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Abstract

This work builds upon an analogy between human and artificial rea-
soning. Large Transformer based language models have achieved state-of-
the-art in many tasks, and recently have even been able to do this without
requiring task specific fine-tuning, by deploying either in-context or zero-
shot learning. However, reasoning remains to be a difficult task for these
models, especially in a zero-shot setting. On the contrary, humans are
good at reasoning without being explicitly trained for it like models are,
hinting that properties of human reasoning might be of help to boost the
performance of models. We explore this intuition in two ways: (1) using
human-like linguistic input for fine-tuning and (2) prompting models to
“imagine”, a technique that has shown to help humans reason better. Our
results show that our approach was fruitful for reasoning about fantastical
scenarios, which is in line with previous research on humans, confirming
that making an analogy between human and artificial reasoning can be
helpful. This research opens many doors for future research on zero-shot
reasoning, also using smaller models, which is a desirable development
towards human-like general intelligence.
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1 Introduction

One of the overarching goals of Artificial Intelligence is to achieve human-like
general intelligence, meaning that one model can do any task with human-like
performance. Most recently, large language models, for example originating
from BERT (Devlin, Chang, Lee, & Toutanova, 2018) and GPT (Radford et
al., 2019; Brown et al., 2020), have achieved state-of-the-art in tasks involving
natural language, such as question answering, summarization or translation.
This great performance is largely due to fine-tuning approaches (Devlin et al.,
2018; Radford, Narasimhan, Salimans, Sutskever, et al., 2018; Howard & Ruder,
2018), where a pre-trained model is trained further on large amounts of task
specific data.

Recently, more attention has been given to eliminating the need for these
large amounts of task specific data by relying on approaches commonly referred
to as in-context and zero-shot learning. This is desirable for two main reasons.
First of all, dismissing the need for fine-tuning reduces computational cost.
Second, it allows one to use a model for many different downstream tasks, which
gets us a step closer to general intelligence. In-context refers to the ability to
perform a task after observing just a few examples representative of the task.
Zero-shot refers to the ability to perform a task without observing any examples
of the task beforehand. Most literature refers to these abilities as in-context or
zero-shot learning. Strictly speaking, learning is not the right term to describe
this behaviour, as the presentation of task examples does not update the model’s
weights. Still, we will continue to refer to these phenomena using learning, to
stay consistent with existing literature.

These learning paradigms are advantageous, because they allow for easy
transfer across a wide range of tasks without the need for as much task specific
training data as would be needed when training a task specific model. These
approaches have shown promising results, but still do not compete with fine-
tuning approaches or human performance on a range of tasks, especially in the
context of zero-shot learning (Brown et al., 2020). Furthermore, the capacity
to perform in-context or zero-shot learning is a function of model size (Brown
et al., 2020; Rae et al., 2021; Srivastava et al., 2022; Smith et al., 2022; Wei,
Tay, et al., 2022). One of the advantages of in-context and zero-shot learning is
not needing large amounts of task specific data and costly fine-tuning for each
task, but this is compromised by a higher cost caused by the requirement of
larger models. For this reason, it is important to still explore possibilities of
using smaller models in a zero-shot and in-context setting, which the current
work does.

Large Transformer based language models still tend to struggle with reason-
ing in an in-context and zero-shot setup (Brown et al., 2020; Rae et al., 2021;
Smith et al., 2022; Srivastava et al., 2022), demonstrated by worse performance
than supervised task specific models, fine-tuned pre-trained models and most
importantly, humans. On the contrary, humans reason effortlessly, being a skill
that is already acquired at a young age (Keenan, Ruffman, & Olson, 1994; Pi-
aget & Inhelder, 2008; Gazes, Hampton, & Lourenco, 2017). This is supported
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by three observations. First, our ability to navigate everyday life, which re-
quires a lot of implicit reasoning. Second, the fact that language models are not
able to outperform humans in reasoning tasks (Srivastava et al., 2022). Last
and most importantly, reasoning datasets that are used to evaluate language
models are often annotated by humans, demonstrating that we have no diffi-
culty with doing such tasks. In this research, we make an analogy between how
children learn to reason and artificial learning; we take inspiration from factors
that might facilitate the learning of reasoning by children and apply them to
zero-shot reasoning in GPT models.

Out of in-context and zero-shot learning, in-context learning has shown most
promising performance, but the underlying processes of in-context learning are
poorly understood. Much research has been conducted to understand how in-
context learning works (S. M. Xie, Raghunathan, Liang, & Ma, 2021; von Os-
wald et al., 2022), and what the mechanisms are that drive in-context learning
(Min et al., 2022; Chan et al., 2022). Chan et al. (2022) has identified charac-
teristics of data that models are originally trained on that facilitate in-context
learning in Transformers. Initial analysis indicates that child directed speech
shows less of these properties compared to types of language normally used to
train language models. This leads to the intuition that children often do not
perform tasks in an in-context fashion. Thinking about it, humans learn most
tasks involving natural language implicitly from our daily linguistic input, being
able to perform many different tasks without the need for task-specific exam-
ples beforehand. This resembles zero-shot learning. So, perhaps it is better to
focus on improving zero-shot learning, rather than in-context learning, in or-
der to approach human-like intelligence. Additionally, in-context learning is an
emergent property that only arises in large models (in terms of parameters), as
opposed to zero-shot learning, which has shown to be possible in smaller models
as well (Mikolov, Chen, Corrado, & Dean, 2013). Thus, the other advantage of
focusing on zero-shot as opposed to in-context is that there is no requirement
of having large models. Previous research proposed that human acquisition of
reasoning is partly facilitated by our linguistic input, providing latent informa-
tion about how to perform reasoning tasks (Falmagne, 1990). This leads to our
first research question:

Q1: Can zero-shot inference in Transformer based language models
be improved by fine-tuning on human-like data?

We investigate this using a computational experiment in which we fine-tune
GPT-2 on child directed speech and subtitles data. These represent the two
kinds of input readily available to a child; the first represents speech that is
directed to the child by for example the parents and the second represents
conversations between adults that could be picked up by the child, regardless if
the child was meant to hear them or not. This experiment is described in more
detail in section 4. In this way, we make an analogy between input from which
children learn and input from which models learn.

Moreover, previous research has also found that children are better at rea-
soning when they tackle the problem from an imaginary perspective (Dias &
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Harris, 1988; Richards & Sanderson, 1999). Possibly, this finding can be applied
to enhance zero-shot reasoning in language models by prompting the model to
“imagine”. Second, previous research has shown that a technique called chain-
of-thought (COT) prompting can substantially improve zero-shot performance
on reasoning tasks. This technique has been shown to be fruitful in an in-context
(Wei, Wang, et al., 2022) and zero-shot setting (Kojima, Gu, Reid, Matsuo, &
Iwasawa, 2022). COT prompting relies on teaching the model to reason step by
step, instead of going from problem to solution in one step. Using these find-
ings, we can make an analogy between the way a reasoning task is presented to
humans versus models. Experiment 2 takes inspiration from Betz, Richardson,
and Voigt (2021) and Kojima et al. (2022), who prompt language models to
elaborate on a presented problem, after which their output is used as additional
input to solve the problem, simulating step-by-step reasoning. Similarly, we first
prompt the model to imagine a premise or set of premises and use it’s generated
“imagination” as further input to assess the correctness of a conclusion. Hence,
our second research question:

Q2: Can zero-shot reasoning in Transformer based language models
be improved by prompting the model to “imagine”?

Additionally, humans struggle more with reasoning when the presented sce-
nario is not in line with their world knowledge (Dias & Harris, 1988; Richards
& Sanderson, 1999; Gazes et al., 2017), a pattern also found in language models
(Dasgupta et al., 2022). We seek to evaluate what effect both fine-tuning or
prompting to imagine has on this pattern by including a reasoning task with
fantastical scenarios. Lastly, the two described experiments are combined to see
how fine-tuning and imagination prompting interact with each other. This final
experiment is described in section 6.

In section (2), the motivation for this research will be explained and situated
in academic context, starting with giving a general overview of Transformer
language models in section 2.1. Then, we contrast in-context and zero-shot
learning in section 2.2, and motivate the focus on zero-shot learning. Lastly,
the underlying context for the two experiments is explained further in sections
2.3 and 2.4.

2 Theoretical Background

2.1 Transformer Language Models

Language models are machine learning models that are capable of predicting
word probabilities given some context after being trained on large amounts of
text data. Recently, large language models originating from GPT and BERT
have become state-of-the-art in a wide range of tasks, such as text summariza-
tion, translation and question answering. These Transformer based language
models use part of the Transformer neural network architecture that was origi-
nally proposed for machine translation.
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Figure 1: Transformer architecture (Vaswani et al., 2017)

Transformers consist of an encoder stack and a decoder stack (Vaswani et al.,
2017). In general, the encoder produces an encoded representation of the input
using multiple layers of self-attention and the decoder uses that representation
to produce an output sequence symbol by symbol, taking the previously gen-
erated output symbols into account when producing the next output symbol.
Figure 1 visualizes this process in more detail. The process starts with con-
verting the inputs to input embeddings, adding positional encoding to retain
information about the order of the sequence. The first element of the encoder
layer is a multi-head self-attention mechanism, followed by a fully connected
feed forward network. A full architecture consists of a stack of multiple of these
encoder layers. The output of the encoder is fed into the decoder, which is also
made out of a stack of multiple layers. Each layer consists of two multi-head
attention mechanisms, followed by a feed forward network. The decoder layer
takes the output of the encoder layer, together with previously generated output
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predictions, and uses those to predict the next output in the sequence. The use
of an self-attention mechanism and the ability to process all the input words
in parallel is what makes the architecture so successful. Self-attention works
as relating every word in the input to every other word; some other words in
the input might relate more to the word than others. By doing this, the model
tracks relationships between words, which can sometimes, but not necessarily,
be related to semantic relationships.

GPT models use decoder blocks from the architecture and is trained using
the classic language modelling objective, namely to predict the next token in
a sequence of text. GPT models thus process their inputs from left to right,
making them particularly suitable for text generation. In contrast, BERT uses
encoder blocks and is trained using a masked language modelling objective. This
means that it is trained to predict a masked word anywhere in the sentence.
Thus, BERT processes its input in both directions, making it able to encode
the meaning of a word based on context on both sides.

In this research, we make use of GPT-2 and GPT-3. The decision of GPT
over BERT is motivated by the fact that BERT models are not suitable for the
generation of text, while GPT models are; we need to generate text in order to
investigate imagination prompting in experiment 2. We use both GPT-2 and
GPT-3, because they’re publicly available and within the scope of resources,
while still being able to show a contrast between smaller and larger models.

2.2 Emergent Generalization Capacities

Both in-context and zero-shot learning are among emergent generalization ca-
pacities of large Transformer based language models. An emergent generaliza-
tion capacity is a capacity of a model that emerges only with sufficient scale
(Wei, Tay, et al., 2022). In this section, I contrast zero-shot and in-context learn-
ing and motivate why the focus of this work is on zero-shot learning. Lastly, I
discuss the domain that this work focuses on: reasoning.

2.2.1 In-context Learning

Large Transformer based language models possess the capability to perform in-
context learning without being explicitly designed for it (Brown et al., 2020).
In-context learning is the ability to generalize quickly from just a few examples of
a new concept on which they have not been previously trained, without updating
any weights in the model. For in-context learning, the model is prompted with
a number of examples of the task followed by a query, after which the model
yields the output by generating a sequence of tokens. Figure 2 shows this
in more detail. In 1, some data from pre-training is shown. GPT models are
trained to predict the next token given a passage of text. After pre-training, the
network can be fed a context and query of any task. For example, predicting the
nationality of a person, as shown in 2. Finally, 3 shows how context and query
is concatenated and fed to the network. All context examples are separated by a
delimiter and the query item is realized by omitting the last position, for which
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an answer is desired. The language model will then predict the most likely token
for that omitted position. As opposed to fine-tuning, in-context learning has
the advantage that it does not require a large dataset for the desired task; a few
examples as context suffice.

Figure 2: Demonstration of in-context learning (S. M. Xie et al., 2021)

The mechanisms that drive in-context learning are largely unknown. Many
efforts have been made to clarify the underlying workings of in-context learning,
but there are conflicting results. The following paragraphs present previous re-
search set out to investigate the underlying mechanisms of in-context learning
from characteristics of both context and training regime. S. M. Xie et al. (2021)
propose that a language model implicitly applies Bayesian inference when per-
forming in-context learning. Namely, the model infers a latent concept given
a set of examples and uses that concept to infer the most likely output token.
The model has learned to do this during pre-training, where it predicts the next
token given previous tokens by means of learning the underlying concept of the
document. They prove this intuition using their GINC dataset, generated with
a clear concept structure in mind. They show that encountering a large set of
tokens during pre-training is not sufficient for in-context learning and that the
presence of a concepts structure is a must. Moreover, they show that the model
is not capable of in-context learning for concepts that are not seen during train-
ing. Lastly, they also prove that the length, number and ordering of examples
matters for in-context learning accuracy.

On the other hand, von Oswald et al. (2022) claim that Transformer in-
context learning mirrors gradient descent. They demonstrate that the output
of a single self-attention layer with trained weights is similar to the output
of a self-attention layer with weights constructed to mirror a single step of
gradient descent. To verify that the underlying algorithm leading to these results
resemble each other as well, authors investigate similarities between multiple
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steps of gradient descent and multiple self-attention layers and visualize loss
over training steps.

Kirsch, Harrison, Sohl-Dickstein, and Metz (2022) show that Transformers
can be meta-trained to act as general-purpose in-context learners. Meta-learning
is the process of discovering new learning algorithms that are not manually de-
signed into the model. In other words, these models learn to learn. One par-
ticularly ambitious goal of meta-learning is to train general-purpose in-context
learning models. Such a model takes in training data, and produces test-set
predictions across a wide range of problems, without any explicit definition of
an inference model, training loss, or optimization algorithm. They find that for
Transformers to be able to meta-learn, they need to encounter a large number
of different tasks during training. Furthermore, they show the learned behavior
evolves from memorization, to task identification, to learning-to-learn as number
of tasks increase. The last of their findings is that Transformers benefit more
from their large state size due to self-attention than a high number of parame-
ters for learning-to-learn. State size refers to the amount of information about
the input sequence that can be stored. This demonstrates that the Transformer
model structure is crucial for achieving general-purpose in-context learning.

In contrast to these attempts of characterizing the inference process happen-
ing during in-context learning, Min et al. (2022) investigate the role of context
characteristics. Interestingly, they show that true input-label contexts are not
required. They prove this by replacing true context labels by random labels and
point out that this only lowers performance slightly. In addition, changing pro-
portions of incorrect versus correct labels does not affect performance gains sig-
nificantly. However, having some input-label pairing does impact performance,
shown by a drop in performance when omitting labels entirely. Increasing the
number of input-label pairs presented to the model does not improve perfor-
mance past eight pairings, which contradicts previous findings (S. M. Xie et
al., 2021). However, the format of pairing inputs to labels does improve per-
formance over having no pairings, but just labels or just input. Furthermore,
they substitute labels with random English words to investigate the role of the
label space. Performance decreases when using random English words, showing
that conditioning on a label space contributes to performance gains. Relatedly,
inputs have been replaced by out of distribution inputs to assess the influence of
the underlying distribution of input examples. Results suggest that inputs from
the same underlying distribution as the training data contribute to performance
gains.

Finally, Chan et al. (2022) show that certain data-distributional properties
of the training data that could lead to the ability to perform in-context learning.
They used the Omniglot dataset, an dataset consisting of images with handwrit-
ten characters and labels. The model was fed with a sequence of 8 image-label
pairs, after which the task was to find the label for another image. In particu-
lar, they identify burstiness as a property promoting in-context learning. They
found this by varying levels of burstiness in the training data by changing the
balance between bursty and non-bursty sequences. In the bursty sequences, the
query class appeared 3 times in the context. For the non-bursty sequences, the
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image-label pairs were drawn randomly and uniformly from the full Omniglot
set. Models displayed better in-context learning when there was more bursti-
ness in the training data. This might explain the success of in-context learning
in natural language processing, since burstiness is a prevalent phenomenon in
natural language.

Burstiness is a characteristic of many natural phenomena, such as traffic or
natural disasters. For example, traffic jams tend to occur all in a close time
frame, instead of steadily throughout the day. They tend to occur in “bursts”,
hence the term burstiness. In this work, we focus on burstiness in language.

The finding that burstiness is an important factor for emergent in-context
learning together with the claim that children’s linguistic input plays a role
in learning (Falmagne, 1990) leads to the question if burstiness in children’s
linguistic input is one of the driving forces behind learning, and if this could be
leveraged to train Transformer language models more efficiently. However, an
initial analysis strongly indicates that child directed speech is much less bursty
than other types of corpora that large language models are normally trained
on such as Wikipedia, OpenSubtitles, or Brown. Therefore, we suspect that
burstiness is not the driving force behind learning for children.

Apart from burstiness, (1) a large number of rarely occurring classes, (2)
multiplicity of labels and (3) within-class variation were identified as proper-
ties driving emergent in-context learning in Transformers. It is likely that child
directed speech also lacks some of these properties. Starting with (1), child di-
rected speech does not contain as many rare words as other corpora according to
our analysis. Moving on to (2), multiplicity of labels refers to the assignment of
multiple different labels to an image class. In the context of language modelling,
the image class would be a specific sentence and the label would correspond to
the word that follows it. Although our analysis does not test for this property,
it is known that children use simpler language and adults adapt their linguistic
complexity accordingly (Kunert, Fernández, & Zuidema, 2011). This indicates
that child directed speech probably shows less variation in continuations of a
specific sentence than adult directed language. Similarly, (3) refers to variation
of images from a specific class, which corresponds to variations in sentences with
the same meaning in language modelling. Again, the lower degree of linguistic
variation in child directed speech indicates leads to the conclusion that sentences
with the same continuations are more constant than in adult directed language.

2.2.2 Zero-shot Reasoning in Large Language Models

We believe that properties important for in-context learning are not as prevalent
in the linguistic input of a child, because humans don’t use in-context learning.
For many daily tasks, humans learn implicitly from all the sensory input they
receive and are able to make generalizations and solve tasks without explicitly
being primed with a number of examples of the task at hand. For example, when
presenting a human with the premise “Daniel owns a dog”, it is straightforward
to infer that “Daniel is a pet-owner”, even though they didn’t see any examples
of such a reasoning task immediately before.

8



In the context of language modelling, this ability is referred to as zero-shot
learning, where a model is asked to perform a task in the absence of any exam-
ples (Palatucci, Pomerleau, Hinton, & Mitchell, 2009). Contrary to in-context
learning shown in figure 2, the model would be only prompted with the query
(i.e. only “Marie Curie was ...”). This is also an emergent property of large
language models, like in-context learning. Work has been done to test different
language models in a zero-shot setting on a range of tasks, like summarization,
translation and traditional language modelling and show that the size of a lan-
guage model is crucial for the success of zero-shot learning (Radford et al., 2019;
Brown et al., 2020). Zero shot has shown to be a promising avenue, but cur-
rently performance is often still lower than state-of-the-art, human performance
or in-context learning results (Brown et al., 2020; Rae et al., 2021; Smith et al.,
2022; Srivastava et al., 2022). Nevertheless, it shows that these models are able
to learn from naturally occurring examples (pre-training data) rather than man-
ually constructed (fine-tuning) datasets, which is something humans do as well.
Still, models struggled with many tasks, achieving performance much lower than
state-of-the-art. This indicates that there is still a lot of work to be done to
approach human performance on tasks in a zero-shot setting, but eliminating
the need for large task specific datasets is a big step towards general intelligence.
Additionally, zero-shot generalization is a desirable skill not only because it re-
flects how humans solve tasks, but also because it emerges already in smaller
models, which are less computationally costly. For example, work by Mikolov
et al. (2013) shows that a small model like Word2vec proves to perform well at
tasks in a zero-shot setting. In particular, it performed well at SemEval-2012
task 2, a task aimed at evaluating semantic similarity of relationships. All in all,
this highlights the importance of focusing on zero-shot solving of tasks instead
of in-context in order to strive for general human-like artificial intelligence, one
of the overarching goals of AI.

Specifically, large language models have shown relatively good zero-shot per-
formance in tasks that are intuitive and straightforward, but struggle with tasks
requiring multi-step reasoning (Brown et al., 2020; Rae et al., 2021; Smith et al.,
2022; Srivastava et al., 2022). To clarify, these models are skilled at answering
factual questions, such as “Who was Alan Turing?” or text summarization, but
struggle more with tasks such as the following: “Mary is baking a cake. The
recipe calls for 12 cups of flour 14 cups of sugar and 7 cups of salt. She already
put in 2 cups of flour. How many more cups of flour does she need to add
now?” The latter requires doing multiple steps of arithmetic reasoning, whereas
the first is essentially recalling stored information. Examples of these difficul-
ties are shown in figures for GPT-2 (124M parameters). It can be seen that
different issues are at play, ranging from not understanding the type of answer
that needs to be given (last two options in figure 3b), to giving an appropriate
but incorrect answer (first two options in figure 3a). However, figure 3c shows
that the model has no problem understanding and answering a question that
only requires recalling facts.

GPT-3 actually answered all these questions correctly, supporting that zero-
shot reasoning performance indeed scales with model size (Brown et al., 2020;
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Rae et al., 2021; Srivastava et al., 2022; Smith et al., 2022; Wei, Tay, et al.,
2022). Still, these larger models do make mistakes.

Contrastingly, reasoning comes very naturally to humans, shown by humans
consistently outperforming language models on several reasoning benchmarks
(Srivastava et al., 2022), the fact that most reasoning datasets are annotated
by humans and our ability to navigate everyday life which is filled with latent
reasoning tasks. Due to this sharp performance contrast between humans and
machines regarding reasoning, we suspect models might benefit from applying
knowledge about human reasoning to artificial reasoning. This is why we focus
on reasoning specifically in this work, and leverage the knowledge about human
reasoning and apply it to zero-shot reasoning in machines.

One might wonder why we do not focus on meta-learning, as was discussed
in the context of work by Kirsch et al. (2022). The decision to not focus on
this technique is that this requires enormous amounts of training data and very
large models, which is outside the scope of resources.

The task framing of reasoning can be done in different ways. One option
is to frame it as question answering, where the problem is formulated as a
question and the model needs to generate an answer, as shown in figure 3.
The seemingly poor performance on reasoning questions of GPT-2 using this
strategy motivates using another strategy in this work. Possibly, using another
strategy will already improve performance, even for a small model like GPT-2.
Specifically, we will rely on classification using embedding similarity, as has been
used by others before (Veeranna, Nam, Mencıa, & Fürnkranz, 2016; H. Xie &
Virtanen, 2021) and was suggested in documentations of both GPT-2 and GPT-
3 model libraries. Section 3.1.3 discusses a more in depth explanation of this
strategy.

2.3 Towards a Human-like Linguistic Experience

2.3.1 Fine-tuning in Machines

Much research on how to improve performance on zero-shot reasoning has been
done, with methods like fine-tuning or COT. First, we will focus on research
using fine-tuning to improve reasoning of language models. Firstly, Wei et al.
(2021) show that instruction fine-tuning improves zero-shot performance on un-
seen tasks, including reasoning. For a wide range of tasks they constructed ten
instruction templates and fine-tuned the model using various examples from
datasets formatted conforming these templates. The training objective of this
fine-tuning was to predict the label, given an input in the instruction format
of one of the constructed templates. For the reasoning task, this label would
correspond to “entailment” or “no entailment”. It improved zero-shot per-
formance on tasks usually formulated as an instruction, but is less successful
at improving zero-shot performance on tasks that are formulated according to
the language modelling objective (commonsense reasoning and coreference res-
olution formulated as sentence completion tasks). Moreover, models that are
trained using this method do not generalize well to tasks with unseen labels.
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(a) Output of GPT-2 small for “Daniel owns a dog. Is Daniel a pet owner, yes or no?”

(b) Output of GPT-2 small for “Mary is baking a cake. The recipe calls for 12 cups
of flour 14 cups of sugar and 7 cups of salt. She already put in 2 cups of flour. How
many more cups of flour does she need to add now?”

(c) Output of GPT-2 small for “Who was Alan Turing?” after continuously choosing
the first continuation option

Figure 3: Some example outputs of GPT-2 small
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Ye, Kim, Jang, Shin, and Seo (2022) introduce flipped learning to improve this.
With flipped learning, the model learns to predict a task description given an
input-label pair, instead of outputting labels given a description. Condition-
ing on the labels instead of outputting them avoids label overfitting and yields
better zero-shot generalization to tasks with new labels. Even though this is a
great advancement, it requires specific fine-tuning data for all possible tasks.

2.3.2 Linguistic Input in Humans

As has been mentioned before, humans generally reason with ease, even young
children. Piaget’s theory of cognitive development poses that cognitive devel-
opment of a child is composed of four stages, of which the concrete operational
stage is the third (Piaget & Inhelder, 2008). This stage takes place from seven
to eleven years old and it is where reasoning is acquired. However, there is little
agreement on the exact age that this ability is acquired. Keenan et al. (1994)
show through a series of experiments that children understand that inference is
a source of knowledge around the age of five. They presented children with a
doll and instructed them to think of the doll as a real person. The child was
then presented with a red and green marble, which were shown to the doll and
the child and then placed into a covered dish. The doll was placed behind the
screen and the experimenter told the child that the doll could no longer see what
the child and experimenter were doing, but could still hear them. One of the
marbles was moves into a bag while the experimenter spoke aloud to the doll
about what they were doing. The doll was then moved from behind the screen
and the child was asked if the doll knew the color of the marble in the bag. The
experiment had four conditions (1) inference salient, where the marbles were
both the same color and the child was reminded by the experimenter about this
and the fact the doll knew this as well; (2) inference unsalient, which is the same
as salient but without the reminders; (3) uninference, where the marbles were
a different color; (4) false-belief, where children were shown a Smarties box and
asked what they thought was inside, after which the experimenter opened the
box revealing crayons instead of Smarties. The child is then asked what another
child would think is in the box.

More recently, Gazes et al. (2017) have shown evidence of transitive inference
in infants, although no linguistic inputs were used in their experiments. They
used a play setting where they used dolls to act out scenarios indicating domi-
nance relationships between the dolls. For example, they showed infants a video
of two dominance interactions between three puppets (bear dominates elephant
and hippo dominates bear) meaning that through reasoning one can infer that
the hippo is most dominant, followed by the bear and elephant. Infants then
viewed interactions between the hippo and the elephant in scenarios that were
either consistent or inconsistent with the inferred dominance hierarchy. Infants
looked longer to inconsistent than consistent interactions. The authors claim
this difference was influenced by their inferred knowledge about the dominance
hierarchy.

Thus, it is clear that children acquire capabilities of reasoning at a young
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age. Falmagne (1990) claims that linguistic input of children plays a role in the
acquisition of logical reasoning. Specifically, the claim is that although origins of
logical reasoning may be acquired through sensorimotor experience, higher forms
(deductive reasoning in particular) are acquired through linguistic input once
the child is able to process this input. This is motivated by two main arguments:
(1) the prominent role of logic in linguistic theory and the resemblance between
logic and syntax and (2) because of this resemblance and the fact that children
acquire syntax of their language, it is psychologically plausible that logic is
also acquired through language. If this is true, then linguistic input of children
might be useful for language models to develop reasoning skills as well. We will
also investigate if this analogy holds for other types of reasoning than logical
deduction. This leads to our first research question: Can zero-shot reasoning
in Transformer based language models be improved by fine-tuning on
human-like data?

2.4 Towards Imagination-based Reasoning

2.4.1 Chain of Thought Prompting for Zero-shot Reasoning in Ma-
chines

Research on prompt design for language models has shown that the way a model
is presented with a problem has major effects on its ability to perform zero-shot
reasoning. A major advantage of using prompting to elicit reasoning in language
models as opposed to fine-tuning is that it reduces the need for large amounts
of task specific data. Betz et al. (2021) have shown that GPT-2 performs better
in the context of deductive reasoning tasks when it is fed with a self-generated
elaboration of the problem before generating a final answer. Similarly, Wei,
Wang, et al. (2022) introduce a concept they name “chain-of-thought (COT)
prompting”, where a language model is first prompted with some examples of
reasoning tasks and answers in which the answers are preceded by a multi-step
thought process, as shown in figure 4. This approach results in performance
gains in models with around 100B parameters for arithmetic, commonsense and
symbolic reasoning tasks. Interestingly, Kojima et al. (2022) take this approach
a step further, by only preceding the task description by “let’s think step by
step” in a zero-shot setting, having no examples of task-answer pairs. This
eliminates the workload of manually creating a set of examples. By doing this,
the language model generates an elaboration on the problem, which can be
presented to the language model again to obtain the final answer (see figure
4). Remarkably, adding this one sentence to the prompt resulted in significant
performance gains on zero-shot reasoning. However, performance gains were less
than those obtained by Wei, Wang, et al. (2022). Zhang, Zhang, Li, and Smola
(2022) introduce automatic chain-of-thought prompting, which eliminates the
need to manually construct examples. It works by sampling questions that are
representative for the task at hand from existing data and letting the model
generate the reasoning chain for those. These questions and their reasoning
chains are used as examples for the chain-of-thought prompting. This method
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matched or exceeded performance of manual chain-of-thought prompting.
Even small models can benefit from the COT by fine-tuning them on COT

outputs generated by larger models, which has led to performance gains on
several kinds of reasoning datasets (Magister, Mallinson, Adamek, Malmi, &
Severyn, 2022). This shows the potential of these small models for reasoning
tasks, but this approach does not match the goals of this research, as we want
to test the limits of smaller models without relying on larger models entirely.
In a sense, this fine-tuning on COT outputs of larger models can still be seen
as task specific training, as these outputs resemble examples of reasoning. This
makes the approach not purely zero-shot, whereas the goal of this research was
to focus on zero-shot reasoning. The work of Kojima et al. (2022) matches our
purpose best, which is why our imagination prompting approach will inherit
from their approach.

Figure 4: Visualizations of the workings of chain-of-thought prompting as done
by (Kojima et al., 2022) (a) and by (Wei, Wang, et al., 2022) (b)

2.4.2 Imagination for Zero-shot Reasoning in Humans

It seems that “thinking in steps” is an important aspect of good reasoning per-
formance in machines and that it is important to instruct models to do this ex-
plicitly. Similarly, the way tasks are presented to humans is also crucial for their
performance on those tasks. Research on logical inference in children shows that
children are able to reason better when they are asked to imagine the scenario
they are reasoning about, especially when the presented problems are not in line
with their knowledge of the world (Dias & Harris, 1988; Richards & Sanderson,
1999). Richards and Sanderson (1999) found that when 2-, 3- and 4-year-olds
were encouraged to use their imagination when reasoning, they reached logically
correct conclusions even when the premises not being in line with the real world.
The children also gave more theoretical justifications for their responses. These
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findings also suggest that children are able to reason before the concrete opera-
tional stage defined by Piaget. Dias and Harris (1988) show similar results. In
their experiment there were two groups: one with children that are presented
with a reasoning task in a make-believe play setting and thus was led to use
imagination, and another with children that are presented with the reasoning
task in a factual manner. The group of children which were presented with
the reasoning task in a make-believe play setting performed better at the task
than the other group, especially when premises contained contradictory facts.
Possibly, imagination allows children to let go of their world knowledge more,
which is needed to perform reasoning on a more abstract level. Interestingly,
these content effects also show up in language models (Dasgupta et al., 2022).
Like humans, models zero-shot reason more poorly about situations that are
inconsistent with world knowledge or highly abstract.

This research shows that language models and humans have common char-
acteristics when it comes to reasoning. Namely, better reasoning performance
when the situation to be reasoned about is consistent with world knowledge
and more importantly, making a mental representation about the problem be-
fore reaching a final answer. This leads to the expectation that like children,
language models might become better reasoners when we prompt them to “imag-
ine” the situation they have to reason about, especially if that situation clashes
with world knowledge or is abstract. The second research question focuses on
applying knowledge about fruitful problem representation with children to zero-
shot chain of thought prompting (as in Kojima et al. (2022)) in models: Q2:
Can zero-shot reasoning in Transformer based language models be
improved by prompting the model to “imagine”?

3 Baseline Experiment

The first step is to establish a baseline to compare the results of the experiments
to. For this, we used GPT-2 small (124M parameters) from the Huggingface
library and GPT-3 (175B parameters) from the OpenAI API without any fine-
tuning or COT prompting applied. Both of these models are also used as a
starting point in all the following experiments. We used a zero-shot classifi-
cation strategy that utilizes similarity between embeddings of items and label
descriptions to classify statements as being a correct reasoning or incorrect rea-
soning (true/false), which was used in all experiments. This classification strat-
egy has been used succesfully in other classification tasks before, such as topic
classification (Veeranna et al., 2016) or audio classification (H. Xie & Virtanen,
2021). In addition, documentation of the Huggingface library and OpenAI API
suggest this method for zero-shot classification. 1 We made use of four different
task data sets to evaluate performance across different kinds of reasoning.

1https://platform.openai.com/docs/guides/embeddings/use-cases

https://joeddav.github.io/blog/2020/05/29/ZSL.html
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3.1 Method

3.1.1 Data

To evaluate the models in terms of their reasoning capabilities, four different
types of reasoning datasets have been used. These include general reasoning and
more specialized types of reasoning such as, common sense reasoning, logical
deduction and reasoning about fantastical scenarios. These datasets together
form a diverse set of reasoning tasks. In this way, we can contrast different
types of reasoning when drawing conclusions from the experiments. Tables 10,
11, 12 and 13 show what the task data look like in their original state.

The Stanford Natural Language Inference (SNLI) dataset consists
of 570152 pairs of premises and hypotheses, in which the relationship between
these is either an entailment, contradiction or neutral (Bowman, Angeli, Potts,
& Manning, 2015). This dataset is a famous benchmark for natural language
inference (NLI) and it tests for finding true entailment relations, where some
implicit knowledge of the world is sometimes necessary. It is a suitable dataset
to represent general reasoning. The rest of the datasets are used to represent
more specialized types of reasoning. An example of an item from the dataset is:

• Premise: A soccer game with multiple males playing.

• Hypothesis: Some men are playing a sport.

• Label : Entailment

The com2sense dataset, from the BIG-bench 2 (Srivastava et al., 2022),
has 1874 statements testing common sense reasoning. Statements are labelled as
true or false. This dataset is different from SNLI, in that the items do not test
for true entailment relations, but instead rely on an intuition that is heavily
dependent on world knowledge, experience and “common sense” that comes
effortlessly to humans.

• Statement : A knife could be used in place of a screwdriver.

• Label : True

The logical deduction dataset, from BIG-bench as well, consists of 8300
premises that are mapped to a set of possible hypotheses. One of these hypothe-
ses is labelled as the correct one (false) and the others are labelled as false. As
the same suggests, this dataset focuses on reasoning in the form of logical de-
duction. This contrasts the previously mentioned data sets by focusing purely
on logical reasoning, where just the context provided by the premise is sufficient
to reach the conclusion. In particular, this dataset focuses on ordering relations.

• Premise: On a shelf, there are three books: a black book, an orange book,
and a blue book. The blue book is to the right of the orange book. The
orange book is to the right of the black book.

2https://github.com/google/BIG-bench
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• Hypotheses: [The black book is the leftmost., The orange book is the
leftmost., The blue book is the leftmost.]

• Labels: [1, 0, 0]

The fantasy dataset also originating from the BIG-bench, is a relatively
small dataset consisting of 201 scenarios followed by a question, labelled as either
yes or no. This dataset was chosen to investigate how the model behaves when
presented with fantastical scenarios and eventually compare this to previous
research on how humans reason under such conditions.

• Statement : After millennia of waiting, an evil alien science corporation is
brought down. The galactic government moves to remove an abandoned
island laboratory that the company had put their lethal creatures on, only
to find the island had been named Australia by a sentient species who now
lives there. Animals appeared in Australia because they were created by
God.

• Label : No.

Thus, each dataset serves a different purpose. The fantasy dataset is meant
to specifically evaluate models on their ability of reasoning where it is necessary
to abstract away from world knowledge and to rely on logical reasoning patterns
to arrive at the hypothesis based on the premises. The com2sense dataset is the
opposite, with the purpose to target intuitive reasoning, where knowledge about
the world is necessary, but logical reasoning will not be of any help. Third, the
purpose of the logical deduction dataset is to test models on deductive reasoning,
where the conclusion can be reached using just the premises. Lastly, the SNLI
dataset is a compromise between using world knowledge and logical reasoning
and can be viewed as a more general type of reasoning. These four different
datasets allow us to evaluate a diverse set of reasoning types.

Data preprocessing has been performed to make sure that all data is in the
same format for seamless processing: one column with a statement containing a
premise and hypothesis conjoined using the phrase “it follows that”, one column
with the reverse of that statement and two more columns with the label for the
original and reversed statement being either 1 (true) or 0 (false). The addition of
“It follows that” is done to create a statement structure that clearly represents a
reasoning pattern, and that this pattern is the same across different datasets. It
is important that it is the same across datasets, because this mitigates possible
confounding effects on performance due to differences in statement structure.
See tables Tables 10, 11, 12 and 13 for clarification on what premises and hy-
potheses might look like. The following paragraph describes in more detail how
this preprocessing has been realized for each data set.

In case of SNLI, the phrase “it follows that” has been prepended to the
hypothesis. Then, the premise and altered hypothesis have been concatenated
into one statement. For the logical deduction dataset, the process is similar.
However, we have multiple hypotheses for each premise in this case, as can be
seen in table 13. Separate statements are made using each of these hypotheses,
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using the same strategy as has been used for SNLI. For the fantasy reasoning
dataset, items already contain a concatenated premise and hypothesis. The
hypothesis is always the last sentence, so the phrase “It follows that” has been
prepended to the last sentence of each item. The com2sense data is of a different
nature, because items are not consistently structured as having a premise and
hypothesis, but are statements of any structure that can be evaluated using
our common sense. For this reason, the data has been preprocessed differently.
The phrase “it is straightforward that” has been added to each item wherever
this naturally fits. For a comparison of what the transformed data looks like
compared to the original data, see tables 14, 15, 16 and 17.

Once all items had been consistently transformed, reversed versions of all
items were made to control for noise due to random variation in the data. This
is clarified further in section 3.1.3. For each datapoint in the dataset, a negation
has been added to the dataset by conjoining the premise and hypothesis with
“it does not follow that” instead of “it follows that”. Reversed versions of
statements from the com2sense dataset have been created by including “it is
not straightforward that” instead. All reversed statements were assigned to the
class label that is the inverse of the class label belonging to the original, non-
negated statement. So, if the original statement was labelled as 1, the negated
version would be labelled as 0.

After transforming the data, 600 items from each dataset have been selected
randomly, with the exception of the fantasy dataset due to its small size, where
140 items have been randomly selected. This downsampling is done for two
reasons, namely to reduce computational load and to have extra unseen data
for possible additional experimentation. These selections have been divided into
70% development and 30% test set. Class labels have been balanced in both
development and test set. The reason for having a test set in addition to a
development set is to spot potential overfitting.

3.1.2 Creating Embeddings

In order to perform classification, the data described in the previous para-
graph needed to be transformed into sentence embeddings. First, all state-
ments, including their corresponding negated versions, were tokenized using the
GPT2Tokenizer. The tokenized items were then fed to the GPT2Model that
returns the hidden states. The hidden state outputs were used to extract the
embeddings. The model outputs the last hidden layer for each item in the
dataset with the shape (1, j, k), with j being the number of tokens in the item
and k being the size of the hidden layer. From this matrix, we take the vector
of the last token in the sequence. This is because GPT-2 uses self-attention,
processing its input from left to right. Thus, the last token embedding con-
tains information about all the preceding tokens as well. In case of GPT-3,
the items could be fed to the embedding API without the need for tokenizing
first or extracting embeddings from hidden states by hand 3. For this, the text-

3However, it is not clear from documentation what kind of pooling is used to extract these
embeddings from the hidden state outputs of the model.
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embedding-ada-002 has been used. In the same way, GPT-2 and GPT-3 were
used to create embeddings for three different label descriptions, which can be
seen in table 1. These label descriptions correspond to the positive label (1).
From now, we refer to these as “label descriptions” and will use the term “class
label” or “label” when referring to the binary class labels 0 (false) and 1 (true),
that are assigned to each item in a task dataset. Creating embeddings for the
label descriptions is necessary for our classification strategy, which is explained
in detail in the next section.

Letter Label description
a This is an entailment
b This statement makes sense
c This statement is logical

Table 1: Different label descriptions of the true class that were used in all the
experiments

3.1.3 Evaluation

For each original statement and its negated counterpart, the cosine similarity of
the embedding with respect to an embedding of a label description of the true
class was calculated. A visualization of this can be seen in figure 5. This was
done for all three label descriptions.

This strategy of classification is motivated by the intuition that an embed-
ding of a correct reasoning statement should be more semantically similar (than
an embedding of an incorrect reasoning) to the embedding of a description of the
true label (such as label descriptions in table 1). By using original statements
and their negated version we minimized noise in the data that could influence
results. If we would only compare similarity scores given to positively labelled
examples to negatively labelled examples, there could be random variation in
the data giving a distorted image of model performance, making results more
difficult to interpret.

Then the question remains why we did not compare the embedding of the
original statement to an embedding of a positive label description versus an
embedding of a negative label description, assigning the statement to the label
corresponding to the embedding which is most similar. There is one disadvan-
tage of this approach, that is solved by the current approach. Namely, such
a method does not check whether the model assigns two contradicting state-
ments (the original and negated version) to have the both true or false, which
is not correct reasoning. The current approach avoids this limitation by com-
paring similarities of original and negated statements, choosing the one with
the highest similarity as the correct reasoning, automatically deeming the other
statement to be incorrect reasoning.

Computing cosine similarity between an original and negated statement and
a label description yielded two similarity values for each label description. The
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similarity value of the negated statement was subtracted from that of the original
item yielding one score according to equation 1, referred to as the difference
score. This score was used to classify the original statement as either 1 (true) or
0 (false), meaning that the reasoning present in that statement is correct or not.
So, in a situation where the model reasons very well, it would always yield a
higher similarity score for the (negated) statement labelled as true (1) than for
its (negated) counterpart that is labelled as false (0). Our classification strategy
is motivated by the intuition that an embedding of a correct reasoning statement
should be more semantically similar than that of an incorrect statement to the
embedding of a description of the true label. So, in a situation where the model
reasons very well, it would always yield a higher similarity score for the (negated)
statement labelled as true (1) than for its (negated) counterpart that is labelled
as false (0).

diff = cos θa − cos θb (1)

predict(diff , threshold) =

{
1, if diff ≥ threshold

0, otherwise
(2)

Thus, each item in a dataset resulted in three scores, corresponding to the

original

negated

label description

θa

θb

Figure 5: Visualization of classification strategy using embedding similarity

different kinds of label descriptions. For each score, the accuracy, precision,
recall and F1 were calculated using a threshold of 0. If the difference score
exceeded 0, the original item was classified as 1 (true), otherwise as 0 (false).
We will discuss results in light of this definition of “reasoning very well”, which
is tied to this threshold of 0.0 that was discussed in the previous paragraph.
This first definition of reasoning will be referred to as definition 1 from now
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on. However, this is not the only way to define good performance. Another
way is to define good reasoning is in terms of how well the model is able to
classify statements correctly, irrespective of threshold. This second definition of
reasoning will be referred to as definition 2. This is why the Area Under the
Curve (AUC) and Pearson correlation between the difference scores and ground
truth class labels have been calculated as well. These measures give a more
complete picture of performance, independent of a predefined threshold. This
is important, since we have no information about what the optimal threshold
would be. The choice of 0.0 for the other measures was chosen with our firstly
discussed notion of good reasoning in mind. However, there is no evidence
that this would indeed be the optimal threshold to use for a good classification
performance. AUC has been used as the metric for finding the best choice of
label description to use for evaluation on the test set. The best label description
is the one with the highest average AUC score on the development set over all
different datasets. For the test sets, we repeated this process, but only using
one label description that was selected as the best one.

3.2 Results

(a) GPT-2 (b) GPT-3

Figure 6: AUC on development sets for different label descriptions.

A general overview of AUC scores on the development sets can be seen in
figure 6. The black line indicates what would be chance level AUC. A more
extensive overview of results (including accuracy, precision, recall, F1-score and
Pearson correlation) of different configurations on the development set for GPT-
2 and GPT-3 are shown in table 18 and 19 in appendix B.1. It was a deliberate
decision to only put F1-score and AUC in the main text tables in order to reduce
the large table size. F1-score and AUC have been chosen as most informative
to be presented here, as F1-score reflects precision and recall at the same time
and AUC gives an idea of performance independent of a classification threshold
(similar to correlation). Precision, recall and correlation have been stated in the
appendix, but are also mentioned throughout the text for convenience.
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It can be seen that GPT-2 has the highest AUC score on the development
portion of SNLI irrespective of the label description, with the logical deduction
dataset scoring the lowest in terms of AUC. It can be seen that AUC scores and
correlations are in agreement; SNLI displays significantly positive correlation
(0.12), which is in agreement with the relatively high AUC score. On top of
that, AUC scores are similar across different label descriptions. Only SNLI and
com2sense consistently exceed chance AUC.

GPT-3 shows slightly more variation across label descriptions. GPT-3 shows
the highest AUC score for the SNLI dataset using label description b. Contrary
to the logical deduction dataset scoring the lowest for GPT-2, the com2sense
dataset shows the lowest AUC scores for GPT-3. The logical deduction and
the fantasy datasets show a fair increase in AUC compared to GPT-2. Almost
all datasets exceed chance level AUC, except for the com2sense dataset, which
shows a decrease in AUC compared to GPT-2. Based on these reported devel-
opment AUC scores, label descriptions have been chosen that will be used for
testing.

Another observation is that precision and recall (can be found in appendix
B.1 table 18) are often 0.0 in case of GPT-2, whereas this is not the case for
GPT-3 (see table 19); precision ranges from 0.50 to 0.68 and recall from 0.05 to
98. The SNLI dataset shows a different pattern for GPT-2, namely a fairly high
precision across different label descriptions (ranging from 0.80 to 1.00), and a
fairly low recall (ranging from 0.005 to 0.04). Furthermore, the logical deduction
dataset shows some variation with relatively higher values of precision and recall
in case of GPT-2 (in the ranges of 0.00-0.50 and 0.00-0.37 respectively).

F1 AUC
SNLI Overall best 0.13 0.54

Task best 0.0 0.55
Fantasy Overall best 0.0 0.31

Task best 0.0 0.31
Com2sense Overall best 0.0 0.54

Task best 0.0 0.54
Deductive Overall best 0.49 0.55

Task best 0.49 0.55

Table 2: Baseline results on the test set for GPT-2. A threshold of 0.0 has been
used to calculate precision and recall (resulting in above F1 scores).
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F1 AUC
SNLI Overall best 0.56 0.59

Task best 0.55 0.61
Fantasy Overall best 0.29 0.49

Task best 0.70 0.66
Com2sense Overall best 0.66 0.50

Task best 0.55 0.46
Deductive Overall best 0.18 0.45

Task best 0.37 0.49

Table 3: Baseline results on the test set for GPT-3. A threshold of 0.0 has been
used to calculate precision and recall (resulting in above F1 scores).

Results of the best configurations according to development AUC on the test
sets is shown in tables 2 and 3. See tables 20 and 21 in appendix B.1 for a more
extensive overview of measures including accuracy, precision, recall, F1-score
and Pearson correlation. Here, similar patterns are visible again. GPT-2 shows
generally higher AUC values and Pearson correlation (0.08 and 0.12, although
not significant this time) for SNLI than for the other datasets, but this time the
fantasy dataset shows the lowest AUC scores instead of the logical deduction
dataset. All datasets except for the fantasy dataset exceed chance level AUC this
time. This low AUC score on the fantasy dataset is confirmed by a significantly
negative correlation (-0.31) as well. This performance is worse than what has
been reported for the development set. Lastly, the described observations about
precision and recall from the development set are also visible for the test set:
precision and recall are often 0.0, with SNLI showing patterns of high precision
(1.0 for the overall best configuration) and low recall (0.0 and 0.07) and the
logical deduction dataset showing relatively higher precision (0.54) and recall
(0.46).

GPT-3 also generally shows highest AUC score for the task specific best
configuration on the fantasy dataset, followed by the SNLI dataset. Here, the
logical deduction dataset scores the lowest. The most apparent increase in
test AUC when comparing GPT-2 to GPT-3 is for the fantasy dataset, the task
specific best configuration in particular. Other than that, SNLI also shows a fair
increase, but the rest shows a decrease in AUC compared to GPT-2. However,
precision and recall always show an increase compared to GPT-2 (0.36-0.64
and 0.12-0.97 versus lots of 0.0 occurrences for GPT-2), except for the logical
deduction dataset (0.37-0.48 precision and 0.12-0.30 recall versus 0.54 precision
and 0.46 recall for GPT-2). Precision and recall scores are more variable instead
of being consistently 0.0, which was often the case for GPT-2.

3.3 Discussion

GPT-2 is able to reason better as defined by definition 2 (recall the contrast
between defition 1 and 2 that was introduced in section 3.1.3) about scenarios
such as those in SNLI than scenarios such as those in the logical deduction
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dataset. The high AUC scores on the SNLI dataset and the low AUC scores on
the logical deduction dataset relating to GPT-2 indicate that GPT-2 is better
able to separate correct from incorrect reasoning for SNLI than for the logical
deduction dataset across a larger range of thresholds, meaning that similarity
scores given to those two classes are further apart.

GPT-2 tends to classify everything as incorrect reasoning, except for the
SNLI and logical deduction dataset. The fact that precision and recall are often
0.0 when using GPT-2 means that the classification using GPT-2 embeddings
tends to always lead to classifying statements as 0 (false) when using a threshold
of 0.0. Note again that precision, recall and accuracy are heavily dependent on
the chosen threshold (in this case 0.0) and that there might be another threshold
yielding better performance metrics. This means that the negated statement
is consistently assigned a higher cosine similarity than the original statement,
irrespective of the ground truth class labels of those statements.

A different pattern emerged for the SNLI dataset, namely high precision and
low recall. This means that our model is unlikely to classify an item as 1 (true),
but when it does it is usually a correct classification. The more varied precision
and recall for the logical deduction dataset using GPT-2 displays a more varied
classification instead of mostly classifying statements as 0 (false).

In addition, the similar results across label descriptions show that this clas-
sification method is not sensitive to exact label descriptions when using GPT-2,
possibly because the model is already performing poorly regardless. The worse
performance on the test set compared to the development set of the fantasy
dataset by GPT-2 indicates possible overfitting on the label description. This
is likely due to the small size of the dataset.

On the other hand, GPT-3 shows more variation in AUC across different
label descriptions, meaning that the choice of label description can make a
considerable difference in performance using this classification method together
with GPT-3. The high AUC scores on the SNLI dataset (using label b) and the
low AUC scores on the com2sense dataset relating to GPT-3 indicate that GPT-
3 is better able to separate correct from incorrect reasoning for SNLI (using label
b) than for the com2sense dataset across a larger range of thresholds, meaning
that similarity scores given to those two classes are further apart. This can be
interpreted as GPT-3 being able to reason better about scenarios such as those
in SNLI than about common sense reasoning scenarios (at least under definition
2 of reasoning). Also here we can see some possible overfitting, but this time
for the logical deduction dataset, since AUC is somewhat lower for the test set
than for the development set.

Looking more closely to precision and recall, we can see that the model is not
blindly classifying all items as 0 (false) anymore when using a 0.0 classification
threshold. Whether this is an improvement is up to debate. When precision
and recall are around 0.5, it means that classification performance is close to
chance, which is not an improvement over making the same classification all
the time, even though the numbers are higher. It is also important to remem-
ber that accuracy, precision and recall are dependent on a specific threshold of
0.0, which conceptually would represent reasoning as finding a correct reason-
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ing more similar to a label description of correct reasoning than an incorrect
reasoning. This means that the values higher than chance of precision and re-
call present in the results of GPT-3 do indicate an improvement of reasoning
under definition 1. However, it could be that another threshold works better
in practice for classification. It is up to debate whether definitions 1 and 2 of
reasoning can both be viewed as true reasoning.

The increases in AUC for the logical deduction, fantasy and SNLI dataset
show that GPT-3 is better at discriminating correct from incorrect reasoning
statements than GPT-2 for many types of reasoning tasks. However, the de-
crease visible for com2sense indicates that GPT-3 struggles with this discrimi-
nation in the context of common sense reasoning, even more than GPT-2 does.
Interestingly, this indicates that zero-shot classification performance on some
reasoning tasks does not necessarily scale with model size, which is in disagree-
ment with existing literature (Brown et al., 2020; Rae et al., 2021; Srivastava
et al., 2022; Smith et al., 2022; Wei, Tay, et al., 2022).

This experiment is meant as a baseline for comparison of the following ex-
periments. To summarize, two important results are found here. The most
important result to take away from this experiment is that results are in con-
flict with existing literature proposing that zero-shot reasoning is an emergent
property, of which performance scales with model size. Second, the experiment
reveals that choosing the right label description is crucial for optimizing perfor-
mance, at least in case of GPT-3.

4 Experiment 1: Fine-tuning

In this experiment, we repeat the baseline experiment, but instead of using
“bare” models, we fine-tune them first. We evaluate two different fine-tuning
datasets, namely one that represents linguistic input of adults and one repre-
senting linguistic input of children. In this way, we can contrast the effects
of fine-tuning on human like linguistic input of adults versus children. Due to
resource limitations, this experiment has been conducted using GPT-2 only.

4.1 Method

4.1.1 Data

There are two different datasets that have been used for fine-tuning, (1) the
English portion of the OpenSubtitles dataset (Lison & Tiedemann, 2016) and (2)
the Manchester and Manchester-EVA corpora in CHILDES (Theakston, Lieven,
Pine, & Rowland, 2001; Lieven, Salomo, & Tomasello, 2009). For CHILDES,
utterances of mother, father and child have been extracted and each conversation
serves as one data point 4.

4Each .cha file is treated as one conversation, see
https://sla.talkbank.org/TBB/childes/Eng-UK for more details on the structure of
the dataset
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All data points have been collected in a single plain text file. The GPT2Tokenizer
from the Transformers library has been used to tokenize all items in the data
and all of them have been padded to a maximum length of 1024: the maximum
length the model can handle. Data points that were longer than this limit were
truncated. Finally, this has resulted in a total of 941 separate documents having
a total of 20676788 words for OpenSubtitles. For CHILDES, it resulted in 1116
documents with 38502626 words. Both datasets have been divided into 80%
training and 20% test set. Even though this experiment is not focused on how
well the model can predict text from CHILDES or OpenSubtitles, it is useful to
evaluate whether there is overfitting, since this might be able to explain patterns
in performance on the reasoning tasks. This is why data used for fine-tuning is
divided into training and test data.

The task data is another component in this experiment. The procedure for
preprocessing this data is the same as what has been described in section 3.1.1.

4.1.2 Fine-tuning

In this experiment we will evaluate two fine-tuned models on a set of reason-
ing tasks. The first model is fine-tuned on the training portions of the En-
glish part of the OpenSubtitles dataset, and will be referred to as the Subtitles
model. The second model is fine-tuned on the training portion of the Manch-
ester and Manchester-EVA data sets from CHILDES, and will be referred to as
the CHILDES model.

A GPT2LMHead model from the Huggingface Transformers library has been
fine-tuned on OpenSubtitles data and CHILDES training data for thirty epochs,
with a learning rate of 0.0002 and weight decay of 0.01. The GPT2LMHead
model is a bare GPT2 model, the stack of decoder blocks outputting raw hidden
states from the Transformer architecture previously discussed in 2.1, with a
language modeling head on top, meaning that there is an extra layer on top of
the base model allowing for language modeling. These parameter values were
chosen by means of comparing convergence rates of different combinations of
values, with values differing by factors of ten. These reported values had a
sufficiently fast convergence rate and minimally different loss on training and
evaluation set. Fine-tuning has been done for three runs for each data set to
investigate consistency of results under random shuffling of the data. Models
are trained using the classic language modelling objective. The Subtitles and
CHILDES training process yields model checkpoints after each epoch, which are
the models with updated weights up to that epoch.

4.1.3 Evaluation

All model checkpoints (thirty, namely one for each epoch) have been evalu-
ated using cross entropy loss for both training and test set of the Subtitles or
CHILDES data, depending on what data it was fine-tuned on. The development
sets of the reasoning tasks have also been evaluated at each checkpoint, using
the same classification strategy as described in sections 3.1.3. Though, there is
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one important difference regarding the creation of embeddings. The creation of
embeddings as described in section 3.1.2 used the GPT2Model without any fine-
tuning applied. In this experiment, the model used for creating the embeddings
corresponds to the model checkpoint that is being evaluated at that point. We
chose AUC to represent performance over the course of checkpoints, since this
measure is threshold independent and thus most informative and robust.

This evaluation has been done for all different checkpoints of both the Subti-
tles and CHILDES model, runs and label descriptions. Results of different runs
have been averaged, meaning that there are three different performance metrics
for each checkpoint, corresponding to the different label descriptions that were
evaluated. The combination of checkpoint and label description that yielded
the highest overall average of AUC was chosen as the best overall configuration.
Moreover, the combination of checkpoint and label description yielding the high-
est average AUC for each dataset has been selected as well as task specific best
configurations. Finally, the selected overall optimal model configuration has
been used to give predictions for the test set of each reasoning task dataset. In
addition, the selected optimal task specific model configuration has been used to
give predictions for the corresponding reasoning test set. We compared results
to the baseline model.

4.2 Results

Figure 7 shows how AUC progresses over the course of fine-tuning for both
Subtitles and CHILDES models. The outer edges of each “line” represent the
standard deviation over three runs. Runs differ in the order in which the training
data is shuffled. The black lines again indicate the chance level AUC value.

It can be seen that label description a yields generally higher AUC values,
as the lines reach above the chance AUC line the most for both Subtitles and
CHILDES. Moreover, the models fine-tuned on CHILDES tend to exhibit an
even slightly higher AUC for label a. Moreover, all datasets show high and
low spikes in AUC across epochs. More specifically, the fantasy and logical
deduction datasets often show more variation across runs than others.

Over the course of epochs, it seems that AUC is staying relatively constant
around chance level in most cases. The only clear increase in AUC that can
be seen is for the fantasy reasoning task using the Subtitles model and label
description b. Due to the fantasy dataset being quite small, an additional 5-
fold cross validation has been performed to ensure that this result is consistent
across different development splits. Results of this can be seen in figure 8. It
is visible that are results are consistent; figure 8b shows an increase in AUC
across all different development splits. On the other hand, AUC declines for the
logical deduction dataset using the CHILDES model with label descriptions a
and c, but this trend displays much more variation.
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(a) Label description a Subtitles (b) Label description a CHILDES

(c) Label description b Subtitles (d) Label description b CHILDES

(e) Label description c Subtitles (f) Label description c CHILDES

Figure 7: AUC over the course of fine-tuning
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(a) Label description a (b) Label description b

(c) Label description c

Figure 8: Results of 5-fold cross-validation on the fantasy dataset using the
Subtitles model

Based on the development AUC values, optimal label descriptions and model
checkpoints have been selected for testing. Tables 4 and 5 show F1 and AUC on
the test set using the optimal configurations of model checkpoints and label de-
scriptions. Tables 22 and 23 in appendix B.2 show a more complete overview of
performance metrics. AUC has only increased for the fantasy dataset compared
to the baseline test results. This holds for both the Subtitles and CHILDES
models, but is more apparent for the Subtitles model. This is supported by the
Pearson correlation being positive for the Subtitles model (0.09), but negative
for the CHILDES model (-0.11). The correlation of Subtitles is a consider-
able improvement from the baseline experiment, which showed a negative value
(-0.31).

AUC dropped or stayed similar for the rest of the datasets relative to the
corresponding GPT-2 baseline AUC, and a drop is especially apparent for the
com2sense dataset. This low AUC is supported by the Pearson correlation
becoming significantly negative in the case of the Subtitles model (-0.003 and
-0.10). AUC and correlation stayed relatively equal to and sometimes slightly
lower (in case of logical deduction) than the baseline after fine-tuning for the
rest of the datasets.
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There are no occurrences of precision and recall being 0.0 anymore after
fine-tuning on both CHILDES or OpenSubtitles. Precision and recall increased
for most datasets (resulting in F1 also increasing) compared to the baseline
(0.41-0.53 precision and 0.06-0.60 recall now versus many 0.0 occurrences in
the baseline), whereas accuracy stayed similar (0.44-0.53). But, the opposite
happened for the logical deduction dataset, where precision and recall decreased
compared to the baseline (0.28-0.50 precision and 0.24-0.47 recall now versus
0.54 precision and 0.46 recall). Moreover, precision and recall is higher for the
CHILDES model than the Subtitles model for all datasets, as reflected by F1
scores. The last observation is that precision, recall and conversely F1-score
display relatively high standard deviation regarding the Subtitles model. For
the CHILDES model, only recall displays high standard deviation (reflected by
F1-score), but less than what is observed for the Subtitles model.

Subtitles Baseline
F1 AUC F1 AUC

SNLI Overall best (0.24, 0.29) (0.52, 0.04) 0.13 0.54
Task best (0.31, 0.27) (0.50, 0.01) 0.0 0.55

Fantasy Overall best (0.21, 0.24) (0.55, 0.09) 0.0 0.31
Task best (0.22, 0.31) (0.56, 0.09) 0.0 0.31

Com2sense Overall best (0.24, 0.27) (0.44, 0.05) 0.0 0.54
Task best (0.09, 0.08) (0.51, 0.04) 0.0 0.54

Deductive Overall best (0.21, 0.27) (0.51, 0.02) 0.49 0.55
Task best (0.37, 0.24) (0.50, 0.03) 0.49 0.55

Table 4: Results for the Subtitles models on the test sets. A threshold of 0.0
has been used to calculate precision and recall (resulting in above F1 scores).
Results are reported as (x, y), with x indicating mean and y standard deviation
over three runs.

CHILDES Baseline
F1 AUC F1 AUC

SNLI Overall best (0.56, 0.04) (0.54, 0.01) 0.13 0.54
Task best (0.32, 0.10) (0.51, 0.05) 0.0 0.55

Fantasy Overall best (0.36, 0.13) (0.45, 0.02) 0.0 0.31
Task best (0.36, 0.13) (0.45, 0.02) 0.0 0.31

Com2sense Overall best (0.41, 0.09) (0.48, 0.03) 0.0 0.54
Task best (0.35, 0.07) (0.49, 0.03) 0.0 0.54

Deductive Overall best (0.47, 0.11) (0.52, 0.04) 0.49 0.55
Task best (0.40, 0.13) (0.52, 0.01) 0.49 0.55

Table 5: Results for the CHILDES models on the test sets. A threshold of 0.0
has been used to calculate precision and recall (resulting in above F1 scores).
Results are reported as (x, y), with x indicating mean and y standard deviation
over three runs.
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4.3 Discussion

The high and low spikes and variation in AUC during development indicate
an instability in classification performance across model checkpoints, label de-
scriptions and runs. Apparently, the classification strategy is highly sensitive
to slight changes in model parameters, such as label description, and model
weights. This is not just the case for AUC, but also for other performance
metrics, shown by high variation in precision and recall on the test sets.

Fine-tuning on OpenSubtitles improves reasoning about fantastical scenar-
ios. The fact that AUC stays relatively constant over epochs in most cases
indicates that the fine-tuning is not affecting performance most of the time.
However, there is a steep increase in AUC for the fantasy dataset using the
Subtitles model with label b. Though, the lower AUC on the fantasy dataset
for the test set compared to the development set when using the CHILDES
model hints at overfitting. Luckily, the improvement that is observed when us-
ing the Subtitles model is persistent through cross validation and testing, which
shows that these results are generalizable and that fine-tuning indeed can have
an effect. It also shows that whether there will be an effect is heavily dependent
on the task, having the right label description and the fine-tuning data.

A possible explanation for why the Subtitles model shows improvement for
the fantasy dataset is that the OpenSubtitles fine-tuning data contains conver-
sations originating from movies and tv shows. A portion of these movies and
tv shows contains fantastical scenarios, for example genres such as as horror or
sci-fi. These fantastical stories bear similarity to the scenarios that are present
in the fantasy dataset. By having similar fantastical scenarios included in the
fine-tuning data, the model is more familiar with such scenarios and it is likely
that this helped the model reason about other fantastical scenarios. It would
be similar as world knowledge being of help for common sense reasoning, but
this time it is knowledge about fantastical worlds being of help for fantastical
reasoning.

Another explanation could be that this improvement is due to the dialogue
structure of the OpenSubtitles data. Speech acts often contains implicit mean-
ing and intention (Grice, 1975), and a listener first infer this implicit meaning
before answering back. The answer they give reveals more about the meaning of
the initial speech act, and so on. This feedback loop between interlocutors thus
reflects reasoning about eachothers intentions. It could be that this structure
helps teach the model to reason. Even though CHILDES data also contains
dialogues, these dialogues are between parents and toddlers and are much less
informative because of that. Furthermore, the fact that the fantasy dataset
requires the model to abstract away from world knowledge and rely on logical
patterns of reasoning also hints at the structure and patterns in the OpenSub-
titles data being of help for this task.

It seems that fine-tuning on CHILDES hurts logical deduction performance
slightly. The reason for the slight decline in AUC for the logical deduction
dataset that is seen for label description a and c using the CHILDES model
could be that the linguistic content of the CHILDES fine-tuning data is hurting
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the model’s ability to understand logical deduction. The scenarios in the logical
deduction dataset are among the longest of all datasets, and longterm depen-
dencies are important to understand them. Longterm dependencies means that
you need to look back in a passage of text to understand what is said later in
the text. In child directed speech, conversations consist of very short utterances
and contain very little examples of longterm dependencies. This discrepancy
between the fine-tuning data and the task data could be an explanation for the
drop in performance over time.

Results on the test set also indicate that fine-tuning does not improve rea-
soning performance when comparing to the baseline experiment, except for the
fantasy dataset. The CHILDES model also shows an improvement on the fan-
tasy test dataset, but less of an improvement than the Subtitles model, which
reflects the outstanding improvement for the Subtitles model with label de-
scription b that was seen during the development stage. The fact that AUC
is already higher after the first fine-tuning epoch than it was in the baseline
experiment means that just one epoch of fine-tuning with either CHILDES or
Subtitles already yields a substantial performance boost.

Results on the test set also point out that fine-tuning on both CHILDES and
OpenSubtitles hurts performance for the com2sense dataset in particular. This
could be due to characteristics of the fine-tuning data not reflecting knowledge
needed for common sense reasoning. Possibly, it contains knowledge that would
go against real world knowledge needed for common sense reasoning, which is
likely in case of the OpenSubtitles dataset for the same reason it would be
helping the fantasy reasoning task. Namely, the fantastical scenarios in that
dataset could hurt the model’s ability to reason about scenarios where real world
knowledge is needed, like for common sense reasoning. Moreover, children do
not have a lot of experience in the world yet. This world knowledge is important
for common sense reasoning and the lack of this knowledge in children might
also be reflected in their linguistic input. The lack of content that is needed for
common sense reasoning in the fine-tuning data might lead to the performance
drops that were seen.

Moreover, the observation that precision and recall are never 0.0 anymore
after fine-tuning on either CHILDES or OpenSubtitles indicates that fine-tuning
helps prevent the model from always classifying everything as 0 (false). But
again, this increase is not necessarily a large improvement, as was also explained
in section 3.3, especially since both measures are far below 0.50 most of the time.
This means that classification is wrong more than it is right, which could be
a result of the threshold not being suitable. At least this shows us that fine-
tuning does not improve reasoning (even for the fantasy dataset) when reasoning
is defined as definition 1.

Lastly, it seems that fine-tuning on CHILDES data has a less negative impact
than OpenSubtitles data according to definition 1, shown by the increase in
precision and recall compared to the Subtitles model. This and the fact that
there is no noticeable difference in accuracy indicates that the CHILDES model
assigns more statements to the positive class than the Subtitles model. It is
important to note that this result is likely dependent on the threshold that
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has been used here. Another difference is that precision and recall have more
variation for the Subtitles model than the CHILDES model, whereas the rest of
the metrics display little variation in both model, showing that performance is
less stable when using the Subtitles model.

To summarize, this experiment relied on the analogy between human and
artificial reasoning in the sense that we use input that is claimed to help children
reason to fine-tune language models. Results show that this is rarely of any
help, but in the case of reasoning about fantastical scenarios, fine-tuning on the
OpenSubtitles dataset has shown to the ability improve performance over the
course of fine-tuning. This can be explained by there being a significant amount
of fantastical content in the OpenSubtitles data, or even the dialogue structure
of this dataset.

5 Experiment 2: Imagination Prompting

Experiment 2 takes big inspiration from zero-shot chain of thought prompting,
where the prompt specifically mentions to “think step by step”. We altered
this method and instead prompt the model to “imagine” the scenario that it
has to reason about. We investigated how this kind of prompting (imagina-
tion prompting) affects performance on various kinds of reasoning tasks. This
experiment is motivated by early observations that children can benefit from a
problem being framed in a make-believe setting or when specifically being asked
to “imagine” it (Dias & Harris, 1988; Richards & Sanderson, 1999). This ex-
periments transfers this technique to large language models, viewing them as a
model reflecting a learning child. According to Wei, Wang, et al. (2022), chain
of thought prompting can have no or even an adverse effect on models with
less than 100B parameters (such as GPT-2) and only has substantial benefit for
sufficiently large models (more than 100B parameters). To test this observation
in our domain, the experiment was conducted using both GPT-2 and GPT-3,
with them having 124M and 175B parameters respectively.

5.1 Method

5.1.1 Data

For this experiment, we again used the same task data sets and the same devel-
opment and test splits. However, the preprocessing was different from what has
been described in section 3.1.1. This time, the end goal of preprocessing was to
let each data set have one column with the premise and a separate column with
the hypothesis, and one column with the reverse of the hypothesis and columns
for both the original and reversed case with a class label that is either 1 (true)
or 0 (false).

In case of SNLI, the phrase “it follows that” has been prepended to the hy-
pothesis. Since the premise and hypothesis are already separate, nothing else
was done. For the logical deduction dataset, the process is similar. However,
there were multiple hypotheses for each premise in this case, as can be seen in
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table ??. Separate data points were made using each of these hypotheses, using
the same strategy as has been used for SNLI. For the fantasy reasoning dataset,
items were concatenated premises and hypotheses. The hypothesis is always
the last sentence, so the phrase “It follows that” has been prepended to the
last sentence of each item and the last sentence is separated as the hypothesis.
The com2sense data is of a different nature, because items are not consistently
structured as having a premise and hypothesis, but are statements of any struc-
ture that can be evaluated using our common sense. For this reason, the data
has been preprocessed differently. The phrase “it is straightforward that” has
been added to each item where this naturally fits. In order to keep the same
structure for easy further processing of the dataset, a separate empty column
representing the hypothesis has been added to this data set.

As a next step, reversed versions of all items were made again to control for
noise due to random variation in the data. For each datapoint in the dataset, a
negation has been added to the dataset by starting the hypothesis with “it does
not follow that” instead of “it follows that”. Reversed versions of items from
the com2sense dataset have been created by including “it is not straightforward
that” in the premises instead. All reversed statements were assigned to the label
that is the inverse of the label belonging to the original, non-negated statement.
In order to prepare for the prompting experiment, the clause “imagine the sce-
nario” has been prepended to all premises and negated premises. This clause
was chosen among a set of similar clauses (e.g. “Imagine this situation”, “Imag-
ine this”, etc.) that have been experimented with to investigate differences in
generation quality, but no noticable differences were found. Whatever comes af-
ter this clause was enclosed in quotes. Thus, in the end, all data sets consisted
of five columns, of which two represent the premise and negated premise, one
represents the hypothesis and the rest represents the class labels corresponding
to the original and negated premise respectively.

5.1.2 Generating Elaborations

Now that data has been preprocessed, elaborations based on the premises of
each data point could be generated. All premises were tokenized using the
GPT2Tokenizer from the Huggingface library, to prepare for the generation of
elaborations by GPT-2.

Elaborations of each premise have been generated by GPT-2, using top-p
sampling with p = 0.9. This value has been selected out of values ranging
from 0 to 1, using a step size of 0.1. The chosen value was found to display
the least repetition, most naturally sounding sentences, but still displayed suf-
ficient variation across runs. Three different variations of each item have been
made, namely cutting off the elaboration after the first, second or third sentence,
yielding three different datasets.

For GPT-3, a similar approach has been taken. The only difference is that
no preset cut-off points have been used, since GPT-3 has it’s own stopping
criterion. This means that the model can stop generating when it has reached
a “natural” end point, which was not the case for GPT-2.
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Note that the com2sense dataset has no separate premises and hypotheses.
Due to this different nature, elaborations have been generated based on the full
statements and also for their negated counterpart.

After generating an elaboration of the premise, the hypothesis has been
appended to the premise and elaboration, which was the final step in the con-
struction of the data. Conclusions in com2sense were not separate, so in that
case statement and elaboration are kept as is. Thus, in the end we had created
a dataset with four columns for each reasoning task (leaving out hypothesis
in the case of com2sense), namely the premise + elaboration + hypothesis, the
corresponding negated version and the class label corresponding to that negated
version.

5.1.3 Evaluation

Classification and evaluation has been done in the same way as described in
section 3.1.2 and 3.1.3, but this time using the data that includes generated
elaborations. For GPT-2, different combinations of label description and cut-off
point have been evaluated using the development set, whereas for GPT-3 only
different label descriptions have been evaluated. Again, AUC has been used to
select the best configuration to use for evaluating performance on the reasoning
task test sets.

5.2 Results

First, here are examples of data points including generated elaborations by
GPT-2 (marked in bold) with a cut-off point of three for each dataset.

• Fantasy: Imagine the scenario ’they say you die twice. one time when
you stop breathing and a second time, a bit later on, when somebody
says your name for the last time. what they don’t say is that in between
those deaths, you get stuck in purgatory with all the great philosophers
and authors - all just waiting to die.’ That is what the philosopher
Jacques Baudrillard has discovered. The paradox that is the
case with the modern philosophy is that the ’people who are
going to die’ are going to live forever. To find out what is going
to happen to them depends on some fundamental question. It
follows that you will be stuck forever in purgatory if nobody says your
name for the last time.

• SNLI: Imagine the scenario ’the brown and white dogs run through the
field.’ That would be the story of a little-known group of men
with the vision of having a dream world. If they were a race,
they would be brown. If they were a race, they would be black.
It follows that there are dogs outdoors.

• Com2sense: Imagine the scenario ’because he can push a cart, it is
straightforward that pushing a stroller should not be difficult.’ difficult.’
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In this case, you are trying to get a car on the track and you’re
trying to get a car on the track, so the wheel stops. You can do
this with any other situation, and with a car with brakes and
braking assist.

• Logical deduction: Imagine the scenario ’a fruit stand sells seven fruits:
loquats, peaches, watermelons, plums, kiwis, mangoes, and pears. the
pears are more expensive than the kiwis. the watermelons are less ex-
pensive than the peaches. the mangoes are the third-cheapest. the wa-
termelons are the third-most expensive. the plums are the second-most
expensive. the loquats are the second-cheapest.’ It should be said that
this is not the same as any of the other ’chances’ I have used in
the past. the actual reason is that the more money that you can
make without being caught, the less likely you are to fall prey
to the bad guys. There’s no need to worry too much about the
money, because the amount that you will ever receive is simply
the amount you will ever spend. It follows that the peaches are the
most expensive.

Below are the same examples, but with elaborations generated by GPT-3
instead.

• Fantasy: Imagine the scenario ’they say you die twice. one time when
you stop breathing and a second time, a bit later on, when somebody says
your name for the last time. what they don’t say is that in between those
deaths, you get stuck in purgatory with all the great philosophers and
authors - all just waiting to die.’ In this scenario, the person is stuck
in purgatory with all the great philosophers and authors. They
are all just waiting to die. It follows that you will be stuck forever in
purgatory if nobody says your name for the last time.

• SNLI: Imagine the scenario ’the brown and white dogs run through the
field.’ In this scenario, the brown and white dogs are running
through a field. They are playful and happy, enjoying the free-
dom to run and explore. The grass is tall and the sun is shining.
They are having a great time! It follows that there are dogs outdoors.

• Com2sense: Imagine the scenario ’because he can push a cart, it is
straightforward that pushing a stroller should not be difficult.’ A man
is pushing a grocery cart through a grocery store. He sees a
woman with a stroller trying to maneuver through the narrow
aisles. The man thinks to himself, “because he can push a cart, it
is straightforward that pushing a stroller should not be difficult.”
The man offers to help the woman with her stroller.

• Logical deduction: Imagine the scenario ’a fruit stand sells seven fruits:
loquats, peaches, watermelons, plums, kiwis, mangoes, and pears. the
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pears are more expensive than the kiwis. the watermelons are less ex-
pensive than the peaches. the mangoes are the third-cheapest. the wa-
termelons are the third-most expensive. the plums are the second-most
expensive. the loquats are the second-cheapest.’ If someone were to
ask for the price of the plums, you would tell them that the
plums are the second-most expensive fruit at the stand. It fol-
lows that the peaches are the most expensive.

(a) AUC on development sets for GPT-2
using different label descriptions and cut-
off points

(b) AUC on development sets for GPT-3
using different label descriptions

Figure 9: AUC on development sets

Figure 9 shows mean AUC values over three different runs on the develop-
ment sets for both GPT-2 and GPT-3 using different configurations. Different
runs differ in their generations, since generation is not deterministic due to the
use of top-p sampling. The black line indicates chance level AUC. Tables 24
and 25 in appendix B.3 give a complete overview of all performance metrics.

For GPT-2, AUC and other performance metrics for the development set
are relatively consistent across different label descriptions and cut-off points
for each dataset. GPT-2 has the highest AUC value for the SNLI dataset for
all label descriptions and cut-off points. Accuracy on SNLI is also the highest
among datasets (0.50-0.52). Still, measures are at chance level and do not
show a major difference compared to other datasets. The fantasy dataset shows
visibly more variation than other datasets in all metrics across runs, shown by
higher standard deviations. No dataset except for the SNLI dataset ever exceeds
chance AUC when using GPT-2. Nevertheless, recall sometimes exceeds 0.50
for datasets other than SNLI (recall ranges from 0.09 to 0.75).

Also important to note is that com2sense has a remarkably low recall com-
pared to the other datasets (0.09-0.22 versus 0.59-0.75) and this effect persists
across different configurations of label and cut-off point as shown in appendix
B.3 table 24. This effect is only observed in the current experiment. This pattern
is strengthened by an occurrence of significantly negative Pearson correlation
(-0.04). For other datasets, recall is consistently higher than precision (0.59-0.75
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versus 0.48-0.51). Accuracy is around chance level at all times (0.48-0.52).
When comparing these development results to the GPT-2 baseline devel-

opment results, we see that precision and recall has increased for all datasets
(0.42-0.51 precision 0.09-0.22 recall versus lots of 0.0 occurrences in the baseline).
Moreover, accuracy remained similar (0.48-0.52), but AUC generally displays a
slight drop compared to the baseline.

Figure 9b shows that in case of GPT-3, the fantasy dataset always exceeds
chance level AUC and displays the highest AUC of all datasets. Also, the AUC
score on fantasy for label description a is considerably higher than when other
label descriptions were used. Similar patterns show up for accuracy, precision
and recall, but the picture is more nuanced. Accuracy is highest in all cases
(0.54-0.59), but precision is highest in most cases (0.58 for label description a
and 0.62 for b), except when using label description c (0.56). Recall is only
highest when using label description a (0.67). The success of label description
a is also shown in a significantly positive Pearson correlation (0.27). These
observations are different than what has been observed for GPT-2, where SNLI
was scoring the highest. Next highest AUC is on SNLI, which now only exceeds
chance AUC when label descriptions b and c are used. The other datasets
do not exceed chance AUC and the com2sense dataset consistently shows the
lowest AUC of all, similar to what we observed for GPT-2. This observation is
accompanied by significantly negative correlations (-0.11 and -0.10).

All datasets, except for fantasy (0.54-0.59), display an accuracy around
chance. Recall is always higher than precision for the com2sense dataset (0.57-
0.75 recall versus 0.48-0.49 precision). For the rest of the datasets, recall (0.03-
0.50) is usually lower than precision (0.50-0.58). The exception to this is the fan-
tasy dataset combined with label description a (0.67 recall and 0.58 precision).
When comparing these GPT-3 development results to those of the baseline, it
becomes apparent that the pattern in precision versus recall is similar. Both
AUC and accuracy have dropped or stayed similar compared to the baseline
(0.48-0.59 accuracy now versus 0.50-0.61 for the baseline). Another important
observation is that there is more variation in metrics across label descriptions
now than there was in the baseline experiment.

When comparing GPT-2 and GPT-3 development results to each other, the
most obvious differences relate to the fantasy dataset. GPT-3 displays higher
AUC values than GPT-2. This difference is especially apparent when using
label description a, where also a significantly positive Pearson correlation is
observed (0.27). Moreover, precision is generally higher for the fantasy dataset
when using GPT-3 (0.56-0.62) than when using GPT-2 (0.48-0.51), as well as
accuracy (0.54-0.59 for GPT-3 versus 0.48-0.51 for GPT-2).

Lastly, recall shows a distinctive pattern for the SNLI, fantasy and logical
deduction datasets. Recall is less in GPT-3, especially for label descriptions b
and c (0.03-0.33 for GPT-3 versus 0.59-0.75 for GPT-2). This difference in recall
between GPT-2 and GPT-3 is more pronounced for label descriptions b and c
(0.03-0.33 for GPT-3 versus 0.59-0.75 for GPT-2) than for label description
a (0.16-0.67 versus 0.65-0.75). On top of that, this contrast between label
descriptions is also observed for com2sense, but recall values are higher in general
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than those of the other datasets (0.57-0.75 for com2sense versus 0.03-0.67 for
the other datasets), which contrast the development results of GPT-2. This
specific contrast in recall between label descriptions was also observed in the
baseline experiment.

More importantly, the contrast in recall between GPT-2 and GPT-3 ob-
served for most datasets was not observed for com2sense. Recall shows a steep
increase for all label descriptions (0.57-0.75 for GPT-3 and 0.09-0.22 for GPT-
2), accompanied by a slight increase in precision (0.48-0.49 for GPT-3 versus
0.42-0.48 for GPT-2). AUC for GPT-3 on com2sense even shows a slight de-
crease compared to GPT-2. The low AUC scores on com2sense are supported
by significantly negative Pearson correlations (-0.10 and -0.11), which were also
sometimes present when using GPT-2.

COT Baseline
F1 AUC F1 AUC

SNLI Overall best (0.58, 0.01) (0.50, 0.03) 0.13 0.54
Task best (0.58, 0.01) (0.50, 0.02) 0.0 0.55

Fantasy Overall best (0.58, 0.05) (0.47, 0.06) 0.0 0.31
Task best (0.58, 0.05) (0.47, 0.06) 0.0 0.31

Com2sense Overall best (0.17, 0.03) (0.53, 0.04) 0.0 0.54
Task best (0.25, 0.02) (0.53, 0.04) 0.0 0.54

Deductive Overall best (0.55, 0.05) (0.45, 0.04) 0.49 0.55
Task best (0.55, 0.04) (0.45, 0.05) 0.49 0.55

Table 6: COT results on the test set for GPT-2. A threshold of 0.0 has been
used to calculate precision and recall (resulting in above F1 scores). Results are
reported as (x, y), with x indicating mean and y standard deviation over three
runs.

COT Baseline
F1 AUC F1 AUC

SNLI Overall best (0.58, 0.01) (0.50, 0.02) 0.56 0.59
Task best (0.28, 0.03) (0.56, 0.01) 0.55 0.61

Fantasy Overall best (0.55, 0.06) (0.47, 0.07) 0.29 0.49
Task best (0.61, 0.04) (0.66, 0.04) 0.70 0.66

Com2sense Overall best (0.57, 0.02) (0.48, 0.02) 0.66 0.50
Task best (0.59, 0.01) (0.46, 0.02) 0.55 0.46

Deductive Overall best (0.54, 0.05) (0.45, 0.04) 0.18 0.45
Task best (0.12, 0.01) (0.48, 0.02) 0.37 0.49

Table 7: COT results on the test set for GPT-3. A threshold of 0.0 has been
used to calculate precision and recall (resulting in above F1 scores). Results are
reported as (x, y), with x indicating mean and y standard deviation over three
runs.
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Based on these development AUC values, best configurations of label descrip-
tion (and cut-off point in case of GPT-2) have been selected for testing. Results
of testing are reported in tables 6 and 7 and a complete overview of metrics has
been given in appendix B.3 tables 26 and 27. When comparing test results for
GPT-2 to the baseline test results, it can be seen that this experiment yields
lower (or similar in case of com2sense) AUC values for all datasets except for
the fantasy dataset, which has increased in terms of AUC. On top of that, pre-
cision and recall is not 0.0 anymore like it often was in the baseline experiment;
they increased for most datasets (0.47-0.63 precision and 0.10-0.71 recall) except
for the logical deduction dataset, where precision remained similar. Accuracy
remained similar for all datasets compared to the baseline (0.49-0.52).

For GPT-3, AUC values on the test set are comparable to those of the
baseline experiment for the fantasy, com2sense and logical deduction datasets.
For the SNLI dataset AUC decreased compared to the baseline, but there is
still an occurrence of a positive correlation that is significant (0.12). Although
com2sense is similar in AUC to the baseline, significantly negative Pearson cor-
relations are observed now (-0.11), which were not present in the baseline test
results. The fantasy dataset displays significantly positive Pearson correlation
now (0.27), as opposed to the baseline. Regarding precision and recall, there is
a general increase compared to the baseline (0.47-0.64 precision and 0.07-0.75
recall now versus 0.36-0.56 precision and 0.12-0.97 recall for the baseline). How-
ever, in some cases there is a decline, namely recall for the overall best model on
the com2sense datasets (0.70 versus 0.97 for the baseline) and lastly, recall for
the task best model on the logical deduction dataset (0.07 now versus 0.46 for
the baseline). Again, accuracy is similar to the baseline in all cases (0.46-0.52).

If we compare these test results to the development results, we see that
they are mostly similar. This even holds for the occurrences of low recall that
were seen during development, where com2sense and SNLI, fantasy and logical
deduction displayed low recall compared to other datasets for GPT-2 and GPT-
3 respectively. To be more precise, recall is low for the com2sense dataset in
case of GPT-2 (0.10-0.17 versus 0.65-0.71 for other datasets) and low for the
SNLI and logical deduction dataset in case of GPT-3 (0.07-0.68 versus 0.62-
0.75). Precision is similar in most cases, with a few exceptions: it is higher on
the com2sense dataset using the overall best model when using GPT-2 (0.63 for
GPT-2 and 0.49 for GPT-3) and it is higher on the logical deduction dataset
using the task best model when using GPT-3 (0.64 for GPT-3 versus 0.48 for
GPT-2). It can also be seen that AUC of the task best model is generally higher
when using GPT-3. Lastly, accuracy is similar between GPT-2 (0.46-0.52) and
GPT-3 (0.46-0.58).

5.3 Discussion

Generations of GPT-3 are better than those of GPT-2. Generations by GPT-2
are somewhat related to the prompt, by having similar words as in the prompt.
However, the continuations are not related to the prompt semantically and are
often nonsensical. Continuations do not explain or elaborate on what is said in
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the prompt, which is the underlying concept of COT prompting. On the other
hand, continuations generated by GPT-3 are much more sensical and actually
elaborate on the scenario that is present in the prompt. Still, the content from
the prompt is sometimes repeated in different words, instead of being elaborated
on.

The consistency of performance across label descriptions and cut-off points
for GPT-2 indicates that performance is not sensitive to exact label descriptions
and cut-off points when using GPT-2. Possibly, the model is already performing
poorly to a point where label descriptions are not able to make a difference and
it is also possible that the length of continuations are not making a difference
to performance, because they are nonsensical regardless of the cut-off point.

Moreover, GPT-2 tends to classify many statements as false when perform-
ing common sense reasoning compared to other tasks, which could be explained
by the poor continuations. The persistently low recall of com2sense compared
to the other datasets when using GPT-2 means that GPT-2 is very likely to
assign a statement to the negative class when performing common sense reason-
ing, resulting in more false negatives. For other datasets recall is higher than
precision, meaning that there are more false positives than false negatives. So,
contrary to common sense reasoning, GPT-2 is more likely to assign an item
to the positive class for other types of reasoning. This result could be due to
the poor quality continuations having a larger effect on the com2sense dataset,
leading GPT-2 to deem many statements to be unlikely to be correct reason-
ing in the com2sense dataset than in other datasets. This intuition is further
confirmed when looking at performance of GPT-3 on common sense reasoning,
which has improved recall considerably compared to GPT-2. This is likely due
to the difference in continuations, which are not nonsensical anymore, eliminat-
ing this negative effect that was observed when using nonsensical continuations
of GPT-2.

However, Pearson correlation being negative and AUC being similar for both
GPT-2 and GPT-3 hints at a different picture. It shows that even though
continuations of GPT-3 are better than those of GPT-2, this does not mean
reasoning according to definition 2 is better for GPT-3.

Such a contrast between precision and recall was not seen in the baseline
experiment, where precision and recall were often 0.0. This difference indicates
that COT leads GPT-2 to make more nuanced predictions, instead of assigning
all statements to the negative class. It indicates that reasoning according to
definition 1 improved. In other words, it is more often the case that GPT-2 as-
signs a higher similarity to a label description of correct reasoning for a correct
statement than for an incorrect statement. Nevertheless, the drop of AUC in
most datasets does indicate that this does not necessarily mean that reasoning
improved according to definition 2. It means that it is harder for the model
to discriminate incorrect from correct reasoning, according to similarity to a
label description. AUC when using GPT-2 increased for the fantasy dataset
regarding the test set, but not for the development set. For this reason, it can
not be said that there was an improvement. can be explained by the continua-
tions generated by GPT-2 being nonsensical and semantically unrelated to the

41



scenarios presented.
Reasoning according to definition 1 improved for GPT-3. Even though no

apparent improvements in AUC were found, an overall improved precision and
recall compared to the baseline for GPT-3 indicate that GPT-3 was able to
reason better for different tasks according to definition 1 of reasoning. The fact
that we see some improvement for GPT-3 but not for GPT-2, can be explained
by the continuations of GPT-2 being nonsensical, while those of GPT-3 were
understandable and relevant to the prompt. Again, label descriptions prove to
be important factor in determining performance when using GPT-3, even more
than in the baseline. This is shown by fluctuations in not only AUC, but also
accuracy, precision and recall across label descriptions.

GPT-3 reasons better than GPT-2 in the context of fantastical scenarios
when reasoning is defined as definition 2. It is apparent that GPT-3 shows
a higher AUC compared to GPT-2 for the fantasy development dataset, and
this boost is the highest when using label description a. This again shows the
importance of choosing your label description carefully.

However, precision and recall tell a different story. The decrease in recall
and increase in precision show that more statements are being assigned to the
negative class (incorrect reasoning), resulting in more false negatives and less
false positives. Since both precision and recall are equally important, we can
conclude that GPT-3 is not better than GPT-2 in reasoning about fantastical
scenarios according to definition 1. A similar observation can be made about
logical deduction and SNLI, but for these datasets reasoning according to defi-
nition 2 was equally good for GPT-2 and GPT-3.

Com2sense shows a different pattern. Namely, the decrease in AUC shows
that common sense reasoning under definition 2 is worse for GPT-3 than GPT-2,
whereas the increase in precision and recall shows that common sense reasoning
under definition 1 is better when using GPT-3 as opposed to GPT-2. This is
similar to what was observed in the baseline experiment. This can be explained
by the fact that continuations of GPT-3 did not contain new information and
were merely a rewording of the content that was in the prompt. As a result,
GPT-3 did not get any extra information to help improve performance on com-
mon sense reasoning.

To summarize, this experiment relied on research on human reasoning, where
it was claimed that humans reason better when they are primed to imagine the
scenario they have to reason about. Through our analogy between humans and
machines, we apply this technique to models by performing zero-shot chain of
thought prompting. Zero-shot imagination prompting seems to have no effect
on reasoning performance in the sense of making correct classifications, but an
overall increase in precision and recall for GPT-3 do indicate a slight improve-
ment of zero-shot reasoning for GPT-3 when reasoning is defined as definition
1.
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6 Experiment 3: Combining Fine-tuning and
Imagination Prompting

The last experiment aimed to combine experiment 1 and 2. Using the model
configurations found to be the best performing in experiment 1, we performed
imagination prompting. We only use GPT-2 in this experiment due to resource
constraints.

6.1 Method

For this experiment, the same task data sets have been used again, using the
same preprocessing as described in section 5.1.1. The process for generating
elaborations is slightly different from the explanation given in section 5.1.2.
Again, all premises were tokenized using the GPT2Tokenizer from the Hug-
gingface library, to prepare for the generation of elaborations by selected model
checkpoints.

The model checkpoint that was found to be the best overall has been used
to generate elaborations for all datasets. In addition, elaborations have been
generated for each task data set using the model checkpoint that was found to be
the best for that task specifically. This has been done with both CHILDES and
Subtitles models. Like before, top-p sampling with p = 0.9 was used and using
three different preset cut-off points for the elaborations. The rest of the process
remained the same as the process described in section 5.1.2. This resulted in
a dataset with four columns for each reasoning task, namely the premise +
elaboration + hypothesis, corresponding class label, the corresponding negated
version and the class label corresponding to that negated version.

Evaluation has been done like stated before in section 5.1.3, using AUC to
choose the best combinations of label description and cut-off point for the test
set. Again, an overall best configuration was chosen based on AUC. On top
of that, configurations that led to the highest AUC value for each reasoning
task specifically were selected for evaluation on the test set of the corresponding
reasoning task.

6.2 Results

Below are listed examples of the elaborations generated by the CHILDES mod-
els. As you can see, this specific example from com2sense did not yield a con-
tinuation. This issue of the models not generating text sometimes showed up in
this experiment, but much much more for the Subtitles than for the CHILDES
model. The Subtitles models rarely generated any continuations, so those are
not reported. Since this means that results for the Subtitles model will be highly
similar to those of experiment 1, the results are not reported here either. They
can be found in appendix B.4 tables 32, 28 and 29.

• Fantasy: Imagine the scenario ’they say you die twice. one time when
you stop breathing and a second time, a bit later on, when somebody
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says your name for the last time. what they don’t say is that in between
those deaths, you get stuck in purgatory with all the great philosophers
and authors - all just waiting to die.’ this is what look theyve done..
www. oh. whats that then? It does not follow that you will be stuck
forever in purgatory if nobody says your name for the last time.

• SNLI: Imagine the scenario ’the brown and white dogs run through the
field.’ other up. thats the right. lets look at the same color. It
follows that there are dogs outdoors.

• Com2sense: Imagine the scenario ’because he can push a cart, it is
straightforward that pushing a stroller should not be difficult.’

• Logical deduction: Imagine the scenario ’a fruit stand sells seven fruits:
loquats, peaches, watermelons, plums, kiwis, mangoes, and pears. the
pears are more expensive than the kiwis. the watermelons are less ex-
pensive than the peaches. the mangoes are the third-cheapest. the wa-
termelons are the third-most expensive. the plums are the second-most
expensive. the loquats are the second-cheapest.’ the third. one. to
three. It does not follow that the peaches are the most expensive.

(a) AUC on development sets for
CHILDES model using different label de-
scriptions and cut-off points, using the
overall best model checkpoint found in ex-
periment 1

(b) AUC on development sets for
CHILDES model using different label
descriptions and cut-off points, using
the task specific best model checkpoints
found in experiment 1

Figure 10: AUC on development sets
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COT Baseline
F1 AUC F1 AUC

SNLI Overall best (0.30, 0.18) (0.26, 0.27) 0.13 0.54
Task best (0.22, 0.05) (0.51, 0.06) 0.0 0.55

Fantasy Overall best (0.36, 0.22) (0.50, 0.06) 0.0 0.31
Task best (0.35, 0.25) (0.54, 0.06) 0.0 0.31

Com2sense Overall best (0.54, 0.11) (0.48, 0.05) 0.0 0.54
Task best (0.62, 0.02) (0.50, 0.03) 0.0 0.54

Deductive Overall best (0.29, 0.14) (0.50, 0.05) 0.49 0.55
Task best (0.29, 0.14) (0.50, 0.05) 0.49 0.55

Table 8: COT results of the overall best CHILDES model checkpoint on the test
set using the best configurations found during development. A threshold of 0.0
has been used to calculate precision and recall (resulting in above F1 scores).
Results are reported as (x, y), with x indicating mean and y standard deviation
over three runs.

COT Baseline
F1 AUC F1 AUC

SNLI Overall best (0.44, 0.09) (0.44, 0.04) 0.56 0.59
Task best (0.49, 0.07) (0.46, 0.05) 0.55 0.61

Fantasy Overall best (0.29, 0.21) (0.51, 0.03) 0.29 0.49
Task best (0.35, 0.25) (0.54, 0.06) 0.70 0.66

Com2sense Overall best (0.58, 0.11) (0.54, 0.03) 0.66 0.50
Task best (0.55, 0.11) (0.51, 0.04) 0.55 0.46

Deductive Overall best (0.40, 0.28) (0.52, 0.03) 0.18 0.45
Task best (0.34, 0.13) (0.46, 0.02) 0.37 0.49

Table 9: COT results of the task specific best CHILDES model checkpoints
on the test set using the best configurations found during development. A
threshold of 0.0 has been used to calculate precision and recall (resulting in
above F1 scores). Results are reported as (x, y), with x indicating mean and y
standard deviation over three runs.

Figure 10 shows mean AUC on the development sets across three runs for
CHILDES models using different configurations of label description and cut-off
points. Figure 10a shows results using the overall best checkpoint that was
found in experiment 1. Figure 10b shows results using the task specific best
checkpoints that were found in experiment 1. Tables 8 and 9 show results on
the test sets using the combinations of label description and cut-off point that
were found to be best during development. This has been done for the overall
and task specific checkpoint models. In appendix B.4, a more extensive overview
of performance metrics can be found (tables 33, 30 and 31). Again, the black
line represents chance performance.

In general, development results of using the CHILDES model show little to
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no variation in AUC, and chance level is often not exceeded. This holds for
both overall best and task specific best checkpoints. Compared to the baseline,
AUC increased only slightly for the fantasy dataset, but decreased for all other
datasets. There was no increase in AUC compared to experiment 1 or 2. The
same was observed for other performance metrics: precision and recall show
similar values (0.28-0.59 precision and 0.16-0.63 recall) as in experiment 1. On
top of that, precision and recall are generally lower than what is observed in the
results of experiment 2. Also Pearson correlation is similar to both experiment
1 and 2, with values being very close to 0.0. Test results confirm this picture.

6.3 Discussion

Firstly, the generation examples show that the Subtitles model rarely generates
an elaboration. The CHILDES model displays this behavior sometimes as well,
but much less than the Subtitles model. This leads to the performance metrics
being almost identical to those in experiment 1 in case of Subtitles. In addition,
this explains the observation that cut-off point does not seem to cause variation
in AUC, since generations are often not present.

Concerning CHILDES continuations, we see that they are very representa-
tive of child directed speech: sentences consisting of one word, nonsensical and
repetitive.

Results again show that carefully choosing a label description to work with
is crucial to get optimal performance. In this experiment, it became apparent
that using CHILDES model does not help performance, even hurting it most
of the time when using definition 2 of reasoning. Moreover, this strategy of
combining experiment 1 and 2 yielded no advantage over either experiment 1
or 2 in terms of reasoning defined as definition 1.

The observation that using CHILDES models tends to hurt performance be-
comes clearer when looking at the continuations that were generated, which were
always nonsensical and almost gibberish. It is likely that these elaborations dis-
tract the model from the content of the statement that matters for classification.
This, together with the observation that the Subtitles model does not generate
elaborations, shows that combining our imagination prompting with fine-tuning
is not a fruitful approach the way it was done now. Possibly, fine-tuning was
too much here, and results would be more promising when fine-tuning for with
a smaller learning rate.

To summarize, this experiment aimed to investigate the effect of combining
our two previous experiments. Unfortunately, results show that this tends to
hurt zero-shot reasoning performance more than it helps, which can be explained
by the nonsensical (or non-existent in case of the Subtitles models) continuations
that the fine-tuned models generate. Possibly, future research could attempt to
do less fine-tuning than was done here to improve these continuations.
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7 Conclusion

This section brings together the results from all experiments and conclude with
suggestions for future work. Results from the baseline experiment confirmed
that both GPT-2 and GPT-3 struggle with zero-shot reasoning. It also became
apparent that GPT-2 performs worse than GPT-3 for tasks involving fantastical
scenarios or more general reasoning (SNLI), but performs better than GPT-3 on
common sense reasoning and logical deduction tasks. However, both GPT-2 and
GPT-3 do not exceed chance level performance for all types of reasoning tasks,
showing that both still have a long way to go to reach human performance.

The first striking observation was already made in the baseline experiment,
where results hinted at zero-shot reasoning performance does not scale with
model size for all types of reasoning, especially when using definition 2 of rea-
soning. This is in conflict with previous research (Brown et al., 2020; Rae et al.,
2021; Srivastava et al., 2022; Smith et al., 2022; Wei, Tay, et al., 2022). How-
ever, their research did not evaluate on the same task datasets that were used
here. Thus, whether zero-shot learning is an emergent property seems highly
dependent on the specific task that is being evaluated. Either way, further
experiments are needed to get to the bottom of this observation.

The first attempt to make an analogy between human reasoning and artificial
reasoning was through fine-tuning on linguistic data that children receive on a
daily basis. Results of this experiments point to that this is only fruitful in a
specific setting. Namely, fine-tuning on OpenSubtitles data while using the label
description “This statement makes sense” for classification improves reasoning
about fantastical scenarios. This can be explained by the substantial amounts
of fantastical content in the OpenSubtitles data, that could guide the model to
reason better about such situations. Horror or sci-fi movies and tv-shows are
contained in the dataset, which are genres where fantastical scenarios occur in
the stories. Possibly, there are also other characteristics of this data that help
the model to reason better, such as its dialogue structure, but we believe the
content to be the most plausible explanation. Actually, this finding can also be
related to previous findings about imagination helping children to reason (Dias
& Harris, 1988; Richards & Sanderson, 1999). The fact that OpenSubtitles
contains fantastical contains possibly triggers the model into an imaginary state,
where it is more inclined to imagine upon seeing a statement.

The second attempt to draw a parallel between human and artificial reason-
ing is to apply results from psychological research indicating that children reason
better when being presented a problem in a make-believe setting or being in-
structed to imagine the scenario to zero-shot chain of thought prompting. This
experiment showed that this strategy did not improve reasoning, and sometimes
even hurts it. The expectation is that this is caused by continuations generated
by the models not being informative enough to guide the model’s reasoning;
elaborations of GPT-2 were often nonsensical and those of GPT-3 were often a
rephrasing of the prompt. We believe that this approach would have been more
succesfull if continuations were able make latent information from the prompt
more explicit.
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In the last experiment, we investigated how experiment 1 and 2 interact
by performing zero-shot chain of thought prompting using fine-tuned models.
These results show that performance is not improved in case of models fine-tuned
on OpenSubtitles, due to elaborations not being generated by the models. In
case of models fine-tuned on CHILDES, performance is even hurt, which can
be attributed to elaborations generated being nonsensical and not anywhere
close to regular human language, but more like gibberish of a child. Future
research could continue upon this result, by replicating the experiment, but
using a smaller learning rate to make the fine-tuning less steep and generations
more understandable and useful. Possibly, the fine-tuning was too strong in
the current work, leading to generations that resemble the fine-tuning data too
closely.

Imagination prompting seems to have no effect on zero-shot reasoning perfor-
mance under definition 1. However, the overall increase in precision and recall
for GPT-3 compared to the baseline indicates an overall improvement across
different types of reasoning when using GPT-3 under our second definition of
reasoning. This would further strengthen the validity of our analogy between
humans and models, because it was found that triggering children to use their
imagination while reasoning affected their performance in a positive way. In any
case, we believe performance could still be improved further, since we found that
continuations of GPT-3 were mostly a rephrasing of the prompt. Therefore, fu-
ture research to investigate strategies to let GPT-3 generate elaborations that
uncover implicit information from the prompt instead of mere rephrasing could
give the zero-shot reasoning performance a better boost.

For example, one could search for other prompting strategies than the “Imag-
ine the scenario” prefix that has been attempted here. Even though the current
initial search did not reveal any noticable differences in continuations, a search
in a larger prompt space could still reveal prompts yielding continuations of a
better quality. If this indeed proved to be fruitful, then additional experiments
could be performed on the fantasy reasoning dataset using GPT-3 Subtitles
models combined with imagination prompting to discover a possible additional
performance boost on top of the one we found using solely fine-tuning. In gen-
eral, fine-tuning GPT-3 is a direction for future research that remains to be
fulfilled due to resource constraints.

It would also be fruitful to investigate a larger space of label descriptions, as
results in this work have pointed out that differences in label descriptions can
have a large impact on performance despite them being semantically similar. An
important part in that would be research on efficient and possibly unsupervised
ways of searching for optimal label descriptions for a given task.

Next to that, exploring outside this classification strategy is a possible way
to expand on this work. Examples 3 showed that GPT-2 does not do well at
reasoning using a question answering approach, which motivated our choice of
exploring the current strategy. However, there are more strategies that could be
explored. The first that comes to mind is a language modeling strategy, which
is similar to a question answering strategy, but more controlled. Specifically,
one could feed the model a reasoning task in the form of a question and evaluate
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whether “yes” or “no” has the highest probability of being the next word (the
answer to the question). Possibly, our experiments yield different results when
using such a strategy.

Generally, performance on the fantasy dataset is often among the highest
across all experiments, even the baseline. This is in conflict with results from
Dasgupta et al. (2022), who observe a struggle for reasoning about scenarios
not in line with world knowledge in language models, similar to the struggle
observed in humans. Thinking about the nature of this dataset and how it is
different from the others leads to a plausible explanation. It is related to a
distinction between a strong and weak notion of reasoning: strong reasoning is
being able to produce intermediate steps in going from premises to hypothesis,
whereas merely distinguishing good from bad reasoning is a weaker notion of
reasoning. Statements he fantasy dataset contain many of the intermediate
reasoning steps that are needed to go from premise to hypothesis. So, the model
does not need to actively discover these steps, meaning that only the weaker
notion of reasoning is being tested. On the other hand, the other datasets do
not contain these intermediate steps. So in that case, the model must discover
these steps in order to arrive at the correct hypothesis given a premise, meaning
that a stronger notion of reasoning is being tested. This is a likely explanation
of the consistently good performance of models on the fantasy dataset.

Falmagne (1990) claimed that higher forms of logic, logical deduction in
particular, are acquired through linguistic input. Results from experiment 1
indicate that this claim does not extend to models, since fine-tuning on linguistic
input that a child is likely to encounter did not result in a performance boost for
the logical deduction dataset. However, positive results on the fantasy dataset
show that fine-tuning can be helpful for other types of reasoning, in this case
reasoning about fantastical scenarios.

There was a visible improvement in performance for the fantasy dataset when
fine-tuning on OpenSubtitles data for label description b when using GPT-2.
Additional cross validation has already been performed to confirm that this
result was not due to characteristics specific to the used development and test
split. Our discussion of weaker versus stronger notions of reasoning gives rise
to the expectation that fine-tuning causes improvement regarding the weaker
notion of reasoning. Nevertheless, this result is a promising start for making
zero-shot generalization accessible for smaller models as well.

This result, being the most promising in this work, should be explored fur-
ther. The first thing to do is to investigate if this results remains similar when
fine-tuning GPT-3 and other larger models, including larger versions of GPT-2.
Another important aspect of this result to investigate is the cause of improve-
ment. This result could be due to fantastical content being present in the fine-
tuning data that can serve as “world-knowledge” for fantastical scenario’s, but
also due to the dialogue like structure being helpful for teaching the model to ap-
ply logical reasoning structures, which is an important aspect of this dataset. To
explore these possibilities further, additional experiments need to be performed.
Possibly, two datasets originating from OpenSubtitles can be constructed based
on genres: one containing only fantastical tv-shows and movies and the other
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containing reality tv-shows and movies about real life. These datasets can be
used to repeat experiment 1. If the dataset containing realistic content does
not yield a performance increase for the fantasy dataset and the one contain-
ing fantastical scenarios does, it is a confirmation that the fantastical content is
driving the improvement. If it is the other way around, it could be the structure
of the fine-tuning data helping the model to learn about logical patterns that
are important for solving the task. If both show an improvement, it is likely to
be a combination of both explanations.

Our positive result on the fantasy dataset has shown that drawing a parallel
between human reasoning and reasoning in machines is worth pursuing further
to go in the direction of general human-like artificial intelligence. It has provided
us with a more nuanced view on our first research question, namely that fine-
tuning on human data can be helpful, but that this is very sensitive to the task
and parameters. This finding also provides a promising outlook on being able
to use smaller models for zero-shot reasoning. The conclusion on our second
research question is that we need to investigate more generation strategies in
order to fully explore the potential of imagination prompting. All in all, this
research opens many doors for future research on zero-shot reasoning.
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A Data

A.1 Baseline

Premise Hypothesis label
A soccer game with multi-
ple males playing.

Some men are playing a
sport.

Entailment

A man inspects the uni-
form of a figure in some
East Asian country.

The man is sleeping. Contradiction

An older and younger man
smiling.

Two men are smiling and
laughing at the cats play-
ing on the floor.

Neutral

Table 10: Examples from the SNLI dataset

Item Label
After millennia of waiting, an evil alien science corporation
is brought down. The galactic government moves to remove
an abandoned island laboratory that the company had put
their lethal creatures on, only to find the island had been
named Australia by a sentient species who now lives there.
Animals appeared in Australia because they were created
by God.

No

When you die, you appear in a cinema with a number of
other people who look like you. You find out that they
are your previous reincarnations, and soon you all begin
watching your next life on the big screen. The people in the
cinema are linked to you because they are you in your past
lives.

Yes

Table 11: Examples from the fantasy dataset

Item Label
A knife could be used in place of a screwdriver. True
Since my last exam is today, I booked a flight home from
school that departed yesterday.

False

Table 12: Examples from the com2sense dataset
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Premise Hypotheses Labels

On a shelf, there are three
books: a black book, an or-
ange book, and a blue book.
The blue book is to the right
of the orange book. The or-
ange book is to the right of
the black book.

[The black book is the left-
most., The orange book is
the leftmost., The blue book
is the leftmost.]

[1, 0, 0]

In an antique car show,
there are five vehicles: a
station wagon, a tractor, a
truck, a hatchback, and a
minivan. The station wagon
is newer than the tractor.
The truck is older than the
tractor. The minivan is
newer than the hatchback.
The hatchback is the second-
newest.

[The station wagon is the
newest., The tractor is the
newest., The truck is the
newest., The hatchback is
the newest., The minivan is
the newest.]

[0, 0, 0, 0, 1]

A fruit stand sells seven
fruits: watermelons, or-
anges, mangoes, can-
taloupes, kiwis, pears, and
peaches. The pears are
the second-cheapest. The
peaches are more expensive
than the cantaloupes. The
peaches are less expensive
than the mangoes. The can-
taloupes are more expensive
than the kiwis. The oranges
are the fourth-most expen-
sive. The watermelons are
the second-most expensive.

[The watermelons are
the second-cheapest, The
oranges are the second-
cheapest., The mangoes
are the second-cheapest.,
The cantaloupes are the
second-cheapest., The kiwis
are the second-cheapest.,
The pears are the second-
cheapest., The peaches are
the second-cheapest.]

[0, 0, 0, 0, 0, 1, 0]

Table 13: Examples from the logical deduction dataset
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Statement Label Negated statement Label
A soccer game with multiple
males playing. It follows that
some men are playing a sport.

1 A soccer game with multiple
males playing. It does not fol-
low that some men are playing
a sport.

0

A man inspects the uniform of a
figure in some East Asian coun-
try. It follows that the man is
sleeping.

1 A man inspects the uniform of a
figure in some East Asian coun-
try. It does not follow that the
man is sleeping.

0

An older and younger man smil-
ing. It follows that two men are
smiling and laughing at the cats
playing on the floor.

0 An older and younger man smil-
ing. It does not follow that two
men are smiling and laughing at
the cats playing on the floor.

1

Table 14: Examples from the transformed SNLI dataset

Statement Label Negated statement Label
After millennia of waiting, an
evil alien science corporation
is brought down. The galac-
tic government moves to remove
an abandoned island laboratory
that the company had put their
lethal creatures on, only to find
the island had been named Aus-
tralia by a sentient species who
now lives there. It follows that
animals appeared in Australia
because they were created by
God.

0 After millennia of waiting, an
evil alien science corporation
is brought down. The galac-
tic government moves to remove
an abandoned island laboratory
that the company had put their
lethal creatures on, only to find
the island had been named Aus-
tralia by a sentient species who
now lives there. It does not
follow that animals appeared in
Australia because they were cre-
ated by God.

1

When you die, you appear in a
cinema with a number of other
people who look like you. You
find out that they are your pre-
vious reincarnations, and soon
you all begin watching your
next life on the big screen. It
follows that the people in the
cinema are linked to you be-
cause they are you in your past
lives.

1 When you die, you appear in a
cinema with a number of other
people who look like you. You
find out that they are your pre-
vious reincarnations, and soon
you all begin watching your
next life on the big screen. It
does not follow that the people
in the cinema are linked to you
because they are you in your
past lives.

0

Table 15: Examples from the transformed fantasy dataset
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Statement Label Negated statement Label
It is straightforward that a knife
could be used in place of a
screwdriver.

1 It is not straightforward that a
knife could be used in place of a
screwdriver.

0

It is straightforward that since
my last exam is today, I booked
a flight home from school that
departed yesterday.

0 It is not straightforward that
since my last exam is today,
I booked a flight home from
school that departed yesterday.

1

Table 16: Examples from the transformed com2sense dataset

Statement Label Negated statement Label

On a shelf, there are three books:
a black book, an orange book, and
a blue book. The blue book is to
the right of the orange book. The
orange book is to the right of the
black book. It follows that the
black book is the leftmost.

1 On a shelf, there are three books:
a black book, an orange book, and
a blue book. The blue book is to
the right of the orange book. The
orange book is to the right of the
black book. It does not follow that
the black book is the leftmost.

0

On a shelf, there are three books:
a black book, an orange book, and
a blue book. The blue book is to
the right of the orange book. The
orange book is to the right of the
black book. It follows that the or-
ange book is the leftmost.

0 On a shelf, there are three books:
a black book, an orange book, and
a blue book. The blue book is to
the right of the orange book. The
orange book is to the right of the
black book. It does not follow that
the orange book is the leftmost.

1

On a shelf, there are three books:
a black book, an orange book, and
a blue book. The blue book is to
the right of the orange book. The
orange book is to the right of the
black book. It follows that the
blue book is the leftmost.

0 On a shelf, there are three books:
a black book, an orange book, and
a blue book. The blue book is to
the right of the orange book. The
orange book is to the right of the
black book. It does not follow that
the blue book is the leftmost.

1

Table 17: Examples from the transformed logical deduction dataset
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B Results

B.1 Baseline

Acc Prec Recall F1 AUC Corr
a SNLI 0.50 1.0 0.005 0.01 0.58 0.14

Fantasy 0.50 0.0 0.0 0.0 0.49 -0.005
Com2sense 0.50 0.0 0.0 0.0 0.53 0.04
Deductive 0.50 0.0 0.0 0.0 0.47 -0.05

b SNLI 0.51 0.8 0.04 0.07 0.58 0.12
Fantasy 0.50 0.0 0.0 0.0 0.52 0.02

Com2sense 0.50 0.0 0.0 0.0 0.53 0.07
Deductive 0.47 0.46 0.37 0.41 0.47 -0.05

c SNLI 0.50 1.0 0.005 0.01 0.58 0.12
Fantasy 0.50 0.0 0.0 0.0 0.50 0.02

Com2sense 0.50 0.0 0.0 0.0 0.52 0.05
Deductive 0.50 0.50 0.01 0.02 0.47 -0.06

Table 18: Baseline results on the development set for GPT-2 for three different
label descriptions. A threshold of 0.0 has been used to calculate accuracy,
precision, recall and F1 score.

Acc Prec Recall F1 AUC Corr
a SNLI 0.53 0.52 0.82 0.64 0.58 0.14

Fantasy 0.56 0.57 0.49 0.53 0.60 0.13
Com2sense 0.50 0.50 0.57 0.53 0.50 -0.005
Deductive 0.56 0.60 0.34 0.44 0.58 0.13

b SNLI 0.61 0.62 0.59 0.60 0.65 0.26
Fantasy 0.57 0.68 0.27 0.38 0.60 0.14

Com2sense 0.51 0.50 0.98 0.67 0.48 -0.01
Deductive 0.51 0.63 0.05 0.09 0.53 0.05

c SNLI 0.59 0.57 0.69 0.63 0.64 0.26
Fantasy 0.55 0.60 0.31 0.41 0.60 0.12

Com2sense 0.50 0.50 0.97 0.66 0.48 -0.02
Deductive 0.54 0.62 0.19 0.29 0.55 0.10

Table 19: Baseline results on the development set for GPT-3 for three different
label descriptions. A threshold of 0.0 has been used to calculate accuracy,
precision, recall and F1 score.
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Acc Prec Recall F1 AUC Corr
SNLI Overall best 0.53 1.0 0.07 0.13 0.54 0.12

Task best 0.50 0.0 0.0 0.0 0.55 0.08
Fantasy Overall best 0.50 0.0 0.0 0.0 0.31 -0.31

Task best 0.50 0.0 0.0 0.0 0.31 -0.31
Com2sense Overall best 0.50 0.0 0.0 0.0 0.54 0.06

Task best 0.50 0.0 0.0 0.0 0.54 0.06
Deductive Overall best 0.53 0.54 0.46 0.49 0.55 0.08

Task best 0.53 0.54 0.46 0.49 0.55 0.08

Table 20: Baseline results on the test set for GPT-2. A threshold of 0.0 has
been used to calculate accuracy, precision, recall and F1 score.

Acc Prec Recall F1 AUC Corr
SNLI Overall best 0.52 0.51 0.61 0.56 0.59 0.18

Task best 0.56 0.56 0.54 0.55 0.61 0.19
Fantasy Overall best 0.41 0.36 0.24 0.29 0.49 -0.005

Task best 0.67 0.64 0.76 0.70 0.66 0.27
Com2sense Overall best 0.50 0.50 0.97 0.66 0.50 -0.002

Task best 0.48 0.49 0.63 0.55 0.46 -0.08
Deductive Overall best 0.46 0.37 0.12 0.18 0.45 -0.07

Task best 0.49 0.48 0.30 0.37 0.49 -0.03

Table 21: Baseline results on the test set for GPT-3. A threshold of 0.0 has
been used to calculate accuracy, precision, recall and F1 score.
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B.2 Experiment 1

Acc Prec Recall F1 AUC Corr
SNLI Overall best (0.50, 0.02) (0.28, 0.21) (0.30, 0.40) (0.24, 0.29) (0.52, 0.04) (0.03, 0.07)

Task best (0.50, 0.01) (0.33, 0.23) (0.39, 0.43) (0.31, 0.27) (0.50, 0.01) (-0.001, 0.03)
Fantasy Overall best (0.48, 0.05) (0.48, 0.41) (0.25, 0.33) (0.21, 0.24) (0.55, 0.09) (0.09, 0.16)

Task best (0.50, 0.0) (0.17, 0.24) (0.33, 0.47) (0.22, 0.31) (0.56, 0.09) (0.09, 0.16)
Com2sense Overall best (0.49, 0.01) (0.33, 0.23) (0.30, 0.38) (0.24, 0.27) (0.44, 0.05) (-0.10, 0.07)**

Task best (0.50, 0.02) (0.30, 0.22) (0.06, 0.05) (0.09, 0.08) (0.51, 0.04) (-0.003, 0.06)
Deductive Overall best (0.50, 0.01) (0.28, 0.21) (0.24, 0.33) (0.21, 0.27) (0.51, 0.02) (0.03, 0.03)

Task best (0.50, 0.02) (0.47, 0.08) (0.44, 0.41) (0.37, 0.24) (0.50, 0.03) (-0.02, 0.04)

Table 22: Results for the Subtitles models on the test sets. A threshold of 0.0
has been used to calculate accuracy, precision, recall and F1 score. The amount
of * indicates amount of runs that the correlation was significant (p <0.05).
Results are reported as (x, y), with x indicating mean and y standard deviation
over three runs.

Acc Prec Recall F1 AUC Corr
SNLI Overall best (0.53, 0.01) (0.53, 0.01) (0.60, 0.11) (0.56, 0.04) (0.54, 0.01) (0.08, 0.05)

Task best (0.50, 0.03) (0.50, 0.09) (0.24, 0.11) (0.32, 0.10) (0.51, 0.05) (0.03, 0.09)*
Fantasy Overall best (0.44, 0.02) (0.41, 0.05) (0.37, 0.21) (0.36, 0.13) (0.45, 0.02) (-0.11, 0.02)

Task best (0.44, 0.02) (0.41, 0.05) (0.37, 0.21) (0.36, 0.13) (0.45, 0.02) (-0.11, 0.02)
Com2sense Overall best (0.49, 0.03) (0.52, 0.05) (0.38, 0.16) (0.41, 0.09) (0.48, 0.03) (-0.03, 0.07)

Task best (0.50, 0.02) (0.49, 0.04) (0.27, 0.08) (0.35, 0.07) (0.49, 0.03) (0.03, 0.05)
Deductive Overall best (0.50, 0.04) (0.50, 0.05) (0.47, 0.18) (0.47, 0.11) (0.52, 0.04) (0.02, 0.07)

Task best (0.49, 0.01) (0.48, 0.02) (0.38, 0.17) (0.40, 0.13) (0.52, 0.01) (0.05, 0.01)

Table 23: Results for the CHILDES models on the test sets. A threshold of 0.0
has been used to calculate accuracy, precision, recall and F1 score. The amount
of * indicates amount of runs that the correlation was significant (p <0.05).
Results are reported as (x, y), with x indicating mean and y standard deviation
over three runs.
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B.3 Experiment 2

Acc Prec Recall F1 AUC Corr

1 a SNLI (0.50, 0.01) (0.50, 0.01) (0.66, 0.02) (0.57, 0.01) (0.49, 0.01) (0.02, 0.04)
Fantasy (0.49, 0.06) (0.49, 0.04) (0.67, 0.08) (0.57, 0.06) (0.46, 0.06) (-0.1, 0.1)

Com2sense (0.49, 0.01) (0.45, 0.05) (0.09, 0.01) (0.14, 0.01) (0.48, 0.04) (-0.04, 0.07)*
Deductive (0.48, 0.01) (0.49, 0.01) (0.68, 0.03) (0.57, 0.02) (0.46, 0.01) (-0.03, 0.04)

b SNLI (0.50, 0.01) (0.50, 0.004) (0.59, 0.02) (0.54, 0.01) (0.49, 0.01) (0.02, 0.04)
Fantasy (0.48, 0.05) (0.48, 0.04) (0.65, 0.06) (0.55, 0.05) (0.45, 0.05) (-0.10, 0.09)

Com2sense (0.48, 0.02) (0.42, 0.08) (0.12, 0.02) (0.19, 0.03) (0.48, 0.04) (-0.04, 0.07)*
Deductive (0.48, 0.01) (0.49, 0.01) (0.67, 0.03) (0.57, 0.02) (0.45, 0.01) (-0.03, 0.04)

c SNLI (0.49, 0.01) (0.49, 0.01) (0.60, 0.02) (0.54, 0.01) (0.49, 0.01) (0.02, 0.04)
Fantasy (0.48, 0.05) (0.48, 0.04) (0.65, 0.06) (0.55, 0.05) (0.45, 0.06) (-0.10, 0.09)

Com2sense (0.49, 0.01) (0.46, 0.05) (0.11, 0.01) (0.17, 0.02) (0.48, 0.04) (-0.04, 0.07)*
Deductive (0.48, 0.01) (0.49, 0.01) (0.68, 0.03) (0.57, 0.02) (0.45, 0.01) (-0.03, 0.04)

2 a SNLI (0.51, 0.01) (0.51, 0.01) (0.72, 0.02) (0.59, 0.01) (0.52, 0.02) (0.03, 0.04)
Fantasy (0.50, 0.04) (0.50, 0.03) (0.69, 0.04) (0.58, 0.03) (0.50, 0.06) (-0.09, 0.07)

Com2sense (0.49, 0.01) (0.44, 0.05) (0.10, 0.02) (0.16, 0.02) (0.49, 0.02) (-0.04, 0.04)
Deductive (0.48, 0.01) (0.49, 0.01) (0.67, 0.03) (0.56, 0.01) (0.46, 0.01) (-0.02, 0.06)

b SNLI (0.50, 0.004) (0.50, 0.003) (0.67, 0.01) (0.57, 0.01) (0.52, 0.01) (0.03, 0.04)
Fantasy (0.50, 0.02) (0.50, 0.01) (0.66, 0.03) (0.57, 0.02) (0.49, 0.06) (-0.10, 0.06)

Com2sense (0.49, 0.01) (0.47, 0.04) (0.18, 0.01) (0.25, 0.01) (0.49, 0.02) (-0.03, 0.02)
Deductive (0.48, 0.01) (0.49, 0.01) (0.67, 0.03) (0.56, 0.01) (0.46, 0.01) (-0.02, 0.06)

c SNLI (0.52, 0.003) (0.51, 0.002) (0.71, 0.01) (0.59, 0.004) (0.52, 0.01) (0.03, 0.04)
Fantasy (0.50, 0.03) (0.50, 0.02) (0.69, 0.02) (0.58, 0.02) (0.49, 0.06) (-0.09, 0.07)

Com2sense (0.49, 0.01) (0.46, 0.05) (0.12, 0.01) (0.19, 0.02) (0.49, 0.02) (-0.04, 0.03)
Deductive (0.48, 0.01) (0.49, 0.01) (0.68, 0.03) (0.57, 0.01) (0.46, 0.01) (-0.02, 0.06)

3 a SNLI (0.51, 0.01) (0.51, 0.004) (0.75, 0.02) (0.61, 0.01) (0.52, 0.02) (0.01, 0.04)
Fantasy (0.50, 0.02) (0.50, 0.02) (0.70, 0.02) (0.58, 0.004) (0.49, 0.03) (-0.05, 0.04)

Com2sense (0.49, 0.02) (0.46, 0.07) (0.13, 0.02) (0.21, 0.03) (0.49, 0.02) (-0.04, 0.03)
Deductive (0.48, 0.01) (0.48, 0.01) (0.65, 0.03) (0.55, 0.01) (0.47, 0.01) (-0.02, 0.06)

b SNLI (0.51, 0.004) (0.51, 0.003) (0.71, 0.02) (0.59, 0.004) (0.52, 0.02) (0.01, 0.04)
Fantasy (0.50, 0.02) (0.50, 0.01) (0.69, 0.03) (0.58, 0.01) (0.48, 0.03) (-0.06, 0.04)

Com2sense (0.48, 0.01) (0.47, 0.03) (0.22, 0.01) (0.30, 0.02) (0.49, 0.02) (-0.03, 0.03)
Deductive (0.48, 0.01) (0.49, 0.01) (0.65, 0.03) (0.56, 0.01) (0.47, 0.01) (-0.02, 0.06)

c SNLI (0.51, 0.003) (0.51, 0.002) (0.75, 0.02) (0.61, 0.01) (0.52, 0.02) (0.01, 0.04)
Fantasy (0.51, 0.01) (0.51, 0.01) (0.73, 0.03) (0.60, 0.01) (0.49, 0.03) (-0.05, 0.04)

Com2sense (0.49, 0.01) (0.48, 0.04) (0.16, 0.02) (0.24, 0.02) (0.49, 0.02) (-0.04, 0.03)
Deductive (0.48, 0.01) (0.49, 0.01) (0.66, 0.03) (0.56, 0.01) (0.47, 0.01) (-0.02, 0.06)

Table 24: COT results of GPT-2 on the development set for different configu-
rations. A threshold of 0.0 has been used to calculate accuracy, precision, recall
and F1 score. The amount of * indicates amount of runs that the correlation
was significant (p <0.05). Results are reported as (x, y), with x indicating mean
and y standard deviation over three runs.

60



Acc Prec Recall F1 AUC Corr

a SNLI (0.52, 0.003) (0.52, 0.003) (0.50, 0.01) (0.51, 0.004) (0.50, 0.01) (-0.001, 0.01)
Fantasy (0.59, 0.03) (0.58, 0.03) (0.67, 0.04) (0.62, 0.06) (0.66, 0.04) (0.27, 0.06)*

Com2sense (0.48, 0.02) (0.48, 0.02) (0.57, 0.02) (0.52, 0.03) (0.46, 0.02) (-0.11, 0.06)**
Deductive (0.52, 0.02) (0.58, 0.08) (0.16, 0.03) (0.25, 0.04) (0.50, 0.01) (-0.003, 0.01)

b SNLI (0.51, 0.02) (0.53, 0.06) (0.17, 0.01) (0.26, 0.02) (0.56, 0.01) (0.12, 0.03)*
Fantasy (0.56, 0.04) (0.62, 0.06) (0.32, 0.08) (0.42, 0.08) (0.56, 0.03) (0.14, 0.05)

Com2sense (0.49, 0.01) (0.49, 0.01) (0.75, 0.04) (0.59, 0.01) (0.46, 0.02) (-0.09, 0.06)
Deductive (0.51, 0.01) (0.58, 0.18) (0.03, 0.01) (0.06, 0.03) (0.48, 0.03) (-0.03, 0.03)

c SNLI (0.50, 0.01) (0.50, 0.01) (0.23, 0.01) (0.31, 0.01) (0.54, 0.02) (0.09, 0.04)*
Fantasy (0.54, 0.04) (0.56, 0.05) (0.33, 0.10) (0.41, 0.09) (0.57, 0.04) (0.14, 0.06)

Com2sense (0.49, 0.04) (0.49, 0.02) (0.74, 0.01) (0.59, 0.02) (0.45, 0.02) (-0.10, 0.07)*
Deductive (0.51, 0.01) (0.60, 0.09) (0.07, 0.01) (0.12, 0.01) (0.48, 0.02) (-0.03, 0.03)

Table 25: COT results of GPT-3 on the development set for different label de-
scription configurations. A threshold of 0.0 has been used to calculate accuracy,
precision, recall and F1 score. The amount of * indicates amount of runs that
the correlation was significant (p <0.05). Results are reported as (x, y), with x
indicating mean and y standard deviation over three runs.

Acc Prec Recall F1 AUC Corr
SNLI Overall best (0.49, 0.02) (0.49, 0.01) (0.71, 0.01) (0.58, 0.01) (0.50, 0.03) (-0.03, 0.04)

Task best (0.49, 0.01) (0.49, 0.01) (0.69, 0.01) (0.58, 0.01) (0.50, 0.02) (-0.03, 0.04)
Fantasy Overall best (0.52, 0.04) (0.52, 0.03) (0.65, 0.10) (0.58, 0.05) (0.47, 0.06) (0.08, 0.14)

Task best (0.52, 0.04) (0.52, 0.03) (0.65, 0.10) (0.58, 0.05) (0.47, 0.06) (0.08, 0.14)
Com2sense Overall best (0.52, 0.01) (0.63, 0.08) (0.10, 0.02) (0.17, 0.03) (0.53, 0.04) (0.06, 0.05)

Task best (0.51, 0.02) (0.54, 0.06) (0.17, 0.02) (0.25, 0.02) (0.53, 0.04) (0.06, 0.06)
Deductive Overall best (0.46, 0.05) (0.47, 0.04) (0.65, 0.06) (0.55, 0.05) (0.45, 0.04) (0.04, 0.03)

Task best (0.47, 0.04) (0.48, 0.03) (0.65, 0.06) (0.55, 0.04) (0.45, 0.05) (0.04, 0.04)

Table 26: COT results on the test set for GPT-2. A threshold of 0.0 has been
used to calculate accuracy, precision, recall and F1 score. The amount of *
indicates amount of runs that the correlation was significant (p <0.05). Results
are reported as (x, y), with x indicating mean and y standard deviation over
three runs.

Acc Prec Recall F1 AUC Corr
SNLI Overall best (0.50, 0.02) (0.50, 0.01) (0.68, 0.01) (0.58, 0.01) (0.50, 0.02) (-0.003, 0.01)

Task best (0.52, 0.02) (0.55, 0.07) (0.19, 0.02) (0.28, 0.03) (0.56, 0.01) (0.12, 0.03)*
Fantasy Overall best (0.51, 0.04) (0.50, 0.04) (0.62, 0.12) (0.55, 0.06) (0.47, 0.07) (0.27, 0.07)*

Task best (0.58, 0.04) (0.57, 0.04) (0.65, 0.06) (0.61, 0.04) (0.66, 0.04) (0.27, 0.07)*
Com2sense Overall best (0.48, 0.03) (0.49, 0.02) (0.70, 0.02) (0.57, 0.02) (0.48, 0.02) (-0.11, 0.06)**

Task best (0.49, 0.02) (0.49, 0.01) (0.75, 0.04) (0.59, 0.01) (0.46, 0.02) (-0.09, 0.06)
Deductive Overall best (0.46, 0.05) (0.47, 0.04) (0.64, 0.06) (0.54, 0.05) (0.45, 0.04) (0.0003, 0.01)

Task best (0.51, 0.01) (0.64, 0.14) (0.07, 0.01) (0.12, 0.01) (0.48, 0.02) (-0.03, 0.03)

Table 27: COT results on the test set for GPT-3. A threshold of 0.0 has been
used to calculate accuracy, precision, recall and F1 score. The amount of *
indicates amount of runs that the correlation was significant (p <0.05). Results
are reported as (x, y), with x indicating mean and y standard deviation over
three runs.
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B.4 Experiment 3

Acc Prec Recall F1 AUC Corr

SNLI Overall best (0.50, 0.01) (0.45, 0.04) (0.31, 0.35) (0.28, 0.25) (0.52, 0.04) (0.04, 0.04)
Task best (0.50, 0.01) (0.50, 0.06) (0.29, 0.31) (0.28, 0.23) (0.52, 0.03) (0.04, 0.02)

Fantasy Overall best (0.53, 0.08) (0.41, 0.31) (0.35, 0.26) (0.36, 0.25) (0.56, 0.04) (0.08, 0.07)
Task best (0.51, 0.01) (0.34, 0.24) (0.32, 0.24) (0.33, 0.24) (0.56, 0.02) (0.13, 0.05)

Com2sense Overall best (0.49, 0.01) (0.50, 0.01) (0.68, 0.26) (0.55, 0.11) (0.47, 0.03) (-0.06, 0.06)
Task best (0.52, 0.01) (0.51, 0.003) (0.82, 0.10) (0.63, 0.03) (0.51, 0.03) (0.03, 0.02)

Deductive Overall best (0.51, 0.01) (0.34, 0.24) (0.31, 0.24) (0.32, 0.23) (0.50, 0.03) (0.002, 0.05)
Task best (0.51, 0.02) (0.52, 0.04) (0.43, 0.28) (0.43, 0.15) (0.50, 0.03) (0.003, 0.06)

Table 28: COT results of the overall best Subtitles model checkpoint on the
test set using the best configurations found during development. A threshold
of 0.0 has been used to calculate accuracy, precision, recall and F1 score. The
amount of * indicates amount of runs that the correlation was significant (p
<0.05). Results are reported as (x, y), with x indicating mean and y standard
deviation over three runs.

Acc Prec Recall F1 AUC Corr

SNLI Overall best (0.49, 0.02) (0.65, 0.25) (0.33, 0.29) (0.31, 0.21) (0.47, 0.01) (-0.03, 0.01)
Task best (0.20, 0.16) (0.22, 0.18) (0.29, 0.24) (0.25, 0.20) (0.14, 0.15) (-0.61, 0.33)***

Fantasy Overall best (0.54, 0.06) (0.56, 0.08) (0.54, 0.35) (0.48, 0.19) (0.53, 0.05) (0.10, 0.11)
Task best (0.51, 0.05) (0.35, 0.26) (0.30, 0.21) (0.32, 0.23) (0.54, 0.05) (0.12, 0.08)

Com2sense Overall best (0.48, 0.01) (0.46, 0.05) (0.37, 0.37) (0.32, 0.22) (0.45, 0.04) (-0.09, 0.09)
Task best (0.50, 0.01) (0.50, 0.003) (0.89, 0.03) (0.64, 0.01) (0.49, 0.003) (0.01, 0.01)

Deductive Overall best (0.51, 0.01) (0.35, 0.25) (0.37, 0.44) (0.29, 0.28) (0.49, 0.02) (-0.03, 0.03)
Task best (0.51, 0.01) (0.35, 0.25) (0.37, 0.44) (0.29, 0.28) (0.49, 0.02) (-0.03, 0.03)

Table 29: COT results of the task specific best Subtitles model checkpoints on
the test set using the best configurations found during development. A threshold
of 0.0 has been used to calculate accuracy, precision, recall and F1 score. The
amount of * indicates amount of runs that the correlation was significant (p
<0.05). Results are reported as (x, y), with x indicating mean and y standard
deviation over three runs.
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Acc Prec Recall F1 AUC Corr

SNLI Overall best (0.27, 0.19) (0.29, 0.18) (0.30, 0.18) (0.30, 0.18) (0.26, 0.27) (-0.39, 0.50)***
Task best (0.49, 0.01) (0.46, 0.02) (0.15, 0.05) (0.22, 0.05) (0.51, 0.06) (0.02, 0.11)*

Fantasy Overall best (0.50, 0.06) (0.49, 0.06) (0.37, 0.27) (0.36, 0.22) (0.50, 0.06) (-0.02, 0.11)
Task best (0.49, 0.02) (0.33, 0.24) (0.37, 0.28) (0.35, 0.25) (0.54, 0.06) (0.02, 0.07)

Com2sense Overall best (0.51, 0.02) (0.51, 0.02) (0.63, 0.25) (0.54, 0.11) (0.48, 0.05) (-0.04, 0.09)
Task best (0.51, 0.03) (0.51, 0.02) (0.80, 0.02) (0.62, 0.02) (0.50, 0.03) (-0.01, 0.06)

Deductive Overall best (0.50, 0.03) (0.53, 0.06) (0.24, 0.16) (0.29, 0.14) (0.50, 0.05) (-0.02, 0.10)*
Task best (0.50, 0.03) (0.53, 0.06) (0.24, 0.16) (0.29, 0.14) (0.50, 0.05) (-0.02, 0.10)*

Table 30: COT results of the overall best CHILDES model checkpoint on the
test set using the best configurations found during development. A threshold
of 0.0 has been used to calculate accuracy, precision, recall and F1 score. The
amount of * indicates amount of runs that the correlation was significant (p
<0.05). Results are reported as (x, y), with x indicating mean and y standard
deviation over three runs.

Acc Prec Recall F1 AUC Corr

SNLI Overall best (0.45, 0.04) (0.44, 0.05) (0.45, 0.13) (0.44, 0.09) (0.44, 0.04) (-0.11, 0.07)*
Task best (0.49, 0.03) (0.49, 0.03) (0.50, 0.12) (0.49, 0.07) (0.46, 0.05) (-0.08, 0.09)*

Fantasy Overall best (0.52, 0.02) (0.37, 0.26) (0.24, 0.17) (0.29, 0.21) (0.51, 0.03) (0.02, 0.03)
Task best (0.49, 0.02) (0.33, 0.24) (0.37, 0.28) (0.35, 0.25) (0.54, 0.06) (0.02, 0.07)

Com2sense Overall best (0.53, 0.01) (0.53, 0.02) (0.72, 0.26) (0.58, 0.11) (0.54, 0.03) (0.05, 0.05)
Task best (0.49, 0.03) (0.49, 0.02) (0.69, 0.25) (0.55, 0.11) (0.51, 0.04) (0.02, 0.06)

Deductive Overall best (0.51, 0.01) (0.34, 0.24) (0.48, 0.34) (0.40, 0.28) (0.52, 0.03) (0.05, 0.05)
Task best (0.48, 0.003) (0.45, 0.02) (0.31, 0.17) (0.34, 0.13) (0.46, 0.02) (-0.08, 0.03)

Table 31: COT results of the task specific best CHILDES model checkpoints on
the test set using the best configurations found during development. A threshold
of 0.0 has been used to calculate accuracy, precision, recall and F1 score. The
amount of * indicates amount of runs that the correlation was significant (p
<0.05). Results are reported as (x, y), with x indicating mean and y standard
deviation over three runs.
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Acc Prec Recall F1 AUC Corr

1 a SNLI Overall best (0.47, 0.03) (0.47, 0.03) (0.43, 0.31) (0.38, 0.19) (0.46, 0.03) (-0.07, 0.04)*
Task best (0.50, 0.01) (0.34, 0.24) (0.13, 0.10) (0.18, 0.14) (0.52, 0.02) (0.04, 0.03)

Fantasy Overall best (0.47, 0.02) (0.33, 0.23) (0.45, 0.34) (0.37, 0.27) (0.46, 0.01) (-0.09, 0.02)
Task best (0.48, 0.01) (0.40, 0.11) (0.43, 0.32) (0.37, 0.24) (0.46, 0.01) (-0.09, 0.01)

Com2sense Overall best (0.51, 0.01) (0.51, 0.01) (0.35, 0.24) (0.35, 0.22) (0.49, 0.01) (-0.03, 0.01)
Task best (0.50, 0.003) (0.50, 0.002) (0.58, 0.41) (0.43, 0.29) (0.49, 0.02) (-0.03, 0.03)

Deductive Overall best (0.51, 0.02) (0.42, 0.16) (0.28, 0.21) (0.31, 0.22) (0.52, 0.02) (0.04, 0.03)
Task best (0.50, 0.003) (0.34, 0.24) (0.41, 0.43) (0.33, 0.27) (0.52, 0.03) (0.03, 0.05)*

b SNLI Overall best (0.50, 0.04) (0.47, 0.07) (0.25, 0.18) (0.29, 0.19) (0.49, 0.05) (-0.01, 0.07)
Task best (0.49, 0.03) (0.50, 0.02) (0.66, 0.08) (0.56, 0.02) (0.49, 0.04) (-0.01, 0.07)

Fantasy Overall best (0.51, 0.02) (0.36, 0.26) (0.27, 0.22) (0.30, 0.22) (0.55, 0.06) (0.07, 0.08)
Task best (0.49, 0.02) (0.34, 0.24) (0.20, 0.20) (0.23, 0.19) (0.54, 0.05) (0.07, 0.09)

Com2sense Overall best (0.51, 0.01) (0.51, 0.01) (0.42, 0.34) (0.37, 0.26) (0.49, 0.03) (-0.001, 0.02)
Task best (0.50, 0.004) (0.45, 0.08) (0.35, 0.45) (0.27, 0.29) (0.49, 0.001) (-0.02, 0.02)

Deductive Overall best (0.49, 0.01) (0.32, 0.23) (0.26, 0.21) (0.28, 0.21) (0.50, 0.02) (-0.02, 0.03)
Task best (0.50, 0.01) (0.50, 0.003) (0.92, 0.08) (0.65, 0.02) (0.52, 0.02) (0.05, 0.04)*

c SNLI Overall best (0.50, 0.003) (0.67, 0.24) (0.05, 0.03) (0.08, 0.05) (0.46, 0.04) (-0.06, 0.06)*
Task best (0.50, 0.004) (0.17, 0.23) (0.32, 0.46) (0.22, 0.31) (0.47, 0.06) (-0.04, 0.08)*

Fantasy Overall best (0.52, 0.02) (0.42, 0.30) (0.11, 0.13) (0.15, 0.17) (0.48, 0.01) (-0.06, 0.03)
Task best (0.51, 0.02) (0.35, 0.25) (0.10, 0.13) (0.14, 0.17) (0.48, 0.01) (-0.05, 0.03)

Com2sense Overall best (0.50, 0.01) (0.33, 0.23) (0.34, 0.26) (0.33, 0.24) (0.50, 0.03) (-0.01, 0.04)
Task best (0.50, 0.002) (0.32, 0.23) (0.08, 0.08) (0.12, 0.11) (0.49, 0.01) (-0.002, 0.01)

Deductive Overall best (0.48, 0.02) (0.29, 0.20) (0.09, 0.07) (0.13, 0.10) (0.45, 0.02) (-0.08, 0.03)*
Task best (0.50, 0.02) (0.67, 0.23) (0.55, 0.39) (0.42, 0.29) (0.53, 0.02) (0.05, 0.04)

2 a SNLI Overall best (0.47, 0.03) (0.47, 0.03) (0.43, 0.31) (0.38, 0.19) (0.46, 0.03) (-0.07, 0.04)*
Task best (0.50, 0.01) (0.35, 0.24) (0.13, 0.10) (0.19, 0.14) (0.52, 0.02) (0.04, 0.03)

Fantasy Overall best (0.48, 0.02) (0.33, 0.23) (0.45, 0.34) (0.37, 0.27) (0.46, 0.01) (-0.08, 0.02)
Task best (0.48, 0.01) (0.40, 0.11) (0.43, 0.32) (0.37, 0.24) (0.46, 0.01) (-0.08, 0.01)

Com2sense Overall best (0.50, 0.01) (0.43, 0.11) (0.36, 0.25) (0.36, 0.24) (0.49, 0.01) (-0.03, 0.01)
Task best (0.51, 0.01) (0.50, 0.003) (0.58, 0.41) (0.43, 0.29) (0.49, 0.02) (-0.02, 0.03)

Deductive Overall best (0.51, 0.02) (0.42, 0.16) (0.28, 0.21) (0.31, 0.22) (0.53, 0.02) (0.04, 0.04)
Task best (0.50, 0.003) (0.34, 0.24) (0.41, 0.43) (0.33, 0.27) (0.52, 0.03) (0.03, 0.05)*

b SNLI Overall best (0.50, 0.04) (0.47, 0.07) (0.25, 0.18) (0.29, 0.19) (0.49, 0.05) (-0.01, 0.07)
Task best (0.49, 0.03) (0.50, 0.02) (0.67, 0.09) (0.57, 0.02) (0.49, 0.04) (-0.01, 0.07)

Fantasy Overall best (0.51, 0.03) (0.36, 0.26) (0.28, 0.22) (0.31, 0.22) (0.56, 0.06) (0.08, 0.08)
Task best (0.50, 0.02) (0.35, 0.25) (0.21, 0.20) (0.24, 0.19) (0.55, 0.05) (0.07, 0.09)

Com2sense Overall best (0.51, 0.01) (0.51, 0.02) (0.42, 0.34) (0.37, 0.26) (0.49, 0.03) (-0.01, 0.04)
Task best (0.50, 0.01) (0.45, 0.08) (0.35, 0.45) (0.27, 0.29) (0.49, 0.001) (-0.02, 0.02)

Deductive Overall best (0.49, 0.01) (0.32, 0.23) (0.26, 0.20) (0.28, 0.20) (0.50, 0.02) (-0.02, 0.03)
Task best (0.50, 0.01) (0.50, 0.003) (0.92, 0.08) (0.65, 0.02) (0.52, 0.02) (0.05, 0.04)*

c SNLI Overall best (0.50, 0.003) (0.67, 0.24) (0.05, 0.03) (0.08, 0.05) (0.46, 0.04) (-0.06, 0.06)*
Task best (0.50, 0.004) (0.17, 0.23) (0.32, 0.46) (0.22, 0.31) (0.47, 0.06) (-0.04, 0.08)*

Fantasy Overall best (0.52, 0.02) (0.42, 0.30) (0.11, 0.13) (0.15, 0.17) (0.48, 0.01) (-0.05, 0.02)
Task best (0.51, 0.02) (0.35, 0.25) (0.10, 0.13) (0.14, 0.17) (0.48, 0.01) (-0.05, 0.03)

Com2sense Overall best (0.49, 0.02) (0.32, 0.23) (0.33, 0.25) (0.32, 0.24) (0.49, 0.03) (-0.02, 0.05)
Task best (0.50, 0.003) (0.31, 0.22) (0.08, 0.07) (0.12, 0.11) (0.49, 0.01) (-0.002, 0.01)

Deductive Overall best (0.48, 0.02) (0.29, 0.20) (0.09, 0.07) (0.13, 0.10) (0.45, 0.02) (-0.09, 0.03)*
Task best (0.50, 0.02) (0.67, 0.23) (0.55, 0.39) (0.42, 0.29) (0.53, 0.02) (0.05, 0.04)

3 a SNLI Overall best (0.47, 0.03) (0.47, 0.03) (0.43, 0.31) (0.38, 0.19) (0.46, 0.03) (-0.07, 0.04)*
Task best (0.50, 0.01) (0.34, 0.24) (0.13, 0.10) (0.18, 0.14) (0.52, 0.02) (0.04, 0.03)

Fantasy Overall best (0.48, 0.02) (0.41, 0.11) (0.46, 0.34) (0.38, 0.25) (0.46, 0.02) (-0.08, 0.02)
Task best (0.47, 0.01) (0.40, 0.11) (0.42, 0.32) (0.37, 0.24) (0.46, 0.004) (-0.09, 0.01)

Com2sense Overall best (0.50, 0.01) (0.46, 0.05) (0.36, 0.25) (0.35, 0.24) (0.49, 0.01) (-0.03, 0.02)
Task best (0.51, 0.01) (0.50, 0.003) (0.58, 0.41) (0.43, 0.29) (0.49, 0.02) (-0.03, 0.03)

Deductive Overall best (0.51, 0.02) (0.42, 0.16) (0.28, 0.21) (0.31, 0.22) (0.53, 0.02) (0.04, 0.04)
Task best (0.50, 0.003) (0.34, 0.24) (0.41, 0.43) (0.33, 0.27) (0.52, 0.03) (0.03, 0.05)

b SNLI Overall best (0.50, 0.04) (0.47, 0.07) (0.25, 0.18) (0.29, 0.19) (0.49, 0.05) (-0.01, 0.07)
Task best (0.49, 0.03) (0.50, 0.02) (0.67, 0.08) (0.57, 0.02) (0.49, 0.04) (-0.01, 0.07)

Fantasy Overall best (0.51, 0.03) (0.36, 0.26) (0.28, 0.22) (0.31, 0.22) (0.56, 0.06) (0.08, 0.08)
Task best (0.50, 0.02) (0.35, 0.25) (0.22, 0.20) (0.25, 0.20) (0.55, 0.05) (0.08, 0.09)

Com2sense Overall best (0.50, 0.01) (0.41, 0.15) (0.41, 0.34) (0.36, 0.26) (0.49, 0.02) (-0.02, 0.04)
Task best (0.50, 0.006) (0.45, 0.08) (0.35, 0.45) (0.27, 0.29) (0.49, 0.001) (-0.02, 0.02)

Deductive Overall best (0.49, 0.01) (0.32, 0.22) (0.26, 0.20) (0.28, 0.20) (0.50, 0.02) (-0.02, 0.03)
Task best (0.50, 0.01) (0.50, 0.003) (0.92, 0.08) (0.65, 0.02) (0.52, 0.02) (0.05, 0.04)*

c SNLI Overall best (0.50, 0.003) (0.67, 0.24) (0.05, 0.03) (0.08, 0.05) (0.46, 0.04) (-0.06, 0.06)*
Task best (0.50, 0.004) (0.17, 0.23) (0.32, 0.46) (0.22, 0.31) (0.47, 0.06) (-0.04, 0.08)*

Fantasy Overall best (0.52, 0.02) (0.45, 0.32) (0.12, 0.12) (0.17, 0.16) (0.48, 0.01) (-0.05, 0.03)
Task best (0.50, 0.01) (0.35, 0.25) (0.10, 0.12) (0.13, 0.16) (0.47, 0.01) (-0.06, 0.03)

Com2sense Overall best (0.49, 0.02) (0.32, 0.23) (0.33, 0.25) (0.33, 0.24) (0.49, 0.03) (-0.01, 0.04)
Task best (0.50, 0.004) (0.30, 0.22) (0.08, 0.07) (0.11, 0.11) (0.49, 0.01) (-0.01, 0.01)

Deductive Overall best (0.48, 0.02) (0.29, 0.20) (0.09, 0.07) (0.13, 0.10) (0.45, 0.02) (-0.09, 0.04)*
Task best (0.50, 0.02) (0.67, 0.23) (0.55, 0.39) (0.42, 0.29) (0.53, 0.02) (0.05, 0.04)

Table 32: COT results of the Subtitles model on the development set for dif-
ferent configurations. A threshold of 0.0 has been used to calculate accuracy,
precision, recall and F1 score. The amount of * indicates amount of runs that
the correlation was significant (p <0.05). Results are reported as (x, y), with x
indicating mean and y standard deviation over three runs.
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Acc Prec Recall F1 AUC Corr

1 a SNLI Overall best (0.48, 0.01) (0.47, 0.02) (0.38, 0.23) (0.38, 0.15) (0.50, 0.02) (-0.02, 0.02)
Task best (0.48, 0.03) (0.48, 0.03) (0.60, 0.11) (0.53, 0.06) (0.45, 0.02) (-0.06, 0.03)*

Fantasy Overall best (0.52, 0.03) (0.48, 0.11) (0.38, 0.30) (0.37, 0.24) (0.53, 0.03) (0.05, 0.07)
Task best (0.52, 0.03) (0.48, 0.11) (0.38, 0.30) (0.37, 0.24) (0.53, 0.03) (0.05, 0.07)

Com2sense Overall best (0.51, 0.02) (0.51, 0.02) (0.46, 0.08) (0.48, 0.03) (0.51, 0.02) (0.03, 0.05)
Task best (0.50, 0.01) (0.50, 0.01) (0.43, 0.23) (0.43, 0.16) (0.50, 0.02) (-0.0002, 0.02)

Deductive Overall best (0.51, 0.003) (0.54, 0.03) (0.26, 0.21) (0.31, 0.16) (0.53, 0.02) (0.03, 0.05)
Task best (0.50, 0.03) (0.56, 0.08) (0.18, 0.10) (0.25, 0.11) (0.49, 0.03) (-0.02, 0.06)*

b SNLI Overall best (0.49, 0.01) (0.42, 0.08) (0.25, 0.26) (0.26, 0.21) (0.48, 0.01) (-0.05, 0.01)
Task best (0.47, 0.02) (0.48, 0.02) (0.57, 0.06) (0.52, 0.03) (0.47, 0.03) (-0.03, 0.05)

Fantasy Overall best (0.52, 0.04) (0.53, 0.10) (0.20, 0.11) (0.29, 0.14) (0.50, 0.03) (-0.02, 0.08)
Task best (0.52, 0.04) (0.53, 0.10) (0.20, 0.11) (0.29, 0.14) (0.50, 0.03) (-0.02, 0.08)

Com2sense Overall best (0.51, 0.01) (0.52, 0.02) (0.36, 0.10) (0.41, 0.06) (0.51, 0.004) (0.03, 0.02)
Task best (0.50, 0.01) (0.50, 0.01) (0.32, 0.18) (0.36, 0.12) (0.51, 0.02) (0.01, 0.02)

Deductive Overall best (0.50, 0.004) (0.49, 0.02) (0.20, 0.13) (0.26, 0.13) (0.49, 0.02) (-0.02, 0.03)
Task best (0.48, 0.01) (0.32, 0.23) (0.53, 0.38) (0.40, 0.28) (0.48, 0.03) (-0.05, 0.06)

c SNLI Overall best (0.50, 0.01) (0.50, 0.02) (0.32, 0.10) (0.38, 0.07) (0.49, 0.01) (-0.01, 0.02)
Task best (0.46, 0.01) (0.47, 0.01) (0.54, 0.04) (0.50, 0.02) (0.45, 0.01) (-0.07, 0.03)*

Fantasy Overall best (0.50, 0.01) (0.34, 0.24) (0.16, 0.17) (0.19, 0.18) (0.50, 0.04) (0.01, 0.09)
Task best (0.50, 0.01) (0.34, 0.24) (0.16, 0.17) (0.19, 0.18) (0.50, 0.04) (0.01, 0.09)

Com2sense Overall best (0.51, 0.01) (0.59, 0.09) (0.24, 0.17) (0.30, 0.15) (0.53, 0.02) (0.07, 0.04)*
Task best (0.49, 0.01) (0.49, 0.01) (0.48, 0.27) (0.45, 0.15) (0.49, 0.02) (-0.004, 0.03)

Deductive Overall best (0.50, 0.01) (0.50, 0.01) (0.17, 0.11) (0.23, 0.13) (0.49, 0.01) (-0.03, 0.01)
Task best (0.48, 0.01) (0.45, 0.05) (0.32, 0.32) (0.30, 0.21) (0.44, 0.02) (-0.11, 0.03)**

2 a SNLI Overall best (0.49, 0.01) (0.47, 0.03) (0.41, 0.28) (0.39, 0.18) (0.49, 0.01) (-0.02, 0.02)
Task best (0.48, 0.01) (0.48, 0.01) (0.63, 0.06) (0.55, 0.03) (0.46, 0.01) (-0.05, 0.03)

Fantasy Overall best (0.50, 0.03) (0.44, 0.14) (0.40, 0.35) (0.36, 0.24) (0.54, 0.03) (0.07, 0.08)
Task best (0.50, 0.03) (0.44, 0.14) (0.40, 0.35) (0.36, 0.24) (0.54, 0.03) (0.07, 0.08)

Com2sense Overall best (0.49, 0.01) (0.49, 0.01) (0.51, 0.06) (0.50, 0.03) (0.49, 0.02) (-0.02, 0.03)
Task best (0.52, 0.02) (0.53, 0.03) (0.44, 0.24) (0.44, 0.15) (0.50, 0.01) (0.01, 0.01)

Deductive Overall best (0.51, 0.01) (0.51, 0.05) (0.29, 0.26) (0.31, 0.19) (0.52, 0.02) (0.02, 0.05)
Task best (0.50, 0.01) (0.51, 0.02) (0.19, 0.13) (0.25, 0.15) (0.50, 0.03) (-0.02, 0.06)*

b SNLI Overall best (0.49, 0.01) (0.50, 0.02) (0.28, 0.23) (0.31, 0.18) (0.48, 0.01) (-0.03, 0.01)
Task best (0.48, 0.04) (0.48, 0.03) (0.56, 0.06) (0.52, 0.04) (0.48, 0.03) (-0.02, 0.05)

Fantasy Overall best (0.50, 0.07) (0.45, 0.17) (0.25, 0.14) (0.32, 0.16) (0.48, 0.03) (-0.06, 0.08)
Task best (0.50, 0.07) (0.45, 0.17) (0.25, 0.14) (0.32, 0.16) (0.48, 0.03) (-0.06, 0.08)

Com2sense Overall best (0.50, 0.02) (0.51, 0.02) (0.45, 0.16) (0.46, 0.08) (0.50, 0.01) (0.004, 0.01)
Task best (0.50, 0.01) (0.50, 0.01) (0.31, 0.12) (0.37, 0.08) (0.49, 0.01) (0.002, 0.002)

Deductive Overall best (0.49, 0.01) (0.48, 0.01) (0.22, 0.11) (0.28, 0.10) (0.48, 0.02) (-0.04, 0.03)
Task best (0.50, 0.01) (0.33, 0.24) (0.56, 0.40) (0.41, 0.29) (0.48, 0.02) (-0.04, 0.04)

c SNLI Overall best (0.50, 0.01) (0.50, 0.02) (0.37, 0.09) (0.42, 0.05) (0.49, 0.01) (-0.01, 0.02)
Task best (0.46, 0.01) (0.47, 0.01) (0.56, 0.02) (0.51, 0.02) (0.46, 0.01) (-0.06, 0.02)

Fantasy Overall best (0.48, 0.03) (0.28, 0.21) (0.20, 0.22) (0.22, 0.21) (0.49, 0.04) (-0.04, 0.09)
Task best (0.48, 0.03) (0.28, 0.21) (0.20, 0.22) (0.22, 0.21) (0.49, 0.04) (-0.04, 0.09)

Com2sense Overall best (0.50, 0.02) (0.55, 0.07) (0.33, 0.22) (0.35, 0.18) (0.52, 0.03) (0.04, 0.05)*
Task best (0.50, 0.02) (0.49, 0.02) (0.46, 0.24) (0.45, 0.14) (0.49, 0.02) (-0.01, 0.01)

Deductive Overall best (0.51, 0.01) (0.54, 0.07) (0.23, 0.09) (0.30, 0.09) (0.50, 0.02) (-0.01, 0.04)
Task best (0.47, 0.02) (0.43, 0.02) (0.29, 0.29) (0.27, 0.21) (0.43, 0.03) (-0.11, 0.04)**

3 a SNLI Overall best (0.48, 0.02) (0.44, 0.06) (0.42, 0.34) (0.38, 0.21) (0.48, 0.01) (-0.03, 0.02)
Task best (0.47, 0.02) (0.47, 0.01) (0.62, 0.06) (0.54, 0.03) (0.45, 0.01) (-0.07, 0.03)*

Fantasy Overall best (0.51, 0.02) (0.54, 0.03) (0.42, 0.34) (0.39, 0.20) (0.53, 0.03) (0.06, 0.07)
Task best (0.51, 0.02) (0.54, 0.03) (0.42, 0.34) (0.39, 0.20) (0.53, 0.03) (0.06, 0.07)

Com2sense Overall best (0.49, 0.02) (0.49, 0.01) (0.55, 0.10) (0.52, 0.04) (0.49, 0.02) (-0.01, 0.04)
Task best (0.50, 0.01) (0.52, 0.04) (0.43, 0.23) (0.43, 0.14) (0.50, 0.01) (0.02, 0.02)

Deductive Overall best (0.53, 0.02) (0.55, 0.02) (0.33, 0.29) (0.34, 0.20) (0.52, 0.01) (0.03, 0.03)
Task best (0.49, 0.02) (0.52, 0.06) (0.21, 0.12) (0.27, 0.12) (0.50, 0.05) (0.01, 0.06)

b SNLI Overall best (0.49, 0.01) (0.47, 0.03) (0.30, 0.24) (0.31, 0.19) (0.47, 0.02) (-0.05, 0.03)
Task best (0.47, 0.04) (0.48, 0.04) (0.54, 0.05) (0.50, 0.03) (0.48, 0.04) (-0.02, 0.06)

Fantasy Overall best (0.48, 0.06) (0.47, 0.10) (0.25, 0.09) (0.31, 0.10) (0.47, 0.04) (-0.07, 0.08)
Task best (0.48, 0.06) (0.47, 0.10) (0.25, 0.09) (0.31, 0.10) (0.47, 0.04) (-0.07, 0.08)

Com2sense Overall best (0.51, 0.01) (0.55, 0.04) (0.37, 0.26) (0.37, 0.20) (0.53, 0.02) (0.04, 0.05)
Task best (0.49, 0.01) (0.49, 0.02) (0.30, 0.12) (0.35, 0.08) (0.49, 0.02) (0.01, 0.03)

Deductive Overall best (0.49, 0.01) (0.48, 0.03) (0.24, 0.10) (0.30, 0.08) (0.49, 0.01) (-0.01, 0.02)
Task best (0.48, 0.02) (0.66, 0.24) (0.53, 0.38) (0.41, 0.28) (0.48, 0.04) (-0.03, 0.07)*

c SNLI Overall best (0.49, 0.02) (0.50, 0.03) (0.42, 0.11) (0.44, 0.07) (0.49, 0.01) (-0.02, 0.02)
Task best (0.46, 0.02) (0.47, 0.01) (0.58, 0.02) (0.52, 0.02) (0.45, 0.01) (-0.08, 0.02)*

Fantasy Overall best (0.50, 0.01) (0.51, 0.02) (0.27, 0.25) (0.29, 0.21) (0.48, 0.02) (-0.05, 0.04)
Task best (0.50, 0.01) (0.51, 0.02) (0.27, 0.25) (0.29, 0.21) (0.48, 0.02) (-0.05, 0.04)

Com2sense Overall best (0.50, 0.01) (0.51, 0.02) (0.30, 0.04) (0.38, 0.02) (0.51, 0.04) (0.003, 0.04)*
Task best (0.50, 0.01) (0.50, 0.01) (0.46, 0.23) (0.45, 0.13) (0.50, 0.02) (0.02, 0.01)

Deductive Overall best (0.50, 0.02) (0.51, 0.05) (0.24, 0.09) (0.31, 0.08) (0.50, 0.01) (-0.01, 0.01)
Task best (0.48, 0.02) (0.48, 0.04) (0.29, 0.29) (0.28, 0.20) (0.45, 0.02) (-0.08, 0.04)*

Table 33: COT results of the CHILDES model on the development set for
different configurations. A threshold of 0.0 has been used to calculate accuracy,
precision, recall and F1 score. The amount of * indicates amount of runs that
the correlation was significant (p <0.05). Results are reported as (x, y), with x
indicating mean and y standard deviation over three runs.
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