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by Tjeerd SMID

Symbolic execution is a program testing technique from the software verification domain.
It involves symbolically modeling and testing all possible execution paths of a program
against a set of constraints. The three main challenges of symbolic execution are (1) Mem-
ory modeling; (2) Execution path explosion; and (3) Constraint solving.

In this thesis, we present a Symbolic Execution Engine. This engine operates on the OOX
language and is equipped with eleven different heuristics. These heuristics aim to im-
prove efficiency in handling the second and third challenges of symbolic execution.

We conducted an extensive experiment with our Symbolic Execution Engine. We used the
benchmarking tools and a set of 81 benchmarking programs from the Software Verifica-
tion Competition, and seven comparable verification tools, with the aim of investigating
the effectiveness of the heuristics and substantiating the claims of effectiveness, sound-
ness, and completeness of our Symbolic Execution Engine.
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Chapter 1

Introduction

From the microprocessor managing our ovens to the supercomputers occupying multiple
football fields, digital computers are ubiquitous, and so is the software running them.
A software failure in your oven’s microprocessor may hinder the preparation of your
lasagna tonight, but there are far worse problems caused by these failures. Failure of
software for spacecraft, airplanes, medical devices or flash trading can and does result in
millions of dollars in damages or even worse, loss of human life.

Knowing the damages that software failures can cause and the fallibility of the humans
developing this software, the need for preventing software failures is clear. This need lies
at the heart of many research fields such as requirement engineering and software testing
& verification.

In this thesis, we consider one method, from the software testing & verification domain,
that can be used to discover a subset of software failures: symbolic execution. We develop
a Symbolic Execution Engine (SEE), named Jip1, operating on the OOX programming
language with a set of eleven heuristics. The main question we aim to address is:

Is a SEE operating on OOX a viable alternative to current program verification tools?

1The public repository containing the SEE can be found at https://github.com/tjausm/Jip

https://github.com/tjausm/Jip
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Chapter 2

Background

2.1 Testing

In this Chapter, we treat software testing as a search through all possible executions of a
program. During this search, we look for one or more faulty executions, without knowing
if there even is a faulty execution. In the following sections, we take a closer look at
various ways in which we can do this exploration, to get an understanding of what testing
is, how we can define what a faulty execution is and to motivate the choice of testing
software with symbolic execution. We use the program seen in listing 1 as a running
example throughout Chapter 2.

2.1.1 Unit testing

One of the more straightforward methods of testing would be constructing a set of in-
puts and corresponding outputs. For example, consider the program mod(a,b) shown
in figure 1. To demonstrate the correctness of this program with unit testing we could
assume there are two cases of inputs: a < b and a >= b. And if our program can solve
one instance of this case, this approach assumes it can solve all other instances of this
case. Possible test inputs covering the two previously mentioned cases are (12, 88) and

1We assume a >= 0 && b > 0 for the sake of simplicity
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1 static int mod(int a, int b){

2 assume a >= 0;

3 assume b > 0;

4

5 res := a;

6

7 while (res >= b) {

8 res := res - b;

9 }

10

11 assert res == a % b;

12 return res;

13 }

LISTING 1: A program that writes the result of a % b1to res

(73, 10), giving us the following two tests: mod(12, 88) == 12 and mod(73, 10) == 3.
With this trivial program, this method already poses problems, as we will see in section
2.1.3. But constructing inputs for all cases of less trivial programs is even more complex.

Unit testing also suffers from a bias. Programmers create a set of test inputs for each case
a program should cover. If a programmer knows of the case he writes a set of test inputs
for, the programmer has probably covered that case in his program. If the programmer
does not know of a case of inputs that the code should cover, the programmer has most
likely not written a test input covering that case.

2.1.2 Property-Based Testing

A more sophisticated method that removes some of this aforementioned bias and does not
force the developer to construct all cases is property-based testing. A software developer
writes a predicate to which the output has to adhere (with respect to an input), and a
testing library generates random data to test whether the predicate holds. For listing 1 we
could have listing 2 as a predicate.
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This method can be quite thorough, assuming that the predicate is well written and the
random input values and sizes are non-trivial. But even in our very simple example the
amount of possible inputs are 2322

. One iteration of random tests only confirms our pro-
gram to be valid for the minuscule fraction of inputs that we have generated, leaving an
enormous amount of inputs that could still break our predicate.

1 static bool isMod(int a, int b, int res){

2 return a < 0 || b <= 0 || a % b == res

3 }

LISTING 2: Predicate of a successful modulo application

2.1.3 Symbolic Testing

FIGURE 2.1: CFG2of listing
1

We argue that the problems described in the previous section
arise from the instantiating variables when testing the exam-
ple. Given that an integer can usually take on 232 values, one
can see how instantiating many of these, which happens in
most meaningful programs, can lead to virtually infinite test
cases. This makes it impossible to completely test the program. A
solution to this problem is avoiding the instantiation of variables, and
instead, verifying whether an execution path of the program could
break our predicate.

To get an intuition of how we avoid instantiating variables we, again,
take a look at listing 1. The CFG representing listing 1 can be seen
in Figure 2.1. All possible executions of the mod can be represented
as a path through this CFG. To see whether it is correct without in-
stantiating variables we would go over the paths we can take through
the CFG in 2.1. We can intuitively see two ’types’ of paths. Either
res >= b and we traverse the loop n times or !res >= b and we
never enter the while loop.

2CFG is generated by our tool Jip
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Over the first path, where res >= b, we keep subtracting b from res until !res >= b. Òver the
second path, where !res >= b, we return res. Intuitively we see how both these paths should
return the correct answer. This is because res is initialized to a and a % b should either return a

if a < b or a - n * b such that 0 <= a && a < b. Symbolic execution formalizes this process. In
Chapter 3 we will extend on how our SEE goes about formalizing this process.

2.1.3.1 Challenges of Symbolic Testing

In the last section, we proposed that not instantiating variables dramatically reduces the work
needed to completely test a program. But symbolic testing comes with its own challenges[5]:

Memory modeling values on the stack is manageable. But complexity grows as we start modeling
references and their corresponding values on the heap. Does the nth element of an array
exist? Do we even know that the arrays reference is not null? and so on.

Constraint solving , in this context, is an NP-hard problem. And although state-of-the-art
solvers such as Microsoft’s Z3 Satisfiability Modulo Theories (SMT) solver are very effi-
cient, solving the constraints remain a very large part of the method’s complexity.

Path explosion or state space explosion. Symbolic execution reasons about all execution paths
of a program. The number of paths grows exponentially with each control structure our
program contains e.g. adding an if-then-else branch doubles the amounts of paths, and most
useful programming language contains even worse constructs (from the perspective path
quantity), namely infinite ones e.g. while loops, arrays, for loops, recursion, etc.

2.2 Related Work

Circa 1975 symbolic execution was simultaneously invented by several researchers [14][8]. Almost
50 years later, as of this writing, there are circa 1600 articles containing the phrase "symbolic
execution" on Google Scholar. A simple Google search returns many tools to perform symbolic
execution with languages such as C, Ruby, Javascript, and Java. Apart from the method’s presence
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in academia, Microsoft has reported that its symbolic testing tools play a big role in testing many
of their application, r eporting that nearly 30% of all bugs found in Windows 7, were found using
said technique [11]. Symbolic execution may not be as ubiquitous as unit testing. But the method
has found its way into the mainstream, especially for testing critical applications.

In this thesis, the focus will lie on optimizing constraint solving and reducing the path explosion
problem. Therefore, in the following subsections, we will expand on different methods from the
literature to do this, discussed in subsections 2.2.1 and 2.2.2, and we will provide some background
on various similar tools that already exist in subsection 2.2.3.

2.2.1 Constraint Solving

During symbolic execution, we use sets of constraints collected over execution paths to verify
paths as either infeasible, valid, or containing an error. The most popular method to solve sets of
constraints is via SMT solvers. An SMT solver can be called with a set of constraints as input, and
the solver will determine if there exists an assignment of values to the variables in the constraints
such that all the constraints are satisfied. Many SMT calls have to be made for each execution path,
and deciding the satisfiability of a set of constraints is an NP-hard problem. As a result, constraint
solving is one of the main factors that impact performance.

In the meta-analysis of Symbolic Execution conducted by Baldoni et al.[5], three categories of
methods are presented to improve performance in constraint solving during symbolic execution.
Each of these categories will be discussed, with particular emphasis on Constraint Reusing and
Constraint Reduction, as several heuristics in this thesis belong to these categories.

Constraint reusing aims at caching the results of previously solved constraints. When symbolic
execution encounters a constraint, it first consults the cache to see if the constraint or a
similar one has already been solved. If so, the cached solution can be reused.

The methods of reusing can vary, from simple direct caching, where previously seen con-
straints are mapped to results, to more complex methods such as subsuming cache or incre-
mental solving. The subsuming cache method aims to map subsuming constraints to each
other in the cache. Meanwhile, incremental solving aims to persist the SMT solver state
across calls, which allows the solver to reuse its internal state.
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Constraint simplification attempts to simplify the constraints to the extent that either the SMT
solver is not required, or the task of solving the constraints is made easier for the SMT solver.
Simplification can be done in a variety of ways such as evaluating concrete values, using
domain-specific knowledge gained during the symbolic execution, or removing irrelevant
constraints. These methods often also lead to better performance in constraint reusing.

Augmenting constraint solving to handle constraints that are difficult for conventional solvers.
This category of optimization is aimed at extending the applicability and effectiveness of
SMT solvers in scenarios where traditional constraint solving techniques may struggle.

2.2.1.1 SMT Solvers

Because constraint solving greatly contributes to the complexity of symbolic execution, the perfor-
mance of an SMT solver significantly influences the performance of SEEs. In this section, we will
provide a brief overview of the landscape of SMT solvers and highlight the three solvers used in
this thesis.

The most extensive comparative analysis of SMT solvers is during the annual International SMT
Competition (SMT-COMP)[4]. In 2023, this competition hosted six different tracks ranging from
testing solver performance on distributed systems to testing the performance of solvers reducing
problems to their minimal unsat core. However, the most important category, in the context of
this thesis, is the single query track, comparing the performance of solvers on solving a single
satisifiability problem, since more extensive usage of solvers with parallel or distributed verification
is beyond the scope of this thesis. The single query track is divided into 95 different categories, of
which we have summarized the best-performing verifiers in table 2.1.

Solver cvc5 Bitwuzla Yices2 smtinterpol Z3 YicesQS OpenSMT STP Vampire

Categories Won 49 18 13 4 3 2 3 2 1

TABLE 2.1: Performance of SMT solvers in the Single Query track in 2023

The three solvers used in this thesis are CVC4, Yices2, and Z3:
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CVC4[1] is a solver developed as a joint project by Stanford University and The University of
Iowa. While this solver has now been succeeded by cvc5, it was the best-performing solver in the
Single Query track during the last SMT-COMP in which it participated, in 2019.

Yices2[2] is a solver developed by the Stanford Research Institute. It has consistently been one
of the top-performing solvers in the SMT-COMP for several years.

Z3[3] is a solver developed by Microsoft Research. Though it does win in some categories of the
SMT-COMP, it performed less well than Yices2 and cvc4 in the Single Query track in 2019. Z3
is the most popular SMT solver3. Consequently, Z3 has the most extensive support in terms of
documentation, library, and API availability.

2.2.2 Path Explosion

The path explosion problem refers to the exponential growth in the number of execution paths that
symbolic execution needs to explore as the size and complexity of the program increase, which poses
a problem since many more paths have to be considered during symbolic execution when searching
for errors.

In the meta-analysis of Symbolic Execution conducted by Baldoni et al.[5], six categories of popular
methods for combating the path explosion problem are presented. Each category will be discussed,
with particular emphasis on path feasibility, as several heuristics in this thesis belong to this cate-
gory.

Path feasibility. In symbolic execution, a distinction is made between feasible and infeasible
execution paths. Feasible execution paths are those paths for which a set of input values
exists that will result in an execution over the path. On the other hand, infeasible execution
paths are paths for which no set of input values exists that will result in an execution over

3A Google Scholar search for ’z3 SMT’ results in 17700 results, whereas ’cvc4 SMT’ and ’yices2 SMT’
resulted in 2400 and 430 results respectively.
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the path. For instance, a path containing the condition if (x > 5 && x < 3) will never be
executed, since there is no value for x for which both x > 5 and x < 3.

Verifying an infeasible path during symbolic execution is redundant since a bug cannot oc-
cur in an execution path that cannot exist. Contrastingly, eagerly verifying all constraints
to prevent the exploration of infeasible paths can be more expensive than exploring the in-
feasible paths themselves. In the literature, the exploration of paths without checking for
infeasibility is called lazy constraint evaluation. On the other hand, the approach of check-
ing all constraints is referred to as eager constraint evaluation[5].

One of the more popular methods to reduce the cost of recognizing infeasible paths was
proposed by Calcagno et al.[10]. They proposed reducing the constraints to a minimal unsat
core, the smallest set of constraints from an execution path that is proved to be unsatisfiable.
By memoizing this unsat core, other infeasible paths can be recognized without invoking an
SMTsolver.

Loop and function Summarization attempts to reduce the path explosion problem by abstract-
ing and representing the effect of loops or functions, as summaries. These summaries capture
the essential behavior of the loop or function and can be reused whenever the loop or function
is encountered again.

Path subsumption tries to discard newly explored paths if the behavior of a path is already cov-
ered by a previously explored path, known as a subsuming path.

State merging attempts to combine states, storing their constraints as disjunctions, resulting in
a single, more complex state that represents multiple paths.

Under-constrained Symbolic Execution tries to analyze a smaller segment of a program in
isolation. This allows symbolic execution to conduct a more complete analysis of the segment
without considering all other paths throughout the entire program.

2.2.3 Software Verification Tools

Similarly to SMT-COMP, the Competition on Software Verification (SV-COMP) is the largest
annual competition for software verification tools. In the 2023 edition, 57 verification tools partici-
pated, wherein eight verifiers competed in the Java competition, while the remaining 49 participated
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in the C++ competition. Due to the scope of this thesis, only the Java verifiers will be used in the
comparative analysis.

The eight verifiers use four different methods or combinations of methods to verify a program.
In Table 2.2, we present the method each of the eight Java verifiers uses, as per their respective
publications[25][18] [23] [9][13] [17] [20]. Note that the SEE developed for this thesis solely
utilizes symbolic execution.

Verifier Concrete
execution

Symbolic
execution

Model
checking

Bounded
model
checking

Coastal X X
Gdart X X X
Java Ranger X X
Jayhorn X X
JBMC X X
Jdart X X
MLB X
SPF X X

TABLE 2.2: Verification methods used by all Java verifiers competing in
SV-COMP

2.3 Intermediate Verification Language OOX

The SEE that will be presented in Chapter 3 operates on OOX. Which is an Intermediate Verifica-
tion Language (IVL) designed by Stefan Koppier[15]. IVLs are programming languages intended
to be an intermediate between higher-level languages and the verification tool. Using an IVL al-
lows the SEE to operate on a simpler model while still being able to verify programs written in any
language, as long as they can be parsed to OOX.

OOX has a strong type system with concurrency, classes, and objects as its first-class citizens.
Its object orientation makes it well-suited to model languages such as C# and Java. The formal
semantics of the language are also available[15].
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Implemented OOX features The SEE described in this Chapter operates on OOX without its
concurrency features, as described in Table 2.3.

ty v Introduce a variable v of type ry with a default value
lhs := rhs Assign the evaluated value of rhs to lhs
o. f (e1, ..., en) Invoke method f of an object o
assert e Assert that the expression e holds.
assume e Assume that the expression e holds.
while(e) S Execute S while the guard e evaluates to true.
if(e) S1 else S2 Execute S while the guard e evaluates to true.
continue Jump from within a loop to its guard
break Break the execution of a loop.
return e Return to the caller, passing the value of e
S1;S2 Chain consecutive statements

TABLE 2.3: Set of Statements supported by Jip (taken from Koppier et al.
[22])
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Chapter 3

The Symbolic Execution Engine

The SEE operates in three phases as outlined in Figure 3.1. The first two phases return
either an error or a transformed OOX program, the last phase can return either an error or
the verification result. As no static analysis after parsing, semantic errors can arise during
both the CFG generation and symbolic execution phases. For instance, semantic errors
that prevent the SEE from generating a CFG, such as calling a non-existent method, will
result in a semantic error during CFG generation. Likewise, errors that prevent the SEE
from executing, such as evaluating an ill-typed expression (e.g. false + 1) will result in a
semantic error during the symbolic execution.

The parsing process will be elaborated upon in section 3.1. The CFG generation process
will be explained in section 3.2. Lastly, the symbolic execution will be discussed in section
3.3.

Parsing CFG Generation Symbolic Execution
Valid, Invalid
or Unknown

Semantical
error

Syntactical
error

Semantical
error

OOX program AST CFG

FIGURE 3.1: Overview of SEE architecture
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3.1 Parsing

The first phase of symbolically executing an OOX program consists of parsing an OOX
program. Parsing an OOX program returns an Abstract Syntax Tree (AST). No additional
transformations are applied during this phase.

3.2 CFG Generation

The second phase consists of generating a CFG from program p ∈ Program, generated
during the parsing phase, as outlined in 3.1.

Program ::= Class+

Class ::= (Identifier, Method∗)
Method ::= (Paremeter∗, Statements)

Statements ::= Statement | Statement Statements
Identifier ::= String

(3.1)

The CFG is a directed graph (N, E) representing the control flow paths of a program.
An edge from node n1 to node n2 is denoted as n1 → n2. A node n ∈ N, as shown
in 3.2, consists of a unique label and one of the five actions: (1) entering the Main.main

function1, the starting point of the CFG; (2) leaving the Main.main function, the end point
of the CFG; (3) entering the subgraph of methods, static methods, and constructors (which
we categorize as procedures); (4) leaving the subgraph of a procedure; and (5) executing
a statement.

1The SEE always assumes Main.main to be the entry method
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N = Label× Action
Action = EnterMain

| LeaveMain
| EnterProcedure
| LeaveProcedure
| Execute(Statement)

(3.2)

3.2.1 Statements to CFG

The CFG generation is a function s2c that recursively evaluates statements returning a
triple: a CFG c, the set of start node(s) of c, and the set of end node(s) of c.

s2c : Statements→ (CFG× {N} × {N})

Function s2c also maintains two environments:

• Type Environment. This environment maps object names to their respective class
names. If the passed identifier is not in the environment, the function serves as the
identity function, to account for static method calls.

Typeenv : Identifier→ Identifier

• Procedure Environment. This environment maps the identifiers of methods, static
methods, and constructors (which we categorize as procedures) to the subgraphs
and start and end nodes of these subgraphs. The first time the subgraph of a pro-
cedure is retrieved, it is recursively generated with the function s2c, a node of the
form (l, EnterProcedure) is prepended, and a node of the form (l, LeaveProcedure) is
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appended, acting as the start and end nodes of the generated subgraph. All subse-
quent retrievals return the previously generated start and end nodes.

procenv : (Identifier, Identifier)→ (CFG× N × N)

We define function fl() that generates a unique label for each node and a set of auxiliary
functions to combine CFGs, nodes and edges.

(N1, E1) + (N2, E2) = (N1 ∪ N2, E1 ∪ E2)

(N1, E1) + N2 = (N1 ∪ N2, E1)

(N1, E1) + E2 = (N1, E1 ∪ E2)

In the following six paragraphs we will elaborate on how function s2c recursively gener-
ates a CFG. Each paragraph will discuss one case of s2c, starting with the formal definition
of the function for that case, followed by a piece of example code and its corresponding
CFG.

if-then-else. Let s2c(if (e) s1 else s2) = res. We define nodes n1 = (fl(), Execute(assume e))
and n2 = (fl(), Execute(assume ¬e)) to represent the branch conditions and recursively
evaluate the bodies of the if-then-else statement: s2c(s1) = (cfg1, start1, end1) and s2c(s2) =
(cfg2, start2, end2). This allows us to define res as (cfg1 + cfg2 + {n1, n2}+ {n1 → ns : ns ∈
start1}+ {n2 → ns : ns ∈ start2}, {n1, n2}, end1 ∪ end2).

1 if (x) {

2 y := 1;

3 }

4 else {

5 y := 2;

6 }

→

FIGURE 3.2: if-then-else to CFG
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While. Let s2c(while(e) s) = res. We define nodes n1 = (fl(), Execute(assume e))
and n2 = (fl(), Execute(assume ¬e)) to represent the branch conditions and recursively
evaluate the body of the while statement as s2c(s) = (start, end, cfg). This allows us to
define res as (cfg + {n1, n2} + {n1 → ns : ns ∈ start} + {m → n : m ∈ end, n ∈
{n1, n2}}, {n1, n2}, {n2}).

1 while (x) {

2 y := y + 1;

3 }

→

FIGURE 3.3: While to CFG

Procedure Invocation. Let s2c(id.f (args)) = procenv(typeenv(id), f ).

1 static void main(){

2 Main.f();

3 }

4 static void f(){

5 ;

6 }

→

FIGURE 3.4: Procedure Invocation to CFG

Procedure Call. Let s2c(id := id.f (args)) = res. We define node n = (fl(), Execute(id := retval))
and evaluate procenv(typeenv(id), f ) = (cfg, start, end) to retrieve the CFG, start and, end
node(s) of the procedure. This allows us to define res as (cfg+ {n}+ {end→ n}), {start}, {n}).
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1 static void main(){

2 h := Main.two();

3 }

4 static int two(){

5 return 2;

6 }

→

FIGURE 3.5: Procedure Call to CFG

Recursive Statement. Let s2c(s1 s2) = res, let s2c(s1) = (start1, end1, cfg1) and let
s2c(s2) = (start2, end2, cfg2). This allows us to define res as s2c( cfg1 + cfg2 + {e → s :
e ∈ end1, s ∈ start2}, start1, end2).

1 s1; s2 →

FIGURE 3.6: Recursive Statement to CFG

Otherwise. Let s2c(s) = res. Then we define node n = (fl(), Execute(s)) allowing us to
define res as ((n, ∅), {n}, {n}).

1 y := y + 1 →

FIGURE 3.7: Otherwise to CFG

3.2.2 Program to CFG

To generate a CFG c from p we use the following procedure: (1) defining ns = (fl(),
EnterMain) and ne = (fl(), LeaveMain), the start- and end node; (2) retrieving the Main.

main method m from p; (3) using body b of m to generate a CFG s2c(b) = (cfg, nsb, neb);
and (4) defining c by combining generated nodes and edges c = cfg + {ns, ne}+ {(ns →
nsb), (neb → ne)} and
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1 class Main {

2 static void main

3 (int x, int y)

4 {

5 int z;

6 if (x >= y)

7 z := x;

8 else

9 z := y;

10 }

11 }

→

FIGURE 3.8: Program to CFG
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3.3 Symbolic Execution

In this section, we start by explaining how the SEE symbolically represents all distinct
components of a program execution, such as expressions, the stack, the heap, and so forth.
Then, in section 3.3.9, we discuss the main algorithm that drives the symbolic execution.
Section 3.3.10 will then combine all the previously explained components within the func-
tion update_state, which is the main function in the symbolic execution algorithm.

3.3.1 Control Flow

Verdict We define Verdict represening the three possible outcomes of symbolic execution
(1) the program being error-free; (2) the program containing an error; or (3) the symbolic
execution being unable to fully verify a program despite not encountering any errors.

Verdict = Valid | Invalid | Unknown

Infeasibility We define the unit type Infeasible to denote the Infeasibility of an execution
path.

3.3.2 Expression

In the context of symbolic execution, an expression is the Expression type of OOX as out-
lined by Koppier [15] where all variables are substituted, resulting in an expression with
only symbolic variables and symbolic references. Function substitute is used to evaluate
an OOX expression to the expression used in the SEE. For instance, if the SEE encoun-
ters an expression a == 4 with the following stack: [a 7→ b+ 2], the SEE will evaluate
substitute([a 7→ b+ 2], a == 4) resulting in the expression b + 2 == 4. Note that b is a
symbolic value in this expression.
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The expression is defined as follows:

E ∈ Expression ::= lit(z) | lit(b)
| ref (sr)
| var(id)
| null
| unop(E1,⊕)
| binop(E1,⊗, E2)
| sizeof (i)
| quantifier(i1, i2, i3, E,⊙)

z ::= Z

b ::= true | false
sr ::= SymRef

id ::= String

⊕ ∈ UnaryOperators ::= ! | −
⊗ ∈ BinaryOperators ::= ∗ | \ | % | + | −

| < | <= | > | >= | ==
| ! = | && | || | ==>

⊙ ∈ quantifier ::= forall | exists

3.3.3 Path Constraints

We define PathConstraints, representing the constraints collected over an execution path
during the symbolic execution.

PathConstraints = Constraint∗

Constraint = assume(Expression) | assert(Expression)
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Functions conjunct and combine, outlined in Formula 3.3, are defined for the path con-
straints. The interpretations of these functions are as follows: for any execution path with
path constraints pc, if the expression conjunct(pc) is satisfiable, the execution path is fea-
sible. Moreover, if ¬combine(pc) is satisfiable, then we have found an invalid execution
path.

conjunct(pc) =


True if pc = []

e ∧ conjunct([a2, . . . , an]) if pc = [assert(e), a2, . . . , an]

e ∧ conjunct([a2, . . . , an]) if pc = [assume(e), a2, . . . , an]

combine(pc) =


True if pc = []

e ∧ conjunct([a2, . . . , an]) if pc = [assert(e), a2, . . . , an]

e =⇒ conjunct([a2, . . . , an]) if pc = [assume(e), a2, . . . , an]

(3.3)

3.3.4 Satisfiability Solving

The SEE interfaces with the SMT Solver using function satisfiable. This function returns
either a mapping from identifiers to literals that satisfies the passed expression or ⊥ if
there exists no such mapping.

satisfiable : Expression→ (Identifier→ Literal) | ⊥

Three SMT solvers are supported: (1) CVC4; (2) Yices2; and (3) Z3. The selection of these
solvers was motivated by the availability of documentation and APIs for them in Rust,
the language in which the SEE has been implemented.
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3.3.5 Symbolic Reference

The symbolic reference is defined as the sum type SymRef , which is either Symbolic or
Concrete depending on whether the reference is an argument to the Main.main method or
is initialized during the symbolic execution. The label and the reference value in SymRef
serve to encode the reference within the path constraints and to initialize its corresponding
value. For instance, given a symbolic reference with label l and reference value rv, should
the path constraints contain the expression l != null, the value rv can be initialized on the
heap. The implementation of this is discussed in further detail in Subsection 3.3.8.

SymRef : Symbolic(label, ref , refvalue) | Concrete(ref )

3.3.6 Reference Values

In OOX, a symbolic reference can point to two types of values: arrays and objects. In the
following sections we will discuss how these are represented.

3.3.6.1 Array

Arrays are represented by the tuple (a, l), where a denotes a mapping from expressions
to expressions, and l is an expression representing the length of the array. The mapping a
initializes its values lazily, returning either concrete or symbolic values based on whether
the array is an argument to the Main.main method or is initialized during the symbolic
execution. Expression l, denoting the length of the array, is used throughout the symbolic
execution to verify that an array access or update operation will never go out of bounds.
This design allows arrays to have a symbolic length.

For instance, when an array Int[] arr is passed as an argument to the Main.main method
of the symbolic execution and arr[0] has not been assigned a value, a fresh symbolic
integer is returned if the array’s length is one or greater. On the other hand, if arr was
initialized during the symbolic execution and no value was assigned to arr[0], the default
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integer value of 0 is returned, provided the array’s length is at least one. Likewise, upon
accessing an array at index i with symbolic length l, the SEE will verify that under the
path constraints expression i < l always holds.

We define three operations on arrays: (1) initarr; (2) updatearr; and (3) accessarr. The first,
initarr, takes the type and length and initializes the array on the heap and returns its
SymRef as an expression. The other two, updatearr and accessarr, are outlined in Algorithms
1 and 2.

Algorithm 1: Update array
Input: Array tuple (a, l), path constraints pc, index expression i, and the expression to

be inserted, v
Output: Updated array or a verdict
pc∧ ← conjunct(pc);
m← satisfiable(pc∧ ∧ i = id1)

a;
if m ̸= ⊥ then

if satisfiable(pc∧ ∧ i = id2 ∧ i ̸= m(id1)) = ⊥ then
i← m(id1);

end
end
if satisfiable(pc∧ ∧ i ≥ l)b then

if satisfiable(pc∧)c then
return Invalid;

else
return Infeasible;

end
end
a′ ← a[i 7→ v];
return (a′, l)

aattempt to evaluate the index to a literal using the SMT solver and two fresh variables id1 and id2
bcheck if index is always smaller than length
can out-of-bound access can occur on infeasible paths, therefore, a feasibility check is required before being

able to return an invalid verdict
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Algorithm 2: access array
Input: Array tuple (a, l), path constraints pc, and index expression i
Output: Expression at index i, infeasible or a verdict
pc∧ ← conjunct(pc);
m← satisfiable(pc∧ ∧ i = id1)

a;
if m ̸= ⊥ then

if satisfiable(pc∧ ∧ i = id2 ∧ i ̸= m(id1)) = ⊥ then
i← m(id1);

end
end
if satisfiable(pc∧ =⇒ i ≥ l)b then

if satisfiable(pc∧)c then
return Invalid;

else
return Infeasible;

end
end
return a(i)

aattempt to evaluate the index to a literal using the SMT solver and two fresh variables id1 and id2
bcheck if index is always smaller than length
can out-of-bound insertion can occur on infeasible paths, therefore, a feasibility check is required before

being able to return an invalid verdict

Object Objects are represented by the mapping o, which maps identifiers to expressions.
An object is initialized lazily if it is an argument to the Main.main method. If an object is
initialized during symbolic execution, all of its fields adopt their default values: false for
booleans, 0 for integers, and null for references.

For instance, consider a linked list class LL { -Bool v; -LL next; }. If an instance of this
class is initialized as an argument of the Main.main method, the field v will be initialized
to a symbolic boolean and the field next to a symbolic reference. In contrast, if an object
of class LL is initialized during the symbolic execution, the initial values of fields v and
next are false and null, respectively.
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We define two operations on objects updateobj which updates the value that a field maps
to and accessobj returning the value of a field according to the initialization rules outlined
in the previous paragraph.

3.3.7 Stack

The stack of an execution path is represented by a stack of frames (s, m), consisting of a
scope s and a mapping m from identifiers to expressions. Four operations are defined on
the stack (1) pushstack, which pushes a new frame on the stack; (2) popstack, removing the
top-most frame; (3) insertstack, inserting a variable in the top-most frame; and (4) accessstack,
get top-most variable from stack.

3.3.8 Heap

The heap of an execution path is implemented as a mapping h, from concrete references
to reference values. We define two operations on the heap insertheap and accessheap, which
are outlined in algorithms 3 and 4.
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Algorithm 3: insert Heap
Input: Heap h, the symbolic reference symref , and the reference value to be inserted, v
Output: Updated heap
switch symre f do

case Concrete(r) do
return h[r 7→ v];

end
case Symbolic(l, r, rv) do

v← h(r);
if v ̸= ⊥a then

return v;
else

if satisfiable(pc∧ =⇒ l = null)b then
if satisfiable(pc∧)c then

return Invalid;
else

return Infeasible;
end

else
return h[r 7→ v];

end
end

end
end

aa reference can only be inserted into the heap if it can never be null, therefore, if a reference is already in
the heap, a null check is not required

bensure that the symbolic reference can never be null
cinserting with a null reference can occur on infeasible paths, therefore, a feasibility check is required

before being able to return an invalid verdict
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Algorithm 4: access Heap
Input: Heap h, path constraints pc, the symbolic reference as expression symre f
Output: Tuple of the updated heap and reference value, infeasible or a verdict
pc∧ ← conjunct(pc);
switch symre f do

case Concrete(r) do
return (h, h(r));

end
case Symbolic(l, r, rv) do

v← h(r);
if v ̸= ⊥a then

return (h, v);
else

if satisfiable(pc∧ =⇒ l = null)b then
if satisfiable(pc∧)c then

return Invalid;
else

return Infeasible;
end

else
return (h[r 7→ rv], rv)d;

end
end

end
end

aa reference can only be inserted into the heap if it can never be null, therefore, if a reference is already in
the heap, a null check is not required

bensure that the symbolic reference can never be null
caccessing a null reference can occur on infeasible paths, therefore, a feasibility check is required before

being able to return an invalid verdict
dif the reference is checked we insert and return the symbolic reference’s placeholder value rv
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3.3.9 Algorithm

The symbolic execution is a Breath-First Search (BFS) through the CFG we generated in
section 3.2. During this search, we keep track of the state of each distinct execution path.
The

Definition 3.3.1 (Symbolic State). The Symbolic State (SS) is a triple (s, h, pc) where

• s is the stack

• h is the heap

• pc is the set of path constraints

The algorithm driving the symbolic execution can be seen in listing 5, we elaborate on the
updating of the state in subsection 3.3.10.



29

Algorithm 5: The symbolic execution algorithm
Input: Starting node node and maximum depth dmax
Output: Verdict
completely_verified← True;
q← queue with elements (initial_state, node, 0)
while q is not empty do

(state, node, depth)← dequeue q;
if depth ≥ dmax then

completely_veri f ied← False;
continue

end
switch update_state(state, node) do

case Infeasible do
continue

end
case Invalid do

return Invalid
end
case state’ do

for next_node adjacent to node do
enqueue (state′, next_node, depth + 1) in q;

end
end

end
end
if completely_verified then

return Valid
end
return Unknown
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3.3.10 Updating Symbolic State

Updating the state is defined as function

update_state : SS×Node→ Infeasible | Verdict | SS

In the following eight paragraphs, we will elaborate on how function update_state updates
the state for the eight different cases of nodes the SEE can encounter.

Assignment Statement. During an assignment, the left-hand side can be either an iden-
tifier, a field access or an array access. The right-hand side can be either an expression,
an object field, an array access or an array initialization2. The assignment consists of two
steps, evaluating the right hand side value to an expression and assigning said value to
the memory location the left-hand side points to.

Evaluating the right-hand side of an expression is defined as the function evalrhs, outlined
in 3.4. This function maps the symbolic state and the right-hand side to either an expres-
sion, infeasible, or a verdict.

evalrhs(s, h, pc, rhsexpr(e)) = substitute(s, e)
evalrhs(s, h, pc, rhsinit(ty, len)) = initarr(ty, len)

evalrhs(s, h, pc, rhsfield(obj, f )) =

{
accessobj(refn, f ) if refn = stackaccess(obj)
Invalid otherwise

evalrhs(s, h, pc, rhsindex(arr, i)) =

{
accessarr(refn, i) if refn = stackaccess(obj)
Invalid otherwise

(3.4)

Assigning an expression to the left-hand side is defined as the function assign, outlined
in 3.5. This function maps the symbolic state and the to-be assigned expression to the

2Method and constructor invocations on the right-hand side are deconstructed as discussed in paragraph
Procedure Call in subsection 3.2.1.
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updated symbolic state, infeasible or a verdict.

assign(s, h, pc, lhsid(id), e) = (stackinsert(id, e), h)

assign(s, h, pc, lhsfield(obj, f ), e) =


if r = stackaccess(obj)

(s, updateheap(h, r, rv′), pc) and rv = heapaccess(r)
and rv′ = updateobj(rv, f , e)

Invalid otherwise

assign(s, h, pc, lhsindex(arr, i), e) =


if r = stackaccess(obj)

(s, updateheap(h, r, rv′), pc) and rv = heapaccess(r)
and rv′ = updatearr(rv, pc, i, e)

Invalid otherwise
(3.5)

Finally, we define the function update_state as assign(s, h, pc, lhs, evalrhs(rhs)). It is important
to note that when any auxiliary function, such as heapaccess, returns an infeasible or invalid
result, this is propagated as the result of assign and update_state.

Assert Statement. Let pc′ represent the list of path constraints with the appended asser-
tion, and let assert denote the function that updates the SS.

assert(s, h, pc) =

{
(s, h, pc′) if satisfiable(¬combine(pc′)) = ⊥
Invalid otherwise

Assume Statement. Let pc′ represent the list of path constraints with the appended
assumption, and let assume denote the function that updates the SS.

assume(s, h, pc) = (s, h, pc′)
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Return Statement. Let e be the to-be returned expression, and let return denote the
function that updates the SS, this function maps e to the special retval keyword in the
stack.

return(s, h, pc) = (insertstack(s, retval, e), h, pc)

Entering Procedures. The SEE categorizes methods, static methods, and constructors
as procedures. Upon entering a procedure, the SEE can execute four actions:

1. Push frame to the stack using pushstack

2. Assign arguments their corresponding parameters

3. Initialize object on the heap and assign its reference to the this keyword

4. assign this the object that a non-static method is called on

The combination of actions performed depends on the types of procedures that the SEE
encounters. This is outlined in Table 3.1. Actions are executed from left to right, as shown
in the table.

Procedure
Push
frame

Assign
arguments

Initialize
object

Assign
this

Static method X X
Method X X X
Constructor X X X

TABLE 3.1: Actions performed when entering a procedure

Leaving Procedures. Upon leaving a procedure, the SEE can execute three actions:

1. Release retval from its scope by inserting it in the underlying frame, making it
available in the scope the method returns to.
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2. Release this from its scope by inserting it in the underlying frame, making it avail-
able in the scope the method returns to.

3. Pop frame from the stack using popstack

The combination of actions performed depends on the types of procedures that the SEE
encounters. This is outlined in Table 3.2. Actions are executed from left to right, as shown
in the table.

Procedure
Release
retval

Release
this

Pop
frame

Static method X X
Method X X
Constructor X

TABLE 3.2: Actions performed when entering a procedure

It should be noted that, for simplicity, the SEE will always attempt to release retval,
regardless of whether a method returns an expression. Execution will continue if no ex-
pression is found to be released.

Enter Main. Entering the Main.main method is the initialization of the symbolic execu-
tion. When the SEE encounters this node two actions are taken: the initial scope is pushed
and all the parameters of Main.main are assigned a symbolic value.

Otherwise. Let update_state be the identity function applied to the passed SS.
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3.4 Heuristics

In this section we will introduce five categories of heuristics that can increase performance
in various parts of the SEE algorithm discussed in subsection 3.3.9. For each heuristic, we
will include a preface indicating in which part(s) of the symbolic execution algorithm this
heuristic is implemented.

3.4.1 Pruning

ò
This heuristic has been implemented in the ’assume’ case of the update_state
function, extending the potential result to include infeasibility

Pruning, in this context, is attempting to remove infeasible paths using the SMT solver.
Pruning proves efficient during execution of programs with many infeasible paths, con-
sidering that one infeasible path can spawn many equally infeasible branches. Each of
these branches must be explored. In contrast, if a large majority of paths is feasible prun-
ing can increase the amount of SMT solver invocations manyfold, which can outweigh
the cost of exploring the infeasible paths.

We define pruning heuristics using a tuple (p, a) where 0.05 ≤ p ≤ 1 and 0 ≤ a ≤
1. In this tuple, p is the probability of Jip attempting to prune a path, and a represents the
rate at which we update p after each pruning attempt. For example, if (p, a) = (0.5, 0.05),
there is a 50 percent chance Jip decides to prune, and p is increased or decreased by 0.05
depending on whether the pruning attempt was successful or unsuccessful, respectively.
We refer to algorithm 6 to further clarify this.

Using tuple (p, a) we define 3 types of pruning: (1) Constant pruning or (p, a) = (1, 0);
(2) Probabilistic Pruning or (p, a) = (0.25, 0); and (3) Adaptive Pruning or (p, a) =
(0.5, 0.05)
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Algorithm 6: Pruning
Input: Tuple (p, a) and path constraints pc
Output: bool indicating whether path is pruned
r ← a random number between 0 and 1;
if p ≤ r then

if isFeasible(pc) then
p← min(0.05, p− a);
return true;

else
p← max(1, p + a);
return false;

end
else

return true;
end

3.4.2 Interval Inference

ò
This heuristic introduces an interval map to the symbolic execution algo-
rithm. The interval map is updated every time the path constraints are ex-
tended in the ’assume’ and ’assert’ cases of the update_state function.

Interval Inference determines the interval of values a symbolic variable v can have. For
example: in expression 3 < v < 8 we can infer v ∈ {4, 5, 6, 7} and in expression x ==
3v ∧ 3 < v < 8 we can infer x ∈ {12, .., 21}. In this section we will present an interval
inference function inferm and an iterative algorithm using inferm. This information allows
the Extended Expression Evaluator (see section 3.4.3) to evaluate more expressions, pre-
venting the use of the computationally expensive SMT solver.
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3.4.2.1 Inferring Interval

Intervals are defined using the ’extended interval’ approach outlined by Hickey et al.[12],
we altered the approach to support integers instead of reals. The set of integers is ex-
tended with −∞ and +∞, that is Ze = Z ∪ {−∞,+∞}, to support the case of an integer
having no lower and/or upper boundary. Let an interval be noted as ⟨a, b⟩which is the set
{x ∈ Ze : a ≤ x ≤ b}. Let (3.6) be the addition, subtraction and multiplication functions
adapted from Hickey et al.[12].

⟨a, b⟩+ ⟨c, d⟩ = ⟨a + c, b + d⟩
⟨a, b⟩ − ⟨c, d⟩ = ⟨a− c, b− d⟩
⟨a, b⟩ ∗ ⟨c, d⟩ = ⟨min({a ∗ c, a ∗ d, b ∗ c, b ∗ d}), max({a ∗ c, a ∗ d, b ∗ c, b ∗ d})⟩

(3.6)

Let inferring an interval be defined as

inferi : (Expression× IntervalMap)→ Interval

In the following definitions, let I = inferi(E, I), I1 = inferi(E1, I) and so on.

inferi(lit(z), I) = ⟨z, z⟩
inferi(var(i), I) = I(i)

inferi(unop(E,−), I) = ⟨−1,−1⟩ ∗ I
inferi(binop(E1,+, E2), I) = I1 + I2

inferi(binop(E1,−, E2), I) = I1 − I2

inferi(binop(E1, ∗, E2), I) = I1 ∗ I2

inferi(E, I) = ⟨−∞,+∞⟩
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3.4.2.2 Inferring Interval Map

Mappings of symbolic variables and their accompanying intervals are denoted as I . Where
I [x 7→ i] returns a new mapping with x 7→ i inserted, I(x) returns the current interval i
that x is mapped to or ⟨−∞,+∞⟩ if no interval is mapped to x, and vars(I) returns the set
of symbolic variables in I that are mapped to an interval.

Let broadeni and broadenm calculate the most pessimistic3 interval(s) for two intervals or
two interval maps respectively.

broadeni(⟨a, b⟩, ⟨c, d⟩) = ⟨min(a, c), max(b, d)⟩
broadenm(Ia, Ib) = ∑

x ∈ vars(Ia) ∪ vars(Ib)

x 7→ broadeni(Ia(x), Ib(x))

Let narrowi and narrowm calculate the most optimistic interval(s) for two intervals or two
interval maps respectively.

narrowi(⟨a, b⟩, ⟨c, d⟩) =
{
⟨max(a, c), min(b, d)⟩ if ⟨a, b⟩ ∪ ⟨c, d⟩ ̸= ∅
⟨−∞,+∞⟩ otherwise

narrowm(Ia, Ib) = ∑
x ∈ vars(Ia) ∪ vars(Ib)

x 7→ narrowi(Ia(x), Ib(x))

The function that infers the interval mapping from an expression is defined as

inferm : (Expression× IntervalMap)→ IntervalMap

In the following definitions, let I = inferi(E, I), I1 = inferi(E1, I) and so on.

3Pessimistic in terms of how much information we infer about a symbolic variable
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Logical Operators For disjunction, we must consider the worst-case scenario when join-
ing the inferred intervals from both the left-hand and right-hand expressions. In the case
of conjunction, we do the opposite.

inferm(binop(E1, ||, E2), I) = broadenm(inferm(E1, I), inferm(E2, I))
inferm(binop(E1, &&, E2), I) = narrowm(inferm(E1, I), inferm(E2, I))

Equality Operators For equality we narrow the already inferred intervals from both
the left-hand and right-hand expressions. Depending on whether one or both sides are
variables, we map the narrowed interval to the left-hand, the right-hand, or both.

inferm(binop(E1,==, E2), I) =



I [x1 7→ i][x2 7→ i] if E1 = var(x1) and E2 = var(x2)

where i = narrowi(I1, I2)

I [x 7→ i] if E2 = var(x)
where i = narrowi(I(x), I1)

I [x 7→ i] if E1 = var(x)
where i = narrowi(I(x), I2)

I otherwise

Negated Comparison Operators For negated comparison operators we rewrite the ex-
pression and infer recursively.

inferm(unop(!, binop(E1,<, E2)), I) = inferm(binop(E1,>=, E2))

inferm(unop(!, binop(E1,<=, E2)), I) = inferm(binop(E1,<, E2))

inferm(unop(!, binop(E1,>, E2)), I) = inferm(binop(E1,<=, E2))

inferm(unop(!, binop(E1,>=, E2)), I) = inferm(binop(E1,<, E2))

Comparison Operators For comparison we attempt to narrow the boundaries of the
intervals on the left-hand and right-hand sides based on the encountered comparison
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operator. For instance, given x > 5, the result would be x = narrowi(I(x), ⟨6,+∞⟩).

inferm(binop(E1,<, E2), I) =



I [x 7→ i] if E1 = var(x1) and I2 = ⟨a, b⟩
and a > −∞
where i = narrowi(I , ⟨−∞, a− 1⟩)

I [x 7→ i] if I1 = ⟨a, b⟩ and E2 = var(x2)

and b < +∞
where i = narrowi(⟨b + 1,+∞⟩, I(x2))

I otherwise

inferm(binop(E1,<=, E2), I) =



I [x 7→ i] if E1 = var(x1) and I2 = ⟨a, b⟩
and a > −∞
and i = narrowi(I(x1), ⟨−∞, a⟩)

I [x 7→ i] if I1 = ⟨a, b⟩ and E2 = var(x2)

and b < +∞
where i = narrowi(⟨b,+∞⟩, I(x2))

I otherwise

inferm(binop(E1,>, E2), I) =



I [x 7→ i] if E1 = var(x1) and I2 = ⟨a, b⟩
and a > −∞
and i = narrowi(I(x1), ⟨b + 1,+∞⟩)

I [x 7→ i] if I1 = ⟨a, b⟩ and E2 = var(x2)

and b < +∞
where i = narrowi(⟨−∞, a− 1⟩, I(x2))

I otherwise

inferm(binop(E1,=>, E2), I) =



I [x 7→ i] if E1 = var(x1) and I2 = ⟨a, b⟩
and a > −∞
and i = narrowi(I(x1), ⟨b,+∞⟩)

I [x 7→ i] if I1 = ⟨a, b⟩ and E2 = var(x2)

and b < +∞
where i = narrowi(⟨−∞, a⟩, I(x2))

I otherwise

inferm(E, I) = I
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3.4.2.3 Iterative Interval inference

In the case of inferring x and v in x == 3v ∧ 3 < v < 8, function inferm would need the
information that the interval of v is ⟨4, 7⟩ to narrow the interval of x to ⟨12, 21⟩, this infor-
mation is only available after the first evaluation of inferm. To calculate the intervals more
accurate we define the iterative inference algorithm 7, parameterizing over the maximum
number of iterations i.

Algorithm 7: Iterative Inference
Input: an expression e and the max. inference depth i
Output: IntervalMap
I ← [ ];
I ′ ← inferm(e, I);
while i > 0∧ I ̸= I ′ do
I ← I ′;
I ′ ← inferm(e, I ′);
i← i− 1;

end
return I ′;

Note that the iterative inference algorithm will always terminate, as shown in the proof
below. However, since we assume the information gained from each successive iteration
diminishes, we implemented a bound on the number of iterations.

Proof. Assume we have an integer variable x and the most precise interval that can be
estimated for this variable is ⟨a⊤, b⊤⟩. We now consider any arbitrary interval ⟨a, b⟩ such
that a ≤ a⊤ and b ≥ b⊤. In this case, the set difference {a, .., b} \ {a⊤, .., b⊤} is a finite set,
there are only a finite number of integers in the interval ⟨a, b⟩ that are not in the interval
⟨a⊤, b⊤⟩. Therefore, interval ⟨a, b⟩ can be narrowed to ⟨a⊤, b⊤⟩ in a finite amount of steps.

Moreover, the number of integer variables in an expression is finite, and each iteration of
our iterative inference algorithm narrows down at least one interval (otherwise it termi-
nates), thus the algorithm always terminates.
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3.4.3 Extended Expression Evaluation

ò
This heuristic is applied when saving expressions in the stack and heap. Fur-
thermore, the SEE will preface each invocation of satisfiable(e), the function
interfacing with the SMT solver, with an attempt to evaluate e using this
heuristic. If e is evaluated to a literal, the invocation of satisfiable is skipped.

Expression Evaluation, designed by Koppier[15], aims to simplify an expression e ∈
Expression by evaluating it where possible. We extend Expression Evaluation with sev-
eral simplification rules and incorporate the mapping of inferred intervals from section
3.4.2. The benefit of Expression Evaluation is twofold: by evaluating expressions with
this method we prevent the use of our expensive SMT solver and we reduce memory
usage by minimizing the size of expressions.

Let the Expression Evaluation function designed by Koppier[15] be eval, then we extend
eval as follows:

eval : (Expression× IntervalMap)→ Expression

In the following definitions, let E′ = eval(E, I), E′1 = eval(E1, I) and so on.

Double Unary Operators.

eval(unop(unop(E, !), !), I) = eval(E, I)
eval(unop(unop(E,−),−), I) = eval(E, I)

Duplicate Variable Comparison.

eval(binop(E1,==, E2), I) = lit(true) if E′1 = var(x) and E′2 = var(x)
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Interval Point.
eval(E, I) = lit(a) if inferi(E′, I) = ⟨a, a⟩

Interval Equality. Function eval defines inequality in terms of equality e.g. x! =y be-
comes !(x==y).

eval(binop(E1,==, E2), I) =
{

lit(false) if inferi(E′1, I) = ⟨a, b⟩ and inferi(E′2, I) = ⟨c, d⟩
and ⟨a, b⟩ ∩ ⟨c, d⟩ = ∅

Interval comparison. Function eval defines all comparisons in terms of < e.g. (x<=y) =
!(y<x), (x>y) = (y<x) and x>=y = !(x<y).

eval(binop(E1,<, E2), I) =


lit(true) if inferi(E′1, I) = ⟨a, b⟩ and inferi(E′2, I) = ⟨c, d⟩

and b < c
lit(false) if inferi(E′1, I) = ⟨a, b⟩ and inferi(E′2, I) = ⟨c, d⟩

and d < a

Dynamic quantifiers. Let ⊙ be a forall or exists quantifier, then eval will evaluate arrays
where the concrete size can be inferred.

eval(⊙(a, i, v, E), I) =


eval(⊙(a, i, v, i3, E), I) if inferi(sizeof (a), I) = ⟨a, b⟩

and b < +∞
⊙(a, i2, i3, E) otherwise
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3.4.4 Expression Caching

ò
This heuristic introduces an expression cache to the symbolic execution algo-
rithm. The expression cache is consulted prior to each invocation of satisfiable,
the function interfacing with the SMT solver, and the cache is updated follow-
ing each invocation of satisfiable.

Expression Caching is a popular optimization technique[27][19] that aims to reduce the
usage of the SMT solver by memoizing previously solved expressions. We have imple-
mented both Expression caching as described by Koppier[15] and Normalized Expression
Caching, which will be explained in section 3.4.4.1.

3.4.4.1 Normalized Expression Caching

When consulting the expression cache we would prefer that the expression cache recog-
nizes expression equivalence e.g. −1 + 2 = 2− 1 or a ∧ b = b ∧ a . Therefore we propose
Normalized Expression Caching, a heuristic that uses two methods to increase the chance
of equivalent expression discovery: (1) apply several normalizations e.g. 1− 1 becomes
1+ (−1); and (2) recursively collect and sort all operands of commutative operators e.g.
to let 1+ 2+ 3 equal 3+ 2+ 1.

Let collect be a function to recursively collect operands of the same operation.

collect(⊗, binop(E1,⊗, E2)) = collect(⊗, E1) + +collect(⊗, E2)

collect(⊗, E) = [E]

Let hash4 be a function that hashes any value to a 32-bit integer, and let sortlist be a sort
function implemented using merge-sort. Then we define hash function of Expression as
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hashexpr ◦ eval

sortop = sortlist ◦ (map hashexpr) ◦ collect
hashexpr(binop(E1,−, E2)) = hashexpr((binop(unop(−, E1),+, unop(−, E2)))

hashexpr(binop(E1,+, E2)) = hash((+, sortop(E1,+, E2)))

hashexpr(binop(E1, ∗, E2)) = hash((∗, sortop(E1, ∗, E2)))

hashexpr(binop(E1, &&, E2)) = hash((&&, sortop(E1, &&, E2)))

hashexpr(binop(E1, ||, E2)) = hash((||, sortop(E1, ||, E2)))

hashexpr(E) = hash(E)

Given that sortlist implements merge sort, the complexity of hashexpr(e) isO(n log n), where
n is the number of subexpressions e consists of.

3.4.5 Parallel Solving

ò
This heuristic extends the satisfiable function.

Parallel solving, as suggested by Palikareva et al. [19], aims to speed up constraint solving
by simultaneously running different SMT solvers. One thread is spawned for each type
of SMT solver supported by Jip5, and whenever the first thread returns a solution the SEE
resumes symbolic execution. This approach allows the SEE to utilize the best suited SMT
solver for each constraint, at the cost of two extra CPU cores.

4The function hash is akin to Rust’s derive(Hash) macro
5Currently these are Z3[3], CVC4[1] and Yices2[2]
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Chapter 4

Results

In this Chapter we will reflect on the performance, soundness, and completeness of Jip.
We will use a diverse set of verification tasks from the Competition on Software Verifica-
tion to give an insight into the performance of Jip with and without the various heuristics
introduced in Chapter 3. We will compare the performance of Jip with seven other verifi-
cation tools1. Concluding this section we will substantiate the claims of completeness and
soundness in Jip by comparing its verification result with the other verifiers. This Chapter
aims to address the following questions:

1. What is an (approximate) optimal combination of heuristics?

2. How is Jip’s performance compared to current state-of-the-art verifiers?

3. Is Jip compelete and sound?

4.1 Benchmark Setup

For the setup of the benchmarkss we have chosen to use the benchmarking tool BenchExec[6]
and verification tasks provided by SV-COMP 2023[7], the largest competition for software

1The public repository containing the SEE can be found at https://github.com/tjausm/Jip, the results
of the five benchmarks are located in the benchmarks folder

https://github.com/tjausm/Jip
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verification tools. Using these tools ensures the results of the benchmarks are reproducible
and comparable with other verification tools.

Verification tasks In the context of SV-COMP, a verification task is a program with sev-
eral lines of code added to verify the correctness of the program, one program can spawn
many verification tasks e.g. an implementation of a RedBlack tree can have one task to
verify the tree is always in balance and one task to verify an insertion never generates a
null pointer exception. A task that contains a verification error yields an invalid verdict,
all other tasks yield a valid verdict.

SV-COMP provides 23,805 verification tasks in C and 586 verification tasks in Java. For the
benchmarks, we translated 81 Java verification tasks, which stemmed from 19 programs,
into OOX. The Java dataset was chosen as the source because there were already several
verification tasks from this dataset available in OOX. This dataset was divided into 12
folders, each containing verification tasks from a different source, such as the MinePump
suite or the test suite of the JBMC verifier. We selected and translated three complete fold-
ers: jayhorn-recursive, algorithms, and MinePump. These folders were chosen because
all the programs within them could be translated into OOX.

The translated verification tasks can be found in the public repository’s benchmarks/

verification-tasks folder[24].

Scoring Schema Throughout the following sections, we will utilize the scoring schema,
provided by SV-COMP, outlined in Table 4.1, to assess the performance of Jip and the
other tools.
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Reported result Points Description

UNKNOWN 0 Failure to compute verification result
FALSE correct +1 Violation of property in program was correctly found
FALSE incorrect -16 Violation reported, but property holds (false alarm)
TRUE correct +2 Program correctly reported to satisfy property
TRUE incorrect -32 Incorrect program reported as correct

TABLE 4.1: Scoring schema for SV-COMP 2023[7]

BenchExec BenchExec[6] will be used to measure and compare the performance of Jip
and other tools on the selected verification tasks. BenchExec is a tool developed for
SV-COMP to control and measure the verification runs in the competition. It helps en-
sure reliable and reproducible competition results by providing a standardized environ-
ment for running benchmarks, collecting data, and comparing results. It ensures that the
benchmarks are executed under the same conditions, with the same resources, and with
the same inputs.

Quantile Function Graphs In the following sections we will use the quantile function
several times to compare the benchmarking of verification tasks. This function calculates,
for each data point (x, y), the minimum timeout y needed to accumulate the maximum
amount of points x, according to the scoring schema defined in Table 4.1. Given the ex-
ample benchmark in Table 4.2 the plotted points would be (1,5), (3, 10), (4, 20) and (6, 40).
The first point represents only solving task one with a five-second timeout, the second
point represents solving task one and two with a ten-second timeout, and so forth.

task 1 task 2 task 3 task 4

time (s) 5 10 20 40
score 1 2 1 2

TABLE 4.2: Example benchmark results
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Verification tools The performance of Jip will be compared to the performance of Java
verifiers on the Java equivalent of the 81 OOX verification tasks. We have chosen to com-
pare Jip with seven of the eight2 Java verifiers that have competed in SV-COMP 2023,
which are COASTAL[25], GDart[18], Java Ranger[23], JBMC[9], Jayhorn[13], MLB[17] and
SPF[20].

Acronyms When necessary we will refer to the heuristics using the acronyms in Table
4.3. The SMT solvers will be referred using their full names: CVC4, Yices2, and Z3. Com-
binations of heuristics will be denoted as "EEE+CP" or "II+EC+CVC4", if no SMT solver is
specified Z3 is used.

Heuristic Acronym

Extended Expression Evaluator EEE
Interval Inferrer II
Interval Inferrer (two iterations) II2
Probabilistic Pruner PP
Adaptive Pruner AP
Constant Pruner CP
Expression Cacher EC
Normalized Expression Cacher NEC
No Heuristics NH

TABLE 4.3

4.2 Heuristics

ò
Unless otherwise specified, all benchmarks in the Heuristics section are exe-
cuted with a 20-second timeout, a 1,000MB memory limit, and a single CPU
core.

2JDart was left out of this comparison due to installation problems
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In this section, we evaluate the different configurations of heuristics that Jip can use, with
the aim of approximating an optimal configuration of heuristics. Figure 4.1 provides a
view of all 11 heuristics, divided into four distinct stages. The stages of the heuristics are
arranged from left to right, reflecting the sequence in which they are used during symbolic
execution. For example, when an assume statement is encountered, the SEE invokes the
Extended Expression Evaluator (EEE). If this stage fails and the SEE chooses to prune, the
Expression Cache is checked. Only if the expression is not cached does the SEE proceed
to one of our four SMT solvers.

Expression Cacher

Normalized Expr. Cacher

Probabilistic Pruner

Adaptive Pruner

Constant Pruner

Interval Inferrer

Ext. Expr. Evaluator

CVC4

Yices

Z3

Parallel Solver

Expression Evaluation Pruning Formula Caching SMT solver

FIGURE 4.1: The heuristics pipeline

All heuristic stages are optional, barring the SMT solver. Further, all heuristics within a
single stage are mutually exclusive, with the exception of II and EEE. In this case, II is de-
pendent on EEE. Moreover, II can be configured to run an arbitrary number of iterations.

Given the constraints, and limiting II to two iterations, we have four choices for the Ex-
pression Evaluation stage, four for the Pruning stage3, three for the Formula Caching
stage, and four for the SMT solver stage. This results in a total of 4 · 4 · 3 · 4 = 192 heuristic
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configurations.

Comparing all these configurations across our set of 81 verification tasks is infeasible. As
such, we propose an incremental approach to approximate the optimal heuristic config-
uration. We start by comparing all Expression Evaluation heuristics. Subsequently, we
compare all Pruning heuristics, using the best configuration from the Expression Evalu-
ation stage, and proceed in this manner. During these comparisons, we will also discuss
the performance and peculiarities of the individual heuristics.

4.2.1 Expression Evaluation

In the subsequent paragraphs, we will investigate the difference in performance between
NH, EEE, II, and II2. The performance of these heuristic configurations across the 81
verification tasks is depicted in Figure 4.2. For further insight, a detailed benchmark of
the four configurations in seven verification tasks4 is presented in Tables 4.4, 4.5, and 4.6.
This detailed benchmark uses a 100-second timeout, 12000 MB memory limit and a single
CPU core.

3These include the three pruning heuristics and the option with no heuristics, the same applies for expres-
sion evaluation and formula caching

4The verification tasks used for the detailed benchmarks can be found in the benchmarks/verification-

tasks folder in the public repository (https://github.com/tjausm/Jip)

https://github.com/tjausm/Jip
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FIGURE 4.2: Quantile function (see 4.1) graph of the benchmarking results
for the three Expression Evaluation heuristics

NH versus EEE The most notable difference between NH and EEE is the cumulative
score, with NH and EEE scoring 16 and 44 points respectively. In most cases, NH exhausts
the time or memory limit prior to completing the tasks. NH’s lower score can be primarily
attributed to two factors:

1. NH explores all paths, including infeasible ones. Looking in Tables 4.4 and 4.5 we
see that NH explores 1000s of extra paths compared to the EEE or II while only
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time
(s)

memory
(MB) depth paths

explored
SMT
calls

NH 123.1 11530 54 738 5315
EE 13.1 1250 65 1508 11655
II 0.0406 38.1 65 0 21
II2 0.044 38.1 65 0 21

TABLE 4.4: Ver-
ification details
of BellmanFord-

FunUnsat01 (red text
indicates unfinished

verification)

time
(s)

memory
(MB) depth paths

explored
SMT
calls

NH 106.1 12553 156 2651 13194
EEE 3.51 172 223 0 316
II 2.23 138 223 0 2
II2 2.13 131 223 0 2

TABLE 4.5: Veri-
fication details of
MinePump’s spec1-

5_product15(red
text indicates unfin-

ished verification)

reaching a fraction of the depth reached by the EEE and II.

2. NH does not reduce the size of the expressions, resulting in significantly higher
memory usage which in turn decreases the verifier’s performance. This is particu-
larly noticeable in the BellmanFord-FunUnsat01 task, as outlined in Table 4.4.

EEE versus II Figure 4.2 shows a significant increase in performance caused by II on the
majority of tasks. Furthermore II scores 1 more point, by verifying task MergeSortIterative-

FunUnsat01.

In Table 4.6 we see that II does not completely explore any paths in the MergeSortIterative-
FunUnsat01 task and only uses 215 SMT calls to find a violation of the assertion, whereas
EEE explores 15727 paths and invokes the SMT solver 68131 times to reach one-third of
the depth needed to find the bug. From this, we conclude that II can solve the task because
it is able to prune all infeasible paths.

In the 32 minepump tasks, of which spec1-5_product15 can be seen in Table 4.5, II also
regularly increases performance with 10%-40%. We assume II does this by bringing down
the amount of SMT calls needed to solve a problem, as evidenced in the spec1-5_product15
task, where SMT solver calls were reduced from 316 to 2.
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time
(s)

memory
(MB) depth paths

explored
SMT
calls

NH 114.1 11644 64 6464 133926
EEE 108.1 9437 73 15727 68131
II 0.285 50.7 138 5 46
II2 0.266 50.7 138 5 3

TABLE 4.6: Verification details of MergeSortIterative-FunUnsat01 (red
text indicates unfinished verification)

II versus II2 The performance difference between II and II2 is not apparent in Figure
4.2. Only in five instances does II2 decrease the number of necessary SMT solver calls
needed to verify a task. Among these, the most significant reduction is observed in the
MergeSortIterative-FunUnsat01 task, where SMT solver calls drop from 46 to 3. Inter-
estingly, in two of those 5 cases, II performs worse than II2 despite reducing SMT solver
calls.

Concluding Expression Evaluation We have gathered the total runtime of all four heuris-
tics in Table 4.7. The data reveals that both II and II2 halve the runtime when compared
to EEE. However, the difference between II and II2 in terms of runtime is minimal. In the
following sections, we will continue using II because it has the smallest total verification
time, albeit with a very minor difference in comparison to II2.

Score Total time

NH 15 1.12
EEE 44 43.1
II 45 23.5
II2 45 23.6

TABLE 4.7: Expression evaluation summary
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4.2.2 Pruning

Considering the optimal configuration derived from the previous section, we have four
heuristic configurations to compare: (1) II; (2) II+PP; (3) II+AP; and (4) II+CP. The per-
formance of these configurations, as observed across 81 verification tasks, is presented in
Table 4.10. The detailed data of II, II+PP, II+AP, and II+CP executing 2 verification tasks5

during a repeated benchmark, using 12000 MB memory and a 100-second timeout, are
presented in Tables 4.8 and 4.9. Subsequent sections will examine the performance dif-
ferences among II, II+PP, II+AP, and II+CP, using Tables 4.8 and 4.9 to conclude with a
comparison of the overall performance of II, II+PP, II+AP, and II+CP.

time
(s) depth paths

pruned
avg. prune
probability

SMT
calls

II 106.1 69 164 0% 386
II+PP 95,95 104 14808 25% 15018
II+AP 0.906 104 299 81.3% 541
II+CP 0.831 104 5 100% 516

TABLE 4.8: Verifica-
tion details of UnSat-

Fibonacci01

time
(s) depth paths

pruned
avg. prune
probability

SMT
calls

II 0.285 138 1606 0% 46
II+PP 0.393 138 1606 25% 443
II+AP 0.906 104 299 81.3% 541
II+CP 0.831 104 5 100% 516

TABLE 4.9: Veri-
fication details of
MergeSortIterative-

FunUnsat01

Best Case for Pruning Both II+AP and II+CP score an additional point by verifying
the task UnSatFibonacci01. During a benchmark with a 100-second timeout, II+PP also
scores the extra point. According to Table 4.8, II+CP only prunes five paths in the task
UnSatFibonacci01, whereas II+PP prunes 14,808 paths. This suggests that each infeasible
path generates a significant number of other infeasible paths, thereby rewarding heuristics
that prune aggressively. The performance of II further supports this conclusion, as it only
reaches a depth of 69 with a relatively low number of SMT calls. This suggests that II does
not reach the depth needed to find the bug in the task, and instead is exploring countless
infeasible paths until the timeout is reached.

5The verification tasks used for the detailed benchmarks can be found in the benchmarks/verification-

tasks folder in the public repository (https://github.com/tjausm/Jip)

https://github.com/tjausm/Jip
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Worst Case for Pruning Contrastingly, in task MergeSortIterative-FunUnsat01 the prun-
ing heuristics lead to the largest decrease in performance, more than doubling the veri-
fication time in the case of II+CP. In this task, II manages to prune 1606 paths without
the SMT solver, and none of the pruning heuristics manage to prune additional paths. In
this instance, II+AP minimizes the pruning probability, limiting the performance decrease
compared to II. But the increased amount of SMT calls, triggered by prune attempts, neg-
atively impacts the performance of II+CP significantly.

Score Total time

II 45 23.5
II+PP 45 18.9
II+AP 46 22.8
II+CP 46 21.3

TABLE 4.10: Pruning summary

Concluding Pruning We have gathered the total run-
time of all four heuristic configurations in Table 4.10.
Configuration II+PP is the fastest, but if we included
the verification time of the task UnSatFibonacci01 from
the detailed benchmark in 4.8 this configuration would
have a total time of 114.85. In the last two sec-
tions, we saw the task UnSatFibonacci01 where pruning
caused the biggest increase in performance and we saw
MergeSortIterative-FunUnsat01 where pruning halved
the speed of the verifier. The adaptive pruning was sup-
posed to find the middle ground, adjusting the prune probability based on the successful-
ness of pruning, but from Tables 4.8 and 4.9 we conclude that the more aggressive prun-
ing in configuration II+CP outperforms II+AP. Consequently, in the following sections,
we will continue using II+CP.

4.2.3 Expression Caching

Taking into account the best-performing configuration from previous sections, we have
three heuristic configurations: (1) II+CP; (2) II+CP+EC; and (3) II+CP+NEC. The perfor-
mance of these configurations on the 81 verification tasks can be seen in Table 4.13. In
Tables 4.12 and 4.11, we present detailed data6 for the task where expression caching per-
forms the worst, UnsatFibonacci01, and the task where it performs the best, MergeSort-
Iterative-FunUnsat01, respectively. In subsequent sections we compare the best- and
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worst case scenarios for Expression caching to conclude with a comparison of the overall
performance of II+CP, II+CP+EC, and II+CP+NEC.

time
(s)

memory
(MB)

cache
hits

SMT
calls

II+CP 0.656 50.9 0 1645
II+AP+EC 0.308 51 1525 120
II+CP+NEC 0.306 50.8 1525 120

TABLE 4.11: Veri-
fication details of
MergeSortIterative-

FunUnsat01

time
(s)

memory
(MB)

cache
hits

SMT
calls

II+CP 0.831 60.6 0 516
II+AP+EC 1.04 126 1 515
II+CP+NEC 2.18 126 1 515

TABLE 4.12: Verifica-
tion details of UnSat-

Fibonacci01

Best Case for Expression Caching During the MergeSortIterative-FunUnsat01 task
both expression caching heuristics significantly improve performance, doubling the per-
formance by caching 1525 of 1645 SMT calls that II+CP needs to verify the task. Interest-
ingly, II+CP+NEC performs as well as II+CP+EC on this task. This is likely due to the
majority of expressions in this task already being in a normalized form. This observa-
tion is further supported by the fact that normalization does not reduce the size of the
expression cache; both heuristics utilize similar amounts of memory.

Worst Case for Expression Caching Contrastingly, for task UnSatFibonacci01 in Table
4.12 we see that it takes II+CP 516 SMT calls to verify it, the expression caching con-
figurations only manage to reduce the amount of SMT calls by one. The difference in
performance decrease between the two expression caching heuristics is also significant,
the cheaper II+CP+EC reduces performance by 0.21 seconds, or approximately 25 per-
cent, whereas the more expensive II+CP+NEC reduces performance by 1.35 seconds, or
approximately 110 percent. Additionally, a stark difference in memory usage between
the expression caching heuristics, II+CP+NEC using 83.4 MB compared to II+CP+EC’s
usage of 126 MB. This difference in memory usage suggests that II+CP+NEC manages to
significantly reduce the size of the expression cache through expression normalization.

6The verification tasks used for the detailed benchmarks can be found in the benchmarks/verification-

tasks folder in the public repository (https://github.com/tjausm/Jip)

https://github.com/tjausm/Jip
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Score Total time

II+CP 46 21.3
II+CP+NEC 46 21.6
II+CP+EC 46 19.3

TABLE 4.13: Expression caching summary

Concluding Expression Caching In concluding the review of the expression caching
heuristics we have gathered the total runtime of all three heuristic configurations in Ta-
ble 4.13. There were no tasks in which the normalization managed to affect the amount
of cache hits. Consequently, the total verification time for II+CP+NEC is equivalent to
the sum of the normalization time and the verification time for II+CP+EC. Given that nor-
malization only decreases performance we will proceed with II+CP+EC in the subsequent
section.

4.2.4 SMT Solver

In section 4.2.4.1, we discuss how the initial benchmarks show the parallel solver heuristic
(outlined in subsection 3.4.5) to be infeasible. Next, we compare the three supported SMT
solvers in section 4.2.4.2.

4.2.4.1 Infeasability of Parallel Solving

To understand the problem with parallel solving we must dive deeper in how Jip uses
its SMT solver. During symbolic execution Jip spawns a separate process running the
SMT solver, whenever Jip wants to know the satisfiability of an expression it queries this
separate process, halting symbolic execution until the SMT solver returns a result.

Parallel solving requires spawning three separate processes running three SMT solvers.
All three SMT solvers are consulted for each query, resuming symbolic execution with the
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result of the fastest solver. In subsequent SMT calls, we cannot guarantee that all three
SMT solvers have solved their last problem, considering that Jip resumes execution with
the result of the fastest SMT solver. Thus we are required to spawn three new processes for
each SMT invocation, spawning these processes takes initialization time and can lead to
spawning more processes than available CPU cores. Initial benchmarks showed parallel
solving to be 2-3x times slower on several tasks, supporting our concerns.

4.2.4.2 SMT solver comparison

We have compared nine configurations of heuristics with Z3 as SMT solver and found that
II+CP+EC was the best performing. The comparison of the three supported solvers Z3,
CVC4, and Yices 2 will be done using the best configuration of heuristics we have found
so far, resulting in the following configurations (1) II+CP+EC7; (2) II+CP+EC+CVC4; and
(3) II+CP+EC+Yices2. The results of this benchmark can be seen in Table 4.14.

Score Total time

II+CP+EC 46 19.3
II+CP+EC+CVC4 46 22.4
II+CP+EC+Yices2 46 17.5

TABLE 4.14: SMT solver summary

Yices2 consistently outperforms the other solvers
in all tasks, except for four. Z3 follows as the sec-
ond fastest in all but four tasks. CVC4, while
slower overall, surpasses the other SMT solvers
in the four smallest verification tasks8. Though
CVC4 is generally slower, it outperforms the
other SMT solvers on the four smallest verifica-
tion tasks by at most 0.005 seconds. This differ-
ence can be caused by a variety of factors such as the CVC4 implementation in Jip initial-
izing faster. However, this difference is too insignificant to further investigate.

We have gathered the total verification time of all three heuristic configurations in Table
4.14. Yices2 increases verification speed by 10 percent in comparison to II+CP+EC, the
fastest heuristic configuration we have found so far. We conclude the heuristic section by
choosing II+CP+EC+Yices2 as our approximation of an optimal heuristic configuration.

7When no solver is referenced Z3 is used by default
8These tasks are solved by all three configurations within 0.04 seconds



59

4.3 Verifier Comparison

ò
Unless otherwise specified, all benchmarks in the Verifier Comparison section
are executed with a 300-second timeout, a 10,000MB memory limit, and a
single CPU core.

In this section we will compare the performance of the Jip, using the optimal heuristic
configuration II+CP+EC+Yices2 we found in the previous section, to seven state-of-the-
art verifiers. The verifiers will be benchmarked on the Java source of the OOX verification
tasks used to benchmark Jip. The results of this benchmark can be seen in Figure 4.3 and
Table 4.16.

JBMC Jip MLB Java Ranger SPF COASTAL GDart JayHorn

UnsatFibonacci01 3.92 s 2456 s 3.87 s 8.46 s 2.76 s 54.9 s 10.4 s 11 s
spec1-5_product15 1.65 s 1.55 s 2.15 s 4.72 s 2.63 s 2.63 s 10.7 s 132 s
spec1-5_product62 2.3 s 229 s 5.56 s 157 s 2.73 s U U T

TABLE 4.15: Verification time in seconds of the seven verifiers on three tasks
(U = Unknown, T = Timeout)

Point Difference Looking at Table 4.16 we can see that Jip is the second best verifier in
terms of score. Jip can solve all the tasks that JBMC can, with the exception of UnsatFi-
bonacci02. Repeated benchmarks without a time limit (see Table 4.15) reveal that Jip can
indeed solve UnsatFibonacci02, but it takes 2456 seconds in contrast to the 3.92 seconds
that JBMC requires. The likely cause of this difference is that JBMC has a bound on ver-
ifying loops that was configured for optimal performance with the SV-comp verification
tasks[16].

Time Difference Compared to JBMC and MLB, the best and third-best verifiers respec-
tively, Jip spends 7-12 times as long to finish its 51 successful verification tasks. Only 2
percent of this time is spent on verifying the 44 invalid verification tasks (tasks containing
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Verifier Score IF IT CT CF Total time (s)

JBMC 60 0 0 7 46 80.3
Jip 59 0 0 7 45 941
MLB 54 0 0 7 40 124
Java Ranger 52 0 0 6 40 1140
SPF 49 0 0 7 35 91.5
COASTAL 40 0 0 1 39 533
GDart 36 0 0 1 34 316
JayHorn 33 0 1 12 41 3760

TABLE 4.16: Summarized results of all verifiers sorted from highest to low-
est score (IF = incorrect false, IT = incorrect true, CT = correct true, and CF

= correct false)

a bug), the other 98 percent is spent on verifying the seven valid tasks (tasks containing no
bugs), six of which belong to the MinePump set. In Table 4.15 we have shown the verifi-
cation times of all verifiers for two MinePump tasks, spec1-5_product15 with an invalid
verdict and spec1-5_product62 with a valid verdict. In order to verify the tasks with a
valid verdict, Jip needs to explore all execution paths. In the case of spec1-5_product62
this requires reaching a depth of 16719. From the verification times it appears that Java
Ranger is the only verifier that also verifies the spec1-5_product62 exhaustively.

9The other MinePump tasks require similar depths
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FIGURE 4.3: Quantile function (see 4.1) graph of the benchmarking results
for Jip and the seven other verifiers
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4.4 Soundness and Completeness

Let j denote the function mapping a task t and a verification depth d to one of three
verdicts: valid, invalid, or unknown, executed by our SEE. Let vtd denote the verdict of a
task t at a verification depth d. From this, we formalize soundness as:

j(t, d) = vjd =⇒ vjd = vtd ∨ vjd = unknown

Setting d = ∞ to account for programs with infinite execution paths, we define complete-
ness as:

∀α . vt∞ = α =⇒ j(t, ∞) = α

4.4.1 Soundness

Throughout the 81 verification tasks, we were unable to identify any unsound behavior.
Nevertheless, we have identified two theoretical problems with soundness in Jip, both
stemming from the simplified memory model implemented. We will discuss both in the
subsequent paragraphs.

Index Overlap. In Jip, arrays are treated as mappings from indexes, which are repre-
sented as expressions, to values, which are also represented as expressions. The goal is
to evaluate all index expressions as far as possible on each array access and array insert.
This process is discussed in more detail in subsection 3.3.6.1. This method of indexing can
cause unsound behavior if one index expression could represent multiple concrete places
in an array.

We have outlined a minimum example of the index overlap problem in Listing 4.4. We
first create a symbolic integer within the interval ⟨1, 2⟩. Next, we initialize an array10

and assign the number five to the array element at index a[b]. This results in the array
a containing the following mapping: [0 7→ 0, 1 7→ 0, 2 7→ 0, b 7→ 5, ], where index b

represents both index 1 and 2. However, during the while loop, i is a literal, and we will
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only access indexes 0, 1, and 2. Consequently, the value 5 at index b is never accessed,
which leads to an unsound invalid verdict.

1 // program returns an Invalid verdict

2 static void main(int b)

3 ensures(1 <= b && b <= 2)

4 {

5 int[] a := new int[3];

6 a[b] := 5;

7

8 bool containsFive := false;

9 int i := 0;

10 while (i < #a){

11 int ai := a[i];

12 containsFive := false || ai == 5;

13 i := i + 1;

14 }

15 assert containsFive;

16

17 }

FIGURE 4.4: The SEE does not recognize that i == b and thus a[i] == 5 in
one of the while loop iterations

Reference Aliasing In Jip, the heap is accessed using concrete references, taking into
account the possibility that these references can be null (see subsection 3.3.5). However,
Jip does not consider the possibility that references are aliases. This becomes evident in
Listing 4.5, where the Symbolic Execution Engine (SEE) returns an unsound valid verdict.

10A newly initialized integer array has 0 assigned to all its indexes
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1 // program returns valid verdict

2 class Main {

3 static void main(Obj a, Obj b)

4 ensures(a != null && b != null)

5 {

6 assert a != b;

7 }

8 }

9 class Obj {}

FIGURE 4.5: The SEE gives both a and b concrete references that could be
null, but it does not recognize they could be equal

4.4.2 Completeness

The fact that Jip was able to verify the same set of tasks as JBMC (provided that the timeout
is set high enough) substantiates the claims of completeness. Nevertheless, the Index
Overlap and Reference Alias problems can still be sources of incompleteness.
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Chapter 5

Conclusion

Starting this thesis we identified three primary challenges of symbolic execution: (1) mem-
ory modeling; (2) constraint solving; and (3) path explosion. We presented Jip, our Sym-
bolic Execution Engine (SEE), with a simplified memory model and eleven heuristics de-
signed to address the challenges of constraint solving and path explosion. To assess the
SEE’s performance and validate its soundness and completeness, we subjected Jip to an
extensive benchmark using a set of problems from the SV-COMP.

The results from the heuristic benchmarks showed significant performance improvements.
Specifically, we observed that the Expression Evaluation algorithm of Koppier, when ex-
tended with the Interval Inferer, yielded a 50 percent increase in performance. Further
enhancements from pruning and formula caching heuristics, combined with the fastest
(available) SMT solvers, contributed an additional 30 percent increase in performance.
Another interesting result was that the parallel solving heuristic suggested by Palikareva
et al. [19] seems to be infeasible to implement in any SEE.

Moreover, our comparative analysis demonstrated that our SEE could compete with state-
of-the-art tools on a comprehensive set of verification tasks. The only exception being the
six valid minepump programs, which some verifiers verified in as little as 5 seconds, while
Jip required up to 230 seconds.

Interestingly, the benchmarks did not expose any unsound results despite the simplified
(unsound) representation of references and arrays. This finding suggests that complex
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memory representation may not be necessary to identify the majority of bugs in a pro-
gram. In Chapter 6 we have provided a recommendation to solve this issue.
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Chapter 6

Future Work

This thesis provides a range of options for future work. In the following paragraphs, we
discuss what we believe to be the most interesting possibilities.

Inheritance. Although the OOX language is not currently equipped with class inheri-
tance, it was designed to model other object-oriented languages. We recommend extend-
ing both the OOX language and the SEE to support inheritance.

Multi-threading. The OOX language was designed with multi-threading features in
mind. At present, the SEE does not support these. We recommend extending the SEE to
support multi-threading features. In particular, the use of partial order reduction[15][26]
and compositional reasoning[21] could help to reduce the path explosion problem intro-
duced by multithreading.

Effective Bounds. In the case of the valid minepump program, Jip was significantly
outperformed by verifiers employing bounded verification i.e., not verifying all paths.
Given the success of this strategy, we recommend further experimentation with verifi-
cation bounds to enhance speed while maintaining strong soundness and completeness
guarantees.
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Detect Path Splitting. Our SEE currently does not split states in scenarios where mul-
tiple states could exist, leading to the index overlap and reference alias problems. Given
the performance of our simplified approach, we suggest the implementation of a mech-
anism that detects when states should be split, returning an ’unknown’ verdict in such
cases. This modification would trade completeness for the performance boost caused by
a simplified memory model.

Adaptive Pruning. This heuristic, designed to adjust the pruning probability based
on the success of previous attempts, did not perform as expected. Although it signifi-
cantly outperformed constant pruning in cases where no pruning was needed, it lagged
behind in situations where constant pruning was more effective. This result suggests that
the slower increase in pruning probability by adaptive pruning, in programs where con-
stant pruning performed better, led to a substantial decrease in performance. For future
improvements, we recommend exploring a more fine-grained approach. This could in-
volve starting with a higher initial pruning probability and adjusting the rate at which the
pruning probability is increased, making it faster than its decrease.
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