testing: A tools approach. Elsevier.

64

https://www.ranorex.com/
https://www.selenium.dev/
https://www.selenium.dev/documentation/webdriver/getting_started/first_script/
https://www.selenium.dev/documentation/webdriver/getting_started/first_script/
https://www.selenium.dev/selenium-ide/
https://www.selenium.dev/selenium-ide/
https://www.qt.io/product/quality-assurance/squish
https://www.qt.io/product/quality-assurance/squish
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://github.com/TESTARtool/TESTAR_dev/releases/tag/prev2.6.4#:~:text=Hands_on_TESTAR_2.6.4.pdf
https://github.com/TESTARtool/TESTAR_dev/releases/tag/prev2.6.4#:~:text=Hands_on_TESTAR_2.6.4.pdf
https://github.com/TESTARtool/TESTAR_dev/releases/tag/prev2.6.4#:~:text=Hands_on_TESTAR_2.6.4.pdf
https://www.tricentis.com/de/plattform/automate-continuous-testing-tosca
https://www.tricentis.com/de/plattform/automate-continuous-testing-tosca
https://demowebshop.tricentis.com/
https://demowebshop.tricentis.com/
https://academy.tricentis.com/automation-specialist-level-1
https://academy.tricentis.com/automation-specialist-level-1
https://documentation.tricentis.com/tosca/1400/en/content/first_steps/get_to_know_tosca.htm
https://documentation.tricentis.com/tosca/1400/en/content/first_steps/get_to_know_tosca.htm

References 65

van der Brugge, A., Pastor-Ricós, F., Aho, P., Maŕın, B., & Vos, T. E. (2021). Evaluating testar’s

effectiveness through code coverage. Actas de las XXV Jornadas de Ingenieŕıa del Software y

Bases de Datos (JISBD 2021), 1–14.

van de Weerd, I., & Brinkkemper, S. (2009). Meta-modeling for situational analysis and design

methods. In Handbook of research on modern systems analysis and design technologies and

applications (pp. 35–54). IGI Global.

Verner, J., Sampson, J., Tosic, V., Bakar, N. A., & Kitchenham, B. (2009). Guidelines for industrially-

based multiple case studies in software engineering. In 2009 third international conference on

research challenges in information science (p. 313-324).

Vos, T., Aho, P., Pastor Ricós, F., Rodriguez-Valdes, O., & Mulders, A. (2021, 05). testar – scriptless

testing through graphical user interface. Software Testing, Verification and Reliability , 31 .

Vos, T., Maŕın, B., Escalona, M., Escalona, A., & Marchetto, A. (2012, 08). A methodological

framework for evaluating software testing techniques and tools..

Wieringa, R. (2014). Design science methodology for information systems and software engineering.

Springer. doi: 10.1007/978-3-662-43839-8

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in

software engineering. In Proceedings of the 18th international conference on evaluation and

assessment in software engineering (pp. 1–10).

Wohlin, C., Höst, M., & Henningsson, K. (2003). Empirical research methods in software engineering.

Empirical methods and studies in software engineering: Experiences from ESERNET , 7–23.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., & Wessln, A. (2012). Experimentation

in software engineering. Springer Publishing Company, Incorporated.

65

Appendix A

Reporting Guidelines

66

APPENDIX A. REPORTING GUIDELINES 67

Table A.1: Reporting guidelines table part 1
67

APPENDIX A. REPORTING GUIDELINES 68

Table A.2: Reporting guidelines table part 2

68

APPENDIX A. REPORTING GUIDELINES 69

Table A.3: Reporting guidelines table part 3

69

Appendix B

Training Materials

B.1 Tosca Training

70

APPENDIX B. TRAINING MATERIALS 71

Figure B.1: Tosca Training - Table of contents

71

APPENDIX B. TRAINING MATERIALS 72

B.2 Testar Training

Figure B.2: Testar Training - Table of contents part 1

72

APPENDIX B. TRAINING MATERIALS 73

Figure B.3: Testar Training - Table of contents part 2

73

APPENDIX B. TRAINING MATERIALS 74

Figure B.4: Testar Training - Table of contents part 3

74

Appendix C

Working Diaries

C.1 Group Testar

Table C.1: Working diary of participant Testar

75

APPENDIX C. WORKING DIARIES 76

C.2 Group Tosca

Table C.2: Working diary of participant Tosca 1

Table C.3: Working diary of participant Tosca 2

76

APPENDIX C. WORKING DIARIES 77

Table C.4: Working diary of participant Tosca 3

77

Appendix D

Bug Sheets

D.1 Group Testar

Table D.1: Bug Sheet of Group Testar

D.2 Group Tosca

Table D.2: Bug Sheet of participant Tosca 1

78

APPENDIX D. BUG SHEETS 79

Table D.3: Bug Sheet of participant Tosca 2

Table D.4: Bug Sheet of participant Tosca 3

79

	List of Figures
	List of Tables
	Introduction
	Problem statement
	Research objectives
	Contribution
	Thesis organization

	Background and Overview
	Role of Testing
	Testing Levels
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing

	White-box Testing
	Black-box Testing
	Test Case Generation
	Regression Testing
	Automated GUI Testing
	Related Work

	Research Method
	Literature Study
	Design Science
	Quasi-Experiment

	Literature Review
	Generations of Automated GUI Testing
	First generation
	Second generation
	Third generation

	Script-based GUI testing
	Capture & Replay
	Code-based Testing
	Model-based Testing

	Script-less GUI testing
	Random or Monkey Testing

	Challenges of GUI Testing
	General challenges of automated testing
	Challenges of script-based GUI testing
	Challenges of script-less GUI testing

	Evaluation frameworks for software testing techniques
	State-of-the-art evaluation techniques

	Treatment Design
	The experimental guidelines
	Experimental reporting
	The adapted evaluation framework
	The experiment process
	The execution process

	Treatment Validation
	Quasi-Experiment
	Experimental Planning
	Execution
	Data Analysis
	Discussion
	Conclusion

	Discussion
	Limitations
	Conclusion
	Future work

	References
	Reporting Guidelines
	Training Materials
	Tosca Training
	Testar Training

	Working Diaries
	Group Testar
	Group Tosca

	Bug Sheets
	Group Testar
	Group Tosca

