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Abstract

The hydrodynamic theory of spin current is a useful tool that can be used to
describe different phenomena, ranging from the spin in liquid metal to the global
spin polarization in heavy-ion collisions. Recently, exhaustive analyses of spin
hydrodynamics have been performed and the constitutive relations are obtained.
The spin coefficients that appeared in the constitutive relation are vital to the
property of the spin current. The heavy-ion collision involves strong interaction
so we can’t obtain these coefficients from the correlation functions in quantum
field theory.

The holography principle, which implies we may use a classical bulk gravity
theory to calculate the correlation functions in strongly coupled boundary quan-
tum field theory, could be a method to calculate these spin transport coefficients.
In this paper, we choose a simple vector field model as the holography model.
This vector field is dual to the trace of contorsion in the hydrodynamic theory.
We performed the calculation at an AdS-Schwartzschild background spacetime
and we treat the background value of the vector field as a small number. We
constructed the counterterms for the vector field action at the probe limit. We ob-
tained Kubo relations for some spin transport coefficients base on the research [1].
We calculated these transport coefficients and found them proportional to the
slow falloff mode of the vector field.

i



Acknowledgement

During the time of my master’s thesis research, I received enormous help from
many people. I would like to express my sincere thanks to my first supervisor Dr.
Umut Gürsoy for his support during my research. His insights always guided
me in the right direction when I faced obstacles. His patience also influenced
my lifestyle. I’m also grateful to Dr. Casey Cartwright for helping me get out of
many difficulties. He spent more time than he should for helping me with issues
on the numerical methods. I also wish to thank My second supervisor Dr. Stefan
Vandoren for his support and discussion of my career direction. I want to thank
my friend Teun Kluck and his orchestra members for their excellent performance
at the concert. Finally, I wish to express my gratitude to my parents for raising
me and providing emotional support.

ii



Contents

Abstract i

Acknowledgement ii

1 Introduction 2

2 Preliminary knowledge 4
2.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Spin currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Spin current for Dirac spinor . . . . . . . . . . . . . . . . . . 5
2.2.3 Vielbein formalism . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Kubo formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Basics of holography principle . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 AdS spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Gibbons-Hawking term . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Massive scalar example . . . . . . . . . . . . . . . . . . . . . 13

3 Spin current hydrodynamics 15
3.1 Conservation law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Hydrostatic ideal fluid . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Kubo formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Spin transport coefficients from holography 21
4.1 Massive vector as a bulk gravity model . . . . . . . . . . . . . . . . 21
4.2 Near boundary analysis . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Near horizon analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Counterterms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Retarded Green’s function . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Spin transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusion and outlook 28
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1



1 Introduction

Hydrodynamics is a low-energy effective theory that can be used to describe clas-
sical or quantum many-body systems. It can be used to describe a wide range of
phenomena from flow in blood vessels to the plasma emitted by stars. Recently,
interest in the hydrodynamic theory in the presence of a conserved angular mo-
mentum density has increased. The angular momentum density can be consid-
ered as the combination of vorticity and spins. Because of the spin-orbit coupling,
vorticity and spin current can influence each other. Takahashi et al. [2] reported
the first observation of the coupling between vorticity and spin current. Figure
1 shows their equipment to generate the spin current. The left panel shows the
Hall effect, which means adding a magnetic field to the electron current causes
an electron voltage in the perpendicular direction. The right panel shows that
adding a gradient of vorticity causes a spin voltage that can generate the spin
current.

Figure 1: Schemaic illustrations for spin hydrodynamic generation

In the context of ultra-realistic heavy-ion collisions, the fragments on two
sides are usually not aligned center-to-center. These collisions create quark-gluon
plasma which can be well described by hydrodynamic theory [3–7]. The angu-
lar momentum caused by non-central collisions creates a strong vortical struc-
ture that couples to the spin current. Extensive research on this subject has been
performed [8–13]. Recently, the global spin polarization of Λ and Λ̄ has been
measured at RHIC [14, 15] and hydrodynamic analysis of spin current [16] have
shown a good fit with the experimental results.

A comprehensive analysis of spin current hydrodynamics in the presence of
torsion has been derived in [1]. The torsion is necessary because it can avoid
ambiguity in defining the energy-momentum tensor and the spin current. The
constitutive relations for spin current in the second order in derivative have been
constructed, which brings tens of transport coefficients. Since heavy-ion colli-
sions involve strong interaction, it’s not possible to calculate them from the cor-
relation functions in QFT. These transport coefficients may be determined by
using Bayesian analysis on experimental data [17]. The holography principle,
which states that a strongly coupled gauge theory is equivalent to a higher di-
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mensional gravity theory, has been used to investigate the hydrodynamic theory
in heavy-ion collisions for many years [18–20]. The essential idea is that trans-
port coefficients correspond to the response of current to external sources, using
holography we can relate this source to a field in the gravity theory and calcu-
late the response. In fact, the shear viscosity of quark-gluon plasma calculated
from holography [21, 22] is similar to the experimental data with hydrodynamic
analysis [23]. This result inspired us to investigate the spin current transport co-
efficients from holography.

In this paper, we choose a simple vector field model as the holography model.
This vector field is dual to the trace of contorsion in the hydrodynamic theory. In
Chapter 2 we introduced preliminary knowledge about the hydrodynamic the-
ory, spin current, and the basics of holography. In Chapter 3 we summarized
some results that we need to use form [1]. In Chapter 4 we investigate our model
by solving the equations of motion perturbatively. We obtained some transport
coefficients and found them proportional to the slow falloff mode of the vector
field.
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2 Preliminary knowledge

2.1 Hydrodynamics

Hydrodynamics was invented to describe the dynamics of liquid. From the field
theory’s point of view, hydrodynamics is an effective field theory at the low mo-
mentum limit ω → 0, k → 0. It describes the behavior of macroscopic quantities,
for example, velocity field and temperature fields.

There are two important ingredients for hydrodynamics: conservation law
and constitutive relation. The conservation law comes from the symmetry of a
theory and serves as the equation of motion. Complicated microscopic behaviors
are simplified as we zoom out the length scale, they become constitutive relations
that describe the relations between currents and hydrodynamic variables.

Let’s consider relativistic ideal fluid as an example. Translation invariance
gives the conservation law of energy-momentum tensor:

∂µTµν = 0 (2.1)

The constitutive relation for ideal fluid is:

Tµv = (ε + P)uµuv + Pηµv. (2.2)

This relation shows the expectation value of the energy-momentum tensor is only
determined by the velocity field µ(x), energy density field ϵ(x), and pressure field
P(x). Different fluids, though they can obey the same conservation equation,
their constitutive relations are different. For example, the constitutive relation for
viscous fluid contains an extra term on the right-hand side of (2.1):

τij = −η

(
∂iuj + ∂jui −

2
3

δij∂kuk
)
− ζδij∂kuk. (2.3)

η is the shear viscosity and ζ is the bulk viscosity.
Bringing the constitutive relation into the conservation law of ideal fluid, we

can get the hydrodynamic equations. The time component in conservation law is
the relativistic continuity equation:

∂µTµ0 = 0 → dε

dτ
+ (ε + P)∂µuµ = 0. (2.4)

The spatial component in conservation law is:

∂µTµi = 0 → (ε + P)uµ∂µui + ∂iP = 0. (2.5)

This is the relativistic Euler’s equation, which is essentially the relativistic version
of Newton’s second law F = ma.

2.2 Spin currents

2.2.1 Currents

Noether’s theorem tells us that a continuous global symmetry leads to a con-
served current. Assume we have some Lagrangian L and the variation of a field
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ϕa under an infinitesimal symmetry transformation is δϕa, then there exists a cur-
rent:

Jµ
a = − δL

δ∂µϕa
δϕa, (2.6)

which is conserved ∂µ Jµ
a = 0. For example, the Dirac Lagrangian

Lψ = iψ̄/∂ψ − mψ̄ψ (2.7)

is invariant under a global U(1) transformation ψ → eiqαψ, where q represents
the charge of this spinor. Its Noether’s current equals to :

Jµ = qψ̄γµψ. (2.8)

There is another way to obtain this conserved current, which requires pro-
moting the global symmetry to a local gauge symmetry. We can achieve this by
promoting the derivative ∂µ to a covariant derivate ∇µ. Under a gauge transfor-
mation ϕa → U(α(x)), the covariant derivative should transform as:

∇µ → U(α(x))∇µ (2.9)

In the Dirac Lagrangian example, the gauge transformation for a spinor is ψ →
eiqα(x)ψ. The promotion of derivatives is:

∂µ → ∇µ = ∂µ − iqAµ. (2.10)

Aµ is a gauge field that transforms as Aµ(x) → Aµ(x) + ∂µα(x). The new Dirac
Lagrangian with gauge symmetry is:

Lψ = iψ̄ /∇ψ − mψ̄ψ. (2.11)

We can get the transformation law of action S under this symmetry is:

δS =
∫

ddxJµδAµ + E.O.M.δψ, (2.12)

where the E.O.M. represent the equation of motion for ψ. Therefore, we can get
the electric current by differentiating the on-shell action with respect to the U(1)
gauge field. As we will see, the definition of spin current can be achieved in the
same way but with a Lorentz gauge field.

2.2.2 Spin current for Dirac spinor

Spin current is the current for Lorentz symmetry. In an N+1 spacetime, the
Lorentz symmetry group is SO(1, N), which has N boost generators and N(N−1)

2
rotation generators. The Lorentz transformation law for a spinor field ϕ is:

ϕ → e
i
2 λab Mab

ϕ, (2.13)

where Mab are the generators for Lorentz transformation and λab are the parame-
ters to describe the amount of transformation. Spinors are the representations of
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the Lorentz group, which means two successive Lorentz transformation acting on
the spinors should combine to be a Lorentz transformation. Therefore, generators
Mab need to satisfy the Lorentz algebra relation:[

Mab, Mcd
]
= iηacMbd − iηbdMad + iηbdMac − iηadMbc (2.14)

For Dirac spinors, these generators can be represented by gamma matrices γµ:

Mab =
i
4

[
γa, γb

]
. (2.15)

Bringing the Dirac Lagrangian (2.7) to Noether’s theorem, we get the Dirac spin
current :

Jµab =
1
8

ψ̄γµ [γa, γb]ψ. (2.16)

Therefore, a full description of spin current Sµab needs a spacetime index µ and
two group index a, b.

Similar to what we showed in electric current, we can promote the global
Lorentz symmetry to a gauge Lorentz symmetry. The covariant derivative is :

∂µ → ∇µ = ∂µ +
1
2

ωµabMab, (2.17)

where ωµab is a gauge field called spin connection. From the definition of gauged
Dirac Lagrangian 2.11 we can see the variation of action is

δS =
∫

ddxJµabδωµab + E.O.M. δψ. (2.18)

Readers may wonder about the necessity of having a gauge Lorentz symme-
try. In fact, if we want to describe spinors in curved spacetime, then we need
to include this gauge symmetry. In curved spacetime, the group index a, b can
also be considered as the index in a locally flat frame which we call Lorentz frame.
To understand the relation between this Lorentz frame and spacetime frame we
need to introduce a Vielbein Formalism

2.2.3 Vielbein formalism

In the local Lorentz frame, we can think the basis in tangent space is chosen such
that the metric is the Minkowski metric. This basis is connected with the space-
time coordinate with the vielbein eµ

a:

gµν = eµ
aeν

bηab (2.19)

The inverse of vielbein eµ
a is defined by:

eµ
aeµ

b = δa
b . (2.20)

With the vielbein and its inverse, we can freely change vectors represented in
spacetime coordinate with vectors in the Lorentz frame

Va = eµ
aVµ, Vµ = eµ

aVa. (2.21)
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Using the Minkowski metric ηab, spacetime metric gµν, and their inverses, we
can freely move the tensor’s index up or down. Va transforms as a vector in
local Lorentz transformation and is invariant under spacetime transformation,
and vice versa for Vµ. Under a coordinate transformation ξµ and a local Lorentz
transformation θa

b, a generic tensor Qa
b

µ
ν transforms as

δQa
b

µ
ν = Lξ Qa

b
µ

ν − θa
cQc

b
µ

ν − θb
cQa

c
µ

ν, (2.22)

Where Lξ is the Lie derivative along the ϵµ. The Lie derivative describes the
difference of a tensor field at the same coordinate under an active coordinate
transformation

xµ → x′µ = xµ − ξµ,

Qµ
ν(xµ) → Q′µ

ν(x′µ),
Lξ Qµ

ν(xµ) = Q′µ
ν(xµ)− Qµ

ν(xµ).

= ξλ∂λQµ
ν − ∂λ(ξ

µ)Qλ
ν + ∂ν(ξ

λ)Qµ
λ.

(2.23)

For the Lie derivative with Qa
b

µ
ν, just keep in mind the Lorentz index part doesn’t

change under coordinate transformation, so its Lie derivative takes the same form
as in 2.23.

The covariant derivative ∇µ should make sure that it transforms as a tensor
both under local Lorentz transformation and spacetime transformation. For a
tensor Xa

b, the covariant transformation is:

∇µXa
b = ∂µXa

b + ωµ
a

cXc
b − ωµ

c
bXa

c . (2.24)

With the metric compatibility ∇µηab = 0, we find the spin connection is antisym-
metric at the last two indexes:

ωµab = ωµ[ab] (2.25)

Vielbein eµ
a transforms as a tensor. The transformation rule for ωµ

a
b is:

δωµ
a

b = Lξωµ
a

b +∇µθa
b (2.26)

so it transforms as a one-form under spacetime transformation. Although spin
connection doesn’t transform as a tensor under local Lorentz transformation, its
variation δωµ

a
b does.

On the other way, we learn from GR that the covariant derivative of Vν is:

∇µVν = ∂µVν + Γν
µσVσ. (2.27)

This equation should be compatible with the case when we view Vν = eν
aVa and

use the Leibniz rule for covariant derivative. Therefore, we get a relation called
the Vielbein postulate:

0 = ∂µeν
a + ωµ

a
beν

b − Γσ
µνeσ

a = ∇µeν
a. (2.28)

In the absence of torsion, the connection Γσ
µν is symmetric on the two lower in-

dexes, which can be uniquely determined by combing the metric compatibility
condition ∇µgνσ. The result is Christoffel connection Γ̃σ

µν, defined as

Γ̃σ
µν =

1
2

gσρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
. (2.29)
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A generic connection contains an antisymmetric term in the two lower indexes,
which is related to the torsion Tσ

µν := 2Γσ
[µν]. Therefore, a generic spin connection

can be decomposed as a torsionless part ω̃µ
a

b plus a contortion tensor Kµ
a

b:

ωµ
a

b = ω̃µ
a

b + Kµ
a

b, (2.30)

The contortion tensor is related to the torsion tensor by

Ta
µν = Kµ

a
ν − Kν

a
µ (2.31)

From now on, we denote the covariant derivative with respect to torsionless con-
nection as ∇̃, the torsionless spin connection can be obtained from the vielbein
postulate:

ω̃µ
a

b = ∂µeν
beν

a − eν
bΓ̃σ

µνeσ
a (2.32)

2.3 Kubo formula

Kubo formula is the equation that describes the relation between retarded Green
function and physical quantity. In order to get the Kubo formula, we need in-
formation about constitutive equations and linear response theory. The linear re-
sponse theory study’s the response of an operator’s average to an external source
up to the linear order. We can study it by using perturbation theory in quantum
mechanics. The full Hamiltonian can be written as:

H = H0 + δH(t), (2.33)

where H0 is the original Hamiltonian and δH(t) is the perturbed Hamiltonian:

δH(t) = −
∫

d3xϕ(0)(t, x)O(x), (2.34)

Where ϕ(0) is the source of perturbation and O is the operator coupled to it.
The state in a real experiment is usually not a pure state, so we need to intro-

duce a density operator ρ := ∑i wi |αi⟩ ⟨αi| , tr(ρ) = 1 to describe the ensemble.
The ensemble average of O is written as

⟨O(t, x)⟩s = tr[ρ(t)O(x)], (2.35)

where we use subscript ”s” to represent the presence of an external source. In
order to see the influence of perturbed Hamiltonian, it’s most convenient to work
in the interaction picture. The operator OI(t, t0) in interaction picture evolves
as OI = U−1

0 OU0, where U0(t, t0) = e−iH0(t−t0) is the time evolution operator
of original Hamiltonian. The whole evolution operator U(t, t0) = e−iH(t−t0) can
also be written as: U (t, t0) = U0 (t, t0)U1 (t, t0) , where U1 should satisfy i∂tU1 =
δHIU1. (2.35) is equal to
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⟨O(t, x)⟩s = tr
[
ρ (t0)U−1

1 (t, t0)OI(t, x)U1 (t, t0)
]

= tr
[

ρ (t0)

(
1 + i

∫ t

t0

dt′δHI
(
t′
)
+ · · ·

)
OI(t, x)

×
(

1 − i
∫ t

t0

dt′δHI
(
t′
)
+ · · ·

)]
= tr [ρ (t0)OI(t, x)]

− i tr
[

ρ (t0)
∫ t

t0

dt′
[
OI(t, x), δHI

(
t′
)]]

+ · · · .

(2.36)

Notice that the ρ(t0) is just the density matrix at equilibrium ρeq, which commutes
with the H0. Therefore, we have

tr [ρ (t0)OI(t, x)] = tr
[
ρeqO(x)

]
. (2.37)

Taking t0 → −∞, we can get the response of an operator’s expectation value
δ⟨O(t, x)⟩ := ⟨O(t, x)⟩s − ⟨O⟩ is

δ⟨O(t, x)⟩ = i
∫ ∞

−∞
d4x′θ

(
t − t′

) 〈[
O(t, x), O

(
t′, x′

)]〉
ϕ(0) (t′, x′

)
(2.38)

where θ(t − t′) is the Heaviside step function. This expression is related to the
retarded Green’s function GOO

R (t − t′, x − x′), which is defined as

GOO
R
(
t − t′, x − x′

)
:= iθ

(
t − t′

) 〈[
O(t, x), O

(
t′, x′

)]〉
, (2.39)

The OO is used to represent the Green’s function between the same operator O.
For a generic case, we can consider retarded Green’s function between two dif-
ferent operators Oi, Oj. The response 2.38 can be written as

δ⟨O(t, x)⟩ =
∫ ∞

−∞
d4x′GOO

R
(
t − t′, x − x′

)
ϕ(0) (t′, x′

)
. (2.40)

In Fourier space, it becomes a simple relation:

δ⟨O(k)⟩ = GOO
R (k)ϕ(0)(k). (2.41)

The retarded Green’s function is related to transport coefficients. Here I show
the example of Ohm’s law:

⟨Jx⟩ = σE(0)
x , (2.42)

where ⟨Jx⟩ is the electric current, E(0)
x is the electric field strength and σ is the elec-

tric conductivity. Ohm’s law is a constitutive relation that describes the relation
between electric current and electric field in a conductor, so σ is a transport coeffi-
cient. On the other hand, we can think of this current as a response to the pertur-
bation of the electric field. In the gauge A(0)

0 = 0, use the relation E(0)
x = −∂t A(0)

x ,
we can get the relation between electric conductivity and retarded Green’s func-
tion in Fourier space:

σ = lim
ω→0,k→0

−
G Jx Jx

R (ω, k)
iω

. (2.43)
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Figure 2: Holographic dictionary. Adapted from [25]

We need to impose the limit condition because Ohm’s law is only a low-energy
effective relation.

Equations like (2.43) that describe the relation between transport coefficients
and Green’s function are called the Kubo formula. It provides a bridge from the
correlation function in microscopic theory to the transport coefficients in the macro-
scopic theory. For spin current in heavy ion collision, this process involves strong
interaction, which means our usual perturbative expansion method in calculat-
ing the correlation function doesn’t work. However, the holography conjecture
states the strongly coupled gauge QFT is equivalent to a classical gravitational
theory in a higher spacetime. Therefore, we may calculate Green’s function by
using holography methods.

2.4 Basics of holography principle

The story of AdS/CFT duality originated from the idea of Maldacena’s famous
paper [24], which implied that at the t’Hooft ’s limit N → ∞ a 4-dimensional N =
4 super Yang-Mills theory corresponds to a AdS5 × S5 supergravity theory. After
that, more conjectures about the duality between CFTs and higher dimensional
theory on AdS spacetime were imposed. Nowadays, the discussion about this
duality is not only limited to CFTs. Inspired by the fact that a 2-dimensional
hologram can encode optical information of 3-dimensional objects, people also
call this duality as holography principle. The lower/higher dimensional theory is
referred as boundary/bulk theory respectively.

Roughly speaking, the holography principle claims:

Strongly coupled d-dimensional gauge QFT
= Gravitational theory on a AdSd+1 spacetime.

This equivalence relation can be expressed via the GKPW formula(Gubser, Kle-
banov, Polyakov [26] and Witten [27])

ZQFT [{hi(x)}] = ZGrav [{hi(x)}] .
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On the QFT side ZQFT is the generating functional

ZQFT [{hi(x)}] ≡
〈

ei ∑i
∫

dxhi(x)Oi(x)
〉

QFT
, (2.44)

where hi(x) is the source and Oi(x) is an operator.
On the gravity side, we need to consider spacetime with a boundary and let

the boundary value of a bulk field ϕi equal a source hi on QFT:

ZGrav. [{hi(x)}] ≡
∫ ϕi→hi

(
∏

i
Dϕi

)
eiS[{ϕi}]. (2.45)

We can also describe the relation ϕi → hi as bulk field ϕ is dual to the operator
Oi. The N → ∞ limit is a classical limit, so we can calculate the gravity theory
on a saddle point:

ZGrav. [{hi(x)}] = eiSonshell[{ϕ⋆
i →hi}]. (2.46)

It means we set the boundary value of classical bulk fields ϕ∗
i equal to the sources

hi and calculate the action with respect to equations of motion. In practice, we
usually found the bulk field diverges when approaching the boundary, so rigor-
ously speaking we are setting the leading divergent modes equal to the sources.
We will discuss this in the massive scalar example.
Readers may wonder how can we know which bulk field is dual to which oper-
ator. It’s worth stressing that the holography principle is still a conjecture while
there is much indirect evidence [28–30]. Therefore, instead of asking which bulk
field is dual to which operator, it actually works like we assign a bulk field to a
source and then add terms to the bulk Lagrangian. For example, the variation
of boundary metric δgij is the source for the energy-momentum Tij. The most
natural choice of its bulk dual is still the metric. Therefore, we may choose the
Einstein-Hilbert action term to be the bulk action:

S[g] =
1

2κ2

∫
dd+1x

√
−g
(

R +
d(d − 1)

L2

)
. (2.47)

The cosmological constant term d(d+1)
L2 is included to generate an AdS space-

time.
The reason that people are interested in holography is that we may calculate the
correlation functions in strongly coupled boundary QFT by studying classical
gravity theory. The n-point function in QFT can be written as

⟨Oi1(x1) · · ·Oin(xn)⟩ =
1

ZQFT

δnZQFT

δhi1(x1) · · · δhin(xn)
(2.48)

2.4.1 AdS spacetime

AdS (Anti de Sitter) is a spacetime with constant negative curvature. An n-
dimensional AdS spacetime is noted as AdSn, it can be defined as a hyperbolic-
like n-dimensional spacetime embedded in n+1-dimensional flat spacetime with

11



2 timelike directions:

ds2 =− dt2 − dr2 +
d−1

∑
i=1

dx2
i ,

− t2 − r2 +
d−1

∑
i=1

x2
i = −L2.

(2.49)

The curvature of AdSn is R = −n(n−1)
L2 . From this definition, we can see its isome-

try group is SO(2, d − 1). It coincides with the conformal group in d-1 spacetime,
which gives us some inspiration about why we need asymptotic AdS bulk space-
time in holography.

In the Hilbert-Einstein action, AdSn spacetime can be created by adding a
cosmological constant term:

S[g] =
1

2κ2

∫
ddx

√
−g
(

R +
(d − 1)(d − 2)

L2

)
. (2.50)

There are many conventions in expressing the metric of AdSn, the coordinate we
choose is a Poincaré-like coordinate:

ds2 =
L2

r2

(
−dt2 +

d−1

∑
i=1

dx2
i + dr2

)
. (2.51)

r here works as a radial direction whose range is [0, ∞]. The boundary of AdSn
sits at r = 0. To understand this, we can imagine a ball where r = 0 represents
the sphere and we go into the ball’s interior as r increases. The central point of
the ball is at r = ∞

2.4.2 Gibbons-Hawking term

Einstein’s equation can be obtained by requiring the variation of Einstein-Hilbert
action to be zero. However, most textbooks only treated the variation of Ricci
tensor Rµν as a total covariant derivative and consider it vanishes after we inte-
grate it over the whole manifold and use the Stokes’ theorem [31]. However, this
is not correct when we consider the spacetime with a boundary. Because the Rie-
mann tensor contains the second derivative of metric, there will be ∇δgµν term
appearing at the boundary after we use Stokes’ theorem. This term doesn’t have
to vanish even when we take the variation of metric vanishes at the boundary.
This makes the Lagrangian formalism ill-defined. To eliminate this problem, we
can add a Gibbons-Hawking term [32] to the action to eliminate the ∇δgµν at the
boundary:

S =
1

2κ2 (
∫

ddx
√
−gR −

∫
∂

ddx
√

γ2K), (2.52)

where ∂ represent the intergra is performed at the boundary spacetime, γ is the
determinant of the induced metric γij, K is the trace of extrinsic curvature Kµν.
The extrinsic curvature is defined as the Lie derivative of induced metric γµν

along the normal vector nµ perpendicular to the boundary manifold

Kµν =
1
2
Lnγµν (2.53)
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The only contribution from the Gibbons-Hawking term in variation cancels with
the ∇δgµν part from the variation of Ricci tensor, so the equation of motion for
the metric is the usual Einstein’s equation. However, it will contribute to the total
action. For example, suppose we are working on a vacuum, then R = 0 and the
only contribution to the action comes from the Gibbons-Hawking term.

2.4.3 Massive scalar example

Let’s consider a massive scalar model as the bulk theory. The action for matter
part is written as

S[ϕ] = −
∫

dd+1x
√
−g
(

1
2
(∇ϕ)2 +

m2

2
ϕ2
)

. (2.54)

We should keep in mind there is always an Einstein-Hilbert term in the total
action that describes the dynamic of metric. However, we may take the value
of the matter field to be small enough such that its energy-momentum tensor can
be ignored in Einstein’s equation. This is the probe limit, i.e., the perturbation of
the matter field doesn’t influence the metric.

The scalar field ϕ(x) is dual to an operator in the boundary QFT. In order to
see how the source at the boundary influences the scalar field, we need to solve
the equation of motion:

∇2ϕ − m2ϕ = 0. (2.55)

The near-boundary solutions are :

ϕ ∼ r∆± , ∆± =
d
2
±
√

d2

4
+ m2. (2.56)

The r∆− and r∆+ solutions is called slow falloff and fast falloff respectively. We
can write the general form of near boundary solution as:

ϕ(x, r) = ϕ(0)(x)r∆−(1 + ϕ(1)(x)r + · · · ) + ϕ̃(0)(x)r∆+(1 + ϕ̃(x)(1)r + · · · ) (2.57)

∆− < 0, so the slow falloff term diverges as we go to the horizon r → 0. In
the holographic dictionary, we need to set the slow falloff mode equal to the
source ϕ(0)(x) → h(x). Using the equation of motion and integrating by part,
the on-shell action for this bulk theory can be written as an action at a boundary
spacetime:

Sonshell[ϕ] =
∫

r=ϵ
ddx

√
−γ

(
ni∇iϕ

)
, (2.58)

where ϵ is the cutoff radius. Because of the slow falloff mode, this on-shell action
diverges as the cutoff ϵ → 0. We need to introduce a counterterm action Sct that
consists of covariant local operators to cancel the divergence. The renormalized
action is defined as:

SRen = lim
ϵ→0

(Sonshell + Sct) (2.59)

For massive scalar, the counter terms can be chosen as [33]:

Sct =
∫

r=ϵ
ddx

√
−γ

(
∆−
2

ϕ2 +
1

2(∆+ − ∆− − 2)
ϕ□γϕ

)
+ · · · (2.60)
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We can get the expectation value of the operator on QFT by variating the
renormalized on-shell bulk action with respect to the slow falloff mode:

⟨O(x)⟩ = δSRen

δϕ(0)
∼ ϕ̃0(x). (2.61)

We find the expectation value of the operator corresponds to the fast falloff mode
of its dual bulk field. This pattern is typical even in other bulk models because the
kinetic term is quadratic in the derivative. To conclude, the holography principle
tells us:

slow falloff of bulk field → source,
fast falloff of bulk field → expectation value of operator. (2.62)

With the holography principle, we can compute the retarded Green’s function
(2.41) by taking the second functional derivative of the classical bulk action:

GOO
R (k) =

δSRen

δϕ(0)(k)δϕ(0)(k)
. (2.63)

Then, using the Kubo Fomulas we can get the transport coefficients from holog-
raphy.
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3 Spin current hydrodynamics

In this section, we summarized the necessary results from [16] [1] that we need
to use in calculating transport coefficients from the holography.

Suppose the effective action for a spin hydrodynamic system is S. We define
the energy-momentum tensor Tµ

a and spin current Sµ
ab from the variation of

action:

δS =
∫

ddx|e|
(

Tµ
aδeµ

a +
1
2

Sµ
abδωµ

ab
)

. (3.1)

Recall the relation between the vielbein and metric from (2.19), this definition of
energy-momentum tensor is equivalent to the usual definition that we learned
from general relativity [31] up to an overall minus sign:

Tµν = − 2√−g
δS

δgµν
(3.2)

When writing the relation in (3.1), we have implicitly considered the viel-
bein and spin connection to be independent. However, in the torsionless case, as
we have seen in (2.32), the spin connection is determined by the vielbein. This
causes ambiguity in defining the energy-momentum tensor and spin current. If
we consider that we are variating the action at a torsionless spacetime, then the
contribution of δωµ

a
b should be totally distributed to the variation of vielbein

δeµ
a. Therefore, the spin current should be zero. Or, we can consider the varia-

tion is performed at a torsionful background, then we set the torsion to zero. In
this case, the spin connection is independent of vielbein and the spin current is
Sµ

ab. Therefore, the ambiguity is we can always shuffle the dependence of δωµ
a

b
to a dependence of δeµ

a. To solve this ambiguity, we need to consider spacetime
with torsion. Now the spin connection can be considered as a vielbein dependent
part ω̃µ

a
b plus a contorsion tensor Kµa

b as in (2.30). Therefore, we can define the
energy-momentum tensor and spin connection as

Tµ
a =

1
|e|

δS
δeµ

a

∣∣∣∣
ωµ

ab
=

1
|e|

(
δS

δeµ
a

∣∣∣∣
Kµ

ab
−

δω̃µ
cd

δeµ
a

δS
δKν

cd

∣∣∣∣
eµ

a

)
,

Sµ
ab =

2
|e|

δS
δωµ

ab

∣∣∣∣∣
eµ

a

=
2
|e|

δS
δKµ

ab

∣∣∣∣∣
eµ

a

,

(3.3)

where the |parameter denotes the differential is taken with respect to the fixed pa-
rameter. From now on, we consider spin connection and vielbein to be inde-
pendent parameters, and we will omit the condition |parameter when writing the
functional derivative.

3.1 Conservation law

There are two gauge symmetries in this spin hydrodynamic system: diffeomor-
phism and local Lorentz symmetry. The conditions that δS = 0 under these two
symmetry transformations can give us two conservation laws.
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Under these two transformations,the change in vielbein and spin connection
are

local Lorentz transformation:

δeµ
a = Lξeµ

a, δωµ
ab = Lξ̃ωµ

ab

local Lorentz transformation:

δeµ
a = −θa

beb
µ, δωµ

ab = ∇µθab.

(3.4)

Therefore, we have

0 =
∫

ddx|e|
(
−λabeµbTµ

a +
1
2

(
Dµλab

)
Sµ

abab

0 =
∫

ddx|e|
[

Tµ
a

(
Dµ (ξ

veν
a) + ξv

(
2K[vaµ] − ων

a
beµ

b
))

+
1
2

Sµ
ab

(
ξvRab

νµ + Dµ

(
ξvων

ab
))] (3.5)

After some tedious calculation, we can get the two conservation laws:

∇̃µTµv =
1
2

RρσvλSλρσ − TρσKvρσ

∇̃λSλ
µv = 2T[µv] + 2Sλ

ρ[µev]
aeρbKλab.

(3.6)

Although we describe these two equations as ”conservation law” by following
the convention of fluid dynamics. We can see the energy-momentum tensor and
spin current themself are not conserved. There are some complicated interactions
between them that make them transform into each other. There are many tensors
in (3.6), in order to further investigate the details of this theory, we need to de-
compose every tensorial part with respect to velocity uµ. The part perpendicular
to velocity belongs to the subgroup SO(d− 1) ⊂ SO(1, d− 1), and we can further
decompose them into scalars, vectors, and tensors.

3.2 Constitutive relations

The method that we used to build constitutive relations is bottom-up, i.e., we
need to conclude all the possible terms that are allowed by symmetry. Then
we can variate the action as in (3.3) to get the constitutive relations for energy-
momentum tensor and spin current.

However, there are an infinite number of such terms. Luckily, we are working
on a low momentum limit kµ → 0, so we can consider the action as an expansion
in terms of derivative ∇µ. If the action doesn’t contain any explicit derivative,
then it describes a perfect fluid. In this paper, we only include the leading order
non-ideal contribution to the action.

We should be careful in counting the order of derivative expansion. The
conservation (3.6) implies that the first-order term in the antisymmetric part of
energy-momentum tensor T[µν] should be second-order in spin current and the
symmetric part in energy-momentum tensor. To avoid confusion, we will refer
to the order as the derivative order in spin current and the symmetric part in
energy-momentum tensor. Therefore, for the leading-order non-ideal part, we
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need to include second-order terms in the action because of the presence of T[µν].
The action can be written as

S =
∫

ddx
(

P + S(1) + S(2)

)
(3.7)

Where P represents the action for ideal fluid, S(1), S(2) represent the first and
second-order derivative terms respectively. The complete analysis can be very
long, here we only give an example of constructing constitutive relations from
the hydrostatic ideal fluid and summarize the rest results.

3.3 Hydrostatic ideal fluid

If the fluid is influenced by a time-independent source, then it will eventually
decay to an equilibrium state which we describe as hydrostatic. The hydrostatic
state is a solution to the equations of motion, so it put a constraint on the hydro-
dynamic solution. We can first construct the constitutive relations for hydrostatic
fluid and then add hydrodynamic terms which vanish on the hydrostatic limit.
Here we take the ideal fluid as an example to show how can we construct the
constitutive relation in the hydrostatic case.

The time independence of hydrostatic fluid implies we can find a coordinate
in which all variables of this fluid don’t change with time. In a general coor-
dinate, this corresponds to a timelike Killing vector Vµ along all variables are
invariant. However, in our case, we also have the gauge Lorentz symmetry, so
any two fields that can be connected by a local Lorentz symmetry should describe
the same state. Therefore, the right condition for hydrostatic is that there exists
a timelike Killing vector Vµ and a local Lorentz transformation field θV

a
b that

makes the vielbein and spin connection invariant:

0 = LVea
µ − θV

a
beb

µ,
0 = LVωµ

a
b +∇µθV

a
b.

(3.8)

It would be convenient to choose a gauge such that Vµ = (1, 0, · · · , 0), θV
a

b = 0.
But this complete form is important to keep variables covariant.

To construct the constitutive relations, we first need to choose the hydrody-
namic variables. These variables should be: eµ

a, ωµ
a

b, Vµ, θV
a

b. The eµ
a and Vµ

transforms as tensor, but ωµ
a

b and θV
a

b don’t. In order to make our final expres-
sion covariant, we need to combine them to be a covariant form:

µab =
Vµωµ

ab + θV
ab

√
−V2

(3.9)

We can also define
T−1 =

√
−V2 uµ =

Vµ

√
−V2

, (3.10)

which we can show that they can be interpreted as the temperature and veloc-
ity field of the fluid respectively. Now, we have the hydrodynamic variables
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T, uµ, µab, ea
µ, then we can use them to construct all possible scalars and add them

into the action. The action for hydrostatic ideal fluid can be expressed as

S =
∫

ddx|e|P
(

T, uµ, µab, ea
µ

)
. (3.11)

We can decompose µab with respect to the velocity to extract its unique compo-
nents:

µab = uamb − ubma + Mab, (3.12)

where uaMab = 0 and uama = 0. After this decomposition, the scalars formed by
contracting and µab and other variables can be expressed in terms of contraction
between ma and Mab. We can construct tensors M(n)

a
b

M(0)
a

b = δa
b, M(1)

a
b = Ma

b,

M(n)
a

b = Ma
c2 Mc2 c3 . . . Mcn

b, n ≥ 2.
(3.13)

Besides scalar T, the rest of available scalars are given by the contraction of a pair
of ma with these tensors or by taking the trace of them:

m(n) = mcM(2n)
cdmd,

M(n) = M(2n)
c
c.

(3.14)

There is only a finite degree of freedom in ma, Mab, so the number of independent
scalars is also finite. The action becomes a function of these scalars P(m(n), M(n), T),
and we can get the energy-momentum tensor Tµν

id and spin current Sid
µνρ by tak-

ing variation

Tid
µ

a =
1
|e|

δ

δea
µ

∫
ddx|e|P, Sid

µ
ab =

2
|e|

δ

δωµ
ab

∫
ddx|e|P. (3.15)

The results are

Tµν
id = ϵuµuν + P∆µν + uµ∆ναPα,

Sid
λµν = uλρµν,

(3.16)

where ∆µν := gµν + uµuν is a projection orthogonal to the velocity field. Compar-
ing this constitutive relation with the energy-momentum tensor of a conventional
ideal fluid (2.2), we find the P should be identified as the pressure.

ϵ is given by

ϵ = −P + sT +
1
2

ραβµαβ, (3.17)

and s, ρab and Pa are given by the variation of pressure with respect to T, µab and
ua:

s =
∂P
∂T

,
1
2

ρab =
∂P

∂µab , Pa =
∂P
∂ua . (3.18)

Therefore, by comparing the expression of energy density ϵ, we can identify
s, T, ραβ, µαβ as entropy density, temperature, spin density, and spin chemical po-
tential respectively.
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Is (3.16) our final results for ideal fluid? Actually, there is a subtlety. So far,
we have treated the µab as zeroth order in derivative since there is no explicit
derivative. However, the static conditions (3.8) actually give constraints between
these hydrodynamic variables:

uµKµ
ab = µab + ea

µeb
ν

(
Ωµν − 2u[µaν]

)
Teρ

aeσ
b∇̇λ

µab

T
= Rρσ

λαuα − 2eρ
aeσ

bKλc
[aµb]c

(3.19)

where Ωµν, aν are components from the derivative of the velocity field. Therefore,
for consistency, we should treat T, eµ

a, uµ as order zero, and µab, Kµ
ab as order

one. This implies that the m(n), M(n) are also not zeroth order scalar. If we count
carefully, we can find that m(0), M1 should be considered as order two. Therefore,
our previous constitutive relations (3.16) for ideal fluids are not really ”ideal”, it
contains higher derivative terms. Since we want to explore the leading order of
non-ideal fluid behavior, we need to expand the pressure P to quadratic order

P
(

m(n), M(n), T
)
= P0(T) + ρm(T)m(0) + ρM(T)M(1) +O

(
∇4
)

. (3.20)

And we can find the energy-momentum tensor and spin current that comes from
this pressure term are

Tµν
id =

(
ϵ0 +

(
ρm + Tρ′m

)
mαmα +

(
ρM + Tρ′M

)
MαβMαβ

)
uµuν

+
(

P0 + ρmmαmα + ρM MαβMαβ

)
∆µν

+ uµmαMαν (2ρm − 4ρM) +O
(
∇4
)

,

Sλµν
id =uλ

(
4ρmm[µuν] − 4ρM Mµν

)
+O

(
∇4
)

,

(3.21)

Adding hydrodynamic terms and adding higher order terms into the action
(3.7)

W(1) = χ
(1)
1 κ,

W(2) = ∑ χ
(2)
i S(i),

(3.22)

where κ comes from the decomposition of the contorsion tensor and is the only
order one scalar term, S(i) are the order two scalars. We can get the complete
constitutive relations for energy-momentum tensor and spin current. Here we
only show the equation for spin current:

Sλµν =2χ
(1)
1 ∆λ[µuν] − 2χ

(2)
1 Mλ[µuν] + 2χ

(2)
2 uλMµν − 2χ

(2)
3 uλu[µmν] + 4χ

(2)
4 ∆λ[µmν]

+ 4χ
(2)
5 κ∆λ[µuν] + 2uλ

(
2χ

(2)
6 k[µuν] + 2χ

(2)
7 Kµν + χ

(2)
10 κ

µν
A

)
+ 2uλχ

(2)
8 KV

[µuν] + 4∆λ[µ
(

χ
(2)
8 kν] + 2χ

(2)
9 KV

ν]
)

− 2χ
(2)
10 Kλ[µuν] − 4χ

(2)
11 κ

λ[µ
A uν] + 4χ

(2)
12 κS

λ[µuν]

+ 4χ
(2)
13 KA

λµν + 4χ
(2)
14 KT

µνλ

+ 2uλ
(

χ
(2)
1 κ

µν
A + χ

(2)
2 Kµν − χ

(2)
3 u[µkν]

)
− 2χ

(2)
4 uλu[µKν]

V .
(3.23)
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Don’t get scared of this long equation, χ
(1)
1 , χ

(2)
i are the transport coefficients that

we want to calculate, and we have already seen uµ, Mµν, mµ, ∆µν. The rest part is
just some variables that come from the decomposition of the contorsion tensor.

3.4 Kubo formulas

In order to use holography to calculate the transport coefficients, we need to get
the Kubo formulas. The retarded Green’s functions we use are defined as:

Gνρ,µσ = eσa δ

δeµ
a |e|T

νρ,

Gνρ,µαβ = eαaeβb δ

δωµab
|e|Tνρ,

Gνρσ,µα = eαa δ

δeµ
a |e|S

νρσ,

Gνρσ,µαβ = eαaeβb δ

δωµab
|e|Sνρσ.

(3.24)

Decompose the energy-momentum tensor and spin current into sectors that
are orthogonal to each other, we can get the Kubo formulas. Here we summarize
the Kubo formulas that we need to use in the following calculation

χ
(2)
2 + 2χ

(2)
7 = − lim

k→0
lim
ω→0

1
(d − 2)k2 Im

(
Gλρσ,µνΠ(0)ρνu(0)λkσu(0)µ

)
,

χ
(2)
3 + 2χ

(2)
6 = − lim

k→0
lim
ω→0

1
k2 Im

(
Gλρσ,µνu(0)λu(0)ρkσu(0)µu(0)ν

)
χ
(2)
4 + χ

(2)
8 = lim

k→0
lim
ω→0

1
2(d − 2)k2 Im

(
Gλρσ,µνΠ(0)µνu(0)λu(0)ρkσ

)
,

χ
(2)
8 = lim

k→0
lim
ω→0

1
2(d − 2)k2 Im

(
Gλρσ,µνΠ(0)λρkσuµuν

)
,

χ
(2)
9 = lim

k→0
lim
ω→0

1
8(d − 2)2k2 Im

(
Gλρσ,µνkρΠ(0)λσΠ(0)µν

)
,

χ
(2)
5 +

(d − 2)χ(2)
12

d − 1
= − lim

k→0
lim
ω→0

1
k4 Im

(
Gλρσ,µνkλu(0)ρkσu(0)µkν

)
,

χ
(2)
5 −

χ
(2)
12

d − 1
= lim

k→0
lim
ω→0

(d − 1)
2(d − 2)k2 Im

(
Gλρσ,µνΠ(0)λρu(0)σu(0)µkν

)
,

(3.25)
where kµ is the spatial part for momentum vector and Π(0)µν := ∆µν −

kµkν

k2 is a
projection orthogonal to uµ and kµ. Note that the above equations are obtained
around the Minkowski spacetime, so we also need to consider a Minkowski bound-
ary spacetime in the calculations of holography.
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4 Spin transport coefficients from holography

In order to use the holography method to calculate spin transport coefficients, we
need to choose a bulk theory that describes the dynamic of the energy-momentum
tensor and spin current’s dual fields. The energy-momentum tensor Tµa is dual
to the vielbein eµa, which contains the same information as the metric. Therefore,
we can identify the induced metric of the bulk metric at the boundary to the met-
ric of the boundary field. Consider a d-dimensional boundary spacetime and a
d+1-dimensional bulk spacetime. The model we use to describe the dynamic of
the bulk metric is the Einstein-Hilbert action:

S[g] = κ
∫

dd+1x
√
−g (R − 2Λ) , (4.1)

where Λ = − d(d−1)
2L2 and from now on, we choose d = 4.

Spin current Sµab is dual to the spin connection ωµab. In the study of classical
gravity theory, it’s usually convenient to work on the probe limit, which means
we consider other fields are small enough such that their dynamic doesn’t influ-
ence the metric. This is not a trivial statement, because in general, the coupling
between metric and other fields is complicated and we can’t guarantee a pertur-
bation in other fields doesn’t cause a perturbation in metric. However, as we will
show in the following content, this probe limit works fine in our model. There-
fore, if we consider the metric is only a background metric, using the relation
(2.30), we can find the dynamic part of the spin connection only comes from the
contorsion Kµab. There is a paper [34] states that if we decompose the torsion Tabc
into irreducible pieces under Lorentz group: a trace part Ta, a totally antisym-
metric part T[abc] and the rest part Wabc. At a 5-dimensional bulk spacetime, this
decomposition can be written as

Tabc =
1
4
(ηacTb − ηbcTa) + T[abc] + Wabc, (4.2)

where
Tb := Ta

ab, T[abc] :=
1
3
(Tabc + Tcab + Tbca) . (4.3)

Then the dynamical model for torsion containing no ghosts and tachyons should
only have Ta and T[abc]. We choose, to further simplify the model, a simple toy
massive vector model to describe the Ta.

4.1 Massive vector as a bulk gravity model

The total action we choose for bulk theory is

S =
∫

dd+1x
√
|g|
(

κ(R̃(g)− 2Λ)− 1
4

αFαβFαβ −
1
2

m2Aα Aα

)
− κ

∫
∂

ddx
√

γ2K,

(4.4)
where κ, α, m are the coupling constants, and we have also included a Gibbons-
Hawking term on the boundary. Although we can redefine the Aα to absorb the
α constant, in holography we want Aα at the boundary equal to the trace part of
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torsion Tα, so we need to keep this α constant. Note that the because the torsion
is related to contorsion by (2.31), Ta is equal to the trace of contorsion:

Ka := Kb
ba. (4.5)

Therefore, in our model, the only dynamical part of contorsion/torsion is their
trace. This put a limit on the transport coefficients: if a transport coefficient is not
coupled with the trace of contorsion, then our model is not capable to calculate
it. Why don’t we further simplify the model by taking the mass in (4.4) to be
zero? That’s because for a massless vector, an extra U(1) gauge symmetry would
appear. This may cause some extra conservation laws that we don’t expect to
have in our spin hydrodynamics. The equations of motion for action (4.4) are:

α∂µ

(√
−gFµν

)
−
√
−gm2Aν = 0 (4.6)

κRµν +
2κ

1 − d
Λgµν −

1
2

α

(
Fµ

βFνβ −
1

2(d − 1)
gµνFµνFµν

)
+

m2

2
Aµ Aν = 0, (4.7)

where Fµν := ∂µAν − ∂ν Aµ is the field strength, Rµν := Rλ
µλν is the Ricci tensor.

In general, it’s not easy to solve Einstein’s equation (4.7) analytically. Also, since
we are only interested in using the linear response theory to determine the trans-
port coefficients, we choose to solve these two equations perturbatively. Let’s
expand the vector field and metric as

gµν(x) = g0
µν(x) + ϵhµν(r)e−iωt+ikz, (4.8)

Aµ(x) = A0
µ(x) + ϵaµ(r)e−iωt+ikz, (4.9)

where ϵ ≪ 1, g0
µν, A0

µ are the background fields. In these equations, we also
expressed the expansion in Fourier mode and we choose the spatial momentum
only in the z-direction. Notice that taking derivative in (4.6) gives a constraint on
the vector field

∂ν(
√
−gAν) = 0, (4.10)

To avoid confusion, we use i, j, k, l to represent the non-radial index. We choose
ar(r) to be a non-dynamical component which is determined by ai(r).

The temperature of this theory comes from the black hole. As far as we know,
there is no analytical black hole solution for an asymptotic AdS spacetime with
a nonvanishing massive vector. Although we can choose a numerical expansion
to describe this type of black hole [?, 35], extra difficulties would be involved.
Therefore, we choose to first solve the equations at an AdS-Schwartzshild space-
time with A0

µ(x) = 0, and the background metric is

ds2 =
L2

r2

(
− f (r)dt2 +

dr2

f (r)
+ dx2 + dy2 + dz2

)
,

f (r) = 1 − r4

r4
h

.
(4.11)

Near the boundary r → 0, f (r) → 0, so this is an asymptotic AdS spacetime. The
event horizon of this black hole sits at r = rh.
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Inserting this background into the equations of motion, we find there are
some sectors that describe the coupling between components in aµ(r), hµν(r),
these relations are shown in Table 1. We find that the metric and vector fields

ax
ay
az at ar

hxy
hty hyz
htx hxz
htt htz hxx hyy hzz

Table 1: Sectors for coupled variables. Variables at the same line are coupled to
each other

are decoupled in the linear order, which validates that we can take the probe
limit in the regime of our research. In fact, we can find the decoupling between
metric and the vector field in the leading order from the structure of equations of
motion (4.6,4.7). Since we are expanding the vector field around zero, the vector
field and the field strength are considered first-order terms. Therefore, it is easy
to read from the equations of motion that the coupling between the metric and
the vector field happens at least in the second order.

With the decoupling of metric and vector field, we can investigate their per-
turbation equations separately. There are already many excellent papers about
the holography treatment for pure gravity model in AdS-Schwartzschild space-
time [33, 36, 37]. In the following context, we will focus on the solutions for the
vector field.

4.2 Near boundary analysis

The equation of motion for ay is

ay(r)
[
−k2r − m2

rα
+

rω2

f (r)

]
+ a′y(r)

[
− f (r) + r f ′(r)

]
+ r f (r)ay′′(r) = 0. (4.12)

Let’s investigate it near boundary r ≪ 0. Using the ansatz

ay = rβ(ay(0) + ay(1)r + ay(2)r
2 + · · · ), (4.13)

we find at leading order in r, the equation requires

α(−2 + β)β − m2 = 0 (4.14)

Therefore, there are two solutions corresponding to

β− = ∆ = 1 −
√

M2 + 1, β+ = 2 − ∆ = 1 +
√

M2 + 1, (4.15)

where we defined M2 := m2

α > 0, so ∆ < 0. We also find that the odd order
coefficient ay(i) should vanish because the metric only contains r to the power
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of an even number. Repeat this procedure for other components ai(0), we found
their near boundary expansion can be expressed as

ai = r∆
(

ai(0) + ai(2)r
2 + · · ·

)
+ r2−∆

(
ãi(0) + · · ·

)
. (4.16)

Since ∆ is a negative number, r∆ term diverges as r approached 0. ai(o) is the slow
falloff mode and ãi(0) is the fast falloff mode. Following the holography principle,
we set the slow falloff mode at the boundary as the same value of the contorsion’s
trace.

The value of ∆ is related to the scaling dimensions of contorsion’s trace and
the spin current coupled with it. Under a scale transformation

xµ → Λxµ, (4.17)

the AdS-Schwartzschild spacetime is invariant. If a quantity ϕ transforms under
this scaling as

ϕ → Λ−aϕ, (4.18)

then we say ϕ has scaling dimension a. Aµ is a one-form, so its scaling dimension
is 1. Therefore, we can infer that the scaling dimension of ai(0), ãi(0) are 1 + ∆ and
3 − ∆ respectively.

To investigate the scaling dimension in the boundary, we can write the vari-
ation caused by δKµ as as

δS =
∫

d4x
√

gδKµSµ, (4.19)

where we use Sµ to represent the component in spin current that is coupled to the
Kµ. After we identify the slow falloff mode with the source, we get the scaling
dimension for controsion’s trace Ki is 1 + ∆. δS is invariant under the scaling
transformation, so we can get Sµ has scaling dimension 3 − ∆. If we know the
scaling dimension of the spin current in our hydrodynamic theory, then we get
the value of ∆ and add a constraint to the parameters α, m.

4.3 Near horizon analysis

Expand the equation of motion near the horizon, using the ansatz ai = (r − rh)
β,

we find the leading order solutions are

ai ∼ (r − rh)
±iω

| f ′(rh)| (4.20)

Recovering the e−iωt+ikx term, we can find these two solutions correspond to
propagation into/ away from the black hole, we call them infalling and outgo-
ing solutions respectively. The direction of propagation becomes clear when we
use the tortoise coordinate r∗

dr∗ =
dr

f (r)
. (4.21)

The solutions become
aie−iωt+ikx ∼ eiω(t±r∗), (4.22)
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where t + r∗ corresponds to the outgoing solution and t − r∗ corresponds to the
ingoing solution. In order to get the correct retarded Green’s function, we need
to choose the ingoing solution [38]. This choice is also natural since we are con-
sidering perturbations added at the boundary. One should be careful that after
choosing only one solution, the fast falloff mode in (4.16) depends on the slow
falloff mode. This dependence can be computed by solving the equation of mo-
tion in the whole region.

4.4 Counterterms

The slow falloff mode corresponds to the divergence of ai in the near boundary,
which causes a divergence in the action. To remove this divergence, we need to
add counterterms that are expressed as local functions in the boundary.

In the probe limit, the on-shell action for the matter field is

Sonshell =
∫

d4x∂µ

(
−α

2
√
−gAνFµν

)
=
∫

r=ϵ
d4x
√
−g

α

2
AνFrν

=
∫

r=ϵ
d4x

α

2
ϵ2

[
δηijai(0)aj(0)r

2∆−2 − ηijηkl

(
(2 + 2∆)∂i∂jak(0)al(0)

4∆

+
∂iaj(0)∂kal(0)

2 − ∆

)
r2∆ + O(r2∆+2)

]
,

(4.23)

where in the first line we used the equation of motion, in the second line we inte-
grate the total derivative in the radial direction and introduce a cut-off ϵ, and in
the third line we brought the near boundary expansion into this equation. Obvi-
ously, the number of divergent terms depends on the value of ∆. In our research,
we restrict its range to ∆ > −1. We found the divergence can be cancelled by
these counterterms:

SCT =
∫

r=ϵ
d4x

√
−γα[

−∆
2

Ai Ai +
1

8∆
FijFij + (

1
2(2 − ∆)

+
1

4∆
)∂i Ai∂j Aj] (4.24)

The renormalized action S is defined as:

S = lim
ϵ→0

Sonshell + SCT (4.25)

4.5 Retarded Green’s function

With the renormalized bulk action, we can start to calculate the retarded Green’s
function from holography. There are two things that we should be careful of.
The first is that the only dynamical part in contorsion is its trace, so we need to
express the δ

δKµνρ
in terms of δ

δKµ
by using the chain rule:

δ

δKµνρ
= (gµνδ

ρ
σ − gµρδν

σ)
δ

δKσ
. (4.26)
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The second thing is that in the spin hydrodynamic theory, we treat the spin
connection and the vielbein as independent variables, but in the bulk theory we
would like to treat the contorsion and vielbein as independent variables. We need
to replace the differential with respect to the vielbein in the hydrodynamic theory
to

δ

δeµ
a

∣∣∣∣
ωµ

ab
=

δ

δeµ
a

∣∣∣∣
Kµ

ab
−

δω̃µ
cd

δeµ
a

δ

δKν
cd

∣∣∣∣
eµ

a
. (4.27)

However, notice that δω̃µ
cd

δeµ
a is in the linear order of momentum, we can treat it as

subleading terms in the hydrodynamic limit ω, k → 0
The Green’s functions (3.24) can be expressed in terms of the functional deriva-

tive of contorsion’s trace and metric:

Gνρ,µσ = 2
δ

δgµσ

(
δS

δgνρ

)
,

Gνρ,µσ = 2

[
gµα δ

δKβ

(
δS

δgνρ

)
− gµβ δ

δKα

(
δS

δgνρ

)]
,

Gλαβ,µρ =
1
2

δ

δgµρ

(
δS

δKβ
gλα − δS

δKα
gλβ

)
,

Gµρσ,ναβ =
1
2

(
gνα δ

δKβ
− gvβ δ

δKα

)(
δS

δKσ
gµρ − δS

δKρ
gµσ

)
.

(4.28)

4.6 Spin transport coefficients

Now we can calculate the transport coefficients in (3.25) by using the retarded
Green’s function above. We found that if we choose the background value of
the vector field to be zero, then these transport coefficients vanish at the leading
order. To make the results more interesting, we choose to set the background
vector field to be a small value ABµ that is in the same order as ϵ and satisfy the
infalling condition. The near boundary expansion of ABµ takes the same form as
(4.16):

ABi = r∆
(

ABi(0) + ABi(2)r
2 + · · ·

)
+ r2−∆

(
ÃBi(0) + · · ·

)
. (4.29)
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Figure 3: Real part for ÃBz(0) Figure 4: Imaginary part for ÃBz(0)

The results for transport coefficients in the leading order are:

χ
(2)
2 + 2χ

(2)
7 = lim

k→0
lim
ω→0

1 − ∆
k

α Im
(

ÃBz(0)

)
,

χ
(2)
3 + 2χ

(2)
6 = lim

k→0
lim
ω→0

1 − ∆
2k

α Im
(

ÃBz(0)

)
,

χ
(2)
4 = 0,

χ
(2)
5 = lim

k→0
lim
ω→0

1 − ∆
k

α Im
(

ÃBz(0)

)
,

χ
(2)
8 = lim

k→0
lim
ω→0

−1 − ∆
4k

α Im
(

ÃBz(0)

)
,

χ
(2)
9 = 0,

χ
(2)
12 = lim

k→0
lim
ω→0

−3(1 − ∆)
2k

α Im
(

ÃBz(0)

)
.

(4.30)

These results are of the same form. They all depend on the imaginary part of
the fast falloff mode for the background vector field. Although we can explain
some technical details like the non-vanishing contribution to these transport co-
efficients comes from δS

δaµ(0)
and δ2S

δgρσδaµ(0)
and they take a similar form, we haven’t

found a generic explanation for this phenomenon.
ÃBz(0) is a function of the value of contorsion’s trace in the hydrodynamic the-

ory. This function depends on the value of ω, k, m2

γ , rh. In principle, we can solve
the dependence numerically. Although we tried to work on the numerical meth-
ods, there are still some difficulties that require more time to fix. For example,
in the Figure3.4. we showed numerical results for the fast falloff. The algorithm
we used to solve differential equations is the Chebyshev method [39] which con-
verts the linear differential equations to a set of linear equations and solves them
iteratively. Although the real part solution seems to be fine, the imaginary part in
Figure 4 shows our result is still not reliable. A complete analysis to perform the
numerics correctly is beyond our research regime, we left it for future work.
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5 Conclusion and outlook

5.1 Conclusion

Let’s summarize what we have done in this paper. In the preliminary knowl-
edge, we introduced that the spin current is the current of gauge Lorentz sym-
metry. In order to describe the gauge Lorentz symmetry, we need to introduce
spin connection as the gauge field. To imagine this gauge Lorentz symmetry, we
can consider a local Lorentz frame in which the metric is the Minkowski metric.
The basis in the local Lorentz frame is related to the basis in the spacetime co-
ordinate by the vielbein. Then a local Lorentz frame can be considered as only
changing the basis in this local Lorentz frame, which doesn’t change any phys-
ical quantities. In the hydrodynamic theory, there are two important ingredi-
ents: conservation law and constitutive relation. The spin coefficients appear in
the constitutive relation and they describe the responses of currents to external
sources. In quantum mechanics, we can get the linear response to a perturbation
described by retarded Green’s function, which is related to transport coefficients
by the Kubo formula. The retarded Green’s function can be computed by corre-
lation functions in quantum field theory. However, we would like to use the spin
current in heavy-ion collisions, which involve strong interaction. Inspired by the
fact that the shear viscosity calculated from holography is similar to the experi-
mental result for quark-gluon plasma, we want to use holography to investigate
these transport coefficients. The holography principle is a conjecture that states a
strongly coupled gauge theory in the boundary spacetime is equivalent to a clas-
sical gravity theory in the bulk spacetime. Therefore, we may use it to calculate
Green’s function from a classical bulk theory.

Then, we summarized the results for the hydrodynamic theory of spin cur-
rent form [1] The spin connection contains a vielbein-dependent part and a con-
torsion part. We want to make the spin connection independent of the vielbein to
avoid ambiguity in defining the spin current, so we need to include a torsion in
our theory. The conservation laws from diffeomorphism and gauge Lorentz sym-
metry actually give two non-conservation equations for energy-momentum ten-
sor and spin current. In order to obtain the constitutive relations for spin current,
we consider an action containing all the possible scalars up to the second order
in the derivative. To construct the scalars, we need to decompose all tensors into
scalars, vectors, and tensors of the rotation subgroup. Then the constitutive re-
lations are derived by taking the derivative of the action to the vielbein and spin
current.

Finally, we came to our holography model for the spin hydrodynamic theory.
We considered a toy model which only contains a massive vector field. The mas-
sive vector is dual to the trace of the contorsion tensor. Although a simple model
gives us some benefits, it also limits the spin transport coefficients that we can
calculate. We choose to solve the equations of motion on an AdS-Schwartzschild
background spacetime and solve equations in the leading order of perturbative
expansion. We found the vector field and gauge field are decoupled at the leading
order, so we can work in the probe limit in which we don’t need to consider the
back reaction of the vector field to the background spacetime. The near-boundary
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solution diverges for the vector field so we need to add counter terms. We found
the counterterms in the probe limit with the restriction ∆ > −1. Based on the
research [1], we found the Kubo formulas for some transport coefficients which
appeared in the second derivative order in the hydrodynamic model. We calcu-
lated these transport coefficients and found them proportional to the fast falloff
mode of the contorsion’s trace.

5.2 Outlook

We need to improve the numerical method substantially to extract the imaginary
part of the fast falloff. The imaginary part of fast falloff’s dependence on the mo-
mentum k is vital because (4.30) suggest that only if the leading order contribu-
tion of this fast falloff is linear in k then we can get finite transport coefficients. If
the leading order contribution is zeroth order in k, then it suggests our toy model
is not suitable for describing spin hydrodynamics. If we find the imaginary part
is linear in k, then we can further investigate these transport coefficients’ depen-
dence on variables like the value of contorsion’s trace, parameters in our bulk
model, and the temperature in the bulk spacetime.

We must admit that the model we choose is a toy model that is not likely
to describe the real physics of spin current. Even if the holography conjecture
is true and our model describes the right dynamics for the contorsion’s trace, it
would be difficult to extract data from experiments to get the transport coeffi-
cients related only to the trace of contorsion. Nevertheless, we could still further
improve the model by including the dynamic terms of other components in con-
torsion. It’s definitely a tough task because there are many models/background
spacetimes/parameters that we need to choose or fit. If we find a holography
model that can predict similar spin transport coefficients as those obtained from
Bayesian analysis in experimental data, then it will be a strong evidence for the
holography conjecture.

29



References

[1] A. D. Gallegos, U. Gursoy, and A. Yarom, “Hydrodynamics, spin currents
and torsion,” Mar. 2022. arXiv:2203.05044 [hep-th].

[2] R. Takahashi, M. Matsuo, M. Ono, K. Harii, H. Chudo, S. Okayasu, J. Ieda,
S. Takahashi, S. Maekawa, and E. Saitoh, “Spin hydrodynamic generation,”
Nature Physics, vol. 12, no. 1, pp. 52–56, 2016.

[3] J. Adams, M. Aggarwal, Z. Ahammed, J. Amonett, B. Anderson, D. Arkhip-
kin, G. Averichev, S. Badyal, Y. Bai, J. Balewski, et al., “Experimental and
theoretical challenges in the search for the quark–gluon plasma: The star
collaboration’s critical assessment of the evidence from rhic collisions,” Nu-
clear Physics A, vol. 757, no. 1-2, pp. 102–183, 2005.

[4] R. D. De Souza, T. Koide, and T. Kodama, “Hydrodynamic approaches in rel-
ativistic heavy ion reactions,” Progress in Particle and Nuclear Physics, vol. 86,
pp. 35–85, 2016.

[5] P. Huovinen and P. V. Ruuskanen, “Hydrodynamic models for heavy ion
collisions,” Annu. Rev. Nucl. Part. Sci., vol. 56, pp. 163–206, 2006.

[6] U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic
heavy-ion collisions,” Annual Review of Nuclear and Particle Science, vol. 63,
pp. 123–151, 2013.

[7] R. Baier, P. Romatschke, and U. A. Wiedemann, “Dissipative hydrodynamics
and heavy-ion collisions,” Physical Review C, vol. 73, no. 6, p. 064903, 2006.

[8] S. A. Voloshin, “Polarized secondary particles in unpolarized high energy
hadron-hadron collisions?,” arXiv preprint nucl-th/0410089, 2004.

[9] N. Armesto, N. Borghini, S. Jeon, U. Wiedemann, S. Abreu, S. Akkelin,
J. Alam, J. Albacete, A. Andronic, D. Antonov, et al., “Heavy-ion collisions
at the lhc—last call for predictions,” Journal of Physics G: Nuclear and Particle
Physics, vol. 35, no. 5, p. 054001, 2008.

[10] F. Becattini, F. Piccinini, and J. Rizzo, “Angular momentum conservation in
heavy ion collisions at very high energy,” Physical Review C, vol. 77, no. 2,
p. 024906, 2008.

[11] B. Betz, M. Gyulassy, and G. Torrieri, “Polarization probes of vorticity in
heavy ion collisions,” Physical Review C, vol. 76, no. 4, p. 044901, 2007.

[12] F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, “Relativistic distribu-
tion function for particles with spin at local thermodynamical equilibrium,”
Annals of Physics, vol. 338, pp. 32–49, 2013.

[13] W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza, “Relativistic fluid
dynamics with spin,” Physical Review C, vol. 97, no. 4, p. 041901, 2018.

30



[14] S. Collaboration et al., “Global hyperon polarization in nuclear collisions:
evidence for the most vortical fluid,” arXiv preprint arXiv:1701.06657, 2017.

[15] T. Niida, S. Collaboration, et al., “Global and local polarization of hyperons
in au+ au collisions at 200 gev from star,” Nuclear Physics A, vol. 982, pp. 511–
514, 2019.

[16] D. Gallegos, U. Gursoy, and A. Yarom, “Hydrodynamics of spin cur-
rents,” SciPost Phys., vol. 11, p. 041, Aug. 2021. arXiv:2101.04759 [hep-ph,
physics:hep-th, physics:nucl-th].

[17] G. Nijs, W. Van Der Schee, U. Gürsoy, and R. Snellings, “Bayesian analysis
of heavy ion collisions with the heavy ion computational framework trajec-
tum,” Physical Review C, vol. 103, no. 5, p. 054909, 2021.

[18] M. Rangamani, “Gravity and hydrodynamics: Lectures on the fluid-gravity
correspondence,” Classical and quantum gravity, vol. 26, no. 22, p. 224003,
2009.

[19] D. T. Son and A. O. Starinets, “Viscosity, black holes, and quantum field
theory,” Annu. Rev. Nucl. Part. Sci., vol. 57, pp. 95–118, 2007.

[20] P. Kovtun, “Lectures on hydrodynamic fluctuations in relativistic theories,”
Journal of Physics A: Mathematical and Theoretical, vol. 45, no. 47, p. 473001,
2012.

[21] G. Policastro, D. T. Son, and A. O. Starinets, “Shear viscosity of strongly
coupled n= 4 supersymmetric yang-mills plasma,” Physical Review Letters,
vol. 87, no. 8, p. 081601, 2001.

[22] P. K. Kovtun, D. T. Son, and A. O. Starinets, “Viscosity in strongly interact-
ing quantum field theories from black hole physics,” Physical review letters,
vol. 94, no. 11, p. 111601, 2005.

[23] H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, “200 a gev au+ au
collisions serve a nearly perfect quark-gluon liquid,” Physical Review Letters,
vol. 106, no. 19, p. 192301, 2011.

[24] J. Maldacena, “The large-n limit of superconformal field theories and super-
gravity,” International journal of theoretical physics, vol. 38, no. 4, pp. 1113–
1133, 1999.

[25] S. A. Hartnoll, “Lectures on holographic methods for condensed matter
physics,” Class. Quantum Grav., vol. 26, p. 224002, Nov. 2009. arXiv:0903.3246
[cond-mat, physics:hep-th].

[26] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators
from non-critical string theory,” Physics Letters B, vol. 428, no. 1-2, pp. 105–
114, 1998.

[27] E. Witten, “Anti de sitter space and holography,” arXiv preprint hep-
th/9802150, 1998.

31



[28] E. D’HOKER and D. Z. Freedman, “Supersymmetric gauge theories and the
ads/cft correspondence,” in Strings, Branes and Extra Dimensions: TASI 2001,
pp. 3–159, World Scientific, 2004.

[29] S. Leea, S. Minwallaa, M. Rangamania, and N. Seiberg11, “Three-point func-
tions of chiral operators in d= 4, m= 4 sym at large tv,” Adv. Theor. Math.
Phys, vol. 2, pp. 697–718, 1998.

[30] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, “Correlation func-
tions in the cftd/adsd+ 1 correspondence,” Nuclear Physics B, vol. 546, no. 1-
2, pp. 96–118, 1999.

[31] S. M. Carroll, Spacetime and geometry. Cambridge University Press, 2019.

[32] G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions
in quantum gravity,” Phys. Rev. D, vol. 15, pp. 2752–2756, May 1977.

[33] K. Skenderis, “Lecture notes on holographic renormalization,” Classical and
Quantum Gravity, vol. 19, no. 22, p. 5849, 2002.

[34] M. O. Katanaev, “Gravity with dynamical torsion,” Class. Quantum Grav.,
vol. 38, p. 015014, Jan. 2021. arXiv:2109.09546 [gr-qc, physics:math-ph].

[35] G. Bertoldi, B. A. Burrington, and A. Peet, “Black holes in asymptotically lif-
shitz spacetimes with arbitrary critical exponent,” Physical Review D, vol. 80,
no. 12, p. 126003, 2009.

[36] V. Balasubramanian and P. Kraus, “A stress tensor for anti-de sitter gravity,”
Communications in Mathematical Physics, vol. 208, no. 2, pp. 413–428, 1999.

[37] S. de Haro, K. Skenderis, and S. N. Solodukhin, “Holographic reconstruction
of spacetime and renormalization in the ads/cft correspondence,” Commu-
nications in Mathematical Physics, vol. 217, pp. 595–622, 2001.

[38] K. Skenderis and B. C. van Rees, “Real-time gauge/gravity duality,” Physical
review letters, vol. 101, no. 8, p. 081601, 2008.

[39] J. P. Boyd, Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

32


	Abstract
	Acknowledgement
	Introduction
	Preliminary knowledge
	Hydrodynamics
	Spin currents
	Currents
	Spin current for Dirac spinor
	Vielbein formalism

	Kubo formula
	Basics of holography principle
	AdS spacetime
	Gibbons-Hawking term
	Massive scalar example


	Spin current hydrodynamics
	Conservation law
	Constitutive relations
	Hydrostatic ideal fluid
	Kubo formulas

	Spin transport coefficients from holography
	Massive vector as a bulk gravity model
	Near boundary analysis
	Near horizon analysis
	Counterterms
	Retarded Green's function
	Spin transport coefficients

	Conclusion and outlook
	Conclusion
	Outlook


