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Abstract

Calabi-Yau manifolds are Ricci-flat Kahler manifolds that are vital to string theory and have many appli-
cations in math. The existence of Calabi-Yau metrics on a large class of Kahler manifolds is guaranteed
by the Calabi-Yau theorem, due to E. Calabi and S.T. Yau, whose proof is by heavy analysis, which will
be the first part of this thesis. Explicit examples of these metrics are very difficult to find, we will present
a known construction due to E. Calabi in the second part of this thesis. The third part will consist of an
overview of how Calabi-Yau manifolds appear in string theory.

The definition of Calabi-Yau manifolds can be generalised to a space known as a Lie algebroid, which
is a vector bundle equipped with a structure to make it look like the tangent bundle. In the final part of
this thesis, we look at this generalisation and present some rather basic results. Moreover, we will look at
Lie algebroids in string theory and present a possible application of Calabi-Yau Lie algebroids in string

theory.
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1 Introduction

One of the biggest open problems in modern day theoretical physics is how to describe gravity as a
quantum theory. Quantum field theory describes matter as consisting of fields fluctuating on some
geometric background [Sch13]. General relativity, on the other hand, describes gravity as fluctuations
in the geometry of the universe itself [Carl9]. Therefore, quantising gravity will require turning the
geometry of the universe into a quantum field. As it turns out, the standard tools of quantum field
theory do not work when applying them to gravity [Sch13], so this problem requires a specialised new
theory to solve, it requires a theory of everything.

One framework in which gravity can be quantised is superstring theory [BBS07; BLT13; GSW8T7a;
GSW8T7b]. This particular theory assumes that all particles in the universe are vibrating modes of very
tiny strings that fill up the universe. This allows for a theory of everything with few free parameters,
since really, the only thing we need to describe are the strings themselves, instead of a long list of all
particles that make up the current standard model.

As it turns out, this rather simple ansatz of a theory of everything has very restrictive consequences.
It is only consistent in ten dimensions and it tells us precisely which particles are allowed in the theory
[BBS07; BLT13; GSW87a; GSW87b]. One big apparent issue with the theory is that our universe is not
ten dimensional, we only have four dimensions: three spatial dimensions and one temporal dimension.
The extra six dimensions of superstring theory get “rolled up” into a six dimensional space in a process
known as compactification. Moreover, superstring theory has a natural symmetry relating bosons and
fermions which is quite desirable in this context. Making sure that superstring theory still has this
symmetry after compactification requires compactifying on spaces known as Calabi- Yau manifolds, as
was realised in 1985 by P. Candelas et al. [Can+85]. Calabi-Yau manifolds are K&hler manifolds with
vanishing Ricci curvature, which means they also solve Einstein’s equations in a vacuum, making them a
good candidate for a vacuum configuration of the universe.

The process of compactification could also explain a seeming discrepancy: since superstring theory
has very few free parameters and the standard model has a lot, we need a mechanism for the appearance
of extra free parameters in the effective four dimensional theory of superstring theory. These extra
parameters come from the structure of the Calabi-Yau manifold we compactify on. So the hope was for
a long time that the only remaining problem was finding “the right” Calabi-Yau manifold. Due to these
observations, many people turned to studying Calabi-Yau manifolds and the field blew up.

However, the study of Calabi-Yau manifolds already started in the 1950s, about thirty years earlier,
in the works of E. Calabi, e.g. [Cal54], motivated by the study of Ricci curvature combined with the
study of Kéhler manifolds. They also appeared in the study of holonomy, as they are precisely those
manifolds that have (a subgroup of) SU(n) as holonomy group, while not necessarily being symmetric
spaces. This means they are one of the seven spaces on M. Berger’s list that classifies different holonomy
groups that can appear on Riemannian manifolds, as was published in 1955 in [Ber55].

Thus the study of Calabi-Yau manifolds is important in both mathematics and physics. Since these
manifolds are, in particular, Riemannian manifolds, the hope is that we can easily find many examples
of Calabi-Yau metrics on certain manifolds. Unfortunately, the story is not as simple as that, finding
Calabi-Yau metrics on compact spaces requires solving a particularly nasty non-linear partial differential

equation known as a Monge-Ampére equation [Aub82; Cal54; Joy00; Yau77; Yau78]. The only known



explicit example of a Calabi-Yau metric with SU(n) holonomy is due to E. Calabi in 1979 in [Cal79],
where he produced such a metric on the canonical bundle of CP"~!, which is a non-compact space.
Independently, T. Eguchi and A.J. Hanson found the same metric in the case of CP!, also in 1979
[EHT9].

Even though there are not a lot of explicit examples, solutions to the Monge-Ampere equation do exist.
In 1954, in [Cal54], E. Calabi conjectured the existence of a solution to this differential equation under a
certain topological condition. He noticed that Ricci-flat Kéhler manifolds necessarily have vanishing first
Chern class, so he conjectured the converse was also true: compact Kahler manifolds with vanishing first
Chern class admit a unique Ricci-flat Kahler metric in every cohomology class carrying a Kahler form.
Over 20 years later, in 1977, S.T. Yau finally proved this famous theorem [Yau77; Yau78]. This theorem
gives us a large variety of compact manifolds that admit Ricci-flat Kéahler metrics, so it provides many
examples of Calabi-Yau manifolds, though it doesn’t explicitly give us the desired Riemannian metric.
Moreover, this Calabi-Yau theorem even gives us a step towards the classification of compact Calabi-Yau
manifolds. They are precisely those compact Kéhler manifolds with vanishing first Chern class, and the
space of Calabi-Yau metrics on such a Kéahler manifold is parameterised by the associated Kéahler cone.

This kind of classification in the non-compact case is still an open problem, even in the case where we
work on the complement of a divisor in a compact Kéahler manifold, for a review of results in this setting,
see [Kith11]. In this thesis, we propose an alternative approach to finding Ricci-flat Kéhler metrics on
these open subsets of Kahler manifolds, where we study geometric structures on Lie algebroids. Lie
algebroids form a natural setting to do geometry on, in particular, they are vector bundles, so we can put
metrics on them. Moreover, they have a natural theory of connections, see e.g. [CFM21], and a metric on
a Lie algebroid gives us a Levi-Civita connection, so we can rather easily generalise a lot of constructions
in Riemannian geometry to this setting.

A particular type of Lie algebroid is the elliptic tangent bundle [CG15], which provides a natural
setting to study Kéhler metrics with logarithmic divergence towards a submanifold. This particular type
of divergence makes them fit into the theory of log geometry, see e.g. [Ogu06] for an introduction. In this
setting, there is a notion of log Calabi- Yau manifolds, which appears in both mathematics and physics
literature, see e.g. [DKW13; Ish00; GHK15], but that framework does not approach the problem from
a Riemannian viewpoint. In fact, they approach Calabi-Yau theory from an angle that does not require
an underlying Kahler metric, which clashes with the classical theory of Calabi-Yau manifolds. Thus,
studying Calabi-Yau structures on Lie algebroids might give new insights on Ricci-flat K&hler metrics on
the complement of a submanifold of a Kéhler manifold and, hopefully, also some new tools for studying
log Calabi-Yau spaces.

Moreover, Lie algebroids have been proposed in physics, already in the 2000s, in e.g. [Str04; BZ07], but
more recently, as possible non-geometric backgrounds for superstring theory, as can be seen in [Blu+13;
Plal9], i.e. a theory of superstrings where the extra six dimensions are not interpreted as physical
dimensions, but rather as extra fields on the strings that do not necessarily describe extra dimensions.
In this thesis, we will propose a possible application of Calabi-Yau structures on elliptic tangent bundles
to string theory, but that suggestion is most likely not a very solid one.

In Chapter 2, we discuss some background material needed for the later chapters, moreover, we give

a few well-known examples of Calabi-Yau manifolds that are rather easy to construct using tools from



complex geometry. Chapters 3, 4 and 5 form the heart of the thesis. In Chapter 3, we discuss the
Calabi-Yau theorem in depth and we provide a proof based on the one given by D.D. Joyce in [Joy00]. In
Chapter 4, we provide E. Calabi’s construction of an explicit Calabi-Yau metric on the canonical bundle
of CP™, which requires some brute-force. In Chapter 5, we briefly discuss the rich theory of Calabi-Yau
manifolds in string theory. Lastly, in Chapter 6, we discuss Lie algebroids and how the theory of Calabi-
Yau manifolds can possibly be generalised to that setting, and how it might connect to string theory.
This last chapter is by no means a complete description and should be viewed as an outlook for future

research.

2 Preliminaries

Throughout this thesis, we will need some preliminary results from analysis and (complex) geometry.
This chapter is included to provide these preliminary results, where most proofs/details are omitted for
brevity. References will be given where all details can be found and learned.

In Section 2.1, we will introduce the theory of global analysis on Riemannian manifolds and vector
bundles thereover, and we shall state some results regarding the solutions of differential equations in
these settings, which will mostly be important in Chapter 3. The goal of Section 2.2 is to introduce some
basic tools from complex geometry and Kéahler geometry that we shall need almost everywhere in this
thesis, including the rest of this chapter. In Section 2.3, we will briefly go over the theory of complex
line bundles, which will be a helpful tool in Chapter 4, where we will use line bundles to construct an
explicit Calabi-Yau metric. Lastly, in Section 2.4, we will turn to stating some basic geometric results
for Calabi-Yau manifolds and we will provide some examples of manifolds admitting Calabi-Yau metrics

using the famous Calabi-Yau theorem that we will prove in Chapter 3.

2.1 Analysis on manifolds

We start of with a bit of a stand-alone section, introducing some analysis on Riemannian manifolds.
This section is particularly important in Chapter 3, where a lot of analysis will be required to prove
the Calabi-Yau theorem. The later sections in this chapter do not require this section as prerequisite
knowledge, and will, instead, introduce some more geometric tools for the study of complex manifolds
and, in particular, Kéhler and Calabi-Yau manifolds.

In this section, we will introduce some tools from functional analysis to study PDEs on Riemannian
manifolds. In particular, we will introduce Holder, Lebesgue and Sobolev spaces on Riemannian manifolds
and on vector bundles over Riemannian manifolds, we will briefly introduce the theory of differential
operators and ellipticity and we will state some results regarding the existence of solutions to differential
equations. Along the way, we shall need to relax smoothness conditions, on the one hand by letting
smooth differential operators act on Holder or Sobolev functions, on the other hand, by also considering
non-smooth differential operators. We shall also give some results on regularity of solutions to elliptic
differential equations, which will provide a helpful tool in studying the differentiability of solutions to
such equations.

We will assume the reader is familiar with basic functional analysis and a little bit of Riemannian

geometry. Throughout this section, (M™, g) will be a Riemannian manifold, d, : M*? — R will be the



associated distance function, (—, —), will be the induced fibrewise inner product on T*M®P @ TM®?,
| —|g is the associated fibrewise norm, V : T(T*M®P @ TM®9) — I(T*M®PTt @ TM®?) will be the
Levi-Civita connection associated to g, and vol, will be the volume form induced by g. Also let £ — M
be a real vector bundle over M and equip it with a fibrewise metric i . By slight abuse of notation, we
shall also let V denote the metric connection of h on every tensor bundle of E'. Moreover, we will assume

that all functions are measurable.

2.1.1 Basic theory

There are a few spaces we will need to introduce that will give us a nice framework to work in later down
the road. We will not give an in depth discussion of these spaces and their properties, for that we refer
the reader to, for instance, [Heb96; Nic22].

We will start with the space of k-times differentiable functions for £ > 0, with k¥ = 0 being the space
of continuous functions, which we shall denote by C¥(M). This space consists of continuous functions
f: M — R such that V¥ f exists and is continuous. We equip this space with a topology induced by the

norm

k
[fller == Zskbplkalg- (2.1.1)
=0

In fact, this turns C¥(M) into a Banach space [Nic22]. Moreover, if a function f is k + 1 times dif-
ferentiable, it is also & times differentiable, and by definition, we have || f||-x < || fl|cx+1 , therefore the
inclusion ¢ : C*(M) — C*(M) is continuous, and we can equip C®(M) = (3o, C*(M) with the
inverse limit topology, i.e. we take the categorical limit of the sequence C'(M) > C?(M) O ... in the
category of topological vector spaces. Equivalently, we equip it with the topology induced by the semi-
norms ||—[/o«x . One important thing to note is that C°°(M) need not be Banach, for this reason, it is
often convenient to treat smooth functions as if they were just C* functions, and reintroduce smoothness
later down the road. This trick will become important once we turn to proving the Calabi-Yau theorem
in Chapter 3. Using only minor cosmetic changes, we can adapt the above definitions to the setting of
vector bundles, and we can define I'* (E), which consists of k-times differentiable sections, which becomes
Banach, and we can define I'*°(E) and equip it with the inverse limit topology.
Now we turn to defining a-Hdélder spaces, where a € (0,1). To do this, we define the a-Hdlder
coefficient by
= sup LO=I0]
rAYyEM g (w ’ y)a
We define the a-Holder space by C(0%) (M), which consists of CO-functions f such that [f], is finite. The

norm we put on this is the a-Hdélder norm, defined by

(2.1.2)

I lgoe = [[fllgo + [fla (2.1.3)

which turns C(%®) (M) into a Banach space.

Now we wish to generalise this to C*)(M), i.e. the space of k-times differentiable functions such
that the k’th derivative is a-Holder continuous. But now we run into a problem, as we defined the
k’th derivative as a tensor field, rather than a function. This can be resolved by working in coordinates

and taking a sum over multiindices in the definition of the Holder coefficient, but since we want to



generalise to vector bundles eventually, this is not sufficient for our purposes. Instead, we note that the
Levi-Civita connection gives a canonical way of identifying “nearby” tangent spaces by parallel transport
along geodesics. To make precise what we mean by this, we define the injectivity radius of g. For a point

x € M , the injectivity radius of g at x is
090 :=sup{R > 0|exp : Bg(0) — M is a diffeomorphism}, (2.1.4)

where Br(0) is the open ball of radius R around 0 in the fibre (T,;M, (—, —)4). In fact, the condition
we have on R is a closed condition (as we're taking open balls of radius R), and M is compact, so
the supremum is finite, and a basic result in Riemannian geometry tells us that the set on the RHS is

nonempty, so the supremum is actually achieved in the set. Moreover, we can define the injectivity radius

of g by

0g := inf 044 . 2.1.5
g xeM g ( )
In fact, we can relatively easily see that d, — : M — R is a continuous function, so we can use compactness

of M to conclude d, > 0. So around every point = € M , we can define the geodesic ball Bs () C M , such
that for any y € Bs, (), there is a unique geodesic lying completely in Bs, (z) that connects z and y , and
we note that this is the same geodesic as the one connecting y and x in B, (y) . Using parallel transport
along this geodesic, we can identify 7%, M with T}, M canonically, and also E, and E, . In particular, given
a section s € I'(E), we can make sense of |s(z) — s(y)|n € R, if dy(z,y) < d5. So we can extend the

definition of the a-Holder coefficients to sections of arbitrary vector bundles with metric by

|s(x) = s(y)]
Slo = sup . 2.1.6
s otyeM  dg(z,y)* ( )
dg(z,y)<dg

Using this, we can define C*®) (M) :

Definition 2.1.1 ((k, «)-Holder space). The (k,o)-Hélder space, denoted by C'%®) (M) | consists of k-
times differentiable functions such that the k’th derivative is a-Hdélder continuous. The (k, «)-Hélder

norm is defined by
I llowa = flor + [VFfla- (2.1.7)
Likewise, we define I'(*®)(E).

In fact, these spaces are Banach again. One thing to note is that for a C° function f, [f], as defined
in (2.1.2) does not necessarily agree with [f], as defined in (2.1.6), but it can be shown that the induced
norms on C (Ova)(M ) induce the same topology, essentially by equipping M with an open cover induced by
the balls B;, () , extracting a finite subcover using compactness, and then applying the triangle inequality
a few times. These Holder spaces embed nicely into spaces of differentiable functions, which is a fact we
will make precise later on in this section.

Next we define some tools needed for analysis, starting with Lebesgue spaces. Let ¢ > 1 be a real

number. We shall define the naive ¢-Lebesgue space Eq(M ) as the space of functions f, such that the

1/q
T ( / Iflqvolg> , (2.18)

10

q-Lebesgue norm



is finite. This is not a norm on Eq(M) ,as ||f — gl =0if and only if f = g a.e., so || f||;s = 0 does not
imply f = 0. To resolve this, we define the g-Lebesgue space LI(M) as the space of equivalence classes

of almost everywhere equivalent functions

Definition 2.1.2 (g-Lebesgue space). The q-Lebesgue space LI(M) consists of equivalence classes of
functions [f] := {¢g : M — R|f = ga.e.}, such that | f];, < co. We equip this space with the norm
induced by the g-Lebesgue norm ||—|;, defined in (2.1.8).

In fact, LY(M) is a Banach space. We will often pretend like elements of LY(M) are just functions,
keeping in the back of our mind that two things are equal if they are equal almost everywhere. Likewise,

if we have a section s of E', we can define the ¢-Lebesgue norm by

1/q
sl i= ([ bltvol,) (2.1.9)
M

and define L9(E) analogously. Lastly, we define L>°(M) and L*°(FE) as the space of essentially bounded
sections up to equivalence almost everywhere, and equip it with the supremum norm, which will be

defined as

[[f]ll Lo := inf sup |g(@)]n . (2.1.10)
9€[fl zeM

In fact, this gives us continuous inclusions C°(M) — L®(M) and I'°(E) — L*(E), that send continuous
functions to their respective equivalence classes.
The relation between the various L¢ norms will be very helpful, so we shall give some basic well-known

results, named after Holder.

Theorem 2.1.3 (Holder inequality). Let E, F — M be vector bundles equipped with a metric. Suppose
feLP(E),geLi(F) for1<p,g<ocand ;+¢=1. Then ||[f @ gl <|fllllgllLa -

In fact, using one more technical result, we can generalize this inequality to a slightly more general

setting
Lemma 2.1.4. Let f € LP*(E), g € LP2(F) with 1 < p1,p2 < oo such that p%—i—p% = I%, with1 <p < oo,
1.€.
L S
p/p p2/p

then || f @ gll o < 1l zes 19l pr2 -
Proof. By Holder,

1/p

A 1 1 P

1f @ gl =|[If @ glhen
]

Theorem 2.1.5 (Generalized Holder). Let E; — M be vector bundles with metric and let f; € LPi(E;)

with i € {0,...,n}, withlgpigoo,%::Zip%,withlgpgoo. Then

Q£ <Ifilos -

L

11



Proof. By induction. n = 1 is trivial, n = 2 follows from the previous lemma. Suppose it holds for

n — 1> 2. Define % = ZiSn& I%i < % < 1. So we can apply the lemma for n — 1 to conclude

Q £l < II 1fillun -

i<n—1 ||, i<n-1

Now applying the case n = 2, we see (note % + p% = % by definition)

fn® ® fz < ® fz anHLpn Sl_[HfZHLPZ 5

i<n—1 ||}, i<n—1 || 4
which completes the proof. O

We will use this to prove an interpolation result, which we will call the Hélder interpolation theorem,

this theorem will be used when discussing the proof for the Calabi-Yau theorem.

Theorem 2.1.6 (Hélder interpolation). Let 1 < p < ¢ < oo, suppose f € LP(E) N LY(E). Suppose
1

r € [p,q], ie. ;:%—l-l_TaforsomeaG [0,1], then

e < I DA™ -

Proof. We see

L B S
roopla g/(l—a) =

thus we can apply the Holder inequality to get

— 1—
pr < W ore 17 N o = NFUZe IFII ™

£l = LI 1£15 70

which completes the proof. O
One particularly interesting result following from this is the following

Corollary 2.1.7. Let 1 <p < q < oo, if |f|l» and || f|| 4 are both less than or equal to some C', then
so is || f|l - for every r € [p,q].

Returning back to the functional analysis, the Holder inequality tells us that if p > ¢ > 1, we have

£l 2o < 11l o volg (M) P=9)/Pa. (2.1.11)

In particular, we have an inclusion ¢ : LP(E) — Li(F) that is continuous. Therefore, we have a system

of Banach spaces again. One thing we note is that for any essentially bounded section f, we have

1/p
[fll e = (/M\f|ZVOIg> < (I1£15 oo vOlg (M) /P = || f]| oo vOlg(M)M/P

In particular, L°°(FE) embeds continuously into the inverse limit of this system, so in particular, so does
rE).

Lastly, we will discuss Sobolev spaces. Defining these spaces requires defining the weak derivative.
To do that, we need to define the formal adjoint of the operator V¥ : T'(E) — I'(E ® T*M®*) . First,

12



consider I'*°(E) together with the L? inner product, where we note that M is compact, so any smooth
function is in particular L?. Now we can define the adjoint of V* as the unique linear operator (V*)* :
I'®(E @ T*M®*) — I'°(E) such that for any ¢ € I'*(E), ¢ € I°(E ® T*M®*) we have

(VE@, ¥)hog = (0, (VF)*¢) - (2.1.12)

Now, we can define what it means for an LP(FE) function to be weakly differentiable

Definition 2.1.8 (Weak derivative). Let v € LY(E), v € LY(E @ T*M®*). We say VFu = v weakly if
for any smooth section ¢ € I'™®(E ® T*M%*) | we have

/(u,(Vk)*cp)hvolg:/ (v, @)voly . (2.1.13)
M M

In this case, we say that v is a k’th order weak derivative of u, and that u is k times weakly differentiable.

Note that the above definition implies that any function almost everywhere equivalent to a weak
derivative is itself a weak derivative, so it is indeed well defined that the weak derivative is a class in L.
In fact, it can be shown that if a function is k times weakly differentiable, then it is also k — 1 times
weakly differentiable, and its k’th weak derivative is unique up to equivalence almost everywhere. For
details, we refer the reader to [Nic22].

A natural next step would be to put some conditions on the k’th order weak derivative. In particular,

we will ask it to lie in the p-Lebesgue space again. This leads us to the notion of Sobolev space.

Definition 2.1.9 (Sobolev spaces). The Sobolev space LY (E) consists of LP classes u that are k times
weakly differentiable such that all derivatives up to order k are in LP . The (k, p)-Sobolev norm is defined

to be
1/p

k
lully = > Hvku’ ; (2.1.14)
j=0
In fact, this space is Banach again.
It is now clear that we have continuous inclusions L} (E) < L{(E) whenever p > ¢ > 1, and we have
continuous inclusions L} (E) < LY(E) whenever k > [ > 0, in particular, we can make sense of L5 (F)
and equip it with the inductive limit topology. However, there is a much stronger result about these

spaces, known as the Sobolev embedding theorem

Theorem 2.1.10 (Sobolev embedding). Let k > 1 > 0 be integers, p,q > 1 real numbers, and o € (0,1).

If
1 1 k-l
- S -+ — )
q_r
then there is a continuous inclusion L} (E) — Lj(E). Moreover, if
1 k-l—-«a
— é _,
q m

then there is a continuous inclusion L{(E) — T(t)(E).

See [Nic22] for the idea behind the proof. Moreover, we have a result on the compactness of these
embeddings, which will be vital for the proof of the Calabi-Yau theorem later on. This result is known

as the Rellich-Kondrachov theorem.

13



Theorem 2.1.11 (Rellich-Kondrachov). If the inequalities in the previous theorems are strict, the asso-

ciated embeddings are compact. Moreover, the embedding T**) (E) — I'*(E) is compact.

Again, we refer the reader to [Nic22] for the proof.

2.1.2 Differential operators and ellipticity

Now we will turn to defining differential operators and discussing some results on elliptic differential

operators. We will not go very in depth into the theory, see [CB17; KN22; Nic22; Wel80] for a more

detailed description. In particular, we will consider the example of the Laplacian. In this part, all vector

bundles will be complex and all functions will be assumed to be complex valued, unless stated otherwise.
We start with a definition.

Definition 2.1.12 (Linear differential operator). Let E, F' — M™ be vector bundles. A linear differential
operator of order at most k from E to F, is a local operator! P : T*°(E) — I'°°(F), such that in any
simultaneously trivialising chart (U, ¢), we have that P, is a matrix of linear differential operators of
order at most k on ¢(U) C R™ . The space of such operators will be denoted by Dify(E, F) .

We note that Dify_1(E, F') is a linear subspace of Dify(FE, F'), since a differential operator of order
at most k — 1 is in particular a differential operator of order at most k. Defining differential operators
between vector bundles that are of order exactly k is not possible, since this notion is not coordinate
invariant, and therefore doesn’t lift to manifolds. As an example, the Laplacian on R? is of order two:
A=0%+ 873 , but if we go to polar coordinates, we see A = 9% +r~19, + 7"*283 , which has an order one
term. However, we do see that the coefficient of the order two part of the Laplacian transforms in a nice
way. This is generally true, we can define an invariant associated to a differential operator of order at
most k that gives us the behaviour of the order k part of the differential operator.

To make this precise, note that the order k part of a differential operator P : C*°(R"™) — C*°(R") is
an order k polynomial in 0y,...,0, and transforms accordingly between coordinates. We note that we
can interpret 9; as a fibrewise linear function on the cotangent bundle T*R™. So the order k part of P
can be interpreted as a fibrewise homogeneous polynomial on T*R"™ of order k. However, this is not yet
how we wish to define this invariant. Instead, we will interpret 9; as a fibrewise linear complex-valued
function defined by 9;(dz’) = i0;j , which is an odd looking convention at first sight, but has its roots
in the theory of Fourier transforms. The complex-valued fibrewise polynomial on T*R"” obtained in this
way is called the principal symbol of P and we denote it by o (P) . Because it transforms in a nice way
under coordinate changes, this definition immediately generalises to manifolds by defining it in charts.

In fact, this definition also carries over to differential operators between vector bundles

Definition 2.1.13 (Principal symbol for differential operators). Let P be a differential operator of order
at most k between vector bundles E and F over M , and let w : T*M — M be the cotangent bundle.
The principal symbol of P is the section o (P) € I'(Hom(n*E, 7*F')), such that in any trivialising chart

(U, ), 0x(P), is a matrix whose elements are the principal symbols of the elements of the matrix P, .

For a proof that this is well defined and an explicit formula, we refer the reader to [Wel80]. The

appearance of the cotangent bundle might seem a bit mysterious at face value, but it is precisely the

'Meaning supp(Ps) C supp(s) for any s € T°°(E).
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setting we need to work in for this to be well defined. We will now state some properties of the principal

symbol, for a proof, see [Wel80], though the proofs are not particularly difficult:

(i) For a differential operator P of order at most k between F and F', and a differential operator @ of

order at most [ between F' and H , the principal symbol of the composition satisfies
o141(Q 0 P) = 01(Q) o ok (P) . (2.1.15)

(ii) o) descends to an injective map

oy : Difp(E, F)/Dify_1(E, F) — I'(Hom(7"E, 7*F)) .

(iii) For (x,v) € T*M and A € R, we have o(P)(x, \v) = N\op(P)(x,v), since it is fibrewise a matrix
of homogeneous polynomials of order k. In particular, o (P) always vanishes along the zero section
Opspr CT*M .

One can ask the question what happens away from the zero section. A nice class of operators are the

ones where the principal symbol is invertible away from the zero section’.

Definition 2.1.14 (Elliptic differential operator). A differential operator P of order at most k between
equidimensional vector bundles E and F', is called elliptic if o (P)(x,v) is invertible for any (z,v) €
T*M\ Oy -

The reason we are interested in these kinds of operators is that they are invertible in some weak
sense, which we shall not try to make precise in this thesis. This will require defining pseudo-differential
operators, which are, in general, non-local operators that extend the definition of differential operators
to allow more general principal symbols than just homogeneous polynomials. Good references are [CB17]
and [Wel80]. It is precisely this invertibility that makes elliptic differential operators nice to work with.
In particular, it gives us many results on the existence of solutions to elliptic differential equations, which
we shall explore in a bit, after introducing some more theory.

If E,F — M are hermitian vector bundles with metrics (-, —)g and (—,—)r, and M is equipped
with a density p, we can define the inner product (—, —)g : I'(E) x I'(E) — C by

(s,8\g = / (s,8 g, (2.1.16)
M
and similarly for F'. Then we can do the following:

Definition 2.1.15 (Formal adjoint). Let k € Ny, let E,F — M be vector bundles and let P €
Dify(E, F) . Then we define the formal adjoint P* of P by the defining property that for any s € I'(F)
and s € T'(E),

(s, Ps"Y\p = (P*s,s')p. (2.1.17)

This has the following properties, whose proofs can be found in [CB17] or [Wel80]

(i) P* is well-defined and unique.

!Note that this requires that E and F have the same rank.
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(il) P* € Dify(F, E).
(iii) of(P*) = ox(P)*, in particular, if P is elliptic, so is P*.

We end this part by discussing an important example, which is a differential operator that we all

know and love, the de Rham derivative.

Example 2.1.16 (De Rham derivative). Let M™ be any manifold and let £ = AKT*M | F = AM1T* )M
and P = d. Then P is a differential operator of degree 1. For its principal symbol, we note that we have

(dw)ig...i, = OpigWi,...i) - Writing down the principal symbol is now a straightforward, we see o1(d) () =

i€ A —. This will rarely be invertible, as we already have that A*T*M and A*H1T*M are generically of

different rank. However, if m is odd and k = (m — 1)/2, we see that rank(A*T*M) = rank(A*1T* M),

2

the m = 1 case is rather easy, so let’s take m = 3. Given coordinates {z!, 22, 23} , take the ordered frames

{dx',dz? da?} and {dx? A da3,dz3 A dxt, dx! A da?} for T*M and A?T*M respectively. We see

0 —& &
gl d)(&)=i|l & 0 =& (2.1.18)
—& & 0

Unfortunately, we see that this is not invertible away from 0, hence it is not elliptic.

The above gives us a non-example of ellipticity of a differential operator, so here we cannot use the

previous theorem. However, the de Rham differential still fits into the theory by considering the following;:

Definition 2.1.17 (Elliptic complex). Let k € Ny. Let (E, P) be a complex of differential operators of

order at most k, i.e. a complex

Pna

0— I(Ey) 2 r(E) &5 ... I'(E,) — 0,

where E; — M are complex vector bundles and P; are a differential operators of order at most k, such

that P;o P,y = 0 for every i. Then (F, P) is called elliptic if the associated symbol complex

o?(

od o4 (Pp_
0= x* By S, pepp ), o),

™ E, =0

is exact outside of the zero section.

In fact, since we computed the symbol of the de Rham complex is o(d)(£) = € A —, we see that the
de Rham complex is, in fact, elliptic.

If the E; were hermitian vector bundles with metric (—, —); , we could also define the formal adjoints
Pr.

(2

Definition 2.1.18 (Laplacian). Let M be a manifold equipped with a density, and let (E,(—, —), P) be
a hermitian complex of differential operators of order at most k, i.e. a complex of differential operators
of order at most k such that all vector bundles are equipped with a hermitian metric. Then the Laplacian
A of E is a collection of differential operators of order at most 2k , consisting of A, : I'(E;) — I'(E;) given
by

Aij=P_10P + P’ 0P (2.1.19)
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Now we have an important theorem, whose proof can be found in [CB17], though the proof is not

particularly difficult.

Theorem 2.1.19. Let p be a density on M . A hermitian complex of differential operators (E,(—,—), P)

is elliptic if and only if the associated Laplacian A consists of elliptic operators.

In particular, for the de Rham complex over a Riemannian manifold, we have a family of elliptic
operators A; : /(M) — Q(M).

2.1.3 Solving elliptic equations: the non-smooth setting

As noted in 1984 by H.F. Adu, smooth operators are no place to be ending, but somewhere to start
[Sad84]. In order to solve differential equations, it is often helpful to move away from the smooth setting
and only return to it later. This is because C°°(M) is not a Banach space, so it is usually not particularly
nice to work with, moreover, the non smooth setting places us in the regime of the Sobolev embedding
theorems 2.1.10, which are quite strong results. Moreover, in Chapter 3, we will need to solve a nonlinear
partial differential equation, for which we shall need some linear differential operators with non-smooth
coefficients, which can be defined analogously to the smooth setting.

Extending the definition of differential operators to the (k, «)-Holder setting is rather easy, as applying
differential operators to these objects is simply done by taking derivatives. However, we also want to

extend the theory to the setting of Sobolev spaces, so it is pleasant that we have the following theorem.

Theorem 2.1.20. Let k € Ny and let E,F — M be vector bundles. Then any P € Dify(E, F) uniquely

extends for every natural number I > k to a map
P:L}E)— L} ,(F).

The proof for this rather important theorem can be found in [Wel80], or in [KN22], where they also
treat the case of differential operators with non-smooth coefficients. One should not be surprised by
this result, a differential operator of order at most k will take k derivatives of a section that it eats,
so one should expect that this also does that when we move to the setting of Sobolev spaces and weak
derivatives.

In the particular case of the Laplacian, we have the following useful result, whose proof can be found
in [Ros97]:

Theorem 2.1.21. let k € Ng. Then L>(A*T*M) admits an orthonormal decomposition into eigenvalues

of A . Moreover, the spectrum of Ay is discrete, nonnegative and all eigenvalues have finite multiplicity.

We shall now give some theorems regarding regularity of elliptic differential equations. The idea is
the following, elliptic operators are invertible in some weak sense, so if P is a differential operator of
order at most k and s is a section such that Ps has [ derivatives, then we can invert P to show that s

must have [ + k derivatives. This gives us the following theorem, whose proof can be found in [CB17]:

Theorem 2.1.22 (Elliptic regularity). Let k € No,l € N, let E,F — M be vector bundles and let
P € Dify(E, F) . Suppose f € L{(E) such that Pf € L}(F), then we have f € L, (E). In particular, if
Pf e L (F), then f € L?,(E).
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We would also like some results on Hoélder spaces, which can be proved using Schauder estimates.
The nice thing about these estimates is that they carry over to the case of elliptic differential operators
with non-smooth coefficients, i.e. if we allowed the matrix of differential operators in Definition 2.1.12 to

have (I, a)-Holder coefficients.

Theorem 2.1.23 (Schauder estimates). Let k,l € Ny, a € (0,1) and let E,F — M be vector bundles
and let P be an elliptic differential operator of order k from E to F with C(l’a)(M)—coeﬁcients. Suppose
f e T®)(E) such that P(f) € TGX(F) | then there is a constant C that is independent of f, such that

[fllcte+ter < CUPH)lcwmr + 1 fllco) (2.1.20)

The proof can be found in [Mor66]. In particular, the above theorem tells us that f € C(k“’a)(E) ,
stated in terms of an upper bound on its norm. Usually, many results like this are stated in terms of
estimates, this is because estimates are easy to combine into new estimates, which can be very useful, as
we will see in Chapter 3.

There are also some useful results regarding solutions to elliptic differential equations, see [Joy00] for

a discussion on these results and for the proofs of these theorems.

Theorem 2.1.24 (Solutions to elliptic differential equations I). Let k,l € No, o € (0,1), p > 1, let
E,F — M be vector bundles and P € Dify(E, F') be elliptic. Then the images of the maps

P .0+ gy 5 1GN(F) . and P LP

wrt(B) = LY (F),

are closed. Moreover, if w € CH(F), there is a v € C*H)(E) such that Pv = w if and only if
w L ker P*. Moreover, v is unique up to ker P. Likewise, if w € L}(F) then there is a v € L (E) if

and only if w 1 ker P* | where v is unique up to ker P .

In the non-smooth case, this theorem also works. Here, note that the formal adjoint is still well
defined, analogously to the formal adjoint of a smooth operator, see [Joy00] for details. We have the

following

Theorem 2.1.25 (Solutions to elliptic differential equations II). Let k,l € Ny such that k > 0, let
a € (0,1) and let E,F — M be vector bundles. Suppose P is a linear elliptic differential operator of
order at most k from E to F with Ct® -coefficients. Then P* is an elliptic differential operator of order
at most k from F to E with CU=F) _coefficients. If w € T (F) then there is a v € DR (E) such
that Pv = w if and only if w L ker P*, where v is unique up to ker P .

This completes our discussion of analysis on manifolds.

2.2 Kahler manifolds and some complex geometry

Now that we have introduced some tools from analysis, we will turn to a bit of complex geometry. The
tools from the previous section will not appear here, nor in the rest of this chapter, though we will study
the Lagrangian on Kéhler manifolds a bit. The analysis will return in Chapter 3. The next three sections
of this chapter are more intertwined, this section will introduce complex manifolds, the next section will

introduce line bundles where we will also study how they relate to complex manifolds, and in the last
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section, we will use both theories to produce some examples of Calabi-Yau manifolds and to give some
basic results about them.

This section will be devoted to introducing tools from (almost-)complex geometry, in particular, we
shall study some structure on Kéahler manifolds, which are a particular kind of complex manifold. In
Subsection 2.2.1, we will recap the theory of almost complex structures and complex manifolds and we will
state the Newlander-Nirenberg theorem that relates the two. We shall also spend some time on complex
tensor calculus in coordinates. In Subsection 2.2.2; we shall introduce hermitian manifolds, which are
simultaneously Riemannian and complex, and we shall introduce Kéhler manifolds, which are hermitian
manifolds that are also symplectic. We shall also introduce some tools for studying these Kahler manifolds
and we shall state some fundamental results about analysis on these spaces and what these results tell us
about the geometry of Kéhler manifolds. Lastly, we will also do some tensor calculus in coordinates on
Kaéhler manifolds, where we will derive some identities that will be important all throughout this thesis.

Some results of this section will be generalised to the setting of Lie algebroids in Chapter 6, which is
why we sometimes spend a bit more time on deriving certain results.

We will assume the reader is familiar with the definition of complex manifolds and has some under-

standing of differential geometry.

2.2.1 Recap: complex geometry

In this subsection, we will briefly recap some basic (almost-)complex geometry, with the goal to define
the 9,0 and d¢ operators, to say a bit about Dolbeault cohomology, and introduce some complex tensor
calculus in coordinates, which we will a lot in this thesis. We will be rather quick about many things in
this beautiful field of study, for more details, we refer the reader to [GH94; Huy05; KN69; Wel80].

An almost complex manifold is a pair (M, J) where M is a smooth manifold and J : TM — TM is a
tangent bundle automorphism such that J? = —id.

A complex manifold is a manifold that is locally modelled on C™, such that transition functions
are holomorphic maps. These manifolds naturally come equipped with a tangent bundle automorphism
J : TM — TM such that J? = —id, making them also almost complex manifolds. Whenever an almost
complex structure J comes from a complex structure, we call it integrable.

On any almost complex manifold, J decomposes TM ® C in +i and —i eigenbundles, respectively
denoted by TM1-0 and TM©V | Given a frame {dy, J01, Do, J0s,...,0m, JOm} for TM , we then see
that 0,: := 3(9; — iJ0;) define a frame for TM™0) | Likewise, 0, := 1(9; +iJ9;) define a frame for
TM©1)  Note that often, we will denote TM ® C by just TM , if there’s risk of confusion, we will try to
be explicit about whether we mean T'M or its complexification.

Moreover, J also induces a splitting of T*M ® C into +¢ and —i eigenbundles, respectively denoted
by T*M 19 and T*M O | such that we also get a decomposition

o= @ i),
ptq=k

where QP9 (M) := T®(APT*M1) @ A9T*MOD) | Defining {dz*} to be the dual frame to {,:} and
{dz"} to be the dual frame to {9}, we see that QP9 (M) is locally generated by sections of the form
dzU Ao Ndze NdFIA - NdRT ) with i) < --- <dpand jp < --- < jgarein {1,...,m}.
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There is a rather famous theorem that tells us when an almost complex structure is integrable. This
theorem is due to Newlander and Nirenberg in 1957 [NN57]. It states that J is integrable if and only if
TM™9) is involutive. We will extend this theorem slightly with a few short calculations and turn it into

the following:

Theorem 2.2.1 (Newlander-Nirenberg). Let (M, J) be an almost complex manifold, then the following
are equivalent:

(i) J is integrable;

(ii) TMO) s an involutive distribution in TM & C;

(iii) the Nijenhuis tensor N € T(T*M®2 ® TM) , defined for real X,Y € X(M) by

NJ(X,Y) = [X,Y]+ J(JX, Y]+ [X,JY]) — [JX,JY], (2.2.1)

vanishes identically;

(iv) The de Rham operator acts on (p, q)-forms by
d: QPO (M) — QPHLD (M) @ QP (M) .

Proof. The equivalence of (i) and the others is the main difficulty in this theorem and can be found in
[NN57], where they actually prove the equivalence of (i) and (iv).

We start with proving the equivalence of (ii) and (iv). To do this, note that any a € Q¥(M;C) can
be written as a finite sum « = ), a; , where o; = ;1 A -+ Ay, for some o5 € Ql(M) . Therefore, we
only need to prove that (i) is equivalent to d : QD (M) — QLD (M) @ QO2) (M) , as the statement for
QO (M) follows from complex conjugation.

So take any a € QO (M). Then (iv) is equivalent to saying that for any X,V € T(TM 1) | we
have da(X,Y) = 0. We see da(X,Y) = X(a(Y)) — Y(a(X)) — a([X,Y]). Now, since a € QOD (M),
we have a(X) = a(Y) = 0, hence we see that (iv) is equivalent to saying that a([X,Y]) = 0 for any
(0,1)-form « and any (1,0)-vector fields X, Y . Since this must hold for any «, (iv) is equivalent to saying
[(X,Y] € TM®O) for any X,Y € D(TM®0) ie. TM®D) is involutive, proving (i) <= (iv).

So it remains to prove (ii) <= (iii). To do this, we let v,w be real vector fields and consider
X =v—iJvand Y = w — iJw, where we note that any (1,0)-vector field can be written like this. We
see

[(X,Y] = [v,w] — [Jv, Jw] —i([v, Jw] + [Jv,w]) .

(1,0)

Therefore, involutivity of 7'M is equivalent to having [v, Jw] + [Jv,w] = J([v,w] — [Jv, Jw]) for any

v, w real vector fields, i.e. Nj(X,Y) = 0 for any real vector fields X,Y , showing the equivalence of (iii)
and (ii). One last remark is that this Ny is indeed a tensor, as we have for any f € C>*(M),

Nj(X, fY) = fNJ(X,Y) + X(f)Y + J(JX)(f)Y + X(f)JY) = (JX)(f)JY = fN;(X,Y),
completing the proof. O

In particular, we see that the de Rham operator on a complex manifold splits as d = 9 + 9, defined

in holomorphic coordinates (z%) by
9: QPO(M) — QPHLDI(M);  O(w,5d2? AdZ) = Brew. 5d2 Ad2Y N2, (2.2.2)

20



where 7y is a multi-index of order p, and ¢ is a multi-index of order ¢. Likewise,
0: QPD(M) - QPIEY(M);  B(w 5d2) AdZ) = Braw,5dZ Ad2T NdZ . (2.2.3)

These operators square to 0, so they define chain complexes. In particular, on any complex manifold M,

for every p € Ny, we have a chain complex

Qw0 (A1) —2 ey —2
The associated cohomology is called the Dolbeault cohomology of M , and will be denoted by

HPD (M) = lfer((? QM) — QRI(M) (2.2.4)
im(0 : QPa—D (M) — QP2 (M))
The numbers h?9 := dim(H 9 (M)) are known as the Hodge numbers of M .
We also define the conjugate d° of the de Rham operator as d° := (0 — d), such that dd® = 2i90.
The advantage of d¢ is that it is a real operator, i.e. it maps real forms to real forms, which is a property
that 0 and 0 do not have.

Lastly, later on, we will work in coordinates and it might be a bit confusing how real things correspond

to imaginary things, which is what we will now quickly consider.

Given a real frame {01, J01,...,0m, JOn} for TM , we can form the associated frames {0,} and
{0sa} for TM®) and TM©D | We will use Latin indices {a,b,...} torun over {01, 02,...,0n}, we will
use barred Latin indices {a,b, ...} to run over {Jdy,J0s, ..., JOn} and we use Latin indices {i,,...} to

run over {01, J01,...,0m, JOn}. We use Greek indices {a, 3,...} to run over {0,1,...,0,=} and barred
Greek indices {@,3,...} to run over {Js1,...,0sm}.

Given a tangent vector v = u'0; , we see that the indices are related by

' = u“9y + u0y , (2.2.5)

so we get
u® = Z(u® 4 u®); (2.2.6)
u’ = L(u* —u®). (2.2.7)

We can invert this to get

u® = u® 4+ iu®; (2.2.8)
u® = u® —iu®. (2.2.9)

Likewise,
Uy = Uq + Ug ; (2.2.10)
g = i(uq — ua); (2.2.11)
U = 3 (uq — iug); (2.2.12)
Ug = 3(uq + iug) . (2.2.13)

We see that all these relations are linear. Therefore, things like the first Bianchi identity for the Riemann
tensor will carry over from Latin indices to Greek indices. Moreover, ulv; = u®v, + u®vg as is easily
calculated. Therefore, these new Greek indices behave very much like the Latin indices, so we can

translate tensor calculus to these indices with only minor changes.
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2.2.2 Kahler geometry

Kahler manifolds are a particular kind of complex manifold with a Riemannian structure that is par-
ticularly well behaved. Let M™ is a complex manifold of complex dimension m, i.e. real dimension
2m , with complex structure J. Suppose we are given a Riemannian metric ¢ on M . We say that ¢
is a hermitian metric if for any x € M, and any pair of (real) tangent vectors u,v € T, M , we have
9z (Jpu, Jpv) = gz(u,v), i.e. that J, is gz-orthogonal for every . A complex manifold equipped with a
hermitian metric will be called a hermitian manifold.

For u,v € T, M™9  we have the following identity

glu,v) = g(Ju, Jv) = i*g(u,v) = g(u,v) =0. (2.2.14)

Likewise, g vanishes on pairs of (0,1)-vectors. Instead, we have that if u is a (1,0) tangent vector, we

can decompose into real and imaginary part u = ur + tuc , such that ug, uc are real, and we see

9(u, @) = g(ur, ur) + g(uc, uc) . (2.2.15)

So whenever u # 0, this will be strictly positive. Moreover, for two (1,0)-vectors u, v, we have

g(u,v) = g(ugr, vr) + g(uc,vc) + i(g(uc, vr) — g(ugr, ve)) = g(v, @) . (2.2.16)
This naturally leads us to the following observation

Lemma 2.2.2. There is a one-to-one correspondence between hermitian metrics on M and tensors
g € F(T*M(LO) @ T* MOV such that for any x € M and u,v € T, M1-0) |

1. g(u,w) > 0, with equality if and only if u=0.

2. g(u,0) = g(v,u) .

Proof. One injection was discussed before the theorem. So now we have to find an inverse. So suppose
g is a complex tensor with values in 7*M 10 @ T*M (1) satisfying the assumptions of the theorem. We
wish to construct a hermitian metric § that equals ¢ when restricted to TM 19 @ TM (1) and show that
it is unique. Since any vector u € T, M decomposes as u = u(20 4+ 401  where v(29 e T, M (10 and

uw®V) e T, MO | So using the conditions, we see that for any pair u,v € T, M , § must satisfy
§(u,0) = G0, 0019) 4 G0, oO) 4 GO, v10) 4 GO, o).

Since we want § to be a hermitian metric, (2.2.14) tells us g(u(%?), v(1:0)) = (O 401 = 0. Moreover,
¢ must equal ¢ when restricting to TM 19 @ TM O | so the above reduces to

g(u,v) = g(u(1,0)7v(0,1)) + g(v(l’o),u(ovl)) _

One immediately sees that g(Ju, Jv) = g(u,v). Moreover, it is a quick check that this is a pointwise
real inner product when plugging in real tangent vectors, as those are precisely the tangent vectors u

such that ©(®Y = (1,0), Therefore, we see that the injection described before the theorem is invertible,

therefore, the theorem is proven. O
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The upshot is that we can now define a hermitian metric as a section of T*M 10 @ T*M (1) guch
that g(u,@) > 0 with equality if and only if « = 0, and g(u,7) = g(v,@), which is a definition that is
better adapted to the setting of complex manifolds.

Our next observation is that, for two real tangent vectors u,v € T,,M , we have a real, nondegenerate
two form defined by w(u,v) := g(Ju,v). This is called the hermitian form associated to g. Again, looking

at complex vectors, we see

wu,v) = g(J (WP +uOD) 10 4 Oy — j4(, 10 4 ODY g (10 4,01 (2.2.17)

So it follows that w is a (1,1)-form. In particular, for u,v € T, M0

w(u, ) =ig(u,v) = —w(v,u) . (2.2.18)

Moreover, one sees that g also follows from w by g(u,v) = w(u, Jv), and that w(Ju, Jv) = w(u,v), i.e.
that w is J-invariant. This gives us another equivalent definition of a hermitian manifold, namely a com-
plex manifold (M, J) equipped with a real J-invariant nondegenerate two-form w , such that w(u, Ju) > 0
whenever u # 0 is real. Real two-forms 7 that satisfy the condition n(u, Ju) > 0 when u # 0 is real, are
called positive two-forms.

Now we have all structure needed to define Kéhler manifolds. They are a particular kind of hermitian

manifold, namely those where the hermitian form is not only nondegenerate, but is symplectic.

Definition 2.2.3 (Kéhler manifold). A Kdhler manifold is a hermitian manifold (M, g) such that the
associated hermitian form w satisfies dw = 0. In this case, we call g a Kdhler metric and w the associated
Kdahler form.

Kahler manifolds are very interesting, as they lie in the intersection of complex, symplectic and
Riemannian geometry. The study of Ké&hler manifolds goes very deep and their geometry is very rich. In
this thesis, we will derive a few results, and state some others without proof. A full discussion is outside
the scope of this thesis, for more details, see, for instance, [GH94; Huy05; KN69; Wel80].

The particular definition of a K&hler manifold is a rather strong one, yet it might not be entirely
obvious why this is an interesting definition when one approaches Kéhler manifold theory from a Rie-
mannian and complex viewpoint, and not from a symplectic viewpoint. The following might give a bit

more motivation

Proposition 2.2.4 (Alternative Kéhler characterisations). Let (M, g, J) be a hermitian manifold with
Levi-Civita connection V and hermitian two-form w , then the following conditions are equivalent
(i) dw=0;
(ii) VJ =0;
(ili) Vw =0.
(iv)

Proof. Our proof is based on the one in [KN69]. The equivalence of (ii) and (iii) follows from the fact

The holonomy group of (M, g) lies inside U(m) .

that ¢ is covariantly conserved and nondegenerate. The equivalence of (ii) and (iv) follows from the
holonomy principle: holonomy is inside U(m) if and only if the almost complex structure is preserved.
Lastly, Vw = 0 implies dw = 0, as dw is the antisymmetrisation of Vw. The remaining implication to

show is that (i) implies (ii), which we will now show.
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We see that for any vector fields X, Y, Z, we have
g(Vx )Y, Z) = g(Vx(JY),Z) + g(VxY,JZ).
Moreover, the respective Koszul formulas tell us

9(VxY, Z) = 5(X(g(Y, 2)) + Y (9(X, 2)) — Z(9(X,Y))

+9([X, Y], 2) = g([X, ] V) —g(lY; 2], X));
X(g(JY, 2)) =Y (9(JX, 2)) + Z(9(J X, Y))

dw(X,Y, Z) = 4
—g(J[X,Y],Z)—I—g(J[X,Z],Y) (J[KZ],X)

So we see

9(Vx )Y, Z) = %(Y( (X, JZ)) = Z(9(X,JY)) + JY (9(X, Z)) — JZ(9(X,Y))
+9([X,JY],2) — g([X, Z], JY) — g(|JY, Z], X)
9((X,Y],JZ) — g([X,JZ],Y) — g([Y, ] Z], X))
= dw(X,Y,2) — dw(X,JY, JZ)
—9([Y, 2], JX) — g(J[JY, Z],JX) — g(J]Y,JZ), X)) + g([JY, JZ], T X))

= 1(dw(X,Y, Z) — dw(X,JY,JZ) — g([Y, Z) + J([JY, Z) + |Y, J Z]) — [JY, J Z], J X)) .

Now, we see the Nijenhuis tensor appearing in the last term on the RHS, so since the complex structure
is integrable, we see
9(Vx )Y, Z) = H(dw(X,Y, Z) — dw(X,JY,JZ)). (2.2.19)

So dw = 0 implies VJ = 0, meaning (i) implies (ii), which finishes the proof. O

One sees that Kdhler manifolds are precisely those manifolds where the complex structure is covari-
antly conserved.

On a given complex manifold (M, J), there might be certain cohomology classes that contain real
positive J-invariant (1, 1)-forms. Before, we showed that these forms induce a hermitian structure on M ,
and because we assumed they lie in a cohomology class, they are closed. Therefore, these are precisely
the objects that induce Kahler structures. A cohomology class carrying a Kéahler form is called a Kdhler
class.

Now, as on any Riemannian manifold, we have the Hodge star operator x : QP(M) — Q*™=P(M)
defined by a A %5 = g(«, B)vol, for every «, 3 € QP(M). Here, vol is the volume form induced by g. If

we then assume our manifold is compact, we also get an inner product

(a, B) = / gla, B)* 1, (2.2.20)
M
so we can define adjoints of 0 and 9. We find
O = —x0x; O = —%0* . (2.2.21)
From this, similar equations can be derived for d* and (d®)* . In fact, one can show 90* = —9*0 and 09* =

—0*0 [Huy05]. Moreover, we can now define the Laplacians as Ap = DD* + D*D for D =9, 0,d, d°.
A property of compact Kihler manifolds is that, while 0, 0 and d are all different operators, their

Laplacians are actually the same up to a constant prefactor.
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Lemma 2.2.5. Ay = Ay = %Ad.

The proof requires quite a long calculation, see for instance [Huy05]. The above condition tells us
that the space of harmonic forms of 9, 0 and d are all the same. To get a nice consequence, we need the

following theorem as well:

Theorem 2.2.6 (Hodge decomposition). Let (M, g) be a compact hermitian manifold, then we have the

following orthogonal decompositions:

QPO (M) = im(d) @ ker(Ap) @ im(9*) (2.2.22)
QPO (M) = im(d) @ ker(Az) @ im(J*), (2.2.23)

where p, q are nonnegative integers, and all maps are chosen at the level where they make sense.

For the proof, we refer the reader to [Wel80]. Because the Laplacians all agree for Kahler manifolds,

we define the space of (p, q)-harmonic forms as
HPD (M, g) := ker(Ap : QPD (M) — QPD (M), (2.2.24)

for D = 9, 0, d. In particular, we see that any d-cohomology class contains a unique harmonic repre-
sentative, moreover, this class satisfies that all (p, ¢)-components are harmonics as well. Moreover, every
Dolbeault cohomology class also carries a unique harmonic representative. As a consequence of the Hodge
decomposition theorem, we get the following important result, called the dd®-lemma, or sometimes the

d0-lemma, if one is mostly interested in complex forms.

Lemma 2.2.7 (dd®-lemma). Let (M,g) be a compact Kihler manifold, then for any closed (p,q)-form
a, the following are equivalent:
(i) « is d-ezact;
) « is 0-exact;
(iil) o is O-evact;
)« is 00-ezact;
(v) a is orthogonal to H®D (M, g).

Moreover, if a € QF(M) is real and d-exact, then « is dd°-ezact as a real form.

The proof can be found in [Huy05], it follows relatively easily from the Hodge decomposition theorem.
The dd°-lemma might seem rather technical at first, but it is a very effective tool to describe Kéhler
manifolds. It tells us that every cohomology class, whether it be a de Rham cohomology class or a
Dolbeault cohomology class, carries a unique harmonic representative. In particular, because complex
conjugation induces isomorphisms H®9 = H@P)  we get the following relations between the Hodge

numbers:
Theorem 2.2.8. On a compact Kihler manifold (M™,g),

hPd — pOP — pm—Pm—q _ pm—qm—p

Proof. h?1 = h?P was established before the theorem, so we just have to show h?4 = B~ 2™7P  which
is known as Hodge duality. From [Huy05], we know that A commutes with x, therefore we see that
o € QP9 (M) is harmonic if and only if xa € QU™=%™=P)(M) is harmonic. This completes the proof. [
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Secondly, we have

Theorem 2.2.9. Let (M™,g) be a compact Kdihler manifold. Then we have the following

Hip(M)= @ BHPY(M).
pt+q=i

In particular, we see that the i’th Betti number of M is related to the Hodge numbers of M by b;(M) =
Zp+q:i hPa

Proof. This is a direct consequence of the observation below Equation (2.2.24), that any d-cohomology

class carries a unique harmonic representative, whose (p, ¢)-components are also harmonic. O

These two results can be combined to give a topological obstruction for manifolds to be Kéahler, we
see that any compact Kéahler manifold needs to have even odd-degree Betti numbers, i.e. bo; 1 € 27Z for
any 7 € Np.

As another tool, we have the following lemma, which guarantees the existence of certain local functions

called Kdahler potentials, which will play a key role in Chapter 4.

Lemma 2.2.10 (Existence of K&hler potentials). Let (M, g) be a Kdihler manifold with Kdhler form w .

Let U be a contractible open. Then there is a real function ¢ on U such that
wly = dd°p. (2.2.25)

This result follows from the Poincaré lemma [Huy05]. Moreover, if (U, 2%) is a holomorphic chart,

and ¢ is a Kéahler potential on U, then we see
9op = 204050 . (2.2.26)

Here, note that our convention dictates dz® A dz”(0a, dz)=1.

The volume form of (M, g) relates to w in a rather nice way. To see this, let © € M , and pick a frame
for the tangent bundle that is orthonormal at x, given by (9,1, J0,1,...,0ym, JOm). The reason that
we can pick an frame like this is that J is an orthogonal transformation. We also define 9,: := J0,: .

Now we will calculate the volume form. To do this, first note that we have a preferred orientation of
our manifold induced by the complex structure. This has orientation form dz! A dy' A --- A dz™ A dy™.
Since this frame is orthonormal, the previous top form is also the volume form vol, of our Kahler manifold

at the point x. By direct computation, we see

:m
W = mle—dz! AdZVA - AdZ™ A dE™. (2.2.27)
Qm
Since we have dz* A dzF = —2idz® A dy* , and © € M was arbitrary, we get
w™ =ml!voly . (2.2.28)

Moreover, we know w = ig,zdz" A dz? , so we see

w™ = i"mldet(g,z) dz" Adzt A AdZT A dZ™ (2.2.29)
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The next thing we consider is the Levi-Civita connection associated to g. As it turns out, when

(1.0) it agrees with the Chern connection on that bundle

applying the Levi-Civita connection to T'M
[HuyO05]. This particular connection is the unique holomorphic connection that commutes with g. To
make the discussion slightly more general, we will jump to the setting of a holomorphic vector bundle
E — M equipped with a hermitian connection h, defined in the smooth sense. Recall that there is a
well defined O : QP9 (M; E) — Q@a+D(M; E) operator on such vector bundles, which can be defined
locally in holomorphic trivializations. Note that transition functions are then holomorphic, so they are

0-closed, thus this definition is coordinate invariant.

Lemma 2.2.11 (Existence of Chern connection). Let (E,h) be a hermitian, holomorphic vector bundle
over a complex manifold M . Then there is a unique connection NV on E such that for any u,v € T'(E),
d(h(u,v)) = h(Vu,v) + h(u, Vv), and Vu € QO (M; E) for any (local) holomorphic section u .

The proof is straightforward and can be found in [Huy05]. If we want to write down what this looks
like in coordinates, we obtain
A o = W 0hyir s (2.2.30)

where h*M is the transpose inverse matrix of hxp, ie. h)‘ﬁhl,ﬂ = (55,‘ . Note that this is how the connection

acts on E, we equip E with the structure induced by complex conjugating everything, i.e. simply put a

bar over every symbol, e.g. the connection is determined by AN Aa = AN aa - In fact, we can now explicitly

calculate the associated curvature tensor in coordinates to find

A A
K”,05= =034, (2.2.31)
with all other components vanishing. See [KNG9] for the calculation. Here, we use a, f3,... to run over a
TM™O_frame, and we use A, j, ... to run over the E-trivialization. Note that some authors (e.g. Calabi

[Cal79]) choose to define the curvature tensor with an extra minus sign to get a more natural way of

lowering the A index. In our convention (which is shared by Kobayashi and Nomizu [KN69)),
K)\ﬂOéB - _hVﬁKVAO!B 5 (2232)

in the other convention, the RHS would not have this minus sign.

One thing we can see from the above calculation is that the curvature tensor is in QY (M; End(E)),
which is an interesting fact on its own.

Returning to Kéahler manifolds, we will now want to calculate the associated Ricci curvature tensor,
which we will denote by Ric if we’re working independent of coordinates, and by R;; when working in
coordinates. Moreover, we will denote the Riemann tensor in coordinates by R’ jkl » to indicate that we're
in the special case of the curvature tensor of the tangent bundle. To calculate the Ricci tensor, we note
that the first Bianchi identity tells us

RaB = RFVOWB =R 7 (2.2.33)

where we used that the curvature form is (1,1) . Moreover, we have Rs5 = R,, 3, and all other components

vanish. Translating back to Latin indices then simply gives us
R&E = Rab = RCVE + Rdﬁ 3 RLIB = _Rflb = Z(_RQB + R@ﬁ) . (2234)
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In particular, it is J-invariant and as a sanity check, it is real. Moreover, we see that p := Ric(J—, —)

defines a J-invariant real two-form with coordinates

Pab = Pap = i(RaB - Raﬂ) y o Pab = —Pab = Rag + Rap - (2.2.35)

If we want to explicitly calculate this, we note that the curvature on AMO TN = A™(TM (1’0)) is
given by

[Va, VEI(O1 A+ ANOp) = R 1501 NOy A+ N O+ Ot AR (5500 A= N + 0L N+ -- AR™ 1 30m,
= RogOL A+ A O

(m,0)

So R,j is the curvature of A TM . However, the metric on this bundle is given by a scalar, namely

det(g,) - Note that det(g,3) is a real function, as g, is a hermitian matrix. Therefore, we see
R,5= —05((det(gvg))_18a det(g.5)) = —0a05logdet(g.5) . (2.2.36)
This means we get Ricci form
p = —i00log det(g.,5) = —$dd"log det(g.5) - (2.2.37)

In particular, this is a closed real (1,1)-form, and it therefore defines a real cohomology class. In fact,
since Ric is the trace of the curvature tensor on AUOTM | we see the cohomology class [p] is in fact
2mey (M), with ¢; (M) being the first (real) Chern class of M, i.e. the first Chern class of TM (19 . Here,
the construction of the first Chern class is done using invariant polynomials, see e.g. [KN69; Tul7], in
Section 2.3, we will construct the first Chern class as an integral class.

Lastly, there is a nice formula of the Laplacian acting on a (p,0)-form on a Ké&hler manifold, which

we will now state

Lemma 2.2.12. Let (M, g) be a compact Kihler manifold and let & € QWO (M) | then we have

(A ar..ap = —V'Vikay ap + P97l .y Rayly » (2.2.38)

where [—| denotes antisymmetrisation of the indices.
This result follows from a straightforward computation, see e.g. [BLT13] for details.

Corollary 2.2.13. If (M, g) is a compact Kéihler manifold such that Ric = 0, then a (p,0)-form & is
homolorphic if and only if it is parallel.

Proof. Firstly, we note that (p,0)-forms are holomorphic if and only if they are harmonic, which follows
from the fact that H [gp ’0)(M )-classes have a unique representative, since im(9) = 0, moreover, this rep-
resentative is holomorphic by definition, so because every class carries a unique harmonic representative,
we know that a (p,0)-form ¢ is holomorphic if and only if it is harmonic.

By Lemma 2.2.12, if A¢ = 0, then ViV;£ = 0, but then (ViV,;£,€) = 0, which means (V&,VE) =0,
so VE =0, i.e. ¢ is parallel.

Conversely, if V&€ =0, Lemma 2.2.12 tells us A =0. O
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2.3 Line bundles on complex manifolds

Now that we did a bit of work on studying complex manifolds and Kéahler manifolds, we will turn to
studying line bundles. These objects appear in many places, as we shall see. Moreover, they are a rather
important tool in this thesis, in the next section, we will use them to study some properties of Calabi-Yau
manifolds and we will use them to produce some examples of Calabi-Yau manifolds. Moreover, they will
play a vital role in Chapter 4, where we will construct an explicit example of a Calabi-Yau metric on the
total space of a line bundle over CP™ .

We will start the section by briefly sketching the classification of smooth complex line bundles by their
first integral Chern class, then we will introduce the canonical line bundle over any complex manifold, we
will introduce the theory of divisors, which will play a minor role in this thesis, and we will spend some
time going in depth on holomorphic line bundles over complex projective space, which will play a central
role in Chapter 4.

We will assume the reader is familiar with certain characteristic classes defined for vector bundles,

has some familiarity with complex manifolds, and has some understanding of differential geometry.

2.3.1 Classifying line bundles

Line bundle are defined as rank one complex vector bundles over some manifold M . They are often easy
to work with, yet just nontrivial enough to give us some useful results. Complex line bundles over a
manifold M define a group (Vb! (M), ®) consisting of isomorphism classes of line bundles with the tensor
product as a group operation.

An important result in the theory of vector bundles is that isomorphism classes of smooth (or even
continuous) vector bundles are classified by suitable equivalence classes of their transition functions, which
can be proved using clutching constructions, see e.g. [Ati89; GH94; Kar78].

To properly describe vector bundles in this way, we have to specify what happens to the transition
functions on triple overlaps of trivialisation domains, i.e. when there’s multiple transition functions
defined at once. So suppose U is an open cover for the manifold M, and let £ — M be a complex
vector bundle of rank k£ admitting trivialisations over /. We denote the trivialisation over U € U by

ou : E|ly — U x CF. Then set of transition functions
g:={guv=vpunNey :UNV = GL(k;C)|U,V € U} (2.3.1)
satisfies the following identities:

guu=1, YU eU. (2.3.2)
gu U, " JUUs = U U5 » VU17 U27 U3 € u. (233)

In fact, using the first condition, the second condition can be rewritten as
gu, U, " 9U,U3 " gU3U1 = 15 VU17U27U3 eu. (234)

Condition (2.3.2) is known as the skew-symmetry condition, while Condition (2.3.4) is known as the
cocycle condition. By the clutching constructions found in e.g. [Ati89; GH94; Kar78], we see that

the converse is also true, if U is a cover consisting of open discs, i.e. contractible opens, then any such
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collection of functions satisfying (2.3.2) and (2.3.4) defines a vector bundle. However, two such collections

of functions can define the same vector bundle, if we have a collection
f=A{fv:U—= GL(K;C)|U cU}, (2.3.5)

then
= {gpv = fu-guv - £, |UV eU},

defines the same vector bundle. As it turns out, this is the only anomaly appearing, we have the following

theorem

Theorem 2.3.1. Let U be an open cover of discs and k € Ng. Then the set of isomorphism classes of
rank k vector bundles is isomorphic to the set of collections g as in (2.3.1), satisfying the skew-symmetry

(2.3.2) and cocycle condition (2.3.4), modulo equivalence by collections f as in (2.3.5).

Proof. One direction was discussed before the theorem. For the other direction, suppose E and F
are isomorphic vector bundles, and let ® : F — F be an explicit basepoint preserving isomorphism.
Then E and F admit trivialisations over U given by, respectively, {¢y : Ely — U x CF|U € U} and
{¢ : Fly = U x CFJU € U}. We define f as the collection of functions fy := ¢}, 0 ® o <p[;1 . Letting g

be the transition functions of E and ¢’ be the transition functions of F, we see that we have

guv =¢po(¢y)
:gp/Uo(I)ogpglochoq)flo(I)ocp‘_/logpvo@flo(gplv)fl
= fuoguvofi.
Thus completing the proof. O

In the particular case & = 1, i.e. the case of line bundles, we see that GL(1;C) = C* is abelian,
therefore, things become a bit simpler. In fact, the picture fits into the theory of Cech cohomology. For
brevity, we will not develop this theory here, an excellent introduction can be found in [GH94].

The main result is that there is a group isomorphism ¢; : VbY(M) — H'(M;C>®(—;C*)), i.e. the
first Cech cohomology group with values in the sheaf C°°(—;C*). Furthermore, using the theory of sheaf
cohomology and the exact sequence of sheaves given by

exp(2mi—
(27i-)

0= Z < C®(—;C) C®(—;C*) =0, (2.3.6)

it can even be shown that H'(M; C>(—;C*)) is isomorphic to H%(M;Z) . For details, we refer the reader
to [God64; GH94; Ten75]. This finally tells us that (Vb'(M),®) = H?(M;Z), with the isomorphism
given by the first Chern class. In particular, under Poincaré duality, we get that line bundles correspond
to integral homology cycles of real codimension 2.

To show that this particular definition coincides with the definition of the first Chern class in terms

of invariant polynomials, we refer the reader to [Huy05].
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2.3.2 Examples of line bundles and divisors

Now that we have discussed some abstract subtleties and we have classified complex line bundles, it is
time to give some examples.

In this thesis, we will be interested in Calabi-Yau manifolds, which are defined as Ricci flat Kéahler
manifolds. In the previous section we showed that the Ricci curvature on a Kéhler manifold M™ is

m0)T M | i.e. the top exterior power of the

precisely the curvature of the anticanonical bundle —Kpy := Al
(1,0)-part of the tangent bundle. In particular, Ricci-flatness requires this line bundle to have vanishing
real first Chern class, i.e. the first Chern class —[K /] of the anticanonical bundle! needs to be a torsion
class in Hy,_o(M;Z). Therefore we have found a cohomological obstruction to the existence of Ricci-
flat Kéhler metrics, namely the canonical class [K /], i.e. the first Chern class of the canonical bundle
Ky := A0 T\ | Rather interestingly, a deep result by E. Calabi [Cal54] and S.T. Yau [Yau77; Yau7§]
shows that the converse is also true, if M is a compact Ké&hler manifold such that [Kj/] is a torsion class,
then M admits a Ricci-flat Kahler metric, we shall go more in depth in Chapter 3.

Computing the canonical bundle of a complex submanifold can be done with the help of the following

theorem:

Theorem 2.3.2 (Adjunction formula). Let M be a complex manifold, let N be an embedded complex

submanifold and let N denote the normal bundle to N . Then we have the following isomorphism
Ky gKM’N(X)det(.N‘), (237)
called the adjunction formula.

In fact, all involved bundles are holomorphic, so this is even an isomorphism of holomorphic line
bundles, see [Huy05] for details and for a proof.
An important manifold that is often quite easy to produce examples from is complex projective space

CP"™. The (co-)homology groups of this space are centered in even degree [Hat01]:

) 7z, 1even, 0 <1< 2n;
H'(CP™";7Z) = (2.3.8)
0, else.

Moreover, we know Ha, o(CP™;Z) is generated by [CP"~!]. In particular, we see that (isomorphism
classes of) line bundles over CP™ are classified by the integers. We denote by O(k) the line bundle
corresponding to k € Z.

To study these line bundles, we first turn to a nice description of O(—1) based on the approach taken
by [Huy05]. First note that we can describe CP™ as the set of all lines in C**! . Consider L C CP"®C"*!
consisting of pairs (¢,v), where v € £. We see that this defines a line bundle over CP™, whose total space

is a complex manifold and whose projection map is holomorphic, therefore it is even a holomorphic line

bundle. This line bundle has local trivialisations over the fundamental opens U; C CP" for ¢ =0,...,n
defined by U; = {[z0: -+ : 2] € CP™: z; # 0}, where [z : - - - : 2] denotes the line through (2o, ..., zy) .
The frame for this local trivialisation is precisely the vector (zop,...,1,...,2,), with 1 in the ¢’th slot.

As a slight bit of abuse of notation, —K s will be used both for the class of the anticanonical bundle as well as for the

anticanonical bundle itself.
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When changing coordinates between U; and Uj, we see that we multiply our frame vector by z;/z;,
therefore the change of coordinates function is zj/z;. This has a simple pole at the copy of CP"!
defined by z; = 0. If we had carefully followed all the isomorphisms discussed above, we see that this
means the first Chern class in fact corresponds to —[CP"71] € Hy, o(CP";Z), and therefore this is
indeed the line bundle O(—1), which we have now equipped with a canonical holomorphic structure. For
details, see [Huy05].

Using this holomorphic structure, we can also put holomorphic structures on O(k) for any k € Z,
because this is precisely O(—1)2(=%)  where O(—1)®(-1) := O(1). For positive k& € N\ {0}, we can
find a rather nice description of holomorphic sections of O(k). Let p € Clz, ..., z,)x be a homogeneous
polynomial of degree k on C"*!. We note that on the fundamental opens U; discussed before, we can
define holomorphic functions p;([zo : - -+ : z]) = p(20/%,...,1,...,2n/2) . On overlaps U; N U;, we see
that p; = (2;/2;)*pi , therefore, these p; together define a section of O(k) . Thus homogeneous polynomials
of degree k on C"*! define holomorphic sections of O(k) — CP™. In fact, as is shown in [Huy05], all
holomorphic sections of O(k) arise in this way.

We can also explicitly compute the canonical class of this manifold. On U;, the canonical bundle is

—

generated by Apid(2i/2) == d(z0/dz;) N~ Nd(zi/2) N -+~ Nd(2p/dz;) , and on U; N U; , we see

Ak#d(zk/dzz) = —

|,

11 zfj d(z0/2j) A= Nd(zifzj) A d(zn/2))
ntij

here, d(z;/z;) on the right hand side is in the same position as d(z;/z;) is on the left hand side. We see
that the change of coordinate function has a pole of order n+ 1 at z; = 0, thus we have for the canonical
class Kcpn = (—n — 1)[CP™ 1], i.e.

Kcpn = 0O(—n—1). (2.3.9)

In particular, we see that no complex projective space of positive dimension admits a Ricci flat metric.
In the case n = 1, this is just saying that the sphere S? doesn’t admit a metric with vanishing curvature,
which is a well-known result.

Now we wish to study holomorphic line bundles a bit. As a bit of motivation as though why these
are important in this thesis, in Chapter 4, we will use holomorphic line bundles to find explicit examples
of Calabi-Yau manifolds. The group of holomorphic line bundles over a complex manifold M will be
denoted by Pic(M), the group operation is given by ®.

In the setting of holomorphic line bundles, Hartogs theorem in complex geometry [Huy05] tells us
that nonzero meromorphic sections need to have poles and zeroes on embedded complex codimension
one submanifolds. Since such submanifolds also define homology classes, one could wonder if there’s a
relation between the first Chern class of a line bundle and potential zeroes and poles of sections of this

bundle. This correspondence can be formulated more precisely using divisors.

Definition 2.3.3 (Divisor). A divisor D on a complex manifold M is a locally finite formal sum of

embedded codimension one complex submanifolds {X;}ier given by

D =) aX;, (2.3.10)
el
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where a; € Z are some integers, we also define I~ as the set of ¢ € I such that a; > 0 and I. as the set
of i € I such that a; < 0. The set of all divisors forms a group with the obvious group structure, which
we denote by Div(M).

For an in depth discussion on divisors and their relation to holomorphic line bundles, see [Huy05] or
[GH94]. As a bit of terminology, we shall say that a function f has order of vanishing a; on Xj if it has
a pole of order —a; if i € I or a zero of order a; if i € Is along X;.

For a divisor D =}, ; a;X;, we can define a line bundle O(D) by requiring it to have a meromorphic
section o that has precisely order of vanishing a; at X; for all i € I. Note that the map O : Div(M) —
Pic(M) is not injective, if D and D’ are divisors, and M has a meromorphic function f such that
div(f) = D' — D, where div(f) is the divisor >, ; a;X;, where f has order of vanishing a; on X;, then
O(D) = O(D'). If such an f exists, we say that D and D’ are linearly equivalent. [Huy05] shows that
O : Div(M)/(linear equivalence) — Pic(M) is an injection whose image is generated by those line bundles
that admit a global meromorphic section.

This gives us a tool for studying holomorphic line bundles when the sheaf of meromorphic sections
over a complex manifold is known. In particular, we see that on CP"™ | the only holomorphic line bundles
that admit global meromorphic sections are the O(k)’s that we defined previously, see [Huy05] for details.

We can also use these results to study algebraic submanifolds of CP™ as follows. Let M C CP"
be the zero set of some homogeneous polynomial p € C[zy,...,Z,]r, where k is some positive integer,
and assume M is smooth. By the above, p defines a section of O(k), hence the normal bundle to M is
O(k)|ar - Therefore, the adjunction formula (2.3.7) tells us

KMgO(k)‘M(X)K(CPn‘MgO(—n—l-f—k)‘M. (2.3.11)

In fact, we can get even more from this. Let {X;};—1, ., be a family of projective hypersurfaces in CP™
defined by polynomials p; € Clzg,...,Zn]q, , where a; are positive integers. Assume that X; intersect
transversally at M := ﬂ;il X; and that M is smooth. We see that M has normal bundle Ny =
D%, O(a;)|m , such that det(Nar) = O, a;)|ar - In particular, by the adjunction formula,

Ky = O<n1+§:ai>
i=1

Manifolds appearing in this fashion are called complete intersections in CP™ . In fact, if one of the a;’s

(2.3.12)

M

is equal to 1, then M can be regarded as a complete intersection in CP™ ! by simply restricting to
Z(p;) 2 CP"!. So complete intersections arise as the intersection of transverse hypersurfaces of degree
> 2.

Now we see that if we have ) ,a; = n 4 1, then the resulting complete intersection had trivial

anticanonical bundle, hence it admits a Ricci-flat Kéhler metric.

2.4 Calabi-Yau manifolds

The previous sections have introduced some tools from complex geometry and the theory of line bundles.
Now we will finally get to the main subject of this thesis: Calabi-Yau manifolds. We will study their
structure, keeping in mind that this is useful for string theory, as their geometric structure influences the

four dimensional effective theory, as we shall see in Chapter 5.
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We will start by stating the Calabi-Yau theorem, which will be proven in Chapter 3 and discuss some
consequences it has and we will study some basic results about the geometry of Calabi-Yau manifolds.
Then we will give a rather short list of examples of spaces that admit Calabi-Yau metrics. The main
example of a Calabi-Yau manifold will be postponed to Chapter 4, where we will provide an explicit
example of a nontrivial Calabi-Yau metric on the canonical bundle of complex projective space due to E.
Calabi [Cal79].

We assume the reader is familiar with some complex geometry and Riemannian geometry, as well as

the results discussed in Sections 2.2 and 2.3.

2.4.1 Structure of Calabi-Yau manifolds

The definition of Calabi-Yau manifolds may vary from author to author. In many string theory contexts,
for instance, the requirement is that global holonomy is equal to SU(n), see e.g. [BBS07; BLT13;
GSW8Tb], this is to fit them nicely into the theory of string compactifications, which is a setting where
it is required for the lower dimensional theory to have just enough supersymmetry. In other settings,
e.g. [Huy05], Calabi-Yau manifolds are defined as Kéhler manifolds admitting a global nonvanishing
holomorphic top form, which is equivalent to saying the global holonomy is insude SU(n). In this thesis,
we will be mostly interested in Kéhler manifolds admitting a Ricci-flat Kéahler metric, i.e. with reduced
holonomy in SU(n), which, for compact manifolds, is equivalent to saying that [Kj/] is a torsion class.
This is a consequence of the Calabi-Yau theorem, which we already hinted at before and will be the main
star of Chapter 3.

Theorem 2.4.1 (Calabi-Yau). Let (M™,g) be a compact Kihler manifold with Ricci form p and Kdhler
form w. Let p’ be a real, closed (1,1)-form cohomologous to p. Then there is a unique Kdhler metric g'

on M with Kdhler form ' such that w' is cohomologous to w, and p' is the Ricci form of ¢ .

In particular, we have the following corollary, which is mainly how we will apply this theorem in this

section:

Corollary 2.4.2. Let M be a complex manifold admitting Kdhler metrics such that c1(M) := c1(—Ky) =

0 as a real cohomology class, then M has a Ricci-flat Kahler metric.

Proof. Let g be any Kéhler metric on M . As discussed in Section 2.2, the Ricci form p of g is a repre-
sentative of 2meq (M), thus [p] = 0, i.e. there is a Kéhler metric ¢’ with Kéhler form cohomologous to w
such that ¢’ is Ricci-flat. O

We start with a few theorems to give a bit of a feeling for what kind of structure the different
(inequivalent) definitions of Calabi-Yau manifolds imply.

Firstly, we consider manifolds whose anticanonical bundle is holomorphically trivial

Theorem 2.4.3. Let M™ be a compact complex manifold admitting Kahler metrics. Then M admits a
Kahler metric g with global holonomy inside SU(m) if and only if the canonical bundle Ky is holomor-

phically trivial.

Proof. First, assume that M has a Kéhler metric with global holonomy inside SU(n). Then the global

holonomy of the Chern connection on Ky, is trivial. Thus, let x € M and let 2, be a generator for
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Ky, then extend Q, to a global form ) by parallel transport, which is well defined as global holonomy
of Ky is trivial. Then we see that () satisfies the differential equation dk,,2 = 0, as it is parallel, hence
it is also holomorphic. Therefore, Kj; admits a global holomorphic section and therefore it is trivial as
a holomorphic line bundle.

Conversely, suppose K is holomorphically trivial. Then we see [Kj;| = 0, in particular, ¢;(M) =0,
hence by the Calabi-Yau theorem, M admits a Ricci-flat Kahler metric g. Because g is Kéhler, Hol(g) C
U(m). Now, let £ be any global nonvanishing holomorphic top form. Then in particular, AQ = 0, so
Corollary 2.2.13, €2 is parallel with respect to g, thus the global holonomy group of g fixes 2, such that
Hol(g) € SU(m). O

Corollary 2.4.4. Let M™ be a Kdhler manifold with global holonomy inside SU(m), then M admits a

spin structure.

Proof. In [BH59], it is shown that M admits a spin structure if and only if it is orientable and wa (M) =
c1(M) mod 2 = 0. Complex manifolds are always orientable, and [K ;] = 0 means ¢; (M) = 0, complet-
ing the proof. O

Moreover, we see that Kj; being holomorphically trivial implies that there is a unique (up to a
constant) global holomorphic (m,0)-form. Also, we see that any closed (m,0)-form 2 satisfies dQ =

0Q = 0, in particular, closed (m, 0)-forms are precisely the holomorphic (m,0)-forms. Thus, we get

Proposition 2.4.5. Let M™ be a compact complex manifold admitting Kdhler metrics, such that Ky is
holomorphically trivial. Then
A0 = dim(H ™Y (M) = 1. (2.4.1)

Now consider the special case where M™ admits a Ké&hler metric g such that Hol(g) = SU(m) . Then

we even get the following

Proposition 2.4.6. Let (M, g) be a compact Kihler manifold with Hol(g) = SU(m). Then we have
o =0, p=1,...,m—1. (2.4.2)

Proof. By Corollary 2.2.13, holomorphic p-forms are parallel, and since Hol(g) = SU(m), we know that
parallel forms must transform under the scalar representation of SU(m) , so for p # 0, m , the only parallel
(p,0)-form is 0. See e.g. [BLT13] for details. O

In particular, using Theorem 2.2.8, we see that the for m = 3, we have only two independent Hodge
numbers, namely h%!' and h%*!, which is an important fact in superstring theory, as we will discuss in
Chapter 5.

Lastly, we discuss some results on Ricci-flat Kédhler manifolds.

Lemma 2.4.7. Let M™ be a compact complexr manifold admitting Kdahler metrics. Then the following
are equivalent

(i) M admits a Ricci-flat Kdhler metric;

(ii) e1(M) =0 as a real class;

(iii) M admits a metric with restricted holonomy inside SU(m);
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(iv) a positive power of Ky is trivial as a smooth vector bundle.

Proof. By the Calabi-Yau theorem and the discussion at the end of Section 2.2, we see that M admits a
Ricci-flat Kéhler metric if and only if ¢1 (M) = 0, thus estabilishing (i) <= (ii). Moreover, any Ricci-flat
Kéhler metric has restricted holonomy inside SU(m), as being Ricci-flat and Kéhler implies that the
induced connection on Ky is flat, thus we have (i) = (iii).

Now, let g be a metric on M that has restricted holonomy inside SU(m) . By Proposition 2.2.4, g is
Kahler. Moreover, we see that the induced connection on Kj; has trivial holonomy and is therefore flat,
hence g is Ricci-flat, thus establishing (iii) = (i).

Lastly, we see that ¢;(M) = 0 as a real class if and only if [K)/] is a torsion class. This means that
there is some natural number n € Ny such that n[Kj/] = 0, which means [K5'] =0, i.e. K5/" is trivial
as a smooth vector bundle, thus establishing (ii) <= (iv). O

2.4.2 Examples of Calabi-Yau manifolds

Now that we have some basic understanding of the structure of Calabi-Yau manifolds, we turn to some
examples. In general, finding explicit Kahler metrics g such that Hol(g) = SU(m) is very difficult and
the only known example is a noncompact one: the Eguchi-Hanson space [BLT13; Cal79; EH79]. We will
discuss this example quite in depth in Chapter 4. However, there is an algorithm by S.K. Donaldson that
can be employed to find numerical approximations for Ricci-flat K&hler metrics [Don01].

From here on out, we shall define Calabi- Yau manifolds as manifolds that admit a Ricci-flat Kahler
metric, which we shall call a Calabi- Yau metric.

Since finding explicit Calabi-Yau metrics is so difficult outside of trivial examples, the nontrivial
examples that we shall give will be examples of complex manifolds with vanishing real first Chern class.

The Calabi-Yau theorem then tells us that there exists a Ricci-flat Kahler metric on these spaces.

Example 2.4.8 (Trivial examples). C" is a Calabi-Yau manifold, where the Calabi-Yau metric is the
standard one. Likewise, T?" := C"/Z?" is a Calabi-Yau manifold, where the Calabi-Yau metric is the

standard one.

Example 2.4.9 (Calabi-Yau curve). Let M be a compact Riemann surface, then M is Calabi-Yau if
and only if it is diffeomorphic to the torus. This is because the first Chern class of a compact Riemann
surface satisfies ¢ (M) = x(M) = 2 — 2¢g, where g is the genus of M [GH94].

Example 2.4.10 (Calabi-Yau surface). The four torus C2/Z* is a trivial example of a Calabi-Yau surface,
however, there are also some nontrivial examples. There are many known results on compact complex
surfaces, see [Bar+04] for an excellent review. Specifically, two well known nontrivial examples of two
dimensional Calabi-Yau’s are the K3 surfaces, which are Calabi-Yau manifolds with SU(2) holonomy,
and the Enriques surfaces, which are Calabi-Yau manifolds with nonvanishing canonical class Kjs, but
do have 2K, = 0.

Example 2.4.11. [CICY’s| By Equation (2.3.12), we see that a smooth intersection M of m transversally
intersecting hypersurfaces {X;}, in CP" of degree {a; > 2}™,' has canonical bundle O(—n — 1 +

1Recall that if some a; = 1, then we can write M as a CICY in CP"~! by restricting to X; & CP"~ 1.
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>.;ai)|nm . Therefore, if Y . a; = n+ 1, we see that M is Calabi-Yau. This gives us a large family of
examples of Calabi-Yau manifolds known as CICY’s, which is short for complete intersection Calabi-Yau
manifolds.

The particular case n — m = 3, i.e. when M is a 3 dimensional CICY, then admits the following
description. If, following [Joy00], we employ the notation [M] = (nl|ai,...,an) for the class of complete
intersections arising from hypersurfaces {X;}, of degree {a;}",, we see that the only classes of 3
dimensional CICY’s are

(4]5), (5]4,2), (5]3,3), (6/3,2,2), (7]2,2,2,2) .

Calabi-Yau’s of complex dimension 3 are the most important ones in the context of superstring theory,
which is a theory that works in 10 real dimensions but needs to be “compactified” on a 6 (real) dimensional

manifold to describe general relativity in 4 dimensions, as we shall describe in Chapter 5.

3 Calabi-Yau theorem

The previous chapter introduced some analysis on Riemannian manifolds, some complex geometry, some
line bundle theory and some basic results about Calabi-Yau manifolds, where we also stated the Calabi-
Yau theorem.

This Calabi-Yau theorem is a big theorem on the existence of compact Calabi-Yau manifolds, that
was conjectured by E. Calabi in 1954 [Cal54] and finally proven in 1978 by S.T. Yau [Yau77; YauT78|.
For this reason, literature often refers to this theorem by the Calabi conjecture, or by Yau’s theorem. In
this work, we will merge the two and refer to it as the Calabi- Yau theorem. Note that this theorem only
tells us something about the compact case, there are also non-compact Calabi-Yau manifolds and we will
provide an explicit example in Chapter 4.

In this chapter, we will start by studying the Calabi-Yau theorem a bit and provide a proof, based on
the approach taken by D.D. Joyce [Joy00], which is based on the original proof by Yau, relying on the
continuity method, noting that there is an alternative proof from 1985 by H.D Cao [Cao85], based on the
method of Ricci flow, which we will not discuss here. Note that the proof by Cao still requires some of
the results from Yau, so it’s not a completely independent proof.

The proof we provide will be by analysis, where we will need most of the results from Section 2.1,
and some results from Section 2.2.

We will assume all manifolds are connected, the disconnected case can be extracted relatively easily
from the following discussion, but requires some bookkeeping that is quite tedious and does not grant

any useful insight.

3.1 Statement of the theorem

The Calabi-Yau theorem concerns the existence of Kéahler metrics with prescribed Ricci form on compact
Kahler manifolds. So let M™ be a compact Kahler manifold with Kahler metric g. Since we have seen
that the associated Ricci form p is a real, closed (1,1)-form lying in 2mwc; (M), a natural question would
be to ask which real (1, 1)-forms in this cohomology class are also Ricci-forms of certain Kéhler metrics.

The Calabi-Yau theorem guarantees that any such (1, 1)-form satisfies this.
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Theorem 3.1.1 (Calabi-Yau). Let (M™,g) be a compact Kdhler manifold with Ricci form p and Kdihler
form w. Let p' be a real, closed (1,1)-form cohomologous to p. Then there is a unique Kdhler metric g'

on M with Kdhler form ' such that w' is cohomologous to w, and p' is the Ricci form of ¢ .
In particular, we see that this immediately gives a seemingly stronger result.

Corollary 3.1.2. Let M™ be a compact complex manifold admitting Kdhler metrics. Let p be a real,
closed (1,1)-form lying in 2mwcy (M) . Then there is a unique Kdhler form w in every Kdihler class of M ,
such that the Ricci form of w is p.

To prove this famous theorem, we shall need quite some brutal analysis. To see how this analysis pops
up, we notice that the Calabi-Yau theorem can be rephrased in terms of a nonlinear partial differential
equation, as we will now show.

Since p and p’, as defined in the above theorem, are cohomologous, they differ by an exact form.
So by the dd® lemma, we conclude that there is a function f € C°°(M;R) (unique up to a constant,
remember that all manifolds are assumed to be connected), such that p’ = p — %ddc f . The factor —% is
completely arbitrary and is chosen for later convenience. Moreover, since w™ is a volume form, we see
that (w')™ = F - w™ for some strictly positive F' € C°°(M;R). In particular, using Equation (2.2.29), if
we jump to coordinates, we see

det(g’aB) = Fdet(g,3) -

Therefore, Equation (2.2.37) tells us
Ldd®log(F) = p— p = Sdd°f .

In particular, we see that log(F') — f is dd° closed, and therefore constant, thus we can find a constant
A > 0 such that log(A) = log(F) — f, meaning F = Aef | i.e.

(W)™ = Aefw™. (3.1.1)

Since w and w’ are cohomologous, they induce the same volume on M , so we see

Ao mlvoly (M)
Jarelem

where voly (M) is the volume of g. Now we are ready to reformulate the Calabi-Yau theorem.

(3.1.2)

Theorem 3.1.3 (Calabi-Yau II). Let (M,g) be a compact Kdhler manifold with Kdhler form w. Let
f € C®(M;R) and let A := voly(M)/ [,;e/voly. Then there is a unique Kihler metric g' on M such

that its associated Kdihler form W' is cohomologous to w and (w')™ = Aefw™.

Now we have rewritten the Calabi-Yau to get an equation for the condition on p’, we see that the
Calabi-Yau theorem can be interpreted as a result about cohomologous Kéhler metrics with a prescribed
volume form.

There is one more condition that we can rewrite, namely the condition that w and w’ are cohomologous.
This condition tells us that there is a real function ¢ on M such that w’ = w + dd°p . Moreover, this ¢ is

unique up to a constant, so we can choose normalisation condition | W @ volg = 0. We note that any form
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of the type w + ddyp is both real and (1, 1), however it need not be positive!, which is the last condition
we need for w + dd®p to be a Kéahler form. However, we can, in fact, show that if w + dd“p satisfies the

equation in the previous theorem, it is necessarily positive.

Lemma 3.1.4. Let (M,g) be a compact Kéihler manifold with Kdhler form w. Let f € CO(M;R) and
define A := voly(M)/ [,, el voly. Suppose that ¢ € C*(M;R) satisfies (w + dd°p)™ = Aelw™, then

W' = w + dd°p is positive.

Proof. We note that w’ is positive if and only if w’(—, J—) is a hermitian metric, which is a problem we
will solve in coordinates. Note that w’ is positive if and only if the following matrix is positive definite:

d¢
I

9o = 90 T 5 apzh

as then we know ¢’ is a hermitian metric. Rewriting the condition (w 4 dd®p)™ = Aefw™ | we see

2

%

So we see that g’a 3 has positive determinant, so no nonzero eigenvalues. Since all manifolds are assumed
to be connected, it suffices to show that there is some point in M where all eigenvalues of g; 5 are strictly
positive. We're in luck, as M is compact, we know that ¢ must have a minimum, at which we know
that the Hessian 0;0;¢ is positive semidefinite (here, i and j are real indices, so they run over the 0, and

0y’s). We define m x m matrices

e
A
b 9radzh
e
B —
ab awaayb )
_ 9
ab - — 8ya6yb )

such that the complex Hessian becomes

o 1 (A+C +i(B—BT))
020z 4 '
For a complex vector u = v + 1w, with v and w real, we then see
82
u*a g,u = 2((v"Av + w"Cw — v" Bw — w" BTv) + (w" Aw + v Cv + w" Bv + 0" BTw)).  (3.1.4)
20Z

Since 0;0;¢ is positive semi-definite, we know that for any real vector (uq, uz)T | we have
ul Auy + ud Cuy 4+ ul Bug +ud BTuy > 0.

In particular, if we pick u; = v and us = —w, we see that the first term on the RHS of (3.1.4) is
non-negative, and if we pick u; = w and uy = v, we see that the second term on the RHS of (3.1.4) is
non-negative. So we see that the complex Hessian at a minimum is a positive semi-definite hermitian
matrix, in particular it has non-negative eigenvalues. Since we also know g,3 has positive eigenvalues
everywhere, as it is a hermitian metric, we see that g; 3 has positive eigenvalues at this minimum, thus

completing the proof. O

'Recall that a positive (1,1)-form is a real form 7 such that for any real vector u # 0, n(u, Ju) > 0.
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Thus we get the final version of the Calabi-Yau theorem, which is now phrased in terms of a differential

equation:

Theorem 3.1.5 (Calabi-Yau III). Let (M,g) be a compact Kihler manifold with Kdhler form w. Let f
be a smooth, real function on M and define A := voly(M)/ [, efvolg . Then there is a unigque smooth real
function ¢ such that

(i) (w+ddp)™ = Aefw™.

(ii) [y, ¢ voly =0.
The following is equivalent to part (1), when written out in local holomorphic coordinates:

2

>
det <gaﬁ + 3z0325> = Aef det(g,z) - (3.1.5)

This equation is a particular kind of complex Monge-Ampére equation. Solving it is quite tricky, as
it is highly nonlinear. For an overview of results on this type of equation, see [Aub82], in this thesis we

will only consider this specific form of Monge-Ampere equation.

3.2 Proof of theorem

The approach we will take is called the continuity method. The idea is that we write down a continuous
one-parameter family of differential equations P;(¢) = 0, to be specified later, such that at time 0, the
equation is easy to solve, or even trivial, and at time 1, we have the equation we want to solve. Then we
define

S :={t €[0,1] : P(¢) = 0 has solution given suitable initial conditions} ,

and we shall prove that S is both open and closed in [0, 1] . Since [0, 1] is connected, this will imply that
S is either empty, or [0, 1]. Since we assumed Py(p) = 0 is easy to solve and has a solution given suitable
initial conditions, we know that 0 € S, and therefore 1 € S, i.e. Pi(¢) = 0 has a solution, which is the
problem we’re trying to solve.

To make this more precise, we give the following definition, which is the setup for the proof of the
Calabi-Yau theorem. We will not assume smoothness of f and ¢ below, we will assume f € C3®) (M),
and we shall ask the question when there is a solution ¢ to the Monge-Ampere equation such that
p € C(5’a)(M ). This is because Holder spaces often have nice topological properties, e.g. we have the
Sobolev embedding theorem 2.1.10.

Definition 3.2.1. Let (M, g) be a Kéhler manifold with Kéahler form w. Let a € (0,1) and let f €
CBY)(M;R). Let S be the subset of [0,1] such that there exists a ¢ € C®(M;R) and an A > 0, such
that (w + dd°p)™ = Aetfw™ .

At time 0, the above differential equation is satisfied by ¢ = 0 and A =1, so we know 0 € S. Also
note that this A is uniquely determined by ¢, if it exists. So if we can show that S is clopen, we know
then also 1 € S, so then we have at least one solution ¢ € 0(5’0‘)(M ;R) to the Monge-Ampere equation
we want to solve. What remains to show is then that this solution is unique, and that this solution is

smooth if f is smooth. Now we have cut up our problem in several smaller components:

(i) Show that S is closed;

40



(ii) Show that S is open;
(iii) Show that ¢ is smooth whenever f is smooth;

(iv) Show that ¢ is unique.

Showing that S is closed is significantly harder than showing the other three items on the list. This is why
it took 24 years after the theorem was conjectured for Yau finally formulate a proof using the continuity
method, for which he received a Fields medal in 1982.

We will state four theorems (numbered CY 1-4), which together imply the Calabi-Yau theorem, the
proofs of these theorems will be given later down the road, in Sections 3.4-3.7. The first two will be
sufficient to prove that S is closed, the second one will also give us smoothness, the third one will give
us that S is open, and the last one gives us uniqueness. There will be some functional analysis involved

with different norms all over the place, see Section 2.1 for the respective definitions.

Theorem CY1. Let (M, g) be a compact Kéhler manifold with Kéhler form w. Let @1 > 0. Then there
exist Q2, @3, Q4 > 0 depending on only M , g and @)1, such that the following holds:
Suppose f € C3(M), ¢ € C>(M) and A > 0 satisfy

1flles < Qs / ovoly =0, (w+ ddop)™ = Aelwrm
M

Then [[¢[lco < Q2, [|[dd°pllco < Q3 and ||[Vddp|[co < Q4.

Where, like before, we view V as a map V : I'(T*M®*) — T(T*M®**1) | so no antisymmetrisation.
This theorem is about a priori estimates, it gives us bounds that any solution to the Monge-Ampere
equation must satisfy, without assuming we put in a specific function f. Theorem CY1 is Yau’s contri-
bution to the proof of the Calabi-Yau theorem. Together with the following theorem, we can prove that

S is closed

Theorem CY2. Let (M, g) be a compact Kahler manifold with Kéhler form w and complex structure J.
Let Q1,Q2,Q3,Q4 > 0 and o € (0,1). Then there is a Q5 > 0 depending only on M, g, J, Q1,Q2, @3, Q4
and « such that the following holds.

Suppose f € CGY (M), ¢ € C°(M) and A > 0 satisfy (w + dd°)™ = Ae/w™ and the inequalities

Ifllcee <Q1,  |ellco <Q2, ||ddllco <Q3, |[[Vddpllco < Qy.

Then ¢ € CO(M) and ||¢||pe.e) < Qs. Moreover, if f € C*®)(M) for some k > 3, then ¢ €
CH+29) (M), and if f is smooth, so is .

Note that if f is C®), it is in particular C%, and we have ||f|lcs < [|fllce.e - So if we have
|| flloea < Q1, CY1 gives us Q2 , @3 and Q4 to put into CY2, and then CY2 gives us a @5 such that ¢
is 02 (M) with norm [|¢[|oe.e) < Q5. It is clear that CY?2 gives us smoothness of ¢, so that’s one of
the four ingredients of the proof of the Calabi-Yau theorem complete.

Corollary 3.2.2. Let f € C®°(M). If A > 0 and ¢ € CO (M) satisfy Ja e volyg =0 and (w+ddp)™ =

Aefw™ | then ¢ is smooth.

Moreover, CY1 and CY2 together imply that S is closed:
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Corollary 3.2.3. S is closed.

Proof. We shall show that S has all limit points. As [0, 1] is Hausdorff, this will imply closedness.
Let {t;} be a sequence in S converging to t'. We shall show that ¢’ is in S using CY1 and CY2. Since
t; € S for every i by assumption, we can find @; € C®® (M) and A; > 0 for every 7, such that

/ w; =0; (w + ddcwi)m = Aietifwm .
M

Let @1 = ||fllcG.e), and use CY1 to find Q2,Q3, Q4 as described there, and use CY2 to find Qs as
described there. Since we have ||t; f|| .0 = t:Q1 < Q1, CY1 tells us ||pil|co < Q2, [|dd ]| -0 < Q2 and
IVddpi|lco < Q4 for every i. Therefore, CY2 tells us that ¢; is C®) | with ||¢;]l o6 < Q5, for every
1.

So we see that {¢;} is a bounded sequence in C>® (M) . However, the Rellich-Kondrachov theorem
2.1.11 tells us C®) (M) < C®(M) is compact, therefore, {p;} has a convergent subsequence in C°(M).
Let {¢;;} be such a convergent subsequence that converges to ¢'. Define A’ := voly(M)/ [,, et Ivol,, .
Because M is compact, we have that {4;;} converges to A", because {t;;} converges to t'. Now, since
{¢i,} converges in C°(M) , it converges in C?(M) , so we can take the limit of the Monge-Ampere equation

to get
/ ¢ =0; (w4ddo)™=Aefum.
M

However, now we can apply CY1 and CY2 again to conclude that ¢ is in fact C(5’a)(M ), SO we see
that ¢/ € S, i.e. S is closed. m

So now we have two out of four. What remains to show is that .S is open, which is given by CY3, and

uniqueness, which will be given by CY4
Theorem CY3. Let (M,g) be a Kéhler manifold with Kéhler form w. Let o € (0,1) and suppose
frecBa(n), ¢ € CO (M) and A’ > 0 satisfy

/ o'voly =0; (w+dd°¢ )™ = Alel"wm.
M

Then whenever f € C3®) (M) is such that | f— 'l o is sufficiently small, then thereis a ¢ € CGA) (M)
and an A > 0 such that
/ pvol, =0;  (w+ddp)™ = Aefw™.
M

In the above theorem, “sufficiently small” can be more precisely formulated using a standard analysis
definition: for every f' € C3®) (M), there is an ¢ > 0 such that || f — f'||o@.e) < € implies that such a ¢
exists. Since |[tf — ¢ flloee) = [t — || fll oG , the following is an immediate consequence of CY3:

Corollary 3.2.4. S is open.

Finally, uniqueness of the solution to the Monge-Ampeére equation is guaranteed by the following
result, which was already known to Calabi in the '50s [Cal54]:

Theorem CY4. Let (M, g) be a Kihler manifold with Kéhler form w. Let f € C1(M), and let A > 0
be some real number, then there is at most one ¢ € C3(M) such that [,, ¢ voly =0 and (w + ddp)™ =
Aefum .
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Since the assumption | a P volg =0 is just a normalisation condition, we see that we could have also
removed this and obtained that ¢ is unique up to addition of a constant. This concludes the proof of the
Calabi-Yau theorem.

3.3 Some intermediate calculations

Before jumping into the proof of CY1, we will do some computations that appear in multiple places or

might be interesting results on their own.

Lemma 3.3.1. Let n and o be real, positive (1,1)-forms on a Kdhler manifold (M, g) . Then the fibrewise

inner product (n,0)q is strictly positive.

Proof. Since J is orthogonal, we have (n,0), = (n(—, J—),0(—,J—))y . In an orthonormal basis, this gives
us (n,0)g = Tr(n(—, J—)o(—,J—)). Since n and o are positive, n(—, J—)o(—, J—) has strictly positive
eigenvalues, thus Tr(n(—,J—)o(—,JJ—)) > 0, proving the lemma. O

Corollary 3.3.2. Letn and o be real, positive (1,1)-forms on a Kdhler manifold (M, g). Then nAxo is

a positive top form with respect to vol, .
This leads us to the following rather useful lemma, which we will require a lot in the rest of the proof:

Lemma 3.3.3. Let (M, g) be a compact complex Kdhler manifold with Kdhler form w. Let ¢ be a real

function on M and let W' be a positive real (1,1)-form. Then
do ANdép Aw™ ! = %]Vg@@wm )
Moreover, there exist nonnegative functions F; for j =1,...,m — 1 such that
dp Ndo Aw™ T A (W) = Fjw™.

Proof. We start by calculating *w :

2
wA*w = (w,w)gvoly = (w(—, J—),w(—, J—))gvoly = (g,9)4voly = 2mvol, = %wm.
Therefore, xw = ﬁwmﬂ . We see
c m—l_(m_l)! c _L c m_i 2 c, \2 m
dp Ndp N0 = o —dp Adp N = o (dp N dfp,w)g ™ = o ((d)” + (d59)7, g)gw™

We note that, in coordinates, |Vg0|§ = ]dgolg = |dcgp\§ = g¥dyp;dp;, and that g¥dp;dp; = ((dp)?,g)g-
Therefore, we see
do ANdp Aw™ ! = %]V(p\%}m )

This concludes the proof of the first part of the lemma. For the second half, note that dy A dp is a
nonnegative real (1,1)-form. So if we can show that x(w™ =7 A (w')7) is positive, we can use the same
reasoning as above to conclude that dp A d°p A w™ 177 A (w') is a nonnegative top form, which then
implies the second part of the lemma.

To show this, we will work in coordinates. Around some point x € M , we pick a unitary frame,

Le. a frame where g,5 = 9,3 at . Since we know that w’ is a positive (1, 1)-form, it has an associated
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hermitian metric g/, 5 which then commutes with g,5 at . So we can diagonalise g/, 3 using unitary

transformations, such that 9(/1 5= diag(ay,...,am) at x, where ai,...,a,, are positive real numbers.
Then we see w’ = i(ajdz* Adz' + -+ + a,,d2™ A dz™) at z, so by direct computation we conclude that
*(wm™ 17T A (w')?) is a positive (1, 1)-form at z, which was an arbitrary point, so it is a positive (1, 1)-form

globally, hence the lemma is proved. O

As briefly discussed in the proof of the previous theorem, given a C? solution to the Monge-Ampere
equation, i.e. a function f € CO(M), p € C?>(M) and A > 0 such that (w + ddp)™ = Aelw™, we
can always find a frame around a point € M such that, at =, we have that g and the C° metric ¢,

associated to w’ := w + ddyp, are diagonal, this is stated in the following lemma:

Lemma 3.3.4. In the situation above, we can always find a frame such that

gag(x) =d,5 and g;B(x) = diag(ai,...,am)
for real numbers ay, ..., an . Moreover, in this frame,

w(z) = iZdzj ANdZ  and W(x) = iZajdzj AdZ
J J

The proof is straightforward and just requires simultaneously diagonalising ¢’ and ¢ at p, which can
always be done if we pick a nice enough frame such that g is the identity matrix. Now we define the
0-Laplacian by Ay = —gaﬁaaagw for 1 € C*°(M), and we extend the definition for ¢ € C?(M). From
now on, we will do calculations in the above mentioned frame and we will do calculations at the point x .
In this frame, we see that the complex Hessian 9,0z is diagonal at z, as we have g& 5= 9ap a0z, sO

in particular we have the following result, which follows from this discussion and from Equation (3.1.5):

Lemma 3.3.5. In the situation described above, we have

Haj = Aef@): 9,050(x) =aa—1 and Ap(z) = —Tr(0a05p(x)) = m — Zaj : (3.3.1)
J J

Now we do a few calculations

|dd°ol = —4(80p, 00p),
= 8(9* 9790500, 05¢)

= SZ(CLJ' — 1)2.
J

Likwise, one can find | gl’-j|§ and |g' ¥ \3 . We summarise these results in the following lemma:

Lemma 3.3.6. In the situation above, at the point x, we have
g 9
dd°p|2 =8> (a; — 1)*; gi;l2=2> aF and |g7Z=2> a; (3.3.2)
J J J

Now we will use some of the above results to get some bounds the C” norms of ¢’, (¢’)~! and dd®y in
terms of f and Ay . These results will help us in the following sections, as it allows us to estimate certain

things by just finding estimates for the Laplacian.
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Proposition 3.3.7. Let (M,g) be a compact Kihler manifold with Kéihler form w. Let f € C°(M),
o € C2(M) and A > 0 such that they solve the Monge-Ampére equation. Let ' = w + dd°p and let g’

be the associated Kdhler metric. Then
Ap <m—mAYmeIIm < (3.3.3)

and there are constants ci,co and c3 depending only on m and upper bounds for || f||qo and ||A¢||qo ,
such that
Hg;jHCO < Hgl Zj”co <cy and HddCSOHCU <cs, (3'3'4)

where all Banach norms are defined with respect to the metric g .

Proof. We will do some calculations at the point . The first inequality follows from Lemma 3.3.5 and

1/m

the fact that the arithmetic mean (ai...a;) is less than or equal to the geometric mean % > ;@ s

which is a known fact, but can be proven e.g. by

;4 1
log [ =22} >3 —log(a;) =1 ag) Y™
og (527) > 2 fosto) oo .o
where the inequality, called Jensen’s inequality, essentially follows from the fact that the log is concave,

such that the log of the mean is always greater or equal than the mean of the logs. Moreover, we note

2
S 23
J J

as all a; are positive. Moreover, (a; — 1)2< ajz + 1, so putting these together, and using m — Ap = Zj a;
and |ddp|? = 8> ;(a; — 1)2, we get

|dd|7 < 8m + 8(m — Ap)?.
Moreover, as | g§j|§ =23, a? , we also have
195515 < 2(m — Ap)?.

These calculations were done at a point, but the given formula is not dependent on the explicit frame
anymore, so they hold globally. Setting c3 = 2 ||Ag||Z0 +4m || Ap]| o +2m? then suffices, as 2(m —Ap)? <
c3. So then also ¢; = 4c3 + 8m suffices. Moreover, these estimates only depend on m and ||Ae||qo , so
not even explicitly! on || f||o -

Now we will work more globally, so not specifically at x, if we need to work at x we will make it
explicit. For the remaining estimate, we note that w’ and w induce the same volume, as M is compact
and they are cohomologous symplectic forms, so we need [y, €4/ vol, = [, voly, in particular,
—sup f < logA < —inf f, as the equality cannot be satisfied if log A + f is strictly greater than 0

everywhere, or if log A + f is strictly smaller than 0 everywhere. Therefore,

|log A| < max(|sup f], [inf f|) = sup [f] = || fllco -

'Eventually we will have to estimate |A¢p| o in terms of certain bounds on norms of f, so there is still an implicit

dependence here.
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We see
e 2llfllco < Aet < 2l fllco

Now, Lemma 3.3.5 tells us Hj aj = Ael®) 50 we see

aj_1 = Al @) H ay -
ki

Now, we have also seen a; < Ej a; =m — Ap(z) , so putting things together, we see
aj_2 < etllfllco (m — Ap(z))?™2.

So we see

2m—2
iy 2m — 2
W”5:2§2%2§2méwhoz:<"2 >mﬂmm%32k=w%
j k=0

therefore this choice of ¢y is sufficient. O
3.4 Proof of CY1

In this section, we discuss the proof of CY1, which was Yau’s main contribution to the proof of the
Calabi-Yau theorem. The proof will be quite involved an will use a lot of estimation of functions, and

estimating norms in terms of other norms.

Theorem CY1. Let (M, g) be a compact Kéhler manifold with Kéhler form w. Let 1 > 0. Then there
exist (2, @3,Q4 > 0 depending on only M , g and @)1, such that the following holds:
Suppose f € C3(M), ¢ € C3(M) and A > 0 satisfy

s <@ [ ovoly =0, (w+daop)" = acfum.
M

Then [|oflco < Q2, [|[dd°p|lco < Q3 and [[Vddp|co < Qq .

In this section, we assume without loss of generality that A = 1. We can do this by modifying the
function f by addition of a constant. In the entire section, we assume we are working in the setting as
described in the theorem above. We see that there are 3 steps involved: estimates of order 0, i.e. |¢| -0 ,
estimates of order 2, i.e. ||ddp||~o and estimates of order 3, i.e. |[Vdd°p||0 -

3.4.1 Estimates of order zero

Firstly, we discuss the zeroth order estimates, i.e. the estimates of ¢ itself, not its derivatives.

We start with a technical result, which will follow from a calculation

Proposition 3.4.1. Let p > 1 be a real number, then we have the following inequality

/ 16 vol, < my” /(1 DglplP2 vol (3.4.1)
vV — — € vV . N
o ¥ g 9—4(1)71) M Pl g
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Proof. The proof is by direct computation. We start from (w')™ = efw™ and w — w’ = —ddp . This tells
us
(1—ew™ =w™ — (W)™ = —ddp A (W™ P+ W™ 2 AW + -+ (W)™

By Stokes’ theorem,
/ d (go\g0|p_2dccp A @™ EA A (W)™ volg = 0.
M
Combining the two, using dw = dw’ = 0 and using
d(plelP~?) = sign(p)dlelP~" = (p — 1)|plP"*d(sign(p)lel) = (p — 1)]elP2dyp,

we get,

/ (p\gp[pz(l—ef)wm:(p—l)/ 0IP2dip A dep A (WL A A (W)L
M M

Applying Lemma 3.3.3, we find nonnegative functions F; for j = 1,...,m — 1, such that we get

_ -1 _
[ elel2a—ehom = X [ ol (Vg 4 Bt P

Since w™ = m!vol, , we see

—1
/ ol 2(1 — ef ol = L= / PP 2(Vl2 + Fi 4+ Fon_y)vol,
M m M

Since ¢ is C, |p| is C® almost everywhere, hence the following computation can be done in the weak

sense 9
P - 2. p -
VIel?[; = | Slel®2V1l| = Trlel |Vl

This finally gives us the inequality

2
/ V[ P/22vol, < P / (1— e )plpP2 vol, .
M 4ip—1) Ju

proving the proposition. O
Now we define € := -2~ .

m—1

Lemma 3.4.2. There are constants C1,Coy > 0 depending only on M and g such that for every i €
L%(M), ||l r2e < C'ﬂHVin% + ||¢||%2) Moreover, if 1 satisfies wavolg = 0, we have ||[¢||f2 <
Col Ve -

Proof. By the Sobolev Embedding Theorem 2.1.10, we have that L?*(M) is continuously embedded
in L2(M), so we can find a constant C; depending only on M and g such that for every v € L*¢,
||1/)||i2€ < ||1/J||%% . Since we have

2 2 2
1022 = 1911z + IVYIIZe

the first part of the lemma is proved. For the second part, we consider the operator d*d : C*°(M) —
C*°(M) . We note that Ker(d*d) are precisely the constant functions, as x € Ker(d*d) means

0 = (d*dx,X)g = (dx,dx)g = |dx|
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and therefore dy = 0, i.e. x is constant. Moreover, Theorem 2.1.21 tells us that d*d has a positive,
discrete spectrum of eigenvalues, as M is compact. In particular, d*d has a minimal nonzero eigenvalue
A1 > 0. Therefore, assuming v is smooth, [ y Y voly = 0 tells us that ¢ is L? orthogonal to Ker(d*d),
i.e. 1 is a sum of eigenvectors of d*d with eigenvalues greater or equal than ;. Therefore, Hd¢||%2 =
(1, d*dy))g > i |72 - Now, since C°(M) is dense in L3(M), this inequality still holds if ¢ is not

assumed to be smooth. Therefore, picking Cs := )\1_1/ 2 gives us the second part of the lemma. O
Now we will turn to a priori estimation of |¢||;, . This will be done by induction on p in some sense.

Lemma 3.4.3. There is a constant C5 > 0 depending only on M, g and Q1 such that if p € [2,2¢], we
have |||, < Cs.

Proof. Using Proposition 3.4.1 for p = 2, and using the inequality |1 — ef| < €@, which follows
from ||fllco < [[fllcs < Q1 we get ||Vg0\|%2 < me?t [|p||;1 . Since we assumed normalisation condi-
tion [,,¢voly = 0, Lemma 3.4.2 tells us ||¢|2 < Co||Vel|,2 . Moreover, Holders inequality tells us

el < llell 2 VOlg(M)1/2 . Combining these results gives us the inequality
IVelzz < mCaevoly(M)'? |Vl 2 -
This gives ||[V||32 < mCae@ivol,(M)Y/? =: ¢. Hence ||¢||;» < ¢Cy, so Lemma 3.4.2 tells us
lll72: < Ci( +c2C3).

We define C3 := max(cCq, 0011/2(1—1—02)1/2) , which now only depends on M, g and Q1. We see |||l 12, [|¢]| f2- <

C3, so the Holder Interpolation Theorem 2.1.6 gives us ||¢||;, < C3 for every p € [2,2¢], thus proving

the lemma. O

Using this as a base case, we will extend to the general case p > 2 using induction. The statement is

as follows:

Proposition 3.4.4. There are constants Q2 and Cy depending only on M, g and Q1 such that for every
p =2, we have ||¢] 1, < Qa(Cap) /7.

Proof. Define Cy >0 by Cy = Clsm_l(mte + %) and choose Q2 > 0 such that
Q2 > maX(Cgvolg(M)l/Q, C3,1)(Cyp)™P,  for p>2.

Note that limp_>oo(C4p)m/p = 0, so such a constant exists. In fact, (C’4p)m/ P attains its maximum at
p= 604_1 , so picking Qo = max(Cgvolg(M)l/Q, C3,1)eC4™/¢ suffices. Now, if p € [2,2¢], then el < Cs
by Lemma 3.4.3, so by the way we chose Q2, [|¢|» < Q2(Cyp)~™/? | as desired. For the inductive step,
assume there is some k > 2¢ such that ||¢|| ., < Q2(Cyp) ™ for every p € [2,k]. We will show that the
inequality holds for every p € [2,¢k], such that it holds for every p > 2.

Let p € [2,k]. Then we have p?/4(p — 1) < p. Moreover, we have |1 — ef| < 91, so Proposition 3.4.1
tells us

2
—1
[1er]), < mpe el
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Next, we apply Lemma 3.4.2 to 1 := |p|P/? to get

el < € (167

Il )

Combining these gives us
-1
llffer < mpCre® (Il + Crllel, -

Define ¢ := ep. Since p € [2,k], the induction hypothesis tells us |[¢]/;, < Q2(Cyp)~™P | and by
the way we picked Qa, Q2(Cyp)~™/P > 1, thus (Q2(Cyp)~™P)P~1 < (Q2(Cyp)~™/P)? . Moreover, since
ol < llll 2 voly(M)Y/? < Csvoly(M)'/? by the Holder inequality, and since 1 < p — 1 < p, Hélder
interpolation tells us that ||¢||;,—1 < Q2(Cap)~™/P . Putting everything together again, we get

lolle < Q5(Cap) ™™ (mpCre?* +C1).

Moreover, by definition, (Qa(Cyq)~™9)P = Q5(Cype)t=™ . Since p > 2, the way we defined Cy tells us
mpClte + C < Cype'~™ . This then tells us

Il < Q5(Cape)' ™™ = (Q2(Caq) ™).
So finally, we obtain |||, < Q2(Caq)~™1 for every q € [2¢,¢k], thus proving the proposition. O
We finally arrive at the a priori estimate of order zero:
Corollary 3.4.5. ¢ satisfies ||¢||qo < Q2.

Proof. We note that the C-norm is the limit of the LP-norms as p goes to oo , where it might be helpful to
note that all continuous functions are L for every p on a compact manifold. Since ||¢|;, < Q2(Cyp)~™P
and (Cyp)~"/P goes to 1 as p goes to co, we see that lellco < Q2, thus giving us the a priori estimate

of order zero. O

3.4.2 Estimates of order two

We again work in the setting we described earlier, so (M, g) is a Kéhler manifold with Kéhler form
w, f € C3M),p € C>(M) are such that the Monge-Ampere equation is satisfied, assuming A = 1,
w' = w+ dd°p and ¢’ is the Kahler metric associated to w’. V is the Levi-Civita connection associated

to g, with connection matrix I', which we interpret as a map
V T(T*M® @ TM®) — D(T* M @ TM®Y)
and we introduce the shorthand notation (in coordinates)
Vi iy =VyVi, ...V, T,

where T is some tensor. The Riemann tensor of g will be denoted by R’ jk1 - We note that for a function v,
we have V3¢ = 0,059 , so we can define the Laplacians A, A": C®(M) — C®(M) by At := —g“BValng
and Al = —g' @8 V5% both in terms of the Levi-Civita connection of g. Note that these Laplacians are
the 0-Laplacians, so half of the usual d-Laplacians. Then we extend the definitions of these Laplacians
to Ck(M ) for k > 2. Now we state a proposition which reduces some fourth order derivative to a third

order derivative.
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Proposition 3.4.6. In the situation above, we have
A/ASO = —Af —+ gOéBg/ ’Yég/ GCVQSEQOVB%:SD + g/ aﬁg’YJ(REnySvaggp _ Régagv'ygﬁp) ) (342)

Proof. We take the log of the Monge-Ampére equation to get logdet(g,z + ﬁaagap) = [ +logdetg,s.
Then we apply V5 and use that it is the Levi-Civita connection, i.e. Vg =0, to get

Vi f = Vs(logdet(g,5 + 0a059)) = Tr,5V5(108(g,5 + 0adzp))

where we used the well known identity Trlog = logdet, and that g commutes with V. Now using the

formula we know for the derivative of the logarithm of a matrix (and that the trace is cyclic), we get
Vaf = T((945) " Va(9as + 0a05¢)) = 9 “PV500050 = ¢ V5050

Therefore,

Af==g"Vy(g ““)WVsuze — 970 PV a5
raB )
Now, ¢’ ¢ 95 = 05, so we see
0= Vﬁg _ glggv’)/gl ad + g/ a6v’yglﬁg _ g/ﬁnggl ad + g/ a&vwﬁg(p )
So we see V. ¢’ of — _ g/ By V. e5¢ . So combining some things, we see
99V 50 = A + 979 9 V56V 00
Now we note that we have
Ve = Val05,50 — T5504e0) = 045,50 + Ta0559 — 0a(T550520) — T1al 550020 -
Now, using R .5 = —0;1'" g, , we see
Vairs5P = Vosap® = (R 5,500ep — R 5,507¢) -

Lastly, we have A’Ap = ¢ ap 975V 5%, so if we put everything together, we see

afy
NAp==Af+ 9" g “V 150V e + 9 P97 (R 550020 — R 5usOyep)
thus proving the proposition. O

Now we will turn to finding an estimate for ||A¢pl|0 so that we can use Proposition 3.3.7 to find the

second order estimate we need.
Proposition 3.4.7. There is a constant Ca, depending only on M, J, g and Q1 such that || Apllc0 < Cag -

Proof. We define a function F' on M by F' := log(2m— Ay) — kg for some real number « to be determined
later. By Proposition 3.3.7, we have that m — Ay > 0, so this is well defined. We calculate

A'F = —¢ *PV,Vlog(2m — Ap) — kA'p
= ¢ PV, ((2m — Acp)%VBAgo) A
= —(2m — Ap) A Ap + (2m — Ap) 3¢ PV, Ap VzAp — kAp
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We note that g and ¢’ define pointwise hermitian metrics on the complex cotangent spaces. Therefore,
taking tensor products, we see that ¢ ® ¢’ ® ¢’ defines a hermitian metric on T*M%3 . Thus, we have the

following inequality
979 70 C[(2m — AP)V 150 — g5 VeAR][(2m — Ap) V5,60 — g5, VeAp] > 0,

where we note that the Laplacian of a real function is real. Now we note that gaB g(’x F=m-— Ay, and

that Va5 = Vg, , as the curvature is (1,1). So we see that the above inequality becomes
(2m — Ap)?g*P g %9V 5.0V 5o — (Bm — Ap)g' PV Ap VAP > 0.
We note that ¢’ “BVQAchBA«p >0, so we get
—(2m — Ap) Tl g g Vg Y 50V e+ (2m — Ap) 29 PV AP VA0 < 0.

Now, |¢’ O‘B]g <d O‘Bgag and we see |V 50|y = |g;B —0aplg < 2m—Agp. Therefore, there exists a constant
C5 depending only on M, g and m , such that

19" P97 (R 5,5V aep — R 5a5 V)| < C5(2m — Ap)g' “Pg,5.-
We also note |Af] < ]go‘5|g\va5f\g < m@; . Thus, we see that
A'F < (2m — Ap) 'mQ1 + k(m — ¢ O‘ﬁgag) + Csg O‘Bgag :

Since M is compact, there must be a point x € M where F' attains a maximal value, such that A’F > 0.
This means that, at x,
(k—Cs)g B wp < (2m — Ap)ImQy + km.

Moreover, by Proposition 3.3.7, we have m — Ap > me//™ > me=@1/™  This then gives (2m — Ap)~! <
%te/m. Choosing k = C5 + 1 and defining Cg := Q1e9"/™ + km , we then see ¢’ O‘Bgag < Cg at z.
Now we pick a frame such that g,; = diag(1,...,1) and ¢ = diag(ay,...,an) at . Lemma 3.3.5

m—Agp:Zaj; g'aBgaB:Za;1 and Haj:ef(m).
J J J

then gives us

We obtain
2m — Ap =m+ e/ (g *Pg "t <m4 D CP

So at x, we have
F(z) < log(m + e C"™ 1) — kp(x) < log(m + eQ1Cg 1) — kinf p.

Using the zeroth order estimate ||¢[|o0 < Q2, we see inf p > —Q2, so we see F(x) < log(m+e@1Cy" 1)+

k@2 . Since z was the maximum of F', we see that this inequality holds globally. This gives us
0 < 2m — A < OB+ CE 8 Qatrp < (1 4 OI1(Q1) (2502
Therefore, choosing Ca, = max(2m, [2m — (m + Cg*~1e@1)e?"Q2|) gives us | Ap|qo < Cay - O

Combining this result with Proposition 3.3.7 gives us the following:
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Corollary 3.4.8. There are constants c1,ca, Q3 depending only on M, g,J and Q1 such that

Note that the ¢; and the ¢y are ever so slightly different than those in Proposition 3.3.7, as we are

/
9ap

g/a,@)

<c1; )

= LS and [ddllc < Qs.

only considering ¢’ ap , and not ¢’ ¥ . This result concludes the section on second order estimates. Now

we only have to do the third order estimates.

3.4.3 Estimates of order three

We define a function S := i|Vddc<p| ¢ > such that, in local coordinates,
SZ _ g/ aﬁg/ 'yég/ egvagg(pvg’yg(p )

We will calculate the Laplacian of this monster, which will be quite the calculation. We introduce
shorthand notation T%;;. 5 := V;;. 4T for any tensor T'. So —A'S? = ¢ aﬁS_QQB . Let’s begin

_A/SQ — g/ aIBS?aB
=g (g9 9 "0 enPbet) ap

30) 15 1 C b 5 1eC i
=g P((g"°9 ") g rinPia + 9709 T " (Prin®5ed):5)er

We note

9 ==99 g5, =99 Po s
So we see

(g/ 'yggl 64_' /né);B — g/ 'yg;Bg/ e(_g/ 179_ + g/ 'yggl ef;Bg/ r]H_ + g/ 'ygg/ ef InH_;B
_ _(g/ yzg/ msg/ ggg/ no + g/ 769/ ezg/ n(g/ no + g/ 'yég/ ecg/ nzg/ RQ)CP;BZK ]

Moreover,

(PP 3e0):5 = Pifnin¥sded T Pinln'P;Boed
So we see

2 3 5 1e 1ml
—N'S% =g PG G G (0.6 Pibes T PoninPigsed)
— (g7 g g+ g g g G+ g G G G ) e i e
Only one more derivative to take. Using the same reasoning as above, we get

—N'S? = gP(— (g g Mg g 4 g g TG g O G G T )i (8.5 P PornPi55)
+g 759/ “g ne(@;a,@%ﬂ‘p;geé T P.8yinPiaded T PiaryinP;Bses + @;vfn‘p;aﬁgeé)
+ (gw)\g/uzg/nég/eggme + g/'yzg/mg/mg/ecg/ne _’_gl'nglmsg/e)\g/,uCg/nG
+ g/fyzg/ nég/ egg/n,\g/ye 4+ gl'yAg/,uch/ ezg/ ncg/ne + g/fy(Sg/ e)\gl,ufgl Hgg/ne
+ g/ WSg’ ezg/ mAg/ ugg/ no + g/ 7691 ezg/ nggl n)\g/ no + g' w\g/ M5g’ ng/ nzg/ K0
+g 709 N g g 4 g g g G G g 0 G G G ) D 3P e e
— (g g g g g g g g g PG G G ) (1 i Py Pt
+ @505 Ps00En Pi3ed + PiBikPinnPiaded)) -
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After some more work it can be shown that the above equation “simplifies” to (see e.g. [Aub70; Yau78])

~A'S% = g By g Cq ([ 5w — g T 5P [Prased — 9 Prarn®.5.0)

+ [0.00in — 9 T P.0iPrin — 9 T Oarn 20558 — 9 P58 — 9 P55 ReS)

— g/ P29/ g g0 4 g g MG ) pinil s — Resl

+ 0BG G 50 fose + Porsel ad]

+9 g g g o5 0(R e Pipe + B ey Pramn + RlygnPiac)

+ 050 (R 58P 60 + Rl cas?igu8 + B 5a5P,5er)]

+9' %9 V10,5509 " R o — 9 “Roga) + ey (9 Rose5ia — 9 “Risep)]
Inspecting the above, we see that the terms carrying a fourth derivative in ¢ are both in the first two
lines of the right hand side. However, these lines are both nonnegative, as they are the ¢’ norm of fourth
order tensors. Moreover, we already have bounds in terms of @)1, co and HRijk:lHCq for the g norm of
everything else on the right hand side, except for [p.,3, [, and |(’0;045’Y|527 . So we see that there is a constant

Chrg2 depending only on )1, c2 and "Rijkl}|cl , such that

A'S? < Crrs2(|@iapylg + 190015 -

We note
gyl < 19°7158% < 452 (3.4.3)

Therefore, we have the following

Lemma 3.4.9. There exists a constant C7 depending only on QQ1, ¢1, co and HRijlecl such that
A'S? < Cr(S%*+ 9).

Moreover, (3.4.3) tells us that finding an a priori estimate for S? is enough to give us an a priori

estimate for ||Vdd®p||~o . Therefore, we just need to prove the following:

Proposition 3.4.10. There is a constant C'g2 depending only on M , g, J and Q1 such that
15%lco < C2 -
Proof. The first thing we note is that
S* = 10amly <1979 0 “lysyey9°°9 °0 Ca5epmnc < me2 9779 9 Ch05 ¢

So by Proposition 3.4.6, we see that there exists a constant Cg depending only on M, g, J and @1 such
that
AAp > 0271771_15’2 —Cy.

This means that

A'(5?% — 2comCrAp) < C7(S% + S) — 2camCq(cy 'm™15? — Cy)
= —C7(S — 1)? + 2e5mC7Cs + 1C7.
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Again, at a maximum x € M of 5% — 2comC7 Ay, we see that the LHS is strictly positive, so at
(S — %)2 < 2eomCyg + % .

So there is a constant Cy depending only on ¢y, Cg and the a priori estimate for ||Ay||~o we found earlier,
such that S? — 2comC7Ap < Cy. Because x was a maximum, this inequality holds globally. Moreover,
S? is nonnegative. So we can apply the estimate for [|A¢||o0 again to obtain the a priori estimate Cg2
for HS2HCO that depends only on Cy, C7,c2 and ||Ag||-o , therefore, it depends only on M, g,J and @1,

which concludes the proof of the proposition. O

Corollary 3.4.11. There is a constant Q4 depending only on M , g, J and Q1 such that

IVdd©ellco < Q-

This concludes the proof of Theorem CY1.

3.5 Proof of CY2

In this section, we will prove Theorem CY2, which is restated below. In the rest of this section, we will

always assume we are in the setting of this theorem.

Theorem CY2. Let (M, g) be a compact Kéhler manifold with Kéhler form w and complex structure J.
Let Q1,Q2,Q3,Q4 >0 and o € (0,1). Then there is a Q5 > 0 depending only on M, g, J, Q1, Q2, @3, Q4
and « such that the following holds.

Suppose f € CGD (M), p € C°(M) and A > 0 satisfy (w + dd°¢0)™ = Aefw™ and the inequalities

[fllcea <Q1,  lellco <Q2, [[ddpllco < Q3, [[Vddp|co < Q4.

Then ¢ € CO(M) and ||¢]|pe.e < Qs. Moreover, if f € CR®)(M) for some k > 3, then ¢ €
CH+20) (M), and if f is smooth, so is .

The proof of this theorem will be done using a method called bootstrapping [Joy00], the idea is that, if
f € C(M), we produce a method to find estimates for ||| o) depending on || f||p-2.a) » 1]l c0-1.0)
and l,ao, M, g,J,Q1,...,Q4, which we can inductively apply to find a bound for ||¢||~(k+2.a) , which will
then only depend on k,a, M, g,7,Q1, ..., Q4 and || f|| cka) -

For the proof, we will need the following three lemmas from functional analysis. The first and the
third will follow from Schauder estimates, see Theorem 2.1.23, the proof for the second one can be found
in [Joy00].

Lemma 3.5.1. Let k > 0 be an integer and let o € (0,1). Then there exists a constant Ej, o depending
only on M, g, k and o such that ifp € C*(M) and & € C*) (M) such that Ay = &, then 1 € CHF+2) (M)
and [Pl crre.e) < EBra(llEllowe + 149lco) -

|97 oo and
HglinC(O»a) such that if ¥ € C*(M) and € € CO(M) such that A"y = ¢, then ¢ € CHY(M) and

[Pllcaer < Eolliéllco + 1¢llco) -

Lemma 3.5.2. Let o € (0,1), then there is a constant E! depending only on M,g,«
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Lemma 3.5.3. Let k > 0 be an integer and let o € (0,1). Then there is a constant Ej_, depending only
9;; oo and ||g' in(ﬂhM such that for any 1 € C*(M) and ¢ € C°(M) such that A" = &,
we have ¢ € C*T29 (M) and [[¢ ]| cara.n) < Ej o (€]l e + [19]lco)

on M, g, k,a,

As explained before, the problem will be solved inductively, so we start with a base case

Proposition 3.5.4. There is a constant Dy depending on M, g, J,Q1, ..., Qs and o such that ||¢|| oz.e) <
D.

Proof. In this proof, all estimates will be only depending on M, g, J,Q1,...,Q4 and o. By Proposition
gz,‘j
g *g'livg,, = —g *¢' IV (dd°¢o(—, J—-))ik , i.e. we can find an estimate for HVg’ inCO using J and the

rij

3.3.7, we can find estimates ¢; and co for

o and H gy H co » respectively. Moreover, we see Vg

estimates for Hg’ ij“co and ||Vddp||qo . Using the estimates for Hg’ inCO and HVg’ inCO , we can then
find an estimate for Hg’ UHC(M) )

This puts us in the setting of Lemma 3.5.2, i.e. we have an estimate E!, such that [|A¢|sa.a <
EL(J|A"A¢||co+]|Ap]|co) - Moreover, we can apply Proposition 3.4.6 to find an estimate D5 for | AA ]| -0 -
Thus, we see [|A¢]ooa < B (Dy + 2Qs) , where we used [|Ag] oo = HgaﬂaaaWHCO < | ddp|| o -

Now we are in the setting of Lemma 3.5.1, so we have an estimate F , such that

[ollcsae < ErLalllAvllcaw +[¢llco) < Bra(Ey (D2 + 3Q3) + Q2) =: Dy,

completing the proof. O

Now we proceed to the induction step

Proposition 3.5.5. Let k > 2 and suppose f € CE(M), o € C*HL) (M) | such that we have an a
priori estimate D for ||¢|| pr1.0) depending only on M, g, J,Qu, ..., Quk, o || fllatk-1.00 and [[@]l cira -
Then ¢ € C*+29)(M) and we can find an a priori estimate D' for ||¢|l ooty depending only on
M,g,J,Q1,...,Q4k,a, || fllctre and D .

Proof. We will start by estimating ||A’Ag||ok-2.0) using Proposition 3.4.6, which tells us
ANAp=—Af+gg g <V 50V 560+ Pg (B 5.5V aep — R 5a5Vaep) - (3.5.1)

Note that ||Af]|ok-2.a) can be estimated by m || f|| sk.e) - Moreover, since derivatives of g’ B can be com-
puted using derivatives of ¢, we see that the C+=22)_norm of all other terms on the right hand side can
be estimated in terms of ||¢’ || ., , [¢ll¢x+1,00 and M, g, J . Therefore, we can estimate [|A’A@||ok-2.0
in terms of || f|| a0 , Hg’ inCO s lellotker1.0) and M, g, J . Moreover, using Proposition 3.3.7, we can find
an estimate for ||¢/ inCO in terms of [|¢|/o@.a) , SO we can find an estimate F o for ||A’Ap|otk-2.q) in
terms of || f|lak.a » [|@llctkire) and M, g, J, as desired.

Now we are in the setting of Lemma 3.5.3, we have Ap € C*®) (M) and we have an estimate E,’€_27a

depending only on M, g,k and « such that

1Allome < Ep_gal[|[AA@|| pp20) + I8¢l o) < By_p o(Fra + 3 Q3) .

Now we are in the setting of Lemma 3.5.1, so ¢ € C(k+2’0‘)(M) and we have an estimate Ej, , depending
only on M, g,k and a such that

lellomrzm < Era(lA¢loma + 1€llco) < Era(Byg0(Fra+ Qs) + Q2) = D',
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completing the proof. O

Thus, combining the base case and the induction step, we see that if f € C(k’o‘)(M ), we have ¢ €
C*+20) (M), and we can find an a priori estimate for lloll orr2.a) in terms of M, g, J,Q1,...,Qu, k,a and
| fllotkay - A fortiori, if f e CBY) | we see that p € CO (M), and we have an a priori estimate Qs
depending only on M,g,J,Q1,...,Q4 and « such that ¢l ot < Q5. Moreover, if f is smooth, it is
C* ) for any k , so that ¢ is C*®) for any k, and we see that ¢ is also smooth, completing the proof of
CY2.

3.6 Proof of CY3

In this section, we discuss the proof of CY3, which is restated below. The proof requires some tools from

functional analysis on Banach spaces.

Theorem CY3. Let (M,g) be a Kéhler manifold with Kéhler form w. Let o € (0,1) and suppose
fle CBI(M), ¢ e C (M) and A’ > 0 satisfy

/ ¢'vol, =0; (w+dd°¢ )™ = Alel'wm .
M

Then whenever f € C3) (M) is such that || f — f'|| o.e) is sufficiently small, then there is a ¢ € C5*) (M)
and an A > 0 such that
/ pvol, =0; (w+ddp)™ = Aefw™.
M

Proof. Define X := {p € C®) (M) : [,, pvoly, = 0}, this is a closed linear subspace of C®®) (M) and
we equip it with the subspace topology. Now define U C X by U = {¢ € X : w + dd°p is positive} .
Since positivity is an open condition, we see that U is open in X . Now suppose ¢ € U and a € R, then
because w + dd°p is positive, we see that (w + dd°p)™ is a positive multiple of w™ at every point, so
there is a unique real valued function f such that (w 4 ddp)™ = e**/w™ . Since ¢ € C™Y (M), we see
fe B (M),

Using this, we can define a continuous map of Banach manifolds F' : U x R — 0(3"")(M ), by
F(p,a) = f, such that (w4 dd°p)™ = e**fw™ . We will show that F is differentiable. To do this, let &
be a real number. We see that for any v € X, (p,a) € U xR,

(w4 dd°( 4 )™ = (w 4 dd°p)™ 1 A (w + dd°¢ + medd®) 4+ O(e?)).

Now, defining w’ := w + dd°p and letting ¢’ be the associated Kéhler metric with Hodge star ', we

compute

(m—1)

! 1
ddyp A (W)™ = 5 ddY A *w' = ——(ddp, ") g (W)™ = —%A'@z;(w’)m,

1
2m
where A’ = —¢/ O‘BVQB. Thus,

(w+ dd(p + e9))™ = (w + dd°p)™ (1 — A + O(?)) = @ T/ —eAVHOE) ym
where f := F(¢,a). So now looking at the linear term in e, we find the derivative of F'

dF(pay: X xR — CE (M), dF, (0, b) = —b— A"y, (3.6.1)

@,a)
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We see that A’ is a linear elliptic differential operator with C(3®)-coefficients. Moreover, M is connected,
so ker A’ are the constant functions. We compute the dual of A’ with respect to g, so let ¢, € C°°(M)
and Y9 € C°(M). We see

(@0r,0) = (A1) voly
= / (A1, 109) (e )" voly
= / (1, A (e 4p2))e ™ voly
= / (1, el A’ (e )p) vol,
= (1, e’ A (e Tup))

where we used self-adjointness of the Laplacian. Thus we see (A’)* = efA’e™/ | i.e. ker(A’)* consists of
scalar multiples of e/ . In particular, ¢ L ker A’ if and only if wavolg =0, and ¥ L ker(A")* if and
only if (1), e_f)g =0.

Thus, by Theorem 2.1.25, for y € C®) (M), there is a ¢ € C®®) (M) such that A’y = y if and only
if (x, e_f>g = 0. By the same theorem, 1 is unique up to a constant, so there is a unique on such that
[3s ¥ volg = 0. Moreover, for any x € CB) (M), there is a unique b € R such that (xy + b,e~/) =0, as
I} M et vol, is nonzero.

Putting everything together, we see that for any x € C(®) (M), there is a unique b € R and a
unique ¢ € CG) (M) such that A’p = —x — b. Therefore, there is a unique (1,b) € X x R such that
dF(4.q)(¥,b) = x, which means dF,,
Mapping Theorem for Banach spaces [Joy00], there is an open neighborhood U' C U x R of (¢/,a’) and
an open neighborhood V'’ C C3®) (M) of f such that F|y is a homeomorphism onto V.

Because the topology on C(3®) (M) is induced by |=llc.a) , we see that this means that there is an
e > 0 such that || f — f'||os.e) < € implies that there is a ¢ € C®®)(M) and an A > 0 such that

) is invertible at any point in U x R. Therefore, by the Inverse

/ pvol, =0; (w+ddp)™ = Aefw™,
M
thus completing the proof. O

3.7 Proof of CY4

Finally, we prove CY4. This proof is by Calabi in 1954 [Cal54]. The proof is the shortest of the four, but

still requires a bit of work and a few tricks. We start by stating the theorem again.

Theorem CY4. Let (M, g) be a Kihler manifold with Kéhler form w. Let f € C1(M), and let A > 0
be some real number, then there is at most one ¢ € C3(M) such that [,, ¢ voly = 0 and (w + ddp)™ =
Aefuwm .

Proof. Suppose @1 and o are C® solutions. We shall prove that their difference is d-closed, because then
we know that their difference must be constant (as we assumed M is connected), so then the normalisation

condition will tell us that they’re equal.
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We define w; := w + dd®yp; for i = 1,2, by Lemma 3.1.4, these are both positive (1,1)-forms. Thus
they define Kéhler metrics g1 and g2, respectively. We have w]® = wh", and w; —wa = dd°(¢1 — ¢2) . We
can relate the two by noting that

0=wl"—wy
= (w1 —w) A (WP W2 Awg 4 - Wi

= dd*(p1 — p2) A (W WP Awp e wp Y,

where it might be helpful to note that these are all two-forms, so the wedge product is commutative, so

there’s no antisymmetry involved. Because M is compact, Stokes’ tells us

/M d((p1 = p2)d(p1 = @) AT+ w2 Awa 4+ + Wi 1)) = 0.
Combining the two and using dw; = dws = 0, we see

/M (1 —p2) Nd(p1 — 02) A (W' M+ WP Awp + -+ W) =0.

By Lemma 3.3.3, we see that all terms in the integrand must vanish separately, as they are all nonnegative

top forms. In particular, the first term gives us

|d(p1 — 2)l5, =0,

ie. d(gr —@2) =0, 50 @1 — @2 is constant. Using the normalisation condition [, ¢; volg = 0, we see

(1 = 2, thus proving the theorem. O

4 Calabi’s construction

So far, we have proved the Calabi-Yau theorem, which does not offer a lot of insight into how to actually
find explicit examples of Calabi-Yau metrics on compact manifolds, which requires us to solve the differ-
ential equation popping up in Theorem 3.1.5. Unfortunately, explicitly solving this equation turns out
to be very difficult. In fact, there are very few known explicit nontrivial examples of Calabi-Yau metrics
[Joy00]. As it turns out, going to a non-compact setting makes it slightly easier to find examples, as we
shall see in this chapter.

We will discuss a known explicit example of a Ricci-flat Kéhler metric on the canonical bundle of
CP"™. The approach will be quite brute-force and was invented by Calabi [Cal79]. The idea is to start
with a Ké&hler-Einstein manifold M , e.g. CP"™ with the Fubini-Study metric, and take a holomorphic
line bundle . — M with a constant curvature hermitian metric A that has curvature opposite to the
curvature of M , e.g. Kcprn — CP™. Then cancel both curvatures by “pushing it to oco” to obtain a
complete Ricci-flat Kéhler metric on the total space of L. This is done by modifying the K&hler potential
of a canonical Kéhler metric we introduce on L.

This method allows us to find explicit Calabi-Yau metrics on the total space of Kcpn . The Calabi-
Yau metric on K¢p1 = T*CP! that we produce in this way was found independently from Calabi by T.
Eguchi and A.J. Hanson in 1979 [EHT79].

This construction will mostly require the tools introduced in Sections 2.2 and 2.3.

o8



4.1 Kahler-Einstein metrics on the total space of line bundles

Kahler potentials will play a central role in this chapter, the method we shall describe will be one to find
Kahler potentials belonging to Kéahler-Einstein metrics. However, while it is true that any K&ahler form
can be written as dd°p for some real valued function ¢, it is not true that dd‘yp necessarily defines a
Kaéhler form, thus after solving these differential equations, we have to take extra care that the resulting

form is, in fact, positive. To make the distinction more precise, we define forms that are of Kdhler type.
Definition 4.1.1 (Kéhler type form). A (1,1)-form w is of Kdhler type if and only if it is real and closed.

Now we see that Kahler forms are precisely the Kéhler type forms that are positive. Moreover, dd®p
is always of Kéahler type if ¢ is real. Conversely, by the Poincaré lemma, any Kéahler type form can be
written as dd“p for some real function .

Now let w : E — M be a holomorphic hermitian vector bundle of rank k£ with hermitian metric h , over
a (not necessarily compact) Kéhler manifold (M, g) of dimension m . Let V denote the Chern connection
of h. Pick a holomorphic trivialising chart (z!,...,2™;eq,...,ex), where ey are linear independent local
holomorphic sections, let hyg := h(ey,ez) and let h*M denote the coordinates of the inverse matrix, such
that hMhy, = 55 . Let A)‘ﬁa denote the corresponding connection matrix and let K* uaj e the curvature

form. From Section 2.2, we have the following formulas

A o = W Onhyi ; (4.1.1)
K o5 = —03A% 10 = BB 05h,500 s — B 0a05hys - (4.1.2)

The idea is to find Kéhler forms on the total space of F, so we need to work on T*E eventually. Before
we jump to that, we will define a slightly more convenient frame for T'E than just (0,e;0;x) , where ¢ A are
the coordinate functions corresponding to the frame (eq,...,ex). Instead, we define a frame consisting of
horizontal lifts of tangent vectors to M . So let o be a local holomorphic section of E such that Vo =0
at x € M. Then we can take dyo : TyM — T(; 5(»))E . In fact, because o is flat at x, its components
o satisfy the differential equation 9,0* = —A)‘Wa“, at x. In particular, dyo(v*0,e) only depends on
the value of o at x. So at the point (z,() € E, we define the vector V,a := 0,0 — A)‘WC”(?@ , which
is the horizontal lift of 0.« to (x,(). The holomorphic frame we pick on TE is then (V.a;0.). The
corresponding dual frame is then (dz®; V(?), with V¢ = AAua(“dzo‘ + d¢* at the point (x, ().

We also define the square distance to 07 as follows: at a point (z,¢) € E, let t(z,() := hm()‘fﬁ. We

wish to put a natural Kéhler type form wg on the total space of F. Natural here means a few things:
(i) wgrlo,, agrees with wys, the Kéhler form on M .

(ii) ¢/2 must be a potential for vertical vectors, i.e. wg(v,w) = i00t(v,w), where v and w are vertical

tangent vectors.
(iii) Vertical vectors must be wg orthogonal to horizontal vectors.

These three conditions together imply that wg must be of the form

WE = i(gaj + Gaz)dz® A d2® + b,V A VR, (4.1.3)
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where g, 5 are functions on E that vanish on 0p . Since we want wg to be of Kéhler type, it needs to be
closed. Looking at the dCP A dz® A dzP part of dwg , we see

OiGap — 05(haaA val) + hap At o AP 15¢Y = 0. (4.1.4)

Therefore,
01Gap = Kyjagl- (4.1.5)
Note that the right hand side is independent of (¥, thus we see

op = KyjapCC", and wp =i (gag + KWB@@?) dz® AdzP + ih\zg VM A VEF (4.1.6)

To see that this indeed defines a Kahler type form, we let ® be a potential for g, i.e. such that wy; = dd°®
we define ¥ := 7*® 4 ¢t/2, and we see

dd°U = 7*dd°® + 1dd°(hyu¢*CH)

- A - - Ohy, _ -
= ig,5dz" AdZP +i—— I (AR \dZP + i#(“d@ AdzP + iﬁg*dza A dCP + ihppdC A dCP

022078
3 Phyg -7 5 Ohxg = _0h 3 _
R P! =0 . AL NFL g o =B VTR =5 A APV p g =B a7 A m
i9,3d2% Ndz" + Ziazaazﬁc CPdz* Ndz” 41 557 ¢ <VC th s CPdz ) N dz” +ih g V(" A dG
3 Phyg .y =- _Oh,y Ohog = 3 =
[ o =B . A A Fn o Y AL ~p 70 for =B o A m
i9,3d2% NdzZ" +1 (8za825< ¢t —h 920 958 ¢PC ) dz" Ndz” + thg V(T A V(

=i (905 = g 05C"C") d2% N dZP + iy VN AV
= <ga5 + KAMB@CT‘) dz® A dz° +ihy; VO AV

So wg indeed defines a Kéhler type form with potential ¥ = 7*® + ¢/2. This is a Kéhler form if and
only if it is positive. Note that positivity for vertical vectors follows from the fact that h is a hermitian
metric, so we just need positivity for horizontal vectors.

If Z is a horizontal vector in T(LOE(LO) such that K)\MBC)‘@ZO‘ZB < 0, then we can always find
a real number r such that (g,5 + TQK)\MBCA@)ZO‘ZB < 0, i.e. the horizontal lift of Z to (z,r() has
negative length. Thus positivity for horizontal vectors requires nonnegativity of K 18 ACRZ2ZP for any
(z,¢) € E and any Z € T, M9 | This leads us to the following definition

Definition 4.1.2. The curvature K Aiaj 18 called positive, respectively nonnegative, negative and non-
positive, if for any (z,¢) € E\ 0p and any Z € T, M0\ {0}, we have

K05 0P 202 > 0,
respectively > 0, <0 and <0.

Thus, wg is a Kahler form globally if and only if the curvature of h is nonnegative.

Now, if the curvature was not nonnegative, we note that if wg is still positive at some (z,() € E,
then it is positive at all (x,r() € E for r € [0, 1]. Likewise, if wg is not positive at some (x,() € E, then
it is not positive at any (z,r(¢) € E for r > 1. Thus for any € M , the set U, C E, of points where wg
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is positive, is connected. Therefore, if M is connected, the set U C E of points where wg is positive, is
connected. Moreover, it is clear that 03; C U and that U is open, so this procedure always provides a
Kahler form wg on a connected open submanifold of ', even if the curvature of h is not nonnegative.

Since we eventually want to find Kéhler forms with specific curvature, we change the potential ¥ a
little bit to get a Kéhler type form on some U(k)-invariant subbundle F' C E'| defined by some open
subset! I CR* by F = {(z,{) € E: t(z,¢) € I}. We let u : I — R be any function, and we consider
the potential ¥ = 7*® + w0 t/2, such that wp := dd°¥ is a Kéhler type form on F'. We compute

wp = 7dd°® + i00u o t
= ig,5d=" A dZ” + il (190t + i (1)t A Ot
=i (gup + 0 (DK apC ") d2 A d2P + i () VAV
Oh)y

0 =il =il ah ol 5 1_A3 —F
+ " (t) <achc)‘§“dza + hAﬁC”d@) A (8;5@4%2«5 + hpggﬂdg0>

= (gag + u/(t)K)\ﬁaﬁ-g’\fﬂ) Az A dzP + i (W () g + v () hashpaCPC”) VN AV
We summarise this result in the following lemma:

Lemma 4.1.3. Let E — M be a holomorphic hermitian vector bundle of rank k , with hermitian metric
h, square distance to the origin t and curvature K over a Kdhler manifold (M,g) with local Kdhler

potential m® . Then for an open subset I C RT and function u : I — R, the form
Wg =1 (ga[; + u’(t)K/\ﬂaBC/\fﬁ) dz" N dZP + i (o () hag + o () hashaCPC”) VO A VR, (4.1.7)

is a U(k)-invariant Kdhler type form on F := {(z,() € E : t(¢) € I}, with local potential ¥ = 1*® +u o
t/2.

Remark 4.1.4. Earlier, we chose the potential ¥ = 7*® + ¢/2 such that it agrees with wys at the
zero section, such that wg acts on vertical vectors according to the potential ¢/2, and such that vertical
vectors are orthogonal to horizontal vectors. Even though it appears we are only changing the second
condition by adding this extra function w, we are sneakily also possibly removing the zero section from E
by picking F' defined by an interval I C R™ that does not contain 0. In that case we do not have a proper
justification for picking such a potential, as the first condition no longer makes sense then. Nevertheless,
we are eventually interested in potentials that can be extended to the zero section, hence the choice of

this potential is still a natural one in that setting.

We will be interested in the case when wp is a Kéhler form, i.e. when it is positive. Since horizontal
and vertical directions are wp-orthogonal, positivity follows from checking positivity in horizontal and

vertical directions separately. We start with the vertical directions, as those don’t carry a curvature term.

Proposition 4.1.5. The Kdhler type form wp restricted to vertical directions, is positive definite if and

only if u satisfies the differential inequalities
u'(z) > 0; u'(z) + zu"(z) > 0.

If E is a line bundle such that the zero section is mot part of F', then the first condition is mo longer

necessary.

'Meaning it is open in R™ | i.e. it is allowed to be of the form [0, a).
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Proof. Let g := wp(—, J—) denote the corresponding bilinear form. The necessity of the second con-
dition follows from gp (gag,g’aé) > 0, for ( € F'\ {0}. To prove the necessity of the first inequality
whenever k£ > 2, note that, at a point ¢ # 0, we can always find a vector (¢’ )/\8@ such that

hunCYV CH ((C/)A3<*> = hup(¢)C" =0,
as we are in two or more dimensions, so we can always find a vector that is h-orthogonal to (. Plugging
in this vector and its hermitian conjugate into gp tells us that u/(¢) has to be strictly positive for g to
be positive definite in the vertical directions. Likewise, if £ = 1 and the zero section is part of F', we see
that positive definiteness on the zero section requires u’(0) > 0. The second inequality tells us zu/(x) is
strictly increasing, therefore we have that u'(x) > 0 everywhere by connectedness. When the zero section
is not part of F', we see that m = 1 implies that the second condition is enough, i.e. /() > 0 is no

longer necessary.

To prove that these conditions are sufficient, we see that
gr (X000, X 0g) = u/ (8) | X]? + " ()| (X, ()

If w/(t) > 0 and u”(t) > 0, we see that this is strictly positive if X # 0. If v”(t) < 0, Cauchy-Schwarz
tells us

o ()X 4+ " ()[A(X, QO 2 (u'(8) +u" (1) X2,
so the second inequality tells us this is strictly positive if X # 0. If £ = 1 and the zero section is not part
of ', we see that X = A( for some A € C. Therefore,

o ()] X2+ " (O)la(X, Q)1 = (u'(t) + " () APt

soif X #0,i.e. |\ > 0, we see that it is sufficient to just assume the second inequality to prove positive

definiteness whenever m = 1 and F' does not contain the zero section. O

This proposition takes care of the vertical vectors, so now we’re left with the horizontal ones. Since
we do not care about global vectors as of yet, we define a slightly weaker notion of nonnegativity for

curvature, namely being bounded below

Definition 4.1.6 (Lower bounds for curvature). The curvature K, is said to be bounded below by
ce R at € M if and only if for every ¢ € E, and every Z € T, M9 | we have

Ko P 2°27 > chap(M3Pg,52°2°.
c is called a lower bound for K at x. Moreover, if K is bounded below by some ¢ at every x € M , we

say K is uniformly bounded below by ¢ and c is called a uniform lower bound for K .

Likewise, we can define upper bounds for curvature. Note that if M is compact, then K is always

uniformly bounded below. This notion gives us the following theorem:

Theorem 4.1.7. Let E = M be a holomorphic vector bundle with hermitian metric h and associated
Chern connection V , where M is a Kdhler manifold with Kdhler metric g. If the curvature of V is
uniformly bounded below, then there is a complete Kdhler metric g, on the fibre CF that is U(k)-invariant,
such that the induced Kdhler type form on the total space of E , determined by the hermitian metric, by
gy and by g, is positive definite on E. Moreover, if g is complete, then so is the induced Kdhler structure
on E.
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Proof. The strategy will be to find an appropriate function v and use the methods we have just developed.
Firstly, if the curvature is uniformly bounded below by some ¢ > 0, we note that we can just use u(z) = .
The metric that is induced on the fibres then is then the standard metric on C* , which is complete. If M
is complete, the Hopf-Rinow theorem tells us that the metric induced on the total space is also complete.

So now assume the curvature is uniformly bounded below by some —b with b > 0. We claim that the
choice

2 1
u(x) = A log(c+ z) — 3 log(log(c + z)), ci=e

suffices. We will first show that this choice of metric will be positive definite in the vertical direction, i.e.

that the conditions of the previous proposition are satisfied. We see

) = 2 1 1 /2 1
~ 3b(c+x) 3logc+x)(c+x) 3(c+z)\b loglc+z)/)"
One thing we immediately note is that log(c + x) > log(c) = b, therefore

o' (z) > _ >0
~ 3b(c+ x) )

Secondly, we see

" 1 2 1 !

" / — ; % —_ ¢ °
wu(z) + @) = 5 <b loglc+ ) | (log(C“”))Q) .

So we see

We see

" / 1 c x
Tu ($)+u($)23(c+z)2<b+(log(c—l—x))2> > 0.

Thus we have proven that this is positive definite in the vertical direction. Now we want to show that
i00(u o t) defines a complete Kihler metric on the fibre. By the Hopf-Rinow theorem, it suffices to show
that length from the origin to infinity diverges. We see that this length is given by

Since the rightmost side diverges logarithmically, we see that the K&hler metric induced on the fibre is
indeed complete.
It remains to show positive definiteness in the horizontal direction. To do this, we note that by
assumption,
(Gap + u'(t)KAﬁaBCAEH)dzadZB >(1- btu’(t))gagdzadiﬁ.
Here, the inequality means that if a conjugate pair (Z, Z) of horizontal tangent vectors is plugged in,

then the inequality holds. We note that for every z > 0,

1— bz (z)=1— b z_ ! —l—i—; 2c+67x >1
N 3c+x) \b log(c+x)) 3 3(c+ux) log(z +¢)) — 3~

Thus we see that the Kahler metric in the horizontal direction is bounded below by % g . Thus the Kahler
metric is indeed positive definite in the horizontal direction. Again, if g is complete, we see by Hopf-Rinow

that the Kéhler metric on the total space is complete. O
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Corollary 4.1.8. The total space of a holomorphic hermitian vector bundle over a compact Kdhler

manifold admits a complete Kdhler metric.

In particular, CP™ \ {x}, i.e. CP™ with a point removed, always admits a complete Kéhler metric,
as it can be realised as a holomorphic line bundle over CP"~! .

Thus we have a method of producing complete Kéhler metrics on certain open manifolds. The next
step is to precisely control the curvature of these metrics to produce examples of open Calabi-Yau’s. To
make our life easier, we will work over Kéhler manifolds with an exceptional amount of symmetry, we

will work over Kdahler-FEinstein manifolds.

Definition 4.1.9 (Kéahler-Einstein manifold). A Kéhler manifold (M, g) is called Kdhler-Einstein if there
is a constant kg € R such that Ric = kgg . Equivalently, if p = kow , where p is the Ricci form and w is the
Kahler form. In this case, we will say that the Ricci curvature is constant and that g is a Kahler-Finstein

metric.

In particular, Ricci-flat Kéahler manifolds are precisely those Kéhler-Einstein manifolds with kg = 0.

Since the Ricci tensor satisfies Equation (2.2.36), i.e.
R,5= —85((det(g,yg))*18a det(g,5)) = —0a05logdet(g,5) , (4.1.8)
we see that the Kahler-Einstein condition translates to
det(g,z) = | f?e 20, (4.1.9)

where f is an some nonvanishing holomorphic function. If kg # 0, we can redefine ® — ® + ﬁ log(|£]?),
and we can redefine ® — ®/2, i.e. w = i00®, such that

det(goz) = e "% (4.1.10)

Now, if kg = 0, we have vanishing Ricci curvature. Since Ricci curvature is precisely the curvature of
TM19) | we see that vanishing Ricci curvature means that we can locally pick a flat frame and normalise
it, i.e. a frame such that det(g,z) = 1.

All in all, on a Kéhler-Einstein manifold, we can always pick our setting such that Equation (4.1.10)
holds locally.

We now want to find Kéhler-Einstein metrics on the total space of holomorphic vector bundles £ —
M | however, this is a very difficult task. To make things easier, we restrict ourselves to the setting of
holomorphic line bundles L — M . We assume L can be equipped with a hermitian metric A of constant

curvature, i.e. such that K5 = —0,05log(h) = —lg,z for some [ € R. This is then the condition
h=|f%!?, (4.1.11)

for some holomorphic function f, where we note that we redefined ® such that g,5 = 9,03® . Again, by

picking an appropriate frame for L, this can be simplified to the condition
h=e?. (4.1.12)

Now, we note that first real Chern class of a line bundle must always be the image of an integral class, so

we see that this constant curvature condition must mean that ilw defines an integral class. Moreover,
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the converse is also true, if L is a holomorphic line bundle with first Chern class %lw, then it admits a
hermitian metric with constant curvature [ [Cal54].

. 1

Since p € 2mc1 (M), 5-

nonzero lattice A C R such that [ € A means %lw is an integral cohomology class. However, if kg = 0,

kow is an integral cohomology class. So if kg # 0, we see that there is a

things are a bit more difficult, as %kow = 0, so integrality of this class tells us nothing about w. We will
ignore this difficulty and from now on, we will assume [w] is an integral class, i.e. g is a Hodge metric,

where we note that if kg # 0, this can always be achieved by rescaling g .

Theorem 4.1.10. Let M be an (n — 1)-dimensional complex manifold with Hodge metric g of constant
Ricci curvature ko . Let L = M be a hermitian line bundle of constant curvature —l. For every zo > 0,
define the real hypersurface
Hyy:={qe L:t(q) =xo}.

Let u(x) be a function of one real variable defined on an interval I C R” around xo. Then the Kdhler
type form wr, = i00¥ = i00(m*® + uot), is positive definite if and only if u satisfies the differential
inequalities

1+ lzu/(z) > 0; u'(z) + zu” (z) > 0. (4.1.13)
If these conditions are satisfied, and if furthermore | # 0, then the metric induced by iO0V has constant

Ricci curvature k if and only if u satisfies the equation
(1 + 1z ()" 1 (z) + 2 (2)) = cx!” o=kl g—hku(x) (4.1.14)
where ¢ is some positive constant. If | =0, one forces k = kg, and the condition becomes

u(x) = 2k~ tlog(1 + coka®) + cylog(z) + co, (I=0,k =k #0);

(4.1.15)
u(z) = 2z + ey log(x) + ¢, (l=0,k=ky=0),
where ¢, ¢y, 1, o are arbitrary real constants such that ¢y # 0.
Proof. We have
i00¥ = i(1 + lxu'(x))gagdzadzﬂ + ie!® (u/ (z) + zu" (2))| V()2 (4.1.16)
From this, it directly follows that the conditions
1+ lzu/(z) > 0; W' (z) + 2u”(z) >0,
are necessary and sufficient for this form to be positive definite.
The volume form of this form is given by
voly, = (1 + Lo/ (x))" te R0%e!® (4! () + zu” (), (4.1.17)

—ko®

as we assumed det(ga/;) =e . We want the curvature of the metric induced on the total space to be

constant constant and equal to k, we see that this condition is
det(0a050) = |f[Pe™Y, (4.1.18)
where f is some nonzero holomorphic function. So the condition becomes

(1 + Lz ()" (! (z) + 20" (2)) = | f)? exp((ko — | — k)® — ku(z)). (4.1.19)
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We now see that, if [ # 0, the condition h = €/® means that e® = |g|2xlil, where ¢ is some
holomorphic function (note that we assume z # 0 in the theorem), which we can incoorporate into the

definition of f, therefore, we get the equation
o Ro=R=D (1 4 1 (2))" N ( (m) 4 2 (2)) R = | )2 (4.1.20)

We will now reason that |f|? is constant. Suppose that it’s not, then we note that we must be able to
find a point p € M where d,|f|? # 0, and then we can locally find a hypersurface ¥ of constant |f|*>. We
note that this hypersurface must agree with the hypersurface of constant ¢, as we have Equation (4.1.20)
relating the two. This means that 0,; and s must lie in 7,2 ® C, which means these vectors must be
horizontal. This means the curvature of A must be zero at p, which is a contradiction, as we assumed
[ # 0. Therefore, | f|?> must be constant. Thus we have derived the equation corresponding to [ # 0.

On the other hand, suppose | = 0. Then Equation (4.1.16) tells us that the induced Kéhler metric
locally splits into a Kéhler metric on M and a Kéhler metric on the fibre of L. For this to have constant

curvature, we therefore need to have k = ko. Then Equation (4.1.19) becomes
o (x) + zu(x) = | f|? exp(—ku(x)) . (4.1.21)

Moreover, the induced metric on the fibre must have circular symmetry, therefore | f|?(e?z) = | f|?(x) for

any @ € R, so we see that f = a¢? for some a,b € R, with a nonzero. Thus we see
u'(2) + zu” (x) = ax® exp(—ku(z)). (4.1.22)

Now, this is a second order linear ODE, so we see that Equation (4.1.15) are indeed the possible solutions.
O

Now, in the previous theorem we assumed x # 0. The next step is to extend to the zero section

Proposition 4.1.11. If the induced Kdahler metric metric gy, from the previous theorem is defined around
0, it can be reqularly extended to the zero section if and only if, in the general case, k = ko — 1 and

W' (0) > 0. In the particular case | = 0, this condition becomes
u(z) = 2k~ log(1 + cAkx) + ca; (k=1Fko#0,c0 #0),

or

u(a:):ch-i-cz; (k=ko=0,c0 #0).

Proof. When | = 0, we want u to extend to the zero section, and we want u/(z) +zu” (x) to extend to the
zero section and be positive. Thus we see that the given formulas are the only possibilities. Therefore,
we will focus on the case [ # 0. Multiplying both sides of Equation (4.1.14) by I=*(ko — k) — kxu/(z) and
integrating, we get

ko k

n—[(l + lau/ (z))" — 1] — m[(l 4l ()" - 1] = el o=k g=ku(@) 4 ¢, (4.1.23)

We can describe the left hand side as P(xu/(x)), where P(w) is the polynomial

_ ko 0 k . ko k) kol — 1) (n+1) o
Pw) = (4 1w)" =1) = mmmem (4 Tw) +1—1)_j§::1 SEREY ) 2.

(4.1.24)
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Note that P(zu/(x)) admits a Taylor expansion around 0, therefore, the right hand side of Equation
(4.1.23) must also. Thus we see that [~1(ky — k) must be a nonnegative integer. Furthermore, the linear

term of P(zu'(z)) is
R (0)

while it does not have a constant term. Therefore, we must either have kg = k and

co = —ce PO

or 71 (kg — k) = 1 and ¢y = 0, to make the linear terms on both sides of (4.1.23) match. In the first
scenario, we see that the linear term on the left hand side vanishes, therefore so should the linear term

on the right hand side. However, this linear term is
—cku!(0)e ROy |

so if k # 0, the condition «'(0) > 0 tells us that this is impossible. If k = 0, however, the right hand side
of (4.1.23) becomes constant. The equation we then obtain is of the form u/(z) = ¢/z, which does not
have solutions for z = 0. Therefore, the first condition cannot happen if we can extend u(x) regularly to
the zero section.

We will focus on the second condition, i.e. [ = kg — k and c3 = 0. Then we get the equation
P(a/(z)) = cxe Fu@) (4.1.25)

where k = kg — [ . Note that the derivative of P at 0 is 1, therefore, the inverse function theorem tells us
we can find a unique analytic inverse F'(v) defined around 0 such that F(P(w)) = w. We introduce the
parameter

€ := F(cwe M@y (4.1.26)

Note that = 0 means £ = 0, as P(0) = 0. Thus, we see that we have zu/(z) = £. Moreover, if we
differentiate both sides of P(£) = cze #(*) | we get

P’(g)dg = c(e—k}u(x) — k’xu/(x)e_ku(a:))dx

= PO -k %

We see " .
P'(w) = 70(1 +lw)* ! — T+ lw)" (1 + lw) = (14 lw)" (1 — kw). (4.1.27)
e T = T exp </§ (1+ lw)n_ldw) u = ug + /5 wil + lw)n_ldw (4.1.28)
= X — ; = — < aw. L
e Pw) "o P

Here, o > 0 is such that czge ¥ lies in the interval where F' is defined, and these formulas hold for
every other £ in this interval. This formula can be used to extend u to the 0 section regularly. This

completes the proof. ]

Note that £ has a geometric interpretation, if we take the disc D := {¢ < r} in some fibre, we see that
the area is precisely 2whé(r), so € indicates the factor by how much the area of discs change due to the

introduction of w in the Kahler potential.
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We have three interesting cases, the last of which is the most important one for us. Before we state
them we need a technical result about roots of unity, which we shall quickly state and prove to save the

reader some time in trying to prove it themselves.

Lemma 4.1.12. If w = e*™/"  for some n € N\ {0}, we have
n—1

H(z—wj):1+z+22—|—...—|—z"_1,
j=1

for every z € C.

Proof. We note that

n—1

H(z—wj):z"—l,

=0
as the roots of unity are precisely the roots of 2z’ — 1. We also note that

=1=(z—1)(1+z2+22+ .. +2"1).
When 2z # 1, dividing both sides by z — 1 gives the desired result. Since both sides are continuous
functions, we see that this equality extends to z = 1. ]

In particular, we have
n—1

[[a-w)=n.

j=1
We will now give the special cases we talked about earlier:
1. If kg = 0, i.e. if M is Ricci flat, and k = —I, then we have P(w) = (n + 1)~ (1 + lw)" ! —1].
Then, applying partial fraction expansion, we get

€ DI(1 4 lw)™ 1
x:xoexp</ (n+ )(::rlw) dw>

" (nA4 1w 1—wl +1¢
= E | .
P\ S =) P\ = g

n .
i 1—wl +1€
J

= xg exp ]E:Ow log(l_wj l&))

where w := 2™/ (") The last equality follows from the lemma. Likewise, we get

$(n+ Diw(l + lw) 1
= up + d
u(w) = uo /g A +iwyti—1 Y

0

=i ()

1 P
= —log <<£)> .
l cx
Summarizing, we have

T = Xoexp Zw‘j log (%) ; u(z) = 1log (P(§)> . (4.1.29)
i=0 0
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2.If 1 # 0, ko = —nl, k = —(n + 1)l. Then we see P(w) = w(l + lw)™. The integrals become
elementary,
E(1+1&) 1 1+1€
=0 = -1 . 4.1.30
BTN R R B S (4.1.50)

3. Lastly, the case that’s most interesting for our purposes, | = kg and k = 0. We see P(w) =
(nl)~Y((1 + lw)™ — 1) . Therefore,

P(§)
P(&)

xr =X (4.1.31)

Likewise, we see

Enlw(1 + lw)" ! $1-(1+lw)" !
u—u0+/ nlw(l + lw) dw—u0+n(£—§o)+n/ L+ lw) dw
o &

(14 Iw)r—1 , (I4lw)m—1

Applying partial fraction expansion, we can calculate the remaining integral,

/51—(1+Zw)"1 1= nw —1) <1—wj+l§>
dw—f nl log | ———=
g6 (1I+lw)r—1 l L1 —wp) 1—wi+1&
1—wi + 1€
l—wj—l—l&) ’

where w = 2™/ In the last line, we applied the lemma and we noted that the j = 0 term vanishes,

0

||M: QM|

l
I -

as 1 —1=0. In total, we get

1—wj+l§>

—_— 4.1.32
1—wl +lfo ( )

1 n—1 '
) = o+ (e = ) = § Y (1 =)o
7j=1
Now we have defined a Kéahler-Einstein metric on some maximal domain £ C L and we have tackled

the question whether this can be extended to the zero section. The remaining question is completeness.

Theorem 4.1.13. Let M be an (n — 1)-dimensional Kdhler manifold with constant Ricci curvature kg ,
and let L =5 M be a holomorphic line bundle with hermitian metric of constant curvature —L. Then the
Einstein-Kdhler metric, adapted to these data on a neighborhood of 0 on total space of L, and positive
definite on a mazimal domain E C L, defines a complete Finstein-Kdhler structure on E if and only if
M is complete, k =ko—1,1>0 and k <0.

Proof. We will begin by proving the necessity of the conditions. The necessity that M be complete is
immediate, as it can be realised as the zero section of L, k = ky — [ follows from the previous proposition
and the condition k < 0 follows from Myers’ theorem, as the total space of L is not compact.

The remaining condition is [ > 0. The proof will be by contradiction, so suppose [ < 0 and that L
is complete with the induced Kéahler metric. We see that u(z) satisfies the condition zu'(x) = £, where
€ lies in the interval (0,c;), where «; is the smallest positive root of P(w), or (0,00) if P(w) has no
positive roots. This is because there is a P(£) in the denominator of the integral that u(x) amounts to,
so if P has a root at some £ > 0, u/(x) cannot be defined there. The induced Kéahler type metric is
positive definite when ¢ lies in the interval (0,min(—I"%, 1)), by the condition 1 + lzu'(x) > 0. The

other condition is satisfied then as well, as

(@) () = G o) = o = POU ' 0.
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We study the asymptotic behaviour as & — min(—I~%, a1) . To do this, first note that we have the identity

ko + nl
P(w) = w(l + lw)" — 07;;”1 2Zj 14 lw) L (4.1.33)

this fact can be proven using the identity
n .
l+nz(l+x)"—(1+4+2)" = x2Zj(1 + )L,
j=1

which can be easily proven by induction onn > 1.
Using this expression for P(w), we see that it has a root in (0, —I~!) if and only if ko > —nl. To get a
contradiction, we will prove that infinity is not infinitely far away, then we know that the metric cannot

be complete. Therefore, take a path ( = 7 for 7 > 0. We see

dg

dz’

(Zﬁ)Q = 2(u/(2) + v (z))h = 2h°>

where z = ar?. Therefore,

dr 1 dx
d§  2v/ha €
Thus,
(L) - Lo _rier
d¢ 2x d€ 2P()
Hence,

o= [ (O (4130

From Equation (4.1.27), we know that the roots of P'(w) are at —~! and at k~!. Firstly, we see that if
ko > —nl, then k = kg — 1 > —(n+ 1), i.e. k~! <I7!. Now we note that P(w) has a root at 0, so it
cannot have a root in (0,k7'], as it is either strictly negative or strictly positive in that interval. Now,
we noted earlier that P(w) has a root a; in (0,—I"!), so by this reasoning, it must be a simple root.
Therefore, we see that s converges as £ — 1. Secondly, if kg = —nl, we see that P(w) = w(1 + lw)"
which has a root at w = —I~! such that we get s — v/2(v/—I1"141) as £ — —I~. Thirdly, if ky < —nl,
the integral converges trivially as £ — —I~!, as P(w) has no roots in (0, —17].

So we see that | > 0 is necessary for completeness. What remains is to show sufficiency. So suppose
M is complete, | > 0 and k = kg — 1 < 0. Then P(§) = fog(l — kw)(1+lw)" Ldw, see Equation (4.1.27),
is strictly positive for £ > 0. Thus, we see that Equation (4.1.28) is well defined for any £ > 0. If £ <0,
we see that P(w) is a polynomial of order n+ 1, so we see that the integral in Equation (4.1.34) diverges
as & — 00, so U(1) invariance in the fibre tells us that E is geodesically complete, so by the Hopf-Rinow
theorem, F is complete. Likewise, if k = 0, P(w) is a polynomial of order n, so the integral still diverges

as £ — 00, i.e. F is also complete. This shows sufficiency, thus the theorem is proven. ]

4.2 The Eguchi-Hanson space

Now that we have this construction, we will finally apply it to construct explicit Ricci-flat Kéahler mani-

folds. To do this, we first note that in the case where kg and [ are nonzero, taking the limit as £, — 0 in
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Equation (4.1.28) gives us

/n
o= L rign o 1) — ¢ - LMoL

cnl l

where c is an arbitrary constant, so we can pull the nl into its value. Plugging this into u, we then see

1—w

u(w) = u(0) + (1 + )V - §Zj L) <(1 +on) = ‘*’j) . (121)

In particular, if M is a Kéhler-Einstein manifold with Ricci curvature kg, we see that Kj; with the
induced metric has curvature —kg, so in this setting, there is a Ricci-Flat Kahler metric on the total
space of K induced by the u(z) of this form.

So let M = CP™! and equip it with the Fubini-Study form. We note that O(—1) is the blow-up of
C™ at the origin, so we can equip it with the metric induced by the standard metric on C" to turn it into
a hermitian vector bundle. Since the Fubini-Study form is defined by the Kiihler potential ® = log(|o|?),
where o is any local holomorphic section of O(—1), i.e. W™ = idd1og(|o|?). We then see that O(—1) has
constant curvature —1, by definition. Thus, this means that Kcpn-1 = O(—n) has constant curvature

—n.Le. wFS

is a Kéhler-Einstein metric of constant curvature n. Thus the above procedure gives us a
Ricci-flat Kahler metric on the total space of K¢prn-1.

To make things a bit more explicit, we note that Kcpn-1 = 79" | and that the Kahler potential pulled
back to 7% has explicit form 7*® = log(r?), by definition. So, considering the map (—)" : 7\ {0} —

Kcp1 \ {0}, we can pull back everything to 7\ {0} to get potential

1—w

— . ] 2n\1/n _ , j
\Ilzlog(r2)+u(0)+(1+cr n\1l/n Z W <(1+C’F ) ' w )

Now, we note that

z_: 1+T2nl/n_ )

7=0

log(r?) = %log(((l +r2mlmn 1) =

SM—‘

Thus, picking appropriate values for ¢ and «(0), which were a priori left undetermined, we see
U =1+l Zoﬂ log((1 4+ r2M)Y/m — ). (4.2.2)

In the particular case n = 2, i.e. on the complex manifold (7*CP!)(19) | we have
U=1+rH2 4 +(log(1 + Y2 — 1) —log((1+rHY2 + 1)),

SO wWe see
, OV

9o = 3a85\11 = aaaﬂr 92

+ 0, 7’28Br

(Or2)?”

We see 0,72 = 2% and 857‘2 = 2P . So we compute

2
1
0,2V = ! + =77 2/1+7r4,

Vi+rd o o214+ 04
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hence

9ap = 3 Oaf — WZ 2P (4.2.3)
This is known as the Eguchi-Hanson metric on (T*CP')19) | which was discovered independently from
Calabi by T. Eguchi and A.J. Hanson in 1979 [EH79]. Note that (7*CP')(19) is diffeomorphic to T*CP?
so this construction can be used to put a Ricci-flat Kéhler structure on T*CP? .

One property of this metric is that it is asymptotically locally Euclidean (ALE), which is to say that
it converges to a locally Euclidean metric as r — oo sufficiently quickly [Joy00]. This property makes it
so that it can be used to locally approximate certain K3 surfaces.

To see this, we briefly sketch Kummer’s construction of the K3 surface [Kum75]. We start with a four
torus T4 = C?/Z* . We define an involution ¢ : T% — T* by letting it act on C2 by 1(21, 22) = (—21, —22) .
We see that this involution has 16 fixed points on the torus, so the quotient 7%/Zs has 16 singularities
that can be modelled on C?/Zy . Blowing up C2?/Zs at the fixed point gives us O(—2), which is T*CP?! .
Moreover, it is known that blowing up 7%/Zs at the fixed points gives a K3 surface [Joy00], so this
particular construction of a K3 surface looks like 7*CP! around a blown up point. Now, there is no
known explicit formula for the Ricci-flat Kdhler metric on any K3 surface [Joy00], however, the Ricci-flat
Kahler metric on Kummer’s construction of the K3 surface can be approximated by the Eguchi-Hanson
metric around the blown up points, as this metric is asymptotically locally Euclidean, meaning the
Eguchi-Hanson metrics around different blown up points are approximately the same far away from the

blown up points. For details, we refer the reader to [Joy00].

5 Calabi-Yau manifolds in string theory

So far, we have studied and proved the Calabi-Yau theorem and we have given a nontrivial example of
an explicit Calabi-Yau metric on Kcpr . In this chapter, we will give a huge application of the theory of
Calabi-Yau manifolds, as Calabi-Yau manifolds are a cornerstone of superstring theory.

Superstring theory is a theory of quantum gravity. The idea is that particles are not described by
worldlines, but rather by two-dimensional worldsheets. These are described by embeddings of some two
dimensional surface ¥ into some target manifold M™ , which is a Lorentzian manifold with metric G .
We can describe this as a nonlinear sigma model on Y. If the embedding is the only field we put on the
string, then we have a bosonic string theory, which always has a tachyon in its ground state [GSW8T7a;
BLT13; BBS07]. This is a rather unfortunate fact, we want to get rid of this tachyon. One way to do so
is by introducing fermions on the worldsheet and using spacetime supersymmetry, i.e. supersymmetry
on the target space M".

There are two different formalisms one can use to get supersymmetry. On the one hand, one can
upgrade the target space M to a supermanifold, which has both bosonic and fermionic coordinates.
Then one can write down an action for the superstring that has manifest spacetime supersymmetry.
This is known as the GS formalism, named after M.B. Green and J.H. Schwarz [GS81; GS82a; GS82b].
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Equivalently, one could introduce fermions on the worldsheet and impose supersymmetry there. This
is known as the RNS formalism, after P. Ramond, A. Neveau and J.H. Schwarz [Ram71; NS71]. We
will follow the RNS formalism and our main reference will be [BLT13]. This approach gives us manifest
worldsheet supersymmetry, but not spacetime supersymmetry, which will have to be imposed later down
the road.

5.1 Superstrings in RNS formalism

For the moment, we assume the target space is flat, i.e. G\, = 1, . We start with the Polyakov action

for the bosonic string, i.e.
1

4o/

Sp = / B*ov/—hh*P 9, X" 05X, , (5.1.1)
P

where h is the worldsheet metric, o, 3,... run over the worldsheet coordinates, u,v,... run over the

spacetime coordinates 0¥ = 7, o!

= o, and spacetime indices are lowered and raised according to 7.
To get N = 1 supersymmetry on the worldsheet, one has to add two kinds of particles. Firstly, every
X" needs a fermionic superpartner ¥* . Then, the zweibein e,® must have a superpartner y, , known as
the gravitino on the worldsheet. Here, we let a,b,... run over Minkowski space. Since we want these
to be superpartners, we want the fermions to be real, so we impose a Majorana condition on them'.
Denoting the two dimensional Dirac matrices by p (which define Dirac matrices on the worldsheet by

applying the zweibein), we get the following action

1

2 _ 3 ,
S = d?ov/—h (O/haﬁaaX“agX“ + 20" p* 0Py — iXap® P P! (, / aaﬁxu — Z’me)) .

(5.1.2)

Using symmetries of the action, one can further simplify this action to superconformal gauge, in which

_87T )

this action takes the form

1 -

§=-1 : d*o(Ln*P o, X 05X, + ih* p*Oathy) (5.1.3)

where 7 is the Minkowski metric. See [BLT13] for details. Note that this differs from the one in [GSW8T7a].
On the one hand, the factor in front of the action is different, which is due to [GSW87a| choosing units
where o/ = % On the other hand, the second term in this action carries an extra sign. This is due to

chosen conventions for the Dirac algebra in two dimensions. In our convention, which is used in [BLT13],

0 1 0 1
0_ S
e=(0a) = (0h)

which gives us {p?, p°} = 2n?, where {—, —} denotes the anti-commutator.

we have

In superconformal gauge, we see that we have global worldsheet supersymmetry, which is generated

by Majorana spinors € such that d,e = 0, and is explicitly given by
5 XM =iy L eyt (5.1.4)
St = \/ 55 pPOaXPe. (5.1.5)

1This means that there are more fermionic degrees of freedom in the theory than bosonic degrees of freedom. To get the

theory properly, one would have to introduce auxiliary scalar fields F* for the multiplet (X*,4*) and a scalar field A for
the multiplet (eo®, xa), but these fields decouple, so we ignore them. See [BLT13] for details.
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Jumping to lightcone gauge, (5.1.3) becomes

1
s= L / dotdo (20, XFO_X,, + i(00_ s + 1 D10_)) (5.1.6)
)

:27T

Here, we defined ¢ = (¢,1_)T . Note that 1, and 1_ are both real Weyl spinors, which makes sense
as Majorana-Weyl spinors exist in 1 4 1 dimensions [BLT13].

We obtain equations of motion given by

0,0_XH=0; (5.1.7)

Ayt =yt =0. (5.1.8)

Before we do mode expansions to find the solutions to these equations, we note quickly that ¢* do
not have the same geometric interpretation that the X* do. Therefore, if we consider a closed string, it

is not obvious that they should obey periodic boundary conditions like the X* do. In fact, for a string
of length ¢, and picking a variation di*(79)dy# (1) = 0, we see that we get

T1
={
5= [ (o0 — v 00,)[7 = 0.
0
For the closed string, we see that we get the requirement

(¢i5%+ - ¢ﬁ(5¢u—)(‘7 +4) = (¢i6¢u+ - 1#’15%—)(0) )

for which we see

Pi(o+ 1) = £l (o); (5.1.9)
P (o +0) = £t (o), (5.1.10)

where we note that ¢ is Majorana, so other phase factors are not allowed. We see that we can either
have periodic (Ramond, R) or anti-periodic (Neveau-Schwarz, NS) boundary conditions. Spacetime
Poincaré invariance requires that all 1/)2, w}_, ..., get the same boundary conditions, and likewise for
¢!, however, ¢! and ¢ could still have different boundary conditions. So we have four total options
for boundary conditions of, respectively, wi and ¥ , namely R-R, R-NS, NS-R and NS-NS. These four
options define the four different sectors of our theory.

For the open string, we need that wi&ww — " §1p,,— vanishes at 0 and ¢ independently. Therefore,

we need to impose

PH(0) = £ (0)

P (0) = £JE(0).
We can freely change the sign of 1" | so the only boundary condition that is physical is the one at ¢.
We will not consider branes in this part of the thesis, so for now we assume we can only have Neumann
boundary conditions for wi and ¥* at the boundaries. This means that spacetime Poincaré invariance

must be preserved at both boundaries of the open string, so we see that we must pick the same sign for

every p at £. Thus, we see that we get

Vi (0) = E(0); (5.1.11)
Wl () = 9 (0), (5.1.12)



where we again refer to the positive boundary condition at ¢ as Ramond, or R, and to the negative
boundary condition at £ as Neveau-Schwarz, or NS. The open NN superstring has only two sectors, the
NS sector and the R sector, depending on the boundary condition.

We can do mode expansions for the theory. The bosonic part gets the same result as in bosonic string
theory, so we focus on the fermionic part. We see that for the closed string, with R boundary conditions

for the respective chiralities, we get

2 _ )
(o) = [T S e @1

neL

W (1,0) = | /277T S e~2minto =)/t (5.1.14)

rez

Likewise, for NS boundary conditions in the respective chiralities, we get

Y (r,0) = \ 2% > ppermrlotn/t, (5.1.15)

T€Z+%

W (r,0) = ,/27” S ppe2mine=n)/t (5.1.16)

rEZ-&-%

Here, the normalisations are arbitrary, but have been chosen for later convenience.

For the NN open superstring with R boundary conditions, we have

Yhi(r,0) = \/i > diemimnoEnL (5.1.17)

neZ

and for NS boundary conditions, we get

¢i(7‘,0):\/§ > ppemimioEn/L, (5.1.18)

TEZ“F%

The Majorana condition tells us (d)* = d"

", » with analogous relations for all other Fourier coeflicients.

This completes our discussion of the classical superstring, now we turn to quantising.
Using the canonical anticommutation relations {¢/) (o), v%(0)} = 2r 9" §(0c — 0')dap , with A, B, . ..
spinor indices, we can derive the anticommutation relations

{di. dyy} =" O (5.1.19)

mn»'n

and analogous relations for the other Fourier modes, mixed anticommutation relations vanish. In partic-
ular, the dg modes (up to a constant factor) satisfy the Dirac algebra, and are therefore Dirac matrices.

Letting o4, denote the Fourier modes of the bosonic sector of the theory, we can now define the ground
state of the R sector by ah|0) = di|0) = 0 for any n > 0, and likewise we can define the ground state for
the NS sector by ah,|0) = b|0) = 0 for 7,n > 0. [BLT13] then shows that for the closed string, b}, d, and

aly increase o’m? by —2r, —2n and —2n, respectively for r,n < 0, and for the open string, by —r, —n
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and —n . In particular, the dfj do not change the mass and therefore leave the ground state invariant.
This means that the R sector ground state becomes an SO(1,m — 1) spinor.

When going to lightcone gauge, using the residual supersymmetry, one can gauge away ¢+ := %(1&04—
¥!), where the superscript is now a spacetime index, not a spinor index. Moreover, as [BLT13] shows,
the d;;, b (and their barred counterparts in case of a closed superstring) can be expressed, respectively,

%

¢, with ¢ running over the transverse directions. In

in terms of d’, and of, and in terms of b. and «
particular, we see that b, /2|0> in the NS sector transforms as a vector under SO(m — 2). The only way
this is possible is if b’ | /2 |0) is a massless vector under SO(1,m—1). However, this means that the ground

2

state of the NS sector has a'm* = —1/2 i.e. it is a tachyon. Moreover, using (-function renormalisation,

[BLT13] also shows that the normal order ambiguity in the NS sector satisfies axg = —7=(m — 2). So

2 =ang = —% for the ground state, we obtain the critical dimension m = 10 for the superstring.

using a’'m

In fact, after imposing the equations of motion for the R sector ground state in m = 10, we only have
8 independent components, transforming as a Majorana-Weyl spinor under Spin(8) in the standard, or
the conjugate representation. See [BLT13].

Moreover, we see that the R sector contains the spacetime fermions of the theory, while the NS sector
contains the spacetime bosons. Thus, in the case of a closed superstring, the R-R and the NS-NS sector
are bosonic, while the R-NS and NS-R sectors describe the fermions in the spectrum. In particular, in
the NS sector, we get anticommuting operators mapping bosons to bosons, which is rather odd.

Finally, we see that the NS sector spectrum masses are half integer spaced, while the R sector masses
are integer spaced, in particular, this means we cannot have spacetime supersymmetry, which requires
massive bosons to have fermionic counterparts of equal mass.

All in all, there are quite some issues with the spectrum as of right now. Luckily, we are not forced
to consider the full spectrum of the superstring. Rather, we can project out many states to get a theory
that doesn’t have these issues. This process is known as GSO projection, named after F. Gliozzi, J.
Scherk and D.I. Olive [GSO77], see also [BLT13]. The basic idea is to define an operator (—1)¥ | which
counts the fermions. Then we associate (—1)¥|0)xg := —|0)xs , and multiply by —1 every time we add a
fermion into the theory. Projecting the spectrum on (—1)f = 1 for the NS sector then projects out the
half integer states, including the tachyon. Likewise, in the R sector, we define (—1)" in a slightly more
involved way, such that it is +1 on the vacuum in the standard representation of Spin(8), and —1 on the
vacuum in the conjugate representation of Spin(8). Then GSO projection requires choosing a projection
onto (—1)f = +1 or (—=1)¥ = —1 for the R sector.

For the closed string, GSO projecting can be done in two inequivalent ways, one where the (—1)f" in
the R sector agrees with (—1)F, and one where the signs are changed. (—1)F = (=1)F = +1 leads to

Type 1IB superstring theory. Its massless spectrum consists of the bosons

[(1) +(28) + (35)u](ns,ns) + [(1) +(28) + (35)s](r,R) -

where (35), are the degrees of freedom of a (massless) graviton, (35), are the degrees of freedom of a
four-form with self dual exterior derivative, (28) are the degrees of freedom of an on-shell two-form, and

(1) represents a scalar. The fermions in the massless spectrum are

[(8)c + (56)c](r.Ns) + [(8)c + (56)c](ns,R) 5
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the (8). are on-shell spin-1/2 spinors transforming in the conjugate representation of Spin(8), known as
dilatinos, while the (56). are spin-3/2 particles known as gravitinos. We see that the fermions and the
bosons in the theory have equal number of degrees of freedom. In fact, it can be shown that this admits
N = 2 spacetime supersymmetry, i.e. supersymmetry with two generators, at least when M = R |

Choosing (—1)F" = —(—1)F gives Type IIA superstring theory, which has particles

[(1) +(28) + (35)u](ns,Ns) + [(8)w + (56)u](r,R) + [(B)c + (56)c](r,Ns) + [(8)s + (56)s](ns ) -

where the (NS,R)-sector now transforms under the standard representation of Spin(8), i.e. the (R,NS)-
and (NS,R)-sectors are anti-chiral. Here, (56), are the degrees of freedom of an on shell three-form field.
We again obtain N = 2 spacetime supersymmetry.

Lastly, one can get a theory of unoriented open strings by taking Type IIB superstring theory and
projecting onto the diagonal, i.e. making sure left and right movers are equal. The way we do this is by
defining the worldsheet parity operator Ps(t,0) = (7, — o), where / is the string length, and projecting
onto the part of the spectrum that is symmetric under Ps,. This gives Type I superstring theory, which

has spectrum
[(1) + (35)u](ns,Ng) + [(28)](r,r) + [(8)c + (56)c) (NS, R)+(R,NS) -

Again, see [BLT13] for details. This has N = 1 spacetime supersymmetry.
This completes our brief recap of superstring theory. The next step is to consider nontrivial target

spaces, in order to obtain an effective theory in four dimensions.

5.2 Nontrivial target spaces: Calabi-Yau manifolds

Now we will consider compactifications to reduce m = 10 to a four dimensional theory, the idea is to make
the extra six dimensions “small enough” such that they are no longer visible at low enough energies. If
we assume no background fields, this requires the extra six dimensions to form a Calabi-Yau manifold, as
was realised in 1985 by P. Candelas, G.T. Horowitz, A. Strominger and E. Witten [Can+85]. Our main
reference will be [BLT13] again.

We shall start by showing why these Calabi-Yau manifolds pop up here, and then we shall use their
properties to derive the effective four dimensional bosonic massless spectrum of the theory, also combining
the bosons into supermultiplets, i.e. multiplets invariant under supersymmetry transformations From
there, the massless fermionic spectrum could be derived, which we will not do here.

We let (M'°, G) be a ten dimensional Lorentzian manifold, such that it “looks like” a four dimensional
manifold at low enough energies. The way that we do it is by assuming it decomposes like (M, G) =
(M*,g) x (K5, g), where M* is our four dimensional universe, and K° is some compact manifold', where
we allow the metric ¢ to vary smoothly over the M*.

The first thing we see is that (K%, g) should be a Riemannian manifold, as then (M%,§) inherits
the time direction from MY, i.e. § is a Lorentz metric, such that the effective four dimensional theory
becomes a theory of general relativity. Moreover, we need (M, G) to have spacetime supersymmetry,

so the particular (K, g) we choose should respect that.

'One would be inclined to assume the seemingly more general case where M' is a K°-fibre bundle over M* | however,

such a generalisation isn’t needed, as a fibre bundle is locally trivial, and we’re interested in the local theory on M* anyway.
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So suppose we start with N = 1 supersymmetry in ten dimensions. We let @} denote the generator
of the supersymmetry, i.e. @ is a Majorana-Weyl spinor of SO(1,9). If we let a spinor € parameterise a
supersymmetry transformation, we require éQ|0) = 0, i.e. supersymmetry leaves the vacuum invariant.
In particular, since @ is an infinitesimal supersymmetry transformation, we see that for any field ¢, we
get 0cp = [€Q), @] , which is just the adjoint action. In particular, we see that (dcp) = (0][€Q, ¢]|0) = 0is a
necessary condition for € to parameterise a supersymmetry transformation. The first thing to note is that
the vaccuum expectation value of any fermion must vanish, as fermions necessarily transform nontrivially
under Spin(1,9), such that they break Poincaré invariance on Minkowski space. Thus any bosonic field
has (6c¥boson) X (Pfermion) = 0 irregardless of €.

Thus whether e parameterises a supersymmetry transformation is dependent on (J¢@fermion) = 0. In

particular, if v, denotes the graviton in m = 10, one can show
Oetpy = Vye+ o,

where ¢ satisfies (@) = 0, and V denotes the spin connection on M'°. Now, we see that the condition
becomes (V,€) = 0, so in particular, € must be covariantly constant on K°.

Thus, we see that spacetime supersymmetry requires (K°, g) to be a Riemannian manifold that admits
a spin structure such that it also has a global parallel spinor. We suppose for the moment that K% admits a
spin structure, which requires K to be orientable and the Stiefel-Whitney class wa(K°) to vanish [BH59).
We will show the existence of a parallel spinor is related to the holonomy group Hol(g) € SO(6).

First, note the exceptional isomorphism Spin(6) = SU(4), since these are both simply connected
integrations of s0(6) [Hum72]. So spinors on K° transform under SU(4) or its conjugate representation,
hence they can be described by four tuples of complex numbers. The holonomy principle tells us that a
spinor is parallel if and only if it is parallelly transported along any piecewise smooth v : [0,1] — K6,
Such spinors therefore only exist if the action of Hol(g) has a fixed spinor. Since the spinors transform
under SU(4), having a spinor fixed by parallel transport means that Hol(g) actually lies inside SU(3).
Thus K% admits a parallel spinor if and only if Hol(g) C SU(3).

Now note that by Corollary 2.4.4, we see that any K°® with holonomy inside SU(3) admits a spin
structure. Thus we see that the manifolds we are looking for are precisely the (K g) with Hol(g) C
SU(3) .

Moreover, we see that if Hol(g) C SU(2), then Hol(g) even fixes (at least) two chiral spinors, so
K has (at least) two fibrewise linearly independent parallel spinors of the same chirality. This means
that the N = 1 supersymmetry gets upgraded to an N = 2 supersymmetry on M*, where the different
supersymmetries come from the N = 1 supersymmetry on MY with two independent spinors on K
giving two inequivalent ways of applying supersymmetry transformations.

Now, as [BLT13] mentions, supersymmetric extensions of the standard model require N = 1 super-
symmetry, otherwise the theory does not allow for chiral matter. Therefore, in string theory, the most
interesting manifolds are the manifolds that have Hol(g) = SU(3).

So now suppose we take M0 2 M* x CY3 | where C'Y3 is a three complex dimensional (i.e. it has six
real dimensions) Calabi-Yau manifold with global holonomy Hol(g) = SU(3). We want to know how the
effective four dimensional spectrum looks like. We will only consider the Type II superstring, the Type
I theory can be obtained by projecting the spectrum of the Type IIB superstring like before. To make

things easier, we take a low energy limit, such that massive modes of the string get heavily suppressed.
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Moreover, we take a supergravity approzimation, which is to say we assume our CY? is much larger than
our string, such that stringy effects do not change the theory. This assumption might seem a bit weird at
first, given that the whole point is that the CY3 should be small, such that it only appears at very high
energies. However, the string itself lives at the Planck scale, so this assumption is just telling us that the
CY?3 is slightly larger than the Planck scale.

To see how the geometry of the CY? then influences the low energy effective theory, we first look at
the equations of motion for the various fields in the theory to find the possible modes. We will look at just
the bosonic sector, as the fermionic sector modes can always be derived from there using supersymmetry.
The bosonic sector contains a graviton, and various k-form fields depending on whether we consider the
ITA or IIB superstring (note that a scalar field is a O-form). The equations of motion of a k-form field A
are governed by its associated field strength F' = dA, in particular, there is some gauge symmetry left,
namely A — A+ dA, where A is some (k — 1)-form. Depending on which directions we chose to lie on the
CY?3, Ainduces I-forms on the M* for [ = 0,..., k, depending on the mode of the associated (k —I)-form
on CY3. E.g. if A, is a two-form on M1 it decomposes into Apn & Ami ® A;j , where p, ... runs over
the M0, m, ... runs over the M* and 4,... runs over the C'Y?, so we get a two-form on M* governed
by a scalar on CY?, a one-form governed by a one-form and a scalar governed by a two-form.

If A denotes a massless k-form on CY3, its action is given by

SAu/" F A«F. (5.2.1)
cys

Now, by the Hodge decomposition theorem, A = da+d* 5+ for some harmonic v, such that d*A = d*d«.
Thus we can fix the gauge by choosing A — A — da, i.e. d*A = 0. Then we see that the equations of
motion of A become

AA=0, (5.2.2)

i.e. d*8 =0. Thus we see that massless on-shell k-form instantons on C'Y? are precisely the harmonics.

Since harmonic forms represent cohomology, Proposition 2.4.6 tells us that scalars and six-forms
have 1 mode, one- and five-forms have only the trivial mode, two- and four-forms have h"! modes, and
three-forms have 2h%! + 2 modes.

Now we also have a graviton in the theory. This splits as h,, = lypn+himi+hij , so we get a graviton on
M* governed by a scalar, a one-form governed by a one-form (which has no modes and therefore does not
contribute) and some scalars on M* governed by hi; , which is not a two-form! Now, in order to preserve
supersymmetry, we note that the h;; must preserve the Calabi-Yau structure, i.e. g;; + h;; must still be
a Ricci-flat Kahler metric. However, this metric need not be Kéahler with respect to the same complex
structure, i.e. h;; can also change the complex structure of the underlying manifold. Thus, the h;; split
into two parts. Firstly parameters that fix the complex structure but change the metric to a different
Ricci-flat Kéhler metric, which means, by the Calabi-Yau theorem, that they generate translations in
the Kéahler cone. Secondly, we have h;; that change the complex structure. [BLT13] shows that these
complex structure moduli are generated by H(%(M; TM(LO)), i.e. the Dolbeault cohomology of 7'M (1:0)
at level 1, which could also be shown using e.g. the Kodaira-Spencer map and its properties [KS58].

Now, we note that our M := CY?3 has a holomorphic volume form ) that is unique up to scaling.
Thus, if we have a form « representing a class in H é (M; TM10) | we see that Q A o defines a O-closed
(2, 1)-form, where it is understood that the T'M (LO)_part of a is plugged into Q by interior multiplication.
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Moreover, since €2 is holomorphic, we see that
QAOa=090(QNa), (5.2.3)

such that this process gives us a well defined map ¢ : H})(M; TM™0) — HED(M). Now, if a €
QED(M), wesee a = 3, Bi Avi, for some B; € Q20 (M) and ; € QOV (M) . The 5; define global (2, 0)-
forms, thus nondegeneracy of € tells us they can be uniquely written as ¢x, (2 for some X; € I'(T'M (1’0)) ,
such that @ = QA Y. X; ® 7; . Therefore, any (2,1)-form a can be uniquely written as Q A § for some
B e QUM TM®) | where § is O-closed if and only if a is. This shows surjectivity of ¢. Now, if
QAa=QA B+ dy for some v € Q20 (M), we know that there exists a unique X € D(TM1-9)  such
that v = 1xQ, such that a = 8 + 9(X), i.e. they differ by an exact form, showing injectivity of .
Thus, ¢ defines an isomorphism between H é (M; TM10) and HZVD (M) . In particular, we see that the
complex structure deformations of CY? are classified by HZD (M) .

Now we have classified the different modes our fields can have on the CY3, so it is time to combine
the bosons on M* into supermultiplets, i.e. minimal supersymmetry invariant collections of particles.
One thing to note is that we started with N = 2 supersymmetry on M as we’re considering Type II
superstring theories. This means we get N = 2 supersymmetry on our M*. According to [BLT13], the

allowed massless supermultiplets we can consider are, firstly,
(2,2x 3, 1)y,

where the + indicates that the states with both helicities should be present in the multiplet. This
multiplet contains the graviton of spin 2 together with two gravitino’s of spin-3/2 and a graviphoton,
which is a massless vector particle in this supermultiplet. We appropriately call this the gravity multiplet.
The second multiplet we can use is

(1,2% 3,0)4,

consisting of a vector, two spin-1/2 particles and a scalar. We call this a vector multiplet. Lastly, we have
a supermultiplet consisting of
(3,2x0,—3) +hec.,

consisting of a spin-1/2 particle, its antichiral partner, and two spin-0 bosons, which we call a hyper-
multiplet. Note that we do not have Majorana-Weyl spinors in 6 Euclidean dimensions, so we have to
make sure the supermultiplets are real, i.e. we need to add hermitian conjugates to the supermulti-
plets. By collecting them in this way, we are thus making sure the multiplets are invariant under CPT
transformations.

If we carefully follow the compactifications, and if we let «, 3, ... and &, 3, . . . denote complex indices,
we get the following supermultiplets in our effective four dimensional theory for Type ITA, where we only

give the bosons, the fermions can be obtained by applying supersymmetry transformations:

1 Gravity multiplet: {hmn, (C1)m}
1 Hypermultiplet: {®, Bin, (C3)apy, (C3)a57}
h*! Hypermultiplets: {hag: hags (C3)agss (C3)apy}
h'! Vectormultiplets: 1(C3)map 9aps Bagl -
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Here h is the graviton, By, is the (NS, NS)-two-form, i.e. the two-form in the (NS, NS)-sector, ® is the
dilaton, i.e. the scalar in the (NS, NS)-sector, and C; and Cj are, respectively, the one-form and the
three-form in the (R, R)-sector.

Likewise, for the Type IIB superstring, we get the following massless bosons in the effective four

dimensional theory:

1 Gravity multiplet: {hmn, (Ca)mapy}
1 Hypermultiplet: {®, B, Co, (C2)mn}
rY! Hypermultiplets: {Pap> Bagr (C2)ap (Ca)pnagh
h*! Vectormultiplets: — {(C4),pagys hags Pajs) -

Here, Cy,Cy and C4 denote the various k-forms in the (R, R)-sector. Note that Cj has self dual field
strength, so a few of its degrees of freedom are removed.

We see a peculiar feature of the theory: compactifying a Type ITA superstring on a CY? gives the
same massless spectrum as compactifying a Type IIB superstring on a 61’\3 whose Hodge diamond is
flipped, i.e. hUL = p21 and h2! = h'! | where h are the Hodge numbers of CY? and h are the Hodge
numbers of C/’Y\3 . This particular symmetry is known as mirror symmetry.

This gives a rather interesting geometric question: given a three-dimensional Kéhler manifold (M, g)
with Hol(g) = SU(3), does there exist another three-dimensional Kahler manifold (M’, ¢') with Hol(¢") =
SU(3), such that the Hodge diamond of M’ is the flipped Hodge diamond of M ?

As of yet, this question remains unanswered, it is part of a field of study known as mirror symmetry.
This field of study is rather big, for an overview, see e.g. [Hor+03]. In [CLS90], a lot of evidence for
this conjecture has been shown using computer analysis on Calabi-Yau’s that arise as submanifolds of

weighted CP*’s, which is a generalisation of the quintic in CP* from Example 2.4.11.

5.3 Breaking supersymmetry

Now we have compactified Type II string theory on a CY? to get an effective four dimensional theory
with N = 2 supersymmetry. This is still not sufficient, we said earlier we want N = 1 spacetime
supersymmetry in the effective four dimensional theory. Thus, we have to break a supersymmetry. One
way to do this is by doing an orientifold projection. Recall that we constructed the spectrum of the Type
I superstring in Minkowski space by taking a Type IIB superstring and identifying left- and right-moving
modes using the worldsheet partiy operator Ps. Here, we do something similar, but to keep a theory of
closed strings, we first assume that we can find a holomorphic isometric involution 6 : CY3 — CY?3, i.e.
a holomorphic map such that §2 = id. This leaves two possibilities, since 6 is a holomorphic isometry,
either 8*Q = Q, or 0*Q = —Q). Now, we want our string spectrum to be invariant under simultaneous
application of Py on the worldsheet, and § on the C'Y3 . However, this does mean we want (Ps,6)? = id,
so [BLT13] notes that if 6*Q = —Q, we need to include a factor of (—1)fZ on the Pg, where FJ, is the
left moving fermion number. Thus, we define an operator S such that S = Px if 6 preserves 2, and
S = (1) Pg if § changes the sign of Q.

Now, we can apply this to the full string theory by extending 6 to an isometric involution on M0 =
M* x CY3 by letting it act trivially on the M* factor. Then we project onto the states that are invariant
under (S, 0).
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Now, we can do a similar trick for the Type IIA superstring, only now we need 6 to also change the
chiralities. Thus, we pick @ to be an anti-holomorphic involution on CY?. We see §*Q = €2™¢ (), where
¢ is some constant phase factor. However, we can get rid of ¢ by multiplying by a phase factor ™
so without loss of generality, §*Q = Q. The associated involution of the theory is then ((—1)ZPg,8),
and we project onto the states that are invariant under this operator.

Another way to break the N = 2 supersymmetry would be to introduce extra background fields on
the C'Y3 in order to get rid of some extra degrees of freedom. For instance, one could turn on a flux of
the (NS, NS)-three-form H := dB. The way to do this would be to let H be an exact three-form that
defines a nonzero cohomology class in H3(CY3;R), which is at least two-dimensional. These kind of
fluxes generally back-react on the metric to break Ricci-flatness, but if we’re lucky, we could still find
parallel spinors if we introduce torsion into the connection. This goes beyond the scope of this thesis and
will not go into details, we refer the reader to [BLT13] of [DKOT].

This completes our (rather brief) discussion of superstring theory and the role Calabi-Yau manifolds
play in the theory. This is by no means meant as a complete overview, as superstring theory is a very
deep subject with many interesting results. Some things we didn’t mention were the heterotic string,
introduced in 1995 by D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm [Gro+95], which is another
way of getting a string theory with fermions in m = 10, with N = 1 supersymmetry. Here, the idea is to
have a left-moving sector of a bosonic string theory combines with a right-moving sector of a superstring
theory.

Moreover, we have not mentioned branes, which can be viewed as higher dimensional analogues of
strings. Introducing branes into the theory can be used to e.g. get a theory of open superstrings with
Dirichlett boundary conditions, whose endpoints end on a brane. These branes will have to be charged
under the various (R, R)-forms in order to be able to couple to these strings. The upshot is then also that
these branes become stable objects. These objects were introduced in the context of superstring theory
by J. Polchinski in 1995 [Pol95].

Then there is also M-theory, where the fundamental objects are not strings, but rather branes of
different dimensions. This is a famous theory due to E. Witten. This is a theory with critical dimension
m = 11, and to get minimal supersymmetry in m = 4, it would have to be compactified on a Ga-manifold,
i.e. a Riemannian manifold with Gy holonomy. For an introduction, see [BBS07].

Moreover, string theory has many dualities associated to it, which intertwine various types of string
theories and M-theory. One example we saw above was mirror symmetry, which is a symmetry between
Type ITA and IIB superstrings. Mirror symmetry can be thought of as a type of T-duality (T stands for
“target space”), which also appears as a duality between different string theories compactified on tori.
For an introduction to dualities in string theory, see [BBS07].

Applying T-duality transformations to certain settings with (NS, NS)-flux present requires introducing
new fluxes that lead to a non-geometric theory, i.e. the theory itself is no longer a theory of strings
compactified on some manifold, but rather the extra six dimensions in the theory are assumed to be
various fields on the string that do not necessarily have a strict geometric interpretation. One model of
such strings is a model of symplectic gravity, which is described in [Blu+13], and uses the theory of Lie
algebroids, to which we will get back in Section 6.4.

Lastly, there is a notion of F-theory, which is a theory in 12 dimensions. When we assume the
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12-dimensional manifold is a 72 fibration over some 10-dimensional manifold, one obtains Type IIB
superstring theory. This is a rather deep theory due to C. Vafa [Vaf96], and goes well beyond the scope
of this thesis, for a brief introduction, see [BBS07].

6 Outlook: Lie algebroids

So far, we have studied the classical theory of Calabi-Yau manifolds, by studying their existence, using the
Calabi-Yau theorem. Moreover, we provided an explicit example of a non-compact Calabi-Yau manifold
and we studied a particularly big application of the theory, namely the theory of superstrings. Now we
will venture into a bit more uncharted territory and we will propose and study a possible generalisation
of Calabi-Yau manifolds to the setting of Lie algebroids.

As a bit of motivation, in literature, there is a notion of log Calabi- Yau manifolds, see e.g. [DKW13;
Ish00; GHK15], which are defined by (existence of) a global holomorphic top forms with particular
divergence behaviour towards a divisor. The downside of this definition of log Calabi-Yau manifolds is
that it doesn’t ask whether this holomorphic top form is induced by a Ricci-flat Kéhler metric. Moreover,
since Ricci-flat Kéahler metrics can also have a torsion canonical class, they do not necessarily admit a
global holomorphic top form, so this definition of log Calabi-Yau also does not allow for those kinds of
settings. By using Lie algebroids, we can define a setting where Riemannian metrics with logarithmic
divergences are allowed, so we can formulate an alternative definition of log Calabi-Yau manifolds where
we do take into account the underlying Riemannian metric.

Lie algebroids form a natural setting to do geometry on, as we will discuss in Sections 6.1 and 6.2, so
it is natural to try to ask the same questions as in the Riemannian setting. Thus, in Section 6.3, we will
start with developing the theory of Riemannian Lie algebroids, in particular Kahler and Calabi-Yau Lie
algebroids.

Finally, in Section 6.4 we discuss a bit how Lie algebroids pop up in modern day string theory and
in Section 6.5 we shall suggest a place where Calabi-Yau Lie algebroids might pop up in physics, though
that suggestion is very underdeveloped as of yet and might not be of interest after all.

Note that much of this chapter, namely Sections 6.2, 6.3 and 6.5, is work-in-progress research and is
far from a completely finished story, so many of the results are only intermediate and a final conclusion

is lacking as of yet.

6.1 Lie algebroids: basic results and examples

We will start by introducing Lie algebroids and giving a few examples. In the next two sections, we will
put geometric structures on these Lie algebroids and we will see how classical geometry can quite easily
be lifted to Lie algebroids. In Section 6.4 we will also give an application of Lie algebroids in physics,
using a few of the geometric structures that we introduce on Lie algebroids.

In this section, we assume the reader is familiar with differential geometry, we will not develop the full
theory of Lie algebroids as it is not needed for this thesis. A good resource to learn about Lie algebroids
is [CFM21].

Lie algebroids are vector bundles equipped with a particular structure that makes them act like

the tangent bundle in many ways. They were introduced in 1967 by J. Pradines as a tool to study Lie
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groupoids infinitesimally [Pra67]. The correspondence between Lie algebroids and Lie groupoids has since
been extensively studied, with a famous result by M. Crainic and R.L. Fernandes giving necessary and
sufficient conditions for Lie algebroids to be integrated to Lie groupoids [CF03]. In this thesis, however,
we will not discuss any Lie groupoids. Rather, we will focus on the Lie algebroids themselves, as many
geometric constructions can be quite easily generalised to this setting, as we shall see in Chapter 6.

Let’s begin with a definition

Definition 6.1.1 (Anchored vector bundle). An anchored vector bundle is a pair (A, p), where A — M

is a real vector bundle, and p: A — TM is a morphism of vector bundles.

The idea behind this definition is that it gives vectors in the vector bundle a sense of direction. In
particular, given a function f € C°°(M) and a vector v € A, we can make sense of the derivative of f in
the direction of v because we can compute p(v)(f).

However, the tangent bundle also carries an internal differentiation, namely the Lie bracket. Imitating

this on an anchored vector bundle, we get the notion of a Lie algebroid

Definition 6.1.2 (Lie algebroid). A Lie algebroid is a triple (A, p, [—, —]4), where (A, p) is an anchored
vector bundle over M , and [—, —] 4 is a Lie bracket on the sheaf of sections I'*°(A), such that the Leibniz

rule is satisfied:
[v, fw]a = p(v)(flw + flv,w]a, Ve C®(M),v,weTl(A). (6.1.1)
Note that often we will refer to A as the Lie algebroid and leave the structure maps implicit.

In particular, this definition gives us the following:

Proposition 6.1.3. Let (A, p,[—, —|4) be a Lie algebroid, then the induced map p : T'(A) — X(M) is a

morphism of Lie algebras.

Proof. Let f € C*°(M), v,w,u € T'(A). The Jacobi identity tells us

[[U7 w]A7 fU]A + [[w, fu]A7 U]A + Hfu7 U]Aa w]A =0,

and computing some stuff tells us

[0, wa, Fula = Fllo,wla, ula + pllv, w]a) (Fus
(w, fula,vla = fllw, ula,vla + p(w) (), v]a — p(v) 0 p(w) (Hu — p(v)(f)lw, ulas
[, 0], wla = fllu, o] 4, wla — p()(F)l, wla + p(w) o p(v) (u — plw)(f)[u,v]a.

Putting everything together and applying the Jacobi identity gives us

0 = (p([v; wla) = (p(v) o p(w) — p(w) © p(v)))(f)u = (p([v, w]a) = [p(v), p(wW)])(f)u.

Since f and u were arbitrary, we finally obtain

(p([v,w]a) = [p(v), p(w)], (6.1.2)

as desired. 0
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In particular, p(A) C T'M defines a singular involutive distribution on M . We have the following
theorem that tells us this singular distribution is in fact integrable into a partition of M into immersed

submanifolds.

Theorem 6.1.4. Let A be a Lie algebroid. Then there is a partition of M into connected immersed
submanifolds S = {L C M} such that M = [[; s L and To L = p(A.), for every L €S and x € L.

See [CFM21] for a proof. Note that in the regular case, i.e. when p(A) is a regular distribution, this
is just the Frobenius theorem. Analogously to the regular setting, we will call S the (singular) foliation
of Aand L € § will be called a leaf of A.

Moreover, we see that p is not necessarily injective, therefore it can have a kernel. In fact, we see

Lemma 6.1.5. Let A be a Lie algebroid, x € M . Then ker(p;) admits a natural Lie bracket inherited
from [_7 _]A .
Proof. Let v,w € ker(p,) . Suppose ¢ and w are local extensions of v and w, respectively. We claim that
[0, W] 4(z) is independent of the chosen extension. To prove this, pick a frame {ey,...,e;} for A around
x and let @' be the coordinate functions of @ . Then we see p,(9)(1*) = 0, hence
(6, @]a(z) = [, ei]alx),
i

which is clearly independent of the chosen extension w, so by skew-symmetry, it is also independent of

the chosen extension . Then we define [v, w], := [0, W] 4(z) as the Lie bracket on ker(p,) . O
We call g, := (ker(pz),[—, —]z) the isotropy Lie algebra of A at x. This turns out to be a leafwise
invariant.

Lemma 6.1.6. Let A be a Lie algebroid. Let L be a leaf of A, then for any x,y € L, g, = g, -

Proof. Note that E, := ker(p|r) defines a vector bundle over L. Now there’s a neat trick, we see by
involutivity of p(.A) that we can restrict [—, —] 4 to I'(A|z) . Now we have a short exact sequence of vector
bundles

0—>EL<—>A\Lﬁ>TL—>0.

Pick a splitting 7 : TL — Al . Now we can define a connection V : B, — Q'(E) by Vxv = [7(X),v] 4, ,
where X € X(L) and v € T'(Fr). This is a connection because

[T(fX), 0]y, = fIT(X),v]ay, +p(0)()7(X) = f7(X), 0]4, ,

and

[7(X), fola, = fI(X), v]a), +p(r(X))(f)o = fIr(X),v]a, + X (o
Moreover, we see that the bracket [—, —|, of g, varies smoothly over Ey , as for sections v,w € I'(EpL),
we have [v, w], = [v,w] 4, (z). Thus [, —], defines a tensor on £y, . We also have that V is compatible
with [—, =], , as we have for sections v,w € I'(EL) and X € X(L),

Vx[v,wl g, = [7(X), [v,w]a,]a, = [T(X),v]a,, w4, +v, [7(X), w] 41, ] 4, = [Vxv, w4, +v, Vxw]a, -

In particular, parallel transport preserves [—, —|,, so parallel transport along a path v : x = y in L

defines an isomorphism of Lie algebras g, = g, . O
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We end this section with some examples of Lie algebroids

Example 6.1.7 (Foliation). By the Frobenius theorem, foliations of M, i.e. a partitions of M into
equidimensional immersed submanifolds M = [];.s L, correspond to regular involutive distributions,
i.e. subbundles D C T'M such that [v,w] € I'(D) for any v,w € I'(D). This gives D the structure of a
Lie algebroid with anchor map ¢ : D < T'M and bracket [—, —]p := [—, =]|r(p)

Example 6.1.8 (Lie algebra). Let g be a Lie algebra. Then the trivial map g —  defines a vector
bundle over . This is a Lie algebroid with anchor p : g — 0 = T'x and the Lie bracket of g as its bracket.

It has a single leaf, namely *, and the isotropy Lie algebra is just g.

Example 6.1.9 (Poisson manifold). We will discuss this example rather briefly and we will not prove
too much. The theory of Poisson manifolds is very rich with many deep results, see e.g. [CFM21] for an
introduction, where this example will be discussed in much, much more detail.

A Poisson manifold is a pair (M, ) of a smooth manifold M and a bivectorfield 7 € X2(M) that
commutes with itself, i.e. the Schouten-Nijenhuis bracket [m, 7]sy = 0. Such bivectors define a map
7t . T*M — TM by 7%(a) = m(a, =), and it defines a Lie bracket on T'(T*M) by

[or, Bl := 7 (a)(B) — 7(B) () — d(7(ax, B)) .

This turns 7* M into a Lie algebroid called the cotangent Lie algebroid of (M, ). The associated foliation
inherits a symplectic structure wy, on every leaf L € S, defined by wr(X,Y) = —7(«, ), where X,Y €
T.L and o, B € T M are covectors such that (o) = X and 7%(8) =Y.

In particular, symplectic manifolds have a natural Lie algebroid structure on their cotangent bundle.

Example 6.1.10 (Log-tangent bundle). Let M be a manifold of dimension m + 1 and take an embedded
codimension 1 submanifold N < M . Let X be the sheaf of vector fields on M that are tangent to M .
We can find slice charts (U, ¢) with coordinates {x, ...,z } around N such that o(UNN) = {xg = 0},
see Figure 6.1.1. We see that in this chart, X (U) is generated by the vector fields {200z, Oz, .- -, 0z, } -

- EINSNN
Y T

Figure 6.1.1: Slice chart for N

In charts (U, ¢) such that UNN = (), we have that X5 (U) is generated by {0uy, Oxyy- - Ou,, ), 1€ Xy 18
a locally free sheaf and therefore defines a vector bundle 7'M (— log(V)) . The terminology comes from the
idea that the dual bundle TM (log(N)) := (T'M(—1log(N)))* is now generated by {dxzo/z¢,dz1,...,dxm},
i.e. we have made sense of the logarithmic form dlog(xo) := dxo/xo. Note that Xy is closed under

[—, —]7a , therefore TM(—log(NN)) defines a Lie algebroid over M with bracket [—, —]7as|x, and anchor
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induced by the inclusion X < X. This Lie algebroid is called the log-tangent bundle, or sometimes the
b-tangent bundle, which is how it was introduced by R.B. Melrose [Mel93].
The leaves of this Lie algebroid are the connected components of M\ N and the connected components

of N . The isotropy Lie algebras are all abelian.
This example generalises to the setting of complex manifolds in a rather nice way

Example 6.1.11 (Elliptic tangent bundle). Let M be a complex manifold of (complex) dimension m + 1
with sheaf of holomorphic functions Oy, and let N — M be an embedded complex submanifold of
(complex) codimension 1. Just like in the previous example, we define %1}\‘,’1 as the sheaf of holomorphic
vector fields tangent to N, and we can take holomorphic slice charts, i.e. holomorphic charts (U, ) with
coordinates {zy, ..., zmn} such that p(U N N) = {2 = 0} . We see that X4°!(U) in this chart is generated
by {200:0,02,- -, 02, } - in charts (U, ¢) with U NN = 0, XhYU) is generated by {0.,0z,,--, 05,1},
so Xhol is a locally free sheaf of Oj/-modules, so it defines a holomorphic vector bundle 7'M (—log(N)).
Likewise, we can define the anti-holomorphic vector bundle TM (—log(N)) that, in slice charts, is gen-
erated by {200z,,03,,...,0z, } . Thus we can make sense of holomorphic logarithmic forms dlog(zp) and
anti-holomorphic logarithmic forms dlog(Zy) . This idea of a holomorphic tangent bundle is the complex
analogue of the real log tangent bundle, and it has existed already since the 1970s [Del70]. By studying
this in the broader context of smooth vector bundles, and not just holomorphic vector bundles, we can
extract a real vector bundle from this, as was done in [CG15], which is what we show now.

We consider the smooth vector bundle TM (—log(N)) @ TM(—1log(N)), whose sheaf of sections is
closed under [—,—]ras, and we note that it has a canonical involution ¢(v) = ¥ that defines a real
structure. So we can take the underlying real vector bundle T'M(—log|N|), whose sheaf of sections
I'(T'M(—log|NJ)) is a subsheaf of X, of smooth vector fields. Moreover, I'(T'M (—log |N|)) is closed
under [—, —]7as, therefore TM(—log|N]) is a Lie algebroid with bracket [—, —|7um|r(rasr(—10g |v))) and
anchor induced by the inclusion I'(T'M (—log |N|)) < X.

In a slice chart {z9 = re?®, 21 = 21 +iy1,...,2m = Tm + WYm}, we have that T(TM(—log|N|)) is
generated by

{Tar = ZoazO + 50320, Oy = i(208ZO — 20850), 8x1,3y1, R ,axm, 8ym} .

So the dual TM(log |N|) is generated by {dlogr,df,dxz1,dy1,. .., dx,dym} .
The leaves of this Lie algebroid are the connected components of M\ N and the connected components

of N . The isotropy Lie algebras are all abelian.

6.2 Basic geometric constructions

Now that we have introduced these Lie algebroids along with claims that we can put geometric structure
on them, it is finally time to show what we mean. Since Lie algebroids have the same algebraic structure
as the tangent bundle, i.e. a way to differentiate functions and a Lie bracket, most things that are
defined on T'M using a formula carry over to the Lie algebroid, using the same formula, which means the
“mimicked” structure on the algebroid has a lot of the same properties that the classical structure on the
tangent bundle would have. We will show we can define a cohomology theory analogously to de Rham
cohomology, and we will introduce a theory of A-connections, curvature and even parallel transport.

For this, we shall need a notion of morphism between Lie algebroid over different bases, as will become
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apparent later. We will also give some examples. In the next section, we will put more structure on A,
namely something analogous to a Riemannian metric, and we will see that the classical theory of the
Levi-Civita connection also carries over.

The first thing we can do is generalise the de Rham cohomology to this setting, as we have all

ingredients needed for a Koszul-type formula for the de Rham derivative.

Definition 6.2.1 (A-differential forms). Let A — M be a Lie algebroid. Then for any k € Ny, we can
define the space of A-differential k-forms by QF(A) = I'°(A¥A*) . Likewise, for a vector bundle E — M |
one has A-differential k-forms with values in F , which forms the space QF(A; E) = I'*(A*A* @ E) .

Moreover, we have a de Rham type derivative d 4 : QF(A) — QF+1(A) called the A-differential, defined
as follows: let vy, ..., v € T®(A) and let w € QF(A), then we define

k

daw(vo, .-, vk) = > (=1 p(0) (@ V0, -, Tiy oy vk)) Y (1) w([03, 0514, V0, o By ooy Ty oy V1) -
i=0 0<i<j<k
(6.2.1)

Because the formula for the Lie algebroid differential agrees with the formula for the de Rham differ-
ential, many properties with a purely algebraic proof directly carry over to this setting. In particular, we

have the following:

Lemma 6.2.2. The A-differential satisfies

(ii) for every w € Q*(A) and n € Q" A), da(wAn) = daw An+ (—1)*w Adan.

Therefore, (2°(A),d4) defines a chain complex, such that d4 is a graded differential. Therefore, we
get an associated cohomology theory H®(A) := H*(Q*(A)) that is compatible with A. This cohomology
is known as the Lie algebroid cohomology of A.

Generically, the Lie algebroid cohomology is difficult to compute, as it has no Poincaré lemma.

Example 6.2.3 (Foliations). Let D be a rank k foliation of M™ viewed as a Lie algebroid, i.e. an
involutive distribution D C M of rank k. Let (U,¢) be a foliation chart with codomain R™, i.e.
0x(D) = {Tps1,. -, Tm = 0}. On U, QYD) is C°(R™)-generated by {dz’t A---Adzit|iy < --- < i; < k}.
If w € QY(D), we see that dyw = 0 if and only if w|y, is closed, where L is any leaf in ¢(U), i.e.
L = R* x {)\} for some A € R™~%. Thus, a closed D-I-form on U is smooth (m — k)-parameter family
of closed forms {wy}\cpm-+ . Likewise, an exact D-I-form on U is a smooth (m — k)-parameter family of
exact forms. Thus foliation Lie algebroids do have a Poincaré lemma, i.e. H(D|y) = C®(R™*) and
H(D|y) = {0} fori > 0.

However, global cohomology can be very wild also outside of level 0, for instance, take S™ x R with
distribution D = T'S™. Then we see H"(D) = C*°(R), which is infinite dimensional.

Example 6.2.4 (Lie algebras). Let g be a Lie algebra viewed as a Lie algebroid over a point, then H*(g)
is isomorphic to the Lie algebra cohomology of g. See [CE48] for details and examples of Lie algebra

cohomology. In particular, this Lie algebroid has pointwise cohomology, so no Poincaré lemma.
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Example 6.2.5 (Log-tangent bundle). Let M (—log(/N)) — M be a log-tangent bundle. Then we have
HY(TM(—log(N)) = H¥(M) @ H*1(N), see [Mel93].

Example 6.2.6 (Elliptic tangent bundle). Let TM (—log | N|) be an elliptic tangent bundle, then we have
H*(—log|N|) = H*(M \ N) @ H*"1(S(NN)), where S(NN) — N is the circle bundle of the normal
bundle to N, see [CG15].

Moreover, since we now have differential A-forms and an exterior derivative, we could study symplectic
Lie algebroids, i.e. Lie algebroids equipped with a nondegenerate closed 2-A-form. We will not do that
in this thesis, we refer the reader to e.g. [Klal7].

Instead, we will focus more on the Riemannian geometry one could define on Lie algebroids. So we
want appropriate generalisations of the Riemannian theory to this setting. Many of these generalisations
are canonical, they have been done before in e.g. [Blu+13]. One thing we will need for that is a notion of
A-connection, which can be thought of as a way of covariantly differentiating sections of a vector bundle

in A directions. It is defined as follows:

Definition 6.2.7 (A-connection). Let E — M be a vector bundle and A — M be a Lie algebroid.
Then an A-connection on E is a map V : ['(E) — Q!(A; E), satisfying the Leibniz rule, i.e. for any
feC>®(M) and any s € I'°(E) , we have

V(fs)=daf ®s+ fVs. (6.2.2)

Like in the case of honest connections, i.e. T'M-connections, any A-connection induces a map V :
QF(A; E) — QF1(A; E), which is defined on pure tensors in I'°(A* A* @ E) by

Viw®s)=daw®s+ (-1)wAVs;  weQ¥(M),seT®®E). (6.2.3)

We see
Via®s) =aAVis. (6.2.4)
Moreover, like in the case of T'M-connections, one sees that for a € QF(A; E), V is given by the Koszul

formula

Va(vo, ..., v6) = 3 (=1 Vya(vo,. ., 8-y ve) + (=D a([vi, v]a,00, -, Tiv oo, Ty 08) -
i=0 i<y
(6.2.5)
In particular, for s € I'™°(E), we see

V2s(v,w) = V, Vs — Vi Vs — Vv a8+ (6.2.6)

One sees that the above equation is tensorial, hence we can write V2s = Fy(s) for some Fy € Q%(A,End(E)).
This endomorphism valued A-2-form is appropriately called the curvature of V. Combining this with
Equation (6.2.4), we see that for any a € QF(A, E), we have

Via=FyAa, (6.2.7)

where it is understood that the End(E) part of Fy acts on the E part of ac. So we see that Fy measures
two things, Equation (6.2.6) tells us it measures the failure of V to be a Lie algebra morphism, and

Equation (6.2.7) tells us it measures the failure of V to be a cochain differential.
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For these reasons, often flat A-connections, i.e. A-connections V on some vector bundle £ — M such
that F'y = 0, are called A-representations. See [CFM21] for details.
Note that, like in the case of T'M-connections, we can also find a local model for A-connections, i.e.
if E — M is a rank k vector bundle, and {eq,...,ex} is a frame, V decomposes as V = d 4+ A, where A
is a matrix of one forms, i.e. for coordinate functions {s'};—1__x, we have V(s'e;) = da(s")e; + s’ Aj’e; .
Thus, we can derive formulas like
Fy=dq4A+ANA, (6.2.8)

like in the case of T'M-connections.

Because we have this local form, we see that we are not too far of defining parallel transport along A-
connections, as in the T'M case, this would follow from the existence and uniqueness theorem of solutions
to linear first order differential equations, which is also what we start to see appearing here. But there’s
a problem, to define parallel transport along a curve v : [0,1] — M, we first have to be able to take
directional derivatives along the tangent vector to the curve, but we see that on the one hand, we can only
take directional derivatives in im(p)-directions, while on the other hand, taking a directional derivative
in an im(p)-direction requires lifting it to a vector in A, which cannot be done canonically in the generic
case, as we might have isotropy.

The solutions to both these issues is to define the notion of A-path.

Definition 6.2.8 (A-path). Let 7 : A — M be a Lie algebroid. Then an A-path is a smooth map
v :[0,1] — A such that poy = %(ﬂoy).

Remark 6.2.9. One can define piecewise smooth A-paths as paths v : [0,1] — A that are compositions
of finitely many A-paths. We say that 9,71 : [0,1] — A are composable if m o ~1(0) = 7o y(1), ie.
we do not assume y1#7 is continuous inside A . This is reminiscent of the fact that the composition of
honest smooth paths vp,7; : [0,1] — M need not be continuously differentiable everywhere and can have
“kinks”.

We see that the notion of A-path is precisely what we need to get past both issues described above
the definition. On the one hand, A-paths project down to paths on the base manifold whose velocities lie
inside im(p), while on the other hand, their velocities naturally lie inside A, as that is how we defined
them. Lastly, to define parallel transport, we define the pull back connections of Lie algebroids, as we
need to pull back the problem to (7 o~v)*E — [0,1].

If A— M and B — N are Lie algebroids, and ® : B — A is a vector bundle map covering ¢ : N — M
such that

B2 A4
P8 pA
N — M
commutes, we can pull back A-connections on vector bundles £ — M to B-connections on ¢*E — N |

using the formula
(D*V)up"s = ¢"(Vow)s) - (6.2.9)
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Moreover, if the following diagram commutes

Q°(A) -2 9 (B)
da| as| (6.2.10)
Q°(A) —2 Q°(B)

then, following the formulas, we see ®*Fy = Fp+v . The attentive reader might have noticed we haven’t
yet defined morphisms between Lie algebroids, but now that we have the above result, we see that the

following definition comes quite naturally

Definition 6.2.10 (Lie algebroid morphisms). Let A — M and B — N be Lie algebroids. Then a Lie
algebroid morphism from B to A is a vector bundle map ® : B — A such that Diagram (6.2.10) commutes.

In particular, if A, B — M are Lie algebroids and ® : B — A is a vector bundle map covering the
identity, the Koszul formula (6.2.1) tells us that ® is a Lie algebroid morphism if and only if it is a Lie
algebra morphism from I'*°(B) to I'™°(A).

We see that A-paths v : [0,1] — A can be lifted to a Lie algebroid morphism ~ : 7[0,1] — A by
v(d/dt|¢) := ~(t), where the condition p oy = d/dt(m o ) is precisely what tells us v* o d4 = djg 1) 0 7",
where we note that Q%([0, 1]) = 0 for i > 2. Therefore, an A-connection V on a vector bundle E — M can
be pulled back to an honest T[0, 1]-connection v*V on v*E — [0,1]!. We can define parallel transport

along ~ using parallel transport along this 7'[0, 1]-connection.

Definition 6.2.11 (Parallel transport along A-connections). Let A — M be a Lie algebroid, F — M a
vector bundle, V an A-connection on E and v : [0, 1] — A a smooth A-path. Then parallel transport along
7, denoted by T : E ) — E, 1), is defined as the parallel transport of the induced 70, 1]-connection
v*V on v*FE . In the piecewise smooth case, it is defined as the composition of parallel transport along

the smooth pieces of v.

We see that T’ is always an invertible linear map, which directly follows from the result in the classical
case, the inverse is T, , where —v(t) := (1 — t). In particular, if v is a (piecewise) smooth A-loop at
some x € M , i.e. an A-path 7 such that 7(y(0)) = 7(v(1)) = «, we have T, € GL(E;) .

Since we now have a well defined notion of parallel transport, we can use this to study holonomy of
A-connections, if £ — M is a rank k vector bundle equipped with an A-connection, for any point x € M ,
we define Hol, (V) C GL(E;) by

Hol,(V) ={T, : E; = E;|v:[0,1] = Ais an A-loop at z}. (6.2.11)

Lie algebroid holonomy has been studied by e.g. R.L. Fernandes [Fer02], with a few interesting results.
One thing to note is that A-paths can never leave a leaf, which follows from the following theorem,
taken from [AS09]:

Theorem 6.2.12. Let A — M™ be a Lie algebroid, then for every x € M such that the leaf L through
x is k-dimensional, then there is an open neighborhood U of x and a submersion ¢ : U — (N, F), where
(N, F) is a manifold of dimension n—k equipped with a singular foliation (in an appropriate sense), such

that *F is the singular foliation of A|y .

'Note the slight abuse of notation, v*E := (1 0 y)*E.
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In particular, the F-leaf through ¢(z) is O-dimensional, hence a point. Then for an A-path 7, we see
that v, := (7 o y) defines an F-path on NN, i.e. a path whose velocity lies in F . In particular, around
x € imy, it stays inside the leaf L|y = ¢~ ![p(z)] through z, as 7, is the constant path at (z), since it
has 0 velocity.

Thus locally, A-paths cannot jump between leaves, so they cannot jump between leaves in finite time,
so A-paths always lie in a single leaf.

In particular, we see that this means holonomy of A-connections is no longer the same for any x € M ,
but rather it’s only a leafwise invariant. Here, note that any two points z,y in a leaf L always can be

connected by an A-path, since the short exact sequence
0 — ker(p|y) = Al & TL —0

splits, hence we can embed T'L into A|f,, so any L-path can be lifted to an A-path. Generically, Lie
algebroid holonomy really is a leafwise invariant, the behaviour of the holonomy can jump quite irregularly
between leaves, as illustrated by the following example, communicated to me by J. Pedregal Pastor, to

appear in [Ped23].

Example 6.2.13 (Action Lie algebroid). Let G be Lie group and G © M be an action of G on M . This
then induces a map (—)as : g — X(M) defined by & — &5, where &y is the infinitesimal vector field of

&, ie.
Em () 4 exp(té) - .

T dt|,,
Then we can give A := M x g the structure of a Lie algebroid, with p(z,§) = &y (z) and [—, —] 4 such
that it agrees with [—, —]; on infinitesimal vector fields, i.e.

(€, nla(z) = [£(x),n()]g + p(§())(n) — p(n(x))(E) ,

where £ and 7 are interpreted as functions &, : M — g. We look at A-connections on A. Since A is a
trivial vector bundle, these are defined by d4 + A, where A is an End(g)-valued .A-1-form.

We look at the particular case of the circle action U(1) © C. We see that sections of A are simply
functions £ : C — R. Moreover, A is an honest A-1-form, i.e. A is just some function. Lastly, A-paths
7 :[0,1] — M must lie in orbits of U(1), i.e. v has constant norm.

o(t)

We look at parallel transport equation along a constant rank path «y : [0,1] — C, y(t) = 7e?®) | such

that 4 is 6 : [0,1] — A whenever r # 0, and % is an arbitrary function on [0,1] whenever » = 0. When

r # 0, the parallel transport equation tells us

d )
&= —Abe.

£(1) = exp <_ /01 Aédt) £(0).

We note that we can interpret A as a function on S 1 , as v is a path of constant norm, so we can rewrite
Afdt = Adf .

To compute holonomy, we see that v must be a closed loop, which defines a homology class on S!,

£(1) = exp (—LAdH) £(0).
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Thus, we see that Hol(r) = 1 if Ad6 is exact, and e else, where )\ is the Poincaré dual of the cohomology
class of Adf, i.e. the average value of A on S'.
If » = 0, we still have the above integral, but now we see that A is a constant and that ¥ is an

arbitrary function on [0, 1], so we get
1
&) = exp (-0 [ 4t €0

Since v is always a closed loop and fol Adt is just the average value of 4, which can take on any value,
we see that holonomy is 1 if A(0) =0 and R else.
In particular, if A(0) is nonzero, we see that Adf is not exact around 0, so then holonomy at 0 is

continuous, but holonomy around 0 is discrete.

6.3 Riemannian Lie algebroids and complex structures

Up to this point, we have considered basic differential geometric constructions that can be defined on
Lie algebroids. The next step would be to put some extra geometric structure on the Lie algebroid and
see what kind of consequences such structures might have. In particular, we will define Riemannian
geometry, (almost-)complex geometry and Kéhler/Calabi-Yau geometry on these Lie algebroids, and we
will give a few examples.

Analogously to putting Riemannian metrics on manifolds, we will now consider Riemannian metrics

on Lie algebroids. They are just honest metrics on the vector bundle A — M .

Definition 6.3.1 (Riemannian Lie algebroid). Let A — M be a Lie algebroid. Then a Riemannian
metric on A is a vector bundle metric g € I°°(Sym?(.A*)). Then pair (A, g) is called a Riemannian Lie
algebroid.

Note that there are no compatibility assumptions in the definition. This is reminiscent of Riemannian
metrics being vector bundle metrics on T'M , where there are also no compatibility assumptions.

One of the fundamental results in Riemannian geometry is the existence of a canonical connection,
namely the Levi-Civita connection. As it turns out we also have that in this setting. But first we need

to define torsion.

Definition 6.3.2. Let A be a Lie algebroid and let V be an A-connection on .A. Then the torsion of V
is a tensor field Ty € T'*°(A2A* ® A), defined by

Ty (v,w) = Vyw — Vv — [v,w] 4 . (6.3.1)
As promised, we have the following:

Theorem 6.3.3. Let (A, g) be a Riemannian Lie algebroid. Then there is a unique torsion free A-

connection V on A that is metric, i.e. for any v,w € I*°(A),

da(g(v,w)) = g(Vv,w) + g(v, Vw) . (6.3.2)
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Proof. We will start by proving uniqueness, then provide an explicit formula for the connection, shame-
lessly copying the proof from Riemannian geometry of the tangent bundle. So suppose we have a con-

nection satisfying the above conditions. We see that for sections v, w,u € T°(A),

dag(w,u)(v) +dag(v, u)(w) — dag(v,w)(u)
= g(Vyw + Vyv,u) + g(Vyu — Vv, w) + g(Vyu — Vyu, v)
= 9(Vow + Vv, u) + g([v, ula, w) + g([w, ula, v)
=29(Vow, u) — g([v, wla, ) + g([v, ula, w) + g([w, ula, v).

Thus we obtain the Koszul formula for the Levi-Civita connection of the Riemannian Lie algebroid

g(vvwa u) = %(d/lg(wv u)(v) + dAg(Uv u)(w) - dAg(vv w)(u)

(6.3.3)
+ g([”? w].Aa u) - g([’U, u].Aa w) - g([w, U]Av U)) .

Since u was arbitrary, g is nondegenerate, and the right hand side does not depend on V, we see that
this formula uniquely characterizes the Levi-Civita connection.

Also note that given v,w € I'*°(A), the Koszul formula defines a section V,w € I'*°(A), so to
prove existence of the Levi-Civita connection, all we have to show is that this assignment indeed satisfies
the definition of a connection. This can be done by direct computation and is exactly the same as in

Riemannian geometry. O

Note that if A has non-abelian isotropy, then there is no local frame {e;} for A such that [e;, e;]4 =0,
so the usual formula for the Christoffel symbol in Riemannian geometry does not carry over, one needs
to also take into account the possible isotropy terms appearing from the Koszul formula (6.3.3). An
interesting question would be studying geodesics of the Levi-Civita connection, i.e. A-paths v such that
(v*V)q sty = 0. Doing this, one could also define geodesic completeness of a Riemannian Lie algebroid.
We conjecture that Riemannian Lie algebroids over a compact manifold are complete, i.e. geodesics exist
for any t € R. However, we have not yet made significant progress in this area and we leave the general
case for future research.

An interesting property of the classical Levi-Civita connection is that dw is the antisymmetrisation

of Vw, with w € QF(A). This property also carries over to the Lie algebroid setting

Lemma 6.3.4. Let V be a torsion free A-connection on A, then for anyw € QF(A), vo, ..., v, € T®(A),

k

dw(vo, ..., v8) = > (=1 (Vy,w)(vo, .-, Ty, k) - (6.3.4)
=0

Proof. The proof follows from the Koszul formula and the fact that V on C°°(M) is given by V,f =
p(v)(f). The Koszul formula tells us

dW(Uo, ) Uk) = Z(—l)ip(vi)(w(vo, SRR {)\i? ) Uk:))
+ Z(—l)”jw([vi,vj]fl,vg, R T ,’6}, .. .,Uk) .

1<j
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Then we have

p(vi)(w(vo, ..., Uiy .y 0k)) = (Vy,w)(vo, - -y Uiy o oo, V)
+Z 1Y w(V, Uy V05 ey Ujs ey Uy oo vy U)
7<t
= (1Y w(V 05,00, -, Ty Ty V)
>t
Thus, we see
k . .
D (=Dp(wi)(w(vo, -, Ty oy vk)) = Z(— )V (V) (V0, - - -, iy -, VL)
i=0
—Z 1) H( (V05 = V03,00, -+, Diy ooy 0jy o, V)
1<j
The result then follows from the torsion-freeness condition V,,v; — Vi, v; = [v5,vj]4 - O

We will need this property later on when discussing Kéahler Lie algebroids, but it is an interesting
property on its own.

The curvature of the Levi-Civita connection will be called the Riemann curvature of g and will be
denoted by Riem, or by Rijkl in a local frame. Classically, the Riemann curvature tensor has a few

well-known symmetries, with purely algebraic proofs, so they immediately carry over to this setting.
Proposition 6.3.5. The Riemann curvature tensor has the following properties:

(i) Riem(v,w) = —Riem(w,v);

(ii

)
) g(Riem(vy, v2)vs, v4) = —g(Riem(vy, v2)va, v3);
(iii) g(Riem(vy,v2)vs,vq) = g(Riem(vs, vy)v1, v2);
(iv) Riem(v,w)u + Riem(w,u)v + Riem(u,v)w = 0, known as the first Bianchi identity;
(v) VRiem = 0, known as the second Bianchi identity, where V is the A-connection on End(A), and

Riem is interpreted as a two-form in Q?(A; EndA) .

In a local frame, these become

(1) ikl = _Rijlk§

(ii) Rijrt = —Rjir;

(iii) Rijr = Riij ;

(iv) Rijkr + Rikij + Riji = 0;
)

(v) ViRjkim + ViRjkmi + VimRjgia = 0.
Likewise, one can define the Ricci tensor Ric, in coordinates
Rij = RFy;. (6.3.5)

One sees that this is then is then a symmetric second order tensor, i.e. Ric € Sym?(A*).

Examples of Riemannian Lie algebroids are, for instance, foliations with a smoothly varying metric
on the leaves. There, the Levi-Civita connections and all curvatures can be computed leafwise. A more
interesting case is that of compact semisimple Lie algebras, i.e. Lie algebras whose Killing form is negative
definite.

95



Example 6.3.6 (Compact semisimple Lie algebra). Let g be a compact semisimple Lie algebra viewed
as a Lie algebroid over a point. Then we see that g admits a canonical Riemannian metric, namely —x ,
where & is the Killing form, i.e. k(§,n) = Tr(ade ady) .

Since the anchor of g is trivial, we see that the Koszul formula (6.3.3) becomes

_H(vénv C) = %(—’i([fﬂﬂ, C) + ﬁ([&a C]ﬂ?) + Fﬂ([% C]vé)) .

The Killing form satisfies ([¢, ], () = &(&,[n,¢]), so we see

K(Ven, ¢) = 56(€ 1))

Since ¢ was arbitrary and « is nondegenerate as it is negative definite, we see

Ven = 31,1 (6.3.6)
We see
Riem(¢,n) = iad[n,ﬂ . (6.3.7)
Therefore, we see
Rij=—1 ) #(ler e, [ex, e5]) . (6.3.8)
k

The holonomy group must be a subgroup of GL(g) . Moreover, since parallel transport along a curve £(t)
is infinitesimally generated by the vector field —%adg(t) , which lies tangent to Ad(G) C GL(g), i.e. the
integration of ad(g). Thus, we get Hol(—x) C Ad(G). Moreover, parallely transporting some vector 7

along the constant path £ gives us

which then gives us

so the group generated by these expressions is a subgroup of the holonomy group of —k, i.e. Ad(g) =
exp(ad(g)) C Hol(—k). So we see Hol(—k) = Ad(G) . Moreover, the parallel transport equation also tells
us that geodesic are necessarily constant paths, and since all constant paths satisfy the geodesic equation,
we see that the geodesics are all constant paths, in particular, this metric is complete.

We look at the particular example g = s0(3). We can realise this Lie algebra as (R3, x), i.e. R?
equipped with the cross product. This Lie algebra has —x(v,w) = 2v - w. The Levi-Civita connection is

iven by V,w = v x w, we have
Y 2 )

0 V1W2 — VW1 V1W3 — V3W1
. 1
Riem(v, w) = 7 | vow; — viws 0 VW3 — VU3W9
V3w — V1W3 V3w — VW3 0
And for the Ricci tensor, we have
R ¥
Rij = 5045 -

In particular, s0(3) with —r has constant Ricci curvature ;. The holonomy group of —x is SO(3) with

the standard action and the geodesics are the constant paths.
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This also gives an example of an Finstein Lie algebroid, i.e. a Riemannian Lie algebroid with constant
Ricci curvature.
The next step would be to define almost complex structures on Lie algebroids. This is also done in

the same way as on the tangent bundle, i.e. by a bundle map that squares to —1.

Definition 6.3.7 (Almost complex Lie algebroid). Let A — M be a Lie algebroid. Then an almost
complex structure on A is a bundle map J : A — A covering the identity on M , such that J? = —id.
The pair (A, J) is called an almost complezx Lie algebroid.

This gives us the usual decompositions A® C =2 ALY @ AO:D into, respectively, +i and —i eigenbun-
dles of J, and AFA* = Do APD A defined by APDA* .= AP(ALD)* @ AI(AOD)* In particular,
we get a space of (p, g)-forms QP9 (A) := T (AP A*) and a decomposition QF(A) = D, o=k QP9 (A).

Moreover, we have
dg: QPD(A) = QP11 (4) @ QP (A) @ QPHLD (4) g QP29 (4) |

which can be proved by locally decomposing into (1,0) and (0, 1) forms, and then applying the Leibniz
rule.

Since Lie algebroids are not actually tangent bundles, we do not have frames that arise from coor-
dinates on the base manifold. Thus the definition of integrability of almost complex structures through
holomorphic coordinates does not carry over to this setting. Luckily, we have the Newlander-Nirenberg

theorem 2.2.1, and we can just define it through involutivity of A(10)

Definition 6.3.8 (Complex Lie algebroid). Let (A, J) be an almost complex Lie algebroid. Then we say
J is integrable if A0 is involutive, i.e. [A(l’o),A(l’O)]A C A0 where we extended the scalars of the

bracket linearly. In this case, we say J is a complex structure and that (A, J) is a complex Lie algebroid.

Remark 6.3.9. In literature, the term complex Lie algebroid is sometimes used for a complex vector
bundle with an anchor that is a bundle map mapping into TM ® C and a Lie bracket satisfying the
Leibniz rule. In this thesis, we will not use these objects very much and we think the above definition
is a more suitable candidate for the term complex Lie algebroid. For the other objects, we propose the
name Lie algebroids over TM @ C . Likewise, we can define Lie algebroids over TM 19 and TM OV if
M is a complex manifold. In particular, in Example 6.1.11, the bundle TM (—log(N)) is a Lie algebroid
over TM (10 and TM(—log(N)) is a Lie algebroid over TM O

One large class of examples of complex Lie algebroids comes from foliations consisting of complex
manifolds with smoothly varying complex structure. Another quick example is the example of a complex

Lie algebra

Example 6.3.10. Let g be a complex Lie algebra, viewed as a real Lie algebroid over * with complex
structure J induced by multiplication by 7. Then J is an integrable complex structure, as v € g(1:? can

. o . 1,0
be written as v = vg — tJug for some vg € g, so we see for v, w € g( ) ,

[v,w] = [vg —iJvr,wr — iJwg] = [vr, wr] — [Jur, Jwgr] — i([vr, Jwr] + [Jur, WR]) .

Since J comes from multiplication by 4 in the complex vector space g, it commutes with the Lie bracket,
SO we see

[v,w] = 2[vg, wgr| —iJ(2[vr, wR]),
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so [v,w] € g9 | meaning J is integrable.
Perhaps a more interesting case is when J does not come from a complex multiplication of a complex

(1,0)

Lie algebra. In this case, we see that g is involutive if and only if for any v, w € g,

[v, Jw] + [Jv,w] = J[v,w]| — J[Jv, Jw]| <= [v,w] + J([v, Jw] + [Jv,w]) — [Jv, Jw] =0,
so here we see this well-known form of the Nijenhuis tensor appearing again.

One thing to note is that the equivalence of (ii), (iii) and (iv) from Theorem 2.2.1 immediately carries

over to this case, with the same proof, i.e. we have:

Theorem 6.3.11 (Different integrability criteria). Let (A, J) be an almost complex Lie algebroid, then
the following are equivalent:

(i) J is integrable;

(ii) the Nijenhuis tensor N € T'((A*)®? ® A), defined for real v,w € T'(A) by

Ny(v,w) = [v,w] + J([Jv,w] + [v, Jw]) — [Jv, Jw], (6.3.9)

vanishes identically;

(iii) The algebroid differential d 4 acts on A-(p,q)-forms by
dy: QPD(A4) - QP (4) @ QPatD(4) .

Proof. See the proof of Theorem 2.2.1, where we note that item (ii) in that theorem is how we defined

integrability in the Lie algebroid case. O

In particular, we see that d4 decomposes into 94 : QP9I (A) — QPHLD(A) and dy : QPD(A) —
Q(p’q“)(A) , which satisfy 8?4 = 5?4 =0and 0404 = —0404 . Thus, we can define Dolbeault cohomology
for complex Lie algebroids as well.

When we have a complex Lie algebroid over a complex manifold, one could ask for the two complex

structures to be compatible in some sense.

Definition 6.3.12 (Compatibility of complex structures). Let A — M be an (almost) complex Lie
algebroid over an (almost) complex manifold. Then the two (almost) complex structures are said to be

compatible if the following diagram commutes

A LA TM

W e

A*W ™M

Compatibility is precisely the condition that makes sure p : ALO) 5 A0 | In particular, if the
complex structures are compatible, we get that p commutes with 0 and with 0. Moreover, if A — M
is an almost complex Lie algebroid over an almost complex manifold with compatible almost complex
structures, we see that the Nijenhuis tensors satisfy N(p(v), p(w)) = p(N(v,w)).

One sees that if a Lie algebroid A — M is transitive, i.e. if p : A — TM is a surjection, and we
can find a complex structure J such that ker p is invariant under J, then J induces a unique compatible

complex structure on the base manifold. We summarise in the following proposition.
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Proposition 6.3.13. Let (A, JJa) — (M, Jyr) be an almost complex Lie algebroid over an almost complex
manifold. Then for any x € M and v,w € A, , we get Ny, (p(v), p(w)) = p(Ny,(v,w)).

Moreover, if (A, J4) — M is a transitive complex Lie algebroid such that ker p is J-invariant, then
there is a unique complez structure Jyy on M that is compatible with J 4 , which is defined by Jy(p(v)) =

p(Ja(v)) -

An interesting question would be to ask which manifolds admit transitive complex Lie algebroids of
sufficiently low rank. In particular, does S admit a transitive complex Lie algebroid of rank 8 ?' What
about 2n — 1 manifolds and transitive complex Lie algebroids of rank 2n?

Conversely, one might be interested in complex structures on Lie algebroids that do not come from
complex structures on the base. For instance, in [CG15] it is shown that the elliptic tangent bundle of
Example 6.1.11 can be defined on real manifolds as well. The upshot would be that then T'M (—log |N|)
no longer comes equipped with a canonical complex structure inherited from the base, and one can define
an almost complex structure that intertwines logarithmic directions with tangent directions.

We leave these questions for future research and we continue with our quest to define Kahler structures.

Definition 6.3.14 (Hermitian Lie algebroid). A hermitian Lie algebroid is a triple (A, g, J) of a Lie alge-
broid A, a Riemannian metric g on A and an almost complex structure J on A, such that g(J—,J—) =
g(—,—),ie. Jis g-orthogonal. The two-form w := g(J—, —) € Q2(A) is called the hermitian two-form of
(A,g,J). If dqw =0, we call (A, g,J) a Kdihler Lie algebroid and we call w the Kahler form of (A, g,J).

Likewise, one can define almost hermitian Lie algebroids and almost Kdahler Lie algebroids by dropping

the assumption that J is integrable.

The following proposition immediately carries over from the classical case, where we note that we

have Lemma 6.3.4, see the proof of Proposition 2.2.4.

Proposition 6.3.15 (Alternative Kéhler characterisations). Let (A, g,J) be a rank k hermitian Lie
algebroid with Levi-Civita connection V and hermitian two-form w, then the following conditions are
equivalent
(i) daw =0;
(i) VJ =0;
(iii) Vw =0.
)

(iv) The holonomy groups of (A, g) lie inside U (k).

One unfortunate thing is that Hodge theory does not naturally carry over to this setting. Many
results from Hodge theory require the base manifold to be compact, as results require integrating over
the entire manifold. In the Lie algebroid setting, a symplectic two-form on a Lie algebroid does induce a
volume form by taking the top exterior power, however, it does not induce a volume form on the base.
This means we cannot use symplectic forms on Lie algebroids to integrate over the base manifold, hence
we have no direct way of translating Hodge theory to this setting.

M. Crainic pointed out to me that there is a notion of Poisson manifold of compact type in Poisson

geometry [CFM15; CFM16], where some classical symplectic dualities can be generalised to the setting

!By dimensionality, a transitive Lie algebroid over M™ of rank m is necessarily TM , as the anchor must be a fibrewise

isomorphism, so a rank 6 complex Lie algebroid on S is equivalent to a complex structure on S°.
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of Poisson manifolds that are not symplectic. Perhaps a Kéhler Lie algebroid admitting an integration
into a Lie groupoid with compact s-fibres would admit some kind of Hodge theory. We leave this for
future research.

Using the setting of Kéahler Lie algebroids, one can easily define Kdhler-FEinstein Lie algebroids as
Kahler Lie algebroids with constant Ricci curvature, and one can define Calabi-Yau Lie algebroids as
Kahler Lie algebroids with vanishing Ricci curvature. We note that the following proposition immediately

carries over to the setting of Lie algebroids.

Proposition 6.3.16. Let A be a rank k complex Lie algebroid carrying a Ricci-flat Kdhler metric g, then
Holg(g) € SU(k) on every leaf. Moreover, if Hol(g) € SU(k) on every leaf, then A has a nonvanishing
(k,0)-form Q € Q0 (A).

Here, the restricted holonomy group is generated by .A-paths whose induced loop on the base manifold
is null-homotopic relative to the leaf it lies on, in particular, it is a leafwise invariant. See [Ped23] for
details.

Example 6.3.17 (Elliptic tangent bundle). Let A be the elliptic tangent bundle associated to a codi-
mension one complex submanifold N C M . Since we have that the connected components of M \ N are
leaves where p is an isomorphism, we see that a Kihler metric ¢ on A induces a Kihler structure! on
the open manifold M \ N . Moreover, if g is Kahler-Einstein (or even Ricci-flat), then so is the induced
Kahler structure on M \ N .

An interesting case is when we let A be the elliptic tangent bundle with respect to ({0}U{oo}) C CP!.
Let g = dlog(z) dlog(z) . We see dlog(z) = —dlog(1/z), so g is indeed a well defined metric on A. Since
A has rank 2, the associated hermitian form is closed, hence ¢ defines a Kahler structure on A. A
calculation then shows that the associated Ricci tensor is identically zero. So we see that A is, in fact, a
Ricci-flat Kahler Lie algebroid. In fact, [Kiih11] shows that this is actually the only class of examples of
a Calabi-Yau elliptic tangent bundle over a compact complex curve, i.e. there is no Calabi-Yau elliptic
tangent bundle over a Riemann surface of nonnegative genus. Note that we can construct many other
Calabi-Yau elliptic tangent bundles over CP' by applying Mobius transformations to this example.

If we now let M be any Calabi-Yau manifold, we see that the elliptic tangent bundle with respect to
(M x ({0} U {oc})) € M x CP! also inherits a Calabi-Yau Lie algebroid structure.

The interesting part of the above example is that there has been quite some study on Kéhler-Einstein
metrics on complements of complex submanifolds. See [Kiith11] for a review. In particular, the Tian-Yau
theorem [TY87; TY90; TY91] tells us that whenever M is a particular type of complex manifold, known
as a Fano manifold, if we have a smooth normal crossings divisor D, i.e. a family of smooth codimension
one complex embedded submanifolds {X;}, such that at any point where k of them intersect, let’s say
Xiyy -+, Xjy, , we can find local coordinates such that X;; = {z; = 0}, and moreover if D represents
— Ky, we have that M \ D has a Calabi-Yau metric. However, these metrics usually have rather strange
behaviour towards the divisor, where the Kéhler potential on M \ D is approximated by (— log(r2))™+1/m™
around the divisor [Kiith11].

1Since any such K&hler metric must have logarithmic divergence towards the divisor, and since for any a > 0, ff dr/ (r2)

diverges, I think this even makes M \ N a complete Kahler manifold, but I don’t have a rigorous proof as of yet.
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Now, the elliptic tangent bundle can also be defined with respect to a normal crossing divisor D like
above, see [CG15], where we now let T'M (— log | D|) be locally generated by {2'0,1, ..., 250k, 0,641, ...,0.m}
and their complex conjugates. So we see that a Calabi-Yau metric on T'M(—log |D|) would induce a
Calabi-Yau metric on M \ D with nice behaviour towards the divisor, namely logarithmic behaviour.
Studying Ricci-flat Kéhler metrics on elliptic tangent bundles might therefore give some new insights in
this problem, though it might very well be that the existence of these is obstructed outside of cases with
a lot of symmetry.

Lastly, in literature, there is a notion of log Calabi-Yau manifold [DKW13]. This is defined as
an elliptic tangent bundle carrying a holomorphic volume form, where we note that 7'M (—log D) is
a holomorphic vector bundle, so it makes sense to talk about holomorphic (p,0)-forms. However, this
definition does not force that this volume form also comes from some Kéahler metric on the Lie algebroid.
In fact, it ignores the Kéahler question altogether. Thus, studying Kéahler elliptic tangent bundles might
tell us when log Calabi-Yau structures actually come from Calabi-Yau metrics on the associated elliptic

tangent bundle. This will give a new approach to this problem from a Riemannian perspective.

6.4 Lie algebroids in string theory: symplectic gravity

Up to this point this chapter has consisted of a mathematical discussion on geometry on Lie algebroids
and the possible applications to mathematics. However, as mentioned before, Lie algebroids have also
appeared in string theory, in this section, we present the main idea given in [Blu+13], which uses Lie
algebroids. In the next section, we will speculate a bit about a possibility of also introducing Calabi-Yau
Lie algebroids in string theory.

The idea is to take a vector bundle £ — M that is isomorphic to TM — M as a vector bundle, the
pick an explicit isomorphism p : E — TM covering id, and pull back the Lie bracket on T'M to E by
[v,w]g == p~t[p(v), p(w)]Tas . Then (E, p,[—, —]) becomes a Lie algebroid. The upshot is now that we
have an extra degree of freedom, namely we can change the anchor map with some Lie group. Then we
can look for theories that are invariant under such transformations.

A particular example of a Lie algebroid admitting such behaviour is a symplectic manifold (M,w).
The Lie algebroid is then 7% M and the anchor map is wf := (w”)~!, defined by w”(X) := txw . However,
there is no explicit need for this two-form to be closed to obtain a Lie algebroid structure on T%M , in
fact, we only really need it to be nondegenerate.

So assume (M, g) is a Riemannian manifold equipped with a background (NS, NS)-three-form flux H ,
i.e. dH = 0. Then we can locally find two-forms B such that H = dB, which we assume to be nonde-
generate. Using these two-forms, we can locally put a Lie algebroid structure on T*M , however, these
two-forms B are only unique up to a gauge transformation B — B + d§ for some one-form & . Therefore,
we need to make sure that whatever theory we put on T*M is invariant under gauge transformations.
Moreover, this is only a local theory, to find a global theory requires patching these theories together,
but if the theory is gauge invariant, we know that we can always do this.

Locally, we define the two-vector 3 as the inverse of B, i.e. 89 B = 5,’; , and we see that infinitesimal

gauge transformations correspond to

5B = (B @ BY)(d), (6.4.1)
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i.e. in coordinates,
(6¢8)"7 = 8™ 57 (dE) - (6.4.2)

To further study this object, we define the R-flux © := %[B,B]SN, i.e. the failure of 3 to be Poisson',
and we equip T*M with the Koszul bracket, i.e. [{,n]x = Lgt(eydn — Lgi(mdS + d(B(€,n)) , which, in

coordinates, becomes
(€ nlie = (BY (&Djm — mi0;&x) + OB Eimy)dac® (6.4.3)

To relate this to the Lie bracket we put on T*M by pulling back along 8, we compute

187¢:0;, B¥mdilrar = (B B (&i0imk — mi0&) + BY (Smk — nici) ;80 .
Now, using Gi(Bjkﬁkl) =0, we see ajﬁkl = 5kmﬁl"8ijn, such that

(89605, B "m0l rar = BY B (&0 — mi0i&k + B (Einm — 0i€m)0j Brn) 01
Noting that we defined the bracket on T* M by also left multiplying by B, we then see

[€,7] = Bun([87€0;, B0V da™ = BY (€051 — mi0i&r + B™ (&ithm — 1im) 05 Bin)da® .

Plugging in Equation (6.4.3), we see

[€,n] = [&,m)x — BY B ((&mi — 1i€k) 0 Bum + Om Bj&imi,)dz™

ie.
[ m] = [&mlk — tasytpre)H - (6.4.4)

So if 8 is Poisson, then the Koszul bracket is precisely the bracket of the Lie algebroid T*M , thus we
can also interpret the R-flux as the failure of 8! to be an algebra homomorphism. Moreover, note that

the Koszul bracket is only a Lie bracket if S is Poisson, as the Jacobiator is precisely given by

Jac(€,,¢) = (B4([&, nlk) — [B4(€), BAm])(C) + cp- (6.4.5)

which vanishes if and only if £ is Poisson. One might wonder what the point of any of this is, since it
seems like we’re intentionally misdefining things: why use the Koszul bracket when we have the algebroid
bracket available? Well, the idea is that applying a gauge transformation will yield a “non-geometric”
transformation of the theory, however, part of this transformation is a usual diffeomorphism, the part
that is “non-geometric” can be described in terms of the Koszul-bracket. As is shown in [Blu+13], we

have
3¢ = BHE)(B) — 0¢B, (6.4.6)
where

0¢B = Lef+ (B ® BY)(dE). (6.4.7)

Here, L is the “non-geometric” Lie derivative with respect to 5, given on vector fields by

LeX = 1gdpX + dgie X (6.4.8)

!Note that this means that a vanishing H-flux implies there is no R-flux. The idea is to translate a setting with H-flux
to a setting with R-flux by moving everything to 7" M .
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with dgX := [, X|sn, and given on one-forms by

Len = [€, )k - (6.4.9)
Moreover, [Blu+13] also shows
3eg = B(€)(9) — ded, (6.4.10)
where g = (8* @ 5%)(g) and
0cd = Lej . (6.4.11)

So we see that gauge transformations are generated by usual diffeomorphisms in the (%(¢)-direction,
together with a “non-geometric” part given by 55, which we will call an infinitesimal S-diffeomorphism,
i.e. B-diffeomorphisms are generated by transformations of this form.

Now, for general (r, s)-tensors T, we define &T, which we can do, because T can always be uniquely
written as T = ((B?)®" @ (8%)®%)T for some (s,7)-tensor T'. Then we do the infinitesimal transformation
B — B+ d¢ and define

0T = (B +d€)" )" @ ((B+ 8:8)")*)T - T, (6.4.12)

and
0cT == BH(E)T) — 6T (6.4.13)

We say Tis a B-tensor if ng = ﬁgT
[Blu+13] shows a few things, which follow from straightforward computations:
(i) © is a [-tensor;
(ii) The algebra of S-diffeomorphisms does not close, but it does close up to honest diffeomorphisms,
so the algebra of g-diffeomorphisms and honest diffeomorphisms does close;
(iii) For two S-one-forms ¢ and 7, [, 7] is a -one-form;
(iv) The Levi-Civita connection V of g maps [-tensors to S-tensors.
In particular, we have all the tools we need to define a differential geometric theory of S-tensors.

The next step is to write down a S-invariant action, then we have a dynamical theory with nontrivial
R-flux. Now, since our algebroid is the cotangent bundle, and sections of A"T*M can be integrated, we
want to find a S-volume form, or rather, a top form that is a S-volume form up to a total derivative.
[Blu+13] shows that /—[g||3~|dz™ satisfies these conditions. The Lagrangian that is then considered

for a symplectic gravity theory is
L=e (R~ 0790, +4§;;D'pDiy), (6.4.14)

where D' := B#(dz’), and ¢ is the dilaton field. The associated action is manifestly invariant under
(B-diffeomorphisms, so this gives a well defined functional. Moreover, this precise form is given such that
it looks like the action for the bosonic string.

The upshot is now that we pulled back everything to the cotangent bundle, such that the canonical
frames corresponding to coordinates do not come from the coframes of the coordinate system, but rather
to the frames of the coordinate system pulled back via 8. Thus, many things become nontrivial for
the coframes corresponding to coordinate systems, in particular, [dz?, dz?] does not necessarily vanish.
This gives a rather peculiar theory, which is nevertheless perfectly well defined due to everything being

invariant under S-diffeomorphism.
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In [Blu+13], they solve the associated equations of motion in some particular cases, and they indeed
find some dynamics with nontrivial R-fluxes.

One thing to note is that in Section 6.3 of [Blu+13], a cohomology theory is defined, which the authors
call quasi-Poisson cohomology, together with a notion of co-Calabi- Yau manifold. This quasi-Poisson
cohomology they define is isomorphic to ordinary de Rham cohomology, and the notion of co-Calabi-Yau
coincides with the usual notion of Calabi-Yau manifold, transported to the cotangent bundle using 5.

This gives us an explicit example of a string theory where the extra six dimensions are “non-
geometric”. Examples of these kinds of theories also arise naturally from the setting of toroidal compact-
ifications with nontrivial H-flux. Compactifying on tori puts us in the setting where T-duality transfor-
mations are a canonical thing to consider. As it turns out, applying two T-duality transformations to a
theory with background H-flux gives a nongeometric theory where monodromy around the torus acts by
T-duality. These kinds of theories are most naturally formulated in terms of Courant algebroids, which
are kind of like Lie algebroids, but where the target space is TM ®&T* M equipped with a natural bracket.
For details on these kinds of constructions, see e.g. the review [Plal9] for the physical picture, or [CG10)]

for the mathematical picture.

6.5 Calabi-Yau Lie algebroids in string theory?

The previous section gave an application of Lie algebroids to string theory. Ideally, we would also find
an application of Calabi-Yau Lie algebroids to physics. The idea we present here is still speculatory in
nature and as of right now, just a possible mechanism without a proper framework to couple it to string
theory.

The idea is to start with a spacetime M0 = M?* x M6 | where MY is some six-dimensional complex
manifold. On the MY, we take a four dimensional elliptic tangent bundle corresponding to N —» MY
possibly wrapping a nontrivial homology cycle, see Example 6.1.11. Now, if we could find a Calabi-Yau
metric on T'M (—log |N|), such that the holonomy group is SU(3), and such that 7'M (—log |N|) admits
spinors, then we have a global parallel spinor on M5\ N, and a metric with logarithmic divergence
towards N .

One question that appears in this theory is whether or not the bundle 7'M (— log | N|) admits spinors.
One thing to note is that it does admit a complex structure induced by the complex structure of M , so it
is orientable. Therefore, the question reduces to whether the honest first Chern class ¢ (T'M (—log|N|)) €
H?(M;Z) vanishes mod 2, as then we know that the second Stiefel-Whitney class is zero. In particular,
does Hol(g) C SU(m) leafwise mean that T'M (log |N|)(™9 is trivial?

Now we turn to describing a local model on these kinds of spaces, giving differential equations that
should be satisfied to have a Kahler form on the space.

A hermitian two-form on T'M(—log |N|) would, in a slice chart, be given by

w = f(z,z)dlog zp Ndlog Zg +Zgi(z,2)dlog(zo) Ndz; — Zﬁ(z,i)dzi Adlog(zy) + Z hij(z,z)dz; NdZ; ,
i=1 i=1 i,j=1

where —if is a positive real valued smooth function and g; and h;; are complex valued smooth functions

such that hj;; = —h;;, which is imposed by reality, and all eigenvalues of —ih are positive, which is

imposed by positive definiteness of the metric.
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Now, the Kahler condition says dpps(—10g|npw = 0, which translates to the following differential

equations

(1) Ouf +2004Gi=0; i=1,...,n;

(ii) 0,95 — 200:,hij =05 i, =1,...,n;
(iii) Oy hjk — Oz hik =05 4,5, k=1,...,n.

An example of a six dimensional space satisfying these properties would be K3 x CP!, where N =
K3 x ({0} U {o0}), see Example 6.3.17. This example is, in particular, Ricci-flat, so it has some of the
desirable properties Calabi-Yau manifolds have.

Such spaces are Calabi-Yau in the bulk, but the Kéhler potential degenerates like log(z) log(z) towards
the divisor. As far as the author is aware, these kinds of spaces do not appear in string theory as of now.

Perhaps the divisor N in this picture could be interpreted as some kind of brane. Given the setup,
this would mean N has to be a spacetime filling seven-brane, as the metric on M has to be continuous.
However, this does mean that the volume of the M%\ N diverges, given that the volume form is a
logarithmic form. Thus, this kind of space might not be well-suited as a compactifying space for string
theory. But perhaps the metric with logarithmic divergence need not be literally interpreted as a metric,
but perhaps as some second auxiliary metric, like in bigravity theories, cf. e.g. [HR11].

Moreover, in [DKW13], the authors present a theory on certain log-Calabi-Yau spaces (i.e. elliptic
tangent bundles with a holomorphic volume form) that appear as degenerations of smooth Calabi-Yaus
in the context of F-theory, where they show there is some holographic behaviour, i.e. a part of the theory
is localised on the divisor. With a bit of imagination, such behaviour could be studied in the case where
the Calabi-Yau structure is induced by a Riemannian metric on the algebroid.

Note again that this suggestion is heavily under-developed as of now. Perhaps there is another, more
useful application in physics to be found. We will keep on looking for something as the theory develops,

and we encourage the reader to do the samel!
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