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Abstract

We present an algorithm and data structure to support approximate geodesic near-
est neighbour queries for a set of sites S in a static polygon P with holes. Our data
structure allows us to take a query point q from the set Q of query points that lie
in P , and ask for the site in S closest to q. All distances are measured using the
geodesic distance, that is, the length of the shortest path that is completely con-
tained in P. We can construct this data structure in O((n log(n/ϵ) log n logM)/ϵ +
(n logM)/ϵ4+(n log2M)/(ϵ2 log logM)+(M log3M)/ϵ2) time, using O((M logM)/ϵ+
(n log n logM)/ϵ) space, and we can answer queries in O((logM)/ϵ4 +
(log2M)/(ϵ2 log logM) + (logM log n log(n/ϵ))/ϵ) time, where M is the sum of the
number of vertices, sites, and query points, that is M = |P |+ |S|+ |Q|.

Additionally, we present an algorithm and data structure for the simpler cases, sites
in the plane, additive weighted sites in the plane, and sites inside a simple polygon.
However, in these cases the query points can be arbitrary, and we can insert and delete
sites from S.

In the plane, both weighted and unweighted, we show that we can create an
O((n log2 n)/ϵ) space data structure in O((n log2 n)/ϵ) time, where we can answer
queries in O((log3 n)/ϵ) time, and we can insert and delete sites in O((log4 n)/ϵ) time.

Inside a simple polygon, we show that we can create an O((n log2 n + dn +m)/ϵ)
space data structure in O(dn(logm+log n)/ϵ+m logm/ϵ+n log2 n/ϵ) time, where we
can answer queries in O(log4 n + log2m) time, and we can insert and delete sites in
O((d(logm + log2 n) + log3 n)/ϵ) time. Where d is the depth of a tree we create, and
this is at worst O(m).

Keywords and phrases data structure, polygon with holes, geodesic distance, ap-
proximation algorithm, nearest neighbour searching, theoretical computer science, ge-
ometric algorithm.
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1 Introduction

Nearest Neighbour searching is a classic problem in computational geometry. We are given
a set S of sites, we want to preprocess the sites, such that for a query point q, we can find
the nearest point s ∈ S. In our case, S is a dynamic set of points inside a polygon P which
can contain holes. This project can be seen as an extension of the work from Agarwal, Arge,
and Staals [3, 1], where a simpler variant of the same problem is investigated. In this variant
they are investigating dynamic nearest neighbour searching in a simple polygon.

We are given a polygon P which can contain holes, and a set S of sites. When we query a
point q inside the polygon, we want to be able to find the nearest site s ∈ S. The distance
between two points p and q is the length of the geodesic Π(p, q), that is the shortest obstacle
avoiding path that lies completely inside the polygon, we call this the geodesic distance and
it is denoted as π(p, q). The Euclidean distance between two points p and q is denoted as
d(p, q). We can also add or remove sites from S, hence we have a dynamic nearest neighbour
search. This case is the most general scenario, and we will call this the fully dynamic case, in
this case the polygon and holes are static, but sites can be arbitrarily inserted and deleted,
and we can query from an arbitrary point inside the polygon.

We also look at what we call the offline1 variant. In this offline variant we have two different
cases. We describe the general offline variant as follows:

We are given a polygon P which can contain holes, and two sets of points, a set of red points
R, which are the possible query locations, and a set of blue points B, which are the sites.
Each point has an associated temperature. When we query a red point, we want to find
the closest blue site within a given temperature range, this range is the temperature of the
query point plus or minus a threshold δ.

In the first offline case, we only use the sites, the set of blue points B, and the tempera-
tures. In this variant we can do queries from arbitrary locations inside the polygon given a
temperature range. We can use the temperatures of the sites in the construction of our data
structure.

In the second offline case, we also have the set of red point R, and their temperatures. We
can now use the knowledge of the query locations in the construction of our data structure.

When solving these problems we will use approximation algorithms. When we query a query
point q, we will find the approximate closest site s. The geodesic distance between q and
s will be at most (1 + ϵ) times the distance to the actual closest site to q. In the offline
variants, the site s will still be within the temperature range. Only the distance will be
approximated, whilst the temperature is still exact.

In section 3.1 we show how to solve the fully dynamic case in the plane. We can create an
O(n log2 n/ϵ) space data structure in O(n log2 n/ϵ) time. We can answer (1+ ϵ) approximate

1We use the word offline to describe the difference between fully dynamic, and knowing everything in
advance. We are not using it in the traditional online vs offline scenario with a competitive score.[12]
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closest site queries in O(log3 n/ϵ) time, and we can insert and delete sites from the data
structure in O(log4 n/ϵ) time.

In section 3.2 we show how to solve the fully dynamic case in the plane where the sites have
additive weights. We show that the additive weights don’t influence the results, and that the
unweighted case is simply a special case of the weighted case. In the weighted case, we can
create an O(n log2 n/ϵ) space data structure in O(n log2 n/ϵ) time. We can answer (1 + ϵ)
approximate closest site queries in O(log3 n/ϵ) time, and we can insert and delete sites from
the data structure in O(log4 n/ϵ) time.

In section 4 we show how to solve the fully dynamic case inside a simple polygon. We can
create an O((n log2 n+dn+m)/ϵ) space data structure in O(dn(logm+log n)/ϵ+m logm/ϵ+
n log2 n/ϵ) time. We can answer (1+ϵ) approximate closest site queries in O(log4 n+log2m)
time, and we can insert and delete sites from the data structure in O((d(logm + log2 n) +
log3 n)/ϵ) time. Where d is the depth of a tree we create, and this is at worst O(m).

In section 5 we show how to solve the offline case inside a polygon with holes. We can create
an O((M logM)/ϵ+(n log n logM)/ϵ) space data structure in O((n log(n/ϵ) log n logM)/ϵ+
(n logM)/ϵ4 + (n log2M)/(ϵ2 log logM) + (M log3M)/ϵ2) time, and we can answer (1 + ϵ)
approximate closest site queries in O((logM)/ϵ4 + (log2M)/(ϵ2 log logM) +
(logM log n log(n/ϵ))/ϵ) time, whereM is the sum of the number of vertices, sites, and query
points.

Figure 1: An example of a polygon with holes, a set of red points, and a set of blue points.
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1.1 Motivation

The motivation for studying this problem originates in Ecology [8, 22]. The set of red points
R, represents the locations at which animal or plant species lived in the past, and the set of
blue points B, represents the locations where the species are today. Every point p ∈ R ∪ B
has an associated environmental value which we call the temperature. The problem being
solved, is to find for every species (red point), the closest location (blue point) it could have
migrated to, whilst the temperature differs by at most δ. The environment is modelled by
a polygon with holes, where the holes represent obstacles that the animals or plant cannot
through or over, and therefore have to go around it. This can for example be a mountain or
a lake.

1.2 Research Questions

Our goal with this study is to find an efficient algorithm for dynamic nearest neighbour
searching inside a polygon with holes, where the distance is measured using the geodesic
distance. We will make use of approximation algorithms to find efficient algorithms and
data structures. To achieve this, we will use techniques from computational geometry to
design algorithms and data structures, and we are met with the following research question.

1. Design an efficient algorithm and data structure such that for a red point, we can
efficiently find the approximate nearest blue point with a similar temperature inside a
polygon with holes.

Given the complexity of the problem, we will start with easier cases, and build up in com-
plexity until we have reached the case mentioned above. We will also look at the more
complex case, namely, the fully dynamic case in simpler environments.

2. Design an efficient algorithm and data structure such that for an arbitrary query point,
we can efficiently find the approximate nearest (weighted) site in the plane, whilst
efficiently allowing insertions and deletions of sites.

3. Design an efficient algorithm and data structure such that for an arbitrary query point,
we can efficiently find the approximate nearest site inside a polygon, whilst efficiently
allowing insertions and deletions of sites.
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1.3 Naive solution

We can create a naive solution by making use of Voronoi diagrams. When given a set S of
sites, a Voronoi diagram is the partition of the space into cells, such that every s ∈ S is
associated with a cell, and that for every point p inside a cell the closest site is s. A Voronoi
diagram has a graph structure, the cells are the faces of the graph, the vertices of these
cells are called Voronoi vertices, and the edges are called bisectors, on a bisector two sites
are equidistant to it. On a Voronoi vertex, three or more sites are equidistant. A geodesic
Voronoi diagram is also a partition of the space into cells, such that every s ∈ S is associated
with a cell, and that for every point p inside a cell the closest site is s, but the path to s is
an obstacle avoiding path.

A naive solution for the problem can be constructed by using the shortest path maps from
Hershberger and Suri [16] to create a Voronoi diagram inside a polygon with holes in O((n+
m) log(n+m)) time. We can store all the sites inside a balanced binary tree, sorted by their
temperature. We can then have a Voronoi diagram for every node in the tree. This allows us
to query the tree for the Voronoi diagrams we need, and then query the Voronoi diagrams to
find the nearest site. The construction time of this tree is bounded by O(nm log n log(n+m)).

Proof. The tree has a height of O(log n), the first level of the tree (the root node) has a
computation time of O((n + m) log(n + m)), the second level has a construction time of
O((n+ 2m) log(n

2
+m)), the third level has a construction time of O((n+ 4m) log(n

4
+m)),

..., the last level has a construction time of O((n+ nm
2
) log(2 +m)). For every level we can

state that the construction time is smaller than O((n+ nm) log(n+m)). With log n levels,
we get a total construction time of O(nm log n log(n+m)).

This solution is similar to, and is inspired by, the naive method mentioned by Arge and
Staals [3] for a plane without obstacles.
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2 Related work

In this section we will discuss work that is closely related or similar to the problem we are
trying to solve. We will review Voronoi diagram algorithms, shortest path algorithms, and
algorithms related to polylines.

2.1 Voronoi Diagrams

The paper by Arge and Staals [3] looks at the same problem, but in a simple polygon.
This paper solves the same problem as we do, but instead of a polygon with holes, is solves
it for a simple polygon. Given a set of sites, the algorithm gives a data structure of size
O(n logm + m), it is a dynamic data structure, and sites can be inserted or deleted in
O(

√
n log3m) time, and queries can be answered in O(

√
n log n log2m) time. The algorithm

recursively splits the polygon in half, and computes the geodesic Voronoi diagram for half of
the polygon. This is done symmetrically for the other half. The geodesic Voronoi diagram
for the sites in the left side of the polygon is only calculated in the right half of the polygon.
This geodesic Voronoi diagram is a forest of bisectors. This forest can be stored as an
Hamiltonian abstract Voronoi diagram, where only the degree one and degree three vertices
need to be stored.

There is also an improved version by Agarwal, Arge, and Staals [1]. This paper is an
improvement of the previous paper. Similar to the previous paper, the algorithm recursively
splits the polygon in half. Instead of computing the geodesic Voronoi diagram of half the
polygon, this improved algorithm computes a vertical shallow cutting of the geodesic distance
functions. This leads to a data structure of size O(n log3 n logm+m), that can insert a site
in O(log5 n logm + log4 n log3m) amortised expected time, delete a site in O(log7 n logm +
log6 n log3m) amortised expected time, and answer queries in O(log2 n log2m) time. This
data structure has an improved query time, whilst the space usage, insertion time, and
deletion time have gotten worse, however, these times are still polylogarithmic.

For a Voronoi diagram inside a polygon we first have a simple algorithm by Aranov [4],
Aranov gives an algorithm to calculate a geodesic Voronoi diagram for a polygon with m
sides, and n point sites inside the polygon. The algorithm runs in O((n+m) log(n+m) logm)
time, and Aranov gives an algorithm that runs in O((n+m) log(n+m)) time when the sites
contain all the reflex vertices of the polygon. The algorithm uses a divide and conquer
technique. The algorithm cuts the polygon P by a chord in two parts P1 and P2 of roughly
the same number of edges. Then recursively the Voronoi diagram for P1 and P2 is calculated.
The Voronoi diagrams of P1 and P2 need to be extended to get the full Voronoi diagram of P.
The novel feature of the algorithm is the extension step. This step takes O((n+m) log(n+m))
time, and is done by propagating from cut e through the triangles in preorder traversal. Two
types of event can take place, a Voronoi cell dies out, or a vertex is reached, and it is assigned
to the cell containing it.
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A different and more efficient algorithm is given by Papadopoulou and Lee [23]. This paper
gives an algorithm for a geodesic Voronoi diagram inside a polygon. The algorithm combines
a sweep of the polygonal domain, and the merging step from a divide-and-conquer algorithm.
This algorithm runs in O((n+m) log(n+m)) time. This paper also introduces the concept
of subcells, where a cell is a Voronoi region, a subcell is a maximum set of points that have
the same anchor. They also introduce the concept of a breakpoint, this is an endpoint of
a bisector that is not a Voronoi vertex. This is an intersection between a Voronoi edge,
and an edge of the shortest path map. The Voronoi diagram can be seen as an embedding
of a planar graph. The polygon gets triangulated, and the dual graph of the triangulated
polygon is a tree, and an arbitrary node of this tree is assigned as the root. Using a sweep
algorithm, going over the triangulated polygon in postorder traversal of the rooted tree, a
Voronoi diagram inside each triangle is calculated for the sites below. A second sweep is done
in preorder traversal, to get the Voronoi diagram inside each triangle for the sites above. In
the third step the two subdivisions are merged, to get a complete Voronoi diagram.

This algorithm was further improved by Liu [19]. This paper builds on the ideas of the
previous paper. It uses the same approach of triangulating the polygon, doing two sweeps
over it, to get partial Voronoi diagrams, and merging these two, to get a complete Voronoi
diagram. This paper uses a wavefront algorithm to calculate the incomplete Voronoi dia-
grams. This allows for the construction of the Voronoi diagram in O(n+m(logm+ log2 n))
time, which is optimal for m = O( n

log2 n
), and the log2 n terms comes from the computation

time of calculating a single Voronoi vertex.

A paper that looks more broadly at different types of Voronoi diagrams is by Oh and Ahn [21].
This paper looks at the geodesic nearest-point, higher-order, and farthest-point Voronoi
diagrams with a set of S of m points inside the n-gon. They show an O(n+m logm log2 n)-
time algorithm for nearest-point, an O(k2m logm log2 n + min(nk, n(m − k)))-time for an
order-k Voronoi diagram, and an O(n+m logm+m log2 n)-time algorithm for an farthest-
point Voronoi diagram. The nearest-point algorithm is optimal for m ≤ n/ log3 n. All
algorithms are based on a polygon sweep. A nearest-point Voronoi diagram in a plane can
be calculated by sweeping the plane, during the sweep the partial Voronoi diagram of the sites
above the sweep line is computed, which becomes a complete Voronoi diagram by the end of
the sweep. This is done by defining two types of events. The nearest-point algorithm fixes a
point o on the boundary, and they move a point x from o in a clockwise direction, and the
point x is used as a sweep point. They first compute a topostructure of the Voronoi diagram,
that consists of the degree-1 and degree-3 vertices, and the adjacency graph of the Voronoi
cells, from this structure the complete Voronoi diagram is calculated. Inside the sub-polygon
induced by o, x, and the polygon boundary, they define a region for every site s inside the
sub-polygon Rs(x), that is every point p in the sub-polygon for which d(p, s) ≤ d(p, π(o, x))
holds. They call the union of all the regions Rs(x), R(x). To compute the Voronoi diagram
restricted to R(x), you only need sites inside the sub-polygon. After the sweep, R(x) might
not coincide with the polygon, so solve this, they add a very thin triangle to the boundary,
to make a bit larger polygon, this solves the issue, and the complete Voronoi diagram can
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be calculated.

There is also the paper by Kunze, Wolter, and Rausch [17], which looks at geodesic Voronoi
diagrams on parametric surfaces. This paper uses a divide and conquer strategy to calculate
the Voronoi diagram of a parameterised surface. The distance between two points on the
surface is the path with the shortest length on the surface, and is called the geodesic distance.
They define M(p, q) of two points p and q, to be the equidistance set, this set divides the
surface into two sub regions. On a Euclidian surface, M(p, q) is easy to calculate and is a
straight line perpendicular to the line segment that connects p and q. To calculate M(p, q)
the authors use the first and second order differential equations of the surface. From these
equations, a geodesic circle of a point p can be calculated. This can be used to calculate
M(p, q) of two points. The algorithm recursively splits the set of sites into 2, and if there
are only 2 sites, it calculates M(p, q), and recursively merges the subdiagrams, this results
in the complete Voronoi diagram.

In addition to Voronoi diagrams, there are also approximate Voronoi diagrams, when query-
ing in a (1+ ϵ)-approximate Voronoi diagram, the returned site is at most a factor of (1+ ϵ)
further away than the true closest site. The papers by Arya, and Malamatos [6], and the
extension by Arya, Mount, Netanyahu, Silverman, and Wu [7]. This paper gives an ap-
proximate Voronoi diagram in Rd, it gives an (t, ϵ) approximation. The cells of the Voronoi
diagram have a constant complexity, and every cell is associated with t representative points
of S, such that for any point in a cell, the nearest representative is within a factor of (1 + ϵ)
of the nearest site. This paper uses the concept of a well-separated pair decomposition. If S
is a set of n points, two subsets X and Y are well-separated if they can be enclosed by two
disjoint balls of radius r, such that the distance between the centres of the balls is at least
αr, where α is the separation factor. They also introduce a balanced box-decomposition,
this is a unit hypercube in Rd, with a recursive quadtree. They encompass the space with
a balanced box-decomposition, bu scaling and translating the space, so everything is inside
a unit hypercube. By computing a well-separated pair decomposition for all pairs, they can
use the information of the balls, to calculate a set of quadtree boxes that are used, and are
stored in a tree. The subdivision acquired in the leaves, is an approximate Voronoi diagram.

Finally, we have a paper by Aronov, de Berg, and Thite [5]. This paper gives tight bounds
on the complexity of the bisectors of a Voronoi diagram on a realistic terrain. In this paper
a terrain is a polyhedral terrain, a triangulated mesh where each vertex has an elevation.
On a terrain the complexity of the bisectors can get high, Ω((n + m)m), where m is the
number of triangles of the terrain. However, this happens on carefully constructed terrain.
The paper defines a set of 4 properties, and if all 4 hold, a terrain is realistic. The number
of breakpoints is at most the number of triangles. The complexity of a bisector is defined as
its number of break points plus the number of it intersects a terrain edge. The complexity
is O((ϵ + λ)n), where ϵ is the slope of the terrain and λ is its density. The density of a set
S of objects the smallest number λ such that any disk D intersects at most λ objects o ∈ S
such that the diameter of o ≤ than the diameter of D. Our set of objects is the set of edges
of the triangulation of the terrain. The complexity of a Voronoi diagram it proportional to
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(m + n) plus the number of times a Voronoi edge intersects a terrain edge. It can then be
shown that the total complexity of a Voronoi diagram on a realistic terrain is in the worst
case Θ(n+m ∗

√
n).

2.2 Shortest Path

We have looked at shortest path algorithms, because Voronoi diagrams, and shortest path
searches are closely related. Our goal is to find the nearest neighbour within a temperature
range, and a Voronoi diagrams does not have to be the solution. One of the papers is
by Mitchell [20]. This paper gives a shortest path algorithm that avoids obstacles in the
plane. Given a point s, it can give the shortest path to any point p in the plane. It runs
in O(kn log2 n) where n is the number of vertices, and k is the illumination depth of the
obstacles, and it uses O(n) space. The algorithm computes a shortest path map. First the
visibility polygon of point s is calculated. A set of seen obstacles is defined, and that is the
current shortest path map. A point is accessible if it can be reached by the shortest path
map without bending at an unseen obstacle vertex, Vertices on the boundary of the region
of accessibility, and were unseen, are now seen. This process, of computing accessibility, and
updating the shortest path map, is iterated until there are no unseen vertices left. k is the
number of iterations of this algorithm.

A different algorithm comes from Hershberger and Suri [16]. This paper gives an optimal
algorithm to find the shortest Euclidean path in the plane. They use a technique called
continuous Dijkstra, this technique simulates a wavefront from a source in the presence of
obstacles. The boundary of the wavefronts is made of circular arcs, called wavelets. An arc
is generated by the vertex of an obstacle that is already covered by the wavefront. Simulat-
ing the wavefront is done using events, there are two types of events, wavefront-wavefront
collisions, and wavefront-obstacle collisions. To do this efficiently, the paper subdivides the
plane into a quad-tree-style structure of size O(n), and it uses an approximate wavefront.
Each cell in the subdivision, called a conforming subdivision, has useful properties. The most
important one being, for any edge e of the subdivision, there are O(1) cells within distance
2|e| of e. After the subdivision, the obstacle edges are added back in, whilst maintaining
the conforming property, and that leads to there being O(1) cells withing shortest path 2|e|
of e, for a non-obstacle edge. These cells are used to propagate the wavefronts. Wavefront-
obstacle events are easy to handle. There are two types of wavefront-wavefront events, the
collisions between two non-neighbouring wavelets are hard to detect. Instead they use an
approximate wavefront, instead of computing the wavefront exactly, it is separates into two
different wavefronts, coming front opposite sides of the edge. These wavefronts approximate
the wavefront hitting the edge from one side. They use timers to estimate when an edge is
hit with a wavefront, and discard any part of the wavefront that arrives after a timer at that
edge has gone off. After the propagation phase, they use Voronoi diagram techniques inside
each cell to compute the precise collision events in that cell, those collisions determine the
final shortest path map.

11



2.2.1 Approximation Algorithms

We also looked at approximate nearest neighbour and shortest path algorithms. The paper
by Poudel [24] looks at the shortest path in a graph. This paper gives an algorithm to
compute an approximate shortest path in a graph by using a distance oracle, and runs in
(CS∗O(dim)), where C is a constant, S∗ is the number of vertices in the shortest path, and dim
is the doubling dimension of the graph. The goal of this paper was to get an algorithm that
prunes more nodes than traditional shortest path algorithms. This is done by only expanding
nodes that are on a (1+ ϵ) shortest path. The distance oracle gives an approximate shortest
distance between two nodes, this is used to determine if a node is on a (1+ ϵ) shortest path,
and the node will only be expanded if it is.

The paper by Thorup [25] gives approximate distances. This paper gives an algorithm
to compute an approximate distance between points in a plane with obstacles, where n
is the number of corners/vertices. They pick an arbitrary corner, and they compute an
exact shortest path tree, that includes all the corners. With this tree, and the edges of the
obstacles, the plane is triangulated. This triangulation is a planar graph where the shortest
path tree is the spanning tree. You can find a triangle, and if you look at the region of the
fundamental cycles induced by any side of the triangle, then this cycle will have less than
half of the triangles. A union of at most 6 shortest paths is a separator. This are the at most
3 paths from the triangle corners in the triangulation, plus any triangle side which is not
inside an obstacle, or in the exterior region. For a given shortest path Q, it can be shown
that the shortest path between u and v, going through Q, has at most O(4k) connections.
With connections from u to Q, and v to Q, the distance between u and v can be estimated.
This is done recursively by splitting the plane along the 6 shortest paths, and recursing in
the induced regions. Connections can now be found recursively and have a stretch of at most
ϵ = 1

k
.

The paper by Li and Dunson [18] approximates a geodesic distance over a surface. This
paper gives a distance approximation for a given set of points following a geometric shape,
instead of the Euclidean distance. They assume that M is a smooth compact Riemannian
manifold. First they calculate a local estimation, and use that to get a global estimation
for arbitrary points. The local estimation is calculated using a spherical distance, spheres
approximate the manifold better than lines. They give a method to compute the spheres
that are needed, and how this is implemented for different manifolds.
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3 Sites in the plane

In this section, we will provide the foundation to solve the case in a simple polygon. We first
prove that we can do approximate nearest neighbour searches in the plane. We will then
show that we can do approximate nearest neighbour searches with additively weighted sites
in the plane.

3.1 Unweighted Sites in a Plane

In this section we will show that given a set of sites in the plane, we can create anO((n log2 n)/ϵ)
space data structure in O((n log2 n)/ϵ) time, with an O((log4 n)/ϵ) insertion and deletion
time, and we can answer queries in O((log3 n)/ϵ) time.

We have a set S of sites and a cone c, every site s ∈ S is inside c. c has an origin co and
a direction cd. This direction is the bisector of the two lines of the cone. We consider the
half-line l that starts at co and goes in the direction of cd. We take every site in S, and
project it on l, we call this set S ′. If we have a query point q, we can look around q in k
evenly spaced cones. In each cone we find the approximate closest site, and we return the
overall closest site. We will use 1

k
as our ϵ value for our (1 + ϵ) approximation.

Lemma 1. Given that s is the closest site to q in S, and s′ is the closest site to q in S ′. s′

has a distance to q of (1 + ϵ)d(s, q), that is d(s′, q) ≤ (1 + ϵ)d(s, q).

Proof. Without loss of generality, assume that our cone is facing to the right, that is the
direction of the cone can be represented by the 2D vector (1,0), see Figure 2. We claim that
the left most site inside the cone, is approximately the closest site in the cone, if we project
every site in S to S ′, the closest site to q is the left most site. Consider two points inside
this cone, points a and b. The points a and b have the same position in S ′ but not in S. If
we maximise the difference between d(q, a) and d(q, b), we get that d(q, a) ≤ (1 + ϵ)d(q, b).

Looking at Figure 2 we have site a, and site b, site a can be considered the closest site,
whilst site b is actually closer. The difference between the distances d(q, a) and d(q, b) is the
largest when a lies on the cone, and b lies on the bisector of the cone. The angle between
d(q, a) and d(q, b) is 2π

2k
= π

k
With some simple trigonometry, we find that d(q, a) = 1

cos(π
k
)
x,

we want that 1
cos(π

k
)
≤ 1 + 1

k
, and this is the case for k ∈ N+, k ≥ 6.
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Figure 2: An example of one of the k cones pointing to the right.

With Lemma 1 we can give a data structure and an algorithm to solve the fully dynamic
version of the problem for sites in the plane. To find the closest site to a query point q, we will
use a three dimensional range tree from de Berg, Cheong, van Kreveld, and Overmars [11] for
every cone direction. When we look at a cone, we can define three properties, the direction
of the cone, and the two lines that make up the cone, l1, and l2. These lines have a starting
point co, and go infinitely in one direction. We consider the lines with an extension in the
other directions, l′1 and l′2. We consider these lines as axes, meaning that a point will not be
stored in terms of x and y position, but in terms of l′1 and l′2. In a regular range tree, the
points get sorted by their x and y position. We project the points on the lines l′1 and l′2, and
sort them according to this projection. This sorts the points in the direction of these lines.
We use these two axes and the direction of the cone, as our three dimensions for our three
dimensional range tree.

A single cone has a construction time ofO(n log2 n), a space usage ofO(n log2 n), a query time
of O(log3 n), and an insertion/deletion time of O(log3 n). With k cones the construction time
is O((n log2 n)/ϵ), the space usage is O((n log2 n)/ϵ), and the query time is O((log3 n)/ϵ).
The range trees from de Berg, Cheong, van Kreveld, and Overmars [11] don’t mention
insertions and deletions, meaning that if we do insertions and deletions, the trees will not
remain balanced. However, we can use techniques from Anderson [2]. This gives us that
the cost of rebalancing a subtree v is O(P (|v|)), and the amortised cost of an update is
O((P (n)/n) log n). This allows for an amortised insertion and deletion time of O(log2 n) in
a one dimensional tree. In our three dimensional tree, this allows for amortised insertions
and deletions in O(log4 n). In general this adds an O(log n) factor to all the insertions and
deletions in a tree, and we will use this in all our tree structures going forward.

This results in the points being sorted according to l′1 in the first level of the tree, according
to l′2 in the second level, and finally according to the cone direction in the final level. When
we query a point q in this tree, the first two levels give use the points that lie inside the
cone starting at q, and the third level returns the closest site in the direction of the cone.
By Lemma 1, this returns a site that has a distance to q with a (1+ ϵ) approximation of the
closest site.
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Theorem 2. Given a set S of sites, we can create an O((n log2 n)/ϵ) space data structure
in O((n log2 n)/ϵ) time. With this data structure we can find a (1 + ϵ) approximate closest
site to an arbitrary query point in the plane in O((log3 n)/ϵ) time, and we can insert and
delete sites from the data structure in O((log4 n)/ϵ) time.

3.2 Weighted Sites in a Plane

In this section we now consider the scenario in which every site also has an additively positive
weight, we now no longer use the Euclidean distance to find the closest site, we consider the
distance to be the Euclidean distance plus the weight of the site. We will show that given
a set of additively weighted sites in the plane, we can create an O((n log2 n)/ϵ) space data
structure in O((n log2 n)/ϵ) time, with an O((log4 n)/ϵ) insertion and deletion time, and we
can answer queries in O((log3 n)/ϵ) time.

Lemma 3. Given that s is the closest site to q in S, and s′ is the closest site to q in S ′. s′

has a distance to q of (1 + ϵ)(d(s, q) + ws), that is d(s
′, q) + ws′ ≤ (1 + ϵ)(d(s, q) + ws).

Proof. We will use a slightly modified version of the approach we used for the unweighted
version. When we compare the sites in the direction of the cone, we add the weight to the
site as a unit vector in the cone direction, see Figure 3. This way, we essentially move all
sites in the cone direction by their weight, because the weights are additive, and the distance
is measured in the cone direction, moving the sites to the right and removing their weights, is
the same as not moving them and adding their weight. This brings us back in the unweighted
variant, and we can use Lemma 1 to prove that the weighted variant is correct.

Figure 3: Moving sites, sites a, b, and c move to the right by their weights.

With Lemma 3 we can give a data structure and an algorithm to solve the fully dynamic
version of the problem for sites with additive weights in the plane. We will use a slightly
modified version of the approach we used for the unweighted version. When we sort in the
direction of the cone, at the third level of our three dimensional range tree, we add the
weight to the site as a unit vector in the cone direction. This way, we essentially move all
sites in the cone direction by their weight, see Figure 3. When making the trees for the lines
of the cone, l′1 and l′2, we use the original locations of the sites. Therefore, when we do a
query, we only report the sites that are actually inside the cone without moving the sites,
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but we take the weight into account when querying the closest site inside the cone. This
modification does not add to our construction time nor our query time, so we still have an
O((n log2 n)/ϵ) construction time, a space usage of O((n log2 n)/ϵ), an O((log3 n)/ϵ) query
time, and an O((log4 n)/ϵ) insertion/deletion time.

Theorem 4. Given a set S of sites, we can create an O((n log2 n)/ϵ) space data structure
in O((n log2 n)/ϵ) time. With this data structure we can find a (1 + ϵ) approximate closest
additively weighted site to an arbitrary query point in the plane in O((log3 n)/ϵ) time, and
we can insert and delete sites from the data structure in O((log4 n)/ϵ) time.
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4 Simple Polygon

In this section we look at the case with a simple polygon, where all the sites will be inside
the polygon. n will be the number of sites, and m will be the number of vertices of the
polygon. We will show that given a set of sites inside a simple polygon, we can create an
O((n log2 n+dn+m)/ϵ) space data structure in O(dn(logm+log n)/ϵ+m logm/ϵ+n log2 n/ϵ)
time, with an O((d(logm+log2 n)+log3 n)/ϵ) insertion and deletion time, and we can answer
queries in O(log4 n + log2m) time. d is the depth of a tree structure that we create, and is
at worst O(m).

We will handle sites and vertices separately. We will use sites as unweighted points, and we
will use vertices as weighted points. The weight of a vertex v is the geodesic distance to
the closest site s, and v knows s. We will explain the process for a single cone direction,
the process is analogous for all cone directions, and we can get the closest overall site by
querying all cones.

The global idea is to use the observation that the closest site either has a direct path to the
query cone, or the path has to go through a vertex. If every vertex knows the closest site,
and uses the distance to this site as a weight. We can use Lemma 1 and 3 to find the closest
site by only looking at sites that have a direct path, and vertices that have a direct path.

We preprocess the polygon using a trapezoidal map from de Berg, Cheong, van Kreveld, and
Overmars [11, chapter 6] in the cone direction, we then query all the sites in the trapezoidal
map in the cone direction, for every site s ∈ S we find the first edge intersection i, we record
the distance to it, and save a line segment from s to i. This structure allows for O(logm)
expected query time, can be constructed in O(m logm) time, and uses O(m) expected space.

After we have done this for all the sites, we have O(n) parallel line segments, we will save
these in a tree using the data structure from de Berg, Cheong, van Kreveld, and Overmars [11,
chapter 10]. In this data structure the lines in the tree are parallel, and the query line segment
is perpendicular. We always query from the same angle, and this angle is not parallel to the
line segments, therefore, we can apply a shear to make the query segments perpendicular.

We do the same for the vertices and this gives us a tree for the O(m) vertex segments. We
will make these maps for all k directions, and for the directions of the cone lines. When we
have a query cone, we can find where it intersects the polygon, and we can then use the cone
as two line segments, see Figure 4.
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Figure 4: A simple polygon with a right facing cone, and the line segments of the sites and
vertices from the opposite direction. In the area of the cone are 4 sites, one is unblocked(a),
one hits the same edge of the polygon as the cone (b), one has line of sight to the query
point, but is considered blocked(c), and one is completely blocked(d).

We will only consider the sites and vertices that when you draw a line to the left, intersect
the cone before they intersect an obstacle, and sites that intersect the same edge as the cone,
see site b in Figure 4. If we do this, we can discard sites that have a distance closer to an
obstacle in the opposite cone direction, and only consider unblocked sites. We consider a site
unblocked if and only if the line drawn to the left intersects the cone boundary. In Figure 4
we have 4 sites inside the cone area, of which one is unblocked, one intersects the same edge
as the cone, and two are hidden.

Let s be the approximate closest site, s is either unblocked or blocked. If s is unblocked we
will find s as the closest site by the use of Lemma 1 and 3. If s is blocked, s has to go through
a vertex v that is unblocked in the cone. v has the distance to s as its weight, and will be
found as the closest point by the use of Lemma 3.

During the construction of the data structure, we know for every site which edge they
intersect, and the distance form the site to the edge. On edges with intersections we store a
two dimensional binary tree, in the first dimension of the tree we store the positions of the
intersections sorted from one side of the edge to the other, in the case of a right facing cone,
this is sorted from left to right alongside the edge. In the second dimension of the tree we
store the weighted distance to the site, this weighted distance is the sum of how far along
the edge it is, and the actual distance to the site. During a query, if we hit an edge, we can
find the closest site on this edge in O(log2 n) time, the first dimension of the tree returns all
the sites to the right of the intersection point, and the second dimension of the tree returns
the closest weighted site. We only insert every site k times, giving us a construction time of
O(n log2 n/ϵ), and a space usage of O(n log n/ϵ). We can insert or delete a site in O(log3 n/ϵ)
time.
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4.1 Finding the Closest Site for every Vertex

We preprocess the polygon so we can answer two-point shortest path queries in O(logm)
time using a data strucure from Guibas and Hershberger [13](see also the follow up note
of Hershberger [15]). We can find the the closest site for every vertex by creating a data
structure based on the trapezoidal maps we made in section 4. We will again consider the
case for one cone direction, it is analogous for the other directions. If we have a query cone
to the right, we are concerned about hidden areas, i.e, areas that if they contain a site, the
site does not have a line segment to the cone.

We can see that such an area is a subpolygon that is created by drawing a line to the right
from a vertex, we can also see that this subpolygon can be seen as the union of trapezoids
in the trapezoid map. This means that if this vertex is inside a query cone, the closest
site we need to consider for this vertex lies within this subpolygon. If we insert a site into
the polygon, we can query the trapezoid map to find in which trapezoid the site lies, and
therefore in which subpolygon the site lies. When inserting a site in this manner, we know
to which vertex it belongs, in O(logm) time. For this vertex we store a sorted list of all the
sites that are inside its subpolygon, and we sort the sites by their distance to the vertex,
which can be calculated in O(logm) time each. If we look at Figure 5, we can see that these
subpolygons can nest.

Due to how the subpolygons are created, every subpolygon is either a subpolygon of the
entire polygon or a subpolygon of another subpolygon. using these relations, we can store
these subpolygons in a tree structure. When we insert a site, we insert it into the lists of all
the vertices form which it is inside a subpolygon. We call the depth of this tree d, this depth
can be O(m) in the worst case, but is determined by the nature of the polygon. When a
vertex is found in a cone, we can find the nearest site in O(log n) time. To store the lists of
sites that the vertices hold, we need O(dn) storage, we only need to store sites multiple times
if they are in multiple subpolygons, and therefore the storage is O(dn) and not O(mn).

Figure 5: A simple polygon with nesting subpolygons.
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4.2 Putting it all together

The total construction time is the sum of the time to construct the trapezoidal maps,
O((m logm)/ϵ) time, the time to construct the segment trees, O((m logm)/ϵ) time, and
the time to insert the sites one at a time, O(dn(logm + log n)/ϵ). The total construction
time is O(dn(logm+ log n)/ϵ+ (m logm)/ϵ).

Using the segment tree data structures, we can query the closest unblocked site, and the
closest weighted unblocked vertex. Doing this in all k cone directions, gives use the approx-
imate closest site. Querying the segment trees takes O(log n + logm + z) time, where z
is the amount of intersections with the cone. Instead of returning all the intersections,
we can get the results back in a tree structure, where all the points are sorted in the
cone direction. The vertices have additive weights, where the weights are the distances
to the nearest site. This takes the query time down to O(log2(n) + log2(m)), and this
gives us a total query time of O(log4(n) + log2(m)). We get a total construction time of
O(dn(logm + log n)/ϵ + m logm/ϵ + n log2 n/ϵ), and we can do an insertion/deletion in
O((d(logm+ log2 n) + log3 n)/ϵ).

Theorem 5. Given a set S of sites inside a simple polygon, we can create an O((n log2 n+
dn+m)/ϵ) space data structure in O(dn(logm+ log n)/ϵ+(m logm)/ϵ+(n log2 n)/ϵ) time.
With this data structure we can find a (1 + ϵ) approximate closest site to an arbitrary query
point in the polygon in O(log4 n+ log2m) time, and we can insert and delete sites from the
data structure in O((d(logm+ log2 n) + log3 n)/ϵ) time.
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5 Polygon with holes

In this section We will discus the second offline case, in which we know the locations of the
queries we want to do. We can still query the points in any order, and with any temperature
range, but we have a finite number of query points, and their locations are known.

5.1 General Approach

We can construct a data structure based on the two-point shortest path algorithm from
Thorup [25]. This is an approximation algorithm based on cones, there are k cones, and
ϵ = 1

k
. We will use the separators they construct, and the O(k) number of connections that

each vertex has on each separator. Thorup recursively splits the polygon with obstacles in
half. The polylines that do this are a union of shortest paths, and are called separators, see
Figure 6.

(a) A polygon with holes that is recursively split in two,
at the lowest level there are triangles.

(b) A tree that shows how the
polygon is split.

Figure 6

Thorup constructs a structure with obstacle vertices as the input, and allows for arbitrary
two-point shortest path queries. We will use the vertices, the sites, and the query points as
our input. When we do this, the sites and query points are zero-dimensional points, and do
not interfere with shortest paths, since you could move an arbitrary small distance around
them. By including these points in the construction they influence how the separators are
made, they have the property that they have O(k) number of connections on the separators,
and the property that going to a neighbouring connection point induces only a stretch of 1

k
,

see image 7.
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Figure 7: A site with O(k) connections along a separator. If the red path has a length of
1, the blue path has a length of 1 + 1

k
. This is true for all neighbouring connection points

along the separator.

We create this data structure in O(((n+m+ |Q|) log3(n+m+ |Q|))/ϵ2) using O(((n+m+
|Q|) log(n +m + |Q|))/ϵ) space, and this allows us to do two-point shortest path queries in
O(1/ϵ3+(log(n+m+ |Q|))/(ϵ log log(n+m+ |Q|))) time, where |Q| is the number of query
points.

For ease of notation we will call the union of all these points M , that is M = n +
m + z. Using this new notation, We create this data structure in O((M log3M)/ϵ2) us-
ing O((M logM)/ϵ) space, and this allows us to do two-point shortest path queries in
O(1/ϵ3 + (logM)/(ϵ log logM)) time.

This subdivision that is created is a recursive structure with O(logM) levels. On the lowest
level, we have triangles. These triangles are an area of space with no obstacles inside of
them.

5.2 Closest Sites on Separators

We want to use the separators and the connections on them to answer our nearest neighbour
queries. A query point has O(k) connection points on each separator, O(M/ϵ) in total. Due
to the recursive structure that divides the space in half, we only need to query O(logM)
separators. If every connection point knows which site is the closest, we can compare all the
O((logM)/ϵ) connection points to find the approximate closest site to the query point.

For a given separator, we are only interested in the O(k) connection points of the sites,
and the distances from all the sites to all their connection points. For every point on the
separator, we can conclude which site is the closest, by treating every site as a weighted
point on the separator, where their distance is their weight.

We can easily see how this works if the separator is a straight line, see image 8. We have
a straight line on the x-axis, and all the points have a y-coordinate of their weights. If we
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are directly below a point in the x-axis, the distance to the point is its weight. The distance
to this point then increases linearly if we move over the x-axis. The distance to a point can
be graphed by an absolute function where we translate the function to be on the location of
the point. If we do this for all the points, if we draw a line straight up, the first function we
intersect is the function of the closest site. We can use this to construct a one-dimensional
Voronoi diagram, and now we know for every point on the line what the closest site is.

Figure 8: Sites with weights on the x-axis. The sites are placed on the y-location of their
weight. With the lower envelope coloured in red.

We can apply the same idea to our separators, however, our separators are not straight lines
on the x-axis, to be more precise, our separator are a collection of connected line segments.
The same idea still applies, we are interested in the lower envelope of the distance functions
of the points. Because the separators are shortest paths themselves, we can straighten them
out by walking over them, and place the sites on the x-axis based on their distance from the
start of the separator. Using a proof from Hershberger [14] we can find this lower envelope,
and we can do this efficiently in a time of O((n log(n/ϵ))/ϵ) time for each separator. In the
paper from Hershberger, they find an upper envelope for n line segments. We can translate
our problem to this by inverting the y-axis, and by turning the lines into line segments.
We know the line segments start at the locations of the sites, and if the end points are put
far enough away, the results would be the same as if they were lines. We have a total of
O(M) separators, but sites will only influence O(logM) separators. Sites only influence the
separators that divide their space. We need to do a total of O(n/ϵ) queries to find all the
distances to the connections points on a separator. We can write this as the recurrent relation
T (n,M) = T (nl,

M
2
)+T (nr,

M
2
)+O((n log(n/ϵ))/ϵ+n/ϵ4+(n logM)/(ϵ2 log logM)), where

nl are the sites that go to the left side of the separator, and nr are the sites that go to the right
side of the separator. If we solve this relation, we get that it takes O((n log(n/ϵ) logM)/ϵ+
(n logM)/ϵ4 + (n log2M)/(ϵ2 log logM)) time to construct all the one dimensional Voronoi
diagrams, and they take up O((n logM)/ϵ) space. It takes O(log(n/ϵ)) time to query a single
one dimensional Voronoi diagram.
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Lemma 6. Given a polygon with holes P , a set S of sites, a set Q of query points, and the
subdivision from Thorup [25], using the vertices, sites and query points as the input. We can
create one dimensional Voronoi diagrams on all the separators in O((n log(n/ϵ) logM)/ϵ +
(n logM)/ϵ4 + (n log2M)/(ϵ2 log logM)) time, using O((n logM)/ϵ) space, where M is the
sum of the number of vertices, sites, and query points.

5.3 Temperature

We can take the temperature value into account during the construction of the one-dimensional
Voronoi diagrams. We create binary trees for the temperature, similar to what we do for
the naive solution in section 1.3, but instead of creating geodesic Voronoi diagrams on each
node, we create a tree for the one-dimensional Voronoi diagrams, which have a size that is
only dependant on n and k. We can now still efficiently do queries, by querying a logarithmic
number of Voronoi diagrams, but the construction time of these diagrams is not dependant
on the number of vertices of the polygon and holes. We can distribute the construction time
of the one dimensional Voronoi diagrams into two parts. The construction of the one dimen-
sional Voronoi diagrams themselves, this takes O((n log(n/ϵ) logM)/ϵ) time, and calculating
the distances to the connection points, this takes O((n logM)/ϵ4+(n log2M)/(ϵ2 log logM))
time. We only need to calculate all the distances once during the construction of all the one
dimensional Voronoi diagrams in the tree we will build. This means that the first level
of the tree has a computation time of O((n log(n/ϵ) logM)/ϵ), the second level of the tree
has a computation time of O((n log n

2ϵ
logM)/ϵ), the third level has a computation time of

O((n log n
4ϵ
logM)/ϵ), ..., the last layer has a construction time of O((n logM)/ϵ). For every

level we can state that the construction time is smaller than O((n log(n/ϵ) logM)/ϵ). With
O(log n) levels, we get a total construction time of O((n log(n/ϵ) log n logM)/ϵ). We can
apply the same idea to the space usage, and we get that all the one dimensional Voronoi
diagrams use O((n log n logM)/ϵ) space. If we now add back the time to calculate all the dis-
tances to the construction time, we get that it takes a total of O((n log(n/ϵ) log n logM)/ϵ+
(n logM)/ϵ4 + (n log2M)/(ϵ2 log logM)) time to construct all the one dimensional Voronoi
diagrams. If we add the construction time of the data structure from Thorup, we get a total
construction time of O((n log(n/ϵ) log n logM)/ϵ+(n logM)/ϵ4+(n log2M)/(ϵ2 log logM)+
(M log3M)/ϵ2), and we use a total of O((M logM)/ϵ+ (n log n logM)/ϵ) space.
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Figure 9: The separators show which sites are the closest on every point. This is shown by
giving that piece of separator the same colour as the site.

Figure 10: A query point and its O(k) connection points on the separators.
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We can answer a query for point a q by querying separators, see Figures 9 and 10. We need to
query O(logM) separators, because we only need to recursively query the separators that are
on the same side as q. On every separator, we calculate the distance to the O(k) connection
points, this takes O((logM)/ϵ4 + (log2M)/(ϵ2 log logM)) time, and we find the closest site
for all the connection points, this takes O((logM log n log(n/ϵ))/ϵ) time. This gives us a
total query time of O((logM)/ϵ4 + (log2M)/(ϵ2 log logM) + (logM log n log(n/ϵ))/ϵ).

Theorem 7. Given a set S of sites, and a set Q of query points inside a polygon with holes,
we can create an O((M logM)/ϵ+ (n log n logM)/ϵ) space data structure in
O((n log(n/ϵ) log n logM)/ϵ+(n logM)/ϵ4+(n log2M)/(ϵ2 log logM)+(M log3M)/ϵ2) time.
With this data structure we can find a (1 + ϵ) approximate closest site to a query point in
the polygon in O((logM)/ϵ4 + (log2M)/(ϵ2 log logM) + (logM log n log(n/ϵ))/ϵ) time.
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6 Conclusion

In this study, we looked at an ecological problem in a geometric setting. We represented an
environment with a polygon with holes, and species as sets of sites inside this polygon. We
process the polygon and the sites such that we can efficiently answer approximate nearest
neighbour queries. Additionally, we have looked at more complex cases of the same problem
in simpler settings. To the best of our knowledge this is the first approximate algorithm to
solve dynamic nearest neighbour searching inside a polygon with holes. The novel use of
geometric algorithms contribute to the research in the field of computational geometry, and
can serve as an inspiration for future research.

6.1 Future Work

In future research there are two main areas that we could find improvements. We can still
make significant progress to lower the time complexity of the case in a simple polygon, and
we can work towards solving the fully dynamic case for a polygon with holes.

In out solution for the simple polygon, we have a term that is at worst O(m), which is a
significant detriment to the performance. We know from Agarwal, Arge, and Staals [3, 1]
that we can solve the exact case efficiently, so we should be able to find a more efficient
algorithm for the approximate case.

We believe that it is possible to transform our solution for the offline case for a polygon with
holes, into a solution for the fully dynamic case. To achieve this, we need two things. The first
thing we need to be able to do, is do efficient insertions and deletions in our one dimensional
Voronoi diagrams. Since these diagrams are a lower envelope of simple functions, we believe
that we can create efficient dynamic data structures by using the work from Chan [9, 10].

Currently we need to include the sites and the query points in the construction of the data
structure from Thorup [25], we currently need to include the sites and query points for
two reasons. The first is that the separators themselves are based on all the points, so by
removing the sites and query points, the separators would change. The second reason it
that during construction, we can efficiently get all the O(k) connection points on all the
separators for all the points.

We believe that it is possible to only use the vertices of the polygon and holes to create
this data structure, and to efficiently calculate the O(k) connection points of the sites and
queries. The separators would now only be based on the vertices, but since the sites and
query points are effectively zero dimensional points, we should still get separators that allow
us to do nearest neighbour queries. The problem lies in finding these connection points. To
know if it is possible, and how to achieve this, we would need a deeper understanding of the
algorithms and data structures from Thorup.
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If we build the separators using only the vertices, we get that it is possible for a query point
q and a site s to be in the same triangle, and their path doesn’t cross a separator. Inside each
triangle we can use a dynamic nearest neighbour algorithm and data structure for planes,
for example, we could use our work from section 3. If we are able to only use the vertices, we
could use static Voronoi diagrams in the offline case. Our query then splits into two parts,
finding the closest site in the same triangle, and finding the closest site on all the separators.
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