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Introduction and Literature Review

1 Human-computer Interaction and Brain-Computer Inter-
faces

Human-Computer Interaction (HCI) is the study of how people interact with computers and other
technologies. It is a broad study that involves the design, evaluation, and implementation of inter-
active systems and technology that are effective and easy to use. The concept was introduced with
the first general-purpose computer, the Electronic Numerical Integrator and Calculator (ENIAC), in
1946. Rising with the appearance of Graphical Computer Interfaces, it has developed into a broad
and growing field with applications in nearly all technological devices [Sinha et al., 2010]. As technol-
ogy is everywhere nowadays, the interaction between it and humans plays a vital role. Although this
interaction can usually be understood as a person using a PC, many different ways of communication
have appeared. On this line, Brain-Computer Interfaces (BCI) have become of interest for different
applications.

BCIs are communication systems designed to allow external technological devices, such as com-
puters, to be controlled through brain activity [Nicolas-Alonso and Gomez-Gil, 2012]. Many dif-
ferent implementations in HCI have been appearing with the growing interest in the technology.
Some remarkable examples of this are BCIs for games [Gezgez and Kaçar, 2021, Glavas et al., 2022,
Nijholt et al., 2008], education through or of technology [Gezgez and Kaçar, 2021, Glavas et al., 2022,
Hernandez-Cuevas et al., 2020], or user experience evaluation [Cano et al., 2022, Diya et al., 2019].

However, one of the main characteristics differentiating BCIs is that they do not involve motor
movement, making them a powerful tool to offer people with motor disorders a new and functional way
to use technology [Wolpaw et al., 2000]. This opens the door for better adaptation and user interaction
[Zickler et al., 2009]. BCIs have already been proven to provide people with these types of disorders
helpful tools such as movement control of prosthetics [Dhanabalan et al., 2022], technology-aided com-
munication [Kundu and Ari, 2022], environmental control [Jeyakumar et al., 2022, Leeb et al., 2015],
wheelchair locomotion control [Pawuś and Paszkiel, 2022], and even for helping in neuro-rehabilitation
[Bamdad et al., 2015].

2 Brain-Computer Interfaces’ systems

Any BCI system is composed of three main elements. These elements are generally classified between
signal acquisition devices, signal processing and translation methodologies, and effector devices (see
Figure 1) [Ortiz-Rosario and Adeli, 2013]. For each of these elements, different technologies and
methods are and have been developing, as each of them presents various advantages and drawbacks.

2.1 Signal acquisition devices

Signal acquisition is the process of measuring brain activity and translating it into signals. To
do this, many approaches can be used, but all of them expect to obtain a sufficient spatial and
temporal resolution to be able to translate these signals to specific actions. Some of the lead-
ing technologies used in BCIs are electroencephalogram (EEG), magnetoencephalography (MEG),
functional Magnetic Resonance Imaging (fMRI), and electrocorticography (ECoG) [Min et al., 2010,
Ortiz-Rosario and Adeli, 2013].

EEG is a non-invasive method that uses metal electrodes on the scalp to measure the electric po-
tentials resulting from neuronal activity. It is the most widely used technology for BCI applications.
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Figure 1: Basic elements of BCI systems. Created in BioRender.

Its advantages are that it provides very high temporal resolution and is portable, allowing real-world
neuroimaging. However, EEG has a low spatial resolution, as each electrode covers a significant area
of the brain, giving low accuracy in spatial information [Casson et al., 2018].

MEG is similar to EEG but measures magnetic fields instead of electric potentials. Its charac-
teristics are the same as with EEG, although it presents better spatial resolution [Min et al., 2010].
However, MEG devices are expensive and big, requiring special settings, making them irrelevant for
real-life applications.

fMRI functions by measuring Blood Oxygenation Level Dependent (BOLD) through magnetic res-
onance, being a non-invasive technique. This is possible because blood flow levels change depending on
brain activity, so it is possible to obtain brain activity information by measuring these changes. It has
been demonstrated that an increase in neural activity is usually followed by an increase in the blood
supply that provides neurons with the required energy [Ladecola, 2017]. However, fMRI machines are
costly and require special facilities and personnel, making it difficult to make them scalable. Apart,
subjects must remain very still, resulting in an approach that is difficult to directly implement in BCI
[Min et al., 2010].

Finally, ECoG is a technique that is also based on the placement of electrodes to record brain ac-
tion potentials. However, contrary to EEG, ECoG is an invasive technique, as the electrode is placed
directly on the cortex, requiring surgery. This technique allows the obtention of signals with both high
temporal and spatial resolution. However, the field of view is limited to the exposed area of the cortex
[Winn, 2022]. For other non-invasive used techniques and their characteristics, (see Table 1).

It is to be noticed that other invasive techniques based on intracortical electrophysiology exist,
being an important research area [Durand et al., 2022]. It has been demonstrated that it can be used
to monitor cortical neural populations in freely behaving non-human primates [Yin et al., 2014] and
humans [Paulk et al., 2022]. As a drawback, the implantation of the needed electrodes must be done
through open-brain surgery, causing tissue damage and degradation of the materials and signal quality
[Mahajan et al., 2020].
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Method Measurement
Temporal
resolution

Spatial res-
olution

Limitations Examples

EEG
Electric poten-
tials of cortical
activity

Very high (1
ms)

Coarse (1 cm)
Spatial resolu-
tion and super-
ficial

[Abiri et al., 2019,
Torres et al., 2020]

MEG
Magnetic fields
of cortical ac-
tivity

Very high (1
ms)

Coarse (1 - 2
cm)

Spatial resolu-
tion and super-
ficial

[Dash et al., 2020,
Rathee et al., 2021]

fMRI

BOLD
changes in
susceptibility-
weighted MR
signal

Low (1 – 2
s); limited
by hemo-
dynamic
delays

Very high (3 -
6 mm).

Temporal reso-
lution, expen-
sive, needs still
subjects

[Du et al., 2022,
Sorger and Goebel, 2020]

Near-
infrared
Spec-
troscopy
(NIRS)

BOLD changes
in the absorp-
tion spectrum
of near-infrared
light

Medium (0.5
- 1s); lim-
ited by hemo-
dynamic de-
lays

Coarse (0.5 -
2cm)

Spatial res-
olution, no
information
about brain
structure

[Han et al., 2020,
Wang et al., 2021]

Functional
transcranial
Doppler
sonography
(fTCD)

Blood flow
velocity as-
sociated with
neuronal activ-
ity

Medium (0.5-
1s)

Limited to
the vascular
territory of
the insonated
artery

Spatial resolu-
tion

[Khalaf et al., 2019a,
Khalaf et al., 2019b]

Table 1: Most extended brain imaging methods for BCIs. Extracted from [Min et al., 2010]. Data extracted from
[Kamrani, 2014].

2.2 Task definition and signal processing

2.2.1 Task definition and understanding

The first step in making BCI work is not only to use the right technology, but also to have a deep
understanding of the task to be performed. This is necessary to ensure the best possible performance
of the devices used. Firstly, some devices do not cover the whole brain, so positioning is key to their
acquisition. Once the task is known and understood, it is possible to define where the device should be
positioned to obtain the most relevant information. In addition, in order to better control the devices,
it is also essential to understand where and what patterns of activity are taking place when the tasks
are performed, in order to relate them to specific actions.

To better describe this brain activity, cognitive models have been introduced. This understanding
of the underlying processes in the human mind dates back to the ancient Greeks. However, it was not
until Ulric Neisser published his book ’Cognitive Psychology’ that this study became a separate area
of psychology [Neisser, 1997]. However, this discipline had been studied by many psychologists before,
who began to develop cognitive models to explain these processes and to try to reproduce and predict
the human mind.

Today, these models have evolved into computational cognitive models, which deal with the sim-
ulation of human problem solving and mental processes in a computerised model. These models
are widely used in HCI research because they can create more efficient and accurate user models
[Dupret and Piwowarski, 2008], and specifically in BCI, they can help predict user intentions. Fur-
thermore, cognitive models can be used not only to understand the task at hand, but also to improve
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the BCI training of the user and to decode the information obtained from brain activity measurements.
However, current computational cognitive models are still limited by technology and by the current
limited understanding of the human brain, which means that current models are usually unable to
represent the full complexity of a process. A better understanding and deeper research into this issue
is fundamental to understanding how and which brain regions are important for specific tasks in BCI.

Once the task has been defined and prior knowledge of how the task is processed in the brain has
been acquired, the instruments and post-processing can be carried out with more information, leading
to better results.

2.2.2 Methods for signal processing

There is a wide range of methods for processing and translating the signals. In general, signal process-
ing involves feature extraction and feature classification or translation. Feature extraction techniques
are usually divided into time-frequency and spatio-temporal techniques. Within these groups, many
different approaches can be used and new ones are emerging frequently [Pawar and Dhage, 2020]. De-
pending on the imaging technique used and the type of application, one method or another may
be more appropriate. Some common examples of signal processing techniques are linear discrimi-
nant analysis [Dodia et al., 2019, Fu et al., 2019, Lo et al., 2022], support vector machine algorithms
[Maher et al., 2023, Singh and Singh, 2020, Xu et al., 2019] or CNNs [Fahimi et al., 2019, Roy, 2022,
Zhu et al., 2019].

Once the features have been extracted, it is necessary to classify the signals in order to predict the
user’s intentions. Again, there are many ways to perform these classifications, the most widely used
being machine learning or deep learning techniques [Aggarwal and Chugh, 2019]. Although many dif-
ferent methods have been used, each individual technique, or even the use of different combinations of
them, still has several problems, including: not being suitable for the data analysed, difficult interpre-
tation, problems with overlapping data, achieving a high enough accuracy of classification, overfitting
the data, needing ground truth to evaluate the method, among many others. Each of these tools
also has individual issues that need to be considered when using them, ranging from computational
requirements to the need for predefined parameters.

2.3 Effector devices

Once the signal has been processed and translated, the command extracted from it must be sent to
the effector device. Effector devices can take a variety of forms depending on their purpose. Many
different effector devices that use BCI to receive information have been studied, particularly from an
HCI perspective where more effective devices are being researched.

Effector devices are not only computers directly controlled by BCI systems [Kumar and Sharma, 2012],
but also include a wide range of technologies. In Vasiljevic et al. [Vasiljevic and de Miranda, 2020], a
review of different games using consumer devices is conducted. The devices used as effectors in this
review include game consoles, PCs, mobile devices and websites. The review also includes applica-
tions of BCI information in technologies such as adaptive systems involving cognitive state recognition
[Cutrell and Tan, 2008] or emotion recognition [Li et al., 2009]. BCI signals have also been used to
evaluate user experience in interactive systems [Cano et al., 2022], where the effector device is not
directly applied, but by evaluating the brain signals when using a particular application, to control
prosthetics [Gannouni et al., 2020], to enhance the VR/AR experience where the effector device is
the VR/AR glasses [Zhang, 2021], or even for music composition and performance where the effector
device includes a loudspeaker [Williams, 2019].
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As reviewed, many different technologies and methods can be used as BCIs. However, existing
neuroimaging techniques are still limited and present many problems for more accurate and func-
tional BCIs, such as low temporal resolution, low spatial resolution, invasiveness, low brain coverage,
long training periods, or failure to function between subjects [Mridha et al., 2021]. Therefore, there
is a need to develop new technologies that can provide brain imaging with high temporal and spatial
resolution. There is also a need to develop a validated, reliable and robust way of processing the infor-
mation extracted from these new techniques. One promising technology currently under investigation
is functional ultrasound imaging, where the Urban Lab at NERF is conducting significant research to
improve brain imaging and decoding.

3 Functional Ultrasound Imaging

3.1 Principle of Functional Ultrasound Imaging

Functional Ultrasound Imaging (fUS) is a hemodynamic neuroimaging technique that measures blood
volume using power Doppler imaging. Unlike the beam scanning commonly used in ultrasound tech-
niques, fUS uses planar illumination, which increases the number of samples per pixel and therefore
sensitivity [Émilie Mace et al., 2011]. By combining these planar images using compound imaging,
it is possible to obtain images with a high signal-to-noise ratio and good temporal resolution (up to
10Hz), which is also determined by the computer hardware optimisation software used to process the
raw data. The spatial resolution depends directly on the pitch of the ultrasound transducer used,
which also determines the depth of field (typically in the range of 100-300µm3 and up to several cm
in depth). Recording repeated images over time allows us to track relative changes in blood volume
per voxel, which in turn reflects changes in neuronal activity [Nunez-Elizalde et al., 2022]. To avoid
interference of the skull with the ultrasound, all data is obtained through a cranial window, making
fUS a minimally invasive technique.

There are many features that can be considered when comparing brain imaging techniques. The
most important are spatio-temporal resolution, brain coverage and restraint method. Although other
techniques can surpass the spatio-temporal resolution of fUS, it is important to note that this tech-
nology offers full brain coverage, which differentiates it from other techniques. To better compare fUS
with other technologies, we need to look at the whole picture (see Figure 2).

As can be seen, fUS covers a wide range of spatio-temporal resolution comparable to many other
techniques, achieving temporal resolutions that, for example, fMRI cannot achieve, or spatial resolu-
tions that neither fMRI nor EEG can achieve. Furthermore, although the temporal resolution of fUS
is lower than that of EEG or neuropixel, the latter measure electrical signals that are much faster
than those measured by fUS, which are haemodynamic signals. Apart from these advantages, fUS has
also become a tool applicable to behaving animals [Urban et al., 2015] and has even been scaled up to
humans [Demene et al., 2016, Soloukey et al., 2020].

3.2 Linear fUS vs volumetric fUS

When referring to fUS, we can now distinguish between two different techniques: linear and volumetric
fUS. Linear fUS (lfUS) provides 2D images down to a depth of several centimetres, with a spatial res-
olution of ∼100x300x100µm3 and a temporal resolution of up to 10Hz. The higher quality images of
brain haemodynamics obtained with linear fUS have already proven useful for single-trial decoding of
the timing and targets of an intended oculomotor [Claron et al., 2021, Dizeux et al., 2019] and limbic
[Norman et al., 2021] movement in large animals. This demonstrates that the technology already has
the potential to be used in broader BCI applications.
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Figure 2: Comparison of brain imaging techniques in terms of spatiotemporal resolution, applicability conditions and
type of signal.

Although linear fUS has proven useful for these applications, it is limited to cross-sectional imag-
ing, which hinders direct visualisation of the whole brain. In order to perform whole-brain imaging
with linear fUS, it is necessary to move the probe to multiple positions [Émilie Mace et al., 2018]. The
problem with this is the need to repeatedly present the stimulus in different positions, which requires
more acquisition time and can lead to habituation of the animal [eun Kang Miller et al., 2018]. In
addition, the need to move the probe results in the loss of a significant amount of brain activity due
to its distribution throughout the brain [Montaldo et al., 2022].

To overcome these limitations, a 2D array transducer was used by Rabut et al. [Rabut et al., 2019]
to obtain 3D images directly in anaesthetised rats. However, this first attempt had several limitations,
such as the decrease in frame rate, the fact that they used acute conditions, and the anaesthetics, which
have been shown to alter the haemodynamic response [Schlegel et al., 2015]. For this reason, further in-
vestigations to improve volumetric fUS (vfUS) were carried out by Brunner et al. [Brunner et al., 2020].
In their work, they developed a vfUS system suitable for real-time 3D imaging of awake subjects with
high spatial (∼220x280x175µm3) and temporal (up to 6 Hz) resolution, allowing scanning of almost
the entire rodent brain.

3.3 General pipeline for data analysis

With the images obtained by fUS, known as power Doppler images (Figure 3 B), the next step is
to register the data. Registration relies on a geometric transformation to fit the data to a ref-
erence map of the brain, such as the Paxinos rat brain atlas or the Allen CFF (Figure 3 C)
[Paxinos and Watson, 2006, Wang et al., 2020]. This procedure facilitates the comparison of different
animals and provides a basis for region-averaging procedures. The different trials in a fUS recording
can be used to measure blood volume over time and create an activity map. This activity map can then
be averaged per region defined in the atlas used, maximising the signal-to-noise ratio and providing a
temporal map for interpretation (Figure 3 E). It is then possible to proceed with signal processing and
interpretation. In this work, we will explore alternatives to facilitate interpretability and visualisation
in this step.

The problem with obtaining whole-brain images, particularly when using vfUS, is that the amount
of information obtained is very large, on the order of 150 full-brain images per experimental trial at a
resolution of ∼150µm3. Although region averaging can provide useful results, it is important to note
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Figure 3: fUS process to interpret brain activity. (A) Record fUS images for a specific experimental setting. (B)
Obtain the multiple power-doppler images recorded through the probe. (C) Register each of the images on the decided
Atlas to facilitate intra-animal comparison and further steps. (D) Average the signal obtained for each of the pixels
on a specific region, to obtain a single image per region. (E) Create a temporal map containing the temporal trace of
activity per each of the brain regions. (F) Proposal of this work for further analysis. It consists of the clustering of the
different temporal traces to identify specific activity patterns and facilitate the inspection of brain behaviour, leading to
a simplified way to decode specific stimuli. Created in BioRender.

that it can lead to misinterpretation of data [Poldrack, 2007] or loss of important cues [Constable, 2006].
However, this technology opens the door to new paradigms that combine traditional analysis methods
with whole-brain imaging for brain decoding purposes.

4 Animal models in BCI research

Although fUS is a promising technology for BCI, it is still in its developmental stage, with studies being
conducted primarily in animal models. Although the ultimate goal of BCI is to be applied to humans
to open up new ways of communicating between them and different technologies, some studies are still
not possible directly in humans. When doing basic research to improve the results of any technology,
especially when exploring new areas, studies with humans become very limited. This is where the
importance of animal models comes in, as various studies can be carried out in vivo for future human
application, taking into account ethical issues. There are many advantages to using animals in re-
search. Firstly, it is possible to use invasive techniques in animals that would be ethically questionable
in humans. In addition, more advanced recording methods are available for smaller animal models
such as rodents. There is also the possibility and affordability of using larger numbers of subjects, as
animal testing is more readily available than human testing. In addition to the use of rodent animal
models, for example, there is an increase in possibilities and experimental settings. These include
genetic tools to create and study different defects, physical tools such as circuit manipulation, or more
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invasive histology.

It is well known that mammalian species have conserved many characteristics and advanced brain
functions. As a result, animal models have already contributed to the translation of the first BCI
technologies to humans. The use of animals allows us to understand more specific and potentially
relevant issues in decoding brain activity and to apply this knowledge directly to humans. Although
fUS technology has been used in larger mammals, whole brain imaging is not possible in larger brains.
Therefore, the use of rodents opens up new opportunities to study and better understand how pro-
cessing takes place throughout the brain.

5 Proposal

In this thesis I propose a pipeline to facilitate the implementation of vfUS data in BCI systems. As
mentioned above, vfUS data allows us to obtain whole brain images. In this case, it is possible to
obtain images with a frame rate of 6Hz and a resolution of ∼200µm3. This allows us to combine and
compare information from different regions to understand how specific processes in the brain work,
which can have a major impact on understanding brain processes for BCI. The main aims of this
research are twofold.

First, I pretend to build a pipeline to visualise high-dimensional data in a way that allows insight
into a given stimulus. To achieve this, an initial stimulus, denoted A, is administered to rodents and
the resulting circuit activity is visualised by region averaging. Subsequently, a second data set, denoted
B, will be acquired and analysed in relation to the first data set. The aim of this analysis is to com-
pare the brain’s response to both stimuli, allowing researchers to identify regions of interest that show
notable differences between the activity evoked by stimuli A and B. These differences may manifest
as increased or decreased activity within specific regions, or changes in the type of activation. Various
clustering techniques, such as k-means or hierarchical clustering, are used to classify atlas-based brain
regions according to different activity patterns. The different cluster changes in each brain region
between stimuli A and B will then be visualised. This process aims to enable the tracking of specific
brain regions and activity changes between different and specific stimuli.

The second objective is to propose a region selection method to determine ROIs for further study.
This will allow the direct use of fUS data to classify two related stimuli. To evaluate the effectiveness of
the proposed region selection method, its classification performance will be compared with alternative
approaches. The aim of this study is not to introduce a novel classification methodology, but rather to
explore how a robust analysis pipeline can enhance our understanding of brain processes and influence
the selection of relevant regions for stimulus classification using pre-existing, explicable models. To
validate the usefulness of the proposed pipeline in identifying relevant regions, we will compare the
performance of cluster-based selected brain regions with those selected based on prior knowledge or
data-driven methods. In addition, the study will investigate the significance of whole-brain imaging
data compared to cortex-only data for stimulus classification. This comparative analysis will provide
insight into the performance of simpler imaging techniques relative to more comprehensive data ac-
quisition methods. The whole study proposal can be seen in Figure 4.

For this research, the stimuli used to explore new ways of interpreting and classifying fUS data will
consist of two different thermal stimuli applied directly to rodents. The first stimulus will be a 40ºC
thermal stimulus, which is considered to be non-painful. The corresponding stimulus that we will be
trying to decode will be a 50ºC stimulus, which is considered painful when applied to the subjects.
Painful stimulation is known to cause changes, not only in brain activity, but also in the animal’s
behaviour. These changes and movements will mimic real life conditions where brain waves are not
perfect and many different disturbances can be found.
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Figure 4: Research proposal including process, obtained results and potential benefits of every part.
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Research Methodology

For this study, the first step consists of using region-averaged data (see section 1. Data set) to cluster
the different activity patterns and visualize them in a comprehensive way (see section 2. Large-scale
functional data visualization). Then, the process will be used to select ROIs for stimuli classifica-
tion and compare its performance to other region-selection methods (see section 3. Region-selection
for stimuli classification). The process and methodology will be further explained. An overview of
the steps can be seen in Figure 5.

Figure 5: Process of this Master Thesis. (A) Get data from two different stimuli. (B) Region-averaging and single-
trial averaging will be performed in the data after registration to obtain the temporal map. (C) The region-averaged
data will be clustered using the best method in order to find activity patterns. (D) From the clustering, an analysis will
be conducted to find the regions that are of most interest when differentiating both conditions. Together region selection
methods will be used to compare results. (E) Single trial will be used to compare how different region selection methods
perform when classifying the stimulus (G) We will obtain a classification method that is able to distinguish between the
two conditions. Created in BioRender.

1 Data-set

1.1 Volumetric Images

The first step to obtain or data set will be to register the data obtained through vfUS, following the
typical fUS pipeline, which includes fitting the data in a brain map. In this case, we will use the Allen
Mouse Brain Reference Atlas [Wang et al., 2020]. An average of the brain regions will then be made,
leaving a temporal map for analysis. Using clustering techniques, we will analyse the region-averaging
data of the two thermal stimuli (painful and not painful), to determine which regions are of interest
to differentiate them.
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For the dataset used in this work, 5 different subjects of Wild type mice were subjected to three
different thermal conditions, directly applied to their right paw, in different sessions. In each session,
the animals under came 5 rounds of 5 different thermal stimuli. The presented stimuli included: one
time a 30ºC stimuli, three times a 40ºC stimuli, and one time a 50ºC stimuli (which induces pain in the
subject), with randomized appearance per round. The 30ºC stimuli is just used as control condition.
On the other hand, the 50ºC stimuli was only presented one time in each round to avoid inflammation
or burns in the animal that could induce pain sensibilization. In total, the animals were subjected to
27 different sessions, with 5 rounds each, having a total of 675 trials (see Figure 6A).

Figure 6: Dataset used in the work. The numbers represent the number of frames. (A) Original dataset, with all
the trials. (B) Averaged dataset. (C) Registration in the Allen brain Atlas. (D) Region Averaged signals.

In each session, volumetric images of the brain were acquired using a fUS probe composed of a 2D
matrix of ∼1,024 piezoelectric elements of 300µm3 at 15MHz. The probe covered the full volume of
the brain (∼1cm3 in rodents). A direct computation of the fUS images was performed, resulting in
images obtained at a frame rate of 2Hz and with a resolution of ∼150µm3. A total of 150 images per
stimulus were obtained, meaning a total of 750 images per experimental round.

1.2 Temporal Traces

To simplify intra-animal comparison, the images were then registered in the Allen Mouse Brain Refer-
ence Atlas and segmented into 229 regions per hemisphere (see Figure 6.C). The used regions in this
work can be seen in Annex A.

A neural signal can then be obtained for each voxel on every image of each stimulus inside a trial.
This means that for a round, each voxel had a signal for the 30ºC stimuli, three for the 40ºC, that were
then averaged, and one for the 50ºC. Once this was obtained, an average of all the signals per each
round inside a session, and then an average of all the sessions was performed (see Figure 6.B). This
was done to obtain single-trial data and to have signals with lower noise-to-signal ratio. This results
in time-series of 150 data points for each of the different stimuli. The signals represent the values of
hemodynamic activity ranging an amplitude between ∼ -24 and ∼24 (∆I/I) (see Figure 7), where
∆I/I represents the normalization given a baseline of the doppler signal obtained.
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Figure 7: Example signal of neural activity extracted from a fUS recording.

To obtain a more general view of the whole brain and reduce the dimensionality of the data,
each voxel was assigned to one of the 229 regions, based on the Atlas. Then, an average of all the
signals of the voxels corresponding to a specific region was performed, to obtain a single temporal
trace per region. This resulted in 458 temporal traces (229 per hemisphere) for each of the different
stimuli (see Figure 6.D). In this case, we will use the data for the 40ºC and 50ºC stimuli. The
data will be used as a standard case of decoding an evoked activity by looking for the difference
between the two temperatures. The 50ºC pain evoked data set will also be used as a replication of
real-world applications where there are no perfect signals, as the behavioural changes in the animal are
expected to be inferred from the signals. Studying this data will provide insight into the contribution
of perturbations to regular activity and help identify which regions can be used for fine decoding.

2 Large scale functional data visualization

Due to the high dimensionality of the data obtained (∼120,000 voxels), the analysis of fUS signals
is not an easy process. Not only the volume, but also the fact that they are time series can make
their comparison and interpretation particularly difficult. In this paper, we propose a cluster-based
approach based on grouping the data according to their activity pattern to facilitate their interpreta-
tion. This method makes it possible to find differences in activity between regions and conditions in a
more straightforward way with further reduced dimensionality (d=K).

However, the clustering of any type of data depends on the used methodology, which needs to be
selected and adapted to the analysed dataset. The clustering process is generally divided into three
different steps (see Figure 8) [Guyon et al., 2009].

1. Feature selection: here the parameters and information that will be used for clustering are
set.

2. Clustering: different algorithms can be used to separate the data into different groups.

3. Evaluation of the results: different measures are used to quantify how relevant is the grouping
of the data.

The choice of methodology can have a major impact on the results of clustering. For this reason,
different approaches are reviewed in this paper. However, as the aim is to facilitate the implementation
of fUS data into BCIs, we have chosen well-established, intuitive and computationally efficient methods
to make the pipeline more generalisable and easily applicable.
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Figure 8: Generalized clustering process for a dataset. The model selection needs to be validated and changed if
results are not relevant. Created in BioRender.

2.1 Feature selection

We call each input variable that is given to the clustering model a feature. Although it is possible
to use the raw data, this can sometimes be problematic as the model may use unimportant features
to group the data and learn from noise. Therefore, the important parameters of the data must be
selected. A common way of doing this in time series analysis is to rely on certain signal parameters,
such as amplitude or time-to-peak [Krishnan and Athavale, 2018]. However, these types of parameters
are difficult to determine in fUS signals because of the variability/noise in the signal (see Figure 9).

Figure 9: Comparison of measuring signal features in a sin signal vs a fUS signal. It can be observed that in a fUS
signal is very complex to choose which or where to measure possible features.

That is why it is necessary to investigate different approaches that minimally imply the use of
engineered features and observe their advantages and drawbacks.

2.1.1 Dimensionality reduction

When processing large amounts of data, it is a common practice to use dimensionality reduction tech-
niques to improve the computational time and the amount of data required to sample the input space
properly. It is well known that increasing the dimensionality of the data leads to an exponential in-
crease in the amount of data needed to sample the input space properly [Shashmi, 2021]. In addition,
reducing the dimensionality of our data can help eliminate the irrelevant features, resulting in better
outputs [Maaten et al., 2009]. It should be noted that dimensionality reduction is not useful in all
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cases of data analysis. In this work, we will try two different dimensionality reduction techniques on
the raw data to compare their results. These two methods were chosen because they are widely used
methods that have shown good performance and because their specific characteristics are relevant for
our data.

Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that transforms the data into a set of orthogonal
components that maximise the variance explained in the data set. PCA applies an orthogonal trans-
formation to the data, which consists of a linear transformation represented by orthogonal matrices
composed of orthogonal vectors of unit norm. This results in the projection of our original features onto
the space defined by the principal components [Kurita, 2019]. We will use PCA because it is a well-
established and efficient technique for dimensionality reduction and is able to detect multicollinearity,
thus avoiding the use of data that does not provide additional information. Furthermore, PCA focuses
on retaining the maximum amount of variance with the minimum number of components, making it
relevant to our specific needs.

When using PCA, we need to decide how many principal components to use for further investiga-
tion. This is usually done by observing how much variability within the data is represented by each
component. Plotting this information results in a curve with the number of components on the X-axis
and the variance explained on the Y-axis. Generally, the inflection point of this curve indicates the
appropriate number of components to choose.

Independent Component Analysis (ICA)

ICA tries to decompose the time series into the maximum number of independent components. Al-
though it is usually used for blind source separation, it can also be used as a dimensionality reduction
method [Hastie et al., 2009]. To do this decomposition, ICA relies on the central limit theorem that
states that any linear mixture of independent random variables will have a higher Gaussian distribu-
tion than the original variables.

In other words, ICA tries to rotate the axis of the data, while minimizing the Gaussianity of the
data projected on the axis. When the Gaussian distribution is at its lowest, ICA can recover the
independent components of the data. Normally, the number of components to be chosen is determined
through PCA. We decided to include ICA into the analysis as it is specially fitted for non-gaussian
data and can help disentangle underlying variation factors in the data.

2.2 Clustering techniques

The clustering of data can be done using different machine learning algorithms that find hidden pat-
terns in unlabelled data to group it into different clusters. This is known as unsupervised machine
learning. Depending on the data that is needed to be analysed, one algorithm or another may be
used. In this case, we need algorithms that are suitable for a large amount of data. In Macé et
al. [Émilie Mace et al., 2018] a K-means algorithm was successfully used to identify activity patterns,
demonstrating that FUS data can be analysed without using too complicated methods. Therefore, in
this work we decided to try three different clustering algorithms to compare their results.

2.2.1 K-means Clustering

K-means clustering is one of the more extended clustering algorithms because of its characteristics.
This includes implementation speed and simplicity; good performance with large amounts of data; and
flexibility in the distance measures used [Sinaga and Yang, 2020]. K-means works by first randomly
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selecting k centroids, with k being selected a priori as the number of resulting clusters. Then, it per-
forms iterative calculations to optimize the position of the centroids. Finally, it calculates the distance
of the data points to the centroids and assigns each point to the nearest centroid (see Figure 10)
[Hastie et al., 2009].

Figure 10: K-means process. (1) The data to be processed in the n-dimensional space. (2) The centroids are
randomly decided, and each datapoint is assigned to the closest centroid. (3) The centroid is corrected so it is in the
centre of the datapoints assigned. (4) The datapoints are assigned to each centroid depending on the new distances to
them. This process is repeated iteratively.

The main drawback of this method is that the number of clusters needs to be selected a priori. To
better determine this, we will use several methods that will be further explained in 2.3.

2.2.2 Agglomerative Clustering

Agglomerative hierarchical clustering is also a useful method for large amounts of data. This algorithm
works by first establishing each data point as a cluster of its own, to then take the two nearest clusters
to join them into a new single group. This process is iteratively repeated until the desired number of
clusters is reached (see Figure 11). This algorithm suffers from the same problem as k-means, as the
number of clusters has to also be set a priori. However, it can also be replaced by setting a distance
threshold. This technique is not only interesting because of the output clusters, but also because it
is possible to extract a dendrogram that graphically represents the order in which factors are merged
[Pedregosa et al., 2011]. This can be useful for extracting more information from the analysis. For our
specific data, this can help us understand how the different activity patterns relate to each other.

2.3 K-shape Clustering

K-shape clustering is a clustering algorithm based on the K-means algorithm. However, K-shape is
specifically designed to cluster time series based on their shape. It does this by using as its distance
measure a normalised measure from the cross-correlation method, which gives a shape-based distance
between two time series. Note that this means that K-shape clustering works in the same way as
K-means but changes the distance measure. As with K-means and agglomerative clustering, K-shape
requires the number of clusters to be specified before grouping [Paparrizos and Gravano, 2015]. We
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Figure 11: Hierarchical clustering process. (1) The nearest points on the data are clustered together. (2-3) The
nearest clusters are merged in an iterative process until meeting the number of clusters specified. (4) Final result.

decided to use this method because is especially suited to cluster depending on the time series shape
rather than deciding by the data distribution.

3 Performance evaluation

As proposed, we will evaluate the different combinations between dimensionality reduction techniques
and clustering algorithms described above. First, we will evaluate the feature selection to decide which
data is appropriate to use for the clustering. Once this has been decided, the different clustering
algorithms can be evaluated to choose the more significant combination.

3.1 Feature Selection evaluation

Before determining the most appropriate combination, it is necessary to examine the performance of
the dimensionality reduction techniques. To do this, the explained variance plot is first used to select
the optimal number of components using the inflection point of the curve. Once this is done, it is
possible to plot the principal components of the data to observe how they are distributed in space and
whether the partitioning of the components makes sense [Hastie et al., 2009].

It is important to note that if the minimum number of components that appear to explain a high
level of variance does not have a clear partition or does not appear to be significant, it is not useful to
increase these components.

3.2 Clustering Algorithm evaluation

Once the data to be input has been evaluated and selected, the different clustering algorithms can be
applied to it to evaluate the output. Various metrics can be used to evaluate the quality of a clustering
by examining the similarity within a cluster and with the other clusters. Some of these metrics can
and will also be used to determine the optimal number of clusters within a clustering algorithm. Since
in this case we are using data without known labels, also known as ground truth, the evaluation must
be done using the model itself.
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3.2.1 Silhouette coefficient

The silhouette coefficient is a number defined by two different scores for each data point. The silhouette
score s for a single sample is defined as:

s =
b− a

max(a, b)
(1)

Where a is the mean distance between the datapoint and all the other samples within the same
cluster; and b is the mean distance between the datapoint and all the samples of the nearest cluster.
To obtain a score for each clustering algorithm, the mean of the different scores is used. The result
is a number between -1 and +1, with 0 indicating overlapping clusters. This coefficient is also used
to validate the correct number of clusters that should be used as input for the clustering algorithms
[Pedregosa et al., 2011].

3.2.2 Calinski-Harabasz index

This index measures how similar is an object to its own cluster compared to other clusters. It does this
based on the distances between the samples of a cluster and its centroid to determine the intra-cluster
similarity. For the inter-cluster similarity, it measures the distance between the cluster centroids and
the global centroid of the dataset. The Index is calculated through the following equation:

CH =

∑K
k=1 nk||ck−c||2

K−1∑K
k=1

∑nk
i=1 ||di−ck||2
N−k

(2)

Where ck and nk are the centroids and datapoints of the kth cluster; N is the total number of
datapoints, and c corresponds to the global centroid. The higher the Calinski-Harabasz Index is, the
better the clustering separation is [Pedregosa et al., 2011].

3.2.3 Davies-Bouldin index

This measure is used to determine the average similarity of an individual cluster with the cluster most
similar to it. The clusters are better separated when this average is low, meaning that in this case, we
look for the smallest value. First, the similarity is defined as:

Rij =
si + sj
dij

(3)

With s being the average distance between each datapoint in a cluster and the clusters’ centroid,
and dij being the distance between the centroids of clusters i and j. Once this is done, the Davies-
Bouldin index can be calculated:

DB =
1

k

k∑
i=1

max(Rij) (with i ̸= j) (4)

With k being the number of clusters [Pedregosa et al., 2011].

3.2.4 Spearman’s Correlation coefficient

This coefficient is used to measure the similarity of the samples within a cluster. It measures the
strength of a monotonic relationship between paired data, being a generalized tool for correlation
analysis. Different to other correlation measures, Spearman’s coefficient does not rely on the linear
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relationship of the data, making it appropriate for high-complexity datasets. This is because Spear-
man’s correlation is not calculated directly through the numerical values of a dataset, but by its relative
order, known as rank. Its value can be defined by the following formula:

sc =
cov(R(X), R(Y ))

σR(X)σR(Y )
(5)

Where R(X) and R(Y) refer to the rank values of each compared dataset and σ to the standard
deviation. The coefficient can range from -1 to 1, with 0 meaning that there is no relationship between
the two time-series. This can be applied to find the difference between two individual signals, but
if the signals inside a cluster are averaged, it is possible to also find the similarity between clusters
[Hastie et al., 2009].

3.2.5 Euclidean Distance

The Euclidean distance measures the difference between two signals point by point. It requires the
signals to be of equal length, as it is the vector norm between two time-series. Other distance measures
can also be used in this type of data. Some of them, such as Dynamic time wrap, are specially used
to correct time shifts, which we want to avoid, as time shifts are relevant in our specific case.

In this case, and because of the complexity of the data, there is no numerical process to address the
quality of a distance measure. Therefore, we decided to use Euclidean distance because of its ease of
implementation and its direct availability in Python packages. However, as with any distance metric,
its results should be treated with caution due to potential limitations. The distance is defined by:

d = 2
√

a2 + b2 (6)

Its values range from 0 to infinity, where the bigger the number, the less similarity between the time
series exists [Hastie et al., 2009].

Using these different quantification methods and examining them, we will determine the best
number of clusters and the best clustering technique to group our dataset. It is important to mention
that any of these techniques are not always fully reliable when it comes to the outcomes, so they have
to be studied and decide if they can be used as a valid quantification for the clustering validity. In
case none of the techniques result satisfactory, other possibilities will be further studied.

3.3 Region-wise analysis

To decide the regions of interest that will be further analysed with single-voxel clustering, we will
first need to cluster the region-averaged dataset (see Figure 6.D), using the previously mentioned
techniques. The first step will be to decide on the use of the raw dataset or to use a dimensionality
reduction technique. Then, the number of clusters and the clustering technique will be chosen to
obtain k number of groups representing different activity patterns.

The data from the 40ºC and 50ºC conditions are clustered together to ensure that there is a
common basis for interpreting the data. This means that each cluster will contain a set of regions from
both the 40ºC response and the 50ºC response, which will later be split for visualisation purposes.
If we clustered the conditions separately, we would get different patterns for each, which would be
very difficult to compare. The aim of this section is to find those activity patterns that are exclusive
or stronger to the 50ºC condition, as they will be composed of those regions that encode the pain
response. The analysis will be based on observation and quantification through similarity measures
between the time series. We will use different visualisation methods for this, which will be chosen at a
later stage depending on the grouping and complexity of the results. In order to quantify how similar
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or dissimilar the different regions are, we will use different parameters to characterise specific clusters.
Although we have mentioned that these parameters are difficult to apply to fUS signals, by using the
average of the signals included in a cluster, the results may remain significant. The parameters have
been selected according to relevant features for fUS data found in [Lambert et al., 2022]. The features
that we will include are:

• Time to peak: time point corresponding to the first inflexion point after the stimulus onset.

• Full width at half maximum: the duration of the longest consecutive series of negative slopes
following the onset of the stimulus.

• Number of positive vs negative segments.

• Changes in the derivatives.

• Timepoint at half maximum: the point when the signal exceeds half the maximum value after
the stimulus has begun.

4 Region selection for stimuli classification

The next step relies on the findings of the previous session for inter-condition comparison. Here we
will try to classify the region-averaged data into two different conditions, the non-painful stimulus
and the painful one. Different region selection methods will be used to determine and compare their
performance.

4.1 Region selection methods

Three different methods will be used to compare and decide which regions perform better to classify
the different stimuli.

4.1.1 Data-based selection

The first approach we will use will rely on finding the individual accuracy scores for each region, and
then mixing that region with the rest of the highest-scoring ones. The process will be repeated until
the classifier starts to get confused with the addition of new regions. This approach will help us to
find a mix of regions with a high accuracy score, and also to identify the best number of regions to be
used before the accuracy decreases due to confusion of the classifier. However, due to a large number
of regions, we will not be using all the combinations possible, but only mix the best-performing regions
between them so the final result may not be the group of regions with the best performance.

4.1.2 Cluster-based selection

The first approach we will use will be based on the previous clustering. Through the observation of
the variations in activity patterns between conditions, we will select the regions with higher differences
between the stimuli, expecting that those regions contain important information for the identification
of each one.

4.1.3 Cortex regions

The goal of this selection method is to compare the performance of internal brain regions compared
to those in the cortex, to understand the implications of whole-brain imaging in BCI. To do so, the
individual performances of each individual region for a chosen classifier will be investigated. Not only
this, but through mixing the regions with better accuracy we will aim to find the region combination
that better performs in the classification of the stimuli. Then, we will observe the position of those
regions that show better performance and compare them to the performance of solely cortex regions.
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4.1.4 Knowledge-based selection

Finally, we will study the performance of regions that are known to be involved in the specific stimuli.
In this case, we will be studying non-painful vs painful stimuli, so we will use regions involved in pain
processing. Although the process of how pain is processed in the brain is not completely understood,
a common biological pathway related to it is the Somatosensory pathway [Tan and Kuner, 2021].
Therefore, we will use regions that are a fundamental part of this pathway.

4.2 Classification algorithms

To approach the classification, we will use supervised learning, which means that in this case the input
data will have a label: painful or not painful. However, due to the high dimensionality of our data,
using the raw signals for training can be problematic, as overfitting can occur and the models would
not perform well. In order to study this, we will select a set of parameters from the signals to be used
as features for the input to the classification algorithm, which will be selected after the clustering,
where we will see which features better distinguish the two conditions. Then we will compare the
performance of the raw signals with the extracted features. We will also use the individual trials of
each mouse for the classification, as we cannot use the average, as this would leave us with a single input.

Many different algorithms can be used for binary classification problems. These algorithms are first
trained on the labelled data to predict the label of new data not used for training. New algorithms are
being developed all the time. However, in this work we are not looking for the highest possible accuracy,
but rather for a better understanding of brain signals and how stimulus processing works. Therefore,
we will not explore complex algorithms or approaches, but will use the most common explicable models
to better understand the results. The algorithms we will explore in this thesis are the following.

4.2.1 Binary Logistic regression

Logistic regression is used for binary classification problems and is based on probability. Logistic
regression uses the Sigmoid function to map each datapoint into a probability value between 0 and 1,
instead of directly using a linear function that would not properly fit the data. This function can be
described as:

σ(x) =
1

1− e−x

This function will be used to predict the sigmoid function from the linear function y = ax + b to
obtain the function that bests fits our data. This means that for an input of x features represented
as a matrix X, with each feature having a weight w, we will be able to obtain a prediction value using
the function:

ŷ = σ(WTX + b)

Later, a threshold for the prediction value can be set to choose if a specific data point is assigned
to one condition or the other [Hastie et al., 2009].

4.2.2 Support Vector Machine

Support vector machine (SVM) algorithms have as objective finding a hyperplane in the data dimen-
sionality that can distinctly classify the datapoints, maximizing the distance of points in different
classes. To maximize this margin, the algorithm uses support vectors, which are the datapoints that
are closer to the set hyperplane. This results in a non-linear optimization problem. Given input vec-
tors of the features w ∈ Rp and a label vector y ∈ {1,−1}n the algorithm searches for w ∈ Rp and b
∈ Rp where the prediction given by sign(wT (x) + b) is correct for the largest number of samples. The
optimization problem that SV for classification solve can be described as
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min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi

subject to yi(w
Tϕ(xi) + b) ≥ 1− ζi

ζi ≥ 0, i = 1, . . . , n

Different than in logistic regression, SVM uses values higher than one and lower than -1 to set one
label or the other, being this the reinforcement range known as margin. To obtain this output, the
decision for a specific datapoint x is: ∑

i∈SV

yiαiK(xi, x) + b

The output sign of this equation will give the corresponding label for the sample [Hastie et al., 2009].

4.2.3 Decision Tree

Decision trees are machine learning models that use a set of hierarchical decision boundaries based on
the input data. Although it is very useful to understand the outputs, as it can be easily interpreted, it
is important to keep in mind that they are prone to major overfitting. To solve this issue, decision tree
models use pruning, a process that removes the unnecessary structures from the decision tree, reducing
its complexity. To determine these decision boundaries, the algorithm iteratively tries different split
points for our dataset and tries to minimize the cost function given by:

E =
∑
k

(pk(1− pk))

Where pk are the proportion of training instances of a specific class given an individual prediction
node. If the value equals 0, it means that the split outputs a single class 100% of the class, which
would be an ideal case. To stop this process from being infinite, some criterion to stop the construction
of tree boundaries needs to be set [Hastie et al., 2009].

In case these algorithms do not provide satisfactory results, we will use other classification methods
such as Näıve Bayes methods [Zhang, 2004], ensemble methods [Breiman, 1996], or supervised neural
networks [Sperduti and Starita, 1997].

4.3 Training the algorithm

In supervised machine learning, we need to train the algorithm before it can actually predict a label
for a data point. To do this, we need to split the data into training data, validation data and test data.
This must be done before any data is input to ensure that the splitting does not affect the model.
The training data will be used to train the model, while the validation data will be used to tune the
hyperparameters. Test data can then be used to evaluate the classification. Of our data, 70% is used
for training (80%) and validation (20%). To avoid bias in the model and to ensure that the results
do not depend on a simple partition, we will use 5-fold cross-validation, which means that different
groups will be randomly created from this data stack and each time four will be used for training while
one will be used for validation. Finally, the remaining 30% will be used to evaluate the classification
on data that has never been used for training.

The data we will use as input in the classification algorithm will come from the 675 single trials
(see Figure 6.A). Then, the different region selection methods will be used to get different groups of
regions from the single-trial dataset. This will leave us with various datasets composed of a limited
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number of features and characteristics of the signals corresponding to the selected regions of interest.
For each dataset, we will extract the features chosen in 2.4. Region-wise analysis Both the raw
data and the features will be used separately to find the most optimal way for good classification.

4.4 Classification evaluation

To determine how good a classification algorithm works for our given data, we can compare the output
label for a specific number of samples to their actual label, given by the ground truth. To compare
these two values, we can use different methods. To do so, we first need to understand that a binary
model produces four kinds of values:

• True positives (TP): predictions of A (in our case painful stimulus) that are correct according
to ground truth.

• True negatives (TN): predictions of B (in our case non-painful stimulus) that are correct
according to ground truth.

• False positives (FP): predictions of A (in our case painful stimulus) that are incorrect according
to ground truth.

• False negatives (FN): predictions of B (in our case painful stimulus) that are incorrect ac-
cording to ground truth.

4.4.1 Classification matrix

This matrix refers to the representation of how many samples of each type were classified with each
label. The columns and rows of the classification matrix include the classification’s actual values and
the predicted ones. In the X axis we can find the actual label, while in the Y axis, the predicted label
is represented. The matrix then shows the amount of true and false negative and positive predictions.
An example can be seen in Figure 12.

Figure 12: Classification matrix to evaluate Classification performance

Using these values, it is possible to compute the accuracy of the model, which is the most widely
measure to evaluate the performance of a model. With this measure, we will be able to compare
the different models and determine how good are different region selection methods to help classify
different stimuli.

The accuracy of a model is determined through the following equation:

accuracy =
True positives + True negatives

Number of predictions
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After obtaining the accuracy values for the different region-selection methods we will be able to
define if there are significant different through statistical tests such as paired t-test. With this, it will
be possible to conclude which region selection method performs better.
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Results

5 Large-scale functional data visualization

5.1 Feature Selection

In this section, we wanted to select wether to reduce the dimensionality of our data or use the raw
data. Both PCA and ICA were used to approach this. In the case of PCA, an explained variance
plot was generated to determine the minimum number of principal components required to account
for at least 70% of the total variance in the data. The threshold was set at 70% in order to retain
significant variability while maximising our dimensionality reduction, leading to better interpretability
of the data. The outcomes can be seen on Figure 13.

Figure 13: Explained variances for all the experimental conditions. A)WT-40ºC; B)WT-50ºC.

From these plots we could conclude that a minimum of three principal components is sufficient to
achieve the desired threshold of explained variance across all experimental conditions. However, it is
important to note that achieving the desired level of explained variance does not necessarily ensure
satisfactory results for the clustering process.

In order to determine the relevance of the identified principal components to the clustering algo-
rithm, a plot of the three principal components was generated for each experimental condition. The
purpose of this plot was to assess whether these components could be partitioned in a meaningful way
to ensure that the information from each of the components was relevant to the clustering process.
The results can be seen on Figure 14.
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Figure 14: First 3 Principal components for each region and the different experimental conditions. WT-40º in blue
and WT50º in red.

The plots generated from the application of PCA to the data indicate that, despite achieving over
70% explained variance, there is no clear distinction between the data points of the different conditions.
Other thresholds were also applied given the specific clustering task, to see if increasing the explained
variance could have some effect on the applicability of PCA. However, results did not show better
results with PCA than raw data. Consequently, the suitability of PCA as a dimensionality reduction
technique for our data was considered unsatisfactory and subsequently discarded.

An alternative approach was using ICA to isolate the independent components within the data.
To determine the feasibility of this method, ICA was visually inspected to assess the distribution of
the data. The results can be seen in Figure 15.

Figure 15: First 3 Independent components for each region and the different experimental conditions. WT-40º in
blue and WT50º in red

However, visual inspection of the distributions of the first three independent components again
failed to reveal a clear separation of the data. Similar to ICA, different numbers of independent com-
ponents were applied to evaluate the clustering task, providing no clear advantage on its application.
With this in mind, the clustering process was performed on the original raw data in an attempt to
optimise performance.
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5.2 Clustering techniques

To group our regions and find regions with similar activity patterns, we used a clustering approach.
For this project, 3 main clustering techniques were evaluated: K-means clustering, K-shape clustering
and hierarchical clustering. It is worth noting that all these techniques require the determination of
the optimal number of clusters prior to their application. Therefore, in order to determine the optimal
number of clusters, a comprehensive evaluation was performed using three different tests for each of
the clustering techniques. The range evaluated for each of the techniques was between 2 and 12 clusters.

The first test used was the silhouette score, which compares the distance between clusters to the
distance within clusters. The higher the score, the better the clusters are discriminated. The second
test used was the Calinski-Harabasz index. Similar to the silhouette score, the higher the value, the
better the clustering should be. Finally, the Davies-Bouldin was calculated. Contrary to the previous
tests, a lower index indicates better clustering. A detailed presentation of the results obtained for the
different clustering techniques used in this study is depicted in Figure 16.

Figure 16: Tests to find the optimal number of clusters. For each of the Clustering techniques, from left to right:
Silhouette score, Calinski-Harabasz index and Davies-Boulding Index. The specific values are not relevant for the
decision. To decide, is important to look at the ‘elbows’ or big changes on the values between the number of clusters.
The visualization has been made to make these changes more obvious.

The analysis of the clustering techniques shows that the three algorithms propose different numbers
of clusters. Furthermore, there are discrepancies between the algorithms and the scoring methods. In
particular, the option of K=2 was not considered for our study as it would result in a very rudimentary
division and our aim is to identify different activity patterns. To determine the best number of clusters,
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a common method is to find the ’elbows’ of the different plots. This refers to the abrupt changes in
score between clusters. The basic idea behind this method is to plot the variance against the number
of clusters and identify when adding more clusters gives worse results. This point is often referred to
as the ’elbow’ of the plot, suggesting that the number of clusters is a reasonable choice.

For instance, Figure 16, A indicates that K = 4 would be the most appropriate option, while
the Calinski-Harabasz index recommends K = 3 and the Davies-Bouldin index suggests 3, 6 or even
10 clusters. Although both K-means and hierarchical clustering give similar results, the K-shape al-
gorithm gives significantly different results in comparison, and the optimal value for K seems to be
around 9 or 10. (Figure 16, G-I). These variations between clustering techniques make it challenging
to identify the optimal value of K based solely on the evaluation scores.

Therefore, in order to determine the optimal number of clusters, we decided to compare and evalu-
ate different K values on a single technique. We chose agglomerative clustering for this purpose, as it is
easy to follow and compare the divisions due to its mode of operation. We decided to study the different
clustering outputs from K = 2 applied to all our data together in order to have a baseline for compari-
son. Two different visualization techniques were used for each K value. The first one with the temporal
traces in each cluster and their average (see Figure 17). The second one, using a colormesh of the
different values of the temporal traces ordered by their Area Under the Curve (AUC) (see Figure 18).

It should be noted that due to the specific data, which are complex time series, the decision for
the specific number of Ks is very complex. Although in general a validation would be done with
specific benchmarks for the data, in this case this was not possible. Therefore, the optimal number
of clusters was decided in discussion with experts on fUS data, who are able to determine an optimal
number of clusters based on whether hemodynamic responses shapes were likely to originate from the
same activity type. To support this decision, we computed the average of the inter and intra-cluster
correlation for each K. Results can be seen in Table 3.

K 12 11 10 9 8 7 6 5 4 3 2
Intra-Cluster correlation 0.40 0.39 0.37 0.33 0.32 0.29 0.28 0.30 0.31 0.25 0.16
Inter-Cluster correlation 0.28 0.28 0.28 0.24 0.29 0.31 0.30 0.29 0.31 0.37 0.28

Table 3: Intra-cluster and Inter-cluster Spearman correlation depending on the applied number of clusters.

As results show, the intra-cluster correlation increases with the increase in the number of clusters,
while the inter-cluster correlation does not significantly increase, meaning that the clustering is still
differentiated between groups, while becoming more homogeneous inside each group.

Furthermore, validation is mainly used for further generalisation. Although we try to propose a
pipeline, the specific number of clusters needs to be evaluated for each experimental setup. It therefore
cannot be replicated for new types of data. In this case, it was concluded that using less than 8 clusters
would still leave some clusters with significant outliers from the respective group. To validate that no
more clusters should be added, we also computed K = 13 and K = 14. With both values, we obtain
a cluster with a single datapoint. As we were searching to group different time traces, having a single
region in a cluster is not significant for our goal. Therefore, and taking into account the expert input
together with the correlations computed, the final number of chosen clusters was K = 12.
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Figure 17: Representation of the temporal traces clustered using K-Means with different Values of K (from top to
bottom, in a range of 6:12). The red squares indicate which clusters are merged in each step.
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Figure 18: Colormesh representation of the temporal traces clustered using K-Means and different Values of K (range
of 6:12). The red lines indicate which clusters are merged in each step. Blue represents deactivation of the brain region,
while red refers to the activation of the same.

The next step was to select the optimal clustering technique. We used first K-means, then hierar-
chical clustering and finally K-shape, all with K = 12. The evaluation of the results showed that the
K-shape algorithm performed worse than the other two techniques. In particular, some clusters had
relatively small sizes, while others were less homogeneous compared to the other cases. In addition,
the K-shape algorithm was slower than the other cases. Therefore, it was decided to continue the
evaluation process only for the K-Means and Agglomerative clustering techniques.

5.3 Performance Evaluation

To determine the optimal clustering result, multiple scores were used to quantify the results. First,
Spearman’s correlation was calculated between the samples present in each cluster to assess their
similarity. The intra-cluster average can be seen on Table 4. Additionally, a heatmap was generated
for each cluster to visually represent the samples present within it. An illustrative example of this
approach can be observed in Figure 20.
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Figure 19: Clustering of the data using different clustering algorithms.
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Cluster# 1 2 3 4 5 6 7 8 9 10 11 12

K-means 0.38 0.57 0.38 0.83 0.35 0.79 0.24 0.91 0.31 0.64 0.19 0.65

Hierarchical 0.31 0.63 0.43 0.77 0.17 0.46 0.24 0.91 0.63 0.73 0.23 0.74

Table 4: Intra-cluster Spearman correlation of the different clusters using different clustering techniques

Figure 20: Intra-Cluster heatmap for Cluster 12. (A) K-means clustering (B) Hierarchical clustering.

Then we computed the correlation between the different clusters to enable the comparison of inter-
cluster correlation with intra-cluster correlation. Results for each clustering technique are presented
in Figure 21.

Figure 21: Inter-Cluster comparison for each of the clustering techniques. (A) K-means clustering (B) Hierarchical
clustering.
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Upon analysis, it is evident that the intra-cluster correlation varies considerably between clusters
for both clustering techniques, with some clusters showing high correlation values between samples,
while others show lower values. This trend is also observed in the inter-cluster comparison, with some
clusters showing significant differentiation from others, while others remain quite similar.

However, although it can sometimes provide useful insights, the Spearman correlation only con-
siders the monotonic relationship between the samples, ignoring the temporal aspect. In order to
overcome this limitation and to provide a comprehensive comparison of the results, we also calculated
the cross-correlation between the time series.

The same procedure was done using the Euclidean distance as a measure. Notably, a lower value
on this measure implies greater similarity between samples. Results can be seen in Table 5.

Cluster# 1 2 3 4 5 6 7 8 9 10 11 12

K-means 0.22 0.13 0.21 0.16 0.12 0.17 0.15 0.17 0.17 0.17 0.11 0.20

Hierarchical 0.22 0.17 0.20 0.18 0.13 0.16 0.16 0.17 0.17 0.16 0.10 0.19

Table 5: Intra-cluster Spearman correlation of the different clusters using different clustering techniques.

The Euclidean distance between clusters can be seen in Figure 22.

The results of both clustering techniques were consistent with Spearman correlation. Given the
positive results of both approaches and the complexity of efficiently comparing time series, hierarchical
clustering was ultimately chosen due to its implementation. When interpreting the data, this technique
provides additional information about the merging clusters through the dendrogram, allowing a better
understanding of the relationships between them. This insight allows the identification of brain regions
with stronger connections and a greater degree of interdependence.

Figure 22: Inter-Cluster Euclidean distance for each of the clustering techniques. (A) K-means clustering (B)
Hierarchical clustering.
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5.4 Region-wise analysis

Once the clustering methodology was decided, the dataset was clustered using Agglomerative clustering
with K=12. The final result with the stimulus separated can be seen in Figure 23. It is important
to mention that the data presented here were also clustered with data from TKO mice that is not
presented in this work. Therefore, some clusters may not be present in this study.

The subsequent step in the analysis process was to determine the regions of interest for classifying
our specific stimulus. Utilizing the clustering results, we were able to identify four clusters in which
no regions were present for condition 40ºC, indicating that these activity patterns were specific to
condition 50ºC. Consequently, these clusters likely represent the most intriguing regions in terms of
identifying each stimulus. To further assess this and minimize the number of regions employed, we
characterized the average of each cluster using a set of common signal features for fUS data. For each
average, we visualized these features. An example of this can be seen in Figure 24.

Once these characteristics had been calculated for the average of each group, the cluster with the
maximum value for a particular characteristic and the cluster with the minimum value were taken. An
assessment was then made of which regions corresponding to the 40ºC stimulus changed from lowest to
highest or vice versa when the 50ºC stimulus was applied, as this would indicate the greatest change.
This was done for each of the selected features. However, for most of the features, the minimum or
maximum value appeared in cluster 8, which only contained regions that moved from other clusters,
as the specific pattern only appears in the 50ºC condition. However, when we looked at which clusters
the regions came from, we found that the movements were from clusters 6, 9 or 10, which had a similar
pattern to cluster 8. Therefore, we used the features that did not involve cluster 8, which resulted in
cluster 11 and cluster 12 having the greatest difference in activity.

Figure 24: : Feature visualization in two different cluster averages. (A) Features in Cluster 1. (B) Features in
Cluster 8.
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Figure 23: Hierarchical Clustering with K = 12 applied to all the datasets at the same time. For visualization
purposes, each stimulus has been visualized separately using the labels obtained in the joined clustering.
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5.5 Quantitative cluster description

Although time series are difficult to reflect upon and compare, it is possible to use basic statistical
measures to better understand the distribution of the datapoints within the clusters. Therefore, the
mean, median, mode and std of each of the time traces of the clusters was computed, and then averaged
per cluster. Results can be seen in Table 6.

Cluster#
Number of
regions

Mean Median Mode Std

1 50 0.9952 0.9958 0.9615 0.0108

2 23 0.9881 0.9894 0.9397 0.0207

3 27 0.9981 1.0007 0.9068 0.0191

5 139 0.9993 1.0002 0.9507 0.0084

6 48 1.0042 1.0038 0.9558
0.0116

8 11 1.0321 1.0252 0.9691 0.0369

9 21 1.0165 1.0108 0.9604 0.0231

10 62 1.0042 1.0025 0.9710 0.0110

11 46 1.0078 1.0048 0.9604
0.0147

12 31 1.0089 1.0066 0.9296
0.0191

Table 6: Average of basic statistics per cluster obtained. Cluster 4 and 7 are not presented as they do not have data
from WT mice, which is the one used on this work.

To see the distribution of each of the statistics inside each cluster see Annex B. Although descrip-
tive statistics can help understand the homogeneity of the clusters, complex time series are difficultly
represented by them. Therefore, it has to be noticed that these statistics do not provide a clear
representation of the clusters.

5.6 Qualitative cluster description

In order to unambiguously refer to each cluster, compare them and define the different patterns of
activity in each cluster, a brief qualitative description was made for each cluster, taking into account
its main visible characteristics. These qualitative descriptions were made with the involvement of
neurobiology experts and data analysts to ensure a correct and relevant description for each group.
The descriptions can be found in Table 7.
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Cluster# Qualitative description

1 Weak short-term activation

2 Strong peak with mid-term activation

3 Strong peak with rapid deactivation

4 Only in TKO mice

5 Short term deactivation

6 Strong short-term activation with re-activation

7 Only in TKO mice

8 Very strong long-term activation

9 Strong long-term activation

10 Small mid-term activation

11 Medium long-term activation

12 Weak deactivation with long-term strong activation

Table 7: Qualitative descriptions of the final clusters.

By using these qualitative descriptions, it is possible to easily compare clusters while keeping in
mind the different activity patterns for further discussion.

5.7 Clustering visualization

Due to the large amount of data managed in clustering, its interpretation is not easy. Although the
clustering quantification techniques can be used to select which regions to use, it is also important
to be able to relate this quantification to the background data, in this case to understand how the
different regions are behaving and how the changes are happening across the brain. For this reason,
a visualisation tool has been created to show the movement of the different brain regions within the
clusters as a function of their state. This makes it possible to see how each region behaves when
different stimuli are applied, and can help to draw further conclusions on the subject. To this end, an
interactive Sankey diagram tool has been created.
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Figure 25: Sankey diagram for the visualization of brain region movement within clusters. From left to right: TKO
mice at 40ºC, WT mice at 40ºC, WT mice at 50ºC and TKO mice at 50ºC.

In this case, we visualized the data for Wild Type mice and Triple Knock-Out (TKO) mice in both
40ºC and 50ºC experimental conditions. Although the TKO mice data has not been used in this work,
it was added to illustrate the complexity of the visualization. The diagram can be seen in Figure 25.

From this visualization, it is possible to take specific regions and see the changes in their activity
pattern. Through the qualitative descriptions made in section 1.5, It is possible to understand the
changes in activity for each region as a function of its condition. This gives new insights into the be-
haviour of each region in each condition. For example, if a region is in cluster 5 for the 40ºC condition,
and then we find the same region in cluster 12 for the 50ºC condition, we know that when pain is
applied to the animal, this particular region responds with a stronger and longer activation.

To facilitate the implementation of this pipeline in other studies, a tool has been developed to
automatically generate this type of graph from other data than the one used here. As well as allowing
researchers to upload new data, it also facilitates the visualisation of specific regions rather than all at
once. Finally, it supports the visualisation of individual time traces and the use of basic classification
algorithms using specific regions for training.

5.8 Pipeline validation and insights

Having developed the entire pipeline and a visualisation tool, we wanted to see if the results we ob-
tained had any real biological significance. In addition, we wanted to explore some of the insights it
might provide given our experimental settings. To do this, we looked at whether regions that were
spatially close to each other behaved similarly, and whether the somatosensory pathway, which was
also used in the research, showed similarities in clusters, as would be expected.

First, we looked at cortical regions which are situated next to each other and have no direct im-
plications for pain processing. For this, we chose the auditory areas of the brain which can be seen in
Figure 26.
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Figure 26: Auditory areas of the brain. Visualization of the areas in the left hemisphere.

We then investigated in which clusters each of these regions was for both conditions. Results can
be seen in Table 8.

Region Cluster for 40º stimulus Cluster for 50º stimulus

AUDp 5 1

AUDd 5 1

AUDpo 5 1

AUDv 10 10

Table 8: Cluster belonging for each of the auditory regions given each stimulus.

We can see that three of the four regions have the same behaviour. Apart, we see that the three
first regions do change cluster, showing a slight activation. This is due to the fact that during the
experiment some noise artifacts that can be perceived by mice occur. However, we can see that there
is an expected relationship between these areas, which validates the idea that the pipeline allows the
study of brain region relationships and behaviours.

Next, we picked the somatosensory regions, which are expected to behave similarly and to give a
response to a painful stimulus. The used regions were not those related to the somatosensory pathway,
but exclusively the somatosensory regions, which can be seen in Figure 27. The clustering results for
these regions can be seen in Table 9.

Region Cluster for 40º stimulus Cluster for 50º stimulus

SSp-bf 5 1

SSp-n 5 2

SSp-tr 10 10

SSp-ll 10 10

SSp-ul 10 1

SSp-un 10 1

SSs 10 10

Table 9: Cluster belonging for each of the somatosensory regions given each stimulus.
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Figure 27: Somatosensory regions. The visualization is done for both hemispheres.

Here we can see that all the somatosensory regions are in closely related clusters, but in this case
they activate in different ways. For example, we can see that the region associated with the nose
(SSp-n) is highly activated, which could be due to behavioural changes when the animal is in pain.
Both the upper limb and the unassigned (SSp-ul, SSp-un) also change clusters, showing a change in
activity, probably linked to the fact that the mice receive the stimuli through the upper paw, while the
lower limb and trunk (SSp-ll, SSp-tr) remain stable. All of these behaviours can provide interesting
insights into what is happening in the brain, opening up the possibility of further studies on a given
stimulus.

Finally, and worth mentioning, is that we found that there were some clusters that solely occurred
in condition 50ºC, meaning that all the regions belonging to those clusters have a change in activation,
potentially giving interesting information on the processing of the stimuli.

6 Region selection for classification

6.1 Dataset split and feature extraction

Before actually classifying our data, we cleaned the original dataset as there were some trials that had
not been properly recorded during the experiments. Of the original 675 trials, 521 were used, with
396 trials for the 40ºC condition and 125 trials for the 50ºC condition. Apart from that, some trials
had some regions that showed clear signals. However, as not all regions were used for classification,
and to avoid eliminating all trials, we only discarded specific trials if the regions with clear signals
were used for classification. We also eliminated the regions that ended with a low number of trials
(N50Ccondition ¡ 100) from all the procedures, as they could not be compared to the other regions. The
non-used regions can be found in Annex C. We then split our dataset into training (70%) and test
(30%) groups. To approach the data in different ways, we not only used the raw data to classify, but
also extracted specific signal features to compare the results of both approaches. The specific features
extracted, and the specific packages used to compute them can be found in Table 10.

These features were chosen based on the cluster characterization made in 4.4, looking to explain
our time traces as good as possible. Apart, common spectral features were added to avoid limiting our
feature extraction to temporal analysis. To select the best features to train the classifier, we performed
an ANOVA test to discard half of the features given its relevance to explain the dataset. The test
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Feature Function

Skewness Skew function from stats module from scipy package version 1.10.0

Kurtosis Kurtosis function from stats module from scipy package version 1.10.0

Maximum peak Max function from Python 3.10.9

Minimum peak Min function from Python 3.10.9

Difference between maxi-
mum and minimum peaks

Max-Min peak value

Time to maximum peak Time to max peak

Response Length

1. Find signal derivatives with gradient function from numpy package version
1.23.5
2. Find longest sequence of negative derivatives
3. Find last time point of the longest sequence of negative derivatives

Full width at half maxi-
mum (FWHM)

1. Find absolute maximum timepoint
2. Find width of the absolute maximum peak at a 0.5 relative height using
peak width function from signal module from scipy package version 1.10.0

Time between maximum
and minimum peak

Absolute time difference between max and min peaks.

Permutation entropy Perm entropy function from antropy package version 0.1.5

Singular Value Decomposi-
tion (Svd) entropy

Svd entropy function from antropy package version 0.1.5

Spectral Entropy Spectral entropy function from antropy package version 0.1.5

Approximate Entropy App entropy function from antropy package version 0.1.5

Sample entropy Sample entropy function from antropy package version 0.1.5

Table 10: Features extracted from each trial and Python functions used.

was performed using the SelectKBest function from the feature selection module of the scipy package,
aiming to choose the best 7 features. The resulting selected features were skewness, kurtosis, maximum
peak, minimum peak, FWHM, Spectral Entropy and Svd Entropy.

6.2 Pre-processing and classifier selection

Given our data set, we performed data augmentation to balance the trials in both conditions. To do
this, we calculated the standard deviation of the noise for each signal and added a random noise value
in the range of the standard deviation. This takes into account the characteristics of the signal and
only uses baseline fluctuations that are already present in our data. This is done to ensure that the
added noise does not significantly distort or alter the underlying information present in the original
signal. This allowed us to obtain significant augmented trials. We were then able to begin the process
of classifier selection.

To choose the best classifier and data (raw or features) to use, we trained different classifiers using
8 regions selected randomly. Then, using 5-fold cross-validation (with a train-validation partition of
80% and 20%) and grid selection, we chose the best hyperparameters for each of the three pre-selected
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classifiers. It is important to mention that the partition for the validation set on each fold was done
before data augmentation to avoid contamination of the partition. Finally, we trained each classifier
using the same regions and the optimized hyperparameters and compared their accuracy to decide
which one to use. To train the classifiers and predict results we used models from the Sklearn package
version 1.2.1. the process was repeated in 10 different randomized groups of regions for robustness.
The specifications for the classifiers used are as follows:

• Logistic Regression: C = 0.1, class weight = None, fit intercept = True, random state = 0 ,
penalty = ’l2’, max iter = 10000, solver = ’sag’.

• SVM: random state = 1, C = 2, max iter = -1, coef0 = 0, degree = 2, gamma = ’scale’, tol =
1, kernel = ’rbf’, shrinking = True, decision function shape = ’ovo’, probability = True.

• Decision Trees: criterion = ’gini’, max depth = 2, max features = ’sqrt’, min samples leaf = 1,
min samples split = 8, splitter = ’best’.

The averaged results can be seen in Table 11.

Data Logistic Regression SVM Decision Trees

Raw data 79.1% 87.9% 77.1%

Features 72.6% 74.3% 72.8%

Table 11: Accuracy results for the different classifiers with each type of data trained in the randomized group of
regions.

Given these results, we decided to proceed with the study using SVM in the raw data and the
previously mentioned parameters.

6.3 Region selection methods

Once the data, classifier and parameters had been established, we proceeded to compare the different
region selection methods to define how each process affected the classifier accuracy.

6.3.1 Data-based selection

We started by calculating the individual accuracy for each region. We then selected the region with
the highest accuracy and paired it with all the regions that had an individual accuracy above 70%.
Each time we trained new classifiers using the same train/test set. We repeated the process, taking the
best pair and creating groups of three with all the regions with a higher individual accuracy than 70%.
This process was repeated until the classifier started to get confused when adding regions, resulting in
lower accuracy. This resulted in a group of 8 regions that can be seen in Figure 28.
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Figure 28: Data-based selected regions. In the table, the abbreviation of the selected regions. The image contains
the regions coloured for both hemispheres.

6.3.2 Cluster-based selection

As previously stated in 4.4 we used those regions that moved from Cluster 5 to Cluster 12. This
resulted in using the regions presented in Figure 29.

Figure 29: Cluster-based selected regions. In the table, the abbreviation of the selected regions. The image contains
the regions coloured for both hemispheres.

6.3.3 Cortical Regions

Here we selected all those regions from the cortical space of the brain. However, many regions fall into
this category, so to avoid confusing the classifier we followed the same process than in 5.3.1 but only
applied to the cortical regions, to select the best cortical group to use. This resulted in the regions on
Figure 30.
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Figure 30: Cortical regions. In the table, the abbreviation of the selected regions. The image contains the regions
colored for both hemispheres.

6.3.4 Knowledge-based selection

Finally, we chose regions from a biological system commonly related to pain processing. In this case
we used regions belonging to the high-level of the somatosensory pathway. This means that, although
other brain regions might also be related to it, we only took the most important ones that perform
the main processing activities. This resulted in the regions presented in Figure 31.

Figure 31: Somatosensory pathway regions. In the table, the abbreviation of the selected regions. The image contains
the regions colored for both hemispheres.

6.3.5 Comparison of region selection methods

Once the groups of regions were selected, we compared their performance measurement values to define
which region selection method performed better for our data. To make sure the results were not depen-
dant on the test dataset, we performed 10 different train/test splits and trained 10 classifiers per group
of regions. Then we averaged the results from the 10 iterations. Final results can be seen in Figure 32.
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Figure 32: Confusion matrix of the classification values obtained in the test set for each of the region selection
methods.

All the region selection methods performed higher than when randomized selection was made. All
of the 4 methods performed with an accuracy higher than 90%. To compare the performance of each
of the region groups, we applied an ANOVA test. The results indicated an F critical value of 2.87 and
an F-value of 3.65, meaning that the null hypothesis of equal means is rejected. Then we performed a
paired t-test to compare the classifiers between them. The effect size was evaluated through Cohen’s
D with a correction for small samples. As we were performing multiple t-tests, a Bonferroni correction
was applied, lowering the α level to 0.083.

Based on the results shown in Figure 33, we can see that no significant differences were found
between the region selection methods. However, we can see that the results from the Knowledge-based
and Cluster-based approach are slightly lower than in the other two classifiers, without reaching a sig-
nificant difference. This suggests that all classification methods were valid for classifying the different
conditions.

Not only we compared the classifiers between them, but we also compared the performance between
conditions. For all the classifiers, the 40ºC condition was significantly better classified than the 50ºC
(p− value < 0.05 for all the methods). However, this could be due to the difference on the number of
trials between both conditions, although the effect was reduced through data augmentation.
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Figure 33: paired t-test results to compare each of the region selection methods between them. A p¡0.083 indicates
statistical differences between the accuracy results of the compared methods. In green, the comparisons that showed
significant differences. All the tests have a df = 18.
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Discussion

This study introduces a pipeline to facilitate the implementation of vFUs data into BCI systems and
support its interpretation. This kind of data presents inherent challenges due to its high-dimensional
and complex nature.

This proposal had two main objectives. The first was to develop a pipeline for large-scale functional
data visualisation. The developed work incorporates hierarchical clustering and visualisation tech-
niques to complement the high spatio-temporal resolution of fUS imaging. By applying this pipeline,
specific brain regions with consistent and significant changes in response to stimuli can be identified
and analysed, providing a more comprehensive understanding of the behaviour of individual regions
of brain activity. The results show that by clustering the data into different activity patterns and
visualising the inter-cluster changes of individual regions between conditions, the interpretation of the
data can be aided. For our specific case, and after several trials and expert evaluation, we concluded
that hierarchical clustering with K = 12 provided satisfactory grouping into differentiated activity
patterns. These parameters will need to be re-evaluated for implementation on other data, as this will
largely depend on the data we are trying to cluster. However, the results obtained can be used as a
first approach in similar experimental conditions.

Furthermore, through a qualitative description of the clusters and with the support of expertise,
it is possible to understand how a particular brain region behaves in two separate but related exper-
imental conditions. This was illustrated in the work by studying different groups of regions, where
we could understand the behaviour of different ROIs by comparing the cluster they were assigned to
in each condition. However, the insights gained through this method were not validated with further
experiments in this paper. It is important to recognise that this method cannot be used alone to draw
conclusions about brain behaviour, but rather as a tool to guide further research.

The second objective was to propose a region selection method to achieve high performance in
stimulus decoding. To evaluate the effectiveness of the proposed approach, we compared different
region selection methods by using the selected brain regions to classify the stimuli using algorithms
already applied in neuroscience research [Maher et al., 2023, Singh and Singh, 2020, Xu et al., 2019].
Results show that general methods for region selection, such as knowledge-based methods, that, are
specific for the stimulus but not to the studied data yield to inferior results (90,95%).

The proposed method following the pipeline showed results comparable to data-based selection
(92.9% for cluster-based selection vs. 94.7% for data-based selection), suggesting that the approach is
able to assist in identifying the best regions to use for decoding the stimuli and given specific data.
Finally, we examined the performance of cortical regions compared to deeper regions. The results
show that their performance is also comparable (94.9%). This finding is particularly interesting as it
suggests that, under certain experimental conditions, imaging deeper in the brain does not necessarily
improve stimulus decoding. Furthermore, the classification results show that fUS data are able to
provide a high accuracy for the decoding of the stimuli, as an accuracy of more than 90% was achieved
in all region selection methods. However, it is important to emphasise that this accuracy is highly
dependent on the selection of relevant regions, as randomised region selection led to lower classification
results (less than 90% in all cases). This underlines the importance of using regions that are specifically
relevant to the stimulus studied, and increases the relevance of the study for the successful application
of fUS in BCI.

While this study provides interesting insights, it is important to acknowledge its limitations. Firstly,
the research was conducted in a single experimental condition. Although this is common practice in
neuroscience, investigating the effects of the proposed pipeline in other experimental conditions would
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help to determine the relevance and robustness of the work. Secondly, no ground truth was available
to validate the proposed interpretation and visualisation. This means that specific expertise or further
studies for the specific stimuli are needed to support the information extracted from the clustering and
visualisation processes. Finally, the dataset used had a limited number of trials, which complicates
the spatial selection of parameters for stimulus prediction.

Considering the results, the developed pipeline shows potential to contribute to the improvement of
task understanding and decoding accuracy in BCI systems. The approach opens the door to a better
understanding of the specific tasks developed with BCIs and suggests alternative means of selecting rel-
evant data for the desired outcomes of researchers. By clustering brain regions and visualising cluster
changes, the approach supports the identification of the most informative brain regions for decoding
specific stimuli. The pipeline’s insights into the performance of different brain regions in classifying
stimuli could inform the design of BCI systems. By understanding which types of brain activity are
most relevant to a stimulus, it may be possible to guide the development of signal processing algo-
rithms and feature extraction methods tailored to specific decoding tasks. Further comparative studies
between the developed pipeline and other machine learning-based approaches, such as deep learning
models, could provide a comprehensive evaluation of the pipeline’s performance and its potential for
scalability and generalisation across different experimental conditions and populations.

Finally, although this study is based on vFUs data, the proposed approach is not restricted to this
type of imaging. The pipeline could potentially be used with other types of brain imaging techniques
to aid region selection, which may be relevant for techniques that require specific electrode positioning,
such as EEG. In conclusion, the work presented here can help in the interpretation of high-dimensional
brain data. This can aid in the understanding of specific tasks, which in turn can help in the design
of more accurate and reliable BCIs. Further investigations can help to determine the relevance of the
pipeline and its effects in different experimental settings.
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Annexes

Annex A: Brain regions used in this work with their abbreviations. As seen
in [Wang et al., 2020].

Brain Region Abbr. Brain Region Abbr.
Anterior cingulate area, dorsal part ACAd Subparafascicular nucleus SPF
Anterior cingulate area, ventral part ACAv Posterior thalamic nucleus PoT

Infralimbic area ILA
Ventral anterior nucleus of the thala-
mus

VAL

Prelimbic area PL
Ventromedial nucleus of the hypothala-
mus

VM

Dorsal auditory area AUDd Ventral pallidum VP
Primary auditory area AUDp Lateral zone of the cerebellum LZ
Posterior auditory area AUDpo Mesencephalic reticular formation MEZ

Ventral auditory area AUDv
Periventricular nucleus of the hypotha-
lamus

PVR

Primary motor area MOp
Paraventricular nucleus of the hypotha-
lamus

PVZ

Secondary motor area MOs Central linear nucleus CLI
Retrosplenial area, lateral agranular
part

RSPagl Dorsal raphe nucleus DR

Retrosplenial area, dorsal part RSPd Interfascicular nucleus IF
Retrosplenial area, ventral part RSPv Rostral linear nucleus RL
Primary somatosensory area, barrel
field

SSp-bf Pedunculopontine nucleus PPN

Primary somatosensory area, nose SSp-n Substantia nigra pars compacta SNc
Primary somatosensory area, trunk SSp-tr Anterior thalamic nucleus AT
Primary somatosensory area, lower
limb

SSp-ll Cuneate nucleus CUN

Primary somatosensory area, upper
limb

SSp-ul Dorsal tegmental nucleus DT

Primary somatosensory area, unas-
signed

SSp-un Edinger-Westphal nucleus EW

Supplemental somatosensory area SSs Lateral tegmental field LT
Temporal association areas TEa Medial terminal nucleus MT
Visceral area VISC Median raphe nucleus MRN
Agranular insular area AI Reticular nucleus RR
Laterointermediate area VISli Oculomotor nucleus III
Anterior visual area VISa Pontine nuclei PN
Anterolateral visual area VISal Paramedian tract nucleus Pa4
Anteromedial visual area VISam Periaqueductal gray PAG
Lateral Visual area VISl Pretectal nucleus PRT
Primary visual area (posterolateral) VISp(pl) Red nucleus RN
Primary visual area (anterolateral) VISp(al) Substantia nigra pars reticulata SNr

Primary visual area (anteromedial) VISp(am)
Superior colliculus, deep layers (ante-
rior)

SCd(a)

Primary visual area (posteromedial) VISp(pm)
Superior colliculus, deep layers (poste-
rior)

SCd(p)
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Brain Region Abbr. Brain Region Abbr.

Posteromedial visual area VISpm
Superior colliculus, intermediate layers
(anterolateral)

SCi(al)

Rostrolateral area VISrl
Superior colliculus, intermediate layers
(posterolateral)

SCi(pl)

Posterolateral visual area VISpl
Superior colliculus, superficial layers
(anterolateral)

SCs(al)

Postrhinal area VISpor
Superior colliculus, superficial layers
(posterolateral)

SCs(pl)

Cortical amygdalar area, anterior part COAa
Superior colliculus, intermediate layers
(Anteromedial)

SCi(am)

Cortical amygdalar area, posterolateral
part

COApl
Superior colliculus, superficial layers
(Anteromedial)

SCs(am)

Cortical amygdalar area, posteromedial
part

COApm
Superior colliculus, superficial layers
(posteromedial)

SCs(pm)

Piriform area PIR Ventral tegmental area VTA
Thalamic reticular nucleus TR Ventral tegmental nucleus VTN
Primary auditory cortex PA Inferior colliculus, central nucleus ICc
Lateral amygdala LA Inferior colliculus, dorsal nucleus ICd
Basolateral amygdala, anterior part BLAa Inferior colliculus, external nucleus ICe
Basolateral amygdala, posterior part BLAp Medial vestibular nucleus MEV
Basolateral amygdala, ventral part BLAv Nucleus basalis NB

Basomedial amygdala, anterior part BMAa
Subparaventricular zone of the hy-
pothalamus

SAG

Basomedial amygdala, posterior part BMAp Parabrachial nucleus, lateral division PBG
Endopiriform nucleus, dorsal part EPd Superior colliculus SCO
Endopiriform nucleus, ventral part EPv Gigantocellular reticular nucleus GRN
Claustrum CLA Intermediate reticular nucleus IRN
Anterior pretectal nucleus APr Cochlear nucleus CN
Hypothalamic area, tuberal part HATA Ventral nucleus of the lateral lemniscus VNC
CA1 subfield of the hippocampus, dor-
sal part

CA1d Nucleus of the trapezoid body NTB

CA1 subfield of the hippocampus, stra-
tum oriens (inhibitory interneurons)

CA1i Nucleus of the solitary tract NTS

CA1 subfield of the hippocampus, stra-
tum pyramidale (pyramidal cells)

CA1v Subparaventricular zone SPVO

CA2 subfield of the hippocampus, dor-
sal part

CA2d Primary visual cortex VI

CA2 subfield of the hippocampus, in-
hibitory interneurons

CA2i Paraventricular nucleus PARN

CA2 subfield of the hippocampus, ven-
tral part

CA2v Nucleus x x

CA3 subfield of the hippocampus, dor-
sal part

CA3d Nucleus y y

CA3 subfield of the hippocampus, in-
hibitory interneurons

CA3i
Phylogenetically conserved brain re-
gions

PHY

CA3 subfield of the hippocampus, ven-
tral part

CA3v Nucleus raphe NRaphe

Dentate gyrus, dorsal part DGd Anterior commissure, level VII ACVII
Dentate gyrus, inhibitory interneurons DGi Laterodorsal tegmental nucleus LDT
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Brain Region Abbr. Brain Region Abbr.
Dentate gyrus, ventral part DGv Locus coeruleus LC
Induseum griseum IG Nucleus of the inferior colliculus NI
Entorhinal cortex, lateral division ENTl Raphe pallidus nucleus RPO
Entorhinal cortex, medial division ENTm Bed nucleus of the stria terminalis B
Parasubiculum PAR Dorsal tegmental nucleus DTN

Postsubiculum POST
Interfascicular nucleus at level 5 of the
medulla

I5

Pre-subiculum PRE
Principal sensory nucleus of the trigem-
inal nerve at level 5 of the medulla

P5

Prosubiculum ProS Vagus nerve nucleus V
Subiculum SUB Parabrachial nucleus PB
Medial amygdala MEA Nucleus laminaris, lateral part NLL
Intercalated amygdala IA Pontine central gray PCG
Anterior amygdaloid area AAA Paragigantocellular nucleus PG
Central amygdala, capsular part CEAc Solitary nucleus, gelatinous part SG
Central amygdala, lateral part CEAl Supratrigeminal nucleus SUT
Central amygdala, medial part CEAm Tegmental reticular nucleus TRN
Caudoputamen, dorsolateral part CPcdl Superior olivary complex SOC

Caudoputamen, dorsomedial part CPcdm
Principal sensory nucleus of the trigem-
inal nerve

PSV

Caudoputamen, central part, lateral
zone

CPcml Pararubral nucleus, caudal part PRNc

Caudoputamen, central part, medial
zone

CPcmm Pontine reticular nucleus PRNr

Caudoputamen, ventral part CPcv Superior lateral cortex SLC

Pallidum, dorsocentral part CPmdc
Anterior nucleus of the cortex, rostral
part 1

ANcr1

Pallidum, dorsolateral part CPmdl
Anterior nucleus of the cortex, rostral
part 2

ANcr2

Pallidum, dorsomedial part CPmdm Copula pyramidis COPY
Pallidum, central part, medial zone CPmmc Paraflocculus PFL
Pallidum, medial part, lateral zone CPmml Paramedian lobule PRM
Pallidum, ventral part, central zone CPmvc Crus II of the cerebellar cortex SIM
Pallidum, ventral part, lateral zone CPmvl Crus II of the cerebellar cortex CENT2
Lateral septal nucleus LS Crus III of the cerebellar cortex CENT3
Septofimbrial nucleus SF Culmen of the cerebellar cortex CUL4
External segment of the globus pallidus GPe Lingula of the cerebellar cortex LING
Internal segment of the globus pallidus GPi Dentate nucleus DN
Substantia innominata SI Interpositus nucleus IP
Triangular nucleus of septum TRS Bed nucleus of the stria terminalis BST
Anterodorsal nucleus of thalamus AD Mediodorsal nucleus of thalamus MD
Anteromedial nucleus of thalamus AM Pretectal nucleus PR
Anteroventral nucleus of thalamus AV Superficial mesencephalic nucleus SMT
Interanterodorsal nucleus of thalamus IAD Nucleus of the reuniens RE
Interanteromedial nucleus of thalamus IAM Parataenial nucleus PT
Laterodorsal nucleus of thalamus LD Paraventricular nucleus of thalamus PVT
Epithalamus EPI Intercalated nucleus of the amygdala Xi
Intergeniculate leaflet IGL Reticular nucleus of thalamus RT
Ventral lateral geniculate nucleus LGv Dorsal lateral geniculate nucleus LGd
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Brain Region Abbr. Brain Region Abbr.
Intergeniculate nucleus IntG Medial geniculate nucleus MG
Supragenual nucleus SubG Peripeduncular nucleus PP
Central lateral nucleus of thalamus CL Subparafascicular nucleus SPA
Central medial nucleus of thalamus CM Posterior nucleus of thalamus PO
Paracentral nucleus PCN Lateral posterior nucleus of thalamus LP
Rhomboid nucleus RH Subgeniculate nucleus SGN
Parafascicular nucleus PF Polysensory cortex POL
Posterior intralaminar nucleus PIL Intermediodorsal nucleus of thalamus IMD
Ethmoid nucleus Eth

Annex B: Distribution of basic statistics inside a cluster

.

Annex C: Regions not used for classification due to having multiple trials
with incorrect registration.
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