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Abstract

Multivariate time series (MTS) data, consisting of multiple time
series observed concurrently across multiple variables, has become in-
creasingly common in a variety of fields ranging from finance to health-
care. However, due to its complex nature, analysing and extracting
meaningful insights from it remains a challenging task. This project
aims to address the challenge of extracting valuable insights from
high-complexity data by combining machine learning with visualisa-
tion tools, with a particular focus on latent space analysis. The frame-
work is applied to a general energy sustainability project to understand
how behavioural interventions affect energy consumption. We evaluate
desirable features of the framework by conducting testing and compar-
ing the model’s performance using various combinations of parameters.
Additionally, we apply the framework to real use case scenarios, demon-
strating its practical applicability and effectiveness. In conclusion, our
findings indicate that the framework effectively facilitates the explo-
ration of MTS data. Latent space analysis proves valuable in providing
deeper insights into the data, allowing us to investigate the effects of
sociodemographic factors, detect anomalies, and uncover behavioural
patterns.
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1 Introduction

The electricity and heat production sector, used to regulate residential en-
ergy usage, is the largest single source of global greenhouse gas emissions,
amounting to a total of 25% of all global emissions, and consequently a
meaningful contributor to climate change [23]. One of the current solutions
to this urgent problem is the use of smart buildings and grids, which optimize
and reduce energy consumption and encourage the primary use of renewable
energy sources [42]. This shift in energy production is a much-needed contri-
bution to addressing climate change. However, traditional approaches made
in an effort to persuade end users to adopt energy-efficient behaviour are
often characterized by poor outcomes [47].

Recent solutions aim to address the issue of previous failed smart grid
interventions by grounding its treatments in fundamental principles of be-
havioural science [19], using behavioural interventions. However, the nature
of such projects often implies the extensive collection of data across differ-
ent types of devices, sectors, and backgrounds, encompassing a vast array of
data types and sources. Furthermore, smart meter data enables the collec-
tion of highly detailed measurements over time, resulting in the generation
of Multivariate Time Series (MTS) data. This type of data is recognized for
its high complexity, both in size and nature, making it a challenging task
to analyse it and gather insights from it. This is a common problem for
researchers dealing with this type of data and occurs, among other reasons,
due to a large number of variables and features present which often result in
high data dimensionality, making it difficult to understand the relationships
between these variables and effectively communicating insights to stakehold-
ers.

Therefore, the intended impact of this project is to provide a solution
to the challenge of extracting insights from multivariate time series data by
combining machine learning and visualisation tools. While this solution will
be implemented on a specific sustainability research project it can and is
meant to be extended to other high-complexity data sets. Furthermore, this
project also aims to understand whether and in what way behavioural inter-
vention can successfully influence consumers and lead to more sustainable
energy consumption. Given that work has been done in this domain, existing
tools will be used to explore and tackle the data, and a combination of deep
learning and data visualisation techniques will be applied, with a focus on
latent space analysis.

The thesis starts by providing background information on Chapter 2.
This will introduce Multivariate Time Series (MTS) and their challenges to
the reader, as well as the most common approaches, namely in the field of
traditional statistics and machine learning, which will facilitate the under-
standing of the thesis. Furthermore, related MTS visualization techniques
will be explored. In Chapter 3 the tasks of the project will be described fol-
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lowed by the overall pipeline. Then, Chapter 4 will detail the implemented
model and visualization techniques and introduce a pattern taxonomy guide.
In Chapter 5 the design of the Visualisation tool interface is detailed and
explored. Chapter 6 details the analysis and assessment of the project’s
model and examines real-world applications and outcomes. Finally, Chapter
7 answers the research questions and addresses limitations suggesting future
research directions.

1.1 Research Objectives

The overall aim of this project is to provide a useful and efficient framework
for analysing and processing MTS data in the context of behavioural inter-
ventions. In particular, to be able to determine and visualize the impact of
such interventions on participants’ energy consumption. This framework will
be applied specifically to an energy sustainability project, given that it is a
difficult use case involving a complex MTS dataset with extensive temporal
and spatial resolutions. This leads us to the following research questions:

RQ1. Which interventions are most successful in positively in-
fluencing a consumer towards efficient energy consumption?

RQ2. What effects do social-demographic and technical factors
have on the effect of interventions on participants’ consumption?

Given the high complexity and dimensionality of the data at hand, the
focus of the approach will lie on latent space exploration, which is able to re-
duce and project the data onto a lower-dimensional space, allowing for easier
visualization and exploration of the data, without any loss of information.
This leads to the following research questions:

RQ3. Which novel insights can be gained from analyzing the
latent space representation of the sustainability research data that
can not be obtained from the input model representation?

RQ4. Can we distinguish a signal from noise in the extensive
input space of the sustainability research project?

Finally, this research will inquire into whether latent space analysis can
uncover patterns in data that shed light on how participant behaviour changes
when exposed to events, and whether such changes can be understood and
interpreted. This leads to the following research question:

RQ5. Can latent space analysis reveal behaviour patterns?
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1.2 Contribution

This thesis aims to achieve the following contributions:

• Propose a data analysis methodology to effectively address the limita-
tions of MTS data, unlocking its full potential and enabling compre-
hensive exploration of patterns in the data.

• Evaluate the effectiveness and applicability of latent space models as
a tool for revealing behavioural patterns in data related to events,
particularly in the energy consumption sector.

• Provide valuable insights to policymakers, informing the design of tar-
geted interventions and policies that promote energy conservation, in-
centivize sustainable behaviour, and contribute to a more sustainable
energy future.

• Establish a solid foundation for potential future predictive models in
energy consumption, allowing improved forecasting and planning ca-
pabilities to optimize energy management.
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2 Background & Related Work

The purpose of this chapter is to introduce Multivariate Time Series (MTS)
and its associated challenges, as well as common approaches used in the field.
Additionally, we will discuss related work on visualization techniques applied
to Time Series (TS) data. By providing this overview, we aim to establish a
foundation for addressing the research question at hand.

2.1 Multivariate Time Series

Figure 1: Beijing PM2.5 dataset. Reprinted from Brownlee, 2017 [33]

Multivariate series data (MTS), as illustrated in Figure 1, consists of
multiple time series observed concurrently across multiple variables and has
become increasingly common in a variety of fields ranging from finance to
healthcare [38,45]. As the name implies, MTS data consists of two or more
interconnected variables (or dimensions) that vary over time. For example,
the Beijing Pollution dataset [9], partially displayed in Figure 1, includes
a number of environmental variables, such as pollution concentration, tem-
perature, dew point, pressure, snow depth, wind speed, and many others,
all of which are tracked over time at regular intervals. Each element in
this situation can be thought of as a dimension, and analysis will show that
these variables are interconnected. A few patterns can be easily detected
by visually analysing the data; these refer to a recognisable and repeated
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arrangement or sequence of events or values. For example, a clear pattern
emerges in the temperature feature, showing a steady increase throughout
the day, reaching a high peak and gradually decreasing to a lower peak. A
similar pattern can be observed in the dew point variable, while the pressure
variable demonstrates an inverse relationship. Another pattern can be seen
in the snow depth variable, where the value is zero for most of the day and
reaches a higher peak at regular intervals, which coincide with higher tem-
perate peaks. These relationships provide valuable insights for weather and
pollution forecasting, as the interactions between these features over time
can offer predictive information about atmospheric conditions and pollutant
levels. Therefore, the need to detect and understand patterns becomes a
crucial requirement for dealing with MTS data and comes from the fact that
they hold information on how features relate to each other and offer predic-
tive insights. Due to its information-dense nature, MTS has proven itself
advantageous for an array of tasks, such as forecasting, anomaly detection
and classification [8, 27,59].

However, due to its complex nature and numerous inherent difficulties,
interpreting the data and extracting insights and value from it is often con-
sidered a challenging task. First, and most noticeably, due to the presence
of a large number of variables and features that often results in a high data
dimensionality, which hinders analysis [8]. This difficulty is further ampli-
fied by the non-stationarity of the data, which makes identifying underly-
ing patterns and relationships between variables over time difficult [8, 55].
Ultimately, effectively visualizing and communicating insights to stakehold-
ers ends up being just as challenging as the relationships between variables
may shift over time and patterns observed in the data may be nested and
overlapping [28].

Although TS and MTS analysis was conducted predominantly using
classical statistical analysis techniques [11], in recent years, several new ap-
proaches have been proposed to address the challenges of MTS data [4, 14,35,36,51].
Some of the most popular methods for analysing and simplifying MTS data
are based on dimensionality reduction techniques. These strategies seek to
minimise data dimensionality while maintaining the most significant infor-
mation and patterns in the data, making it easier to detect patterns and
relationships amongst variables, and allowing for a smoother analysis and
interpretation of the data. On the statistic side, techniques such as Prin-
cipal Component Analysis (PCA) [4,35,36] are employed. In recent years,
machine learning has gained significant attention in the analysis of MTS
data. One notable approach that has emerged is the usage of autoencoder
models [31,39,49,54]. Chapters 2.2.1 and 2.3.1, explain these concepts fur-
ther.
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2.2 Statistical Approach to MTS

In the field of statistics, a number of well-known methods have been fre-
quently used for MTS analysis because of their capacity to identify rela-
tionships and simulate temporal dynamics [44]. However, these statistical
approaches come with some limitations. Traditional statistical approaches
presuppose linearity and stationarity of data [2, 43], which may not be true
in real-world MTS circumstances. Furthermore, statistical models may also
have trouble capturing nonlinear interactions between variables and fre-
quently need assumptions about the underlying distribution [21]. The most
common statistical approach to MTS data is the use of projection algorithms,
there are numerous techniques available, one such example being PCA, which
is detailed in Chapter 2.2.1.

2.2.1 Principal component analysis (PCA)

Figure 2: Principal Component Analysis (PCA). Reprinted from Sartorius,
2020 [1]

An illustration of a PCA projection can be found in Figure 2. PCA is a
projection algorithm commonly used to analyse datasets with a large num-
ber of dimensions/features [35]. It is able to explore and identify patterns
in data by examining the correlations between its variables. PCA solves
the dimensionality challenge of MTS data by projecting the original data
onto a smaller dimension, containing a new set of variables known as princi-
pal components, which capture the majority of the variance in the original
data [35,36,51], these can be identified in Figure 2 as PC1 and PC2. De-
spite being computationally inexpensive when compared to other projection
algorithms, its main limitation lies in the fact that it is a linear projection,
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which as seen in Chapter 2.1 may not be the most adequate method for
dealing with MTS data.

2.3 Machine Learning Approach to MTS

Machine learning has emerged as a valuable tool for analysing MTS data due
to its ability to detect detailed patterns and provide correct predictions [6].
These techniques provide flexible and data-driven approaches for capturing
the interdependencies, temporal dynamics, and non-linear connections seen
in MTS data [18,50,52]. By using machine learning approaches, researchers
are given the ability to dive into and make use of the inherent complexity of
MTS data, allowing advanced analysis, precise prediction, and well-informed
decision-making across various fields. In addition to traditional machine
learning techniques, one popular approach for MTS analysis is the use of
autoencoders, which will be further discussed in Chapter 2.3.1.

2.3.1 Autoencoder Models

Figure 3: Structure of an Autoencoder model

Autoencoder models are another popular and efficient method for overcom-
ing the difficulties presented by MTS data [31,39,46,49,54]. An autoencoder
is a type of artificial network used in unsupervised learning and consists of
two functions: An encoder function, which maps input data to a hidden
layer, known as the bottleneck, and a decoder function, which maps the en-
coded representation to the output layer, recreating the input data. There-
fore, autoencoders can learn concise representations of input data without
supervision [13]. The model structure can be visualised in Figure 3.

This type of artificial neural network has considerable benefits in the
context of MTS data analysis due to its ability to learn a condensed rep-
resentation of the data in a lower-dimensional space that captures the key
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characteristics and patterns of the data [29]. This is rather helpful for fea-
ture extraction and determining the key variables or combinations of fac-
tors influencing the time series behaviour. It is also able to handle missing
or irregularly sampled data and is resistant to noise and variations in the
data [5]. Furthermore, autoencoders possess a significant advantage over
PCA in terms of being non-linear techniques, despite sharing a common
goal of creating projections. While PCA is a linear technique, autoencoders
can capture and model complex nonlinear relationships, making them more
flexible and powerful in analyzing MTS data.

2.4 MTS Visualization

As evident in Chapter 2.3, machine learning techniques have been successful
in simplifying complex data, however, its interpretation remains a challenge.
In a research domain simplifying data is undoubtedly beneficial, but allowing
this simplified information to be explored and interacted with becomes a vital
step in understanding it.

In recent years, MTS visualisation has become increasingly popular due
to its broad applicability in a range of fields [57]. Besides being fundamental
in identifying relationships, patterns, and trends among variables, as well
as correlations, dependencies, and anomalies in the data. It also facilitates
exploratory data analysis by allowing users to interact with the data and
explore various relationships and patterns. Furthermore, MTS visualisation
allows data to be communicated to stakeholders who may not have a tech-
nical background, such as policymakers, resulting in more informed decision
making.

Timecurves, by Bach et al. [3], is a recent and novel approach to vi-
sualising temporal data. Timecurves explores the temporal dynamics of a
dataset by focusing on similarity information between individual data points.
Specifically, it employs a novel folding operation that brings together sim-
ilar time points in a timeline visualisation, thus enabling the detection of
informative temporal patterns. Additionally, Timecurves is not designed for
domain-specific datasets [3]. The technique has proven to be a particularly
useful tool for simplifying highly dimensional datasets by reducing them to a
planar curve. Furthermore, it stands out for the way it presents information
in a visually intuitive manner that allows users to perceive the connections
between data points. However, in addition to its scalability problems, it may
fail in its ability to convey all relevant information. Users might not fully
understand the data and its relationships as a result. Additionally, since it
does not display numerous features at once, Timecurves is by nature not
ideal for multidimensional temporal data [3].

While general graph exploration techniques such as line graphs [56], heat
maps [58], bar plots [24], parallel coordinates [22] and horizon graphs [12]
have long been used for time series visualization, domain-specific designs
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have recently become an appealing alternative. The driving factor behind
this can be attributed to the fact that these designs are customised for the
particular characteristics of the domain under research, which provides fur-
ther sophisticated visualisations of MTS data.

Regarding domain-specific visualization tools, it is noteworthy to men-
tion a few examples in the literature, such as Peax and PSEUDo by Lekschas
et al. [37] and Yu et al. [60], respectively. These techniques employ interac-
tive pattern searches in time series data, with the goal of assisting users
in finding interesting patterns in vast volumes of sequential data by using
a user-friendly interface for searching, displaying, and analyzing patterns.
Both tools use unsupervised deep representation learning to learn meaningful
representations of the input data, and allow users to comment on relevancy
to improve their search results. Additionally, they also employ sophisticated
search methods to raise the effectiveness and precision of pattern searches.
PEAX uses a deep autoencoder to learn informative representations of the
data and locality-sensitive hashing to index the time series data and speed
up the search process [37]. On the other hand, PSEUDo combines convolu-
tional neural networks and long-term memory networks to learn both local
and global patterns in the data and uses an index-based search algorithm
that permits quick searches across vast volumes of data [60].

Two other relevant tools for domain-specific MTS data are Compass and
SeqCausal, by Deng et al. [16] and Jin et al. [34], respectively. While these
tools are specifically aimed at causal analysis, their visual analytics approach
gives users several insights into the data and interactions between them, with
a focus on visual and interactive components. These tools make use of user-
friendly interfaces, which greatly allow data to be explored in dynamic and
engaging ways, allowing users to spot patterns and trends with ease.

The idea behind this project is to develop a tool that strives to attain
user-friendliness and interactivity, such as the projects mentioned. In our
case, the tool will be tailored to latent space representations of the data.

2.4.1 Latent Space Exploration

As already mentioned in Chapter 2.3.1, autoencoders and projection algo-
rithms are recognized for their ability to tackle common and complex data
problems and are able to yield impressive outcomes in a multitude of ar-
eas. The fundamental idea of an autoencoder goes through the process of
uncovering a latent space, consisting of the encoded representation of the
high-dimensional data. This space’s compressed nature allows the data to
be analysed with significantly more efficiency [48].

The latent space allows observations to be mapped and clustered to-
gether based on how similar they are. An illustration of the latent space
representation of the MNIST dataset [15] can be found in Figure 4, where
each data point is represented by the image it represents. Once the data
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Figure 4: Latent Space of MNIST dataset. Reprinted from Depois, 2017 [17]

is projected onto the latent space, these similarities — which are often not
noticeable when the data is presented in its high-dimensional form — be-
come apparent. This has rendered latent space exploration a powerful tool
for a variety of tasks. Ranging from broad scenarios such as classification
tasks [20], and anomaly detection [26], to more specific applications such as
drug discovery [10], speech recognition [30], image recognition [40], object
detection [25], and biosignal detection [53].

One limitation of this technique lies within interpretability, since when
reducing the dimensionality of the original data, what each encoded dimen-
sion represents in the latent space might not be so obvious. Furthermore,
despite its success in various fields, limited research has been conducted to
uncover behavioural patterns within latent space representations, in partic-
ular, in the context of energy consumption.
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3 Data Analysis Approach

As observed in the previous Chapter, latent space analysis has been suc-
cessful in simplifying MTS data. The aim of this project is to explore the
usability of latent space exploration for uncovering behavioural patterns, par-
ticularly in the scope of energy sustainability research, which has not been
done before. Furthermore, we aim to add a visually interactive component
to the project to allow for the exploration and understanding of the data. In
this chapter, we provide a comprehensive overview of the project’s concept.
We begin by outlining the project’s functional tasks and following that, we
provide a detailed breakdown of the project pipeline.

3.1 Dataset

This Chapter aims to provide an understanding of the dataset used in terms
of terminology, interventions, pilot trials, and the types of data collected.
The dataset used in this study belongs to a sustainability research project
that aims to test the effectiveness of behavioural interventions in the context
of household energy consumption. The project conducted five pilot trials in
different European countries [19]. However, this study focuses specifically
on two pilots: one that took place in German households, referred to as
the German Pilot, and another in Croatian households referred to as the
Croatian Pilot.

The interventions also referred to as Nudges, were introduced to partic-
ipants in three sequential waves by means of a web portal, referred to as
the 1st Intervention, 2nd Intervention, and 3rd Intervention. Each pilot and
wave featured different interventions. The intervention phases were catego-
rized as Pre-Intervention, Intervention, and Post-intervention.

The dataset comprised environmental, sensor, demographic, and tech-
nical data from participants in various households. Demographic variables
included age, family type, children count, square metres of living space,
house type, special devices, days per week spent at home, and usage of the
web portal where interventions take place.

In the German pilot, the sensor data included Self Consumption, Overall
Consumption, and Autarky rate, while in the Croatian pilot, it included
Consumption and Production. Additionally, environmental data such as
time, radiation, and temperature were also included in the dataset. More
information about the sustainability project, the pilots, interventions and
collected data can be found in the work by Anagnostopoulos et al. [19].

3.2 Task Analysis

Considering the context of the project, this tool is specifically designed for
researchers who work with MTS data and seek to derive valuable insights
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from it. Therefore, all of these tasks were developed with the consideration
that users may not have prior knowledge of machine learning or visualisation
techniques. However, it was assumed that users would have a good under-
standing of the domain being explored. In order to answer the research
questions and identify the important crucial requirements for obtaining such
targeted outcomes, the following tasks have been identified:

T1. Get an overview of the data

T2. Allow differentiating on different facets (pilot, demographics,
etc)

T3. Model and visualize user behavior in order to track user
behaviour changes over time

T4. Discern working from non-working nudges

T5. Explore contributing factors for nudge "performance"

behaviour

T6. Compare pilots to find similarities vs dissimilarities

3.3 Pipeline

Figure 5: Workflow Diagram of the Proposed Pipeline

In order to complete the tasks detailed in Chapter 3.2 and ultimately
to answer the research objectives detailed in Chapter 1.1, a four-step pro-
cess will be employed. This framework is depicted in Figure 5, in the form
of a flowchart. This project has two main focuses, the first one, consist-
ing of the Preprocessing, Autoencoder and Projection Algorithm phases of
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the flowchart, regard the processing and exploration of the data from a ma-
chine learning point of view, while the remaining phase regards the visual
exploration of the data.

As the Figure suggests, this pipeline is circular. This highlights the
interactive nature of the process and the fact that users have the ability to
interact with a visual exploration tool, described in detail in Sections 4.3 and
5, to make decisions that directly impact the model. These decisions include
selecting the pilot to be analysed, determining the features to be included in
the model (as outlined in Section 4.4.1), and specifying the number of latent
dimensions for the autoencoder.

The second step consists of preprocessing the data and scaling it to sim-
ilar values. Given that MTS data by nature encompass data of various
dimensions and values, it is important to ensure that it is scaled to the same
range. As a result, the whole dataset taken from the user-selected pilot is
scaled to ensure consistency within the same range. This scaling procedure
only takes into account the features that the user has selected in the visual
exploration tool.

As mentioned in Chapter 2, when dealing with MTS data, several tech-
niques are available to process and simplify it, with projection algorithms
and autoencoder models being notable options. While straightforward di-
mensionality reduction techniques such as PCA can be directly applied to
project the data onto a lower-dimensional space, the use of autoencoders
offers additional advantages. Autoencoders stand out for their ability to
learn complex non-linear representations, enabling them to capture intricate
patterns that may be overlooked by simple projection algorithms. More-
over, incorporating an intermediate step before projection, where the la-
tent dimensions of the model can be expanded and explored, might bring
further benefits such as more expressive feature spaces and increased inter-
pretability. Despite typical ranges for latent dimensions ranging from 4 to
512 dimensions [41], for exploratory reasons, we do not impose any limi-
tations here. With that said, the third step consists of encoding the scaled
data into an N-Dimensional Latent Space by means of an autoencoder. Once
the autoencoder captures the most relevant features of the data and encodes
it, a projection algorithm can be used to reduce the dimensionality of the
information so it can be plotted and visualised. This is a fundamental step
in enhancing the interpretation of the data. Therefore, the fourth step con-
sists of applying a projection algorithm to project the N-Dimensional Latent
Space into a 2-Dimensional Space that can be plotted and interpreted.

While it may initially appear redundant to use both an autoencoder and
a dimensionality reduction algorithm, their combination aims to strike a bal-
ance between capturing complex relationships and achieving interpretability.
The autoencoder stands out for capturing subtle relationships in the data
by making use of its capacity to reveal complex patterns. On the other
hand, the dimensionality reduction process helps to make the data more
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understandable overall.
After the data has been processed and simplified, it becomes essential

to visualise it. Taking into account the exploratory context of the project,
it is important to provide users with an interactive means to explore and
analyse the data. For this reason, the final step of the pipeline consists of
leading this data into the visual exploration tool, where all the exploration
and visualisation take place.
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4 Implementation

In this chapter, we will delve into the techniques utilized in the model, en-
compassing data preprocessing and the implementation of the autoencoder
model. Additionally, we will outline the implementation of the visual as-
pect of the model. Furthermore, we conclude the chapter by presenting an
assessment of the project’s ethical and privacy implications.

4.1 Preprocessing

(a) Unscaled Model Features

(b) Zoomed-In View of Unscaled Model Features (A)

(c) Zoomed-In View of Unscaled Model Features B

Figure 6: Visual Representation of Unscaled Features

Scaling the data into the same range becomes crucial when dealing with
multidimensional data, with each dimension having different metrics and
scales. As we can see in Figure 6, such is our case, for example, radiation
has much larger values than consumption metrics, which in turn have much
larger consumption values than temperature. By scaling the input into the
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same range, we make sure the model can handle the data efficiently and
compare features in a meaningful way. Additionally, it makes it easier for
the model to be trained because it prevents any one feature from dominating
the learning process and enables the model to recognise significant patterns
across the scaled dimensions.

With that said, the goal of the normalizing step of this pipeline is to scale
the data into a more comparable range while preserving its original structure.
Furthermore, given the existence of outliers, it is important that the model is
robust enough to not let them distort the data. For this purpose, 3 techniques
were considered: Standard Scaling, Min-Max Scaling, and Robust Scaling.

The first scaling technique, Standard Scaling, is defined as z = x−µ
σ

and consists of rescaling features such that they have zero mean and unit
variance. This means that each feature scaled by this technique has a mean
of 0 and a standard deviation of 1. Although it is easy to implement, this
technique is sensitive to outliers and assumes that the features are normally
distributed.

The Min-Max Scaler, defined as z = x−xmin
xmax−xmin

, consists of rescaling the
features to a specific range, usually between 0 and 1, such that the minimum
value of each feature is 0 and the maximum value is 1. This technique is
advantageous due to its ability to scale features to a specific range. However,
it is important to note that this scaler is more sensitive to outliers compared
to the previous technique since the presence of an outlier can significantly
alter the minimum and maximum values used for scaling, thus affecting the
entire process.

Lastly, the Robust Scaler, defined as z = x− median
IQR , removes the median

to each feature and scales the data according to the IQR (difference between
the 1st quartile and the 3rd quartile); this allows it to absorb the effects of
outliers while scaling, making it a more robust tool than the two previous
techniques.

These techniques are evaluated in Chapter 6.1.1, where Robust Scaler
emerged as the best option and therefore the employed Scaling technique.

4.2 Autoencoder

The autoencoder model chosen for the project was a Variational Autoen-
coder (VAE). This decision was made due to its architecture having more
parameters to tune which give significantly more control over the model, in
comparison with traditional encoder models. Although the purpose of this
thesis is not to find the most optimal model, improving the model could
be a possible future direction, which makes this a good investment. More-
over, in line with the project’s objective of utilizing the autoencoder solely
for information encoding and not decoding, the focus will be exclusively on
the encoder function, while the decoder function will not be utilized. The
main language used for this project was Python, and an existing VAE model,
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available online on GitHub [7], was used as a base to ensure the model fits
the requirements of the project, a few changes were made to the original
model. These include exploring and customising parameters such as the
model’s loss function, activation function, optimiser, batch size, epoch size,
and learning rate. Additionally, changes were made to allow the latent di-
mension of the model to be customized and passed onto the model instead
of static 2 dimensions. Acceptable values for the number of latent dimen-
sions could range from a minimum of 2 to a maximum of 256. However,
for exploratory purposes, there is not a significant constraint. Furthermore,
the original Sigmoid activation function on the network output layer was
removed. This activation proves useful for classification tasks where there is
a need to ensure that the output values are between 0 and 1, representing
probabilities for each class. However, since the data will not be scaled be-
tween 0 and 1, it is preferable not to confine the output to a specific range
by applying an activation function. Additionally, it’s worth noting that in
Chapter 6, the tuning of parameters for the current model focused solely
on the encoding aspect and did not involve decoding. Since the model is
utilized exclusively for data encoding and not for decoding or reconstruc-
tion purposes, the parameter tuning was carried out using the entire dataset
without splitting it into separate train and test sets.

Activation
Function

Loss
Function Optimizer

Learning
Rate

Batch
Size Epochs

Tanh MAE Adam 0.001 16 2

Table 1: Features of the Model

The details of the exploration of the different parameters of the VAE
model indicated above can be found in Chapter 6.1.2. The resulting param-
eters from this investigation are displayed in Table 1.

4.3 Visualization

In order to visualise the information in the latent space, the final steps of the
pipeline outlined in Chapter 3.3 are used. The first step involves applying
a projection algorithm to project the high-dimensional data encoded by the
VAE model onto a bidimensional latent space.

Several projection algorithms were considered, including Principal Com-
ponent Analysis (PCA), which attempts to identify the directions of max-
imum variance in data and project it onto a lower-dimensional space. Ad-
ditionally, non-linear algorithms were also considered, namely t-distributed
Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Approxi-
mation and Projection (UMAP), which aim to preserve the local structure
of the data in the projection. These experiments were performed in Python,
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utilising the sklearn.decomposition.PCA and sklearn.manifold.TSNE mod-
ules from the scikit-learn library, as well as the umap-learn library for UMAP.
Each of these experiments was carried out on the entire dataset of the Ger-
man pilot, including both environmental and consumption metrics, and is
coloured by the intervention phase, detailed in Chapter 3.1. Therefore, each
point in the projections corresponds to the encoded consumption and envi-
ronmental information of a particular participant on a particular date. The
results for the execution time comparison of each algorithm can be found in
Chapter 6.1.3.

Figure 7: PCA Latent Space

(a) PCA with 2 latent di-
mensions

(b) PCA with 4 latent di-
mensions

(c) PCA with 8 latent di-
mensions

(d) PCA with 16 latent di-
mensions

(e) PCA with 32 latent di-
mensions

(f) PCA with 64 latent di-
mensions

Figures 7, 8 and 9 show the results of the experimented plots. Each
projection algorithm was explored for 2, 4, 8, 16, 32 and 64 dimensions.
Furthermore, the experiments carried out on t-SNE also explored different
learning rates (50, 200 and 500) and perplexity values (5, 40, 100).

Since the autoencoder already provides a scatterplot when the selected
latent dimension is 2, it may seem redundant to run a projection algorithm
on top of it. However, projecting the latent space using other techniques
allows for comparison and assessment. PCA, t-SNE, and UMAP differ in
how they capture and emphasize the data’s structure, resulting in variations
in the visualizations. While the 2D latent space of the autoencoder is specific
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Figure 8: UMAP Latent Space

(a) UMAP with 2 latent
dimensions

(b) UMAP with 4 latent
dimensions

(c) UMAP with 8 latent
dimensions

(d) UMAP with 16 latent
dimensions

(e) UMAP with 32 latent
dimensions

(f) UMAP with 64 latent
dimensions
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Figure 9: t-SNE Latent Space of 2 dimension

(a) t-SNE with perplexity
5, learning rate 50 and 2
latent dimensions

(b) t-SNE with perplexity
40, learning rate 50 and 2
latent dimensions

(c) t-SNE with perplexity
100, learning rate 50 and 2
latent dimensions

(d) t-SNE with perplexity
5, learning rate 200 and 2
latent dimensions

(e) t-SNE with perplexity
40, learning rate 200 and 2
latent dimensions

(f) t-SNE with perplexity
100, learning rate 200 and
2 latent dimensions

(g) t-SNE with perplexity
5, learning rate 500 and 2
latent dimensions

(h) t-SNE with perplexity
40, learning rate 500 and 2
latent dimensions

(i) t-SNE with perplexity
100, learning rate 500 and
2 latent dimensions
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Figure 10: t-SNE Latent Space of 4 dimensions

(a) t-SNE with perplexity
5, learning rate 50 and 4
latent dimensions

(b) t-SNE with perplexity
40, learning rate 50 and 4
latent dimensions

(c) t-SNE with perplexity
100, learning rate 50 and 4
latent dimensions

(d) t-SNE with perplexity
5, learning rate 200 and 4
latent dimensions

(e) t-SNE with perplexity
40, learning rate 200 and 4
latent dimensions

(f) t-SNE with perplexity
100, learning rate 200 and
4 latent dimensions

(g) t-SNE with perplexity
5, learning rate 500 and 4
latent dimensions

(h) t-SNE with perplexity
40, learning rate 500 and 4
latent dimensions

(i) t-SNE with perplexity
100, learning rate 500 and
4 latent dimensions
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Figure 11: t-SNE Latent Space of 8 dimensions

(a) t-SNE with perplexity
5, learning rate 50 and 8
latent dimensions

(b) t-SNE with perplexity
40, learning rate 50 and 8
latent dimensions

(c) t-SNE with perplexity
100, learning rate 50 and 8
latent dimensions

(d) t-SNE with perplexity
5, learning rate 200 and 8
latent dimensions

(e) t-SNE with perplexity
40, learning rate 200 and 8
latent dimensions

(f) t-SNE with perplexity
100, learning rate 200 and
8 latent dimensions

(g) t-SNE with perplexity
5, learning rate 500 and 8
latent dimensions

(h) t-SNE with perplexity
40, learning rate 500 and 8
latent dimensions

(i) t-SNE with perplexity
100, learning rate 500 and
8 latent dimensions
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Figure 12: t-SNE Latent Space of 16 dimensions

(a) t-SNE with perplexity
5, learning rate 50 and 16
latent dimensions

(b) t-SNE with perplexity
40, learning rate 50 and 16
latent dimensions

(c) t-SNE with perplexity
100, learning rate 50 and
16 latent dimensions

(d) t-SNE with perplexity
5, learning rate 200 and 16
latent dimensions

(e) t-SNE with perplexity
40, learning rate 200 and
16 latent dimensions

(f) t-SNE with perplexity
100, learning rate 200 and
16 latent dimensions

(g) t-SNE with perplexity
5, learning rate 500 and 16
latent dimensions

(h) t-SNE with perplexity
40, learning rate 500 and
16 latent dimensions

(i) t-SNE with perplexity
100, learning rate 500 and
16 latent dimensions
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Figure 13: t-SNE Latent Space of 32 dimensions

(a) t-SNE with perplexity
5, learning rate 50 and 32
latent dimensions

(b) t-SNE with perplexity
40, learning rate 50 and 32
latent dimensions

(c) t-SNE with perplexity
100, learning rate 50 and
32 latent dimensions

(d) t-SNE with perplexity
5, learning rate 200 and 32
latent dimensions

(e) t-SNE with perplexity
40, learning rate 200 and
32 latent dimensions

(f) t-SNE with perplexity
100, learning rate 200 and
32 latent dimensions

(g) t-SNE with perplexity
5, learning rate 500 and 32
latent dimensions

(h) t-SNE with perplexity
40, learning rate 500 and
32 latent dimensions

(i) t-SNE with perplexity
100, learning rate 500 and
32 latent dimensions
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Figure 14: t-SNE Latent Space of 64 dimensions

(a) t-SNE with perplexity
5, learning rate 50 and 64
latent dimensions

(b) t-SNE with perplexity
40, learning rate 50 and 64
latent dimensions

(c) t-SNE with perplexity
100, learning rate 50 and
64 latent dimensions

(d) t-SNE with perplexity
5, learning rate 200 and 64
latent dimensions

(e) t-SNE with perplexity
40, learning rate 200 and
64 latent dimensions

(f) t-SNE with perplexity
100, learning rate 200 and
64 latent dimensions

(g) t-SNE with perplexity
5, learning rate 500 and 64
latent dimensions

(h) t-SNE with perplexity
40, learning rate 500 and
64 latent dimensions

(i) t-SNE with perplexity
100, learning rate 500 and
64 latent dimensions

32



to the dataset and objective, other techniques highlight different aspects and
patterns. Comparing the visualisations sheds light on the advantages and
disadvantages of each approach, providing thorough knowledge of the dataset
from many angles.

When analysing the t-SNE projections, a few observations are worthy
of mention. Firstly, different learning rates seem to also have different ef-
fects on the latent projection. Higher learning rates reflect a higher density
of data points while lower learning rates reflect the opposite. Such differ-
ences can be seen when comparing Figures 10c to Figure 10i. This happens
because increasing the learning rate, leads the optimization process in the
latent space to become more aggressive, resulting in a denser concentration
of data points. On the other hand, a reduced learning rate slows down the
optimisation process, leading to a larger spread of data points. Another sub-
tle change can be seen in the latent projection when changing the number of
dimensions of the encoded data. When the dimension of the encoded data
is low, the points in the t-SNE plot appear to be closer together, indicating
a higher density of data points in certain regions of the latent space. In
contrast, when the dimension of the encoded data is high, the points in the
t-SNE plot are more spread out, suggesting a lower density of data points
in the latent space. This difference is hard to visualize when comparing
projections of lower perplexity rates, such as Figure 14a and Figure 13d, as
well as when comparing projections with a close number of dimensions, for
instance, Figures 14i and 13i. However, the difference becomes clearer when
comparing low-dimensional encoded models with higher-dimensional ones,
both using high-perplexity values. One such example is to compare Figure
14i with Figure 9i. This shift in the latent projection occurs because of the
relationship between perplexity and dimensionality. Higher perplexity values
in the t-SNE emphasise global relationships, causing neighbouring points in
the latent space to look closer together. Increasing the dimensionality of the
encoded data allows for greater room for point spread. As a result, larger
perplexity values and higher dimensionality provide unique visual patterns
in the latent projection, indicating that local density fluctuations are pre-
served. Another reason why this increase in spread might occur is due to the
inherent clustering tendency of autoencoders. When the pre-clustered data is
passed to t-SNE, it can create additional gaps in the projection, resulting in
a more dispersed visualisation. By a significant margin, the most substantial
and noticeable effect can be observed when adjusting the perplexity values,
which aligns with the previous observation. Low perplexity values, such as
the one in Figure 12d, cause the data to look like a ‘ball’ with any point
approximately equidistant from its nearest neighbours. Higher perplexity
values, such as depicted in Figure 12f prove to preserve global structures in-
stead of local structures, causing the data points to become densely packed.
It is noteworthy to mention that given time constraints, it was not feasible
to conduct additional experiments with different parameter values. There-
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fore, the experiments were carried out on the basis of initial impressions.
However, in retrospect, it becomes evident that a perplexity value of 5 was
inadequate to effectively project the data.

Moving on to UMAP, shown in Figure 8, the experiments yielded pro-
jections similar to the higher perplexity values of t-SNE, causing the data
points to become densely packed. This resemblance is due to the fact that
both approaches prioritize retaining global structures while retaining some
local aspects, which results in the capture of comparable underlying patterns
in the data.

Lastly, PCA, shown in Figure 7, yielded plots that differed significantly
from the other two projections. The resulting projections exhibit a surface-
like appearance, with certain points exhibiting higher concentrations along
specific lines within the projection. This can be observed by examining the
concentration of "Single people" in the corners of the projection in Figure
7e, which is not as evident in other projection algorithms.

Although the ability to cluster data in the latent space may be able to
provide some insight into the data, the objective of this project is to visualize
consumption as a trajectory over time. While both UMAP and t-SNE are
effective clustering techniques and are able to cluster information in the
latent space somewhat better than PCA. The linear nature of PCA allows
for points to be captured in a trajectory-like shape while also exhibiting
some minimal clustering capability. With that said, and given that the
technical evaluation described in Chapter 6 elects PCA as the most time-
effective projection, PCA emerges as the optimal projection algorithm for
this project.

The second step involves the development of a visualisation tool to vi-
sualise and explore the data in the latent space. The visualization tool
complements the projection algorithm by providing a means to gain insights
from the latent space representation. It was developed in Python, and using
the Streamlit, Pandas, Numpy and Malplotlib libraries.

Figure 15: Latent Space Representation
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Figure 15 exemplifies the latent space representation of the energy con-
sumption of a single participant in the developed web application. The model
incorporates consumption metrics specific to the Croatian pilot and employs
colour-coded differentiation for intervention phases. Each data point within
the figure possesses a tooltip, providing comprehensive details on the associ-
ated sensor and demographic information when hovering over it. Analysing
these tooltips allows us to discern the representation of model features. In
this case, the x-axis corresponds to energy consumption, while the y-axis
denotes energy production.

More details on the interpretation of these graphs can be found in Chap-
ter 4.4.6 and more information on the Streamlit web app can be found in
Chapter 5.

4.4 Pattern Taxonomy

This Chapter details the patterns most commonly seen in the latent space
representation followed by their interpretation. Before exploring these pat-
terns, it is essential to identify the elements that have a major influence on
the latent space representation, namely the model’s features and dimensions.

4.4.1 Features

Energy Metrics Environmental Metrics

Autarky Rate Temperature
Self Consumption Radiation
Overall Consumption Time
Production

Table 2: Energy and Environmental Features

Figure 2, displays the two main groups of features that pilots possess. The
first group included measurements for the consumption or production of en-
ergy, such as the autarky rate, self-consumption, overall energy consumption,
and production. It is noteworthy to mention that for the energy research
project the combination of features is different for every pilot, given that each
pilot has different sustainability goals. These metrics were deemed particu-
larly relevant for the model as they contained all the information essential
for our understanding. On the other hand, the second group consisted of
environmental parameters, such as radiation, temperature, and time. These
parameters were included with the intention of gaining deeper insights into
participant behaviour and to understand how this group potentially influ-
ences the first group of metrics. We predicted that, for instance, higher
radiation levels would be associated with increased energy production, or
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extreme temperature levels could be linked to elevated consumption levels.
However, latent space analysis found no correlations between these features.
Additionally, analyzing the data outside the latent space confirmed that this
lack of connection was not a shortcoming of the latent space analysis. In
other words, despite our efforts to thoroughly investigate it, the relationship
between the environmental characteristics and the consumption/production
metrics was not evident.

Furthermore, given the patterns found in Chapters 4.4.3 and 4.4.4, it is
evident that environmental metrics are not conducive for meaningful analy-
sis. With that being said, the recommended features to incorporate into the
model are exclusively those from the metrics group, excluding any metrics
derived from environmental parameters.

4.4.2 Latent Dimensions

Another essential component of the model and, subsequently the latent space
representation, is the number of latent dimensions. Experiments were carried
out to determine the optimal number of dimensions a model should have. In
order to assess this, experiments were carried out for models with varying
numbers of features, namely 2, 3, 4 and 5 features and 2, 4, 8, 16, 32, 64,
128 and 256 dimensions. The data used for this experiment concerns Group
6 of the Croatian pilot, with a total of 3 participants, each with different
family type demographics, and the distribution of features goes as follows:
In the models with 2 features, the primary inputs were self-consumption and
overall-consumption metrics. For the models with 3 features, an additional
time feature was included. In the 4-feature model, radiation was added as
an extra input, and in the 5-feature model, temperature was included. All
of these projections are coloured by the Family type demographic.

36



Figure 16: Latent Space of the VAE model with 2 features and (varying)
latent dimensions

(a) Latent Space of model
with 2 features and 2 la-
tent dimensions

(b) Latent Space of model
with 2 features and 4 la-
tent dimensions

(c) Latent Space of model
with 2 features and 8 la-
tent dimensions

(d) Latent Space of model
with 2 features and 16 la-
tent dimensions

(e) Latent Space of model
with 2 features and 32 la-
tent dimensions

(f) Latent Space of model
with 2 features and 64 la-
tent dimensions

(g) Latent Space of model
with 2 features and 128 la-
tent dimensions

(h) Latent Space of model
with 2 features and 256 la-
tent dimensions
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Figure 17: Latent Space of the VAE model with 3 features and (varying)
latent dimensions

(a) Latent Space of model
with 3 features and 2 la-
tent dimensions

(b) Latent Space of model
with 3 features and 4 la-
tent dimensions

(c) Latent Space of model
with 3 features and 8 la-
tent dimensions

(d) Latent Space of model
with 3 features and 16 la-
tent dimensions

(e) Latent Space of model
with 3 features and 32 la-
tent dimensions

(f) Latent Space of model
with 3 features and 64 la-
tent dimensions

(g) Latent Space of model
with 3 features and 128 la-
tent dimensions

(h) Latent Space of model
with 3 features and 256 la-
tent dimensions
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Figure 18: Latent Space of the VAE model with 4 features and varying
dimensions

(a) Latent Space of model
with 4 features and 2 la-
tent dimensions

(b) Latent Space of model
with 4 features and 4 la-
tent dimensions

(c) Latent Space of model
with 4 features and 8 la-
tent dimensions

(d) Latent Space of model
with 4 features and 16 la-
tent dimensions

(e) Latent Space of model
with 4 features and 32 la-
tent dimensions

(f) Latent Space of model
with 4 features and 64 la-
tent dimensions

(g) Latent Space of model
with 4 features and 128 la-
tent dimensions

(h) Latent Space of model
with 4 features and 256 la-
tent dimensions
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The results of these experiments can be found in Figures 16, 17, 18 and
19. Each line in the latent space represents the trajectory of a participant
with respect to the features that were added to the model.

Considering Figure 16, which shows the Latent Space of a model with two
features and different dimensions, as an illustration. A comparison of Figure
16a (with two dimensions) and Figure 16b (with four dimensions) clearly
shows that the latter allows superior cluster distinction, making it the most
suitable number of dimensions for this scenario. Similarly, in Figures 16c,
16d, 16e, 16f 16g and 16h, the addition of more dimensions results in an
identical latent space, although with a small rotation. This pattern, where
increasing the number of dimensions helps distinguish clusters easier is seen
consistently across all models with varied features. Furthermore, there is
a point beyond which the latent space exhibits no discernible changes, ap-
pearing identical except for potential rotations. This threshold that reflects
the optimal number of dimensions appears to vary depending on the num-
ber of features in the model. Notably, as additional features are included,
a greater number of dimensions are often required to provide optimal sep-
aration across clusters. For instance, the model with 3 features, displayed
in Figure 17 reaches its threshold at 16 dimensions in Figure 17d, further
increment on the latent dimensions yields the same latent space with a small
rotation, displayed in Figures 17e, 17f, 17g and 17h. Similarly, for the model
with 4 features, displayed in Figure 18, the latent space reached its threshold
at 16 dimensions, seen in Figure 18d, making Figures 18e, 18f, 18g and 18h
small rotations of the same plot. Finally, the model with 5 features, pre-
viewed in Figure 19 demands 32 dimensions to separate clusters efficiently,
as Figure 19e suggests, making Figures 19f, 19g and 19h rotations of the best
latent space dimension plot.

4.4.3 Latent Stripes

During earlier explorations of the latent space, an intriguing striped pattern
was identified. Manual investigation and the use of tooltips to obtain insights
into the underlying data points revealed that the presence of radiation or
temperature in the latent space was responsible for the formation of these
stripes. Despite the intriguing shape, this anti-pattern was found to obscure
participant behaviour, hindering the ability to understand how participants
reacted to interventions.
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Figure 19: Latent Space of the VAE model with 5 features and varying
dimensions

(a) Latent Space of model
with 5 features and 2 la-
tent dimensions

(b) Latent Space of model
with 5 features and 4 la-
tent dimensions

(c) Latent Space of model
with 5 features and 8 la-
tent dimensions

(d) Latent Space of model
with 5 features and 16 la-
tent dimensions

(e) Latent Space of model
with 5 features and 32 la-
tent dimensions

(f) Latent Space of model
with 5 features and 64 la-
tent dimensions

(g) Latent Space of model
with 5 features and 128 la-
tent dimensions

(h) Latent Space of model
with 5 features and 256 la-
tent dimensions
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Figure 20: Latent Space with Environmental Metrics

(a) Latent Space with Temperature

(b) Latent Space with Radiation

Figure 20 depicts the latent space projection of a partial section of the
dataset representing the German pilot, coloured by the Intervention Phase.
The model used to generate the projection included consumption metrics and
environmental features, with hourly data. In Figure 20a, the introduction of
temperature into the latent space, along with consumption metrics, produces
intriguing stripe-like patterns. Initially, these patterns appear enigmatic, but
using the tooltip as a lookup aid reveals that they are linked to fluctuations
in temperature throughout the day. The stripes depict the progression of
temperature levels as they rise steadily, peak, and then slowly decline. Simi-
larly, in Figure 20b, the introduction of radiation in the model yields striped
patterns that represent the rise and fall of radiation levels throughout the
day. Additionally, a straight line forms in the latent space since radiation is
exactly zero between sunset and morning. From these pictures, no insights
can be gained regarding energy consumption or participants’ behaviour, since
all of the patterns and trends captured by the model are highly representa-
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tive of these environmental metrics. Therefore, we can conclude that these
distinctive patterns in temperature and radiation overwhelm the visibility of
consumption metrics within the latent space, making it difficult to detect or
analyse any behavioural patterns.

4.4.4 Time Partitioning

Figure 21: Effects of Time as a Feature of the Latent Space

(a) Latent Space with Time as a fea-
ture

(b) Latent Space without time as a
feature

Another pattern was found by including environmental metrics, in this
case, the Time feature. Given that we are dealing with MTS data it might
seem contradicting that Time is added as a feature and not included in the
model by default. However, information regarding time, as well as any other
feature and demographic value, can be accessed through a tooltip in the la-
tent space at all times. Furthermore, incorporating time as a feature ensures
that points within the latent space are clearly separated. This means that
when time is included, trajectories are consistently distinct. For instance,
consider Figure 21, which serves as an illustrative example of a model that
incorporates consumption, production, and time as features. If a partici-
pant has identical production and consumption values at two different time
points, these points will never overlap in the latent space due to the inherent
nature of the time dimension. Such behaviour can be visualized in Figure
21a. On the other hand, as we see in Figure 21b, if time is excluded, these
points would overlap. As illustrated in the picture allowing points to over-
lap enables trajectories to be clearer. When two points in the latent space
coincide, it becomes evident that the corresponding feature values for those
points are identical. This characteristic simplifies the identification of simi-
lar data points, subsequently enhancing the analysis process. This becomes
even more crucial for large datasets with much larger time periods, where
more attention is needed for analysis. Therefore excluding Time as a direct
feature of the model proves to be more beneficial than including it. Nonethe-
less, identifying the temporal location of the data points in the latent space
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is always available no matter what features are included in the model, by
means of the Visualization tool, described in Chapter 5.

4.4.5 Outliers in the Latent Space

Figure 22: Outliers in the Latent Space

Another pattern discovered by interacting with the data was the exis-
tence of outliers in the latent space. An example is plotted in Figure 36.
When projecting all of the data together, a few points that find themselves
considerably distant from others in the latent space can be easily distin-
guished.

Figure 23: Corrupted Data

In order to understand where these outliers came from, the original data
they represent was thoroughly examined. It was found that all of these latent
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outliers represented corrupted data points, which were reflected in the latent
space. In Figure 23, the consumption graphs of two outliers are highlighted
in red. While it can be confirmed that these artefacts were not produced
by the encoder, since they were present in the data before any encoding
took place and are exclusively related to noisy data points, the exact source
of these outliers can only be speculated upon. However, it is highly likely
that they originated from malfunctioning sensors. Furthermore, while these
outliers can be identified by observing the individual consumption graphs of
each participant, using the latent space allows for this analysis to be much
quicker.

4.4.6 Response Pattern

When projecting the encoded information onto the latent space, it is impor-
tant to note that the alignment of features with the x or y axis may not
always be perfect, especially in models with more than three features. In
such cases, the orientation of features may deviate from the conventional
axis alignment. However, examining the latent space with the use of the
tooltip helps us identify these variations and gain insights into how the fea-
tures provided to the model are represented by the axes.

Figure 24: Latent Space Representation of Simple Response Pattern

An example is illustrated in Figure 24. By analysing it with the tooltip,
we discover that the x-axis corresponds to energy consumption, while the y-
axis represents energy production. Armed with this knowledge, we are able
to tell where in the latent space the participant behaved in a certain way.
For instance, we recognize that the lower right part of the plot is represented
by a high production rate and low consumption rate. Furthermore, colouring
the data by categories allows for distinguishments to be made. In this case,
the plot is coloured by the intervention phase.

If we take this into consideration, we can deduce that prior to the third
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intervention, energy production levels were consistently low, and consump-
tion levels varied from low to high. The third intervention stands out as it
resulted in the highest energy production levels throughout the experiment,
accompanied by lower overall consumption levels compared to other phases.
Hence, we can conclude that the participant responded positively to the third
intervention and unfavourably to the second intervention.

Figure 25: Latent Space Representation of Complex Response Pattern

A more challenging example is depicted in Figure 25, the axis follows the
same conventions as the previous case, but the responses differ. It is evident
in this case that the first intervention yielded the most favourable outcomes,
with lower consumption and higher production values. Subsequent interven-
tion phases resulted in significantly higher consumption levels.

4.5 Ethics and Privacy

The Utrecht University Research Institute of Information and Computing
Sciences conducted an Ethics and Privacy Quick Scan (see Appendix A).
It evaluated this research project as low-risk, requiring no additional ethics
review or privacy assessment.
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5 Interface

A web app was developed with Streamlit [32] to allow for an easy exploration
and visualization of the data. For the purpose of this project, the application
was developed and run locally on a local machine. However, Streamlit allows
the application to be deployed to the cloud. With that said, three main pages
were developed. The first page was dedicated to interactively exploring latent
space analysis. The second page was designed to display horizon graphs,
which allowed for a clear and concise representation of data trends over time.
Finally, a third page was developed to display information for participants.

5.0.1 Latent Space Visualization

Figure 26: Latent Space Visualization Page

In order to provide a visual representation of the design of the latent
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space page, a screenshot was captured and presented in Figure 26. At the
top left corner of the page the pilot selection (1) section is displayed, it
contains a selection box with the pilots implemented. Users can choose the
pilot they are interested in exploring from this box. Once they select one,
the next section appears.

Directly below the first section, the Model Preferences (2) section is dis-
played, this section contains a multi-selection box with the features of the
model and a numerical input section for the dimensions of the model. The
features displayed change according to the selected pilot, while there is no
set of rules for which features to select, a few options are advised on the
informative balloon. Furthermore, for exploratory reasons, there are no di-
mensionality constraints, however, an advised range of dimensions is also
displayed to guide users in selecting appropriate dimensions for their explo-
ration. More detail into this advice is given in Section 4.4. Users may then
submit their preferences by pressing the "Submit Model preferences" button
and unlock the next sections.

On the top right side of the page, the latent space preferences (3) section
is displayed, which allows for the selection of the desired participants and
the category to colour (distinguish participants by). The option to select
all participants at once is also allowed with the "Select All" selection but-
ton. This option directly supports two of the analysis tasks, since it allows
to differentiation of the data on different factors (T2) and allows for the
exploration of contributing factors for the nudging performance (T5).

Once these preferences are selected, the latent space (6) section is dis-
played along with the user information (4) and the user sparklines (5). The
Latent space representation figure displays the latent space of the selected
participants coloured by the selected category. The information is displayed
in the form of a trajectory per participant. By hovering over the data, the
user is able to visualise a tooltip with all the information regarding that spe-
cific instance, this includes any consumption metric, social demographics,
or any other information the model holds. This serves as a way to gather
more insight and decipher patterns in the data. Users are also able to zoom,
pan, autoscale, reset axes and remove categories from the represented latent
space.

In order to provide more information to the user regarding the displayed
participants and respective consumptions, the user information section (4)
and user sparkline (5) are displayed. The first section reflects users’ informa-
tion in the form of a table. The second reflects the information in the form
of a consumption sparkline. The displayed information changes according
to the selected pilot. Overall, this page allows for the visualization of par-
ticipant behaviour and changes over time (T3) and allows users to explore
and differentiate contributing factors to these changes (T2, T5), as well as
discern working from non-working nudges (T4).
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5.0.2 Horizon Graph Page

Figure 27: Horizon Graph Page

As mentioned in Chapter 2.4, general graph exploration techniques have
long been popular for visualizing MTS data. Despite the many added ad-
vantages offered by domain-specific tools, we made the deliberate choice to
incorporate an additional option, providing users with a broader range of ex-
ploration possibilities. After careful consideration of various options, such as
line graphs, bar plots, and heatmaps, Horizon Graphs were selected for this
page. Even though Horizon Graphs have some disadvantages, such as the
decrease in precision when compared to classical line plots, its advantages
outweigh its drawbacks. Particularly, its vertical compactness and ability to
detect trends and changes while allowing for the comparison of multiple time
series.

As shown in Figure 27, the design of the Horizon Graph page follows a
similar layout to the Latent Space page, with several differences. The Pilot
Selection section (1) is identical to the previous page and serves the same
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purpose, of selecting the desired pilot and initiating the rest of the analysis.
The feature and participant selection section (2) also follows the same rules.
However, there is a small difference in this section: only one feature can be
selected, and instead of being fed to a model, it will serve as the value to be
explored in the horizon graph.

When all these selections have been made and processed, the user is
guided to select a date range for which to visualise the horizon graph(s).
Once the data range has been selected, the horizon graph is displayed (3).

To solve the issue of horizon graphs becoming difficult to visualize for
big data ranges, two tabs have been added to the interface (4). The first
tab, displayed in the top picture, presents the data hourly, which is ideal
for limited data ranges, whereas the second tab, displayed in the bottom
picture, was designed for larger data ranges. Users can still receive insight
from the horizon graph without being overwhelmed by its intricacy by using
the second tab, which presents the data daily. The interface enables users
to customize the visualization to their particular needs and ensures they can
correctly interpret the findings of their investigation by offering two tabs
with various levels of granularity.

5.0.3 Participant Information Page

Figure 28: Participant Information Page

A screenshot of the Participant Information page is presented in Figure 28,
which introduces a few new design elements from the "Latent Space" and
"Horizon Graph" pages but also includes a similar section. The shared sec-
tion is the Pilot Selection (1), just as in the previous pages, it allows the
user to select a pilot and submit it. Once the choice has been made and the
"Select Pilot" button has been pressed, a table (2) with all the information
the model holds regarding every participant of the pilot is displayed, along

50



with the sparkline of its corresponding consumption metrics. This allows the
user to get an overview of the data (T1). Additionally, on the upper right
of the table (4) the user has to option to filter and group participants by
category, and also has the option to select the columns it wishes to analyse.

Finally, each row has a checkbox which allows the user to select the
desired participants once they have been grouped and filtered to meet the
users’ exploratory needs. Once the participants have been selected the user
can press one of the two buttons on the left side of the page (3), which will
transfer them to either the latent space analysis page or the horizon graph
page. Once on the desired page, the pilot and participants will already be
selected and analysis can proceed. Furthermore, a third button is displayed
on the bottom for exporting the select rows into a CVS format.
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6 Evaluation

This Chapter provides an overview of the evaluation approach and decisions
made to build the model in this thesis, as well as a description of real-
world application and the outcomes of using the visualization tool. It is
noteworthy to mention that different evaluation metrics for deep learning
models and projection algorithms exist. However, due to time constraints, a
comprehensive evaluation of these techniques could not be conducted in this
study. Moreover, the primary focus of the project was not to determine the
optimal model but rather to explore whether such a model could effectively
project behaviour.

6.1 Technical Evaluation

This Chapter provides an overview of the evaluation approach and decisions
made to build the model in this thesis.

6.1.1 Normalization

As mentioned in Chapter 4.1 experiments were done with the Standard
Scaler, Min-Max Scaler and Robust Scaler from the sklearn.preprocessing
module of the Scikit-learn library, in order to find the best scaling algorithm
to process the data.

Chapter 4.1 mentions the disparity of ranges between features of the
model. These include temperature, which is measured in ◦C and ranges
from -5 to 30; radiation, measured in Jm−2 ranges from 0 to 30M; and
consumption values between 0 and 40 KWh, including a few outliers.

Figure 29: Visual Representation of the data scaled by the Standard Scaler

Figure 29 illustrates the limitations of the Standard Scaler, where we
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can see that the technique is sensitive to outliers and allows temperature
and radiation features to dominate. This is likely due to its assumption that
features are normally distributed. Therefore, the Standard Scaler is not the
optimal choice for normalization. It is noteworthy to mention that despite
the expected scaled range in most cases being -1 to 1 due to standardization,
in this case, the range is significantly higher, from -200 to 200. This happens
due to the presence of outliers or extreme values in the dataset since features
have significantly different scales. These values have a significant impact
on the standardization process, leading to a broader range of standardized
values.

Figure 30: Visual Representation of the data scaled by the Min-Max Scaler

Figure 30 visually shows the data scaled by the Min-Max Scaler. Ini-
tially, the data was scaled between -1 and 1. However, due to the significant
differences in the magnitudes of the feature values, some features ended up
being reduced to 0. To address this issue, a new scaling range was manually
chosen. The range selected for this scaler was between -200 and 200, similar
to the previous technique used. Although this technique has the benefit of
scaling information within the same range, it is far more sensitive to out-
liers compared to standard scalers. Additionally, it allows certain features
to dominate. This property makes the min-max scaler a poor choice for this
particular problem, as it does not address the issues of feature dominance
and outliers.

Figure 31 presents the data scaled using the Robust Scaler. This tech-
nique successfully overcomes the limitations observed with the Standard
Scaler and Min-Max Scaler. The Robust Scaler is not sensitive to outliers
and effectively prevents features, such as temperature and radiation, from
dominating the scaled data. Therefore, based on this visual evidence, the
Robust Scaler surges as the most suitable option for normalization.
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Figure 31: Visual Representation of the data scaled by the Robust Scaler

6.1.2 Variational Autoencoder Model (VAE)

In order to tailor the VAE model to our project, modifications were made to
a base model obtained from the GitHub repository ’Autoencoder’ by Mattia
Campana [7], implemented in Python with the Keras library.

Initially, the model employed the Binary Crossentropy (BCE) loss func-
tion, which is commonly employed for binary multiclass classifications involv-
ing binary outputs. However, considering that our model addresses continu-
ous output predictions, alternative loss functions suitable for regression tasks
were evaluated. Notably, Mean Squared Error (MSE) and Mean Absolute
Error (MAE) were considered potential replacements.

Given the robustness of MAE in handling outliers, it was selected as the
preferred choice for our model. Consequently, the BCE loss function was
replaced with MAE to better align with the nature of the regression task at
hand.

To determine the optimal activation function, a series of experiments
were conducted involving two prominent functions: Rectified Linear Unit
(ReLU) and Hyperbolic Tangent (Tanh). These activation functions were
specifically chosen due to their recognized effectiveness in regression models.
The model was trained under identical conditions throughout the experi-
ments, employing a consistent set of parameters, including 50 epochs and a
batch size of 100. Each experiment was performed 5 times.

Training Loss 2.7355 3.2446 2.8530 3.1234 2.7672
Execution Time 40s 1m10s 57s 1m1s 56s

Table 3: ReLU Activation Experiments
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Training Loss 2.3807 2.6008 2.5999 2.5994 2.6043
Execution Time 1m6s 1m1s 1m16s 1m2s 1m20s

Table 4: Tanh Activation Experiments

The outcomes of the experiments are presented in Tables 3 and 4. No-
tably, the ReLU activation function took less execution time, on average,
than the Tanh function. However, it is noteworthy that the Tanh activa-
tion function yielded the lowest loss value, thereby establishing itself as the
optimal choice among the considered options.

To determine the optimal set of parameters for model optimization, a
grid search approach was utilized. The grid search involved exploring various
combinations of optimizers, batch sizes, and learning rates. The optimizers
considered were Adam, SGD, and RMSprop. The batch sizes considered
were 16, 32, 64, 128, and 256, while the learning rates examined were 0.0001,
0.001, and 0.01.

The experimental setup ensured consistent architecture and maintained
other parameters, including the MAE loss function, and Tanh activation.
Given that this model will be integrated and used as part of a Visualization
Tool, and therefore compiled in real-time, having a lower execution time
(without compromising quality) is an important thing to consider. Further-
more, given that the model takes about 24 seconds on average per epoch to be
trained, decreasing the number of epochs becomes a necessary step. There-
fore, by combining all of these different hyperparameters we wish to discover
the combination that ensures an optimal training loss for two epochs. The
outcomes of these experiments are presented in Table 5.

By analysing Table 5 we can see that higher learning rates learn quicker
early on and yield better results than others during the first epochs. On
the contrary, lower learning rates start slow, yielding bad results in the first
epochs, but most likely reach more optimal values later on in the training.
Additionally, for all models lower batches yield better results for all learning
rates. Therefore, we identify ADAM with 16 batches and a 0.001 learning
rate as the ideal option, given that it achieves the lowest loss value of all the
combinations (3.2663).

6.1.3 Projection Algorithm

In order to discover the most suitable projection algorithm to project the
data encoded by the VAE model onto a bidimensional latent space, various
experiments were conducted. These experiments were performed using PCA,
t-SNE, and UMAP.

Table 6 displays the results of the execution time of the experiments
conducted on the projection algorithms. According to 6, PCA proved to be
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Optimizer Batch Size Learning Rate
0.01 0.001 0.0001

Adam

16 3.4890 3.2663 5.3579
32 3.5747 3.3545 7.1736
64 3.4898 3.9145 11.1036
128 4.9871 3.3957 13.4817

SGD

16 3.5678 5.2199 11.3224
32 3.5973 5.6992 21.3604
64 4.3474 7.9954 26.1485
128 5.1903 10.9517 29.3458

RMSProp

16 3.6891 3.3420 5.4177
32 4.0599 3.4706 6.2852
64 4.4055 4.1995 9.6177
128 4.8658 4.8331 13.3968

Table 5: Optimizer Grid Search Experiments

Dimensions
Projection
Algorithm

Learning
Rate Perplexity 2 4 8 16 32 64

t-SNE

50
5 444.72 368.08 370.26 334.42 336.51 339.74
40 518.46 436.88 406.74 398.02 393.71 404.08
100 578.68 583.12 525.93 510.66 512.74 515.38

200
5 365.71 356.45 298.40 322.81 329.04 332.12
40 420.87 442.33 336.71 388.92 391.21 408.96
100 555.59 1109.51 498.78 564.35 505.55 608.75

500
5 365.53 500.60 290.06 333.63 337.20 337.82
40 428.29 557.68 356.84 392.80 387.68 338.36
100 558.46 1665.24 462.38 504.50 511.56 507.97

PCA N/A N/A 2.65 16.77 11.29 16.80 22.39 21.51
UMAP N/A N/A 38.58 32.84 38.68 36.56 39.89 50.87

Table 6: Projection Algorithms Experiments
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the most time-efficient algorithm taking at most 22 seconds to project 32
encoded dimensions. UMAP also proved to be time efficient taking at most
50 seconds to project 64 dimensions. On the other hand, t-SNE is much
more computationally expensive, given that the lowest amount of time it
took to train was 383 seconds.

In Chapter 4.3, the projection plots and their analysis were extensively
explored. Among the many techniques evaluated, PCA stood up as the
most successful in detecting clusters in the latent space. Furthermore, PCA
displayed outstanding time economy, reinforcing its position as the best pro-
jection approach for the project.

6.2 Case Studies

Due to time restrictions, it is not possible for this project to provide an
exhaustive description of all possible use cases that the tool could address.
As a result, a carefully curated set of representative use cases has been chosen
for presentation.

6.2.1 Group Case Study: As a user, I want to get an overview of
how many different groups exist on the German pilot.

In this case study, the user successfully uses the app to get an overview of
the German pilot. This case study directly corresponds to the first analysis
task (T1: Get an overview of the data). The user follows the following
steps in order to achieve their goal:

• Open the Exploratory App on your device.

• Navigate to the "Participant Information" page in the app menu.

• Select the German pilot from the "Pilot Selection" dropdown box.

• Click the "Select pilot preference" button to proceed to the next step.

• Hoover above the "Group" column on the table and press the "order
by" button.

• Scroll through the table and visualize the number of groups.

By analysing the table displayed in Figure 32, the user is able to identify
4 groups for the German pilot. Users have the flexibility to sort participants
by any category they choose, allowing for the customized organization of the
data. Additionally, the table allows for filtering options, enabling users to
extract specific information based on their needs. The inclusion of sparklines
to visualize participants’ consumption adds another useful feature, allowing
users to quickly understand consumption trends. Furthermore, from this
table users are allowed to export selected data, and transfer it to other pages
in the app, such as the latent space and the Horizon Graphs.
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Figure 32: German "Participant Information" table

6.2.2 Intervention Case Study: As a user, I want to visualize the
impact of different interventions on consumer 53 from the
Croatian pilot.

In this case study, the user successfully uses the app to identify the most
successful interventions for influencing consumers towards efficient energy
consumption. This case study directly relates to the fourth analysis task:
(T4: Discern working from non-working nudges). The user follows
the following steps in order to achieve their goal:

• Open the Exploratory App on your device.

• Navigate to the "Latent Space" page in the app menu.

• Select the German pilot from the "Pilot Selection" dropdown box.

• Click the "Select pilot preference" button to proceed to the next step.

• Choose Consumption and Production as the features to include in the
model from the "Feature Selection" multi-select box.

• Select 8 dimensions for the model on the "Model Dimensionality" box.

• Click the "Submit model preference" button to generate the model.

• Choose Participant 53 from the "Participants:" multi-select dropdown
box.

• Select category "Phase" to colour the data, from the "Color data by:"
dropdown menu.

• Visualize the latent space and observe the trajectory of the partici-
pant’s energy consumption patterns.
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• Compare the trajectories for each intervention phase to identify the
most effective interventions for promoting efficient energy consump-
tion.

Figure 33: Latent Space representation of participant 53 from the German
pilot

Upon analyzing the generated latent space, depicted in Figure 33, us-
ing the tooltip as a pattern lookup aid, a few conclusions can be drawn
regarding the graph. Firstly, it becomes apparent that the x-axis represents
the participant’s energy production, while the y-axis represents their energy
consumption. This Response Pattern has been explained in Chapter 4.4.6.
With this in mind, a closer examination of the latent space reveals that the
second intervention had a negative impact on the user, resulting in an in-
crease in energy consumption and a decrease in energy production compared
to the period before the intervention. In contrast, the third intervention was
effective in reducing energy consumption and increasing energy production,
making it the most beneficial intervention of the three. Therefore, based on
the analysis of the latent space, it can be concluded that the third inter-
vention was the most successful, and the second intervention was the least
successful in achieving the desired outcomes.

The ability to analyze multiple features in the model simultaneously is a
significant benefit of using the Exploratory App. This feature allows users
to evaluate and compare different interventions on a broader scale and gain
a more comprehensive understanding of their impact on energy consump-
tion. Additionally, the app’s visualization tools make it easier for users to
spot trends and patterns in the data and quickly identify areas that require
attention. By enabling users to assess multiple factors simultaneously, the
tool simplifies the analysis process and makes it easier for them to draw
meaningful conclusions from their data

A few improvements could be considered in future work to make users
have an easier time analysing patterns and trends. Given that only the
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tooltips are available as a pattern lookup aid, it can become tedious to
"manually" analyse the latent space for insight. A solution to this problem
would be to automatically identify key values in the latent space, such as
the minimum consumption and the maximum consumption, or to visually
identify by means of a "wind map" in which direction of the latent space the
included features are represented.

6.2.3 Social demographic Case Study: As a user, I want to deter-
mine whether different family types of the 6th intervention
group of the Croatian pilot have significantly different re-
sponses to interventions.

In this case study, the user wishes to determine whether the family type
social demographical factor has any impact on the interventions of the 6th
group of the Croatian pilot. This case study effectively addresses two key
analysis tasks: (T2: Allow to differentiate on different facets (pilot,
demographics, etc) and T5: Explore contributing factors for nudge
"performance"). The user follows the described steps in order to achieve
their goal:

• Open the Exploratory App on your device.

• Navigate to the "Participant Information" page in the app menu.

• Select the "Croatian" pilot from the "Pilot Selection" dropdown box.

• Click the "Select pilot preference" button to proceed to the next step.

• Select the "Filter" option from the participant information table.

• Select the "Group" option from the dropdown menu

• Type group number "6" to analyse it.

• Select all the participants filtered in the table.

• Press the "Latent Space" button to jump to the Latent space analysis.

• Choose the " Consumption" and "Production" features from the "Fea-
ture Selection" multi-select box to include them in the model.

• Select the number of dimensions "8" for the model.

• Click the "Submit model preference" button to generate the model.

• Select the social demographic category "Family Type" to colour the
data from the "Color data by:" dropdown menu.
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• Visualize the latent space and observe the clusters formed by the
colouring of the selected factor.

• Compare the trajectories for each cluster and determine whether there
are significant differences.

Figure 34: Latent space representation of Germany’s Group 6, colour-coded
by family types

Upon analyzing the latent space, depicted in Figure 34, it becomes evi-
dent that the coloured trajectories, corresponding to different family types,
occupy clearly distinct regions of the latent space. By examining the axis
of the plot with the aid of the tooltip, we can see that the x-axis represents
the participant’s energy production, while the y-axis represents their energy
consumption. This Response Pattern is explained in Chapter 4.4.6. A closer
inspection of the plot reveals that couples with children tend to have more
varied energy consumption patterns, often reaching higher values than other
family types. On the other hand, non-family households consume less energy
and produce more energy than the other family types. Single individuals are
located somewhere in between, with moderate levels of energy consumption
and lower levels of production. With this, the user can conclude that, indeed,
different family types respond differently to the interventions.

While the tooltip allows for the identification of which intervention each
data point refers to, for the sake of interpretation, Figure 35 conveys the same
data plotted by intervention. By looking at the plot we can follow the same
axis rules as the previous figure given that it’s the same latent representation
coloured by a different category. In doing so we can reach a few conclusions.
First, we can see that different intervention phases do not affect consumption
for any of the family types. Despite being able to identify that the second
intervention phase leads participants to produce twice as much energy as
before, this increase in production seems to be proportional to each family
type’s previous production. With that said different interventions do not
seem to have different impacts on distinct social demographic groups.
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Figure 35: Latent space representation of Germany’s Group 6, color-coded
by intervention phase

It is worth mentioning that this lack of effect on different family types
from different interventions is consistent among other social demographic
groups, and that this is only an example.

The tool makes it easy to visualize and compare clusters to one another,
which allows analysis to be easier and more fluid. Despite being able to
find all the categorized information in the tooltips, this case study would
benefit from an additional way to visualize two distinct categories in the
latent space. To achieve this, one future improvement is to retain the colour
coding feature for one category and introduce symbols to represent the other
category.

6.2.4 Noise Case Study: As a user, I want to be able to detect
noise present in the German pilot.

In this case study, the user intends to identify any present noise in the
German data. The user follows the steps listed below:

• Open the Exploratory App on your device.

• Navigate to the "Latent Space" page in the app menu.

• Select the "German" pilot from the "Pilot Selection" dropdown box.

• Click the "Select pilot preference" button to proceed to the next step.

• Choose the "Overall Consumption" and "Self Consumption" features
to include in the model from the "Feature Selection" multiselect box.

• Select the number of dimensions "4" for the model.

• Click the "Submit model preference" button to generate the model.
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• Tick the "Select all" box to select all available participants in the
chosen pilot.

• Select the category "Household Members" to color the data by from
the "Color data by:" dropdown menu.

• Visualize the latent space and observe whether there are any outliers
present in the graph.

Figure 36: Latent Space representation of outliers from the German pilot

It should be noted that for this particular task, the chosen features are
merely an example, and any combination of Self Consumption, Overall Con-
sumption, and Autarky can be utilized, along with the remaining features
and any model dimension and colour category can be just as effective in
detecting outliers. Nevertheless, upon analyzing the latent space, depicted
in Figure 36, clear outliers can be easily identified. In the above figure,
five participants with noisy data are well distinguished from the rest of the
group. Examining their individual consumption graphs would lead to the
same conclusion, as numerous anomalies can be found in their graphs. How-
ever, utilizing this tool allows for a five-fold increase in identification speed,
as the analysis only needs to be performed once, and the results are just as
clear. Outliers in the latent space are a common pattern found in latent space
analysis and is described in Chapter 4.4.5. Despite the ability to remove any
participant from the model can be found in the "Select Participant" selection
box, one future improvement for this task would be to have the option to
automatically eliminate all of these noisy participants at once.
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6.2.5 Time-Difference Case Study: As a user, I want to identify
differences in Participant 18’s consumption, of the German
pilot, over time.

In this case study, the user wishes to identify differences in the energy con-
sumption of participant 18 of the German pilot, over time. This case study
specifically focuses on the third analysis task: (T3: Model and visualize
user behaviour in order to track user behaviour change over time).
In order to do this, the user followed the following steps:

• Open the Exploratory App on your device.

• Navigate to the "Horizon Graph" page in the app menu.

• Select the "German" pilot from the "Pilot Selection" dropdown box.

• Choose the "Self Consumption" feature to visualize it over time in the
"Select a feature" multi-select box.

• Select participant "87" from the "Participants" multi-select box.

• Select the default starting date, from the "Start date" date input.

• Select the ending date "30/04/2022", from the "End date" date input.

• Visualize the horizon graph and observe how the selected feature changes
over time.

Figure 37: Horizon Plot of participant 87 from Germna pilot

In Figure 37, we can see a clear pattern in the energy use of user 87 over
a certain time period. Notably, consumption generally tends to rise steadily
over this time. The tooltip function allows us to identify the highest con-
sumption value for that period, which occurred on April 19, 2022. With the
help of this tool, users are able to maintain track of a number of important
variables, such as self and general consumption, and see how these change
over time, including when they are at their highest and lowest points. One
possible enhancement would be to recognize the start and end of interven-
tions automatically or to identify extreme numbers without relying on the
tooltip.
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7 Discussion

The pattern taxonomy, described in Chapter 4.4, helped in the detection
and understanding of frequently recurring patterns in the latent space. These
patterns, when applied to the case studies described in Chapter 6.2, highlight
the proposed framework’s practical relevance.

The Intervention Case Study, detailed in Chapter 6.2.2, provides an il-
lustrative example of how to analyze the impact of interventions on partic-
ipants, which contributes to addressing the first research question, RQ1.,
of this project - "Which interventions are most effective in positively influ-
encing a consumer towards efficient energy consumption?". This case study
allows us to detect the behaviour of a specific participant towards each in-
tervention it is exposed to, and compare them to each other. However, this
analysis reveals that while straightforward answers can be provided for most
individuals and participant groups, there isn’t an intervention that performs
exceptionally well across all participants. It has been observed that indi-
viduals respond differently to treatments, implying that there is no single
intervention that works exceptionally well or poorly across all participants.
Despite the complexity of the research question, we can confidently provide
a positive answer. The effectiveness of interventions on consumers’ energy
consumption can be easily determined by analyzing the latent space repre-
sentation of the consumers, as demonstrated in Chapter 6.2.2. This analysis
allows us to identify whether interventions have a positive or negative impact
on consumers’ energy consumption.

The ability to compare interventions to each other can be extended to
comparing participants to each other, in particular, those of different so-
cial demographic groups. This was thoroughly exemplified in the Social
Demographics Case Study, described in 6.2.3, of which there is a clear distin-
guishment in consumption behaviour between participants of different family
types. This case study allows us to address the second research question,
RQ2.- "What effects do social-demographic and technical factors have on
the interventions?". In the project, we thoroughly examined the various
social demographic and technical categories within the latent space for the
pilots at hand. However, due to time limitations, we couldn’t provide a com-
prehensive analysis of all categories. You can find an exemplary illustration
in Chapter 6.2.3. This particular Case Study aligns with the findings from
other investigations into social demographics, leading us to the conclusion
that the social-demographic factors observed in the data do not appear to
influence the effectiveness of interventions. Thus, in direct response to the
research question, it can be stated that social demographic and technical
factors do not have an impact on the interventions. However, an additional
discovery emerged, indicating that the demographic of family type does play
a role in differentiating consumer behaviour. This was evident as participants
with diverse social-demographic characteristics displayed distinct patterns of
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consumption behaviour.
Several significant insights were derived from analyzing the latent space

representation of the sustainability research data, which cannot be obtained
solely from the input model representation, addressing the third research
question, RQ3. - "What novel insights can be gained from analyzing the
latent space representation of the sustainability research data that cannot
be obtained from the input model representation?". Analysing latent space
representations of the sustainability research data allowed us to get deeper
insights into participants’ responses to interventions while concurrently ex-
amining different features and determining their roles, which cannot be per-
formed on the original data input. Furthermore, the ability to compare the
behaviours and responses of multiple consumers to various interventions,
while considering multiple aspects of their behaviour such as consumption
and production, empowers us to draw stronger conclusions. To directly an-
swer the research question, analysis of the latent space provides valuable
insights which we do get from the input model representation, including the
possibility to identify the most effective and least effective interventions for
each participant and make comparisons among different participants as well.
Furthermore, latent space analysis allowed us to compare interventions to
each other and determine the role of social demographic groups in consumer
behaviour, in particular, it was found that participants with Family Type
"Couple with Children" tend to consume more and produce less energy than
other Family Types, regardless of the Intervention Phase.

Another advantage of latent space analysis in comparison to input model
representation is how easy it is to spot outliers in the latent space, which is
directly correlated with research question four, RQ4. - "Can we distinguish
a signal from noise in the extensive input space of the sustainability research
project?". Outlier patterns were detected and explained in Chapter 4.4.5 as
well as in the Noise Case Study, in Chapter 6.2.4. Therefore, in response
to the research question, outliers and noise in the data can be effectively
identified and differentiated from the rest of the data in the latent space.
These outliers appear as data points that are significantly distant from other
points in the latent space projection.

The response pattern observed in Chapter 4.4.6, together with the posi-
tive results of the case studies reported in Chapters 6.2.1 and 6.2.2, allows us
to study the applicability of latent space analysis for detecting behavioural
patterns. Our results demonstrate that latent space analysis not only makes
it easier to identify behavioural patterns and trends in individuals but also
makes it possible to compare behaviours across various groups, and it does
so in a visually appealing manner. In light of this, we are confident in our
ability to respond to the fifth research question, RQ5. - "Can latent space
analysis reveal behaviour patterns?" - positively.

With that said, we can positively attest to the ability of the current
framework to address the limitations of MTS data. Although there is room
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for improvement and further enhancements, as discussed in Chapter 7.1, the
existing framework serves as a solid foundation. It shows promise, partic-
ularly for potential future predictive models of energy consumption. More-
over, based on the outcomes discussed in Chapter 4.4.6, we can assert that
latent space models are applicable tools for identifying behavioural patterns
in event-related data. Additionally, these models are able to provide valu-
able insights, such as the one in Chapter 6.2.1, that can aid policymakers in
making informed decisions.

7.1 Limitations & Future Work

While the project was overall successful in answering the research questions
a few limitations were found. Firstly, one of the required tasks was not com-
pleted. This task regarded the comparison of pilots to find similarities and
dissimilarities and was not made possible. Since pilots possess different met-
rics and interventions took place at different time periods it was not possible
to build a model that learns from different pilots. A future improvement
would be to make sure these requirements are met and complete this task.
Other limitations include the shortage of visualization and manipulation op-
tions. While the developed latent space analysis had a tooltip as a pattern
lookup aid, it becomes tedious to manually detect trends and feature di-
rections. For this reason, latent space analysis could be improved with the
addition of visualization tools such as windmaps, or maps that enhance the
identification of important points in the latent space, and the direction in
which each added feature is present. Given that the focus of this project was
not to discover the most optimal model to effectively project behaviour, a
simpler model was constructed, and a future direction would be to optimize
it. Finally, a potential future direction for the project includes adapting the
model to be capable of prediction. This could prove even more useful for ex-
perts looking to identify and optimize interventions for decreased electricity
consumption.

67



8 Conclusion

This thesis suggested a framework for simplifying the complexity of MTS
data and deepen its understanding. The employed framework consisted of a
combination of machine learning techniques and visualization tools for the
encoding, projecting and visualization of the data into a latent space rep-
resentation. In particular, this thesis applied the framework to a general
energy sustainability project, with the goal of understanding how interven-
tions affect behavioural consumption. The framework displayed a multitude
of benefits. Firstly, it facilitated the assessment of how interventions influ-
enced users’ behaviour. It also aided in detecting the influence of social-
demographic factors on users responses to interventions and it allowed to
distinguish signals from noises in the latent space. All of this allowed us to
conclude that indeed latent space representation is able to reveal behavioural
patterns, with added value in comparison to input model representations.
Furthermore, we conclude that the employed framework demonstrates effi-
cacy in handling MTS data. Given the capacities of the tool, we expect it to
serve as a beneficial resource for researchers to analyse and derive meaningful
insights from MTS data.
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A Qualtrics Survey

Response	Summary:

Section	1.	Research	projects	involving	human	participants
	
P1.	Does	your	project	involve	human	participants?	This	includes	for	example	use	of	observation,	(online)
surveys,	interviews,	tests,	focus	groups,	and	workshops	where	human	participants	provide	information	or
data	to	inform	the	research.	If	you	are	only	using	existing	data	sets	or	publicly	available	data	(e.g.	from
Twitter,	Reddit)	without	directly	recruiting	participants,	please	answer	no.	

No

	
Section	2.	Data	protection,	handling,	and	storage
The	General	Data	Protection	Regulation	imposes	several	obligations	for	the	use	of	personal	data	(defined	as	any
information	relating	to	an	identified	or	identifiable	living	person)	or	including	the	use	of	personal	data	in	research.

	
D1.	Are	you	gathering	or	using	personal	data	(defined	as	any	information	relating	to	an	identified	or
identifiable	living	person	)?

No

	

Section	3.	Research	that	may	cause	harm
Research	may	cause	harm	to	participants,	researchers,	the	university,	or	society.	This	includes	when	technology	has
dual-use,	and	you	investigate	an	innocent	use,	but	your	results	could	be	used	by	others	in	a	harmful	way.	If	you	are
unsure	regarding	possible	harm	to	the	university	or	society,	please	discuss	your	concerns	with	the	Research	Support
Office.	

	
H1.	Does	your	project	give	rise	to	a	realistic	risk	to	the	national	security	of	any	country?

No

	
H2.	Does	your	project	give	rise	to	a	realistic	risk	of	aiding	human	rights	abuses	in	any	country?

No

	
H3.	Does	your	project	(and	its	data)	give	rise	to	a	realistic	risk	of	damaging	the	University’s	reputation?	(E.g.,
bad	press	coverage,	public	protest.)

No

	
H4.	Does	your	project	(and	in	particular	its	data)	give	rise	to	an	increased	risk	of	attack	(cyber-	or	otherwise)
against	the	University?	(E.g.,	from	pressure	groups.)

No

	
H5.	Is	the	data	likely	to	contain	material	that	is	indecent,	offensive,	defamatory,	threatening,	discriminatory,
or	extremist?

No

	
H6.	Does	your	project	give	rise	to	a	realistic	risk	of	harm	to	the	researchers?

No

	
H7.	Is	there	a	realistic	risk	of	any	participant	experiencing	physical	or	psychological	harm	or	discomfort?

No

	
H8.	Is	there	a	realistic	risk	of	any	participant	experiencing	a	detriment	to	their	interests	as	a	result	of
participation?

No
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