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Abstract

This Master’s Thesis presents an exploration of incorporating syntax trees
into pre-trained Large Language Models (LLMs) for the task of Natural Lan-
guage Inference (NLI). NLI is an important task for evaluating language mod-
els’ ability to predict the entailment relationship between two sentences, thus
showcasing a model’s capacity for Natural Language Understanding (NLU).
This study predominantly focuses on the BERT-base-uncased model, assessing
the effects of enhancing it with an inductive bias toward linguistically derived
syntactic trees using Graph Convolutional Networks, and the effects on perfor-
mance on various NLI benchmark datasets and out-of-domain evaluation sets.
While earlier research has delved into the impacts of enhancing LLMs with
dependency structures, the effects of incorporating constituency structures and
combining both parsing techniques remain largely unexplored. Experimental
results reveal that while enhancement of BERT with syntactic structures does
not notably benefit generic large-scale NLI datasets, it significantly aids mod-
els in scenarios where the underlying syntactic structure is important for the
inference task, such as in semi-automatically generated datasets. This is par-
ticularly evident when training data is scarce, a common challenge in many
real-world applications. Results further show that of the two investigated syn-
tactic structures, constituency structures provide the most benefits in learning
representations for monotonicity reasoning, an important skill that requires the
ability to capture interactions between lexical and syntactic structures. Fur-
thermore, we demonstrate that constituency parsing can help the BERT model
learn useful representations for the syntactic structure of passive sentences, an
area identified in previous research as a shortcoming of BERT.

1 Introduction

Artificial Intelligence (AI) is an interdisciplinary field with the goal of understanding
the nature of intelligence and replicating it in computer systems. Advancements in
AI have become increasingly important for many aspects of society, from impacting
the way our education system works (Zhai et al., 2021) to increasing productivity in
professions such as software programming (Peng et al., 2023). Since its foundation at
The Dartmouth Summer Research Project on AI in 19561, the field of AI has made
tremendous progress and has split into various subfields, such as Computer Vision
and Natural Language Processing (NLP), each tackling and researching various
aspects of biological and human intelligence. Specifically, NLP, operating at the
intersection between linguistics and computer science, grants machines the ability
to perform a wide variety of language-related tasks, such as Language Translation,
Fact Checking, Question Answering (QA), and Language Generation. As such,
NLP emerges as a critical subfield of AI, attempting to simulate a unique aspect of
human intelligence within computational systems: understanding and using natural
language.

1Darthmouth Workshop
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Understanding and reasoning with language are central aspects of human intel-
ligence. However, imbuing machines with Natural Language Understanding (NLU)
poses a challenge to the field of NLP due to the ambiguity and diversity with which
meaning can be expressed. Nevertheless, a system that can perform the same types
of reasoning as humans can benefit many NLP tasks. More specifically, if a system
can determine the semantic meaning of a proposition, and infer the truth value of
another text fragment given the proposition, stands to benefit a broad spectrum of
NLP applications. For instance, in QA, validating the truth value of an answer in
relation to a source text could bolster the system’s reliability and provide more ac-
curate answers. For Fact Verification and Fake News Detection, validating the truth
value of a statement given a trustworthy source text stands at the core of these tasks.
Yet, although the various NLP tasks share this common ground, researchers work-
ing on different NLP applications have worked independently on inference processes,
leading to highly specialized methodologies and a lack of overview. To address this
gap, a generic, unified task was proposed by Dagan and Glickman (2004) to evaluate
the NLU capabilities of language systems, termed Recognizing Textual Entailment
(RTE), which subsequently evolved into Natural Language Inference (NLI).

In the original RTE setting, given a premise P and a hypothesis H, the relation-
ship between P and H is entailing if a human reading P can infer that H is most
likely true, and non-entailing if a human can not infer that H is true (Dagan and
Glickman, 2004). The task has been subsequently expanded upon to include the
contradiction label, indicating that H contradicts P, resulting in a ternary classifica-
tion task with the labels entailment, contradiction, and neutral2. Thus, NLI seeks to
assess the reasoning capabilities of language models with a generic evaluation task.

In addition to benefitting many other NLP tasks, the general-purpose objective
of NLI has been found to be particularly beneficial for narrow domains with few
manually annotated data. Research by Laurer et al. (2022) shows that deep trans-
fer learning from the NLI domain to more specific domains like political sciences
can reduce the data requirements for language models up to tenfold while maintain-
ing performance levels. Therefore, research in NLI is not only directly beneficial
for numerous NLP applications, but its foundational setup also significantly aids
in other domains where annotated data might be scarce, thereby highlighting the
pivotal role of ongoing research and innovation in NLI for the broader landscape of
NLP and AI.

Besides the many benefits provided by the task of NLI, the field of NLP has seen
significant advancements since NLI’s inception. While traditional approaches to NLI
have involved rule-based methods, the development of large-scale datasets like SNLI
(Bowman et al., 2015) and MNLI (Williams et al., 2018) have allowed neural-based
approaches to become competitive in the task of NLI. Moreover, the development
of pre-trained Large Language Models (LLMs) such as BERT (Devlin et al., 2018)

2Some datasets maintain the 2-label classification because the distinction between contradiction
and neutral is not sufficiently clear for the particular linguistic phenomena the dataset targets.
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have greatly contributed to increased performance across many NLP tasks, including
NLI. The improved performances on NLI benchmark datasets have suggested that
LLM-based models can understand and reason with natural language.

Concurrent with the development of LLMs, researchers have incorporated lin-
guistically derived syntactic structures into language models, further bolstering per-
formance across various NLP benchmarks. Two such structures involve constituency
(Chomsky, 1957) and dependency trees (Mel’cuk et al., 1988), and various method-
ologies have been proposed to incorporate them into language models. A popular
approach is to model the tree structures using Graph Convolutional Networks (Kipf
and Welling, 2016), which enable direct modeling of the graph and tree structures us-
ing a neural network-based approach, presenting an efficient way to incorporate the
linguistic structures into language models. Furthermore, by combining linguistically
informed features with neural networks, it is possible to reduce the number of pa-
rameters and data requirements while providing robust performance. For instance,
hybrid systems such as NeuralLog (Chen et al., 2021) capitalize on the advantages
of both neural networks and expert linguistic knowledge to enhance performance,
robustness, and interpretability for the task of NLI. Hence, the integration of prior
linguistic knowledge into neural networks can offer substantial advantages.

In spite of the advancements and increased performances on various NLI bench-
marks, a growing body of literature has emerged pointing out various shortcomings
of language models on NLI datasets. For example, research by McCoy et al. (2019)
shows that language models adopt fallible and shallow heuristics, and they create
the Heuristic Analysis for NLI Systems (HANS) dataset to make the evaluation of
the use of such fallible heuristics more accessible. Likewise, Yanaka et al. (2019a)
show that language models struggle with modeling the linguistic phenomena of
monotonicity reasoning, creating the monotonicity-driven datasets of HELP and
Monotonicity Entailment Dataset (MED) in the process. Therefore, the research
on the shortcomings of language models on NLI datasets has brought to question
whether language models can truly understand and reason with natural language.
Moreover, the evaluation of language models enhanced with linguistic structures has
been limited to large-scale, generic benchmark datasets, leaving open questions as
to whether they are still relying on shallow heuristics, and whether the linguistic
structures help LLM-based models understand monotonicity reasoning.

This thesis investigates the effects of enhancing LLMs with linguistically derived
constituency and dependency structures via GCNs and evaluates the effects of doing
so for the task of NLI. We train models enhanced with dependency structures,
constituency structures, and a combination of both structures and evaluate their
performances on various generic NLI benchmark datasets, as well as the evaluation
sets of HANS and MED designed to test the model’s ability to handle specific
linguistic phenomena. Through a series of in-domain, out-of-domain, and transfer
learning experiments, this study aims at illuminating the effects of enhancing LLMs
with syntactic structures on their reasoning and inference capabilities for the task of
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NLI under different dataset distributions, thereby showing the potential usefulness of
enhancing LLMs with linguistically informed structures for the broader landscape of
NLP and AI. To facilitate follow-up research and reproducibility, we make our code
publicly available at https://github.com/lucalin17081994/Syntax-Enhanced-Bert.

1.1 Research Questions

Although enhancing language models with syntactic structures has been explored
in the literature, several key issues remain unresolved. This thesis aims to address
the following research questions and sub-questions:

• RQ1. What is the effect of enhancing BERT with constituency or dependency
structures with GCNs on their performance for the task of NLI?

Enhancing LLMs with constituency structures only has not been sufficiently
studied for the task of NLI, and we aim to address this gap in this thesis.

– RQ1.a Is there a beneficial effect when integrating both constituency
and dependency structures for the task of NLI?

Existing research has delved into the integration of both syntactic struc-
tures in the field of NLI using various methods (Bai et al., 2021; Zhou
et al., 2020). Despite these efforts, the methodology involving the in-
corporation of both linguistic structures via GCNs remains notably un-
explored. Additionally, an exhaustive evaluation of the linguistic capa-
bilities of these models using out-of-domain test sets is still a largely
untouched area of research.

– RQ1.b What is the effect of fine vs coarse granularity level of the depen-
dency labels on performance for the task of NLI?

Previous studies have omitted the incorporation of dependency labels
due to the risk of overfitting and overparameterization (Marcheggiani
and Titov, 2017; He et al., 2020). However, Fei et al. (2021) show that
including dependency labels improves performance on the Semantic Role
Labeling task. Consequently, we experiment with different levels of label
granularities to investigate whether clustering similar dependency labels
can improve performance for the task of NLI.

• RQ2. Can enhancing BERT with dependency or constituency structures
through GCNs help BERT generalize towards the HANS dataset?

Previous research has demonstrated that dependency structures can decrease
BERT’s reliance on shallow heuristics on the HANS dataset He et al. (2020).
Nonetheless, the effects of enhancing BERT with constituency structures or
both structures on the HANS dataset remain unexplored.
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• RQ3. Does enhancing BERT with constituency or dependency structures
with GCNs help with monotonicity reasoning in the MED dataset?

Work by Chen (2021) has shown that dependency structures can help tree-
LSTMs improve performance over BERT-based models on the monotonicity
reasoning dataset of MED. Nevertheless, to the best of our knowledge, the
effects of enhancing BERT-based models with linguistic structures for the
monotonicity reasoning task of MED have not been studied.

– RQ3.a Can syntax help BERT increase performance over the baseline
when trained on the monotonicity problems from HELP?

Generic NLI datasets such as SNLI and MNLI have been found to lack
monotonicity reasoning signals. Thus, numerous studies have employed
the HELP dataset as a means to explore the capacity of language models
to comprehend monotonicity reasoning when provided with an adequate
number of examples (Yanaka et al., 2019a; Chen, 2021; Rozanova et al.,
2022). Similarly, our study employs the HELP dataset to examine the
potential role of linguistic structures in enhancing performance on the
monotonicity reasoning task.

– RQ3.b How effective are syntax-enhanced models at identifying the scope
and argument structures of conjunction and disjunction operators in the
MED dataset?

The MED dataset is annotated with conjunction and disjunction in-
stances, pointing towards the utilization of these operators for the mono-
tonicity reasoning task. We hypothesize that linguistic structures could
help our models learn the scope and argument structures of these opera-
tors, thereby enhancing performance on these cases in the MED dataset.
Given that the conjunction and disjunction operators have two argu-
ments, we further hypothesize that constituency structures may offer
superior performance over dependency structures in learning these op-
erators’ scope and argument structures because they share parent nodes
in the tree structure.

• RQ4.a What are the effects of enhancing BERT with syntax when transfer-
learning from SNLI to the SICK dataset?

The SICK dataset was created as a benchmark dataset prior to SNLI for the
task of RTE to facilitate the development of Distributional Semantics Models
(Marelli et al., 2014). Distributional Semantics Models make use of vectors
derived from corpora using co-occurrence statistics to represent the meaning
of words (Evert, 2010). SICK comprises semi-automatically generated sen-
tences rich in lexical and syntactic information. We hypothesize that this
feature makes the dataset especially valuable for models enhanced with syn-
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tactic structures, as they could potentially harness the abundant syntactic
information in SICK to outperform the baseline model.

• RQ4.b Can syntax help BERT adapt to a new distribution in a transfer
learning and few-shot-learning setting?

Laurer et al. (2022) have shown that transfer learning from the NLI domain
to a more narrow domain where data is scarce can reduce the data require-
ments up to tenfold while maintaining performance levels. Consequently, an
interesting question to explore is whether linguistic structures can provide the
same benefits when transfer learning from a large-scale NLI dataset to another
NLI dataset where the size of the training set is limited.

1.2 Contributions

Through our proposed research questions, our contributions to the fields of NLP
and AI are as follows:

• We provide empirical data for the effects of enhancing the BERT-base-uncased
LLM with syntactic features via GCNs on various NLI benchmarks and eval-
uation sets.

• We show that enhancing BERT with constituency, dependency, or a combi-
nation of both syntactic structures via GCNs does not benefit popular NLI
benchmark datasets, but that curating the datasets of hypothesis-only biases
can increase the benefits of enhancing BERT with syntactic structures.

• For datasets where the underlying syntactic structure is important for the
inference task, we show that BERT enhanced with syntax via GCNs can better
leverage the syntactic information and adapt to new dataset distributions over
the baseline, even in settings where data is scarce.

• We show that constituency structures can help BERT learn useful represen-
tations for the linguistic phenomena of monotonicity reasoning and for pas-
sive sentence constructions, whereas dependency structures do not provide the
same benefits.

1.3 Outline

In this section, we have introduced the task of NLI and its importance in the broader
landscape of NLP and AI. We have highlighted the efforts of the NLP community to
enhance language models with linguistically derived features, and have introduced
the literature on the limitations of language models on the task of NLI. This has
led to the identification of a series of research questions that we will investigate
further in this thesis. In Section 2, we will delve into the details of transformer-
based LLM models, the challenges and shortcomings of language models for the
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task of NLI found in existing research, and the different methods of incorporating
syntactic structures into language models. In Section 3, we provide details on the
chosen architecture and pipeline, further clarify implementation details, and provide
information on the NLI datasets used to answer our research questions. In Section
4, we detail our experimental methodologies designed to investigate the specified
research questions. Section 5 provides a comprehensive report and discussion of our
empirical findings, which we subsequently compare with relevant literature under
similar conditions wherever possible. Section 6 discusses potential limitations en-
countered in our research, while Section 7 concludes this thesis by summarizing our
key findings and discussing potential future research.

2 Related Work

2.1 Large Language Models

Based on the Transformer architecture (Vaswani et al., 2017), LLMs have pushed
the state-of-the-art (SOTA) performance across numerous NLP benchmarks, and
their versatility has since been leveraged in other fields such as Computer Vision
(Dosovitskiy et al., 2020; Arnab et al., 2021), Chemistry (Wu et al., 2023), and
Speech Processing (Dong et al., 2018). The Transformer’s key features, such as
the self-attention mechanism and contextualized embeddings, made a significant
improvement over its predecessor, the LSTM (Hochreiter and Schmidhuber, 1997).
Unlike the LSTM, which processes inputs sequentially and uses static embeddings
like Word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014), the Trans-
former allows the parallel processing of the inputs. These capabilities enable self-
supervised pre-training on vast amounts of data, which reduces the need for train-
ing data in specialized domains, and allows for more informed initialization of the
weights, thus enhancing the model’s generalization performance by bringing the
weights closer to a more informed solution (Erhan et al., 2009, 2010; Balestriero
et al., 2023). Moreover, the Transformer’s encoder and decoder units can be hierar-
chically stacked and scaled, as demonstrated in families of encoder-type models like
BERT (Devlin et al., 2018), and decoder-type models such as GPT (Brown et al.,
2020). This hierarchical scaling enables the model to extract more abstract features
from the input data, further bolstering its performance across a wide variety of
tasks.

For the task of NLI, which involves the classification of sentence pairs, initial
work on LSTMs encoded the premise and hypothesis separately and aligned them
after the initial encoding (Chen et al., 2017). However, Devlin et al. (2018) have
shown that concatenating premise and hypothesis pairs into a single input to BERT
is more beneficial, as the model is able to align words between the two sentences using
the self-attention mechanism and capture relationships between words by requiring
minimal changes to the NLP pipeline. Many variations have been developed to
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attempt to increase their performances such as RoBERTa (Liu et al., 2019), which
provides more robust pre-training, OpenAI’s GPT-4 (OpenAI, 2023), which scales
the model as well as provides more pre-training data, and DistilBERT (Sanh et al.,
2019), which reduce the training time and the number of parameters in BERT while
providing performance levels similar to the original implementation. In this thesis,
we use the ”BERT-base-uncased” as our baseline model and as the backbone for
our syntax-enhanced LLM, as BERT-base encompasses the primary mechanisms of
pre-trained LLMs that are pertinent to our research.

2.2 Challenges and Shortcomings of Language Models and Natural
Language Inference Datasets

With the increasing applications and performance of LLMs across many NLP tasks,
a growing body of literature has emerged, pointing out various shortcomings in
both the models and the NLI datasets used for training and evaluation. Works by
Gururangan et al. (2018); Poliak et al. (2018) demonstrate that simple LSTM models
such as InferSent (Conneau et al., 2017) and simple bag-of-words bi-gram models
such as fastText (Joulin et al., 2016) are able to achieve 69% and 53.9% accuracy,
well above random chance, on both validation and test sets of SNLI and MNLI
respectively when only provided access to the hypothesis. In doing so, Poliak et al.
(2018) propose a hypothesis-only-baseline for evaluating models on SNLI and MNLI,
and Gururangan et al. (2018) introduce the term ”annotation artifacts” to describe
biases associated with the data generation process. Geva et al. (2019) observe an
increased gain in performance on the MNLI dataset when the model is provided
access to the annotator ID, indicating that information about the annotator writing
style may leak from the training data into the evaluation data when the dataset is
not carefully curated.

In light of research on annotation artifacts, McCoy et al. (2019) demonstrate that
language models employ shallow heuristics based on lexical and syntactic overlaps.
They develop the Heuristic Analysis for NLI Systems (HANS) dataset and
show that language models perform below 10% accuracy in cases where applying
these heuristics would make the wrong prediction. Consequently, research by Sinha
et al. (2021) and Pham et al. (2021) reveal that LLM-based models are largely
insensitive to word order and sequence permutations when trained on NLI datasets.
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Determiners First argument Second argument

every, each, all downward upward
some, a, a few, many, upward upward
several, proper noun
any, no, few, at most X, downward downward
fewer than X, less than X
the, both, most, this, that non-monotone upward
exactly non-monotone non-monotone

Table 1: Examples of determiners and their polarities, Yanaka et al. (2019a).

Category Examples
Determiners every, all, any, few, no
Negation not, n’t, never
Verbs deny, prohibit, avoid
Nouns absence of, lack of, prohibition
Adverbs scarcely, hardly, rarely, seldom
Prepositions without, except, but
Conditionals if, when, in case that, provided that, unless

Table 2: Examples of downward monotone operators provided by Yanaka et al.
(2019a). Identifying monotonicity context requires the model to identify the mono-
tonicity operator and the polarity of its arguments based on the syntactic structure
of the sentences.

Likewise, Yanaka et al. (2019a) develop the Monotonicity Entailment Dataset
(MED), and demonstrate that neural networks struggle to understand the linguistic
phenomena of monotonicity reasoning. Monotonicity reasoning replaces constituents
in the premise with either a more general concept or a more specific one to generate
new hypotheses. In order for the generated hypothesis to be entailed, the replaced
constituents must match the polarity (positive ↑, negative ↓, or neutral 0) of the
argument position of the monotonicity operators they are under the scope of. A con-
text is upward entailing (↑) if the monotonicity operator allows for the constituent
replacement to be a more general concept. In contrast, a context is downward en-
tailing (↓) if the monotonicity operator allows for the constituent replacement to be
a more specific concept. However, if the constituent replacement violates the polar-
ity of the monotonicity operator, the resulting sentence is non-entailing. In order to
make this clear, we make use of an example provided by Yanaka et al. (2019a):

P: Every [NP person ↓] [VP bought a movie ticket ↑] (1)

H: Every young person bought a ticket (2)

In the above examples, the determiner ”Every” is a binary monotone opera-
tor which is downward entailing in the first argument and upward entailing in the
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second. Violating the properties of the monotonicity operator, for example, by re-
placing ”person” in (1) with a more general concept such as ”entity”, will lead to a
non-entailed sentence. Furthermore, encapsulating the sentence with an additional
downward-monotone operator such as ”When” as in ”When every person bought
a movie ticket”, reverses the direction of the arguments of ”Every” to upward in
the first argument, and downward in the second argument. Therefore, to be able
to perform monotonicity reasoning, the model should be able to capture the inter-
action between lexical and syntactic structures, and further identify the monotone
operators and the polarity of their arguments based on the syntactic structure of
the sentence. Table 1 illustrates determiners and the polarities of their arguments,
and Table 2 showcases examples of downward monotone operators. In this thesis,
we investigate the effects of enhancing LLM-based models with syntax on the HANS
and MED datasets, as we hypothesize that incorporating syntactic structures into
LLM-based models can improve their performance on the heuristic evaluation set of
HANS, and the monotonicity-driven evaluation set of MED.

2.3 Syntax-Enhanced Large Language Models

Syntactic structures, such as dependency and constituency trees, play a crucial role
in understanding the grammatical structure and relationships between words in a
sentence. Constituency trees decompose the sentence into its constituents and or-
ganize them into hierarchical graphs, maintaining the local and global grammatical
structure of the sentence (Chomsky, 1957). Dependency structures, on the other
hand, represent grammatical dependencies between two words, the head and the
dependent (Mel’cuk et al., 1988). In doing so, dependency structures identify func-
tional grammatical relations between words. An example of both types of syntactic
trees can be found in Figure 1. The two types of syntactic structures view the
sentence from different perspectives and have been argued in the literature to com-
plement each other when integrated together (Fei et al., 2021).

Diverse methods have been proposed to incorporate the syntactic structures into
Neural Networks, resulting in increased benchmark performances on various NLP
tasks. For the task of NLI, work by Bai et al. (2021) masks the self-attention heads
of BERT using structures found in both dependency and constituency trees. Zhou
et al. (2020) incorporate both types of syntactic structures by means of additional
pre-training and multi-task learning. Glavaš and Vulić (2021) perform intermediate
pre-training (IPT) to repurpose BERT’s weights to become a SOTA dependency
parser, and subsequently fine-tune the model on the task of NLI. These various
methodologies attempt to incorporate syntactic structures into the transformer by
targeting different key features within the model’s architecture.

A popular methodology for incorporating syntactic structures into language
models involves directly modeling the graph structures of syntax trees via GCNs. For
example, Xu et al. (2022) calculate fine-grained association graphs with dependency
structures and use Neural Quadratic Assignment Programming to extract syntactic
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Figure 1: Example of constituency (left) and dependency (right) trees. Constituency
trees represent the local and global grammatical structures in a hierarchical fashion,
whereas dependency trees focus on the functional dependency relations between
words.

matching patterns which are modeled using GCNs. He et al. (2020) use GCNs to
combine BERT embeddings with dependency structures. For the task of Semantic
Role Labeling, Fei et al. (2021) integrate both dependency and constituency struc-
tures using GCNs, and argue that the two types of structures are mutually beneficial
for the task. In a survey on GCNs for various NLP tasks, Wu et al. (2021) identify
31 works in the literature incorporating dependency structures via GCNs, whereas
only three works have been listed incorporating constituency structures, none of
which for the task of NLI. Thus, the effects of enhancing LLM-based models with
constituency trees only, and incorporating both types of syntactic structures have
not been sufficiently studied, and require further exploration. In this thesis, we
make use of the GCN-based implementation provided by Fei et al. (2021)3, as the
incorporation of both syntactic structures provides us with a unique opportunity to
explore the effects of enhancing BERT with both types of syntactic structures for
the task of NLI.

As we have chosen a neural-based approach with GCNs to incorporate syntactic
structures into LLM-based models, it is important to highlight the similarities and
differences between the transformer and the GCN architectures. In a comprehensive
review on GNNs, Veličković (2023) argues that transformers can be considered a
special class of GNNs, as the self-attention mechanism enables the transformer to
capture relationships among the words in the input. For GCNs, Kipf and Welling
(2016) define an adjacency matrix A, representing the connections between the
nodes in a graph. Similarly, the transformer computes an attention matrix for
each word in the input sequence by multiplying the key and query. Consequently,
transformers can model these relationships starting from a fully connected graph
structure without the need for top-down graph construction. Nevertheless, several

3https://github.com/scofield7419/hesyfu
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studies have shown that incorporating linguistically derived dependency structures
can enhance their performance on various tasks, including NLI. These results suggest
that although transformers are capable of modeling relationships between words in
the training data through the self-attention mechanism, the integration of such
relationships from a top-down linguistic perspective can be beneficial for the task
of NLI (Bai et al., 2021; Zhou et al., 2020; He et al., 2020; Xu et al., 2022).

Although enhancing BERT with syntactic structures has shown improved per-
formance on various NLP tasks, several studies have brought to question the use-
fulness of enhancing language models with syntactic structures. Investigations in
the embeddings of BERT reveal that Bert-based models capture constituency and
grammatical knowledge during pre-training and that the linguistic structures are
largely preserved after fine-tuning, suggesting that BERT may already possess some
form of syntactic knowledge (Luo, 2021; Tenney et al., 2019; Zhou and Srikumar,
2022). In addition, recent studies have questioned whether integrating an inductive
bias towards linguistic syntactic structures into language models is advantageous for
NLI. Research on Tree-LSTMs by Shi et al. (2018) reveals that trivial tree struc-
tures such as balanced binary trees perform on par with constituency tree-LSTMs
in NLI tasks. Likewise, Yu et al. (2022) found that incorporating trivial trees into
RoBERTa through GCNs yielded comparable performance enhancements to using
dependency trees on diverse GLUE benchmark datasets (Wang et al., 2018), with
both producing marginal improvement over the baseline. Finally, Glavaš and Vulić
(2021) established that BERT’s IPT on Universal Dependency grammar provides
minor improvements on NLI and, conversely, degrades RoBERTa’s performance.
They further highlighted that post-IPT training model data representations differ
from those post-NLI fine-tuning, suggesting that features learned through IPT may
not be beneficial for NLI. Therefore, a number of studies in the field have prompted
reconsideration of the benefits of integrating syntactic structures into language mod-
els. Nevertheless, He et al. (2020) have found greater performance in enhancing
BERT with dependency structures via GCNs on the out-of-domain evaluation set
of HANS, indicating that different methodologies may provide different results.

2.4 Related Work on the HANS dataset

The HANS dataset evaluates whether language models have learned to use fallible
and shallow lexical overlap heuristics (McCoy et al., 2019), and the deficiencies of
BERT-based models on the HANS dataset have been investigated in the literature.
Min et al. (2020) examined BERT’s shortcomings on the HANS dataset, introduc-
ing the ”Missed Connection Hypothesis” suggesting that BERT learns syntax during
pre-training but lacks the syntactic signal from the training data to apply it to the
NLI task. They tested this hypothesis by augmenting MNLI with 405 sentence
pairs in which the subject and object in the premise swap positions in the hypoth-
esis, which led to improved BERT performance on HANS. However, BERT still
underperformed on passive subcases in HANS, supporting their ”Representational
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Inadequacy Hypothesis”, which proposes BERT lacks robust passive syntactic rep-
resentations, due to a lack of pre-training for this form, and requires more training
data for the passive case to make up for this deficiency. Lastly, Wu et al. (2022) use
generative AI to create new samples for SNLI and MNLI, and de-bias them using
statistical methods to counter annotation artifacts. Their data augmentation ex-
periments show a notable increase in BERT’s performance on HANS when trained
on the augmented MNLI dataset. Thus, existing work suggests that MNLI may not
contain sufficient signal to teach the original BERT model how to use syntax for the
task of NLI. Nevertheless, work by He et al. (2020) has shown increased performance
for the out-of-domain HANS dataset when enhancing BERT with dependency struc-
tures, indicating that linguistically informed structures can be beneficial in learning
more informed representations from the training data. However, the effects of en-
hancing BERT with constituency structures only, and both structures on the HANS
dataset have not been sufficiently studied, a gap that we aim to address in this
thesis.

2.5 Related Work on Monotonicity Reasoning

To investigate the ability of language models to perform monotonicity reasoning,
Yanaka et al. (2019a,b) create the HELP dataset using rule-based methods, and
MED dataset using crowd-sourcing methods. Using the MED dataset as evaluation
and HELP as data augmentation, they show that models trained on MNLI struggle
to model the context of monotonicity reasoning and that their performance is largely
dependent on the proportion of upward and downward cases in the training set.
Rozanova et al. (2022) replicate this finding, and further show that the model trained
on the MNLI training set augmented with HELP is better able to distinguish features
related to monotonicity context, whereas the model trained only on MNLI is unable
to distinguish between upward- and downward monotonicity features.

Consequently, Chen (2021) investigate the effects of incorporating dependency
structures into tree-LSTM models, and show improved performance over BERT-
based models on the MED dataset, indicating that incorporating linguistic struc-
tures in neural-based language models can be beneficial for the monotonicity rea-
soning task for smaller, lighter-weight models. Current SOTA performance on MED
is achieved by Chen et al. (2021) through their work on NeuralLog, a hybrid model
that combines traditional symbolic AI through the identification of constituent po-
larities in the premise from Universal Dependency trees4, and the robustness of
neural networks to detect syntactic variations for the task of NLI. With an overall
performance of 93.4% on the MED dataset, their results demonstrate the potential
of hybrid architectures to overcome the limitations of purely neural network-based
models.

Nevertheless, the effects of enhancing LLM-based models with syntactic struc-

4https://github.com/eric11eca/Udep2Mono
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tures have not been explored for the monotonicity reasoning task. Because mono-
tonicity reasoning requires the model to make logical inferences from the syntactic
structure of a sentence, we hypothesize that enhancing a neural network with syn-
tactic structures can be beneficial in helping the model identify the context of mono-
tonicity reasoning, improve its performance on the MED dataset, and potentially
overcome the limitations of purely neural-based models.

3 Methodology

3.1 Architectural Overview

In this thesis, we adopt the syntax-based GCN implementation by Fei et al. (2021),
Hesyfu5, which incorporates both a constituency-based GCN (ConstGCN, original
work by Marcheggiani and Titov (2020)) and dependency-based GCN (DepGCN)
for the task of Semantic Role Labeling. The implementation of both syntactic struc-
tures grants us the opportunity to research the effects of each individual syntactic
structure, as well as the combination of both structures. As the architecture has not
been developed for the task of NLI, we pick parts of the implementation by He et al.
(2020) related to aligning the premise and hypothesis to build a coherent pipeline
for the NLI task. We rename Hesyfu to DC, constGCN to Con, and depGCN to
Dep in this thesis for simplicity reasons.

3.1.1 BERT as Baseline Model

To limit the computational costs of the experiments, we choose ”BERT-base-uncased”
as our baseline model and as the backbone of the enhanced models (Devlin et al.,
2018). BERT encompasses the fundamental components inherent in LLMs, pos-
sesses bidirectional contextual understanding capabilities required for the NLI task,
and is designed to efficiently represent input data as pairs of sentences. Sentences
are pre-processed and tokenized by concatenating them as ”[CLS] p [SEP] h, [SEP]”,
where p and h equal the premise and hypothesis respectively and [CLS] and [SEP]
are BERT specific tokens indicating task and end of sentence respectively. For the
base model, we perform classification using the [CLS] token, which we use to repre-
sent the semantic representation of the sentence pair at the end of the feedforward
phase. For the GCN components, we follow the work by He et al. (2020) by sep-
arating the premise and hypothesis pair for the follow-up syntax enhancements,
discarding the [CLS] and [SEP] tokens in the process.

3.1.2 Constituency GCN Layer

The implementation of the constituency GCN (Con) layer succeeds the work by
Marcheggiani and Titov (2020), and Fei et al. (2021) adopt it for their research. The

5Heterogeneous Syntax Fuser
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Figure 2: Heterogeneous Syntax Fuser (DC-GCN) architecture from Fei et al. (2021).
sentences are passed through the GCN layers and fused through highway units to
preserve information across layers (Srivastava et al., 2015).

left side of Figure 2 provides an overview of the implementation of the constGCN
model. Following the work by Fei et al. (2021), given the constituent tree G(c) =
(U (c), E(c)) where U (c) is the node set and E(c) the edge set, firstly, in the Span-
boundary Bridging operation (red arrows), the non-terminal labels from the tree

are concatenated to the embeddings derived from BERT. Then, the nodes h
(c)
u are

updated using the edges found in the constituency tree:

h(c)u = ReLU

{
M∑
v=1

αuv

(
W (c1) · rbv + W (c2) · v(c)v + b(c)

)}
(3)

Where u and v represent nodes in U (c). rbv represents the initial representation
of node v, which is calculated by adding the start and end token of the phrasal span:

rbv = rstart + rend. v
(c)
v represents the embedding for the label of node v, and αuv

encodes both syntactic edge and label information, and represents the weights of
the constituent connecting distribution:

αuv =
e
(c)
uv · exp {(z

(c)
u )T · z(c)v }∑M

v′=1
e
(c)

uv′
· exp {(z

(c)
u )T · z(c)

v′
}

(4)

Where e
(c)
uv equals 1 if there is an edge between node u and v, and 0 otherwise.

Note that the edges are bi-directional. z
(c)
u is calculated as the sum of vu and v

(c)
u .
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Lastly, the Span-boundary Inverse-bridging operation (green arrows) is per-

formed to restore the token node for each word wi in the sequence hconsti = h
(c)
u0 +h

(c)
v0 .

This last operation is performed to get back the original sequence length of the sen-
tence without the constituent nodes.

3.1.3 Dependency GCN Layer

Likewise, in the right side of Figure 2, for the dependency GCN (Dep), given the
tree G(d) = (U (d), E(d)) where U (d) represent the node set and E(d) the edge set, the

hidden representation h
(d)
i is calculated as:

h
(d)
i = ReLU


n∑

j=1

βij

(
W (d1) · r′

j + W (d2) · v(d)ij + b(d)
) (5)

Where r
′
j represents the initial embedding representation of token j, which is

calculated as r
′
j = rj + hconst if the depGCN component follows the constGCN

component, as in DC. If the depGCN component follows the BERT backbone, hconst

will be replaced by hBERT. vij represents the embedding for the dependency label
between i and j, and βij encodes both syntactic edge and label information, and
represents the weights of the neighbor-connecting strength distribution:

βij =
e
(d)
ij · exp (z

(d)
i )T · z(d)j∑n

j′=1 e
(d)
ij′ · exp (z

(d)
i )T · z(d)j′

(6)

eij =


1, if (i, j) ∈ ε

1, if (j, i) ∈ ε

1, if i==j (self-loop)

0, otherwise

(7)

Where ε represents the dependency edges found in the parsed tree and z
(d)
j =

r
′
i + vdij . Thus, the edges in the dependency tree are modeled as bi-directional and

include self-loops.

3.1.4 Heterogeneous Syntax Fuser (DC)

For the integration of both constituency and dependency structures, both premise
and hypothesis are first individually passed through the Con, then the output is
passed to the Dep, and the outputs are finally fused using highway units to retain
information across the GCN layers (Srivastava et al., 2015). The heterogeneous
syntax fuser (DC) architecture from Fei et al. (2021) can be found in Figure 2.

The highway unit first applies a sigmoid function to the element-wise addition
of the outputs of Con (hCon

i ) and Dep (hDep
i ) to get the gated outputs gi (8), and
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then performs element-wise multiplication and addition to the gated outputs to get
the fused representation si (9):

gi = σ(hCon
i ) + hDep

i ) (8)

si = g ⊙ hCon
i + (0− g) ⊙ hDep

i (9)

It should be noted that our implementation of the highway unit differs from the
original approach by Srivastava et al. (2015) in that we substitute the value 1 with
0 in the equation. Srivastava et al. (2015) mention that they chose the value of 1
for simplicity reasons. During the initial architecture exploration, we found that
the work by Fei et al. (2021) made use of 0 instead of 1 in the code base. We
therefore tried both values to determine which would provide the best performance
and ultimately opted for 0.

3.1.5 Co-Attention Layer

The outputs of the GCN components HA and HB, where A and B represent the
premise and hypothesis, are fed to the co-attention layer (He et al., 2020). For
consistency across works, we maintain the notations for the equations by He et al.
(2020). We first calculate an affinity matrix C as C = tanh(HT

AWcHB), which is
used in the co-attention layer:

GA = tanh(WAHA + CT (WBHB)), (10)

aA = softmax(wT
AGA), (11)

GB = tanh(WBHB + C(WAHA)), (12)

aB = softmax(wT
BGB). (13)

Where w and W are weight parameters, aA and aB attention matrices represent-
ing attention probabilities for the premise and hypothesis respectively. The output
of the co-attention layer is calculated as:

hA =
∑
i∈A

aiAH
i
A, (14)

hB =
∑
j∈B

ajBH
j
B. (15)

The final representation is calculated and fed to a linear layer as:

y = W [hA, hB, abs(hA − hB), hA ⊙ hB] + b (16)

20



Co-attention
+

Linear Classifier

gate

Dep

Con

BERT

[CLS] Premise [SEP] Hypothesis [SEP]
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Figure 3: High-level architectural overview. The backbone of the architecture is
”BERT-base-uncased”. We incorporate the work by Fei et al. (2021) of label-aware
syntax GCNs (Con and Dep) and methodologies from He et al. (2020) of aligning
premise and hypothesis pairs for the NLI task. Left: dependency tree. Right:
constituency tree.

where W equals the weights of the linear classification layer, and b the bias. We
use the cross-entropy loss function to obtain the loss for the classification task.
We note that the pairwise difference abs(hA − hB) may erase some directionality
effects when calculating the final representation, which can be important for NLI.
However, He et al. (2020) included this in their repository, and we found through
experimentation that using the absolute value provides better performance. An
overview of the architecture can be found in Figure 3. For the Con-only and Dep-
only variants, we omit the gating and highway functions and calculate the final
representation directly using the GCN output.

3.1.6 Architectural Ordering of Components

The work by Fei et al. (2021) shows that passing the embeddings through the Con
first, then dependency GCN results in better performance. Moreover, initial work
on dependency GCNs by Marcheggiani and Titov (2017) shows that multiple layers
of dependency GCN are needed to encode dependencies that are more than a single
arc away in the dependency graph, but that by pairing the dependency GCN with
an LSTM encoder allows a single GCN layer to perform better due to the LSTM
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encoder being able to model global structures first. For this thesis, we maintain the
same order of components as Fei et al. (2021).

3.2 From Ternary Classification to Binary

Because the HANS and MED datasets only contain two labels as opposed to three,
given the output vector y = [ye, yc, yn], where ye, yc, and yn represent the output
logits of entailment, contradiction, and neutral labels, respectively, we first apply
the softmax function to obtain the probability distribution:

p = softmax(y) (17)

Then, we compute the probability of non-entailment by adding the probabilities
of contradiction and neutral labels:

pe, pn =

{
pe

pn = pn + pc
(18)

This methodology differs from McCoy et al. (2019) and He et al. (2020) in
that they simply translate the contradiction and neutral labels to non-entailment.
In their work, McCoy et al. (2019) mention that the two methodologies provide
similar results because the prediction of the model would almost always output more
than 50% for the prediction, but we have found in our experiments on SNLI that
adding the probabilities of contradiction and neutral provides much better results,
indicating that there are cases for which models are uncertain about the probability
distributions of the labels.

3.3 Syntactic Parser

To enhance the models with syntax, we parse the datasets using the Stanza parser
(Qi et al., 2020), which includes both dependency and constituency parsing neural
pipelines, as well as GPU acceleration. Similar to the work by He et al. (2020), we
make use of Stanza’s Universal Dependency parser to extract dependency features,
and the default constituency model to extract constituency trees. Although SNLI,
MNLI, and HANS provide constituency parses for each sentence, other datasets do
not provide constituency parses. We therefore parse them once again with Stanza
to ensure that our models are provided with trees from the same model. Lastly,
premises and hypotheses in large-scale datasets like MNLI may contain multiple
sentences. To deal with premises and hypotheses containing more than a single
sentence, we set the tokenize no split parameter in Stanza to True. The resulting
trees encompass all sentences in the premise or the hypothesis.
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3.3.1 Tokenization

In this study, we observed a mismatch between the tokenization methods used by
Stanza and BERT, which may lead to inconsistencies when attempting to integrate
the syntactic features into the BERT embeddings. For example, consider the sen-
tence ”The man is a non-smoker.” When tokenized by Stanza, the sentence is split
into the following tokens: ’The’, ’man’, ’is’, ’a’, ’non-smoker’, ’.’.. On the
other hand, BERT employs WordPiece tokenization, which sub-tokenizes the same
sentence as follows: ’the’, ’man’, ’is’, ’a’, ’non’, ’-’, ’smoke’, ’##r’, ’.’, sub
tokenizing ’smoker’ and ’non-smoker’. This discrepancy requires additional pro-
cessing to align the syntactic features extracted using the Stanza parser with those
derived from BERT’s tokenization method. Thus, we adopt the methodology of He
et al. (2020) and merge sub-tokens by mean-pooling across the sub-tokens to get
the appropriate sequence lengths and align the mismatch in tokens between BERT
embeddings and syntax features.

Additionally, when training our syntax models on large datasets such as MNLI,
which contain long premises, we encountered issues fitting the training data into
GPU memory. To deal with this issue, we individually truncate premises and hy-
potheses longer than 100 tokens6.

3.4 Hyperparameters and Optimizers

For the hyperparameters and optimizers, we follow the work by He et al. (2020).
For the optimizers, we make use of two optimizers during training to address the
mismatch between the pre-trained BERT backbone and the newly initialized GCN
encoders. To preserve the benefits of pre-training, Devlin et al. (2018) suggest that
a low learning rate works best when fine-tuning pre-trained models, between 1e-5
and 5e-5. Both optimizers are initialized using AdamW (Loshchilov and Hutter,
2017). For BERT, we make use of a warmup linear scheduler. At the beginning of
training, the optimizer initiates with a learning rate of zero and increases it for t
warmup steps. Then, the learning rate linearly decays to zero during training. We
set t to 10% of the training set. For the rest of the architecture, we make use of a
multi-step learning rate. After the first epoch, we reduce the learning rate to 10%
of the original learning rate.

We set the batch size at a constant of 32 for SNLI and 24 for MNLI to be able to
fit the data into GPU memory7. The hidden dimension of the GCN layers is set to
768 to match the hidden dimensions of BERT. He et al. (2020) fine-tune their models
for 3 epochs on MNLI with no early stopping. We therefore fine-tune our models for
3 epochs on MNLI, and 2 epochs on SNLI. This allows us to approximately match
the number of samples seen by our models on SNLI, as SNLI is roughly 1.4 times

6This methodology affects 1200 sentence pairs in MNLI, which represents 0.3% of the dataset.
7We were unable to fit 32 batch size into GPU memory even after our truncation strategy.
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larger than MNLI8.
To find optimal learning rates, we make use of the SNLI-validation set for hy-

perparameter tuning. We try the following values for BERT: 5e-5, 3e-5, 2e-5, 1e-5.
We then keep the learning rate for BERT fixed and tune the hyperparameters for
the syntax-enhanced models. For the learning rate of the additional parts of the
architecture involving GCN components, co-attention, and classification layer, we
search the following values: 1e-3, 5e-4, 3e-4, 1e-4. Due to computational limits, the
large size of the datasets, and the large number of LLMs to fine-tune, exhaustive or
random grid-search were not viable options. We make use of the cross-entropy loss
for the ternary classification task.

3.5 Dataset Shuffling

In the literature, it has been found that for the SNLI, models tend to perform best
when the training data is presented in a non-shuffled format, due to the original
order of SNLI presenting each premise three times, once for each label. Research
by Schluter and Varab (2018) suggests that this method of presenting the dataset
can increase the performance of LSTM models by 3-4% on SNLI, but leave experi-
mentation with more complex models such as BERT to future research. We reason
that, by presenting triples of premises together in a batch, BERT will be better
able to separate the labels in its representation space during fine-tuning (Zhou and
Srikumar, 2022), leading to increased performance. Consequently, we do not shuffle
the dataset during training on SNLI-train. It is worth noting that a byproduct of
this approach is the mitigation of randomness. For the experiments involving other
datasets, we perform shuffling with seeding value of 42 to keep the shuffling order the
same across conditions and increase reproducibility, as the datasets are not neatly
sorted by premise as in SNLI, or may lack a certain label.

3.6 Normalized Subtree Kernel

For data analysis of the constituency trees, we make use of the Normalized Subtree
Kernel method (Moschitti, 2006)9. The Normalized Subtree Kernel method com-
putes the similarity between two parse trees by calculating the number of subtrees
that they intersect and normalizing the value by the product of the number of sub-
trees of each tree. We first replace all words in the parsed trees with a dummy token
’x’. This procedure ensures that the similarity score will only take into consideration
the tree structure and non-terminal labels, not the lexical content of the sentences.
Let T1 and T2 be two parse trees, and let K(T1, T2) be the tree kernel similarity
between them, which is the number of common subtrees. Let |T1| and |T2| be the

8SNLI contains 549.361 sentence pairs after dropping missing labels, MNLI 392.702.
9Moschitti (2006) make the distinction between subtree kernel and subset tree kernel. Subset

trees include subtrees with non-terminal symbols. In our implementation, we make use of the
subtree kernel.
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total number of subtrees in T1 and T2, respectively. The normalized tree kernel
method can be defined as:

N(T1, T2) =
K(T1, T2)√
|T1| · |T2|

(19)

Here, N(T1, T2) represents the Normalized Tree Kernel similarity between the
two parse trees T1 and T2. The normalization is done by dividing the raw similarity
score K(T1, T2) by the square root of the total number of subtrees in T1 and T2.
This normalization ensures that the similarity score lies between 0 and 1, and takes
into consideration the sizes of the trees.

3.7 McNemar’s Test

For the HANS and MED datasets, we perform McNemar’s statistical test to de-
termine whether the differences in performance are statistically significant for the
binary classification task (McNemar, 1947). We calculate the χ2 test statistic, which
considers the null hypothesis as H0 : b = c and alternative hypothesis as H1 : b ̸= c,
where b and c are the correct predictions made by one model and incorrect by the
other. Given the following contingency table:

Model 2 Correct Model 2 Incorrect

Model 1 Correct a b

Model 1 Incorrect c d

Table 3: Example McNemar contingency table.

The χ2 test statistic is calculated as:

χ2 =
(b− c)2

b + c
(20)

If the p-value is below 0.05, we reject the null hypothesis and therefore consider
the difference in performance statistically significant. For datasets with more than
two labels, like SNLI and MNLI, we do not perform McNemar’s test, as one of the
assumptions of this test is that the predictions are binary outcomes.

3.8 Hardware Requirements, Services, and Number of Parameters

We conduct our experiments in Google Colab10, which provides access to GPUs for
a fee, and the Dutch National Supercomputer Snellius11, which is accessed through
the HPC department at the University of Utrecht. Google Colab provides Tesla T4
GPUs as a standard, and both services provide access to A100 GPUs. For this thesis,

10https://colab.research.google.com/
11https://www.surf.nl/en/dutch-national-supercomputer-snellius
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we were granted 30.000 computing resources (SBUs) for Snellius, which translates
to roughly 234 hours of computing on an A100 GPU.

As each premise in SNLI and MNLI is associated with three hypotheses, one
hypothesis for each label, we store the premises and the corresponding features in a
dictionary to reduce RAM requirements when loading the training set of SNLI and
fit the training data in a low RAM environment.

To keep track of training, hyperparameter tuning, and store models, we make
use of Weights and Biases, a service for machine learning developers for end-to-end
tracking of neural network models and runs12.

Because LLMs are becoming prohibitively large and their computational and
environmental costs also increase, we follow the suggestions made by Patterson
et al. (2021) to include the number of parameters of our models in our work, which
can be found in Table 4.

Model N Parameters

Base 109.484.547

Con 115.742.655

Dep 113.072.643

DC-GCN 117.552.831

Table 4: Comparison of parameters between the proposed models.

3.9 Datasets

3.9.1 SNLI and MNLI

The datasets of SNLI and MNLI have been created to provide large-scale data for
neural network-based models to be competitive in the task of NLI, with SNLI and
MNLI containing 550.15213 and 392.702 sentence pairs respectively. The dataset
creations of SNLI and MNLI follow a crowdsourcing methodology, taking a premise
sentence from a source, and subsequently asking crowd-workers to generate a hy-
pothesis for each one of the three labels. In SNLI, premises originate from im-
age captions from the Flickr30k dataset (Young et al., 2014), whereas in MNLI,
premises are taken from various sources and genres of English text, as well as spo-
ken language, making MNLI a more diverse and challenging dataset. Examples of
premise-hypothesis pairs from the SNLI dataset can be found in Table 5.

12https://wandb.ai/site
13549.361 after removing missing gold labels
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Premise Hypothesis Label
The church has
cracks in the ceiling.

neutral

This church choir sings to the masses as they
sing joyous songs from the book at a church.

The church is
filled with song.

entailment

A choir singing
at a baseball game.

contradiction

Table 5: Example premise-hypothesis pairs from the SNLI dataset. Each premise
is associated with at least three hypotheses. These pairs were generated through a
crowd-sourcing methodology.

3.9.2 HANS

Research on annotation artifacts and hypothesis-only biases have shown that a vast
majority of SNLI and MNLI14 can be trivially solved by only considering the hy-
pothesis and by ignoring sentence structure (Gururangan et al., 2018; Poliak et al.,
2018). Consequently, McCoy et al. (2019) develop the Heuristic Analysis for NLI
Systems (HANS) dataset, which targets the use of lexical overlaps, subsequence,
and constituent heuristics by language models. Hypotheses in the lexical-overlap
heuristic share the same lexical content as the respective premise, but with different
word ordering. Hypotheses in the subsequence heuristic are fully contained within
the respective premise in the same order, and in the last heuristic, hypotheses in the
constituent heuristic are complete sub-trees of the respective premise. Sentences
in HANS are generated using templates and are further annotated with 30 lin-
guistic phenomena each representing a different subcase, such as passive sentences.
Each heuristic is associated with 10 subcases, and each subcase is associated with
1.000 sentence pairs, resulting in a total of 30.000 sentence pairs in HANS. Lastly,
samples in the HANS dataset are annotated with only two labels: entailment and
non-entailment because the distinction between contradiction and neutral is unclear
in many of the HANS cases. Examples of the sentences and their corresponding
heuristics from the original HANS paper can be found in Table 6.

3.9.3 HELP and MED

Because the SNLI and MNLI datasets lack the use of downward monotone inferences,
Yanaka et al. (2019b) develop the HELP dataset to aid in the development of neural-
based language models on monotonicity reasoning. The HELP dataset contains
20.945 downward-monotone samples and 7.678 upward-monotone samples. Sen-
tences in HELP originate from the Parallel Meaning Bank (Abzianidze et al., 2017),
and new sentences are generated using rule-based replacements, making HELP a
semi-automatically generated dataset. Moreover, the HELP dataset contains 6.076

14Hypothesis-only baseline: 69% for SNLI, 53.9% for MNLI
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Heuristic Premise Hypothesis Label
Lexical Overlap The banker near the judge

saw the actor.
The banker saw the actor. E

The doctors visited the
lawyer.

The lawyer visited the
doctors.

N

Subsequence The artist and the student
called the judge.

The student called the
judge.

E

The judges heard the ac-
tors resigned.

The judges heard the ac-
tors.

N

Constituent Before the actor slept, the
senator ran.

The actor slept. E

If the actor slept, the
judge saw the artist.

The actor slept. N

Table 6: Example sentences from HANS dataset from the original paper by McCoy
et al. (2019). Models relying on heuristics in the Heuristic column for the Natural
Language Inference task fail on Non-Entailment (N) labels.

conjunction and 438 disjunction cases targetting the use of conjunction and disjunc-
tion operators. In total, HELP contains 36K sentence pairs. Several works have
used the HELP dataset to study the monotonicity reasoning capabilities of lan-
guage models (Yanaka et al., 2019a; Chen, 2021; Rozanova et al., 2022). Example
sentences from the HELP dataset can be found in Table 7.

Similar to the HELP dataset, Yanaka et al. (2019a) develop the MED dataset
to evaluate language models on the monotonicity reasoning task. In contrast to the
HELP dataset, sentences in MED are generated using crowd-sourcing methodolo-
gies, due to the semi-automatic generation of sentences in HELP sometimes resulting
in unnatural sentences15. The MED dataset contains 1.820 upward monotone cases,
3.270 downward monotone cases, and 292 non-monotone cases, totaling 5.382 sen-
tence pairs. Table 8 illustrates sentence pairs from the MED dataset. Similar to
the HANS dataset, HELP and MED are annotated with only two labels: entailment
and neutral.

3.9.4 SICK Dataset

The Sentences Involving Compositional Knowledge (SICK) dataset, designed
as a benchmark for RTE during the SemEval-2014 challenge, was specifically created
to facilitate the progress of Distributional Semantics Models (Marelli et al., 2014).
As numerous linguistic phenomena unrelated to semantic compositionality - such as
named entity recognition, multi-word expression, and encyclopedic knowledge - play
a role in Natural Language Inference (NLI), the SICK dataset has been constructed
to limit these unrelated elements, focusing solely on semantic compositionality. De-

15of 500 randomly sampled sentence pairs, 146 were found to be unnatural.
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Section Size Example

Up 7784 Tom bought some Mexican sunflowers for Mary
⇒ Tom bought some flowers for Mary*

Down 21192 If there’s no water, there’s no whisky* ⇒ If
there’s no facility, there’s no whisky

Non 1105 Shakespeare wrote both tragedy and comedy*
⇏ Shakespeare wrote both tragedy and drama

Conj 6076 Tom removed his glasses ⇏ Tom removed his
glasses and rubbed his eyes*

Disj 438 The trees are barren ⇒ The trees are barren or
bear only small fruit*

Table 7: Example sentences from the HELP dataset (Yanaka et al., 2019b). Sen-
tences with an asterisk (*) are original sentences from the Parallel Meaning Bank
(Abzianidze et al., 2017)

rived from the captions of the 8K ImageFlickr dataset (Hodosh et al., 2013) and
the SemEval-2012 STS MSR-video Descriptions dataset (Agirre et al., 2012), 1500
sentences were selected and expanded upon using rules to generate multiple new
sentences. These generated sentences were then paired with their original coun-
terparts, forming premise-hypothesis pairs. Additionally, some generated sentences
were matched with unrelated sentences, resulting in a total of 10,000 sentence pairs.
For a more detailed insight, Table 9 exhibits example sentences from the SICK
dataset.

3.9.5 ANLI, FeverNLI, WaNLI, and LingNLI

Initial work on SNLI and MNLI has opened new opportunities for neural network
models to perform competitively in the field of NLI. However, the rapid pace of
advancements in LLMs has quickly saturated the SOTA on the evaluation sets, and
the marginal gains in performance may not be indicative of their NLU capabilities.
Moreover, research on annotation artifacts has brought to question whether their
performance stems from their NLU capabilities or whether they are simply modeling
spurious correlations within the data distributions. Consequently, recent research
has put effort in collecting more challenging datasets which aim at mitigating the
biases previously found in NLI datasets, as well as providing more challenging bench-
marks for NLI models. Four such datasets include Adversarial NLI (ANLI, Nie et al.
2020), Fact-Verification NLI (FeverNLI, Nie et al. 2018), Worker and AI Collabo-
ration (WaNLI, Liu et al. 2022), and Linguist in the Loop (LingNLI, Parrish et al.
2021).

In ANLI, Mechanical Turk workers generate new hypotheses, in an adversarial
setting against an NLI model. Incorrectly predicted hypotheses are verified, col-
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Genre Tags Premise Hypothesis Gold
up There is a cat on the chair There is a cat sleeping on

the chair
NE

up:cond If you heard her speak En-
glish, you would take her
for a native American

If you heard her speak En-
glish, you would take her
for an American

E

up:rev:conj Dogs and cats have all
the good qualities of
people without at the
same time possessing
their weaknesses

Dogs have all the good
qualities of people without
at the same time possess-
ing their weaknesses

E

Crowd up:lex He approached the boy
reading a magazine

He approached the boy
reading a book

E

down:lex Tom hardly ever listens to
music

Tom hardly ever listens to
rock ’n’ roll

E

down:conj You don’t like love stories
and sad endings

You don’t like love stories NE

down:cond If it is fine tomorrow, we’ll
go on a picnic

If it is fine tomorrow in the
field, we’ll go on a picnic

E

down I never had a girlfriend be-
fore

I never had a girlfriend
taller than me before

E

up:rev Every cook who is not a
tall man ran

Every cook who is not a
man ran

E

up:disj Every man sang Every man sang or danced E
Paper up:lex:rev None of the sopranos sang

with fewer than three of
the tenors

None of the sopranos sang
with fewer than three of
the male singers

E

non Exactly one man ran
quickly

Exactly one man ran NE

down At most three elephants
are blue

At most three elephants
are navy blue

E

Table 8: Example sentences from MED dataset from Yanaka et al. (2019a). Genre
indicates which method was used to collect the data and tags indicate which type of
monotonicity reasoning, as well as the linguistic phenomena that the sentence pairs
target.
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Premise Hypothesis Gold label
A man is jumping into an empty
pool

A man is jumping into a full pool contradiction

Children are being dressed in
costumes and playing a game

Kids are being dressed in cos-
tumes and playing a game

entailment

A child is experiencing a new
world

A boy under an umbrella is being
held by his father who is wearing
a coat dyed in blue

neutral

Table 9: Example sentences from the SICK dataset. Sentences in SICK originate
from image captions, and new sentences are generated using expansion rules.

lected, and used as new training data to train a new NLI model, which is initially
trained on both SNLI and MNLI. Furthermore, workers participate in three consec-
utive rounds, with a new NLI model trained on the adversarial data generated in
the previous round, resulting in increasingly more challenging sentence pairs. The
resulting dataset contains 162.865 training samples which are more challenging, and
provide a new benchmark for NLU. Starting from round 2, the adversarial model
is trained on the FeverNLI dataset, a dataset originally created for fact-checking
and verification. The source sentences provided to the Mechanical Turk workers
originate from various sources, such as the HotpotQA dataset (Yang et al., 2018),
News sources from Common Crawl, fiction from StoryCloze (Mostafazadeh et al.,
2016), and CBT (Hill et al., 2015).

In WaNLI, GPT-3 is used to generate sentences with similar patterns to the
sentences found in MNLI. Then, human crowd-workers are employed to verify, label,
and optionally revise the training data. The resulting dataset contains 107.885
sentence pairs, and initial experiments with training on the dataset show improved
generalization performance on ANLI, as well as HANS.

Lastly, in LingNLI, human annotators are provided chat-room access to an expert
linguist, who provides feedback, and guidance, and assesses their work during the
data annotation stage. The resulting dataset contains 44.982 sentence pairs and has
been found to be more challenging than MNLI, and further increases the out-of-
domain generalization of models when trained on MNLI augmented with this new
data.

4 Experiments

In this section, we revisit our proposed research questions and provide the details
of the experiments conducted to answer them. We make the distinction between
in-domain experiments where we evaluate on the evaluation set associated with the
training set, out-of-domain experiments where we evaluate our models on out-of-
domain distributions, and transfer-learning experiments where we first train on a
generic NLI dataset, then further fine-tune on a dataset with few training samples.
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4.1 Models

To explore the benefits of syntax for NLI, we conduct our experiments with four
different models. We choose ”BERT-base-uncased” as our baseline model, as BERT-
base encompasses the primary mechanisms of pre-trained LLMs that are pertinent
to our research. It is worth noting that due to computational constraints, it was
not feasible to scale our models to larger variants such as BERT-large or RoBERTa
within this thesis. We further include a model enhanced with dependency struc-
tures (Dep) and one enhanced with constituency structures (Con). We evaluate
the performance of a model enhanced with both types of syntax (DC) to research
the effects of combining both types of linguistic features. All enhanced models are
derivatives of work by Fei et al. (2021) on enhancing language models with syntax
GCNs.

4.2 In-Domain Experiments

[RQ1.] What is the effect of enhancing BERT with constituency or dependency
structures with GCNs on their performance for the task of NLI?

To answer Research Question 1, we train the models on the SNLI training set
and evaluate on SNLI-test, as well as SNLI-test-hard provided by Gururangan et al.
(2018). SNLI-test-hard includes samples from SNLI-test that could not be solved
with a hypothesis-only classifier. We further train our models on the MNLI training
set and evaluate on the respective test sets, both matched and mismatched vari-
ations. MNLI-matched contains samples in the same genre as the training data:
fiction, government, slate, telephone, and travel, whereas MNLI-mismatched con-
tains similar but out-of-domain samples from different genres: face-to-face, letters,
nine-eleven, Oxford-University-press, verbatim.

We follow the work by Laurer et al. (2022) and train our models on the con-
catenation of MNLI, ANLI, FeverNLI, WaNLI, and LingNLI, resulting in a total
of 897.607 sentence pairs. Because SNLI and MNLI have been found to contain a
large number of hypothesis-only and lexical overlap biases, we reason that increasing
the quantity of training data may provide further insight into the role of enhancing
LLMs with additional syntactic structures on generic, large-scale NLI datasets. Al-
though MNLI has been found to contain annotation artifacts, we include the dataset
in this set of experiments to provide our models with more training data and to be
consistent with Laurer et al. (2022). Furthermore, hypotheses in LingNLI have been
generated using the ’slate’ genre in MNLI, and sentence pairs in WaNLI have been
generated to follow similar patterns to samples in MNLI. Because of these similar-
ities, including MNLI may be beneficial for these datasets. Lastly, we evaluate the
models on the associated evaluation sets16, as well as the out-of-domain evaluation
sets of HANS and MED.

16Except the evaluation set of FeverNLI, as it misses gold labels.
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Figure 4: Dependency label frequencies in SNLI-train before and after clustering
similar labels. Left: original fine-grained dependency labels. Mid: mid-grained
condition. Right: coarse-grained condition.

[RQ1.a] Is there a beneficial effect when integrating both constituency and
dependency structures for the task of NLI?

To answer this research question, we will look at our results on both in-domain
evaluation sets, as well as out-of-domain evaluation sets on the HANS and MED
datasets. Works in the literature incorporating both syntactic structures have re-
ported increased performance for the task of NLI (Bai et al., 2021; Zhou et al.,
2020). However, their evaluations have been restricted to in-domain evaluation
sets. It therefore remains unclear whether they are still using shallow heuristics, or
whether the combination of both structures aids in the monotonicity reasoning task.

[RQ1.b] What is the effect of fine vs coarse granularity level of the dependency
labels on performance for the task of NLI?

In the literature, works on enhancing BERT with dependency structures have
omitted the integration of dependency labels due to the risk of overfitting and over-
parameterization. For the task of Semantic Role Labeling, Marcheggiani and Titov
(2017) have argued that including dependency labels can cause models to overfit on
them and consequently lower their generalization performance. Follow-up work for
the task of NLI by He et al. (2020) has also chosen to omit modeling dependency
labels due to the risk of overfitting the training data. However, He et al. (2020) have
not experimented with implementing them in their architecture, and Fei et al. (2021)
have shown by experimentation that dependency labels do improve performance on
the Semantic Role Labeling task. To investigate the effects of fine- vs coarse-grained
dependency labels, we choose an in-between approach by clustering low-frequency
and similar dependency labels in a mid-grained and coarse-grained manner by hand-
crafting clusters according to the similarity of syntactic functions they describe. The
intuition behind this approach is that some dependency labels might be useful for
the inference task, whereas others that occur infrequently may act as noise in the
training data. Labels such as ’csubj:pass’ only occur 5 times in the entire SNLI
training set and learned label embeddings may not provide a good approximation
for the true distribution of these labels. We thus include experiments on the Dep
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model comparing less fine-grained dependency labels (Dep-midgrained), with coarse-
grained dependency labels (Dep-coarse) and report results on the evaluation sets.
An illustration of how the dependency label frequencies change from fine-grained
to coarse-grained can be found in Figure 4, whereas the exact dependency label
mappings for each condition and for each label can be found in the Appendix in
Table 24.

4.3 Out-of-Domain Experiments

[RQ2.] Can enhancing BERT with dependency or constituency structures through
GCNs help BERT generalize towards the HANS dataset?

To answer Research Question 2, we evaluate the performances of each of our
models trained on SNLI and MNLI and further evaluate their performances on the
HANS dataset, which targets the use of shallow heuristics based on lexical and
syntactic overlaps, and further test the syntactic understanding of the models. De-
pendency structures have been shown in the literature to improve the generalization
performance of BERT on the HANS dataset (He et al., 2020). However, the bene-
fits of enhancing BERT with constituency structures on the HANS dataset remain
unexplored. We hypothesize that similar to dependency structures, constituency
structures may also help generalize towards the HANS evaluation set by informing
the model about the syntactic structure of the sentences.

[RQ3.] Does enhancing BERT with constituency or dependency structures with
GCNs help with monotonicity reasoning in the MED dataset?

To evaluate whether each type of syntax helps models identify monotonicity op-
erators and their arguments, and thus helps the model identify the monotonicity
context, we evaluate the performance of our models trained on SNLI and MNLI on
the MED dataset. Because monotonicity reasoning deals with constituent replace-
ments involving one or more words, we hypothesize that constituency structures can
help the model learn useful representations for the monotonicity cases in the MED
dataset, more so than dependency structures.

[RQ3.a] Can syntax help BERT increase performance over the baseline when
trained on the monotonicity problems from HELP?

Because SNLI and MNLI contain more upward monotone cases, and further
lack monotonicity operators targetted by monotonicity reasoning datasets such as
MED, we include experiments where we augment the training set of SNLI with
the HELP dataset in a similar fashion to Yanaka et al. (2019a), and include an
additional set of experiments where we perform transfer-learning from MNLI to
HELP. As data augmentation and transfer learning are two different methodologies,
the outcomes of both experiments will provide further insight into the effects of
enhancing BERT with syntactic structures. In doing so, we expect the syntax-
enhanced models to be able to leverage the syntactic information in the HELP
dataset to increase their performance on the HANS dataset. Moreover, we expect
the syntax-enhanced models to be able to leverage syntax to identify the scope and
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argument structure of the monotonicity operators and consequently identify the
monotonicity context in MED.

[RQ3.b] How effective are syntax-enhanced models at identifying the scope and
argument structures of conjunction and disjunction operators in the MED dataset?

The HELP dataset contains 6076 conjunction and 438 disjunction cases, which
we hypothesize will help the syntax-enhanced models in learning the scope and
argument structures of these operators and generalize towards the conjunction and
disjunction subcases in MED. We hypothesize that the constituency-enhanced model
will show improved results on the conjunction and disjunction cases, due to the
operators sharing parent nodes with their arguments in the constituency tree. For
the dependency-enhanced model, we may not see such improvements due to the
dependency structures only forming dependency edges between two words.

4.4 Transfer Learning Experiments

[RQ4.a] What are the effects of enhancing BERT with syntax when transfer-
learning from SNLI to the SICK dataset?

The SICK dataset contains rule-generated sentences where the syntactic struc-
ture of the sentences is important for the inference task. Furthermore, Kalouli et al.
(2017) perform a manual inspection of the dataset and conclude that the inference
task on SICK requires more than simple lexical semantics. In related research, Min
et al. (2020) demonstrate that augmenting MNLI with only 405 sentence pairs where
the subject and object are swapped in the hypothesis, leads to a 24% improvement
in BERT’s performance on non-entailed HANS subcases, indicating that just a small
signal from the training data can teach BERT how to use syntax for the inference
task. Consequently, we hypothesize that BERT trained on SICK may be able to
capitalize on the syntactic signals in the SICK dataset, similar to the augmented
subject/object inversion cases from Min et al. (2020). In addition, our syntax-
enhanced models may be more proficient in utilizing this syntactic signal, thereby
outperforming the baseline model. Because the neutral and contradiction labels in
SICK and SNLI have different meanings, we do not augment by mixing SNLI with
SICK17. Instead, we perform transfer learning by taking the best-performing models
trained on SNLI, and further fine-tune them on SICK-train, which contains 4.439
training samples, and report the results on HANS and MED.

[RQ4.b] Can syntax help BERT adapt to a new distribution in a transfer learn-
ing and few-shot-learning setting?

Research by Laurer et al. (2022) shows that NLI datasets can be leveraged to
alleviate data requirements in narrow domains. Therefore, an interesting question
to explore is whether syntax can help BERT adapt to new domains when data is
scarce. To answer this question, we take our models trained on MNLI and further

17Experiments by Bowman et al. (2015) also show that models trained on SNLI perform poorly
on the neutral label in SICK, labeling them as contradiction.
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fine-tune them on a small number of samples from the HANS dataset. As each of
the three heuristics in HANS is annotated with 10 different subcases, for a total
of 30 subcases, we sample n training samples from each subcase and use the rest
of the HANS dataset as held-out test data for evaluation. This approach ensures a
balanced distribution of subcases and prevents instances where certain subcases may
not be allocated any samples. In this setting, we vary n from 5 and 10, resulting
in a number of training samples between 150 and 300. We further take the average
across 5 runs, and randomize the sampling of the n training samples.

5 Results and Discussion

In this section, we present the outcomes of our conducted experiments in accor-
dance with the sequence of the proposed research questions (RQ1 through RQ4).
We first present the findings from our in-domain experiments (RQ1.a-b). Subse-
quently, we shall present the results for our out-of-domain research questions on
the HANS dataset (RQ2), followed by the outcomes on the MED dataset (RQ3),
and answer the sub-questions regarding our experiments with the HELP dataset
(RQ3.a) and an analysis of the performance on the conjunction and disjunction
cases in MED (RQ3.b). Furthermore, we shall present the results derived from our
transfer-learning experiments on the SICK dataset (RQ4.a) and few-shot-learning
on HANS (RQ4.b). We further analyze and discuss our results by comparing them
to the results reported in the literature when possible for similar conditions.

5.1 In-Domain Experiments (RQ1)

SNLI and MNLI

From the results in Table 10, we report that the performance of Con and DC are very
similar to the baseline on SNLI-test and SNLI-test-hard, whereas Dep has decreased
performance on the SNLI test and SNLI-test-hard. When trained on MNLI, we find
a decrease in performance for all syntax models, with worse performance on the
matched variation of MNLI.

For MNLI, when we analyze the performance of each model by genre in Table 11
and 12, we notice that for the matched evaluation set, there is more variance in the
performance between each genre, with models performing best on government, and
worst on slate, whereas for the mismatched variation, our models perform similarly
between each genre.

The sentences in the ’telephone’ genre contain many filler tokens, and lack the
use of punctuation, for example in the premise: ”there’s a uh a couple called um oh
i’m going to forgot his name now uh Dirkson”. We hypothesize that these properties
may act as noise within the grammatical structure of the sentence, making it more
difficult to learn useful syntactic representations from these examples.
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SNLI MNLI
Model test ∆ hard ∆ m ∆ mm ∆

BERT 90.53 80.62 84.26 84.26
Con 90.57 +0.04 81.02 +0.40 83.95 −0.31 84.01 −0.25
Dep 90.20 −0.33 80.25 −0.37 83.83 −0.43 84.24 −0.02
DC 90.59 +0.06 80.74 +0.12 83.36 −0.90 83.76 −0.50

Table 10: Performances for each model fine-tuned on SNLI or MNLI on the respec-
tive evaluation sets. ∆ values represent difference in performance to baseline BERT.
Syntax models performance is comparable on SNLI.

BERT Con Dep DC

fiction 0.84 0.84 0.84 0.83
government 0.88 0.87 0.87 0.87
slate 0.80 0.80 0.80 0.79
telephone 0.84 0.83 0.83 0.84
travel 0.86 0.86 0.85 0.85

Table 11: Performance by genre for each
model on MNLI-matched evaluation set.

BERT Con Dep DC

facetoface 0.84 0.84 0.85 0.84
letters 0.85 0.85 0.85 0.84
nineeleven 0.84 0.85 0.84 0.84
oup 0.85 0.83 0.85 0.84
verbatim 0.83 0.83 0.83 0.82

Table 12: Performance by genre of each
model on MNLI-mismatched evaluation
set.

Furthermore, sentences in the slate genre originate from a magazine written
between 1996 and 2000. For example, the premise: ”As long you have your own
household in order, fretting about your neighbor’s spending habits is a lot like fretting
about the color of his living-room rug.” with the associated hypotheses:

Entailment: As long as your house is in order, worrying about your neighbors
spending is useless.
Neutral: You shouldn’t be so nosy with your neighbors.
Contradiction: You should worry about the color of your neighbor’s rug.

We hypothesize that for the slate genre, some of the sentences may require com-
mon sense and world knowledge, and providing BERT with additional syntactic
structures would not aid in learning useful representations from these cases. How-
ever, we note that the differences in performance between syntax-enhanced models
and BERT-base for each genre are minimal, and further investigation is required to
validate our claims.

Our results therefore suggest that enhancing BERT with syntactic structures
with GCNs may not be useful for NLI, similar to findings by Glavaš and Vulić
(2021). However, the similar performances of our syntax models to the baseline
on the SNLI-test-hard evaluation set indicate that similar to BERT, the syntax
models may be influenced by hypothesis-only biases in the training data. Research
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on hypothesis-only biases by Gururangan et al. (2018) and Poliak et al. (2018)
have shown that simple LSTM and bi-gram models can achieve an accuracy of up
to 69% on SNLI-test and 53% on the MNLI evaluation set when only provided
access to the hypothesis. Furthermore, research by Min et al. (2020) shows that by
augmenting the training set of MNLI with only a small number of samples where the
subject and object swap positions in the hypothesis, BERT is able to substantially
increase its performance on the HANS dataset across a variety of subcases18. This
result indicates that the original training set of MNLI may not contain a sufficiently
strong syntactic signal for BERT to learn how to use syntax for the inference task.
We therefore hypothesize that enhancing BERT with additional syntactic structures
may not be beneficial for SNLI and MNLI, in part due to the hypothesis-only biases.
In the next subsections, we explore how annotation artifacts, specifically hypothesis-
only biases, may be conflicting with syntactic signals in the training data.

Investigating the Role of Hypothesis-Only Biases

Following our results and analysis of the literature, we posit that enhancing BERT
with syntactic structures may not be beneficial for the original SNLI and MNLI
datasets in part due to hypothesis-only biases. The hypothesis-only biases allow
sentence pair classification by ignoring the premise, and without the need for syn-
tactic understanding (Gururangan et al., 2018; Poliak et al., 2018). Could the biases
be overshadowing the relevance of syntactic information for the classification task?

To answer this question, we devise an experiment in which we attempt to min-
imize these hypothesis-only biases in the SNLI and MNLI training data. Our ap-
proach for the data curation stage is as follows: firstly, we divide the SNLI training
data into two halves, ensuring that premises unique to one half are not duplicated
in the other. Each half of SNLI-train is used both as training data and as held-out
evaluation data. Subsequently, we employ a bidirectional LSTM with only access
to the hypothesis19 20. We train the hypothesis-only model separately on each half
of SNLI; first on the initial half of the dataset, and store incorrect predictions on
the held-out second half at the end of training. We repeat the training process for
the second half of SNLI-train with a separate hypothesis-only model, now using the
first half as held-out evaluation data, and likewise storing the incorrect predictions
at the end of training. At the end of both training and evaluation procedures on
each half, we merge the incorrect predictions from both runs, resulting in the cura-
tion of the SNLI-train dataset. The incorrect predictions represent the set of hard
cases that can not be trivially solved by a hypothesis-only model. To be consistent

18The best-performing condition augmented MNLI with 405 sentences, which represents 1% of
the total size of MNLI.

19Details for hypothesis-only bi-LSTM model: 6B.100d Glove embeddings, trained for four
epochs, batch size 32, learning rate 1e-3, and a warmup scheduler set at 10% warm-up steps.

20We employ a bi-LSTM here instead of BERT because works in the literature use weaker models
than BERT (Gururangan et al., 2018; Poliak et al., 2018)
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SNLI MNLI
Model test ∆ hard ∆ m ∆ mm ∆

BERT 63.73 82.00 74.24 75.04
Con 65.19 +1.46 83.29 +1.29 74.17 −0.07 75.46 +0.42
Dep 65.12 +1.39 82.89 +0.89 73.44 −0.80 74.68 −0.36
DC 65.98 +2.25 83.47 +1.47 74.40 +0.16 75.34 +0.30

Table 13: Performances for each model trained on SNLI-train-hard or MNLI-train-
hard for 2 epochs on their respective evaluation sets. ∆ values represent the differ-
ence against baseline BERT.

with terminology by Gururangan et al. (2018), we name the curated SNLI-train as
SNLI-train-hard. For MNLI, we use the same procedure to curate the training
set of hypothesis-only biases, resulting in MNLI-train-hard.

The curated dataset of SNLI-train-hard contains 183.632 training samples and
represents 33.43% of the original training data, whereas MNLI-train-hard contains
183.029 training samples, which represents 46.61% of the original MNLI training
set. These proportions are roughly the proportion of hypothesis-only cases found
in the respective datasets by Gururangan et al. (2018). Furthermore, the split
for each genre in MNLI-train is as follows: telephone 41.131, slate 38.254, fiction
37.073, travel 33.914, and government 32.657, indicating that the government genre
in the original MNLI-train dataset contains the most hypothesis-only biases, and
the telephone genre the least.

Following the curation stage, in the training stage, we train BERT and the
syntax-enhanced models on the curated SNLI-train-hard or MNLI-train-hard datasets
for 2 epochs. This approach allows us to investigate how removing the vast majority
of hypothesis-only biases in the datasets influences the effect of enhancing BERT
with additional syntactic structures.

Our results on the SNLI-train-hard, as presented in Table 13, reveal that all
three syntax-enhanced models exhibit improved performance on the SNLI-test and
SNLI-test-hard datasets compared to baseline, indicating that the curation of the
dataset has reduced the bias towards the hypothesis-only baseline. The combination
of both structures displays the most improvements over the baseline. We reason
that because in this condition both syntactic structures contribute to increased
performance, the combination of both structures is beneficial for performance.

For MNLI-train-hard, we find that dependency structures do not help improve
performance towards the evaluation sets of MNLI. For the Con and DC models, we
find that the performance is similar to the baseline. However, we note that this is an
improvement over our previous results, where we found a decrease in performance
for all our syntax models.

Despite our results with the curated datasets, it is worth noting that during the
creation of the -hard training sets, we did not remove lexical-overlap biases from the
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training data, and each model performs poorly on the evaluation set of HANS (below
52%). This is because such biases necessitate interactions between the premise and
the hypothesis, and are not so easily detectable. Thus, the increased performance
for our syntax models over the baseline may stem from increased lexical overlap
signals. Research by Sinha et al. (2021) has shown that language models such as
BERT and RoBERTa are insensitive to word order shuffling when trained on MNLI,
meaning that they output the same label when shuffling the position of the words
in the input. Their methodology could likewise be employed in our case to test for
word order sensitivity when training on the curated -hard datasets. However, we
leave this exploration for future endeavors. Lastly, the overall performance on the
full evaluation sets has decreased because the vast majority of the evaluation sets
of SNLI and MNLI still contain hypothesis-only biases.

In conclusion to this subsection, by eliminating a vast majority of hypothesis-
only biases in the training data, we demonstrate that the syntax enhancement of
BERT yields greater benefits due to the hypothesis-only biases not outweighing the
role of syntactic information. For the curated dataset of SNLI-train-hard, we find
that enhancing BERT with both constituency and dependency structures increases
performance, consequently leading to the incorporation of both syntactic structures
to benefit performance.

Syntax for General Purpose NLI

Our initial results on SNLI and MNLI indicate that enhancing BERT with syntax
via GCNs does not provide benefits for the task of NLI. However, SNLI and MNLI
have been found in the literature to contain large amounts of hypothesis-only biases,
which we have found to boost the performance of the BERT base model.

In this subsection, we experiment with the more recent and challenging NLI
datasets of MNLI, FeverNLI, ANLI, WaNLI, and LingNLI, following the work by
Laurer et al. (2022)21. These datasets employ more elaborated methodologies for
data collection to limit the role of hypothesis-only and lexical overlap biases and
are more challenging than SNLI and MNLI due to the adversarial data generation
(ANLI), or through the employment of expert linguists during the data collection
process (LingNLI). The results of these experiments will help us further under-
stand whether enhancing BERT with syntactic structures is beneficial in generic
NLI datasets when provided with large amounts of diverse training data.

The results in Table 14 show that BERT base outperforms the syntax models
on three out of the seven evaluation sets (ANLI, LingNLI, HANS). For our syntax
models, we find marginal improvements in performance on the evaluation sets of
MNLI, and the performance on the MED evaluation set is very similar to baseline.
Lastly, we find a large decrease in performance for our syntax models on the out-
of-domain evaluation set of HANS, indicating that they are not learning useful

21https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
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Model M-m M-mm ANLI WaNLI LingNLI HANS MED

BERTMFAWL 84.22 84.18 48.78 70.62 77.70 72.97 46.12
ConMFAWL 84.20 84.43 47.81 70.40 77.13 69.08 46.10
DepMFAWL 84.33 83.98 47.25 71.46 77.21 70.87 46.08
DCMFAWL 84.50 84.12 45.91 70.64 77.07 70.02 46.15

Table 14: Results for models trained on MNLI (M), FeverNLI (F), ANLI (A), WaNLI
(W), and LingNLI (L). Evaluation sets of HANS and MED are out-of-domain.

syntactic representations, and are overfitting on the training data.
The poor performance of our syntax models on the ANLI evaluation set raises

the question of whether the challenging aspects of ANLI may require other forms
of knowledge, not directly linked to syntax. We have previously hypothesized based
on our results on the evaluation sets of MNLI that sentences in the slate genre may
require common sense or world knowledge to solve. Research by Williams et al.
(2022) investigates which types of inferences the sentences in ANLI target. They
annotate the development sets of ANLI and reveal that 40-60% of the examples
in ANLI require numerical or common sense knowledge, and 24% of the examples
require world knowledge. For the Syntactic category, which represents sentences
that change argument order in the hypothesis, they report that only 10.5% of the
development set contains sentence pairs that require syntactic knowledge, sentence
pairs in the Syntactic category encompassing 14.5%, 8.0%, and 9.3% of round A1,
A2, and A3 respectively. This reduction in cases in the Syntactic category from
A1 to A3 indicates that the language models were able to learn the relevance of
syntactic information when trained on the cases from the previous rounds.

An analysis of the performance of each of our models on the Syntactic tag in
the annotated development set of ANLI reveals performances of 41.25%, 40.06%,
35.31%, and 40.06% accuracies for BERT, Con, Dep, and DC respectively. This
result, in conjunction with the degradation in performance on the HANS dataset
compared to the baseline, indicates that the syntax models are not learning to
leverage syntax for the inference task, but rather, may be overfitting on the other
aspects of the NLI task for which syntactic knowledge does not directly help with.
We provide full fine-grained results in Table 30 in the Appendix. Furthermore, the
average premise length in ANLI is 54.13, whereas for MNLI and SNLI these are 19.81
and 12.85 respectively. As ANLI contains multi-sentence premises, this increase in
sequence length may pose other challenges for our syntax models, especially the
constituency-enhanced model, as the constituents will be far away from the root.
Recent work in the literature by Liu et al. (2023) reveals that auto-regressive LLMs
perform worse as context length increases for the task of multi-document Question
Answering, and key-value retrieval. Moreover, performance significantly degrades
when relevant information is situated in the middle of the context, as opposed to the
beginning or the end. These results and observations raise the important question

41



of what the effects are of long vs short sequence length on the performance of our
syntax-enhanced encoder-based BERT models, and may be an important area for
future research in the context of document-level NLI.

[Answering RQ1] What is the effect of enhancing BERT with constituency or de-
pendency structures with GCNs on their performance for the task of NLI?

In conclusion to Research Question 1, our results indicate that enhancing BERT
with syntax through GCNs does not improve performance for the task of NLI. Nei-
ther constituency nor dependency structures improve performance significantly over
baseline. Our primary explanation is that enhancing BERT with syntax via GCNs
is not beneficial for NLI. Additionally, general-purpose NLI requires understand-
ing many other aspects of natural language, such as numerical or common sense
knowledge, and enhancing BERT with syntax may overfit the models in these cases,
as there may not be a direct correlation between the underlying syntactic struc-
ture of the sentences and the entailment label. However, as we have shown in our
SNLI-train-hard and MNLI-train-hard experiments, removing sentences that do not
require an understanding of sentence structure can increase some of the benefits of
enhancing BERT with an inductive bias towards syntax.

[Partially answering RQ1.a] Is there a beneficial effect when integrating both
constituency and dependency structures for the task of NLI?

Having presented the results of our in-domain experiments, we aim to partially
answer RQ1.a. Our results show that combining both syntactic structures as is
done in the DC model increases performance marginally on the evaluation set of
SNLI and SNLI-test-hard, and decreases performance on MNLI-m and MNLI-mm.
When provided with large amounts of diverse training data, DC marginally per-
forms better than baseline on MNLI-m, and performs worse on MNLI-mm, and
the more challenging datasets of ANLI and LingNLI compared to baseline. These
results indicate that the incorporation of both syntactic structures does not aid in
better performance for the task of NLI. Nevertheless, our results on the curated
SNLI-train-hard dataset show that, when both individual structures are beneficial
in modeling the training data, the combination of both structures can be beneficial
for performance.

Dependency Label Granularity Results (RQ1.b)

In our experiments, we find that there is a drop in performance on in-domain data
when enhancing BERT with dependency structures, whereas works in the literature
report no drop in performance for BERT enhanced with dependency structures (He
et al., 2020). In their works, Marcheggiani and Titov (2017) have omitted the incor-
poration of dependency labels due to the risk of overfitting and overparameterization
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SNLI HANS
Model n-labels test hard E NE All

Dep 49 90.20 80.25 93.03 28.59 60.81
Dep-mid 30 90.51 80.68 95.57 25.84 60.7
Dep-coarse 12 90.42 80.31 95.21 23.08 59.1

Table 15: Experimental results on SNLI and HANS test sets for Dep models with
different levels of label granularities. The column n-labels indicate how many labels
are associated with each condition. E and NE represent Entailed and Non-Entailed
cases respectively.

for the task of Semantic Role Labeling, and He et al. (2020) likewise for the task of
NLI. However, Fei et al. (2021) have shown improved performance for the task of
Semantic Role Labeling when including the dependency labels. Consequently, we
experiment with different granularity levels for the dependency labels. From the
results in Table 15, we notice that clustering similar dependency labels can slightly
improve the performance of the model on in-domain test data, but the performance
gains are very minimal. Both Dep-mid and Dep-coarse show improved performance
on the SNLI test sets, with the mid-grained condition performing best. However,
from the results on HANS, we see that as the granularity of dependency labels goes
from fine to coarse, the performance on non-entailment cases decreases, indicating
more use of simple heuristics for the inference task.

[Answering RQ1.b] What is the effect of fine vs coarse granularity level of the
dependency labels on performance for the task of NLI?

In conclusion to Research Question 1.b, our results indicate that clustering sim-
ilar labels marginally improves performance on in-domain evaluation sets and de-
creases performance on the non-entailed cases in HANS. In the literature, He et al.
(2020) omit the incorporation of dependency labels due to the risk of overparame-
terization. However, they do not experiment with incorporating dependency labels
in their architecture. Our results show that incorporating dependency labels as
is done in the Dep model can be beneficial for the task of NLI for out-of-domain
datasets. Lastly, as we have found marginal performance gains for in-domain data,
and decreased performance towards out-of-domain distributions, we maintain the
original, fine-grained dependency labels for our subsequent experiments.

5.2 Out-of-Domain Experiments

Results on HANS (RQ2)

Our previous results have indicated that enhancing BERT with an inductive bias
towards syntax via GCNs does not benefit the task of NLI. However, dependency
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HANS
Model E NE All ∆

BERTS 94.95 24.95 59.95
ConS 98.99 18.97 58.98 −1.0
DepS 93.03 28.59 60.81 +0.86
DCS 98.87 17.27 58.07 −1.88

BERTM 95.98 16.31 56.15
ConM 97.71 15.68 56.70 +0.55
DepM 95.52 15.31 55.42 −0.73
DCM 96.65 15.50 56.07 −0.08

BERTM (He et al. (2020)) 99.0 16.87 57.922

BERT+SGCNM (He et al. (2020)) 97.5 23.5 60.5 +2.60
CAGCNM (He et al. (2020)) 97.77 29.13 63.5 +5.60

Table 16: Performances of models on HANS entailment (E) and non-entailment
(NE) for models trained on SNLI (S) or MNLI (M). Underscored values represent
statistical significance (p<0.05) against baseline. We include models provided by
He et al. (2020). Fine-grained results for each heuristic can be found in Table 25 in
the Appendix.

structures have been shown in the literature to help BERT generalize towards the
out-of-domain HANS dataset (He et al., 2020). We have further hypothesized that
constituency structures may provide similar benefits on the out-of-domain evaluation
set of HANS, as the heuristics in the HANS dataset target the use of shallow heuris-
tics based on lexical and syntactic overlaps. A model enhanced with constituency
structures may be able to leverage the syntactic structures in the constituency trees
for the inference task, consequently increasing performance on the non-entailed cases
in the HANS dataset. In this subsection, we report our results on the HANS dataset.

The results in Table 16 show that when fine-tuned on SNLI, dependency struc-
tures help BERT generalize towards the HANS dataset, and we find increased perfor-
mance for the non-entailed cases. However, neither constituency nor a combination
of both structures improves performance on the non-entailed cases in HANS, and
their performance is worse than the baseline on all three heuristics. When fine-tuned
on MNLI, we find that all three syntax models perform worse on the non-entailed
cases in HANS, indicating that they make more use of shallow heuristics for the
inference task. The poor performance of the DC model in both conditions indicates
that the combination of both syntactic structures may not be beneficial for out-
of-domain generalization. We provide full fine-grained results for HANS for each
heuristic in Table 25 in the Appendix.

22Glavaš and Vulić (2021) report 53.3% and McCoy et al. (2019) 54.6% accuracy for BERT base.
This indicates that out-of-domain performance towards HANS is not stable.
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When we compare our results to the literature, the main model proposed by
He et al. (2020), CA GCN, displays increased performance on HANS due to the
incorporation of the additional ”co-attention” dependency relations between the
premise and hypothesis. This architectural choice is similar to concatenating the two
sentences before feeding them into BERT, allowing BERT to model the dependencies
between the sentence pairs, and offering the model an enhanced capacity for the NLI
task. The increased performance may therefore not be directly related to enhancing
BERT with dependency structures. Comparing our model with a more similar
implementation, BERT+SGCNM

23, which incorporates dependency structures into
the premise and hypothesis separately in the GCN components, we observe more
similar results to our own DepS model.

Contrarily, when we compare our dependency-enhanced model trained on MNLI
(DepM ) to the models provided by He et al. (2020) (BERT+SGCNM and CAGCNM ),
we find that dependency structures do not help our syntax model generalize towards
the out-of-domain evaluation set of HANS. We have previously found that the in-
corporation of fine-grained dependency labels benefits out-of-domain performance
on the HANS dataset, one of the key distinctions between our models. However,
another difference between our models is that the dependency GCN components by
He et al. (2020) are scaled to three layers, whereas we maintain a single layer in
our implementation. It is therefore plausible that scaling our GCN component may
provide further benefits. Nonetheless, our explorations with model architecture re-
vealed that simply scaling the Dep layer to multiple layers resulted in a decrease in
performance, possibly due to the incorporation of dependency labels into the BERT
embeddings at each layer, causing overparameterization. Consequently, scaling the
dependency component may require further modifications to the architecture. De-
spite these considerations, the development of alternative architectures remains be-
yond the scope of this thesis, and we accordingly designate this exploration as an
area for future investigation.

Discussion on the Effect of Constituency Syntax on HANS

Our original hypothesis proposed that the integration of constituency structures
would discourage the model from relying on shallow heuristics to solve the inference
relation, similar to how dependency structures help BERT generalize towards the
HANS dataset. However, our results point to the opposite, indicating that the model
actually employs more, rather than fewer, simple heuristics both when trained on
SNLI, and MNLI.

Previous studies have found that the entailment cases in SNLI tend to have
shorter sequence lengths for hypotheses compared to the other two labels, with
8.8% of hypotheses’ unigrams fully embedded within the corresponding premise. In

23Original work for SGCN by Lei et al. (2019) using an LSTM-based model as the backbone. He
et al. (2020) adopt the SGCN component into a BERT-based model for comparison.
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Figure 5: Probability density functions of Normalized Subtree Kernel similarity
scores between premise and hypothesis. Left: SNLI. Right: MNLI. MNLI exhibits
stronger syntactic overlap biases for the entailment label.

contrast, only 0.2% of instances share this characteristic for the other two labels
(Gururangan et al., 2018). This disparity has led to speculation that crowd workers
may use a basic strategy of removing words from the premise to swiftly generate hy-
potheses. Consequently, models may struggle with the heuristic challenges presented
by the HANS dataset due to the lexical and subsequence overlaps for the entailment
label in the training data. Given our results, and consistent with the proposed
crowd-worker strategy by Gururangan et al. (2018), we propose that the sentence
pairs in SNLI and MNLI also suffer from syntactic overlaps in the entailment label.
Such overlaps might be exploited by a model enhanced with constituency structures,
either directly, or through interaction effects with the lexical biases.

Upon examining the tree similarity density function for constituency trees in
Figure 5, we find that the entailment cases in both SNLI and MNLI exhibit a slight
rightward skew. This suggests that the entailed sentences in SNLI may indeed be
prone to syntactic overlaps, potentially contributing to a decrease in performance
when evaluated on the HANS dataset. Moreover, the average Normalized Subtree
Kernel score for the SNLI training set for constituency trees for the entailment label
is 0.37, whereas for the neutral and contradiction labels, the scores are both 0.35.
For MNLI, the values are 0.37 for entailment, 0.31 for neutral, 0.34 for contradiction,
thereby exhibiting stronger syntactic overlap biases for the entailment label.

A model enhanced with constituency structures may therefore learn these biases
for the entailment label due to the embeddings in the syntax component being
updated via the edges found in the constituency tree. Our results show that a
model enhanced with constituency structures makes more use of shallow heuristics
when trained on both SNLI and MNLI, thereby exhibiting decreased performance
on the HANS dataset compared to baseline.

We note, however, that our analysis with the tree kernel similarity is limited, as
we have replaced the words in the sentences with a placeholder token ’x’ to isolate
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Model Up ∆ Down ∆ Non ∆ All ∆

BERTS 86.92 17.46 50.68 42.75
ConS 86.15 −0.77 20.83 +3.37 51.37 +0.69 44.57 +1.82
DepS 86.04 −0.88 20.21 +2.75 51.03 +0.35 44.15 +1.4
DCS 84.95 −1.97 19.85 +2.39 52.05 +1.37 43.61 +0.86

BERTM 81.76 25.60 54.45 46.15
ConM 82.53 +0.77 25.11 −0.49 50.0 −4.45 45.86 −0.29
DepM 82.09 +0.33 26.12 +0.52 49.32 −5.13 46.30 +0.15
DCM 81.92 +0.16 25.17 −0.43 48.97 −5.48 45.65 −0.5

Table 17: Performance on MED test set for models trained on SNLI (S) or MNLI
(M). ∆ values represent differences in performance against baseline BERT. Under-
scored values represent statistical significance (p<0.05) against the baseline.

the grammatical effects. Given the significant role played by a sentence’s lexical
contents for the semantic meaning of a sentence in the task of NLI, further research
is required to substantiate this claim.

[Answering RQ2] Can enhancing BERT with dependency or constituency struc-
tures through GCNs help BERT generalize towards the HANS dataset?

In conclusion to Research Question 2, we find that enhancing BERT with de-
pendency structures via GCNs increases out-of-domain performance on the HANS
dataset when trained on SNLI, but not MNLI. Enhancing BERT with constituency
structures decreases performance on the non-entailed cases in HANS in both con-
ditions, indicating that the model may be overfitting on the lexical and syntactic
overlaps in the training data. Lastly, combining both syntactic structures as is done
in the DC model does not benefit out-of-domain generalization towards the HANS
dataset compared to the baseline.

Results on MED (RQ3)

Our results on the MED dataset in Table 17 show slightly increased performance
for our syntax-enhanced models when compared to the baseline BERT model when
trained on SNLI. When trained on MNLI, we find that the syntax models per-
form similarly to the baseline model, and the differences in performance against the
baseline model are statistically insignificant (p>0.05).

Interestingly, when trained on the curated SNLI-train-hard dataset, we find that
Con and DC have increased performance compared to the baseline on the out-of-
domain evaluation set of MED, indicating that the removal of a vast majority of
hypothesis-only biases has decreased the effects of the biases in the training set, and
our syntax models are better able to leverage the syntactic structures in the curated
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training set for the monotonicity reasoning task. When trained on MNLI-train-hard
however, we find that our syntax models have similar performance to the baseline.
We provide results on MED for models trained on -hard datasets in Table 27 in the
Appendix.

Our initial hypothesis posited that syntax-enhanced models, specifically Con,
would demonstrate superior performance on the MED dataset because the syntactic
structures would aid in distinguishing the monotonicity context from the monotone
operators and syntactic structure of a sentence. Although the syntax-enhanced
models do show a slight performance increase when trained on SNLI, our results
are constrained by the fact that sentences in SNLI and MNLI infrequently employ
monotonicity operators and they further lack examples of downward monotone cases,
thereby lacking the required signals for monotonicity reasoning. Consequently, our
experiments with the HELP dataset may be more indicative of the effects of en-
hancing BERT with additional syntactic structures.

[Answering RQ3] Does enhancing BERT with constituency and dependency struc-
tures with GCNs help with monotonicity reasoning in the MED dataset?

In conclusion to Research Question 3, our results show that providing BERT with
additional syntactic structures provides slight performance gains on the monotonic-
ity reasoning evaluation set of MED when trained on SNLI-train. When trained on
MNLI-train, providing BERT with additional syntactic structures does not improve
performance over baseline. However, these datasets infrequently employ monotonic-
ity operators, and may therefore lack the required signals related to monotonicity
reasoning.

Experiments with HELP Dataset (RQ3.a)

In this subsection, we shift our focus to our experiments with the HELP dataset, as
we have hypothesized that the syntax-enhanced models would be able to leverage the
syntactic information in HELP to increase their generalization performance towards
MED24. We first discuss our results augmenting the SNLI training set with HELP,
then the results of our transfer learning experiments from MNLI to HELP. The
results of our data augmentation and transfer learning experiments with the HELP
dataset can be found in Table 18.

From the results on SNLI augmented with HELP, we find that augmenting the
training set with HELP has substantially increased performance on the MED eval-
uation set. Despite this improvement, we find that the performance of the syntax

24We omit the results on HANS, as HANS is unrelated to monotonicity reasoning, and the results
are not informative.

25Models trained on M → H are not evaluated on MNLI, as the HELP dataset contains only 2
labels, and the fine-tuning process causes catastrophic forgetting of the missing label (McCloskey
and Cohen, 1989)
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Model Up ∆ Down ∆ Non ∆ All ∆

BERTS+H 73.74 83.18 53.77 78.39
constGCNS+H 75.60 +1.86 82.11 −1.07 53.77 0 78.37 −0.02
depGCNS+H 75.66 +1.92 80.31 −2.87 53.42 −0.35 77.28 −1.11
HesyfuS+H 74.73 +0.99 78.99 −4.19 54.45 +0.68 76.22 −2.17

BERTM→H 69.40 83.64 53.08 77.16
ConM→H 72.86 +3.46 83.64 0 60.62 +7.54 78.74 +1.58
DepM→H 67.64 −1.76 84.22 +0.58 61.30 +8.22 77.37 +0.21
DCM→H 67.25 −2.15 83.09 −0.55 56.16 3.08 76.27 −0.89

Table 18: Performance on MED evaluation set for models trained on the
SNLI+HELP (S+H) augmented dataset, and MNLI further fine-tuned on HELP
(M → H)25. ∆ values represent performance difference against the baseline. Un-
derscored values represent statistical significance (p<0.05) against the baseline. The
performance of Con against BERT on MED dataset is statistically insignificant
(p>0.95).

models is similar to baseline BERT, indicating that there may be no benefit in en-
hancing BERT with syntax for the monotonicity task when the model is provided
access to sufficient training samples. However, calculating the agreement rates be-
tween syntax models and BERT when trained on SNLI reveal that each syntax
model agrees roughly 94% with BERT base on the MED dataset. When trained on
SNLI+HELP, the agreement rate on MED drops to 92%, indicating that the syn-
tax models may be learning different representations for the monotonicity reasoning
task when provided additional monotonicity samples from HELP. Our results there-
fore suggest that enhancing BERT with syntactic structures may not be beneficial
for the monotonicity reasoning task. However, the HELP dataset only contains 36k
sentence pairs, whereas SNLI contains 550k. Consequently, we hypothesize that this
discrepancy in the number of samples may overshadow the syntactic signals from
the HELP dataset.

Our results with transfer learning from MNLI to HELP show that the Con model
performs best on MED, whereas Dep performs similarly to the baseline, and the com-
bination of both structures decreases performance. We have initially hypothesized
that enhancing BERT with constituency structures would help in learning useful
representations for monotonicity reasoning, more so than dependency structures
due to monotonicity reasoning dealing with constituent replacements, and addition-
ally requires the identification of the polarities of the arguments of the monotonicity
operator based on the syntactic structure of the sentence. Our results show that
constituency structures indeed help our model learn useful representations from the
monotonicity-driven dataset of HELP, whereas our dependency-enhanced model per-
forms similarly to the baseline.
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[Answering RQ3.a] Can syntax help BERT increase performance over the baseline
when trained on the monotonicity problems from HELP?

In conclusion to Research Question 3.a, our results indicate that when augment-
ing the training set of SNLI with the HELP dataset, which contains monotonicity
reasoning samples, enhancing BERT with additional syntactic structures does not
aid in better performance on the HANS and MED datasets. When transfer learning
instead of augmenting on the HELP dataset, we find that constituency structures
aid in learning useful representations for the monotonicity reasoning task, whereas
dependency structures and the combination of both structures do not show improve-
ments over the baseline for monotonicity reasoning in the MED evaluation set. This
result indicates that enhancing BERT with constituency structures can help the
model learn more informed representations from the monotonicity-driven problems
from the HELP dataset.

Analysis on Conjunction and Disjunction Cases (RQ3.b)

As the HELP dataset contains a large number of conjunction cases (6076) and a rel-
atively small number of disjunction cases (438), comparing results on these subcases
in different training conditions may provide further insight into our previous find-
ings. We have further hypothesized that constituency structures may help BERT
identify the scope and argument structure of the operators to increase the perfor-
mance on the conjunction and disjunction cases, as the operators share parent nodes
with their arguments in the syntactic tree.

Results in Table 19 show the performance of each model on the conjunction and
disjunction cases in MED when trained on SNLI, when trained on SNLI augmented
with HELP, and when trained on MNLI and fine-tuned on HELP. When trained on
SNLI and SNLI augmented with HELP, we find that the performance differences
for the syntax-enhanced models are relatively small. When fine-tuned on HELP, we
find that our syntax models perform worse than baseline. However, the differences
in performance between our syntax-enhanced models and BERT-base are statisti-
cally insignificant in every condition (p>0.05) due to the evaluation set of MED
containing only 283 conjunction and 254 disjunction samples.

[Answering RQ3.b] How effective are syntax-enhanced models at identifying the
scope and argument structures of conjunction and disjunction operators in the MED
dataset?

In conclusion to Research Question 3.b, we find that enhancing BERT with
syntax does not improve performance significantly on conjunction and disjunction
cases, and providing additional training samples does not improve performance sig-
nificantly over baseline. The primary explanation is that additional syntax does
not aid BERT in identifying the argument structure of these operators. However,

50



Train subcase BERT Con ∆ Dep ∆ DC ∆

S conj 57.84 59.92 +2.08 58.03 +0.19 59.16 +1.32
disj 45.81 47.17 +1.36 45.72 −0.09 46.29 +0.48

S+H conj 78.80 78.98 +0.18 77.94 −0.86 74.45 −4.35
disj 48.69 51.29 +2.60 51.03 +2.34 47.92 −0.77

M → H conj 72.95 72.10 −0.85 73.14 +0.19 71.16 −1.79
disj 56.14 52.47 −6.33 52.02 −5.88 50.07 −6.07

Table 19: Average performance on MED conjunction (n=283) and disjunction
(n=254) cases for each model trained on SNLI (S), SNLI+HELP (S+H), and trans-
fer learning from MNLI to HELP (M → H). Upward and downward monotone
cases have been aggregated in this table. Values in parentheses indicate the dif-
ference compared to baseline. The differences in performance against baseline are
statistically insignificant (p>0.05).

according to research by Min et al. (2020), BERT may have already learned the
syntactic structure of these operators during pre-training, and may already be able
to leverage the syntactic structure of these operators for the inference task if given
sufficient signal from the training data. Therefore, the performance of each model
may be limited by their ability to identify whether the constituent replacement is a
more generic concept or a more specific one, for which syntax may not directly help
with.

5.3 Transfer-Learning Experiments

Fine-Tuning on SICK (RQ4a)

Our results from the main experiments suggest that syntax may not serve as a ben-
eficial feature for NLI. In this subsection, we provide the results of our experiments
with the semi-automatically generated SICK dataset, which has been found in the
literature to require more than simple lexical semantics to solve (Kalouli et al.,
2017), and limits the occurrence of linguistic phenomena unrelated to composition-
ality. A noteworthy distinction between SNLI and SICK is that the neutral and
contradiction labels have different meanings in the datasets, and data augmentation
is therefore not applicable due to this mismatch26. Moreover, the SICK training
set is significantly smaller in size. Consequently, we perform transfer learning by
first training our models on SNLI-train, then fine-tune them on the SICK training
set. For this set of experiments, we evaluate on the in-domain evaluation set of
SICK-test, and the out-of-domain evaluation sets of HANS and MED.

26Bowman et al. (2015) demonstrate that models trained on SNLI tend to label neutral cases as
contradiction when evaluated on SICK.
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SICK-test HANS
Model All ∆ E NE All ∆

BERTS→SICK 89.73 90.95 34.92 62.94
ConS→SICK 90.58 +0.85 93.10 37.09 65.10 +2.16
DepS→SICK 89.81 +0.08 82.73 48.43 65.58 +2.64
DCS→SICK 90.10 +0.37 94.09 34.33 64.21 +1.27

Table 20: Performances of models on SICK-test, and HANS entailment (E) and
non-entailment (NE) for models trained on SNLI, further fine-tuned on SICK
(S → SICK). ∆ values represent the difference in performance to baseline. Un-
derscored values represent statistical significance (p<0.05) against baseline. Fine-
grained results for each heuristic can be found in table 28 in the Appendix.

Our results in Table 20 show that Con outperforms baseline BERT on the SICK-
test evaluation set, whereas Dep displays similar performance, and DC performs
in-between the two individual syntax models. These results indicate that enhancing
BERT with an inductive bias towards constituency structures can increase perfor-
mance over the baseline when the underlying syntactic structure of the sentences is
important for the inference task.

Our results on the HANS dataset show that further fine-tuning the models on
the SICK training set improves the performance of the enhanced models compared
to the baseline on the non-entailed cases. Similar to our previous results on SNLI,
the Dep model performs best on the non-entailed cases in HANS, further indicating
that dependency structures help the model learn useful syntactic representations
for out-of-domain generalization towards the HANS dataset. We also find that Con
performs better than the baseline on HANS, with improved performance on both
entailed and non-entailed cases. Lastly, DC performs worse than the individual
syntax models, further indicating that the combination of syntactic structures does
not benefit out-of-domain generalization for the task of NLI.

In the literature, data augmentation experiments by Min et al. (2020) show
that by augmenting the training set of MNLI with 405 synthetically generated sub-
ject/object inversion cases, BERT is able to improve its performance over the BERT
model trained only on MNLI across many subcases, indicating that BERT is able
to learn the relevance of syntactic information for the NLI task when provided suf-
ficient signal from the training data. As the syntactic structure of the sentences
in the SICK dataset is important for the inference task, in line with their work,
our results show that the baseline BERT model is able to perform better on HANS
when provided sufficient signal from the training data, and we further observe an in-
crease in performance for the syntax-enhanced models, indicating that the enhanced
models are better able to leverage the syntactic information in the training data to
generalize towards the templates of HANS.

Our results on MED in Table 21 reveal that the enhanced models have an overall
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Up ∆ Down ∆ Non ∆ All ∆

BERTS→SICK 86.04 16.15 48.29 41.53
ConstS→SICK 81.92 −4.12 39.54 +23.39 47.95 −0.34 54.33 +12.8
DepS→SICK 84.95 −1.09 19.42 +3.27 45.55 −2.74 43.00 +1.47
DCS→SICK 83.63 −2.41 27.95 +11.8 50.34 +2.05 47.99 +6.46

Table 21: Performance on MED dataset for models trained on SNLI and further
fine-tuned on SICK (S → SICK). ∆ values represent difference in performance
to baseline BERT. Underscored values represent statistical significance (p<0.05)
against baseline.

increased performance over baseline when fine-tuned on SICK. The Con variant has
the largest increase in performance on downward monotone cases, indicating that
constituency syntax can help BERT in identifying the monotonicity context when
there is a sufficiently strong syntactic signal from the training set. Dep performs
similarly to baseline and we find only a small increase in overall performance on the
MED evaluation set. DC performs in between the Con and Dep variants, further
indicating that combining the two syntactic structures does not aid in learning good
representations for monotonicity reasoning compared to enhancing BERT with only
constituency structures.

It is worth noting that the performance on the MED dataset is dependent on the
model being able to discriminate between upward and downward monotonicity con-
text (Yanaka et al., 2019a; Rozanova et al., 2022), and that the SICK dataset has not
been created specifically for this purpose. However, three of the sentence expansion
rules in SICK deal with word replacements. Furthermore, identifying the mono-
tonicity context is dependent on the model being able to identify the operator and
the polarity of its arguments from the syntactic structure of the sentence (Yanaka
et al., 2019a). Filtering the SICK dataset for downward monotone operators from
Table 2 reveals that 10.48% of premises and 11.42% of hypotheses in SICK contain
a downward operator, whereas only 1.75% of SNLI premises and 2.51% of hypothe-
ses contain a downward operator, which may also explain why we only see a slight
performance increase for the Con model when trained only on SNLI. The improved
performance suggests that the Con model learns to leverage syntax to identify the
arguments of the downward monotone operators, helping the model determine the
monotonicity context. Consistent with the findings of Yanaka et al. (2019a), there
is a trade-off of performance between the upward and downward monotonicity, and
the addition of syntax does not alleviate this shortcoming for neural networks.

Analysis of Passive Subcases

An interesting category to explore in HANS is the passive subcase, for which BERT
has been reported to perform very poorly by Min et al. (2020). One of the sentence
expansion rules used in the SICK dataset turns 303 active sentences into passive
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Passive

Model E ∆ NE ∆

BERTS 86.2 3.4
ConS 99.9 +13.79 11.9 +8.5
DepS 83.6 −2.6 7.4 +4.0
DCS 95.9 +9.7 1.6 −1.8

BERTS→SICK 88.0 4.7
ConS→SICK 99.2 +11.2 34.5 +29.8
DepS→SICK 60.4 −27.6 11.4 +6.7
DCS→SICK 90.0 +2.0 4.0 −0.7

BERTM+MI(Min et al., 2020) 67.0 29.0
CA GCNM (He et al., 2020) − 11.1

Table 22: Results for passive subcases in HANS, entailed (E) and non-entailed
(NE) for models trained on SNLI (S) or SNLI further fine-tuned on SICK (S →
SICK). Model by Min et al. (2020) has been trained on MNLI (M) augmented
with 405 synthetic subject/object swap cases (MI). ∆ values represent difference
in performance to baseline. Underscored values represent statistical significance
(p<0.05) against the baseline.

form, therefore making it an interesting case to analyze whether enhancing BERT
with syntax helps learn this type of sentence construction when supplemented with
additional training samples. In this subsection, we analyze our model’s performances
on the passive subcases within the HANS dataset, both when only trained on SNLI,
and when further fine-tuned on SICK. The results for the passive subcategory can
be found in Table 22.

Experiments by Min et al. (2020) show that augmenting with subject/object in-
version cases diminishes performance on the entailed cases, and they further report
that directly augmenting the training data with passive cases does not improve per-
formance for the passive subcategory. Both results support their Representational
Inadequacy Hypothesis, which proposes that BERT’s pre-training phase lacks ro-
bust syntactic training for passive sentence constructions. They propose that BERT
must learn the syntactic structure of passive sentences from scratch, and to overcome
this limitation, a substantial quantity of passive sentences should be provided.

Our results reveal that the Con model outperforms baseline for passive cases,
covering both entailed and non-entailed subcases. Additionally fine-tuning on the
SICK dataset further bolsters Con’s performance on non-entailed passive subcases,
with little downgrade in performance on the entailed cases.

When it comes to dependency structures, we observe a slight improvement in
non-entailed cases but a decrease in performance for the entailed cases. This aligns
with the results reported by He et al. (2020) in relation to the passive category, as
they find that their proposed dependency-enhanced model (CA GCN) also performs
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poorly on the passive subcase.
Lastly, the integration of both structures in DC slightly improves performance

on entailed cases but lowers performance on non-entailed cases, indicating that the
combination of both structures does not aid in learning better representations for
the passive subcategory.

[Answering RQ4.a] What are the effects of enhancing BERT with syntax when
transfer-learning from SNLI to the SICK dataset?

In conclusion to Research Question 4.a, our results show that both Dep and Con
are better able to leverage the syntactic signals in the SICK dataset to generalize
towards the out-of-domain evaluation set of HANS, with our dependency-enhanced
model showing greater improvements over the non-entailed cases in HANS. Fur-
thermore, we find that constituency structures help BERT learn more useful rep-
resentations for monotonicity reasoning in the MED evaluation set, whereas for
dependency structures, we find smaller improvements. Likewise, we find that de-
spite passive sentences still being challenging for BERT, constituency structures
can support the model in learning this type of sentence construction, whereas for
dependency structures and the incorporation of both structures, we find no such im-
provements. Lastly, the DC model performs worse than Con and Dep on HANS, and
worse than Con on MED and SICK-test, indicating that combining both structures
is not beneficial for the task of NLI.

Few Shot Learning on HANS (RQ4.b)

Our results so far have indicated that enhancing BERT with syntactic structures
via GCNs does not help on generic large-scale NLI datasets, but can provide im-
provements on datasets where the underlying syntactic structure of the sentences
is important for the inference task. As research by Laurer et al. (2022) has shown,
deep transfer learning from NLI to narrow domains can reduce the data require-
ments up to tenfold. Following their results, we have posed the question of whether
syntactic information can help models adapt to new dataset distributions when pro-
vided with only a small number of training samples. For this set of experiments, we
perform transfer learning by taking our models trained on MNLI, sample n samples
from each of the 30 subcases in the HANS evaluation set, and use the rest of the
evaluation set as held-out test data.

From the results in Figure 6, we observe that our syntax models have increased
performance against baseline when provided with only a few training samples, in-
dicating that models informed with syntax can better adapt towards new dataset
distributions when data is scarce. Both dependency and constituency structures
increase performance over baseline on the HANS dataset when trained on only a
few examples from the dataset, and the combination of both syntactic features dis-
plays the most improvements over the baseline. Similar to our experiments with
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Figure 6: Performance of each model on the HANS dataset when provided with
only a few training samples. N represents the number of training samples provided
for each of the 30 subcases. Accuracy is calculated as the average across 5 runs.

SNLI-train-hard, the combination of both methods further increases performance.
Consequently, our results suggest that when both constituency and dependency
structures provide benefits individually, the combination of both syntactic struc-
tures can be beneficial.

[Answering RQ4.b] Can syntax help BERT adapt to a new distribution in a trans-
fer learning and few-shot-learning setting?

In conclusion to Research Question 4.b, our results with fine-tuning on a small
number of samples from the HANS dataset indicate that syntax helps BERT adapt
to new distributions when data is scarce. As the underlying syntactic structure of
the sentences is important for the inference task in the HANS dataset, this is in line
with the results of our previous experiments with the SICK and HELP datasets,
and we further find the additional syntax enhancements to be beneficial in settings
where the size of the dataset may be limited, a common problem in narrow domains.

5.4 Discussion on Integrating Both Types of Syntactic Structures
(RQ1.a)

We have previously provided a partial answer to research question 1.a based on the
results of our in-domain experiments. Our in-domain experiments have shown that
DC has similar performance to base BERT on the evaluation sets of SNLI, and
decreased performance on MNLI. Moreover, DC performs worse than the baseline
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on MNLI-mm, ANLI, and LingNLI when provided with large amounts of diverse
training data. Moreover, we find that DC consistently shows decreased performance
compared to Con and Dep when evaluated on the out-of-domain distributions of
HANS and MED, indicating that the combination of both structures overfits the
model on the training data27. Furthermore, our transfer-learning experiments show
that DC performs worse than each individual syntax model on the non-entailed cases
in HANS, and the monotonicity reasoning cases in MED, showing that combining
both structures does not aid in learning useful representations for monotonicity
reasoning and out-of-domain generalization.

Nevertheless, our results on the curated SNLI-train-hard dataset show that,
when both individual structures provide improvements over the baseline, the inte-
gration of both syntactic structures can be beneficial for performance. Likewise, the
results of our few-shot learning experiments on the HANS dataset show that when
both dependency and constituency structures are useful for the inference task, com-
bining both syntactic structures can be beneficial for in-domain performance. How-
ever, we note that the experimental settings are highly specific, and the diversity of
the HANS dataset is limited due to the template-based generation process.

In conclusion to Research Questions 1.a, although works in the literature have
argued that the combination of both syntactic structures via GCNs is mutually ben-
eficial for Semantic Role Labeling (Fei et al., 2021), we find that for the task of NLI,
combining dependency and constituency structures in DC does not aid in better
performance for the task of NLI. Nevertheless, works in the literature have shown
an increase in in-domain performance for the task of NLI when combining both syn-
tactic structures using other methods (Bai et al., 2021; Zhou et al., 2020). Therefore,
our results may be a consequence of our chosen architecture and methodology, as
the DC model passes the representations of BERT first through the constGCN com-
ponent, then the depGCN component. Nonetheless, the investigation of alternative
architectures and methodologies for integrating syntactic structures falls beyond the
scope of this thesis. Consequently, the question of whether alternative approaches
for incorporating multiple forms of syntactic information yield similar outcomes
remains an open avenue for future research.

6 Limitations

Having presented and discussed our results, in this subsection, we address the lim-
itations of our research. Our experiments show that enhancing BERT with syntax
via GCNs does not benefit the task of NLI on generic large-scale NLI datasets. Our
chosen methodology attempts to learn useful syntactic representations directly from
the training data through fine-tuning and repurposing the representations of a pre-
trained model. Nonetheless, our experimental results show that eliminating a vast

27Accuracy on the training set is slightly higher than the baseline, and loss is slightly lower.
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majority of hypothesis-only biases in the training data increases the role of syntac-
tic information for the inference task. Consequently, we reason that this method
of enhancing BERT with syntax may be susceptible to spurious correlations such
as hypothesis-only biases. Additionally, our results with large-scale NLI datasets
indicate that enhancing BERT with syntax via GCNs may overfit the model on
other aspects of NLI which do not require syntax to solve, such as common sense
and world knowledge.

Kulmizev and Nivre (2022) argue that careful consideration should be put into
what kind of syntactic representations the language model is imbued with, as in order
to answer whether syntax itself is useful for NLU, the type of syntax and the way in
which it is imbued into the model matters for the interpretation of the results. As
we have shown through the annotated development set of ANLI, when fine-tuned on
general-purpose NLI datasets, our syntax models perform worse than baseline in the
Syntactic category, as well as the HANS evaluation set, indicating that the learned
representations may not be related to the understanding of sentence structure. The
methodology employed by Glavaš and Vulić (2021) of Intermediate Pre-training
(IPT) may address this issue by providing syntactic pre-training separately, thereby
forming more linguistically accurate syntactic representations useful across many
NLP domains, and by showing SOTA performance for the models as dependency
parsers. Moreover, they make use of adapter-based IPT, which adds specific tunable
parameters to their model, while keeping BERT layers frozen during the IPT phase.
However, in the fine-tuning stage on MNLI, they fine-tune both the BERT and the
adapter parameters. Similar to our approach with GCNs, this approach may allow
the syntax-specific adapter parameters to adapt to the spurious correlations within
the training data. Consequently, we are limited in drawing strong conclusions about
whether syntax itself helps NLU, as there is insufficient evidence that our models
have indeed learned syntax through the fine-tuning process on NLI datasets.

Furthermore, Kulmizev and Nivre (2022) argue that the results of fine-tuning on
NLU datasets are sabotaged by the uncertainty of which specific linguistic phenom-
ena are being evaluated by the benchmark dataset. For general-purpose datasets
such as ANLI, fine-grained annotations have been limited to the development set due
to the high cost of employing expert annotators. Evaluation sets such as HANS and
MED, and semi-synthetically generated datasets such as SICK and HELP alleviate
some aspects of this shortcoming. However, the size of MED is small, consequently
rendering the differences in performance for our models statistically insignificant in
the conjunction and disjunction cases. Furthermore, the sentences have been gen-
erated through templates and rule-based transformations, limiting the number of
errors and diversity we would normally expect from natural language data. The
lack of fine-grained annotations for large-scale datasets thus limits the extent to
which we are able to analyze and interpret the results for general-purpose NLI with
respect to fine-grained linguistic phenomena.

Since the inception of BERT, new methods and architectures have been pro-
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posed which improve upon various aspects of the model, such as RoBERTa (Liu
et al., 2019) and DeBERTa (He et al., 2021), both of which employ more robust
pre-training regimes to increase generalization performance. Moreover, scaling the
models has been shown to increase the performance of LLMs across many NLP tasks.
For this thesis, we employed the BERT-base-uncased model as the backbone of our
architectures. According to the Representational Inadequacy Hypothesis (Min et al.,
2020), BERT has not received sufficient pre-training for the passive subcase, thereby
exhibiting shortcomings for this subcase on the HANS dataset. Our results show
that constituency structures can help BERT learn this type of sentence construction
when fine-tuned on the SICK dataset, which targets passive sentences. However,
these results may not translate to models which have been provided with more ro-
bust pre-training regimes such as RoBERTa. Due to computational limitations and
the already large number of LLMs to fine-tune, we were unable to scale our models
to investigate the effects of enhancing larger, or different versions of LLMs with
syntactic information.

Lastly, for this thesis, we were granted 30.000 computing resources, which trans-
lates to roughly 234 computing hours on an A100 GPU. However, we were initially
only granted 10.000 resources, which put a constraint on the types of experiments
we were able to run. Because of this, we originally performed some experiments un-
der subpar conditions, which we later corrected when granted sufficient computing
resources. Nevertheless, with unrestricted allocation of computational resources, we
would have been able to perform more exhaustive experiments, thereby increasing
the robustness of our results.

Quality of Syntactic Parses

Due to the extensive size of the datasets, we employed Stanza’s GPU accelerator for
extracting both constituency and dependency trees. Upon analyzing the results on
HANS, we observed some inaccurately parsed examples, such as the one depicted
in Figure 7. Given that Stanza relies on neural models for sentence parsing, we rea-
soned that these inaccuracies stem from imprecise GPU floating-point arithmetic.
Analyzing the dependency trees in the HANS validation set without GPU accel-
eration revealed 7.16% unequal edges and 7.82% unequal labels in the premises.
Nevertheless, when evaluated on these CPU-parsed examples, the Dep model ex-
hibited only a marginal 0.01% increase in accuracy on the HANS validation set,
indicating that the effect of CPU vs GPU trees on performance is minimal. We note
that our analysis is based on the inequality between CPU and GPU trees and that
due to the lack of gold parses, we are unable to precisely investigate how many trees
are wrong.

Likewise, for the constituency trees in HANS, we also observed some wrongly
parsed trees. An example of an erroneous parse tree for the subject/object swap
case can be found in Figure 8. Comparing each constituency tree within a subcase to
each other using the Normalized Subtree Kernel score in table 23, we find that not all
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Figure 7: Example of wrong dependency tree in the HANS dataset by Stanza’s
universal dependency parser. Left: premise, right: hypothesis. In the left tree,
the dependency relation between ”doctor” and ”called” is wrongfully labeled as
”xcomp”.

S

NP

DT

The

NN

tourist

VP

VBD

believed

NP

DT

the

NNS

students

.

.

S

NP

DT

The

NN

tourist

VP

VBD

believed

S

NP

DT

the

NNS

students

.

.

Figure 8: Left: original HANS constituency tree. Right: Example of wrong con-
stituency treeby Stanza. An additional S node has been added to the tree, above
the NP constituent. The Normalized Subtree Kernel similarity score between the
two trees is 0.7.

subcases that use the same template have the same constituency parse tree, whereas
we would expect their similarity score to be 128. The values in table 23 indicate that
roughly 2.88% of the parses may be wrong and slightly noisy. Nevertheless, when
evaluating our Con model using the original HANS trees, we found no difference
in performance on the HANS evaluation set. For completeness, we provide the full
table of similarity scores within each subcase in the Appendix in table 29, including
for the original parses provided with the HANS dataset.

According to research by Sachan et al. (2021) on enhancing BERT with depen-
dency structures, performance for the tasks of Semantic Role Labeling and Relation
Extraction in syntax-enhanced neural networks are contingent on the availability
of gold, human-annotated parses, which were available for their tasks. However,
due to the absence of gold parses for NLI datasets, we are limited in examining the
potential impact of training on gold parses for the training sets on the performance
of syntax-enhanced language models. It is possible that providing BERT with gold
parses during training may increase performance for the enhanced models. However,

28Some subcases in HANS have multiple templates, and the similarity score within the subcase
will therefore not be one.
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Original HANS Stanza
Subcase Premise Hypothesis Premise Hypothesis

ln subject/object swap 1.0 1.0 0.95 0.95
ln passive 1.0 1.0 1.0 0.94
le passive 1.0 1.0 1.0 0.94
se understood object 0.99 1.0 0.99 1.0

Table 23: Constituency Tree Normalized Subtree Kernel scores within each subcase
for subcases with only 1 template. We replace POS tags and leaf nodes in the
tree with a dummy token x to compare the similarity in the overall tree structures.
We expect the parsed trees within each subcase with only 1 template to be highly
similar (Normalized Subtree Kernel=1). Scores below 1 indicate deviation from the
template.

NLI evaluates the capabilities of natural language systems at the sentence level, as
opposed to word level for the task of Semantic Role Labeling. Moreover, our results,
in conjunction with results by Glavaš and Vulić (2021), indicate that syntactic in-
formation does not play a prominent role in general-purpose NLI datasets, and the
gains made from using more correct parses may therefore be minimal.

7 Conclusion and Outlook

In this thesis, we have enhanced the BERT-base-uncased model with linguistically
informed syntactic structures and evaluated the effects of doing so on various generic
large-scale NLI benchmarks, as well as NLI evaluation sets designed to test specific
linguistic capabilities of language models. In summary, our results show that for
general-purpose NLI datasets, enhancing BERT with syntax via GCNs may overfit
the model on spurious correlations such as hypothesis-only biases, as well as other
aspects of natural language not related to syntactic knowledge such as common sense
and world knowledge. Nevertheless, when we curate the datasets of a vast majority
of hypothesis-only biases, we find that our syntax models are better able to pick
up on the syntactic signals in the training data, and our syntax models are able to
outperform the baseline on the evaluation sets of SNLI. Likewise, we have found
that enhancing BERT with syntactic structures can be beneficial on datasets rich in
syntactic information, where the underlying syntactic structure is important for the
inference task, and models enhanced with syntax learn more useful representations
from these datasets. In addition, our results indicate that syntax helps the models
adapt towards new distributions when data is scarce, and constituency structures aid
in learning useful representations for passive sentences and the linguistic phenomena
of monotonicity reasoning when provided sufficient signal from the training data.

In the wider context of NLP, the role of imbuing language models with syntax for
NLU is the subject of ongoing research and debate (Kulmizev and Nivre, 2022). We
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have provided empirical data for the effects of enhancing the BERT-base model with
syntactic structures for the task of NLI using a GCN-based approach. Nonetheless,
alternative methodologies for incorporating linguistic structures into language mod-
els exist. For example, Chen (2021) show that incorporating dependency structures
into tree-LSTM models can improve performance for the monotonicity reasoning
task over the base BERT model. Likewise, the methodology proposed by Chen
et al. (2021), which synergistically integrates the robustness of neural networks with
expert linguistic knowledge within a hybrid system, has exhibited exceptional per-
formance for the task of NLI, particularly for monotonicity reasoning. Yet, their
results are limited to small-scale datasets, leaving the exploration of such methods
on generic, large-scale datasets as intriguing avenues to explore.

Despite the existence of alternative methodologies, our findings and discussions
open up several possibilities for follow-up research closely connected to our own29.
Future work may explore modifications to the model architecture to increase perfor-
mance for the task of NLI. This could include restructuring the order of the GCN
components in the DC model by first passing the BERT embeddings through the
Dep component and subsequently through the Con component. While our model
architecture is optimal for Semantic Role Labeling (Fei et al., 2021), its effectiveness
in NLI is yet to be confirmed. Moreover, altering the Con and Dep components to
accommodate scalability might be another area of consideration. For the Con com-
ponent, including additional GCN layers between the Span-boundary Bridging and
Span-boundary Inverse Bridging operations can be an option. For the Dep compo-
nent, the additional layers may necessitate the removal of the dependency labels, as
including them at every layer may overparameterize the network. Contrasting find-
ings with He et al. (2020) on the HANS dataset underscore the need for architectural
scaling by deepening the GCN components. In addition, it would be of interest to
examine how our results translate to LLM-based models which have undergone more
robust pre-training regimes or are scaled in size, such as RoBERTa or DeBERTa.
Besides architectural modifications, future work may include investigating to what
extent our syntax-enhanced models are word order insensitive, in line with work
by Sinha et al. (2021) and Pham et al. (2021). Lastly, considering our results on
the ANLI evaluation set, which contains lengthy, multi-sentence premises, future
work might investigate the effects of enhancing BERT with syntactic structures on
varying context lengths. This is particularly important for document-level NLI, and
follow-up research in this direction may provide valuable insights into the broader
landscape of NLP.

In conclusion to this thesis, we have investigated the effects of enhancing a
BERT-based model with dependency and constituency structures via GCNs for the
task of NLI. Nevertheless, the process of incorporating syntactic knowledge into
language models, as well as the importance of linguistic syntax itself, continue to be
pivotal yet unresolved questions in the task of Natural Language Inference.

29Our code is publicly available at https://github.com/lucalin17081994/Syntax-Enhanced-Bert.
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Petar Veličković. Everything is connected: Graph neural networks, 2023.

Ziyang Luo. Have attention heads in BERT learned constituency grammar? In
Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Student Research Workshop, pages 8–15, Online,
April 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
eacl-srw.2. URL https://aclanthology.org/2021.eacl-srw.2.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R. Thomas McCoy,
Najoung Kim, Benjamin Van Durme, Samuel R. Bowman, Dipanjan Das, and
Ellie Pavlick. What do you learn from context? probing for sentence structure
in contextualized word representations. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=SJzSgnRcKX.

Yichu Zhou and Vivek Srikumar. A closer look at how fine-tuning changes BERT.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1046–1061, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
75. URL https://aclanthology.org/2022.acl-long.75.

Haoyue Shi, Hao Zhou, Jiaze Chen, and Lei Li. On tree-based neural sentence
modeling. In Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4631–4641, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1492.
URL https://aclanthology.org/D18-1492.

Changlong Yu, Tianyi Xiao, Lingpeng Kong, Yangqiu Song, and Wilfred Ng. An
empirical revisiting of linguistic knowledge fusion in language understanding tasks.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 10064–10070, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. URL https://aclanthology.

org/2022.emnlp-main.684.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. In Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
Brussels, Belgium, November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Junghyun Min, R. Thomas McCoy, Dipanjan Das, Emily Pitler, and Tal Linzen.
Syntactic data augmentation increases robustness to inference heuristics. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, pages 2339–2352, Online, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.212. URL https://aclanthology.org/

2020.acl-main.212.

70

https://aclanthology.org/2021.eacl-srw.2
https://openreview.net/forum?id=SJzSgnRcKX
https://aclanthology.org/2022.acl-long.75
https://aclanthology.org/D18-1492
https://aclanthology.org/2022.emnlp-main.684
https://aclanthology.org/2022.emnlp-main.684
https://aclanthology.org/W18-5446
https://aclanthology.org/2020.acl-main.212
https://aclanthology.org/2020.acl-main.212


Yuxiang Wu, Matt Gardner, Pontus Stenetorp, and Pradeep Dasigi. Generating
data to mitigate spurious correlations in natural language inference datasets. In
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2660–2676, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
190. URL https://aclanthology.org/2022.acl-long.190.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Kentaro Inui, Satoshi Sekine,
Lasha Abzianidze, and Johan Bos. HELP: A dataset for identifying shortcomings
of neural models in monotonicity reasoning. In Proceedings of the Eighth Joint
Conference on Lexical and Computational Semantics (*SEM 2019), pages 250–
255, Minneapolis, Minnesota, June 2019b. Association for Computational Linguis-
tics. doi: 10.18653/v1/S19-1027. URL https://aclanthology.org/S19-1027.

Diego Marcheggiani and Ivan Titov. Graph convolutions over constituent trees
for syntax-aware semantic role labeling. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages
3915–3928, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.322. URL https://aclanthology.org/

2020.emnlp-main.322.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway net-
works. CoRR, abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.00387.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning.
Stanza: A python natural language processing toolkit for many human languages.
CoRR, abs/2003.07082, 2020. URL https://arxiv.org/abs/2003.07082.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017.
URL https://arxiv.org/abs/1711.05101.

Natalie Schluter and Daniel Varab. When data permutations are pathological: the
case of neural natural language inference. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 4935–4939, Brus-
sels, Belgium, October-November 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/D18-1534. URL https://aclanthology.org/D18-1534.

Alessandro Moschitti. Making tree kernels practical for natural language learning.
In 11th Conference of the European Chapter of the Association for Computational
Linguistics, pages 113–120, Trento, Italy, April 2006. Association for Computa-
tional Linguistics. URL https://aclanthology.org/E06-1015.

Quinn McNemar. Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika, 12(2):153–157, 1947.

71

https://aclanthology.org/2022.acl-long.190
https://aclanthology.org/S19-1027
https://aclanthology.org/2020.emnlp-main.322
https://aclanthology.org/2020.emnlp-main.322
http://arxiv.org/abs/1505.00387
https://arxiv.org/abs/2003.07082
https://arxiv.org/abs/1711.05101
https://aclanthology.org/D18-1534
https://aclanthology.org/E06-1015


David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and
large neural network training, 2021.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image de-
scriptions to visual denotations: New similarity metrics for semantic inference
over event descriptions. Transactions of the Association for Computational Lin-
guistics, 2:67–78, 2014. doi: 10.1162/tacl a 00166. URL https://aclanthology.

org/Q14-1006.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hessel Haagsma, Rik van No-
ord, Pierre Ludmann, Duc-Duy Nguyen, and Johan Bos. The Parallel Meaning
Bank: Towards a multilingual corpus of translations annotated with compositional
meaning representations. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Pa-
pers, pages 242–247, Valencia, Spain, April 2017. Association for Computational
Linguistics. URL https://aclanthology.org/E17-2039.

Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description
as a ranking task: Data, models and evaluation metrics. Journal of Artificial
Intelligence Research, 47:853–899, 2013.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. SemEval-2012
task 6: A pilot on semantic textual similarity. In *SEM 2012: The First Joint
Conference on Lexical and Computational Semantics – Volume 1: Proceedings of
the main conference and the shared task, and Volume 2: Proceedings of the Sixth
International Workshop on Semantic Evaluation (SemEval 2012), pages 385–393,
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A Appendix

A.1 Dependency Label Mappings

In this subsection, we provide an overview of the mappings used for experiments
investigating the effects of clustering similar and infrequent dependency labels. Fine-
grained condition is the original Stanza parsed dictionary used by the Dep. Table
24 shows the mappings from fine-grained to mid-grained (Mid) and coarse-grained
conditions (Coarse). We split the table for readability purposes.

Dep Label Mid Coarse Dep Label Mid Coarse
det det det expl expl null
case case case acl:relcl acl mod
punct punct null appos appos mod
root root root parataxis parataxis mod
nsubj nsubj subj obl:agent obl:agent obl
obl obl obl ccomp ccomp obj
amod amod mod fixed fixed mod
obj obj obj flat fixed mod
nmod nmod mod obl:tmod obl obl
aux aux null obl:npmod obl obl
compound compound mod iobj iobj obj
acl acl mod cc:preconj cc null
conj conj mod det:predet det det
cc cc null csubj csubj subj
nummod nummod mod discourse punct null
mark mark mark dep conj mod
nmod:poss nmod mod nmod:npmod nmod mod
advmod advmod mod list conj mod
advcl advcl mod vocative mod null
cop cop null nmod:tmod nmod mod
xcomp xcomp xcomp orphan obj obj
compound:prt compound mod dislocated conj mod
aux:pass aux null reparandum conj mod
nsubj:pass nsubj:pass subj:pass goeswith fixed mod

csubj:pass nsubj:pass nsubj:pass

Table 24: Dependency label mappings for the experiments on dependency label
granularity (RQ1.a). The first, second, and third columns represent the original
dependency label, and their respective mappings for the mid-grained (Mid) and
coarse-grained (Coarse) conditions. The table has been split for readability.
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A.2 Additional Fine-grained Results

Entailed Non-entailed Average
Model lex sub const lex sub const E NE all
BERTS 88.42 97.56 98.88 58.18 11.14 5.52 94.95 24.95 59.95
ConS 98.18 99.00 99.78 50.18 4.24 2.48 98.99 18.97 58.98
DepS 87.10 96.68 95.3 55.18 18.56 12.04 93.03 28.59 60.81
DCS 96.88 99.74 99.98 45.20 4.78 1.82 98.87 17.27 58.07
BERTM 90.76 98.32 98.86 24.04 4.74 20.16 95.98 16.31 56.15
ConM 94.92 99.06 99.16 25.12 3.18 18.74 97.71 15.68 56.70
DepM 90.8 97.58 98.18 21.4 5.64 18.9 95.52 15.31 55.42
DCM 91.42 98.94 99.58 27.86 4.84 13.8 96.65 15.50 56.07
BERTM

(He et al. (2020)) 97.5 99.8 99.8 33.4 4.3 12.9 99.0 16.87 57.9
BERT+SGCNM

(He et al. (2020)) 94.6 98.9 99.0 49.2 8.3 13.0 97.5 23.5 60.5
CAGCNM

(He et al. (2020)) 94.9 99.5 98.9 64.0 8.8 14.6 97.77 29.13 63.5

Table 25: Fine-grained performances on HANS for models trained on SNLI (S) or
MNLI (M) and results provided by He et al. (2020). Lex, sub, and const are the
lexical-overlap, subsequence, and constituent heuristics. E represents entailment
cases, whereas NE represents non-entailed cases.
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Entailed Non-entailed Average
Model lex sub const lex sub const E NE all
BERTS 99.94 98.58 98.98 0.06 0.4 1.54 99.17 0.67 49.92
ConS 99.54 99.74 98.4 1 0.42 3.36 99.23 1.59 50.41
DepS 99.96 99.94 99.98 0 0.12 0.1 99.96 0.07 50.02
DCS 99.86 99.98 99.7 0.08 0.16 0.44 99.85 0.23 50.04
BERTM 98.88 97.8 97.14 3.42 5.26 3.6 97.94 4.09 51.02
ConM 99.1 96.7 98.66 5.44 4.08 2.86 98.15 4.13 51.14
DepM 98.04 96 96.74 9.36 4.68 6.06 96.93 6.7 51.81
DCM 99.32 96.76 99.06 4.22 2.92 2.76 98.38 3.3 50.84

Table 26: Fine-grained performances on HANS for models trained on SNLI-train-
hard (S) or MNLI-train-hard (M). Lex, sub, and const are the lexical-overlap, sub-
sequence, and constituent heuristics. E represents entailment cases, whereas NE
represents non-entailed cases.

Model Up Down Non All

BERTS 80.05 31.50 50.34 48.94
ConS 79.12 41.74 57.88 55.26
DepS 76.26 36.06 51.71 50.50
DCS 74.12 44.56 51.71 54.94

BERTM 79.56 29.36 48.29 47.36
ConM 80.38 29.7859 51.37 48.07
DepM 80.77 27.77 48.63 46.82
DCM 79.07 32.14 51.71 49.07

Table 27: Performance on MED test set for models trained on SNLI-train-hard (S)
or MNLI-train-hard (M).

Entailed Non-Entailed Average
Model lex subseq const lex subseq const ent non-ent average
BERTSICK 83.50 96.84 92.52 62.52 25.92 16.32 90.95 34.92 62.94
ConSICK 89.38 94.52 95.40 71.08 23.52 16.68 93.10 37.09 65.10
DepSICK 71.70 93.64 82.84 72.18 42.78 30.32 82.73 48.43 65.58
DCSICK 88.32 97.52 96.42 61.14 27.48 14.36 94.09 34.33 64.21

Table 28: Performance on HANS validation set for models trained on SNLI and
further fine-tuned on SICK.
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A.3 Constituency Tree Similarity Scores Stanza vs Original HANS

Original HANS Stanza
Subcase Premise Hypothesis Premise Hypothesis
ln subject/object swap 1.0 1.0 0.95 0.95
ln preposition 0.58 1.0 0.59 0.93
ln relative clause 0.65 1.0 0.59 0.85
ln passive 1.0 1.0 1.0 0.94
ln conjunction 0.79 1.0 0.75 0.94
le relative clause 0.65 1.0 0.59 0.95
le around prepositional phrase 0.71 1.0 0.71 0.95
le around relative clause 0.67 1.0 0.62 0.94
le conjunction 0.79 1.0 0.76 0.94
le passive 1.0 1.0 1.0 0.94
sn NP/S 0.69 1.0 0.66 0.79
sn PP on subject 0.61 0.78 0.64 0.75
sn relative clause on subject 0.89 0.77 0.73 0.75
sn past participle 0.78 1.0 0.63 0.96
sn NP/Z 0.86 1.0 0.63 1.0
se conjunction 0.72 0.83 0.70 0.80
se adjective 0.79 0.77 0.77 0.75
se understood object 0.99 1.0 0.99 1.0
se relative clause on obj 0.60 1.0 0.57 0.93
se PP on obj 0.64 1.0 0.61 0.95
cn embedded under if 0.65 0.77 0.62 0.75
cn after if clause 0.74 0.76 0.69 0.74
cn embedded under verb 0.69 0.77 0.67 0.75
cn disjunction 0.76 0.77 0.70 0.75
cn adverb 0.78 0.78 0.79 0.75
ce embedded under since 0.74 0.77 0.69 0.75
ce after since clause 0.69 0.77 0.65 0.74
ce embedded under verb 0.69 0.77 0.66 0.75
ce conjunction 0.77 0.76 0.73 0.74
ce adverb 0.65 0.78 0.67 0.75

Table 29: Full table of constituency Tree Normalized Subtree Kernel scores within
each subcase in HANS. Trees within each subcase with only 1 template should be
highly similar because they are generated through the same template (ST=1). Most
subcases in HANS have more than 1 template.
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A.4 ANLI Development Set Results Per Category
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N Tag BERT Con Dep DC-GCN
893 Tricky 42.55 40.87 38.97 42.22
199 Exhaustification 35.68 32.66 30.65 35.68
1327 Basic 43.56 43.93 43.71 44.99
173 Coordination 49.13 49.71 47.4 49.71
678 Lexical 44.69 46.76 45.28 47.05
576 Similar 45.83 46.88 46.01 48.61
1036 Numerical 47.2 48.36 47.1 49.42
948 Cardinal 48.1 48.84 48.21 50.42
602 Dates 50.0 52.33 49.17 52.49
82 Nominal 45.12 45.12 47.56 48.78
1977 Reasoning 48.0 46.99 47.34 47.7
1030 Plausibility 53.98 49.81 53.01 51.07
768 Likely 51.43 47.66 51.43 50.13
868 Reference 46.2 45.62 44.93 46.43
691 Coreference 45.44 45.3 44.86 46.6
343 Negation 44.31 44.31 44.61 44.31
129 Translation 41.09 44.96 39.53 40.31
43 Family 34.88 34.88 34.88 34.88
68 CauseEffect 32.35 38.24 35.29 35.29
452 Imperfection 45.13 46.02 43.58 46.02
189 Spelling 44.97 46.56 48.15 48.68
143 Wordplay 59.44 55.94 55.94 55.94
260 Names 46.15 46.92 44.62 46.92
84 Error 35.71 45.24 39.29 34.52
769 Facts 39.66 42.65 40.05 42.39
162 Ordinal 43.21 46.3 41.98 43.83
261 Unlikely 61.69 56.32 57.85 54.02
39 NonNative 46.15 43.59 43.59 43.59
74 Counting 43.24 50.0 45.95 50.0
277 Containment 50.18 48.01 47.29 46.21
137 Times 53.28 48.91 48.91 46.72
225 Debatable 48.44 46.67 46.67 50.67
188 ComparativeSuperlative 45.21 40.96 45.21 44.15
155 Pragmatic 37.42 34.19 35.48 40.65
337 Syntactic 41.25 40.06 35.31 40.06
164 Age 52.44 55.49 49.39 51.22
106 Dissimilar 37.74 46.23 39.62 39.62
125 Location 48.0 48.8 46.4 46.4
60 0 46.67 46.67 46.67 51.67
159 Ambiguity 45.28 42.14 39.62 42.77
22 Modus 27.27 27.27 31.82 40.91
15 Parts 40.0 33.33 40.0 40.0
46 Idiom 23.91 30.43 30.43 36.96
1 Quality 100.0 100.0 100.0 100.0
66 EventCoref 46.97 51.52 51.52 46.97

Table 30: Fine-grained performances for each model trained on the concatenation
of MNLI, ANLI, FeverNLI, LingNLI, and WaNLI on the annotated development set
of ANLI for each category.
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BERT Con Dep DC

fiction 0.74 0.74 0.73 0.75
government 0.78 0.78 0.76 0.77
slate 0.70 0.71 0.70 0.71
telephone 0.74 0.73 0.74 0.73
travel 0.75 0.75 0.74 0.75

Table 31: Performance by genre for each
model on MNLI-matched evaluation set
when trained on MNLI-train-hard.

BERT Con Dep DC

facetoface 0.75 0.76 0.74 0.75
letters 0.77 0.77 0.77 0.77
nineeleven 0.75 0.76 0.76 0.76
oup 0.75 0.75 0.75 0.76
verbatim 0.72 0.73 0.71 0.73

Table 32: Performance by genre of each
model on MNLI-mismatched evaluation
set when trained on MNLI-train-hard.
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