
U
tr

ec
ht

U
ni

ve
rs

ity
|A

pp
lie

d
D

at
a

Sc
ie

nc
e

Predicting Ship Heave
Motions
Ship Heave Motion Prediction Using LSTM Neural Networks
Without Wave Excitation Information

Jolan Keijzer



Predicting Ship Heave
Motions

Ship Heave Motion Prediction Using LSTM Neural
Networks Without Wave Excitation Information

by

Jolan Keijzer

Student Name Student Number

Jolan Keijzer 6920012

UU Supervisor: Deb Panja
MARIN supervisors Eelco Frickel and Bulent Duz
Date: 1 Juli 2022
Programme: Applied Data Science
University: Utrecht University

Style: https://dzwaneveld.github.io
License: https://creativecommons.org/licenses/by-nc/4.0/

https://dzwaneveld.github.io
https://creativecommons.org/licenses/by-nc/4.0/


Abstract

In off-shore multi-body operations, it is important to accurately determine the movements of the vessels
to allow for safe operations. This is especially evident in multi-body operations that involve helicopters,
due to the relative motion between the landing deck and the helicopter. To be able to augment human
judgement in helicopter/off-shore vessel multi-body operations, it is crucial to have accurate predictions
of the movements of the vessel. One of the key movements of off-shore vessels in these operations is the
heave motion, which represents the up and down movements of the vessel. Modelling these movements
mathematically is a difficult feat due to the strong non-linearity of these movements, and the complicated
hydrodynamic forces and stochastic sea disturbances that are at the root of these movements. Therefore,
Neural Networks bear a lot of opportunity in this regard, because of their strong ability of handling
non-linearity. Especially, Long Short-Term Memory (LSTM) models are useful in this regard owing
to their strong ability of handling sequences and their ability of learning both long- and short-term
dependencies. However, most existing research uses wave excitation information to predict the heave
motion even though ships are not often equipped with expensive wave detection systems. Therefore,
this paper researches whether LSTM models are able to accurately predict heave motions 10 and 20
seconds ahead without the usage of wave excitation information. This paper shows that LSTM models
are able to achieve accurate predictions without the usage of wave excitation information. Therefore,
it is shown that LSTM models have the ability to augment human judgement in helicopter/off-shore
vessel operations where this wave excitation information is not available. Especially in terms of 10
second ahead predictions LSTM is able to achieve promising prediction performance. However, the
prediction quality of the 20 second ahead predictions is less satisfying. Finally, most existing papers
used simple one-layer LSTM models, whereas this paper shows that using more complicated models
lead to increased prediction performance.

i



Contents

Abstract i

1 Introduction 1

2 Data 3
2.1 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Ethical and legal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Methods 6

4 Results 9
4.1 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Conclusion & Discussion 14

References 16

A Appendix A: Code 18

B Appendix B: Preliminary tuning results 19
B.1 First tune cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B.2 Second tune cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



1
Introduction

In off-shore multi-body operations, it is important to accurately determine the movements of the vessels
to be able to safely merge or split vessels (e.g. connect two vessels, side-by-side transfer, helicopter
landing, etc) (X. Zhao et al., 2004). During these operations, the success of the operation is highly
contingent on ship movements like positioning, speed and heading, and the six ship motions: surge,
sway, heave, roll, pitch and yaw (Cheng et al., 2019). These ship motions are visualized in figure 1.1.
In general, matching up speed and heading between separate vessels is quite straightforward, whereas,
matching the ship motions is more challenging. This issue is especially evident in multi-body operations
that involve helicopters or drones, due to the relative motion between the landing deck and the helicopter
(Yang et al., 2008). As of yet, landing operations with human pilots are guided by the human judgement
of landing deck superintendents whom indicate safe landing windows based upon intuition about the
ship’s motions. Therefore, accurate and reliable predictions of these ship movements can help to replace
or augment the human judgement in these operations (Khan et al., 2005).

Figure 1.1: The six ship motions visualized as degrees of freedom (Tanaka, 2018)

Unfortunately, modelling ship motions mathematically is a difficult feat. This is due to the complic-
ated hydrodynamic forces and stochastic sea disturbances that are crucial in determining ship motions
and that are too complex to accurately model mathematically (Khan et al., 2005; Sørensen, 2011; Yang
et al., 2008). For this reason, earlier attempts of modelling ship motions using traditional statistical
methods like Kalman filter (Triantafyllou & Bodson, 1982), ARMA (Yumori, 1981) and ARIMA (Khan
et al., 2004) have been unsatisfactory in terms of predicting multiple time steps ahead (Khan et al.,
2005).

Generally, Neural Networks (NN) perform well at tasks that are difficult to describe by formal
mathematical rules (G. Li et al., 2017) and that have non-linear components (Janiesch et al., 2021).
Therefore, utilizing NN bears opportunities for ship motion prediction due to the strong non-linearity
of ship motions (Sun et al., 2022) and time-series prediction more generally (Dumitru & Maria, 2013).

1



2

To achieve success in these predictions, several NN architectures have been applied to time-series and
ship motion prediction. First of all, Convolutional Neural Networks (CNN) are applied because time-
series can be regarded as a 1D spatial component and CNN are particularly effective in mapping spatial
relationships (Selvin et al., 2017). However, albeit utilizing CNN models for time-series prediction has
been effective in predicting stock price (Selvin et al., 2017), traffic and solar energy production (K.
Wang et al., 2019). Their performance in ship motion prediction has been disappointing, due to it’s
inability to handle longer term sequences (M. Zhao et al., 2021).

Opposingly, Recurrent Neural Networks (RNN) learn from previous time steps to learn dependencies
of data over time (Mandic & Chambers, 2001) and thus perform particularly well on sequential data
(D’Agostino et al., 2021). Unfortunately, traditional RNNs suffer from the vanishing and exploding
gradient problem when learning long-term dependencies (Bengio et al., 1994). To address this problem,
the Long Short-Term Memory (LSTM) architecture was proposed, which uses a memory block with
input, forget and output gates to allow for (partly) opening and closing the access to the historical error
flows (Hochreiter & Schmidhuber, 1997). For this reason, LSTM models achieve higher accuracy in time-
series prediction in several applications and are able to model both long- and short-term dependencies
of data (Yunpeng et al., 2017). The (dis)advantages of the models are summarized in table 1.1.

Table 1.1: Advantages and disadvantages of different models

Model Advantages Disadvantages
Statistical
methods

Low computational cost
Easier configuration

Bad performance multi-step prediction
Inability to handle non-linearity

Traditional
RNN

Handles non-linearity well
Strong ability with sequences

High computational cost
Vanishing and exploding gradients

LSTM Advantages of traditional RNN
Learns long- and short-term dependencies

Highest computational cost
Propensity of over-fitting

Consequently, LSTM models have been applied in several ship motion prediction studies with prom-
ising results. Be that as it may, many of these studies utilize the wave excitation to help predict the
ship movements (D’Agostino et al., 2021; Duan et al., 2019; Liu et al., 2020). Even though, ships are
not often equipped with wave detection systems due to the high price of these systems. For this reason,
real-time wave information is most often not available. Therefore, it is paramount to research how ship
motions can best be predicted without information about the wave excitation with different multi-step
prediction lengths. The research question that culminates from this is ”How can ship motions best be
predicted with LSTM neural networks without the usage of wave excitation information?”

To answer this research question, a model with finely tuned hyper parameters is required. However,
in most of these studies, the optimal hyper parameters of the model are chosen through grid-search.
Despite the existence of model tuning algorithms. These tuning algorithms utilize Bayesian (Snoek
et al., 2012) or Hyperband (L. Li et al., 2017) optimization techniques to make this process more
efficient and more effective. Noting the absence of usage of these algorithms in existing papers, this
paper will examine the usability of hyper parameter optimization algorithms. Finally, most LSTM ship
motion prediction papers do not give clear insight into the used input lengths and prediction lengths.
Noting this absence of information, this paper attempts to map the effects of these choices and the
prediction quality at different time steps. Namely, this paper compares several models with different
hyper parameters that are tuned and trained based upon 10 and 20 second output lengths and different
input lengths.



2
Data

2.1. Data Exploration
The data used in this study is a set of 100 simulations that are conducted by the Maritime Research
Institute Netherlands in the simulation program FREDYN. In these simulations, the ship motions
of frigate type vessel 5415M are simulated in sea state 5 with a constant heading and vessel speed.
The duration of this simulation is 11500 seconds and the first 500 seconds are deducted because the
simulation needs some time to become a realistic representation. After this deduction, 11000 seconds
(around 3 hours) remain per simulation, whereas, the granularity in these simulation is one observation
per 0.2 seconds (5 hertz). Therefore, every simulation consists of 55.000 observations and thus the
100 simulations combined span 5.5 million observations. The features of the data consist of the six
ship motions in relation to the centre of gravity and a reference point at the stern of the vessel, which
represents a helicopter landing platform. Additionally, the data contains features on the wave height,
heading of the ship and sea state. Importantly, this information should not be used in making predictions
of the ship motions because this paper attempts to predict ship motions without the usage of wave
excitation information.

To make the prediction problem more feasible, this paper solely focuses on predicting the heave
motion of the reference point located at the stern of the vessel. This feature is denoted as RefZ and
has similar means and standard deviations over the 100 simulations as visualized in figure 2.1, which is
expected since the simulations are conducted with identical settings.

Figure 2.1: Density plots of the means and standard deviations of RefZ over the 100 simulations

3



2.2. Data preparation 4

2.2. Data preparation
In comparison to data retrieved from sensors, data quality as a result of simulations does not run the
risk of missing data or outliers occurring. For this reason, missing data analysis and outlier analyses
are not performed.

However, noting the high computational costs associated with training (Recurrent) Neural Networks
(Laurent et al., 2016), it is important to consider how training costs can be lowered. Consequently, it
is important to analyze whether the time step granularity of 5 hertz is required to achieve accurate
predictions. As a result, a data re-sampling function is created that attempts to reduce the time step
granularity while simultaneously maintaining the temporal relations and details of the peaks and valleys
of the time-series. This is achieved by looping over the data in non-overlapping windows and locally
fitting trend lines. Afterwards, the minimum value is selected in descending trends and the maximum
value is selected in ascending trends. As becomes evident from figure 2.2, re-sampling 5 or more time
steps into one observation results in a loss of the peak and valley details and changes the temporal
relationships of the data. For this reason, the time step granularity should not be reduced to such
high levels. In addition, the optimal level of time step granularity is determined through it’s effect on
model training in terms of the trade-off between prediction accuracy and model training cost, which is
discussed later.

Figure 2.2: Line-plots of original data at 0.2 second granularity and combining 4 to 7 of these time-steps



2.3. Ethical and legal considerations 5

Moreover, to be able to train an LSTM model for time-series prediction training, validation and
test examples need to be created. To achieve this for LSTM models, several methods are available as
visualized in figure 2.3. Noting that this paper attempts to predict several time-steps into the future
based on sequences of historical data two options are available, namely many-to-one and many-to-many.
In utilising the many-to-one method for time-series prediction previous predictions are used to predict
further into the future. Unfortunately, this method results in the accumulation of errors, due to the
predictions being based upon other predictions (Elsworth & Güttel, 2020). Hence, this paper utilizes
the many-to-many method of creating examples. This is done by taking the RefZ of observations of a
specified input length as X and future observations of RefZ of a specified output length as Y to make
the time-series problem supervised. An example is shown in the fourth image in figure 2.3. In this
figure, the rectangles represent vectors of information and the arrows represent functions applied by the
model. With regards to the colors, red represents input, blue represents output and green represents
the internal state of the LSTM network. In contrast to this image, this paper does not have overlap
between the input and output.

Figure 2.3: Visualization of methods of training LSTM models (Karpathy, 2015)

Finally, noting that the data is sourced from 100 separate simulations, the sequences can not simply
be merged. This is due to the absence of temporal relationships between the end of one simulation and
the start of the next. To deal with this, examples are sourced from every separate simulation to create
distinct train, validation and test sets. This split is done by taking simulations 1 to 70 as training set,
71 to 85 as validation set and 86 to 100 as test sets. Due to the large size of these data sets and the
large overlap between adjacent training examples due to the many-to-many method, sub-sampling is
applied using strides. In short, this stride determines how many time-steps are skipped before a new
example is created.

2.3. Ethical and legal considerations
Generally, ethical considerations are less prevalent in data that is sourced from simulations and that
does not contain personal information. Nonetheless, due to the simulated nature of the data it is
important to consider that if results from this paper are applied to helicopter landing decisions, the
models require extensive training and testing on real-world data and extensive peer-reviewing.

In terms of legal considerations, the data set used in this paper is created by the Maritime Research
Institute Netherlands (MARIN). A key condition of the usage of this data is that it can not be shared
without explicit consent of MARIN.



3
Methods

As mentioned before, LSTM models show promising results in predicting ship motions. The effectiveness
of LSTM in predicting ship motions is explained by a combination of the inherent properties of recurrent
connections in RNN architectures in general (Mandic & Chambers, 2001) and the usage of memory
blocks in LSTM models more specifically (Bengio et al., 1994). This combination allows for learning
both short- and long-term dependencies in the data and makes LSTM models especially effective in
ship motion prediction (D’Agostino et al., 2021). However, previous literature most often uses wave
excitation information in their predictions. Even though, most off-shore vessels are not equipped with
wave detection sensors. Thus, the research question that originated from this is ”How can ship motions
best be predicted with LSTM neural networks without the usage of wave excitation information?”

To translate this research question into a data science question, it is important to note that finely
tuned hyper parameters are key in achieving high prediction accuracy. Surprisingly, existing literature
primarily utilizes grid-search to determine the hyper parameters of the model. Even though, tuning
algorithms can help to make this process more efficient and effective. In addition, the existing papers are
not open about the decision making in terms of input and output lengths. Finally, as explained in the
data section, this paper solely attempts to predict the heave motion at the reference point. Therefore,
the following data science question is formulated: ”How can the input length and the hyper-parameters
of an LSTM model best be configured to allow for accurate predictions of ship heave motion (RefZ) for
10 and 20 seconds into the future?”

To provide a meaningful answer to this question, this paper utilizes a tuning algorithm instead
of grid-search methods to determine the optimal hyper parameters in a more effective and efficient
manner. In this paper, the Keras-tuner is applied. The reason for this decision is three-fold. First of
all, the Keras-tuner is built specifically for tuning of hyper parameters in the widely used library Keras,
which helps to improve the replicability of this study. Second, the wide usage of Keras has resulted
in clear documentation and community support for the Keras-tuner. Third, the Keras-tuner library is
especially flexible in tuning options and allows for straightforward sub-classing to expand tuning options
even further.

Moreover, in the Keras tuner, multiple optimization algorithms are available of which Hyperband
and Bayesian Optimization are the most advanced. Even though Hyperband is much more efficient than
Bayesian Optimization, due to the smart allocation of resources, it tends to converge to sub optimal
solutions (J. Wang et al., 2018). For this reason, both methods are applied and compared to allow for
efficient exploration with Hyperband and increased reliability on converging to an optimal solution with
Bayesian Optimization.

In order to make use of the Keras-tuner, it is important to clearly define which parameters should
remain constant, which parameters the tuner should attempt to tune and what type of decisions the
tuner can make within a specific parameter. Deciding upon this so-called search space is highly depend-
ent on the model that is used and the domain problem at hand. In short, this paper decides upon this
search space through a combination of literature review, experience and experimentation. A summary

6



7

of the selected search space and argumentation for this selection is provided in table 3.1. First, some
tuning cycles are performed using this entire search space. Afterwards, the results of these tune cycles
are analysed to spot trends of convergence around specific hyper parameter configurations. Finally,
based upon this analysis a smaller search space is defined around these configurations to come to a
more finely tuned model.

Successively, the most promising model of the tuning cycle is trained. During this training process,
the model is trained with varying input lengths and sampling strides to discover the optimal amount of
input. Upon increasing the input length to high amounts the stride is increased accordingly to prevent
infeasible training times.

Table 3.1: Search space definition and argumentation

Hyper parameter Options Argumentation

Number of layers Integer between 1
and 6

Optimal number of layers highly contingent on use
case, thus tune with large range

Units per layer Integer between 16
and 512

Optimal units per layer highly contingent on use
case, thus tune with large range

Learning rate Choice of [1e-2, 5e-3,
1e-3, 5e-4, 1e-4]

Optimal learning rate highly contingent on use case,
thus tune with large range

Batch size Integer between 64
and 1024

Optimal batch size highly contingent on use case,
thus tune with large range

Epoch amount Early stop based on
validation loss

On the one hand, as many epochs as possible are
desired, but over-fitting might occur. Use early stop
based on validation loss to prevent over-fit

Activation function
(dense layer) Default: linear

LSTM layers already contain 3 sigmoid and 1 tanh
activation function (Greff et al., 2016). Dense layer
requires continuous output values and thus linear
activation is the only built-in option.

Optimizer Choice between
Adam and SGD

Adam has shown to be a good combination of the
advantages of RMSprop and Adadelta and thus is
the preferred option. However, albeit Adam con-
verges quicker, SGD often generalizes better (Reddi
et al., 2019; Zhang, 2018). Therefore, both Adam
and SGD are examined.

Dropout Float between 0 and
0.5

In LSTM models dropout an be applied before, in
or after LSTM layers to prevent over-fitting. Pla-
cing dropout before layers is shown to have the best
performance in most use cases (Bluche et al., 2015)

Batch normalization No

Regular batch normalization not possible since it is
computed per batch and thus does not consider re-
current connections (Cooijmans et al., 2016). Only
possible through reparametrizing the LSTM, which
is outside the scope of this paper



8

The raw RefZ data is normalized to allow for better model convergence and performance (Jayalak-
shmi & Santhakumaran, 2011). In this paper, MinMax normalization in the interval of [0, 1] is applied.
This method normalizes the raw RefZ values to values in this interval.

Yminmax =
Y −minY

maxY −minY
(3.1)

To evaluate the performance of the proposed model, the Root Mean Squared Error (RMSE) metric is
used. Moreover, as a novel contribution, this paper calculates the RMSE per time step to determine the
RMSE for every position that is predicted in the future. This is done to gain a better understanding
of the strengths and weaknesses of the model. The implementation of RMSEtimestep is shown in
Equation 3.3. In this metric, instead of calculating the RMSE over all the prediction errors, the RMSE
is calculated separately on the errors at time step t.

RMSE =

√
1

n
Σn

i=1

(
di − fi

)2

(3.2)

RMSEtimestep =

√
1

nt
Σnt

i=1

(
dti − f t

i

)2

(3.3)

To summarize, the workflow of this research is visualized in figure 3.1. Even though this figure
visualizes this research as a linear process, it is important to note that the actual process is iterative.
Especially determining the used stride in sub-sampling, the input length, and the training and tuning
are iterative processes.

Figure 3.1: Visualization of the workflow of this research



4
Results

4.1. Tuning
As previously mentioned, the tuning process is an iterative process and in this research this process is
divided in multiple tuning cycles. In this section the final tuning cycle is outlined, whereas the preceding
cycles are discussed in appendix A. Initial results of these two earlier tuning cycles are as follows.

• Dropout is not beneficial in this application, because this prevents the model from converging and
surprisingly leads to more over-fitting

• The Adam optimizer converges quicker and also leads to better performance than SGD
• Optimal number of layers and nodes unclear
• Most well performing models converge to a validation loss slightly above 0.005

Taking these initial results into account, it becomes clear that additional tuning is required to
determine what the optimal number of layers and nodes is. To do this, it is beneficial to switch
from the Bayesian Optimization algorithm to the Hyperband algorithm. The reason for this is that
Hyperband is able to test a large number of models more efficiently due to smart resource allocation
(J. Wang et al., 2018) by incrementally assigning more resources to the best performing models (L. Li
et al., 2017).

Importantly, this final tuning cycle does not include the optimizer nor dropout in the search-space,
because the preceding tuning cycles have shown that dropout is not beneficial and the Adam optimizer
is superior. The results of this tuning cycle are shown in table 4.1, which indicates that the Hyperband
algorithm was able to converge to superior models. The chosen model has 3 layers with 368, 368 and
240 neurons per layer. In addition, the learning rate is 0.0005 and the batch size is 64.

Table 4.1: Tuning trial summary top 10 ordered by validation loss selection from 484 trials with Hyperband

Rank Validation
loss

Number
of layers Units/layer Learning

rate
Batch
Size

1 0.00509 3 368, 368 and 240 0.0005 64
2 0.00509 3 368, 368 and 240 0.0005 64
3 0.00511 2 96 and 320 0.001 64
4 0.00513 3 480, 208, 32 0.001 64
5 0.00513 2 96 and 320 0.001 64
6 0.00521 2 302 and 48 0.001 64
7 0.00523 3 480, 208 and 32 0.001 64
8 0.00526 2 32 and 368 0.005 64
9 0.00532 3 368, 368 and 240 0.0005 64
10 0.00538 2 32 and 368 0.005 64

9



4.2. Model training 10

4.2. Model training
During the training process, the tuned model is trained on varying input lengths and varying strides
to determine the optimal amount of input for accurate predictions. In contrast, the output length
remains constant at 25 time steps (20 seconds). To concretize, in line with the model tuning, the
first model has an input length of 50 and a stride of 5. Afterwards, the input length and stride are
incrementally increased and decreased to analyze the effects. Importantly, the models use early stopping
as a mechanism to prevent over-fit, which halts model training if validation loss does not improve for
a specified number of epochs. Upon activation of the early stop mechanism the weights are restored
to the epoch with the best validation loss. This so-called patience varies per model, due to varying
training processes per model.

The input configurations and their respective training validation loss histories are visualized in
figure 4.1. This figure only contains the validation loss to allow for easier interpretation. The horizontal
lines indicate the validation loss of the best epoch that the early stop mechanism restores to and thus
indicates the performance of the trained model. The upwards moving validation-losses are a result of
this early stop mechanism and do not represent the final performance of the model.

This visualization shows that the best performing model is the 200 input stride 1 model closely
followed by the 200 input stride 5 model. Additionally, comparison of the different models shows
that an increase of input to the model improves validation performance both in terms of input length
and lowering the stride. However, increasing the input length and lowering the stride both result in
increased computational costs with an epoch of the 200 input and stride 1 model requiring 25 minutes.
Therefore, a trade-off exists between computational costs and model performance (Huang et al., 2017).
This increased computational cost of increasing input length is managed by simultaneously increasing
the stride. Nonetheless, doubling the input length and stride together does not cancel each other out as
evidenced by the 400 input and stride 10 model. Finally, the 400 input model also shows that increasing
the input length to very high levels does not necessarily result in the best performance. Be that as it
may, it is possible that the 400 input model would perform better upon decreasing the stride.

Figure 4.1: Visualization of validation loss histories of trained models



4.3. Model evaluation 11

4.3. Model evaluation
The model evaluation on the test set is summarized in table 4.2, which contains RMSE calculated on
both 10.4 and 20 second ahead predictions to allow for more detailed comparison. An important note is
that is that the validation loss during training is based upon the MSE on normalized data, whereas for
model evaluation on the test set RMSE is used. Moreover, table 4.2 displays both the RMSE calculated
on MinMax normalized data and unnormalized data due to the variation in metrics used in existing
papers (D’Agostino et al., 2021; Liu et al., 2020).

The model performance achieved on the test set is very similar to the validation loss achieved during
training. The 200 input stride 1 model achieves the best test performance closely followed by the 200
input stride 5 model. Interestingly, the relative differences in model performance are more evident in
the 10.4 second ahead predictions than in the 20 second ahead prediction. This indicates that the best
models primarily perform better in the earlier time steps. Figure 4.2 confirms this finding and shows
that the model performance becomes increasingly similar after time step 15.

Table 4.2: Model evaluation test RMSE statistics on MinMax scaled predictions and unscaled predictions

Model RMSE MinMax
(10.4 sec / 13 steps)

RMSE MinMax
(20 sec / 25 steps)

RMSE unscaled
(10.4 sec / 13 steps)

RMSE unscaled
(20 sec / 25 steps)

50 input
stride 5 0.04717 0.07110 0.76604 1.15472

50 input
stride 1 0.04573 0.07050 0.74271 1.14507

100 input
stride 5 0.04352 0.06827 0.70674 1.10874

200 input
stride 5 0.03810 0.06538 0.61888 1.06181

200 input
stride 1 0.03679 0.06449 0.59757 1.04744

400 input
stride 10 0.04520 0.06852 0.73419 1.11291

Figure 4.2: Visualization of RMSE unscaled per time step for trained models calculated with Equation 3.3



4.3. Model evaluation 12

To analyze the now-casting abilities of the model, a set of 9 selected prediction versus actual plots is
displayed in figure 4.3. Importantly, these plots only show 50 percent of the input sequence (100 out of
200 time steps) to make them easier to interpret. The selection is based upon 9 evenly spaced positions
in the test set and thus are selected in quasi-random nature. Notably, the predictions at the peaks
and valleys (highest and lowest values in RefZ movements) of the time-series are predicted higher and
deeper than the observed pattern. This is not problematic because in helicopter and off-shore vessel
multi-body operations it is preferred to over-estimate the peaks and valleys. The reason for this is that
under-estimating a peak or valley might lead to unintended contact. In addition, the predicted versus
actual plots highlight the accuracy of the ten second ahead predictions and underline the difficulty of
predicting further ahead. This is in line with what is expected from the previous analyses and a priori
assumptions. Finally, it becomes apparent that the model has difficulty predicting quickly altering RefZ
directions and performs better at predicting more continuous movements.

Figure 4.3: Predicted versus actual plots



4.3. Model evaluation 13

Finally, an important metric for assessing the now-casting performance of a model is to determine
whether the prediction errors are normally distributed around a mean of 0 (D’Agostino et al., 2021).
This is useful to determine whether the predictions of the model tend to over- or under-estimate. If the
model is biased in this way, the model requires additional training. This might appear counter intuitive
in relation to the previous paragraph. However, if the mean is not centered around 0 the model tends to
over- or under-estimate from every position in the time-series and not only at the peaks and valleys. In
this case, the prediction errors of the model are normally distributed around a mean of 0 as visualized
in figure 4.4. This underlines the good quality of the predictions of the model.

Figure 4.4: Density plot of the distribution of the prediction errors



5
Conclusion & Discussion

Augmenting or replacing human judgement in helicopter/off-shore vessel operations requires accurate
predictions of the movements of the vessel. A useful model for accurate time-series predictions is the
LSTM model. Many efforts in the field use wave excitation information to make these predictions, which
is surprising due to the high costs of wave detection systems for ships. For this reason, it is important to
discover whether accurate predictions can be made by an LSTM model without using wave excitation
information. To allow for accurate predictions, the correct inputs and finely tuned hyperparameters are
key.

This paper demonstrates that an LSTM model performs excellent for 10 second ahead predictions
and moderately for 20 second ahead predictions. Additionally, it substantiates the required input and
hyperparameters to achieve these predictions. In particular, it is shown that dropout prevents the model
from converging on the training data and surprisingly leads to more over-fitting. Moreover, contrary to
a priori expectations, models trained with the Adam optimizer generalize better than models trained
with SGD. This is a helpful conclusion since Adam also converges quicker, which further accentuates
the usefulness of Adam in this application. Furthermore, it is evident that a model with 3 LSTM layers
with 368, 368 and 240 neuron units per layer achieves the best performance. The used learning rate and
batch size are 0.0005 and 64 respectively. In addition, increasing the amount of data that is fed to the
model by increasing the input length and decreasing the stride is beneficial for the performance of the
model. The optimal input for this model is shown to be 200 input length and stride 1 for both 10 and 20
second ahead prediction. However, increasing the amount of input does result in higher computational
costs. Therefore, a trade-off exists between increasing the amount of input and training speed of the
model. Finally, this research exhibits that LSTM models can achieve accurate prediction performance
without requiring the usage of wave excitation information. Thus, this paper highlights the potential
of LSTM for utilization in real-world applications that lack this information.

With regards to these real-world applications, it is important to note that the current prediction
performance does not allow for usage of this model in efforts towards autonomous operations. However,
this research does show that the quality of the predictions allow to augment the human judgement
involved in helicopter/off shore vessel operations. Especially in 10 second ahead predictions the LSTM
model performs adequately to assist landing deck operators. Even though this prediction performance
is adequate, it should be considered that the current model only predicts one of the six ship motions
and uses simulated data in merely one sea-state. As a consequence, further research into ship motion
prediction with LSTM models should focus on the following three subject areas. First, future research
should focus on predicting ship motions based on real world data instead of simulated data. Second, to
be applied to real-world applications, it is key that the model is able to handle several sea-states. Third,
it is important to research prediction of all 6 ship motions at the same time without wave excitation
information, which has already been shown to be effective with the usage of wave excitation information.

Equally important, it should be noted that the tuning process is guided by a predetermined search-
space. Even though this search-space is defined according to existing literature and experimentation,

14



15

a neural network can most often be tuned further (e.g. learning rate scheduling, usage of layer nor-
malization, etc.). Nonetheless, this research attempted to consider as many hyperparameter options as
possible with the limited time available. The same holds for the number of different input configurations
that are analysed. With more computational resources and time, more high input length models with
low stride could be examined. Future research could investigate the effects of these changes. Moreover,
in the final tuning cycle, this research switched from Bayesian Optimization to the Hyperband tuning
algorithm to try out several model configurations more efficiently. This tuning cycle showed that the
Hyperband tuning algorithm was not only more efficient, but also achieved superior performance. The
superior performance of the Hyperband tuning algorithm was in contrast to the a priori assumptions
and could have allowed this research to mitigate the increased computational costs at larger amounts of
input. Hence, future research should utilize the increased efficiency and effectiveness of the Hyperband
tuner to speed up tuning and training. Finally, this paper shows that the best performing models use
2-3 layers, whereas, most existing papers in ship motion predictions with LSTM use models with one
layer. Therefore, future research could benefit from trying more complicated models than those applied
previously.

Due to the simulated and non-personal nature of the data, ethical challenges are less prevalent in this
research. On the other hand, the simulated nature does result in the necessity to first test the model
performance on actual data before being used in augmenting human judgement. Additionally, with
simulated data, it is important that the data generating mechanisms are modelled in a correct fashion
and with integrity. The data is simulated by the Maritime Research Institue Netherlands (MARIN),
whom accrued over 85 years of modelling and simulation capabilities and therefore the data is expected
to fulfill these requirements.



References

Bengio, Y., Simard, P. & Frasconi, P. (1994). Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2), 157–166.

Bluche, T., Kermorvant, C. & Louradour, J. (2015). Where to apply dropout in recurrent neural net-
works for handwriting recognition? 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), 681–685.

Cheng, X., Li, G., Skulstad, R., Major, P., Chen, S., Hildre, H. P. & Zhang, H. (2019). Data-driven
uncertainty and sensitivity analysis for ship motion modeling in offshore operations. Ocean
Engineering, 179, 261–272.

Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç. & Courville, A. (2016). Recurrent batch normaliz-
ation. arXiv preprint arXiv:1603.09025.

D’Agostino, D., Serani, A., Stern, F. & Diez, M. (2021). Recurrent-type neural networks for real-time
short-term prediction of ship motions in high sea state. arXiv preprint arXiv:2105.13102.

Duan, S., Ma, Q., Huang, L. & Ma, X. (2019). A lstm deep learning model for deterministic ship motions
estimation using wave-excitation inputs. The 29th International Ocean and Polar Engineering
Conference.

Dumitru, C. & Maria, V. (2013). Advantages and disadvantages of using neural networks for predictions.
Ovidius University Annals, Series Economic Sciences, 13(1).

Elsworth, S. & Güttel, S. (2020). Time series forecasting using lstm networks: A symbolic approach.
arXiv preprint arXiv:2003.05672.

Greff, K., Srivastava, R. K., Koutnı́k, J., Steunebrink, B. R. & Schmidhuber, J. (2016). Lstm: A search
space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222–2232.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–
1780.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song,
Y., Guadarrama, S. et al. (2017). Speed/accuracy trade-offs for modern convolutional object
detectors. Proceedings of the IEEE conference on computer vision and pattern recognition, 7310–
7311.

Janiesch, C., Zschech, P. & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets,
31(3), 685–695.

Jayalakshmi, T. & Santhakumaran, A. (2011). Statistical normalization and back propagation for clas-
sification. International Journal of Computer Theory and Engineering, 3(1), 1793–8201.

Karpathy, A. (2015). The unreasonable effectiveness of recurrent neural networks. http://karpathy.
github.io/2015/05/21/rnn-effectiveness/

Khan, A., Bil, C., Marion, K. & Crozier, M. (2004). Real time prediction of ship motions and attitudes
using advanced prediction techniques. Congress of the International Council of the Aeronautical
Sciences. International Council of the Aeronautical Sciences.

Khan, A., Bil, C. & Marion, K. E. (2005). Ship motion prediction for launch and recovery of air vehicles.
Proceedings of OCEANS 2005 MTS/IEEE, 2795–2801.

16

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


References 17

Laurent, C., Pereyra, G., Brakel, P., Zhang, Y. & Bengio, Y. (2016). Batch normalized recurrent neural
networks. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2657–2661.

Li, G., Kawan, B., Wang, H. & Zhang, H. (2017). Neural-network-based modelling and analysis for time
series prediction of ship motion. Ship technology research, 64(1), 30–39.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. (2017). Hyperband: A novel bandit-
based approach to hyperparameter optimization. The Journal of Machine Learning Research,
18(1), 6765–6816.

Liu, Y., Duan, W., Huang, L., Duan, S. & Ma, X. (2020). The input vector space optimization for lstm
deep learning model in real-time prediction of ship motions. Ocean Engineering, 213, 107681.

Mandic, D. & Chambers, J. (2001). Recurrent neural networks for prediction: Learning algorithms,
architectures and stability. Wiley.

Reddi, S. J., Kale, S. & Kumar, S. (2019). On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237.

Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V. K. & Soman, K. (2017). Stock price
prediction using lstm, rnn and cnn-sliding window model. 2017 international conference on
advances in computing, communications and informatics (icacci), 1643–1647.

Snoek, J., Larochelle, H. & Adams, R. P. (2012). Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25.

Sørensen, A. J. (2011). A survey of dynamic positioning control systems. Annual reviews in control,
35(1), 123–136.

Sun, Q., Tang, Z., Gao, J. & Zhang, G. (2022). Short-term ship motion attitude prediction based on
lstm and gpr. Applied Ocean Research, 118, 102927.

Tanaka, Y. (2018). Active vibration compensator on moving vessel by hydraulic parallel mechanism.
International Journal of Hydromechatronics, 1(3), 350–359.

Triantafyllou, M. S. & Bodson, M. (1982). Real time prediction of marine vessel motions, using kalman
filtering techniques. Offshore Technology Conference.

Wang, J., Xu, J. & Wang, X. (2018). Combination of hyperband and bayesian optimization for hyper-
parameter optimization in deep learning. arXiv preprint arXiv:1801.01596.

Wang, K., Li, K., Zhou, L., Hu, Y., Cheng, Z., Liu, J. & Chen, C. (2019). Multiple convolutional neural
networks for multivariate time series prediction. Neurocomputing, 360, 107–119.

Yang, X., Pota, H., Garratt, M. & Ugrinovskii, V. (2008). Ship motion prediction for maritime flight
operations. IFAC Proceedings Volumes, 41(2), 12407–12412.

Yumori, I. (1981). Real time prediction of ship response to ocean waves using time series analysis.
OCEANS 81, 1082–1089.

Yunpeng, L., Di, H., Junpeng, B. & Yong, Q. (2017). Multi-step ahead time series forecasting for
different data patterns based on lstm recurrent neural network. 2017 14th web information
systems and applications conference (WISA), 305–310.

Zhang, Z. (2018). Improved adam optimizer for deep neural networks. 2018 IEEE/ACM 26th Interna-
tional Symposium on Quality of Service (IWQoS), 1–2.

Zhao, M., Zhang, J. & Rashid, M. H. (2021). Predicting the drift position of ships using deep learning.
The 2nd International Conference on Computing and Data Science, 1–5.

Zhao, X., Xu, R. & Kwan, C. (2004). Ship-motion prediction: Algorithms and simulation results. 2004
IEEE international conference on acoustics, speech, and signal processing, 5, V–125.



A
Appendix A: Code

The annotated code for this paper is found at this Github: https://github.com/QuintenSand/Thesis-
Marin. The Github page is a combination of the efforts for three thesis projects and therefore some code
that is found on this Github page is not used in the paper that lies before you. Below an explanation
is provided on which code is used in this paper.

The LSTM_tutorial Python notebook provides an explanation on all steps that are used to tune
and train the LSTM model. This notebook uses several functions that are found in the marin_functions
directory. First, the data aggregation file is used to sub-sample the data from 0.2 second time steps to
0.8 second time steps. Second, the data preparation file contains the functions that are used to create the
examples in the training, test and validation sets. Third, the model forecast file contains the functions
that are used to create predicted vs actuals plots and is used to compute RMSE statistics. Furthermore,
this marin_functions directory also contains the code that is used to create the visualizations that are
used in this paper. The creation of these visualization is divided into two files. Namely, a file for the
visualizations of the data and method sections, and a file for the visualizations of the results section.

18



B
Appendix B: Preliminary tuning results

B.1. First tune cycle
The first tuning cycle was performed with the following search space and settings. Importantly, this
tuning cycle was performed with only one simulation as input and a re-sampling combining two timesteps
to 0.4 seconds per timestep. Moreover, in this tuning cycle the optimizer was held constant as Adam.
An analysis of the results of this tuning cycle is provided below.

• Number of layers: between 1 and 6
• Units per layer: between 16 and 256
• Dropout per layer: between 0 and 0.5
• Learning rate: between 0.01 and 0.0001
• Batch size: between 16 and 128

Interestingly, as shown in table B.1 the tuning algorithm clearly converges to the same set of hyper
parameters. It becomes apparent that a one layer model with the maximum number of nodes performs
best. Additionally, this tuning cycle shows that dropout is not beneficial in this application. The reason
for this is that it prevents the model from converging on the training data and even results in a higher
validation loss. Finally, nearly all models in the top 10 have a learning rate of 0.0001 and a batch size
of 16. However, it is important to note that this tuning cycle is only performed on one simulation, uses
a different level of re-sampling (0.4 sec per timestep instead of 0.8 sec) and only attempts to predict 10
seconds into the future.

Table B.1: Tuning trial summary top 10 ordered by validation loss selection from 21 trials from Bayesian Optimization

Rank Validation
loss

Number
of layers Units/layer Dropout/layer Learning

rate
Batch
Size

1 0.00371 1 256 0 0.0001 16
2 0.00387 1 240 0 0.0001 16
3 0.00388 1 256 0 0.0001 16
4 0.00391 1 256 0 0.0001 16
5 0.00399 1 256 0 0.0001 16
6 0.00428 1 256 0 0.0001 16
7 0.00439 1 256 0 0.0001 32
8 0.00479 1 32 0 0.0001 16
9 0.00480 1 256 0 0.01 16
10 0.00482 1 256 0 0.0001 32

19



B.2. Second tune cycle 20

B.2. Second tune cycle
During the second tuning cycle the improved version of creating training examples from multiple files is
used and therefore much more data is used for the tuning process. Additionally, in this tuning cycle the
re-sampling is 0.8 seconds per timestep and a stride of 5 is used. This stride of 5 indicates that there
are 5 timesteps between every training example. Importantly, the input length is 50 and the output
length is 25, which translates to 40 and 20 seconds respectively.

Noting that dropout had adverse effects on model convergence and over-fitting, dropout is excluded
from the search-space. In addition, the first tuning cycle shows that the tuning does not converge on a
high number of layers and thus this search-space is reduced to a maximum of 3 layers. Moreover, noting
the highly increased amount of data used, the search-space with regards to batch size is increased to
a maximum of 1024 and a higher minimum of 64. As became evident in the first tuning cycle, the
maximum number of nodes was used in most of the models in the top-10. Therefore, in this tuning
cycle the maximum number of nodes is increased from 256 to 512. Finally, this tuning cycle includes a
choice of optimizer between Adam and SGD. The search-space is summarized below:

• Number of layers: between 1 and 3
• Units per layer: between 16 and 512
• Optimizer: Adam or SGD
• Learning rate: between 0.01 and 0.0001
• Batch size: between 64 and 1024

The results of this tuning cycle are displayed in table B.2. From this summary, it becomes apparent
that the best performing models all have Adam as an optimizer and use a learning rate of 0.0001.
Furthermore, most well performing models have a batch size of 64. In contrast with the first tune cycle,
now the best performing models have multiple layers, which is in line with expectations because longer
input and output lengths are used and the timesteps changed from 0.4 to 0.8 sec per timestep. Lastly,
the number of units used per layer vary quite a lot and thus an additional tune cycle is required. In
this final tune cycle Hyperband is used because Hyperband is more efficient in trying a large number
of possible models and the Bayesian Optimization tuning cycle shows us the desired performance level.

Table B.2: Tuning trial summary top 10 ordered by validation loss selection from 29 trials from Bayesian Optimization

Rank Validation
loss

Number
of layers Units/layer Optimizer Learning

rate
Batch
Size

1 0.00515 3 512, 16 and 256 Adam 0.0001 64
2 0.00516 3 192, 384 and 208 Adam 0.0001 64
3 0.00521 1 304 Adam 0.0001 64
4 0.00521 2 272 and 16 Adam 0.0001 64
5 0.00522 3 352, 208 and 16 Adam 0.0001 256
6 0.00522 2 336 and 16 Adam 0.0001 64
7 0.00525 3 16, 176 and 16 Adam 0.0001 64
8 0.00537 3 96, 176 and 112 Adam 0.0001 512
9 0.00547 1 16 Adam 0.001 126
10 0.00549 1 16 Adam 0.01 64


	Abstract
	Introduction
	Data
	Data Exploration
	Data preparation
	Ethical and legal considerations

	Methods
	Results
	Tuning
	Model training
	Model evaluation

	Conclusion & Discussion
	References
	Appendix A: Code
	Appendix B: Preliminary tuning results
	First tune cycle
	Second tune cycle


