
Utrecht University

Master Thesis

Causal discovery from train network
data with background knowledge

Author:

Vera Schoonderwoerd

(SN: 6142818)

Daily supervisor:

Francisco Nunes Ferreira

Quialheiro Simoes

Main supervisor:

Thijs van Ommen

Second supervisor:

Mehdi Dastani

ProRail supervisors:

Emdzad Sehic

Wilco Tielman

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computing Science

in the

Faculty of Science

Graduate School of Natural Sciences

29th June, 2023

https://www.uu.nl/en/organisation/faculty-of-science
https://www.uu.nl/en/organisation/graduate-school-of-natural-sciences

Abstract

One delayed train could influence the punctuality of other trains in its area. Currently,

the Traffic Controllers of ProRail use their own knowledge to predict the delays of the

trains, where they also include the delays of other trains as a factor. ProRail want to

research if it is feasible to create a decision support system, where the Traffic Controllers

are aided in making predictions about delayed trains and how to intervene to minimize

the disruptions. One of the first stepping stones is to create a delay prediction system,

and that is what this thesis focuses on. Our goal is the exploration of causal analysis

applied to delay data, and this result is included in a delay prediction model. The causal

relations between trains are captured in a Structural Causal Model (SCM). Creating

the SCM involves two steps: finding the causal graph, and learning the assignment

functions. The causal graph is identified by applying background knowledge to the

PC-algorithm, which reduces the search space. The assignment functions are learned

by training multiple Neural Networks. The result of this thesis is a prediction system

that includes causal relations between trains, referred to as possible train interactions,

as input to predict the delays of the trains at its next time tabling point. The model

performs similarly to an existing model and shows potential for improvement in further

research.

1

Acknowledgements

I would like to begin by expressing my sincere gratitude and appreciation to the following

people who have helped me during my thesis.

This project would have been impossible without the support of my daily supervisor,

Francisco; thank you for all the support and the extensive meetings we had to carry out

this research. He guided me by listening to my puzzling thoughts and translating them

into more structured ideas. I also want to express my gratitude to my main supervisor,

Thijs, for the meetings we had and providing unique ideas to tackle the problems I

encountered. I want to thank both of you for being flexible and supportive throughout

this research, allowing me to pursue my personal field of interest within this thesis topic.

It has been greatly appreciated.

I would also like to thank Wilco, for sharing additional information about the train

data and providing insights into the complexity of these processes at a more detailed

level. I had no idea that there were so many details to consider when working with

trains, and I think my internship was a valuable learning experience. I would like to

thank Emdzad for providing me information about ProRail itself, introducing me to

colleagues that could help me further with my project, and providing opportunities for

me to visit interesting ProRail locations, which have enriched my understanding of the

organization. Also, he has provided me first-hand information about the rail infra and

train dispatchers; for instance, he arranged a train dispatcher course for one midday,

which was a unique experience!

Lastly, I would like to thank my family for the moral support they gave me during

my thesis. They were always interested in my research and I could elaborate on my

problems when I was stuck. In particular, I would like to thank my partner Tycho for

always being there for me. His listening ear and encouragement helped me throughout

my thesis, and I am deeply grateful for his support.

2

Contents

Abstract 1

Acknowledgements 2

List of Figures 6

List of Tables 8

1 Introduction 1

1.1 ProRail . 1

1.2 Challenges in Traffic Control . 1

1.3 Problem statement for the implementation of a decision support system . 4

1.4 Context of project . 5

1.5 Research question(s) . 6

2 Train related background information 8

3 Literature review 12

3.1 State of the art of train delay prediction methods 12

3.1.1 Delay prediction using Linear Regression 12

3.1.2 Delay prediction using Bayesian networks 14

3.1.3 Delay prediction using Neural Networks 15

4 Introduction to SCMs 17

4.1 Causal discovery methods . 18

4.1.1 Peter-Clark (PC) algorithm . 18

4.1.2 Fast Causal Inference (FCI) . 19

4.1.3 Greedy Equivalence Search (GES) 20

4.1.4 GFCI . 21

5 Overview of the steps of the complete method 22

6 Data description 24

6.1 Description data sets . 25

6.2 Preprocessing steps . 26

6.3 Dataframe to TrainRideObject matrix . 30

3

Contents 4

7 Finding causal relations 31

7.1 Domain knowledge . 31

7.1.1 Definition of ’the same location’ 32

7.1.2 Ordering of trains . 34

7.2 Hybrid method . 34

7.2.1 Background knowledge . 34

7.2.2 Algorithm description . 35

7.2.2.1 Start with the complete graph, but exclude the forbidden
edges . 36

7.2.2.2 Perform a skeleton search on the remaining edges 36

7.2.3 Orient the edges . 36

8 Learning assignment functions by implementing Neural Networks 37

8.1 Noise distribution . 37

8.2 Loss function . 38

8.3 Approach for constructing and evaluating the Neural Networks 38

8.4 Layout of the Neural Networks . 39

8.5 Input variables . 40

9 Results 42

9.1 Evaluation of the causal graph . 42

9.2 Number of Neural Networks and number of train-, test-, and validation
data . 45

9.3 Model evaluation on the total test set and per station 45

9.4 Testing our model with more specific test sets 45

9.5 Classifying the predictions of our model by means of the baseline model . 47

9.6 Impact of the fine-tuned model . 49

9.7 Comparing the result to the paper of Wen, Mou, et al. (2020) 50

9.8 Conclusion . 52

10 Discussion and Conclusion 53

10.1 Future work . 54

10.1.1 Future work regarding finding the causal graph 54

10.1.2 Future work regarding finding assignment functions 55

10.1.3 Future work in general . 56

10.2 Concluding remark . 57

A Column Descriptions 62

A.1 Dataframe from CSV file . 62

A.2 Dataframe after preprocessing . 64

B Description of the search functions in the Causal-learn library 66

B.1 PC-algorithm . 66

B.2 FCI-algorithm . 67

C Create BackgroundKnowledge 69

Contents 5

D Improve computation speed for BackgroundKnowledge class 71

E Improvement of the FAS-function 73

F MV-Fisher-z independence test 75

G Graph to a Neural Network input 77

G.1 Convert the graph to a NodeAndParents class 77

G.2 Extract delays from the NodeAndParents class 78

G.3 NN input row class to Dataframe . 79

H Derivation of the loss function for a Laplace distribution 80

I Results Amsterdam-Utrecht railway 81

I.1 Number of Neural Networks and amount of train-, test-, and validation
data . 81

I.2 Model evaluation on the total test set and per station 81

I.3 Testing NNs for Amsterdam-Utrecht with more specific test sets 82

J Results Utrecht-Eindhoven railway 84

J.1 Number of Neural Networks and amount of train-, test-, and validation
data . 84

J.2 Model evaluation on the total test set and per station 84

J.3 Testing NNs for Utrecht-Eindhoven with more specific test sets 85

List of Figures

1.1 Traffic Control Centers in the Netherlands [NOS 2022] 2

1.2 Decomposition of the work areas within the Traffic Control Center of
Eindhoven. The black dots denote a smaller station, the white dots denote
a bigger station. The crossed box at Eindhoven Centraal denotes the
station where the rail traffic control system is located. [Movares et al. 2022] 2

1.3 Sketch of plan screen [ProLeren n.d.(a)]. The first line is highlighted yellow 3

1.4 Propagating delay on 3 February 2012. There were many out-of-control
situations due to extreme weather conditions. [Dekker et al. 2021] 4

2.1 Example of one of the Operator’s Control Units ProRail (n.d.(b)) 9

3.1 Overview of existing methods for delay prediction [Spanninger et al. 2022] 13

3.2 Primary delay vs Frequency [Wen, Li, et al. 2017] 13

5.1 Roadmap of our method . 23

6.1 Railway map with the predicted sections colored 24

7.1 Two trains, one causing one other a delay 32

7.2 Forbidden, required and possible edges in red, green, and gray respec-
tively. The same location is defined as ”same drp” and the time interval
is not explicitly specified, but less than 90 minutes. 35

8.1 Visualization of the pre-trained and the fine-tuned Neural Networks . . . 39

8.2 NN layout . 39

8.3 Left: ReLu, Right: PReLu . 39

9.1 Visualization of the partial causal graph of the Rotterdam-Dordrecht line.
The four blue circled edges are further analyzed in this research. 43

9.2 Correlation between the same train 5134 between drps Kfhaz and Brd
. 44

9.3 Correlation between the same train 2241 between at the same station Rtd,
arriving and departing. These events have a buffer of 3 minutes, which is
noticeable in the graph . 44

9.4 Correlation between two trains that use the same platform. After more
than 435 seconds (around 7 minutes) the ordering of trains is switched,
such that train 2439 will not be delayed by train 5139 44

9.5 These trains do not share a platform, but do pass through the same station
and share multiple sections. The correlation is less visible than the other
three figures, since the 2432 hindered the 5132 six times that resulted in
a small delay . 44

6

List of Figures 7

9.6 MAE per drp . 46

9.7 RMSE per drp . 46

9.8 Distribution of the delay data used in the paper of Wen, Mou, et al. (2020) 50

9.9 Distribution of the delay data used in our research 51

9.10 MAE: Comparing our results (blue) with the results described in the
paper of Wen, Mou, et al. (2020) (orange) 51

9.11 RMSE: Comparing our results (blue) with the results described in the
paper of Mou et al. (2019) (orange) . 51

10.1 Current method for including dependencies. If there is only one non-
trivial parent that is not on the same platform, it will automatically be
placed in dep1 . 56

10.2 Proposed method for including non-trivial parents. Each non-trivial par-
ent is divided in the column of their own train series 56

G.1 Input graph . 78

G.2 Result of algorithm . 78

G.3 Capturing and positioning of the correct columns 78

I.1 MAE per drp . 82

I.2 RMSE per drp . 82

J.1 MAE per drp . 85

J.2 RMSE per drp . 85

List of Tables

6.1 Example of rows in the dataset . 25

6.2 Example of rows in the dataset, initial table 27

6.3 Example of rows in the dataset, step 1 . 27

6.4 Example of rows in the dataset, step 2 . 28

6.5 Example of rows in the dataset, step 3 . 28

6.6 Example of rows in the dataset, step 4 . 28

6.7 Example of rows in the dataset, step 5 . 29

6.8 Example of rows in the dataset, step 6 . 29

6.9 Schedule created based on the table of step 6 29

6.10 Example of rows in the dataset, step 8 . 30

6.11 Example of the TrainRideObject matrix 30

9.1 Results of the Rtd-Ddr line from our model and the baseline model 46

9.2 Denoting per situation to which classification class it belongs to 47

9.3 Comparing our model with the baseline model, in terms of how often each
model performed better. 48

9.4 Comparing our model and the baseline model in terms of MAE in seconds.
The scores are denoted as follows: MAE score of our model vs MAE score
of the baseline model. The difference is determined by: MAE score of our
model – MAE score of the baseline model. 49

9.5 Comparing the results of the pre-trained model to the results of the fine-
tuned model, tested with three different test tests 49

I.1 Results of the Asd-Ut line comparing it to another trained model 83

J.1 Results of the Ut-Ehv line comparing it to another trained model 86

8

Chapter 1

Introduction

This thesis provides an overview of the research that is conducted at ProRail. This

section starts with an overview of ProRail, providing a brief introduction to the organi-

zation. Then we elaborate on what the challenges in Traffic Control are, followed by the

problem statement for the use of a decision support system. Subsequently, the context

of the project is provided, and lastly, the research questions are outlined.

1.1 ProRail

ProRail is a railway operator that focuses on maintaining and improving the railway

network of the Netherlands. They are also responsible for directing the train traffic down

the track [ProRail n.d.(a)]. To put it in perspective: every year, there are 160 million

kilometers of train travel. There are 398 stations, 11.602 railway signals (traffic lights)

and 6260 track switches that need to be maintained. In 2021, 4655 people were working

at ProRail to maintain, among other things, these enormous amount of components

[ProRail 2021a]. The mission of ProRail is to connect people and businesses by rail, and

they make sure that it is safe on and around the track [ProRail 2021b]. This research

is conducted at the department Innovatie en Technologische Vernieuwing (Innovation

and Technical Renewal in English) and focuses on identifying delays caused by train

interaction on the railway by means of the Structural Causal Model framework.

1.2 Challenges in Traffic Control

The tracks in the Netherlands are divided in 12 regions, with a Traffic Control Center

(TTC) per region [ProRail 2021c], as shown in Figure 1.1. Each TTC is divided in

1

Introduction 2

several areas, and each area is a workplace for a train dispatcher. An example of a TCC

and its divided areas is shown in Figure 1.2, where the regions of Eindhoven are divided

between different workplaces of the train dispatchers. Train dispatchers within the same

TTC sit next to each other, which makes the communication between them fast. The

communication between train dispatchers of other TTCs is slower, since they have to

call each other or communicate by means of a control system.

Figure 1.1: Traffic Control Centers in the Netherlands [NOS 2022]

Figure 1.2: Decomposition of the work areas within the Traffic Control Center of
Eindhoven. The black dots denote a smaller station, the white dots denote a bigger
station. The crossed box at Eindhoven Centraal denotes the station where the rail

traffic control system is located. [Movares et al. 2022]

Introduction 3

The train dispatcher enables the routes of the trains and manages the throughput of

trains, by controlling signs and switches. When there are disturbances, they need to solve

them by rescheduling or cancelling trains. In situations without disruptions, the control

system ARI (Automatische Rijweg Instelling or Automatic Routing System) takes over

the work of the train dispatcher and enables the routes for each train automatically. ARI

works according to given plan lines, which detail the routes that need to be enabled for

specific trains. These plans are ordered by the configuration time for the route. Figure

1.3 presents an example of such plan lines, with the first rule highlighted in yellow.

Figure 1.3: Sketch of plan screen [ProLeren n.d.(a)]. The first line is highlighted
yellow

ARI works as follows. ARI checks only if the first line of the plan can be enabled. For

this, three things need to be confirmed. 1) The train is present at the correct location.

2) The train arrives at the correct time (which may deviate for the trains coming from

the open track, there is a predetermined time interval allowed). 3) The route of the plan

line is non-conflicting (i.e., all sections that need to be enabled are not in use) [ProLeren

n.d.(a)].

However, ARI has limits. Particularly, if it cannot confirm the first plan rule, it waits

until it can do so, during which time other traffic must wait. Thus, when the ordering

of two trains is changed, a deadlock occurs (since now the second rule comes before the

first rule) and ARI will fail to enable the routes in this situation. In such cases, the train

dispatcher disables ARI, and enables the routes manually.

A distinction can be made between disturbance, which are small incidents, and disrup-

tion, which are large incidents for which significant changes are necessary [Nielsen et al.

2012]. Within the time schedule, buffers are created, such that small disturbances are

resolved automatically [ProRail 2018]. To minimize disruptions, it is sometimes bene-

ficial to change some small elements of the schedule, such as changing an ordering of

trains or skipping a station. Such actions are described in the Trein Afhandelings Doc-

ument (TAD, English: Train Handling Document) [ProLeren n.d.(c)]. With the work

of Wieringen (2019), the TAD’s are implemented in a simulation of a train dispatcher

workplace of ProRail by the use of a multi-agent system.

Introduction 4

1.3 Problem statement for the implementation of a deci-

sion support system

The disruption within an area may propagate to other areas in the country, since trains

have many interactions with other trains at other locations. For example, on 3 Febru-

ary 2012 there were many out-of-control situations due to extreme weather conditions.

The delay propagation is visualized in Figure 1.4 [Dekker et al. 2021], where the disrup-

tion started between Amsterdam and Utrecht and propagated towards the south of the

country.

Figure 1.4: Propagating delay on 3 February 2012. There were many out-of-control
situations due to extreme weather conditions. [Dekker et al. 2021]

Train dispatchers have knowledge about their own region and mainly see the results of

delay propagation within their own area. They have less knowledge about how delays

will propagate towards their region. The consequence of this limited area is that they

do not have a global picture of the disturbances. It may occur that the solution for their

own area will reduce the amount of disturbances, but that this solution does not reduce

the impact on other regions [Dekker et al. 2021].

The train schedule of the Netherlands is dense, and delays propagate fast. When some-

thing unexpected happens, the train dispatcher has to work under a high time pressure

to reduce the impact of the occurrence. There are different options for handling a delayed

train. Currently, the traffic controllers make these decisions to minimize the disruption

based on expert knowledge and rule based procedures (TAD). A decision support sys-

tem could help the train dispatcher with these decisions. The goal of this thesis is to

Introduction 5

find causal relationships between interacting trains; this will in particular enable us to

estimate train delays.

1.4 Context of project

This project is a component of a larger project of ProRail and University of Utrecht.

The goal of this thesis is the exploration of causal analysis applied to delay data, which

could be a precursor to a decision support system that minimizes the disruption when

a train gets delayed. If a delay for a train arises, it not only affects that train, but a

chain reaction of other delays propagate to the non-delayed trains. The main goal of this

thesis is to learn a Structural Causal Model (SCM) that models the system for a certain

day, using ProRail data. The current implementation of the delay prediction system

of ProRail does not include railway interaction of trains in their model. This research

focuses on delays caused by train interaction on the railway, which is called a train-train

delay. Delays due to shortage of train drivers or train conductors are therefore not

included in our model, but treated as noise in our model.

There is a big difference between delay prediction of a passenger train and a freight

train. Passenger trains have their predetermined recurring schedule and drive almost

every day at the same time slots. Freight trains don’t drive according to a recurring

schedule, but they drive demand driven [ProLeren n.d.(b)]. This means that the data

for freight trains does not have the same repetition every day or week, and it is difficult

to learn from inconsistent data. This research will therefore only consist of predicting

the delays for passenger trains. The freight trains that interact with passenger trains

are treated as noise in our model. The percentage of freight trains on the railway varies

across different areas in the Netherlands, but in our datasets, this ranged from 18.72%

to 27.9%.

Introduction 6

1.5 Research question(s)

The objective of this thesis is to build a causal model of interacting trains, which can

enable us to improve the prediction of delay propagation. This leads to the following

research question:

How to derive a causal graph from train network data in the presence

of background knowledge and learn the assignment functions?

This research consists of two parts, the structure discovery and the equation discovery

part. The structure discovery part consists of a hybrid method that combines back-

ground knowledge and a causal discovery method. The equations relating the variables

will be learned by implementing multiple Neural Networks.

The main research question will be answered by addressing the following subquestions.

At every subquestion, action points are described to answer this question.

1. What does the train network data look like?

1.1. Look into the possibilities of the available data to find the important columns

that can be included for this research.

1.2. Determine the noise distribution of the delay variable by consulting an ex-

pert at ProRail, plotting the distributions, and if necessary, approximate the

distribution.

2. Which methods can be used to create a SCM graph for the train network data?

2.1. Perform a literature study to identify the current methods to create an SCM

graph from data.

2.2. Determine which expert knowledge can be used that benefits the causal dis-

covery accuracy and computation speed.

2.3. Implement and test the found solutions and, if necessary, improve the causal

discovery phase

3. How can the assignment functions be learned using Neural Networks?

3.1. Perform a literature study on the current methods to create a Neural Network

to predict delays.

3.2. Determine which kind of input variables are important, by performing a lit-

erature study and testing different configurations by trial and error

Introduction 7

3.3. Determine which kind of loss function is suitable, by determining the distri-

bution of the data and finding or calculating a corresponding loss function.

3.4. Determine which kind of activation functions are suitable, by performing a

literature study about existing activation functions and testing by trial and

error.

4. How can the created SCM be evaluated?

4.1. Perform a literature study about suitable evaluating methods

4.2. Determine how accurate the SCM is by implementing the chosen method(s)

Chapter 2

Train related background

information

In this section, we will discuss the most important terms in the railway world that apply

to this research.

Train series and train number

The train series denotes a fixed train route that is present in the Netherlands and has

fixed stations where it stops (e.g., 7400 denotes the route from Uitgeest to Rhenen, via

Utrecht, in both directions). It is comparable to the definition of a bus line. A route will

be driven multiple times a day, so per train, there is a unique train number assigned to

identify a specific train. The train numbers are based on the train series. Train numbers

of for example train series 7400 are ranging from 7401 to 7499, such that the train series

is still derivable. The even numbers denote the rides from one direction and the odd

numbers denote the rides from the other direction.

Activities of trains

Within the data, the activity of each train is captured at certain points on the track.

There are 6 types of activities, K V,K A,A, V,D and R. K V and K A stand for

Kort Vertrek (Short Departure) and Korte Aankomst (Short Arrival). The train is then

planned to stay here for maximal one minute. A and V stand for Aankomst en Vertrek

(Arrival and Departure): these activities take longer than one minute. D stands for

Doorkomst (Passage), which means that the train does not stop at that point. R stands

for Rangeren (To shunt), which means that the train is placed to another part of the

track to construct a new train or to remove (a part of) the train [ProRail n.d.(b)].

8

Train related background information 9

Train type

There are different types of trains, such as IC, SPR, ICE, THA, HSN and LM. One dis-

tinction can be made between the intercity (IC) and the sprinter (SPR). The intercity

only stops at larger stations, while the sprinter also stops at intermediate stations. The

international trains InterCity Express (ICE) travels to Germany and the Thalys (THA)

travels to France. The HSN is the Dutch in-country train on the high speed railway.

LM stands for leeg materiaal (English: Empty equipment), and are the trains used for

shunting.

Dienstregelpunt (drp)/ timetabling point

A dienstregelpunt is a measurement location on the railway. The train schedule is cre-

ated by determining all planned times for which the train has to arrive, departure or

pass though at the dienstregelpunten. A station is also a type of dienstregelpunt, which

may contain two activities: arriving and departing. In this research, we further refer to

the timetabling point as the abbreviation drp.

Non-conflicting route

The train dispatcher can only enable a route for a train when, among other things, there

is a non-conflicting route. A non-conflicting route means that there is no train is on the

desired section or planned to be on that section. In Figure 2.1 an example of a part of

the Operator’s Control Unit of the train dispatcher is shown. Three trains are shown,

denoted with a number, and located on the yellow line. The yellow line indicates that

the train is at this section. The routes that are enabled, are denoted as a green line, and

an arrow on that line denotes the direction of the train [ProRail n.d.(b)]. If then a new

train has to enter this section in the image, a fourth route has to be enabled. This route

cannot cross or contain a part of the green lines, since this route is then conflicting.

Figure 2.1: Example of one of the Operator’s Control Units ProRail (n.d.(b))

Train related background information 10

The open track and the yard

On the open track, there are no controllable switches or signs. At the yard, there are

controllable switches and signs.

Dwell time, Buffers

Dwell time is the time difference between arrival and departure of a train at a station.

Within this time, at least five processes are performed, namely door unlocking, door

opening, boarding, door closing and train dispatching [Li, Daamen, et al. 2016]. This

is the minimal time that a train has to wait at the station. At some stations, the

train waits longer than only that minimal necessary time. The remaining time functions

as a buffer: small delays can be resolved and do not propagate during the rest of the shift.

Train-train delay

A train delay that has an external cause, such as the weather or engine problems, is

called a primary delay. The delays that arise from this primary delay are called the

secondary delays or knock on delays. An example of a knock on delay is a delay caused

by railway interaction: a delayed train occupies the railway at a different time than

planned, requiring another train to wait. Another example of a knock on delay is that

the train driver or conductor has to transfer to another train, but are delayed. This

results that the train he/she transfers to will also be delayed. In this research, we only

focus on delays that occur due to railway interaction. This means that the delay of a

train is caused by a previous delayed train. We denote this as a train-train delay.

Causes of train-train delays

This research only focuses on the train-train delays. We can distinguish between different

train-train delays.

1. Same train A train that is delayed, will probably also be delayed at its next stops.

The delay, therefore, propagates to the same train on different stations. We denote

this as trainx at stationi influences trainx at stationi+1. [Corman et al. 2018].

2. Non-conflicting route A train can only drive if there is a non-conflicting route

enabled. If a train has a large delay, some parts of the route are not enabled yet,

since the train has not arrived yet. When the delayed train has arrived, the non-

conflicting route would be enabled at another time than planned. It can occur

that the non-conflicting route would then be used for another train. The train

dispatcher can decide two things:

1. The other train uses the non-conflicting route first, so the delayed train gets

more delay.

2. The delayed train uses the non-conflicting route first, but the other train now

gets a delay as well.

Train related background information 11

3. Transfer At some stations, the planning is made such that there are transfers possi-

ble between different trains. If a train X is delayed and the transfer is not possible

anymore, some trains Y may wait to still enable this transfer. Then train X causes

a delay on Y . However, if the delay of train X is too large, train Y will depart

without delay because else train Y will have a delay that is too large [ProLeren

n.d.(c)].

4. Change of train number When a train has fulfilled its route, it can be deployed

as another train to drive another route. If a train has a delay when finishing its

route and is deployed to drive the next route, this route could have a delay at the

start. This is why at the endpoints of routes there is a large buffer calculated, to

prevent such situations.

Chapter 3

Literature review

This section provides an overview of the current train delay prediction methods, focusing

on the Linear Regression method, Bayesian Networks and Neural Networks. It further

describes which features were included in prediction models.

3.1 State of the art of train delay prediction methods

Spanninger et al. (2022) provides a review of the different methods to predict train

delays. They distinguish between event driven and data driven methods. Event driven

methods take dependencies of train events into account when modeling, which results

into multistep predictions. If we want to know what happens for train T at station

i + 3, the model first calculates the intermediate steps, so xi → xi+1 → xi+2 → xi+3.

The data driven method calculates the delay directly, so in this case xi → xi+3. Figure

3.1 provides an overview of the existing models for delay prediction, and the models are

classified between event driven or data driven approaches and between stochastic models

and deterministic models [Spanninger et al. 2022]. This section further elaborates on

existing methods to predict train delays using Linear Regression, Bayesian Networks

and Neural Networks.

3.1.1 Delay prediction using Linear Regression

A Linear regression model can be used to predict delays. Explanatory variables such

as train number of crossings, speed limit and boarding time are given as input, and a

delay as output variable is returned. Murali et al. (2010) introduce a simulation-based

method to estimate train delays using a linear regression model. The purpose for this

research is to schedule freight trains over large networks and estimating the delay.

12

Literature review 13

Figure 3.1: Overview of existing methods for delay prediction [Spanninger et al. 2022]

Wen, Li, et al. (2017) used a linear regression model to do analysis on the primary delay

of a HSR line in China. They investigated among other things the temporal distribution

of primary delays and concluded that during peak time more primary delays occur. In

Figure 3.2 the duration of the primary delay is plotted against the frequency, for which

they conclude that for this distribution the log-normal distribution fitted the data best.

[Wen, Li, et al. 2017]

Figure 3.2: Primary delay vs Frequency [Wen, Li, et al. 2017]

Li, Daamen, et al. (2016) have created two different regression models to estimate the

train dwell times at the short stops between Utrecht and Eindhoven. Dwell times mainly

depend on the number of passengers that enter and leave the train, but these are not

available real time. They therefore estimate the dwell time using a statistical analysis

Literature review 14

with possible predictor variables. The dwell time for peak and off-peak hours are esti-

mated by different methods. In Li, Goverde, et al. (2014) they concluded that the dwell

times fit a log-normal distribution, which they have included in one of their models [Li,

Daamen, et al. 2016].

3.1.2 Delay prediction using Bayesian networks

Bayesian networks are used by Zilko et al. (2016) to predict the disruption length. Lessan

et al. (2019) introduce Bayesian Networks to formulate delay dependencies for the High

Speed Rail (HSR) between the Chinese stations Wuhan and Guangzhou. They create

three different Bayesian Network graphs and estimated the parameters using Maximum

Likelihood Estimation (MLE). They created a hill climbing method and a primitive

linear method. The third structure is created using a hybrid method, where they first

used the hill climbing and the primitive linear method, and improved the network using

domain knowledge. This model can predict with 80% accuracy the delays within a 60-

minute time horizon.

Corman et al. (2018) created a hybrid method that focuses on how the accuracy of

the prediction of an event changes when the time interval towards the event decreases

and more information becomes available. They use domain knowledge to create their

Bayesian Network structure and have included dependencies between trains that share

infrastructure or have scheduled passenger transfers in their model. They limited their

prediction horizon to 60 minutes, since predictions for distant events will become less

accurate. The parameters of the Bayesian Network have linear coefficients, since a local

distribution can be represented as a linear model according to Koller et al. (2009).

Huang, Lessan, et al. (2020) introduce a hybrid model that predicts three different

consequences of a disturbance for two HSR lines in China. The primary delay L per

station (which is the first delay that occurs at that station), the number of delayed

trains per station N and the total delay time per station T . The authors look into the

temporal and spatial propagations of delays of the train activities. The structure of

the model describes the relationship between L, N and T at each station and towards

the next station. They propose 4 different structures and choose the best one using

comprehensive experiments. Parameter learning is done by MLE.

Another hybrid model, the Context-Driven Bayesian Network (CDBN), is proposed,

which combines a k-means clustering algorithm with a Bayesian Network [Huang, Span-

ninger, et al. 2022]. K-means is used to find delay evolution patterns, which is the

classification whether the delay of a specific train increasing, staying the same or de-

creasing. Per cluster, a Bayesian Network is constructed with the clustered data. Ulak

Literature review 15

et al. (2020) also uses Bayesian Network learning to calculate the impacts of the delays

at certain stops at Long Island Rail Road. They used MLE to find the parameters and

max-min hill–climbing (mmhc) to learn the graph. Mmhc combines a constrained based

algorithm to find the skeleton of the Bayesian Network and a greedy hill-climbing search

to orient the edges [Tsamardinos et al. 2006].

3.1.3 Delay prediction using Neural Networks

The Long Short-Term Memory (LSTM) model is a popular method for delay prediction.

The LSTM is an improvement of the Recurrent Neural Network, which is a Neural

Network consisting of one or more cycles, such that a node ’remembers’ the previous

state. The LSTM contains a special memory gate such that it ’remembers’ long term

dependencies better [Mou et al. 2019]. Mou et al. (2019) used a LSTM model for delay

prediction for a section of the Dutch railways, Rotterdam Centraal to Dordrecht. This

delay prediction consists of a prediction horizon of one day and outputs the arrival delay

time of the train at the next station. They state that knowledge about the schedule

is not important for the neural network learning process, since current methods can

learn the important features from the large amount of data. Instead, they focus on

the selection of characteristic input variables. Wen, Mou, et al. (2020) continued with

the previously mentioned paper and tested the LSTM prediction model further for the

sections Rotterdam Centraal to Dordrecht and Rilland Bath to Vlissingen. The LSTM

of Mou et al. (2019) and Wen, Mou, et al. (2020) both outperform the Artificial Neural

Network and the Random Forest model.

An LSTM is also used within hybrid algorithms. Huang, Wen, Fu, Lessan, et al. (2020)

created an algorithm that combines a fully-connected neural network (FCNN) and LSTM

method. Not only they focus on the infrastructure-related and operational-related vari-

ables, they also included weather-related variables, such as temperature and wind speed,

as input for the neural network. This additional information contributes significantly

to the train prediction delays. Wu et al. (2021) creates a hybrid method that com-

bines LSTM with Critical Point Search (CPS) for long term delay prediction. CPS is

a rule-based classification method, which is used in this paper to predict the primary

and secondary delays. Luo et al. (2022) proposes a Bayesian optimization-based multi-

output deep learning model. This is a hybrid method that consists of the FCNN and

LSTMs and outputs the delays of n subsequent trains at a specific station. The model is

tested with the operational data from the Wuhan–Guangzhou HSR line. The estimation

error increases with the time interval and with which sequential train (first, second etc.)

it predicts. Huang, Wen, Fu, Peng, et al. (2020) proposes the CLF-Net, which consists

Literature review 16

of a 3D Convolutional Neural Network (CNN), a LSTM and a FCNN. The CLF-Net is

trained with spatio-temporal data, time series data and none-time-series data. This is

trained and tested against different models, for which the CLF-Net was the best scoring

model. Li, Huang, et al. (2022) proposes a similar hybrid method to predict the delays

at multiline stations.

Oneto et al. (2018) used Shallow Extreme Learning Machines (SELM) and Deep Ex-

treme Learning Machines (DELM) to create a dynamic delay prediction method. SELM

is a single-hidden-layer feed forward neural network, and DELM is a feed forward neural

network that consists of multiple hidden layers. The method predicts the train delay at

the next checkpoint.

Feature space

Determining the feature space is an important step in delay prediction [Mou et al. 2019].

These features can include external variables: calendar features such as day of the

week, holiday or working day [Oneto et al. 2018], weather related features such as

wind speed or rainfall [Huang, Wen, Fu, Lessan, et al. 2020] or infrastructure related

features such as the length of sections [Huang, Wen, Fu, Lessan, et al. 2020], speed

limit number or crossings [Murali et al. 2010].

Most studies included train operation variables of the predicted train such as the train

type (IC, SPR, LM) [Mou et al. 2019] [Wu et al. 2021], dwell times and running times

[Oneto et al. 2018] [Wu et al. 2021] [Huang, Wen, Fu, Lessan, et al. 2020] or arrival and

departure delay at the current or previous station [Mou et al. 2019] [Huang, Wen, Fu,

Lessan, et al. 2020].

Some studies also included features of other interacting trains within a time interval,

such as running times or dwell times [Oneto et al. 2018] or delays [Huang, Wen, Fu,

Lessan, et al. 2020]. Some models use features of m trains previous and subsequent of

a delayed train at a certain station [Wu et al. 2021]. Huang, Wen, Fu, Lessan, et al.

(2020) only look at the previous planned train on a section.

Chapter 4

Introduction to SCMs

A Structural Causal Model is a model that consist of variables and assignments formulas

which represents the causal relationships between variables in a system. An SCM graph

represents this visually: a directed edge between two variables X → Y indicates that X

is a cause of Y. It is difficult to model an interaction of the world with an exact outcome,

since there are external influences. To denote external influences, exogenous variables

are introduced, which represents the influences outside the model. The variables that

are modelled, are called endogenous variables [Pearl et al. 2016].

Conditional independence is defined as follows. If we have variables A B and C

with the probabilities P (C|A,B) = P (C|B), we can state that C is conditionally in-

dependent of A given B. Implicating, A does not provide any new information for C

when B is known. This independence can be written symbolically as (C ⊥⊥ A | B)

[Pearl et al. 2016]. An independence test can be performed to determine if there is a

correlation between two variables. This is a statistical testing method to assess whether

two variables are independent of each other; if this is not the case, the two variables are

correlated.

Paths are present within a graph, which can be blocked or unblocked. If we have a

chain A → B → C or a fork A ← B → C, we have an unblocked path. When condi-

tioned on B, this path is blocked. For a collider A→ B ← C, this path is automatically

blocked, unless we condition on B. If a path between X and Y in a graph is blocked

by a set Z, we state that X and Y are d-separated conditional on Z. [Pearl et al. 2016]

Within the graphical models, the Markov properties are an important aspect. It consists

of different properties, namely the Global Markov property, the Local Markov property

and the Markov factorization property. The Global Markov Property states that if

17

Introduction to SCMs 18

there is a d-separation in graph G: X ⊥⊥G Y | Z, there is a conditional independence

in probability model P : X ⊥⊥P Y | Z. The Local Markov property states that each

variable is independent of its non-descendants when conditioning on its parents. The

Markov factorization property states P (x1, .., xk) =
∏k

i=1 P (xi|paGi) [Peters et al.

2017].

Another definition is the Markov equivalence. Two graphs are Markov equivalent

if they have the same skeleton and they have the same set of v-structures. A v-structure

is a collider for which its parents are not adjacent [Pearl et al. 2016]. The inverse of the

Global Markov Property is Faithfulness. This states that a conditional independence

in model P implies a d-separation in graph G: X ⊥⊥P Y | Z ⇒ X ⊥⊥G Y | Z. [Peters

et al. 2017].

4.1 Causal discovery methods

To derive a SCM graph from data, many algorithms have been created. This section de-

scribes different types of causal discovery algorithms, which assumptions they have, and

what their limits are. There are two main algorithms, the constraint-based algorithms

and the score-based algorithms.

Constraint based algorithms perform statistical tests, such as a conditional indepen-

dence test, on a dataset and remove the edges between nodes that are proven to be

independent. It returns a Partial Ancestral Graph (PAG), the Markov Equivalent class

of the graphs, that satisfies these tests [Triantafillou et al. 2016] [Ogarrio et al. 2016].

Score-based methods use a scoring function that determines how well the graph reflects

the data to find the best graph that maximizes the score [Triantafillou et al. 2016].

4.1.1 Peter-Clark (PC) algorithm

The PC-algorithm is a constraint based algorithm and has four steps [Spirtes et al. 2000]:

1. Start with the complete undirected graph.

2. Skeleton search by performing independence tests on the data. When an independency

between two nodes is found, the separating set of these nodes is updated with the

Introduction to SCMs 19

set that is conditioned on. The edge between the two nodes is removed, and the

graph remains undirected.

3. Identify the v-structures and orient those edges. The v-structures can be identified

by looking at the separating set. If there is a v-structure A → B ← C in the

true graph, we must find in the data that A en C are dependent given B. Then

B is not in Sepset(A,C) and we can conclude that the structure of A,B and C is

A→ B ← C.

4. Orient other edges. When knowing some directed edges, other undirected edges may

be oriented as well. If we know for example A → B – C, we should have found

B ← C if there was a v-structure present. Since we did not find this structure in

step 2, we must conclude that the correct graph is A→ B → C.

The complexity of the PC-algorithm is bounded by the maximal degree k (maximal

neighbors of a node) of the true-graph and the number of nodes n. The amount of

independence test needed is then in the order of 2
(
n
2

)∑k
i=0

(
n−1
i

)
= n2(n−1)k−1

(k−1)! [Spirtes

et al. 2000].

The PC- algorithm has the following assumptions:

1. Sufficiency assumption, there are no unknown confounders [Glymour et al. 2019]

2. The Local Markov property holds [Glymour et al. 2019]

3. Faithfulness assumption [Glymour et al. 2019]

4. The causal graph is a directed acyclic graph (DAG)

4.1.2 Fast Causal Inference (FCI)

The FCI algorithm is a variation of the PC-algorithm. An improvement of this algo-

rithm regarding the PC-algorithm is that it does not assume the absence of unobserved

confounders in the data, and can even detect them. These are marked in the graph with

a bidirectional edge between two measured variables, meaning that there is an unmea-

sured confounder present [Glymour et al. 2019]. To relax the sufficiency assumption,

the algorithm needs to test for independencies between non-adjacent variables, which

results into the possible d-separating sets [Raghu et al. 2018]. The FCI algorithm works

partially the same as the PC algorithm, but with some extra steps [Spirtes et al. 2000]:

1. Start with the complete undirected graph.

Introduction to SCMs 20

2. Skeleton search. Do skeleton search by performing independence tests and keeping

track of the SepSet for each edge. Edges between nodes that are proven to be

independent are removed.

3. Orient edges based on v-structure. Orient the remaining edges of the graph as undi-

rected in both directions (denoted as o–o) and identify the v-structures and orient

those edges. This results into graph F .

4. Extra separation step. The remaining edges are pruned further by looking if a d-

separation between two variables is possible, given a subset of the graph. The FCI

algorithm keeps track of the Possible-D-SEP(X,Y) S of graph F , by including only

the variables that may separate X and Y . If X and Y can be separated by any

subset of S in graph F , the edge between X and Y is removed and the separating

sets of X and Y are set to S.

5. Orient edges based on v-structure. Since there now is a different graph created in step

4, all edges are unoriented again and the v-structures are identified.

6. Orient other edges. The remaining edges can be oriented with the same approach as

described in step 4 of the PC-algorithm.

4.1.3 Greedy Equivalence Search (GES)

This algorithm is a score based algorithm and searches greedily for a better scoring

graph. It starts with the forward stage: the empty graph is constructed and edges are

added to the graph as long as the score function improves. In the backward stage,

edges are removed as long as the score function improves. There are different scoring

functions, such as the Bayesian Information Criterion (BIC) score, which combines a

likelihood score with a penalty for the complexity [Chickering 2002]. Each score has

its own assumptions: the BIC and the BGe score assume the noise follows a normal

distribution. The BDeu/BDe scores are meant for discrete data [Huang, Zhang, et al.

2018]. The GES algorithm assumes that there are no unmeasured confounders, the

Local Markov property holds, the faithfulness assumption holds, and the causal graph

is a DAG [Ogarrio et al. 2016].

Comparing GES and the PC-algorithm, the quality of the estimations of GES is better,

but has a slower performance than PC [Nandy et al. 2018]. The Fast Greedy Search

(FGS) algorithm is a modification of GES, which works the same as GES, but uses

a different data structure, which results into a faster algorithm [Ogarrio et al. 2016].

Just as with GES, the FSG algorithm may include too many edges, since it has the

assumption that there are no unmeasured confounders present.

Introduction to SCMs 21

4.1.4 GFCI

GFCI is a hybrid algorithm, since it combines the constraint based FCI algorithm and

the score-based FGS algorithm. GFCI first applies the FGS algorithm and uses the

outcome as the skeleton for the FCI algorithm. Comparing GFCI and FCI, GFCI has

a lower average estimation error and a better recall and precision score for finding

adjacencies and identifying the endpoints of the edges than FCI. GFCI does have a

longer computation time than FCI [Ogarrio et al. 2016]. Since the FCI algorithm is

applied, this algorithm does not assume the absence of latent confounders.

Chapter 5

Overview of the steps of the

complete method

In this section, a step-by-step roadmap is presented for the creation of our prediction

model. The code can be found at https://github.com/vera98x/Causal-discovery. Our

goals are: finding the causal relations between trains, and training the Neural Networks

using the causal relations and the external variables to estimate the delays. The roadmap

of our method is illustrated in Figure 5.1.

The first step is to clean the initial dataset, such that each day consists of the same

events. This is described in Section 6.2. Then, two TrainRideObjects (TRO) matrices

are built: the TRO schedule and the TRO matrix. A TRO stores all the relevant

information of a specific event, such as train series, train number, drp, platform, delay,

planned time, etc. The TRO schedule only contains the schedule, which is a list of all

TROs that occur in one day. The other is the TRO matrix that denotes all the events

that occurred in our dataset. The rows denote the different days and the columns denote

the different events. Section 6.3 elaborates on this further.

The TRO schedule is used as input to create the background knowledge, as described

in Section 7.2.1. To find the causal graph, the background knowledge and the TRO

matrix are provided. The TRO matrix is beforehand converted to a matrix of integers

that denote the delay per event. Section 7.2.2 elaborates on how the causal graph is

retrieved.

The input for the Neural Networks consist of information about the causal relations

between trains, provided by the causal graph, and the external variables, provided by

the TRO matrix. Using this input, the pre-trained Neural Network and the multiple

fine-tuned Neural Networks are created. This is explained in Section 8. The details

22

https://github.com/vera98x/Causal-discovery

Overview of the steps of the complete method 23

about how the graph and the TRO are converted to the input for the Neural Networks

are explained in Appendix G.

Figure 5.1: Roadmap of our method

Chapter 6

Data description

The data is retrieved from an internal system of ProRail, which contains historical

data of the punctuality of the train rides. For this research, three areas of the Dutch

railway system are used. In Figure 6.1, these areas are colored in the map. The areas

are Amsterdam—Utrecht (red frame), Utrecht-Eindhoven (blue frame) and Rotterdam-

Dordrecht (purple frame). All datasets include the activities of the trains that were

present between September 4, 2017 to December 8, 2017 (70 working days)

Figure 6.1: Railway map with the predicted sections colored

24

Data description 25

6.1 Description data sets

The railway between Rotterdam and Dordrecht consist of 12 timetabling points, includ-

ing 7 stations (printed in bold), namely Rotterdam Centraal (Rtd), Willemstunnel

noord (Wiltn), Rotterdam Blaak (Rtb), Willemstunnel zuid (Wiltz), Rotterdam

Zuid (Rtz), Rotterdam Stadion (Rtst), Rotterdam Lombardijen (Rlb), Baren-

drecht (Brd), Kijfhoek aansluiting Zuid (kfhaz), Zwijndrecht (Zwd), Grote Brug

(Grbr) and Dordrecht (Ddr).

The railway between Amsterdam and Utrecht consist of 18 timetabling points, includ-

ing 11 stations (printed in bold): Amsterdam Centraal (Asd), Oosterdoksluis (Ods),

Amsterdam Dijksgracht Westzijde (Dgrw), Amsterdam Muiderpoort Aansluiting (As-

dma), Amsterdam Muiderpoort (Asdm), Amsterdam Amstel (Asa), Duiven-

drecht (Dvd), Duivendrecht aansluiting Zuid (Dvaz), Amsterdam Bijlmer (Asb),

Amsterdam Holendrecht (Ashd), Abcoude (Ac), Abcoude overloopwissels (Aco),

Breukelen (Bkl), Breukelen aansluiting (Bkla), Maarssen (Mas), Utrecht Zuilen

(Utzl), Utrecht Maarssen aansluiting (Utma) and Utrecht Centraal (Ut).

The railway between Utrecht and Eindhoven consist of 23 timetabling points, includ-

ing 14 stations (printed in bold): Utrecht Centraal (Ut), Utrecht Vaartsche

Rijn (Utvr), Utrecht Zuid aansluiting (Utza), Utrecht Lunetten (Utln), Houten

(Htn), Houten Castellum (Htnc), Lekbrug (Lek), Culemborg (Cl), Gelder-

malsen (Gdm), Meteren Betuweroute aansluiting noord (Mbtwan), Meteren Betuwer-

oute aansluiting zuid (Mbtwaz), Zaltbommel (Zbm), Oud Zaltbommel (Ozbm), Hedel

(Hdl), ’s-Hertogenbosch (Ht), Vught aansluiting (Vga), Vught (Vg), Boxtel (Btl),

Liempde (Lpe), Best overloopwissels (Beto),Best (Bet), Acht (At), Eindhoven Strijp-

S (Ehs), and Eindhoven (Ehv).

An example of rows within such dataset is denoted in Table 6.1. Each row consists

of one event (arrival, departure, or passage) that occurred for a specific train. In this

example, 7 columns are shown, but in reality there are more columns present. The

complete overview of columns is denoted in Appendix A

Date Train series Train number Drp Activity Planned time Realized time

09-09-2017 1100E 1122 Rtz D 08:43:24 08:43:43

25-09-2017 5100E 5174 Zwd V 21:15:00 21:14:50

15-11-2017 2200O 2257 Rtb K A 15:05:06 15:05:12

07-12-2017 5000O 5065 Ddr A 18:04:00 18:03:35

Table 6.1: Example of rows in the dataset

Data description 26

6.2 Preprocessing steps

The algorithm that is used to find causal relationships uses a n × m matrix with n

rows and m columns as input. The algorithm is described in section 7.2. Each column

represents an event (e.g., train 7424 arriving at station Bkl) and each row represents a

day. This means that for every day, the same events need to be included. In the dataset,

this is not the case. For example, more train rides occur on one day of the week than

on the other. Further, sometimes trains are randomly added to the daily schedule and

sometimes a train gets cancelled. Therefore, it is important to do some preprocessing to

include the same events for each day. The dataset is further preprocessed by performing

the following action points in this order. After these steps, the resulting Dataframe of c

columns is a (n ·m)×c matrix. Each row still consist of one activity. The transformation

to a n×m matrix is done in another step, described in section 6.3. Every step described

below is illustrated afterward.

1. Only keep the useful columns The dataset consists of many columns, including

columns that are not directly used for the delay prediction program. However,

these columns do say something about the data. For example, there is a column

such that we can derive the amount of interventions that are done. The columns

that are not used in the program are discarded. The kept columns are assigned a

type and some columns are renamed.

2. Remove the duplicated items Sometimes an event is registered twice. We then

only keep the first row of this event and delete the other one(s).

3. Create new columns using the other columns By combining other columns, new

columns are created, such as delay, buffer time and travel time. This new infor-

mation will be added as external information for the Neural Network. Specifically,

the variable ”delay” is used to learn the causal graph as well.

4. Remove columns that do not contain a date If the date column is empty, this

row is removed. Another solution would be to look at the planned time, which

also includes a date, but these are not always the same. Night trains are grouped

by the previous date, so errors will be made when using this imputation method.

5. Only keep workdays The schedule between working days are similar to each other,

but the schedule differs much on the weekend. We therefore only include working

days in our research.

6. Remove cancelled trains Before finding the schedule, remove the cancelled train.

This prevents that trains that are always cancelled are not included in the schedule.

Data description 27

7. Find the schedule The data is grouped by train number, drp, activity and the

planned time. The grouped events that do not occur above a certain threshold,

are filtered out of the dataset. Using the remaining events, the schedule is created.

Lastly, the trains are removed from the schedule that never have a basic uitvoer.

8. Modify data according to the schedule Using this created schedule, the data

set is modified such that every day consist of the same events. That means:

removing every event that is not in the schedule, and adding events that are in

the schedule and mark them as a cancelled train for that day.

These steps are further illustrated through an example. An initial (fake) dataset is

presented, and at each step, the data set is modified accordingly. In row 10, the planned

time is marked red, indicating that this train was cancelled. The column ”sections

driven” is not used in the model, thus considered an unnecessary column. The initial

table is denoted in 6.2

Index Date Train number Drp Activity Planned time Realized time sections driven

1 24-09-2017 7424 Blk K A 08:44:24 08:44:50 A to B

2 24-09-2017 7424 Blk K V 08:43:24 08:43:30 C to D

3 7424 Blk K A 08:43:24 08:43:43 A to B

4 25-09-2017 7424 Blk K V 08:44:24 08:44:50 C to D

5 26-09-2017 7424 Blk K A 08:43:24 08:43:30 A to B

6 26-09-2017 7424 Blk K V 08:44:24 08:46:50 C to D

7 27-09-2017 7424 Aco D 08:35:24 08:35:20 X to V

8 27-09-2017 7424 Blk K A 08:43:24 08:43:20 A to B

9 27-09-2017 7424 Blk K A 08:43:24 08:43:20 A to B

10 27-09-2017 7424 Blk K V 08:44:24 C to D

Table 6.2: Example of rows in the dataset, initial table

In step 1, the unnecessary columns are removed and the column ’sections driven’ is

removed, since this column will not be used. This results in Table 6.3.

Index Date Train number Drp Activity Planned time Realized time

1 24-09-2017 7424 Blk K A 08:44:24 08:44:50

2 24-09-2017 7424 Blk K V 08:43:24 08:43:30

3 7424 Blk K A 08:43:24 08:43:43

4 25-09-2017 7424 Blk K V 08:44:24 08:44:50

5 26-09-2017 7424 Blk K A 08:43:24 08:43:30

6 26-09-2017 7424 Blk K V 08:44:24 08:46:50

7 27-09-2017 7424 Aco D 08:35:24 08:35:20

8 27-09-2017 7424 Blk K A 08:43:24 08:43:20

9 27-09-2017 7424 Blk K A 08:43:24 08:43:20

10 27-09-2017 7424 Blk K V 08:44:24

Table 6.3: Example of rows in the dataset, step 1

Data description 28

In step 2, the duplicated items are removed. The row with index 9 is deleted and this

results in Table 6.4

Index Date Train number Drp Activity Planned time Realized time

1 24-09-2017 7424 Blk K A 08:44:24 08:44:50

2 24-09-2017 7424 Blk K V 08:43:24 08:43:30

3 7424 Blk K A 08:43:24 08:43:43

4 25-09-2017 7424 Blk K V 08:44:24 08:44:50

5 26-09-2017 7424 Blk K A 08:43:24 08:43:30

6 26-09-2017 7424 Blk K V 08:44:24 08:46:50

7 27-09-2017 7424 Aco D 08:35:24 08:35:20

8 27-09-2017 7424 Blk K A 08:43:24 08:43:20

10 27-09-2017 7424 Blk K V 08:44:24

Table 6.4: Example of rows in the dataset, step 2

In step 3, new columns are created. In this example, only the delay column denoted in

seconds is added, resulting in Table 6.5.

Index Date Train number Drp Activity Planned time Realized time Delay

1 24-09-2017 7424 Blk K A 08:44:24 08:44:50 26

2 24-09-2017 7424 Blk K V 08:43:24 08:43:30 6

3 7424 Blk K A 08:43:24 08:43:43 19

4 25-09-2017 7424 Blk K V 08:44:24 08:44:50 26

5 26-09-2017 7424 Blk K A 08:43:24 08:43:30 6

6 26-09-2017 7424 Blk K V 08:44:24 08:46:50 146

7 27-09-2017 7424 Aco D 08:35:24 08:35:20 -4

8 27-09-2017 7424 Blk K A 08:43:24 08:43:00 -24

10 27-09-2017 7424 Blk K V 08:44:24

Table 6.5: Example of rows in the dataset, step 3

In step 4, the columns that do not contain a date are removed, so the row with index 3

is removed. This results in Table 6.6

Index Date Train number Drp Activity Planned time Realized time Delay

1 24-09-2017 7424 Blk K A 08:44:24 08:44:50 26

2 24-09-2017 7424 Blk K V 08:43:24 08:43:30 6

4 25-09-2017 7424 Blk K V 08:44:24 08:44:50 26

5 26-09-2017 7424 Blk K A 08:43:24 08:43:30 6

6 26-09-2017 7424 Blk K V 08:44:24 08:46:50 146

7 27-09-2017 7424 Aco D 08:35:24 08:35:20 -4

8 27-09-2017 7424 Blk K A 08:43:24 08:43:00 -24

10 27-09-2017 7424 Blk K V 08:44:24

Table 6.6: Example of rows in the dataset, step 4

Data description 29

In step 5, only the columns that consist of a workday are kept. 24-09-2017 is a Sunday,

so rows at index 1 and 2 are removed (Table 6.7)

Index Date Train number Drp Activity Planned time Realized time Delay

4 25-09-2017 7424 Blk K V 08:44:24 08:44:50 26

5 26-09-2017 7424 Blk K A 08:43:24 08:43:30 6

6 26-09-2017 7424 Blk K V 08:44:24 08:46:50 146

7 27-09-2017 7424 Aco D 08:35:24 08:35:20 -4

8 27-09-2017 7424 Blk K A 08:43:24 08:43:00 -24

10 27-09-2017 7424 Blk K V 08:44:24

Table 6.7: Example of rows in the dataset, step 5

In step 6, the cancelled trains are removed. The row on index 10 is removed, resulting

in Table 6.8

Index Date Train number Drp Activity Planned time Realized time Delay

4 25-09-2017 7424 Blk K V 08:44:24 08:44:50 26

5 26-09-2017 7424 Blk K A 08:43:24 08:43:30 6

6 26-09-2017 7424 Blk K V 08:44:24 08:46:50 146

7 27-09-2017 7424 Aco D 08:35:24 08:35:20 -4

8 27-09-2017 7424 Blk K A 08:43:24 08:43:00 -24

Table 6.8: Example of rows in the dataset, step 6

Based on the resulting table, the schedule is created in step 7, as depicted in Table

6.9. Only events that occur frequently in the data set (more than 35% of all days)

are kept. The date is reset to ”01-01-2000”. The purpose of using the date ”01-01-

2000” is that it serves as a random day that is not included in the dataset and can be

easily distinguished. The column ”realized time” is still present, but will not be used

further. Lastly, the ”delay” column is empty, since these are not relevant for a schedule.

Furthermore, when imputing values from the schedule in the dataset, the delay for that

particular sample will automatically be left empty, as intended.

Date Train number Drp Activity Planned time Realized time Delay

01-01-2000 7424 Blk K A 08:43:24 08:43:30

01-01-2000 7424 Blk K V 08:44:24 08:44:50

Table 6.9: Schedule created based on the table of step 6

In the last step, the created schedule is used to modify the table from step 6, resulting

in Table 6.10. The date of the added rows are marked bold and row 7 is removed, since

that event is not present in the schedule. The indexes are regenerated and range from

1 to 6.

Data description 30

Index Date Train number Drp Activity Planned time Realized time Delay

1 25-09-2017 7424 Blk K A 08:43:24 08:43:30

2 25-09-2017 7424 Blk K V 08:44:24 08:44:50 26

3 26-09-2017 7424 Blk K A 08:43:24 08:43:30 6

4 26-09-2017 7424 Blk K V 08:44:24 08:46:50 146

5 27-09-2017 7424 Blk K A 08:43:24 08:43:00 -24

6 27-09-2017 7424 Blk K V 08:44:24 08:44:50

Table 6.10: Example of rows in the dataset, step 8

6.3 Dataframe to TrainRideObject matrix

As stated in Section 6.2, it is important for the causal algorithm to have a n×m matrix

as input, with n rows denoting the dates and m columns denoting the daily events. The

resulting Dataframe from Section 6.2 consist of a (n · m) × c matrix, where the rows

denote one event and the columns denote the details of that event (e.g., the planned

time or train number). The goal of the next step is to change the current matrix to a

n×m matrix, where the current c columns are stored in a TrainRideObject (TRO). The

TRO stores all the relevant information of a specific event, such as train series, train

number, drp, platform, delay, planned time, etc.

An example of such n × m matrix can be given by proceeding with Table 6.10 from

the previous section. After applying this to TrainRideObjects, the result would be as

illustrated in Table 6.11. A TrainRideObject is denoted as ”TRO ...”.

Date 7424 Bkl K A 7424 Bkl K V

25-09-2017 TRO 7424 Bkl K A TRO 7424 Bkl K V

26-09-2017 TRO 7424 Bkl K A TRO 7424 Bkl K V

27-09-2017 TRO 7424 Bkl K A TRO 7424 Bkl K V

Table 6.11: Example of the TrainRideObject matrix

To achieve this result, the Dataframe is sorted by date, basic treinnr treinserie, ba-

sic treinnr and basic plan, and then grouped by date. Beforehand, an empty matrix of

m columns and n rows is created. Per date, the rows are filled. Each date contains

the same amount of activities, due to the preprocessing in Section 6.2, so each event is

located at the same index per date. Per date i and event j, the element[i,j] of the empty

matrix is filled with a TrainRideObject. After this step, the n×m matrix is created.

Chapter 7

Finding causal relations

In this section, different types of background knowledge are proposed to incorporate into

the causal discovery method. The first section (7.1) describes the domain knowledge,

which is based on several assumptions. The second section (7.2) describes a hybrid

method, which uses the domain knowledge in combination with a causal learning algo-

rithm.

7.1 Domain knowledge

In this section, we explore how the causal graph can be estimated by only using the

domain knowledge. A benefit of estimating the causal graph using domain knowledge

instead of a causal discovery algorithm, is that this method does not rely on the presence

of historical data. When there is a new timetable, we thus don’t have to wait until there

is enough data to use the causal discovery algorithm to find the graph. Further, some

situations might not have happened in the past, so this is not captured in the data and

thus not included. The domain knowledge is based on several assumptions, which are

described in the following sections.

It is important to define when a train causes a delay on another train. In Figure 7.1,

two trains first drive on separate railways, but later they share a section. The orange

train is scheduled to use the shared section first, but is delayed. As a result, the blue

train has to wait to enter the section and also gets delayed. If we want to determine

which train caused the delay of the blue train, two answers may hold. The first option

is that the first moment that the orange train is delayed is a direct cause of the delay of

the blue train. This is denoted as the edge marked 1 in the figure. To predict the delay

of the blue train, the delay of the first delayed orange train is used as input. This is

31

Finding causal relations 32

called a single step prediction. The other option is that the first time the orange train

is delayed, resulted in the delay of the next orange trains. Only when the blue train

is directly hindered by the orange train, because they need to be at the same railway

section, this orange train is the cause of the delay of the blue train. This is denoted

as the edge marked 2 in the figure, and this is a multi-step prediction, since multiple

predictions need to be made to estimate the delay of the blue train. At the moment of

when the prediction is made, only the delay of the first delayed orange train is known.

The second option, the multi-step prediction, is used within this research. Consequently,

trains that are not at the same location, cannot have an edge between them in the graph,

since they do not have an interaction with each other (yet).

Figure 7.1: Two trains, one causing one other a delay

The domain knowledge consists of two main assumptions that always hold.

1. The train is always depending on its previous self, e.g., the same train at successive

locations have a dependency between them (Same train dependency).

2. If two trains are not within a specified time interval (x) at the same location, we

assume that they cannot influence each other’s delay, since they are geographically or

timewise too far apart from each other.

7.1.1 Definition of ’the same location’

Not all trains are included when using these two previous stated rules, namely the trains

that are within x minutes at the same location are left out. The dependency for these

trains is not determined yet. This section elaborates on the different options for deter-

mining whether two trains can influence each other.

An important decision to make is: what is the definition of ‘the same location’? It

is clear that a train that is at a certain point in time at a location in the south of

the Netherlands will not influence the train that is at that moment in the north of the

Finding causal relations 33

Netherlands. Nonetheless, when do we state that a train is at the same location as

another train such that they can influence each other? In this research, we introduce

five different scopes of the location for which trains can interact with each other. The

following scopes are ordered by how much train relations it captures and the amount

of assumptions that should hold. Although not all scopes may be meaningful, this

enumeration includes the whole spectrum of options.

1. None There is not any type of location for which trains can influence each other. We

only focus on trains that are the same train, but at a different location. This scope

only includes the Same train dependency, and all the remaining train relations are

discarded.

2. Same platform Trains that share the same platform within a station within x min-

utes may influence each other. If a train at this platform is delayed, the next train

must wait until the other train has left. This scope also includes the Same train

dependency assumption.

3. Same section within a drp In the dataset, the sections are divided per drp. If a

train shares a section within x minutes with another train, we state that those

two trains may influence each other. If a train is delayed and uses a section at

a different time, it may cause the other train assigned to that section to wait, as

sections can only be used by one train. This scope also includes the assumptions

of the Same platform scope, since a platform is also a part of a section.

4. Same station Trains within the same station may enable a transfer for passengers.

If the first train of the transfer is delayed, the other train may wait such that the

transfer is still possible. This will only be done if the delay of the second train will

not increase too much. The only method to include these transfer dependencies, is

to state that every train within the same station within x minutes may influence

each other. This scope includes the same assumptions as the Same section within

a drp scope. The same station is a more general scope than the previous scope,

because the sections driven are linked to a certain station. Only if the sections

overlap, we include them as a possible edge. Here, any two trains at the sta-

tion could potentially interact, allowing relationships between trains that enable

transfers.

5. Same drp Every train that is within x minutes at the same drp could influence each

other. This allows for railway interaction between stations and train interaction

related to passenger transfers. This scope includes every previous mentioned scope

and includes every possible remaining train relation.

Finding causal relations 34

7.1.2 Ordering of trains

Another important assumption within this research is that trains do not change their

ordering. In reality this happens, but this means that different graphs need to be created,

since sometimes the ordering of edges will then be different. Combining these graphs is

outside the scope of this research. Therefore, in this research, only one graph is created

and the direction of the edges are based on the planned times of the events specified in

the schedule.

7.2 Hybrid method

The hybrid method combines the domain knowledge with the PC algorithm. In this

method, the term background knowledge refers to the domain knowledge, and it contains

special properties. The benefit of using background knowledge in our causal discovery

algorithm is to enforce that certain edges are included or removed, which consequently

reduces the search space.

7.2.1 Background knowledge

The background knowledge consists of two properties: the forbidden edges and the re-

quired edges. Section 7.1 describes that there are two assumptions that always hold.

These assumptions are included in the background knowledge using the forbidden edges,

required edges and possible edges (which are the edges that are not forbidden nor re-

quired).

Forbidden edges. There are two situations for which edges are forbidden. Firstly,

trains that are at different locations do not cause delays to each other (yet). Secondly,

trains that are at the same location, but are time wise too far apart, also cannot cause

one another a delay. Required edges. There is only one situation for which nodes

are marked as required, namely for the same train between successive stops. Possible

edges. The only edges left are the trains at the same location within a time range that

is not too far apart, as described in Section 7.1.1.

In this method, we define the same location as ”the same drp”. Events that differ in

drp have by definition forbidden edges. The time interval is chosen to be 15 minutes.

Thus, events that are timewise less than 15 minutes apart and are at the same drp are

the so-called possible edges. These edges are not forbidden or required, so the algorithm

must do independence tests to find the dependencies between the edges.

Finding causal relations 35

In Figure 7.2, an example with 5 events consisting of 3 trains is shown. The forbidden

edges are red, the required edges are green, and the gray dotted edges are the possible

edges. The forbidden edges between the trains at station 2 is because the events are

time wise too far apart. How to translate the TrainRideObject matrix to background

knowledge is explained in Appendix C

Figure 7.2: Forbidden, required and possible edges in red, green, and gray respectively.
The same location is defined as ”same drp” and the time interval is not explicitly

specified, but less than 90 minutes.

7.2.2 Algorithm description

After identifying the background knowledge, the causal discovery algorithm is applied.

Initially, the plan was to use a causal discovery algorithm provided by the causal-learn

library. However, these algorithms were too slow when working with a large amount

of variables, so we decided to study the existing functions and modify the algorithm to

improve the computation speed. The main improvements were the adjustment of the

BackgroundKnowledge class and the improvement of the Fast Adjacency Search (FAS)

algorithm.

Appendix B explains the FAS function of the library, including the usage of the back-

ground knowledge. Further, in appendix D, is explained how the BackgroundKnowledge

class is improved, by introducing a faster FastBackgroundKnowledge class. Lastly, in

appendix E is explained what is done to improve the FAS function.

The causal discovery algorithm consists of the following steps: 1) Start with the complete

graph, but exclude the forbidden edges. 2) Conduct a skeleton search on the remaining

Finding causal relations 36

edges by performing independence tests. The independence tests between required edges

are omitted, since these edges are always kept. 3) Orient the edges. In this section, the

steps are elaborated.

7.2.2.1 Start with the complete graph, but exclude the forbidden edges

In this step, we compare each node with the other nodes and check if the two nodes are

forbidden. If this is the case, we don’t do anything and go to the next node. If they

are not forbidden, we mark them as an adjacency by adding them in a dictionary of

adjacencies, in both directions.

7.2.2.2 Perform a skeleton search on the remaining edges

In the second step, we perform independence tests between the current adjacencies of

each node, to remove other non-causal edges. The Missing Value Fisher-z test is used as

independence test with the threshold for statistical significance α = 0.05. The working

of the independence test is further explained in appendix F. The skeleton search iterates

per depth, from 0 to maximally 20, but the function stops earlier if there is no new

depth possible. The depth denotes the length of the conditioning set. At depth 0, the

conditioning set is empty. The benefit of that the complete graph was first pruned with

the forbidden edges, is that the number of adjacencies is reduced significantly. Also, if

an edge between two nodes is marked as required, we don’t perform an independence

test, but directly keep them. Consequently, required edges will never be removed, and

since there is no independence test necessary, the algorithm becomes faster.

7.2.3 Orient the edges

When orienting the edges, there is a big difference between the PC-algorithm and the im-

plemented approach. The PC-algorithm orients its edges by identifying the v-structures

and using other orientation rules. In this specific application, there are timestamped

variables and as stated in section 7.1.2 we assume that the ordering of trains does not

change. We therefore assume that the first scheduled train influences the second sched-

uled train, and not the other way around. This assumption is supported by the definition

of ARI, as described in Section 1.2, which states that ARI always (except for some tun-

nels in The Netherlands) enables the sections according to the planned ordering. So,

when a minor disturbance is present, the ordering of actions will not be changed. Con-

cluding, the first event will influence the second event, but not the other way around,

and the edges can be oriented based on the timestamps of the nodes.

Chapter 8

Learning assignment functions by

implementing Neural Networks

This section provides an overview of the created Neural Networks and which assump-

tions are made. We elaborate on the assumed noise distribution, how the suitable loss

function is calculated and how the different Neural Networks are created and evaluated.

Further, we discuss what the layout of each Neural Network is, including which activa-

tion functions are used and how many hidden layers are included, and, eventually, which

input variables are used.

8.1 Noise distribution

Looking at the data, the noise distribution per dienstregelpunt (drp) and train series

differs. According to an expert at ProRail, this noise resembles a Gamma distribution.

The Gamma distribution differs per drp, train series, and whether the train was already

delayed at its previous event. To correctly include this noise in the model, there should

be two Gamma distributions included per drp and train series: one for a delayed train,

and one for a non-delayed train.

We decided to assume that the noise contains a Laplace distribution, instead of a Gamma

distribution, based on several arguments. 1) The gamma distribution is non-negative,

thus negative noise is not allowed. A gamma loss function for a negative value yields

infinity, which cannot be processed correctly by the learning algorithm of the Neural

Network. Using the Laplace distribution, negative values are allowed. 2) The loss

function of a Gamma distribution could be less easy to interpret than the loss function of

the Laplace distribution. It is clearer what loss to use for a Laplace distribution (Mean

37

Assignment functions 38

Absolute Error (MAE), derivation in Appendix H). 3) Such loss function is easier to

implement than a derived Gamma loss function, which may differ per drp, train series

and initial delay.

The selection of the Laplace distribution instead of another distribution is based on

several factors. The first requirement is that the loss function of the distribution should

be easy to interpret. The second reason is that the Laplace distribution characterized a

double exponential distribution, which looks similar to a (double) Gamma distribution.

Thirdly, this distribution allows for negative values. Lastly, the Laplace distribution is

less vulnerable to outliers, compared to, for example, the normal distribution. The loss

function of a normal distribution is namely the Mean Squared Error (MSE).

8.2 Loss function

A loss function evaluates the performance of a Neural Network by, for example, compar-

ing the predicted outcome to the real outcome. The set of predicted outcomes and the

set of real outcomes each have their own set of values. Maximum Likelihood Estimation

(MLE) finds the distribution that maximizes the probability of generating data that

closely resembles the actual outcomes. The full derivation of the loss function of the

Laplace distribution is described in Appendix H. The resulting loss function is the Mean

Absolute Error (MAE, = 1
m

∑m
i=1 |ŷ(i) − y(i)|), which is included in all created Neural

Networks.

8.3 Approach for constructing and evaluating the Neural

Networks

As stated in Section 8.1, the noise may differ per dienstregelpunt (drp) and train series.

Our approach is to pre-train a Neural Network on the complete train set. Then, the train

set is divided in groups per (drp, train series), referred to as buckets. Per bucket, a Neural

Network is trained by fine-tuning the pre-trained NN. Each fine-tuned Neural Network

initializes the weights according to the weights calculated by the pre-trained Neural

Network. Then, the complete Neural Network is trained with the training set of its own

bucket. Each fine-tuned Neural Network is locally saved, such that it can be retrieved

for testing purposes. All NN’s are Feedforward Neural Networks. A visualization of this

approach is denoted in Figure 8.1

To evaluate the model, the test data is separated into buckets of (drp, train series). For

each bucket, the corresponding Neural Network is retrieved from storage, and evaluated

Assignment functions 39

Figure 8.1: Visualization of the pre-trained and the fine-tuned Neural Networks

with the bucketed data. A python DataFrame is generated that includes, among other

things, the predictions and the actual values. Combining the DataFrames of all fine-

tuned Neural Networks, the error metrics are calculated, and the model can be evaluated.

8.4 Layout of the Neural Networks

The pre-trained NN and a fine-tuned NN consist of the same structure. It consists

of an input layer, a dense hidden layer with 256 neurons and an output layer of 1,

which denotes the delay in seconds (Figure 8.2). The number of neurons in the hidden

layer is determined by testing and evaluating a subset of possibilities. The activation

function in the hidden layer is ReLu and the activation function in the output layer is

PReLU (Parametric ReLu) (Figure 8.3). These functions are chosen by performing a

greedy search, by testing all possible combinations of activation functions. An important

aspect of a PReLu activation function is that the output can be negative as well. In our

dataset, negative delays also occur.

Figure 8.2: NN layout Figure 8.3: Left: ReLu, Right: PReLu

Assignment functions 40

8.5 Input variables

The input variables consist of 21 input features and can be divided in 3 categories: 1)

information that is extracted from the found causal graph, 2) time-table-related variables

and 3) infrastructure- or train material related variables. The exact method how the

input variables are extracted from the causal graph is described in Appendix G.

1) Input features extracted from the found causal graph:

prev event This denotes the delay of the same train at the previous event

prev prev event This denotes the delay of the same train at the 2nd previous

event

dep0 platform The delay of the train that was before this train at the same

platform. If this train is not included, this delay is default -50

dep1 The delay of a possible interacting train that is not at the same platform.

The trains that are included in dep1 to dep3 are ordered by their planned time:

the first train is denoted in dep1, the second train in dep 2 and the third train is in

dep 3. If there is no possible interacting train to include, the value of the column

is by default -50.

dep2 See explanation at dep1.

dep3 1 See explanation at dep1.

time interval0 Time difference between the planned time of this train and the

train at dep0 platform.

time interval1 Time difference between the planned time of this train and the

train at dep1.

time interval2 Time difference between the planned time of this train and the

train at dep2.

time interval3 Time difference between the planned time of this train and the

train at dep3.

1The algorithm dynamically chooses the number of dependencies for a given dataset, based on the
maximal number of non-trivial parents that the nodes in the causal graph contains. In our research, 4
non-trivial parents (including dep0 platform) was the max

Assignment functions 41

2) Timetable-related variables:

buffer This value is only filled for the events with a departing activity (K V or

V), that denotes the difference of planned time in seconds between arrival and

departing at that station.

travel time This denotes difference in time between two consecutive events of the

same train. It is calculated by: planned time — the planned time of the previous

event.

activity This variable denotes a one-hot encoding of the activity of the train (V,

A, K V, K A, and D).

minimal dwell time For some stations, there is a minimal time that a train

should stay at the station. This minimal dwell time also differs per train type.

slack Slack is the planned travel time minus the strictly necessary travel time.

The strictly necessary travel time is a given column in the data set.

day of the week This variable is a one-hot encoding that denotes one of the 5

days of the workweek.

peakhour This variable is a one-hot-encoding that denotes which type of time

the activity occurs. There are 3 options: peak hour in the morning, non-peak hour

and peak hour in the evening.

3) Infrastructure- or train material related variables:

travel distance This denotes the travel distance between two drp in hectometers

speed This denotes the allowed speed on this section

type station This denotes a one-hot encoding regarding the types of stations.

The types of stations are specified in an external file and extracted into python.

traintype This variable denotes which type of train it is (Sprinter, Intercity, LM

(empty train), HSN (High speed train) or Thalys).

Chapter 9

Results

In this section, the results of the created model are discussed. The first section provides

an evaluation of the created causal graph. The second section provides a description

of the created Neural Networks and the train-, test-, and validation data. In the third

section, our model is evaluated on the complete test set by looking at the results per

station. In Section 9.4, the model is evaluated by only focussing on a test set for which

there is known that there was an interaction. In addition, Section 9.5 compares our

model to another model to estimate the negative effects are when our model misses

(partial) information about the possible non-trivial parents. Then, in Section 9.6, the

benefit of fine-tuning the model is described. Subsequently, in Section 9.7, the results of

our model are compared to the results of an existing model. Lastly, Section 9.8 provides

a conclusion based on the results.

This chapter focuses on the results of the Rotterdam-Dordrecht (Rtd-Ddr) line. To limit

the number of pages in the Result section, the results for the Amsterdam-Utrecht and

the Utrecht-Eindhoven line are denoted in Appendix I and J.

9.1 Evaluation of the causal graph

The hybrid algorithm described in Section 7.2 yields a causal graph as a result. When

applying this algorithm to the dataset of the Rtd-Ddr line, a large graph is constructed.

A part of the graph is illustrated in Figure 9.1. The graph resembles a large tree, where

delays could propagate downwards. The majority of edges are present between the same

train at consecutive events. In some cases, there is a relation identified between different

trains at the same drp.

42

Results 43

Figure 9.1: Visualization of the partial causal graph of the Rotterdam-Dordrecht line.
The four blue circled edges are further analyzed in this research.

The four edges marked with a blue circle in this graph are further analyzed. The

correlation between the same train at two consecutive drps are shown in Figures 9.2 and

9.3. In cases where there is a buffer present between two consecutive events, namely

arriving and departing, a distinct pattern can be observed. First, there is a short segment

with no evident correlation, then followed by a linear correlation. This is shown in Figure

9.3, where the linearity starts at around 180 seconds (3 minutes) This is also the size of

the buffer.

Results 44

Further, the relations between different trains are analyzed. In Figure 9.4, both trains

have to arrive at or pass through the same platform. After at least 435 seconds (more

than 7 minutes), the delay of train 2439 is not in proportion to the delay of train 5139 as

anticipated. The reason for this is that the trains most likely were switched in ordering.

This is not defined in the TAD (Train Handling Document), but it is probable that a

train dispatcher intervened.

Figure 9.5 depicts two trains that share multiple sections at drp Grbr (Grote Brug).

The correlation is less visible than the other three figures, since the 2432 hindered the

5132 six times that resulted in a small delay.

Figure 9.2: Correlation between
the same train 5134 between drps

Kfhaz and Brd

Figure 9.3: Correlation between
the same train 2241 between at
the same station Rtd, arriving and
departing. These events have a
buffer of 3 minutes, which is no-

ticeable in the graph

Figure 9.4: Correlation between
two trains that use the same plat-
form. After more than 435 sec-
onds (around 7 minutes) the or-
dering of trains is switched, such
that train 2439 will not be delayed

by train 5139

Figure 9.5: These trains do
not share a platform, but do
pass through the same station and
share multiple sections. The cor-
relation is less visible than the
other three figures, since the 2432
hindered the 5132 six times that

resulted in a small delay

Results 45

9.2 Number of Neural Networks and number of train-,

test-, and validation data

The pre-trained model for the Rtd-Ddr section is trained with 324,131 training samples,

64,826 validation samples and tested with 81,033 samples. The fine-tuned model consists

of 252 Neural Networks. The maximum number of samples to train the NN per bucket is

4459 samples and the minimum number of samples is 16. The mean number of samples

per bucket is 1286, and the median number is 868.

9.3 Model evaluation on the total test set and per station

The constructed model is evaluated using two metrics, the Mean Absolute Error (MAE)

and the Root Mean Squared Error (RMSE). The equations are as follows:

MAE =
1

N

N∑
i=1

|ŷ − y|

RMSE =

√√√√ 1

N

N∑
i=1

(ŷ − y)2

For the total test set, the MAE is 9.12 seconds and the RMSE is 32.44 seconds. The

average prediction error in terms of MAE and RMSE per drp are shown in Figures 9.6

and 9.7. The largest MAEs, observed at Rtd and Ddr, can be explained by the fact

that both drps are large stations consisting of several platforms, which allows for more

interaction. The spike of the RMSE value at drp Rtst is due to the fact that there are

2 large estimation errors (2157 and 1266 seconds too low) which influences the results

largely. Removing those two predictions, the MAE and RMSE of Rtst drop to 5.77 and

21.66 respectively.

9.4 Testing our model with more specific test sets

In this section, the results are further analyzed by focussing on the events for which it

is known that a train interaction took place. When ProRail automatically registered

a train interaction, the column `cause’ is filled with the corresponding train number.

A downside to this column is that if a train only hindered another train for even one

second, this train will be included in the column. Such interactions are too small to be

noticed by our algorithm. The dataset is therefore further reduced by removing rows

Results 46

Figure 9.6: MAE per drp Figure 9.7: RMSE per drp

where our algorithm did not observe a possible interaction of non-trivial parents (i.e.:

dep0 to dep3 are empty). This subset is called: subset of rows including non-trivial

parents and where ProRail found an interaction.

In order to test the effect of the non-trivial parents included in our model, our model is

tested against another model. Our model is trained and tested with data containing the

columns about non-trivial parents. The other model is trained and tested on the same

sets, but the columns about the non-trivial parents are not present. In this chapter, we

will refer to the model with the columns that includes the non-trivial parents as `our

model ’ and the other model without the columns regarding non-trivial parents as the

`baseline model ’. The results are denoted in Table 9.1.

Test-set MAE RMSE
of test-
samples

Our model: Total test set 9.12 32.44 81,033

Baseline model: Total test 9.06 32.45 81,033

Our model: subset of rows including
where ProRail found an interaction

44.47 74.24 3201

Baseline model: subset of rows including
where ProRail found an interaction

44.94 75.53 3201

Our model: subset of rows including
non-trivial parents

17.95 57.67 2294

Baseline model: subset of rows including
non-trivial parents

18.06 59.06 2294

Our model: subset of rows including
non-trivial parents and where ProRail

found an interaction
54.83 80.83 215

Baseline model: subset of rows including
non-trivial parents and where ProRail

found an interaction
69.33 100.40 215

Table 9.1: Results of the Rtd-Ddr line from our model and the baseline model

Results 47

9.5 Classifying the predictions of our model by means of

the baseline model

The goal of this section is to estimate what the negative effects are when our model

misses (partial) information about the possible non-trivial parents. The last two rows

of Table 9.1, namely, only shows the best subset to test on: when our model predicts

an interaction and ProRail confirmed these interactions. These are the so called True-

Positive cases. The other cases (True-Negative, False-Positive, and False-Negative) are

evaluated in this section according to the following approach.

The two models, our model and the baseline model, described in Section 9.4 are tested on

the complete test set. The predictions of our model are compared with the predictions

of the baseline model, and the samples where the prediction differs more than 15 seconds

are kept to be analyzed further. We group the samples by if there was a non-trivial parent

found in the causal graph for that sample, and which model has a better prediction on

that sample. In total, we get 4 groups: our model performed best and there was a

non-trivial parent found in the graph, our model performed best and there was not a

non-trivial parent found in the graph, the baseline model performed best and there was a

non-trivial parent found in the graph, and the baseline model performed best and there

was not a non-trivial parent found in the graph. Each group denotes a classification

class, as shown in Table 9.2. Each cell is elaborated in the list provided below the table.

Neural Network that
performed best

subset where
non-trivial parents
were found in the

causal graph

subset where
non-trivial parents
were not found in
the causal graph

Our model performed
best

True Positive True Negative

The baseline model
performed best

False Positive False Negative

Table 9.2: Denoting per situation to which classification class it belongs to

True Positive These samples were better predicted by our model than by the baseline

model. Including the known non-trivial parents improved the prediction of our

model, thus the information about the non-trivial parents was correct

True Negative These samples were better predicted by our model than by the baseline

model. Including the information that there are no non-trivial parents present was

correct, since it benefitted the predictions for our model. Namely, this information

states that there are no non-trivial parents, which means that our model can

anticipate on this.

Results 48

False Positive These samples were better predicted by the baseline model than by

our model. Our model received information about that there would be a non-

trivial parent, but this worsened the predictions, since the baseline model predicted

better. An explanation would be that the assignment functions in our model are

learned incorrectly, because there were too little number of samples, and thus the

model is unable to process this information correctly. (Therefore, this would not be

per definition a False Positive, but for consistency, the cell is named False Positive)

False Negative These samples were better predicted by the baseline model than by

our model. Our model received information about that there are no non-trivial

parents, but this worsened the predictions and the baseline model predicted better.

An explanation would be that there are non-trivial parents present in reality, but

were missed when creating the causal graph.

Our model and the baseline model were tested accordingly with the dataset of the

Rotterdam-Dordrecht line. There are in total 456 samples where our model and the

baseline model differ in their predictions by at least 15 seconds. In 236/456 cases (52%),

our model made a better prediction than the baseline model. From those 236 cases, 105

cases (44%) included information about a non-trivial parents. The other 131 cases did

not have non-trivial parents. The results are denoted in Table 9.3.

Neural Network that
performed best

subset where
non-trivial parents
were found in the

causal graph

subset where
non-trivial parents
were not found in
the causal graph

Total

Our model performed
best

105 131 236

The baseline model
performed best

90 130 220

Total 195 261 456

Table 9.3: Comparing our model with the baseline model, in terms of how often each
model performed better.

To quantify what the (mean) differences in estimations are between per model per cell,

Table 9.4 is created, where the differences in terms of MAE are denoted. In the top

left cell, ”68.42 vs 112.03” means that our model had a score of 68.42 seconds and the

baseline model had a score of 112.03 seconds. The mean difference between the baseline

model and our model for the top left cell was 43.61 seconds.

Comparing the results in the column `subset where non-trivial parents were found in

the causal graph’, the mean difference in error per row is approximately 43 seconds

(43.61 and 42.86). This means that including non-trivial parents in the Neural Network

is as much benefitting as worsening the predictions, so it is important to identify the

Results 49

Neural Network

subset where
non-trivial parents
were found in the

causal graph

subset where
non-trivial parents
were not found in
the causal graph

Our model performed
best

68.42 vs 112.03
(decrease of 43.61)

37.05 vs 59.68
(decrease of 22.63)

The baseline model
performed best

83.11 vs 40.25
(increase of 42.86)

73.42 vs 47.49
(increase of 25.93)

Table 9.4: Comparing our model and the baseline model in terms of MAE in seconds.
The scores are denoted as follows: MAE score of our model vs MAE score of the baseline
model. The difference is determined by: MAE score of our model – MAE score of the

baseline model.

non-trivial parents well. Comparing the results in the column `subset where non-trivial

parents were not found in the causal graph’, both mean differences lie around 24.5

seconds. This means that the advantage of identifying the absence of non-trivial parents

correctly is equivalent to the disadvantage when identifying this falsely.

9.6 Impact of the fine-tuned model

As described in Section 8.3, a fine-tuned model is created by grouping the different sets of

(drp, train series) and per group, a specific Neural Network is trained further, containing

the pre-trained Neural Network as the initial weights. This section researches the effect

of the fine-tuned model, by comparing it to the pre-trained model in terms of MAE and

RMSE. As shown in Table 9.5, the fine-tuned model outperforms the pre-trained model.

The difference in error gets bigger when focussing more on the test set that contains

a larger ratio of interacting trains. This means that fine-tuning the Neural Networks

improves the predictions for trains with interactions.

Model and subset MAE RMSE Number of test-samples

Pre-trained tested on total dataset 10.30 33.75 81,033

Fine-tuned tested on total dataset 9.12 32.44 81,033

Pre-trained tested with subset ProRails
interaction registration

49.20 78.78 3201

Fine-tuned tested with subset ProRails
interaction registration

44.47 74.24 3201

Pre-trained tested with subset of rows
including non-trivial parents and where

ProRail found an interaction
69.16 96.99 215

Fine-tuned tested with subset of rows
including non-trivial parents and where

ProRail found an interaction
54.83 80.83 215

Table 9.5: Comparing the results of the pre-trained model to the results of the fine-
tuned model, tested with three different test tests

Results 50

9.7 Comparing the result to the paper of Wen, Mou, et al.

(2020)

Wen, Mou, et al. (2020) used a LSTM prediction model to predict the arrival delays on

the section Rtd-Ddr on the Dutch railway line. They also used the dataset of historical

data ranging from September 4, 2017, to December 8, 2017, excluding weekends. There

are three main differences between their research and our research: 1) Their research

only uses the intermediate stations, instead of all drps. 2) They only predicted the

delay of arriving trains, and not departing trains or trains passing through. 3) In their

paper it is not defined how the data is preprocessed, but according to their plotted

delay distribution (Figure 9.8), the delays lie between -1000 and 2200 seconds. This is

a different delay distribution than our generated test set (Figure 9.9).

Figure 9.8: Distribution of the delay data used in the paper of Wen, Mou, et al.
(2020)

To compare their method to ours in this section, we have adjusted our dataset and

method to theirs. The following three modifications are made to our dataset. 1) The

dataset is altered by only keeping the same stations as mentioned in the paper. 2) For

our prediction, the information about passage or departure is kept (this was also done

in the paper), but in our evaluation, only the arrival predictions are used. 3) We trained

the model with the outliers, but in our evaluation, we only evaluate the predictions that

have a true value ranging between [-1000, 2200]. The distribution used in our prediction

is shown in Figure 9.9.

Comparing the results regarding MAE of the model (Figure 9.10), our model predicts 4 of

the 7 cases better than the paper, with a difference of at least 3.85 seconds. In the other

cases, the difference in error between the predictions per drp is maximally 0.97 seconds.

Results 51

Figure 9.9: Distribution of the delay data used in our research

The exact errors regarding the RMSE in the paper are not shown [Wen, Mou, et al.

2020]. However, Mou et al. (2019) included the same results in their paper by showing

a graph without the exact numbers. The numbers are approximated and included in

Figure 9.11. Also in this case, 4 out of 7 cases are better predicted by our model than

the model from the paper; However, it is a small difference. Comparing the 3 results

that have fallen behind, those differences are bigger. Given that the distributions are not

exactly the same, we cannot state that one method outperforms the other. However, it

can be stated that the results are quite similar to each other, indicating that our model

performs comparably to the other model.

Figure 9.10: MAE: Comparing
our results (blue) with the results
described in the paper of Wen,

Mou, et al. (2020) (orange)

Figure 9.11: RMSE: Comparing
our results (blue) with the results
described in the paper of Mou et

al. (2019) (orange)

Results 52

9.8 Conclusion

The outcomes of this research show that finding and implementing causal relations

between interacting trains in a prediction model improves the delay predictions. When

only looking at the cases where there was in reality an interaction present and this

was also identified by the causal discovery algorithm, the average prediction error is

significantly lower than the model that is not trained with possible train interactions.

In these cases, the prediction error on the next stop is improved for the different datasets

Rtd-Ddr, Asd-Ut, and Ut-Ehv with 14.5, 6.81, and 18.44 seconds respectively. If we

extend this method to predict the delays across multiple stops, the improvement in

error would be increasing. Starting at the first station and predicting the delay at

the last station, the improvement in errors would be as followed: from Rotterdam to

Dordrecht (12 timetabling points), the difference in error would be 14.5 ·12 = 3 minutes.

For Amsterdam - Utrecht (18 timetabling points): 6.82 ·18 = 2 minutes, and for Utrecht

- Eindhoven (23 timetabling points): 18.44 · 23 = 7 minutes.

However, sometimes including possible train interaction could worsen the predictions

if the assignment functions are not accurately learned. Insufficient number of samples

containing train interactions to train on could lead to this situation. Also, when possi-

ble train interactions are mistakenly not found by our causal discovery algorithm, our

prediction is worse than the model that is not trained with possible train interactions.

Additionally, a comparison is made between the model trained with a single neural

network and the model consisting of several fine-tuned neural networks. It is observed

that fine-tuning the model is beneficial for the delay predictions. Lastly, the results

obtained from our model are compared to those of an existing model, demonstrating a

similar performance.

Chapter 10

Discussion and Conclusion

The goal of this thesis was to detect causal relationships between interacting trains and

include this information in our prediction model. The research question was:

How to derive a causal graph from train network data in the presence of

background knowledge and learn the assignment functions?

To answer this main research question, 4 sub questions were created. In the following

paragraphs, the most important answers to these questions are provided. Further, the

future work is discussed and lastly, the main research question is answered.

Subquestions:

• What does the train network data look like?

• Which methods can be used to create a SCM graph for the train network data?

• How can the assignment functions be learned using Neural Networks?

• How can the created SCM’s be evaluated?

The most important aspect of the train network data is that not every day the same

events occur. It is therefore important to delete and insert certain events such that each

day consists of the same events. Further, according to an expert at ProRail, the noise

distribution in our data would be a Gamma distribution, but in our research this is

approximated to a Laplace distribution.

To create a causal graph, the causal-learn library was used to implement the causal

algorithm. The PC-algorithm in combination with background knowledge is applied in

53

https://causal-learn.readthedocs.io/en/latest/index.html

Discussion and Conclusion 54

our research. The background knowledge was added to enforce the inclusion or exclusion

of edges and to prune the search space. The implementation of the library was very slow,

so the algorithm is modified such that the computation time dropped significantly.

The assignment functions are learned by first training a pre-trained Neural Network

on the complete training set. Then, the training set is grouped into buckets of (drp, train

serie), and per bucket, the pre-trained Neural Network is further trained, resulting in a

set of fine-tuned Neural Networks. Conclusively, our model consists of a set of several

fine-tuned Neural Networks.

The created SCM is evaluated on two aspects, the causal graph and the model

consisting of the fine-tuned Neural Network. The created causal graph is evaluated by

selectively examining specific edges to find which kind of relation it describes (e.g., are

they the same train, do they share a section or is it a transfer). Also, the delays of the

nodes of some edges are plotted against each other. Secondly, the complete model is

evaluated by comparing the model to a baseline model and an existing model in terms

of MAE and RMSE.

As indicated in Section 9.8, our causal discovery algorithm may not identify all train in-

teractions, or there may be inaccuracies in the learned assignment functions. Sometimes

a train interaction has only occurred once in the historical dataset, which would not be

significant when finding causal relations. Further, learning the correct assignment func-

tions based on a very small amount of train interactions is not possible. However, when

the possible train interactions are found and the assignment functions are calculated

correctly, our model improves significantly.

Furthermore, our prediction model does not include freight trains or machinist transfers.

As a result, our model has to work with a certain level of noise, which may introduce

inaccuracies in some predictions.

10.1 Future work

This section is split up in 3 parts; The first section elaborates on future work regarding

finding the causal graph, consisting of four items. The second section elaborates on

future work regarding finding the assignment functions, consisting of two items. The

last section consists of future work that are more general, consisting of four items.

10.1.1 Future work regarding finding the causal graph

In this research, the constraint based PC-algorithm is applied. It would also be interest-

ing to apply a score based algorithm to extract the causal graph, and research what the

Discussion and Conclusion 55

difference in result would be. An approach for the Greedy Equivalent Score would be to

skip the forward stage and start with the backward stage, where a initial graph skele-

ton is already created using background knowledge. This skeleton would then already

have the forbidden edges pruned. When pruning the initial graph further, the included

background knowledge can prevent that required edges will be removed. One difficulty

to this algorithm would be to find a suitable score function, since our noise differs per

drp, train series and if the train was initially delayed.

Further, the Fast Adjacency Search step of the PC algorithm contains a threshold α

for the significance level of the independence tests. In our research, this threshold is

set to α = 0.05. Since our dataset consists of a limited number of train interactions,

this threshold might be too low to find the interactions that occurred only a few times.

A possible solution could be to decrease this α-value. The benefit of this is that more

correct relations that did not occur many times in our dataset would be captured.

Moreover, the causal graph is evaluated by electively examining specific edges and check-

ing if these were logical. For future work, the causal graph could be evaluated by using

an evaluation tool for the causal graph.

Lastly, we made the assumption that the ordering of trains does not change. We assume

that the ordering of trains is according to the predefined schedule. In reality, changes in

ordering of trains do occur. In a further research, it would be interesting to investigate

how the change of relations between trains can be included in the model.

10.1.2 Future work regarding finding assignment functions

To find the suitable loss function, we made the assumption that the noise distribution

of the delay variables would be Laplace. In reality, it is a Gamma distribution. In a

further research, we would recommend finding a suitable loss function(s) for a Gamma

distribution. Since the Gamma distribution differs per train series, drp and if they are

delayed, it is possible that multiple loss functions need to be created.

Further, the input for the Neural Network consists of, among other things, the included

non-trivial parents (dep0 to dep3). The column dep0 is assigned when the other in-

teracting train is at the same platform. The other dep1 to dep3 are ordered by the

planned times of the interacting trains. The disadvantage is as follows: the buckets to

train the NN on are grouped per train serie, which means that it combines several train

numbers and their non-trivial parents. One train number may contain another train

series as non-trivial parent than another train number in that bucket. An example is

shown in Figure 10.1. Here, there are two trains that both only have one non-trivial

Discussion and Conclusion 56

parent, each of another train serie. In the current model, both delays are stored in the

same column. In reality, the assignment functions between these two relations would be

different, and our model has to approximate the function to satisfy both relations. A

improvement would be to not divide the columns in dep1-dep3, but on the train series,

as described in Figure 10.2. Here, within each column, the assignment functions would

be approximately the same.

Figure 10.1: Current method for including dependencies. If there is only one non-
trivial parent that is not on the same platform, it will automatically be placed in dep1

Figure 10.2: Proposed method for including non-trivial parents. Each non-trivial
parent is divided in the column of their own train series

10.1.3 Future work in general

This research focused on predicting the delay on the next drp/timetabling point of a

train. However, our research goal is the exploration of causal analysis applied to delay

data, which could be a precursor to a decision support system. Such decision support

system for the train dispatchers must be able to predict the delays several stops ahead.

It would be interesting to perform research on implementing a system that extends our

model such that it would be able to predict ahead of several timetabling points. Using

this system, it is also possible to assess the performance of our model in predicting

several future stops.

Another goal of the decision support system is to provide suggestions on when and how

to intervene between trains. Additionally, not only a decision support system makes

such decisions, we also should predict which decisions a train dispatcher would make.

When knowing their decisions, the decision support system could anticipate on this. For

future work, one could research how to use the learned SCM to make decisions regarding

intervening between trains.

Another potential area of future work is related to the expansion of the prediction

model. Our research focussed on finding train interaction to include in our model. This

left out elements such as personnel and freight trains. For a future research, it could be

Bibliography 57

researched how to include this information as well, to create a more accurate prediction

system.

Also, our research is based on historical data. Only the events that occurred within the

given dataset are captured. However, not all events that could happen would be included

in our model and, thus, other train interactions could be missed. Also, when a train

interaction is captured by our causal discovery model, there might be an insufficient

number of events to correctly learn the assignment functions from. For our exploration

of causal analysis applied to delay data, it would be interesting to have included more

train interaction in our dataset, since this is not a large percentage of our historical data.

A solution could be to use a simulation program of ProRail to simulate situations where

there are disturbances, such that our dataset contains more situations where there are

train interactions.

10.2 Concluding remark

The main research question was How to derive a causal graph from train network data in

the presence of background knowledge and learn the assignment functions?. To achieve

this result, the research was split up in two parts: finding the causal graph and learn-

ing the assignment functions. To find the causal graph, a hybrid algorithm is applied

that combines the created background knowledge with the PC-algorithm. To learn the

assignment functions, multiple Neural Networks are trained and tested. Our model is

tested against a version that does not take possible train interactions into account (the

baseline model) and against an existing method.

Comparing the results, it can be concluded that conducting causal analysis on delay

data shows promise for further research. The method to include causal relations between

trains could be incorporated by ProRail as an extension to a delay prediction method.

However, as stated in the previous section, several enhancements are required to make

this approach more suitable for delay prediction.

Bibliography

Causal-learn (2022a). BackgroundKnowledge.py. url: https://github.com/py-why/

causal-learn/blob/0.1.3.0/causallearn/utils/PCUtils/BackgroundKnowledge.

py. (tag: 0.1.3.0).

– (2022b). FCI.py. url: https://github.com/py-why/causal-learn/blob/0.1.3.

0/causallearn/search/ConstraintBased/FCI.py. (tag: 0.1.3.0).

– (2022c). PC.py. url: https://github.com/py-why/causal-learn/blob/0.1.3.0/

causallearn/search/ConstraintBased/PC.py. (tag: 0.1.3.0).

Chickering, David Maxwell (2002). “Optimal structure identification with greedy search”.

In: Journal of machine learning research 3.Nov, pp. 507–554.

CLeaR (2022). Causal learn library, cit.py, line 167. url: https : / / github . com /

cmu- phil/causal- learn/blob/5eaf0f606476780ffef4dd56e2a8a7741853bd1b/

causallearn/utils/cit.py#L167. (accessed: 26-01-2023).

Corman, Francesco and Pavle Kecman (2018). “Stochastic prediction of train delays in

real-time using Bayesian networks”. In: Transportation Research Part C: Emerging

Technologies 95, pp. 599–615.

Dekker, Mark M et al. (2021). “A next step in disruption management: Combining

operations research and complexity science”. In: Public Transport, pp. 1–22.

Glen, Stephanie (n.d.). Fisher Z-transformation. url: https://www.statisticshowto.

com/fisher-z/. (accessed: 26-04-2023).

Glymour, Clark, Kun Zhang, and Peter Spirtes (2019). “Review of causal discovery

methods based on graphical models”. In: Frontiers in genetics 10, p. 524.

Huang, Biwei, Kun Zhang, et al. (2018). “Generalized score functions for causal discov-

ery”. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge

discovery & data mining, pp. 1551–1560.

Huang, Ping, Javad Lessan, et al. (2020). “A Bayesian network model to predict the

effects of interruptions on train operations”. In: Transportation Research Part C:

Emerging Technologies 114, pp. 338–358.

Huang, Ping, Thomas Spanninger, and Francesco Corman (2022). “Enhancing the un-

derstanding of train delays with delay evolution pattern discovery: A clustering and

58

https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/utils/PCUtils/BackgroundKnowledge.py
https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/utils/PCUtils/BackgroundKnowledge.py
https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/utils/PCUtils/BackgroundKnowledge.py
https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/search/ConstraintBased/FCI.py
https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/search/ConstraintBased/FCI.py
https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/search/ConstraintBased/PC.py
https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/search/ConstraintBased/PC.py
https://github.com/cmu-phil/causal-learn/blob/5eaf0f606476780ffef4dd56e2a8a7741853bd1b/causallearn/utils/cit.py#L167
https://github.com/cmu-phil/causal-learn/blob/5eaf0f606476780ffef4dd56e2a8a7741853bd1b/causallearn/utils/cit.py#L167
https://github.com/cmu-phil/causal-learn/blob/5eaf0f606476780ffef4dd56e2a8a7741853bd1b/causallearn/utils/cit.py#L167
https://www.statisticshowto.com/fisher-z/
https://www.statisticshowto.com/fisher-z/

Bibliography 59

Bayesian network approach”. In: IEEE Transactions on Intelligent Transportation

Systems 23.9, pp. 15367–15381.

Huang, Ping, Chao Wen, Liping Fu, Javad Lessan, et al. (2020). “Modeling train opera-

tion as sequences: A study of delay prediction with operation and weather data”. In:

Transportation research part E: logistics and transportation review 141, p. 102022.

Huang, Ping, Chao Wen, Liping Fu, Qiyuan Peng, et al. (2020). “A deep learning ap-

proach for multi-attribute data: A study of train delay prediction in railway systems”.

In: Information Sciences 516, pp. 234–253.

Koller, Daphne and Nir Friedman (2009). Probabilistic graphical models: principles and

techniques. MIT press.

Lessan, Javad, Liping Fu, and Chao Wen (2019). “A hybrid Bayesian network model for

predicting delays in train operations”. In: Computers & Industrial Engineering 127,

pp. 1214–1222.

Li, Dewei, Winnie Daamen, and Rob MP Goverde (2016). “Estimation of train dwell

time at short stops based on track occupation event data: A study at a Dutch railway

station”. In: Journal of Advanced Transportation 50.5, pp. 877–896.

Li, Dewei, Rob MP Goverde, et al. (2014). “Train dwell time distributions at short

stop stations”. In: 17th International IEEE Conference on Intelligent Transportation

Systems (ITSC). IEEE, pp. 2410–2415.

Li, Zhongcan, Ping Huang, et al. (2022). “Prediction of train arrival delays considering

route conflicts at multi-line stations”. In: Transportation Research Part C: Emerging

Technologies 138, p. 103606.

Luo, Jie, Ping Huang, and Qiyuan Peng (2022). “A multi-output deep learning model

based on Bayesian optimization for sequential train delays prediction”. In: Interna-

tional Journal of Rail Transportation, pp. 1–27.

Meek, Christopher (2013). “Causal inference and causal explanation with background

knowledge”. In: arXiv preprint arXiv:1302.4972.

Mou, Weiwei, Zhaolan Cheng, and Chao Wen (2019). “Predictive model of train delays in

a railway system”. In: RailNorrköping 2019. 8th International Conference on Railway

Operations Modelling and Analysis (ICROMA), Norrköping, Sweden, June 17th–20th,

2019. 069. Linköping University Electronic Press, pp. 913–929.

Movares and Prorail (2022). “Telefoonnummers van Verkeersleidinggebieden in Neder-

land”. In: (version: 9.2 Vervoerders).

Murali, Pavankumar et al. (2010). “A delay estimation technique for single and double-

track railroads”. In: Transportation Research Part E: Logistics and Transportation

Review 46.4, pp. 483–495.

Nandy, Preetam, Alain Hauser, and Marloes H Maathuis (2018). “High-dimensional

consistency in score-based and hybrid structure learning”. In: The Annals of Statistics

46.6A, pp. 3151–3183.

Bibliography 60

Nielsen, Lars Kjær, Leo Kroon, and Gábor Maróti (2012). “A rolling horizon approach

for disruption management of railway rolling stock”. In: European Journal of Opera-

tional Research 220.2, pp. 496–509.

NOS (2022). Weer minder treinen vanwege personeelstekort bij verkeersleiding ProRail.

url: https : / / nos . nl / artikel / 2416046 - weer - minder - treinen - vanwege -

personeelstekort-bij-verkeersleiding-prorail. (accessed: 01-02-2023).

Ogarrio, Juan Miguel, Peter Spirtes, and Joe Ramsey (2016). “A hybrid causal search

algorithm for latent variable models”. In: Conference on probabilistic graphical models.

PMLR, pp. 368–379.

Oneto, Luca et al. (2018). “Train delay prediction systems: a big data analytics perspec-

tive”. In: Big data research 11, pp. 54–64.

Pearl, J., M. Glymour, and N.P. Jewell (2016). Causal Inference in Statistics: A Primer.

Wiley. isbn: 9781119186847.

Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf (2017). Elements of causal

inference: foundations and learning algorithms. The MIT Press.

ProLeren (n.d.[a]). E-learning ARI en rijwegen instellen. url: https://proleren.

prorail.nl/mod/scorm/view.php?id=1118. (accessed: 31-01-2023).

– (n.d.[b]). Goederen voor VM. url: https://proleren.prorail.nl/mod/scorm/

view.php?id=8964. (accessed: 02-03-2023).

– (n.d.[c]). Trein – gerelateerde afhandelingsstrategieën. url: https : / / prorailbv .

sharepoint.com/teams/T2017_0030/Processen/TAD.aspx. (accessed: 31-01-2023).

ProRail (2018). Preciezer plannen met PINT. url: https://prorailbv.sharepoint.

com/sites/focusonline/SitePages/Preciezer-plannen-met-PINT.aspx. (ac-

cessed: 12-05-2023).

– (2021a). Kerncijfers. url: https://www.jaarverslagprorail.nl/jaarverslag-

2021/kerncijfers/. (accessed: 31-01-2023).

– (2021b). Organisatie en activiteiten. url: https://www.jaarverslagprorail.nl/

jaarverslag- 2021/profiel/organisatie- en- activiteiten. (accessed: 31-01-

2023).

– (2021c). Verkeersleidingsposten. url: https://prorailbv.sharepoint.com/sites/

vestigingen/SitePages/Verkeersleidingsposten.aspx. (accessed: 31-01-2023).

– (n.d.[a]). Over Ons. url: https://www.prorail.nl/over-ons. (accessed: 31-01-

2023).

– (n.d.[b]). Rijwegen - basisinformatie: plan(regel)opbouw. url: https://prorailbv.

sharepoint.com/sites/Achtergrondinfo-Treindienstleiders/SitePages/Rijwegen%

20-%20basisinformatie%20-%20plan(regel)opbouw.aspx. (accessed: 31-01-2023).

Raghu, Vineet K et al. (2018). “Comparison of strategies for scalable causal discovery

of latent variable models from mixed data”. In: International journal of data science

and analytics 6, pp. 33–45.

https://nos.nl/artikel/2416046-weer-minder-treinen-vanwege-personeelstekort-bij-verkeersleiding-prorail
https://nos.nl/artikel/2416046-weer-minder-treinen-vanwege-personeelstekort-bij-verkeersleiding-prorail
https://proleren.prorail.nl/mod/scorm/view.php?id=1118
https://proleren.prorail.nl/mod/scorm/view.php?id=1118
https://proleren.prorail.nl/mod/scorm/view.php?id=8964
https://proleren.prorail.nl/mod/scorm/view.php?id=8964
https://prorailbv.sharepoint.com/teams/T2017_0030/Processen/TAD.aspx
https://prorailbv.sharepoint.com/teams/T2017_0030/Processen/TAD.aspx
https://prorailbv.sharepoint.com/sites/focusonline/SitePages/Preciezer-plannen-met-PINT.aspx
https://prorailbv.sharepoint.com/sites/focusonline/SitePages/Preciezer-plannen-met-PINT.aspx
https://www.jaarverslagprorail.nl/jaarverslag-2021/kerncijfers/
https://www.jaarverslagprorail.nl/jaarverslag-2021/kerncijfers/
https://www.jaarverslagprorail.nl/jaarverslag-2021/profiel/organisatie-en-activiteiten
https://www.jaarverslagprorail.nl/jaarverslag-2021/profiel/organisatie-en-activiteiten
https://prorailbv.sharepoint.com/sites/vestigingen/SitePages/Verkeersleidingsposten.aspx
https://prorailbv.sharepoint.com/sites/vestigingen/SitePages/Verkeersleidingsposten.aspx
https://www.prorail.nl/over-ons
https://prorailbv.sharepoint.com/sites/Achtergrondinfo-Treindienstleiders/SitePages/Rijwegen%20-%20basisinformatie%20-%20plan(regel)opbouw.aspx
https://prorailbv.sharepoint.com/sites/Achtergrondinfo-Treindienstleiders/SitePages/Rijwegen%20-%20basisinformatie%20-%20plan(regel)opbouw.aspx
https://prorailbv.sharepoint.com/sites/Achtergrondinfo-Treindienstleiders/SitePages/Rijwegen%20-%20basisinformatie%20-%20plan(regel)opbouw.aspx

Bibliography 61

Spanninger, Thomas et al. (2022). “A review of train delay prediction approaches”. In:

Journal of Rail Transport Planning & Management 22, p. 100312.

Spirtes, Peter et al. (2000). Causation, prediction, and search. MIT press.

Triantafillou, Sofia and Ioannis Tsamardinos (2016). “Score-based vs Constraint-based

Causal Learning in the Presence of Confounders.” In: Cfa@ uai, pp. 59–67.

Tsamardinos, Ioannis, Laura E Brown, and Constantin F Aliferis (2006). “The max-min

hill-climbing Bayesian network structure learning algorithm”. In: Machine learning

65, pp. 31–78.

Ulak, Mehmet Baran, Anil Yazici, and Yun Zhang (2020). “Analyzing network-wide

patterns of rail transit delays using Bayesian network learning”. In: Transportation

Research Part C: Emerging Technologies 119, p. 102749.

Wen, Chao, Zhongcan Li, et al. (2017). “Statistical investigation on train primary de-

lay based on real records: evidence from Wuhan–Guangzhou HSR”. In: International

Journal of Rail Transportation 5.3, pp. 170–189.

Wen, Chao, Weiwei Mou, et al. (2020). “A predictive model of train delays on a railway

line”. In: Journal of Forecasting 39.3, pp. 470–488.

Wieringen, Richard van (Mar. 2019). “An Agent Based Approach for Train Traffic Con-

trol”. MA thesis. University of Utrecht.

Wikipedia (2022). Partial correlation. url: https : / / en . wikipedia . org / wiki /

Partial_correlation.

Wu, Jianqing et al. (2021). “A Hybrid LSTM-CPS Approach for Long-Term Prediction

of Train Delays in Multivariate Time Series”. In: Future Transportation 1.3, pp. 765–

776.

Zilko, Aurelius A, Dorota Kurowicka, and Rob MP Goverde (2016). “Modeling railway

disruption lengths with Copula Bayesian Networks”. In: Transportation Research Part

C: Emerging Technologies 68, pp. 350–368.

https://en.wikipedia.org/wiki/Partial_correlation
https://en.wikipedia.org/wiki/Partial_correlation

Appendix A

Column Descriptions

This section elaborates on what the input data consists of and in which way the columns

are modified. Firstly, we explain which columns were already present in the CSV file.

Secondly, we explain which columns are created or kept after the preprocessing step

described in section 6.2.

A.1 Dataframe from CSV file

The dataset is imported in the program as a CSV file. The columns that are kept, are

denoted below, with an explanation of what the column means.

nvgb verkeersdatum This column represents which date that the event corresponds

to. The date is not changed when it is exactly 12 pm, but it depends on for which

day the event was planned. If it represents a night train for the previous day, then

the date is the previous day. If the train is an early morning train, then it will be

denoted as the same day. The benefit of this, is that when a train crosses the 12

pm timestamp, it will still be grouped within the same day.

basic treinnr treinserie This denotes the serie number of the train. The definition

of this is elaborated in Chapter 2.

basic treinnr This denotes the train number of the train. The definition of this is

elaborated in Chapter 2.

basic spoor simpel This denotes the platform number on which the train arrived at,

and is filled if this event occurs at a station. Else, this column value is empty.

62

Column Descriptions 63

basic drp Dienstregelpunt or timetabling point. The definition of this is elaborated in

Chapter 2.

basic drp act Activity at the dienstregelpunt (Arrival, Departure, or Passage)

basic plan This consists of the planned date and time that the train should perform

the activity.

basic uitvoer This is the real measured date and timestamp when the train performed

the activity.

vklvos plan actueel This column is similar to the basic plan column, but retrieved

from a different source. If a train gets cancelled, this column will be empty, in

contrast to the basic plan. This value is therefore used to identify the cancelled

trains.

prl rijw laatst rijweg wisselroute maxsnelheid This column denotes the max speed

that the train is allowed to drive. Under normal conditions this is filled with

”baanvak”, but if a speed change is required, this column value will be an integer

consisting of the desired speed.

Note: The speed value column is only filled when a speed sign is passed at that

drp. This means that for some rows, this column value is empty, because the train

did not pass a speed sign at that point. Since the speed should be the same as the

last registered speed sign, we use the forward-filling method to impute the missing

values.

basic treinnr rijkarakter This denotes the type of train, namely Intercity, Sprinter,

InterCity Express etc.

vklbammat soorttype uitgevoerd This denotes the type of trainset that was used

for this train ride. When trains are combined, multiple trainsets are denoted in

this column.

vklvos bijzonderheid drglsnelheid There is a planned speed at every section, which

is called the baanvak speed. The baanvak speed differs per section and train type.

This column is used to convert the values of the prl rijw laatst rijweg wisselroute maxsnelheid

that are marked as ”baanvak” to the designated baanvak speed in integers.

infra afgereden secties This column denotes the section ID’s that were used by the

train.

donna bd kalerijtijd This denotes the strictly necessary travel time for a section. The

planned travel time contains some slack.

Column Descriptions 64

stipt oorzaak treinnr This column denotes that if there was a train interaction on

the railway, with which train number it was.

A.2 Dataframe after preprocessing

After preprocessing, some columns were removed and some columns were added. Finally,

the Dataframe consists of the following columns. An arrow, →, shows that a column is

renamed. Some columns are kept the same, then an explanation is not included. The

columns that are removed were used in the preprocess step, but not used afterward,

hence they are not present anymore.

nvgb verkeersdatum → date

basic treinnr treinserie

basic treinnr

basic spoor simpel

basic drp

basic drp act

basic plan

global plan This is the basic plan value, rounded up by minutes.

prl rijw laatst rijweg wisselroute maxsnelheid → speed This column is modified

by first using the forward filling method to impute missing values. Then the values

with ”baanvak” are converted to the baanvak value in integers, using the corre-

sponding vklvos bijzonderheid drglsnelheid column value.

basic treinnr rijkarakter

vklbammat soorttype uitgevoerd

infra afgereden secties → sections

delay This denotes the delay of the train and is calculated by: delay = basic uitvoer−
basic plan. Note: delays can thus be negative as well.

buffer This denotes the planned buffer time that a train has, when waiting at a station.

This is calculated by: delayi = basic plani−basic plani−1 and only if the activities

have the same train number and are at the same station. Else, buffer = 0

Column Descriptions 65

travel time This denotes the travel time the train has between two activities. This is

calculated by: travel timei = basic plani−basic plani−1 and only if the activities

have the same train number. Else, travel time = 0

slack Slack can be retrieved by (planned)travel time− donna bd kalerijtijd.

stipt oorzaak treinnr

Appendix B

Description of the search

functions in the Causal-learn

library

The implementation of the structure learning part is conducted by using the causal-

learn library, version 1.3.1. The causal learn library consists of several discovery al-

gorithms. The constraint-based causal discovery methods accept a parameter called

background knowledge to use prior knowledge for the discovery algorithm. The back-

ground knowledge parameter consists of a BackgroundKnowledge object, which stores

the required rules specs and the forbidden rules specs. These rules contain of a set of

tuples of nodes, for which the rules apply to. The forbidden rules can be added by the

function add forbidden by node(node1, node2) and the required rules can be added

by the function add required by node(node1, node2). To check if the edge between

two nodes is forbidden, the function is forbidden(node1, node2) is used. To check if

the edge between two nodes are required, the function is required(node1, node2) is

used [Causal-learn 2022a].

B.1 PC-algorithm

The PC-algorithm with background knowledge is implemented in the library as follows.

First, the PC algorithm performs a skeleton discovery algorithm. The following actions

are performed individually per node. If an edge is marked as forbidden in both ways,

the boolean knowledge ban edge set to true. As a consequence, the edge is removed from

the graph in both directions. Then, the independence tests are performed on the node

66

https://causal-learn.readthedocs.io/en/latest/index.html
https://causal-learn.readthedocs.io/en/latest/index.html
https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/utils/PCUtils/SkeletonDiscovery.py#L16

Description of the search functions in the Causal-learn library 67

and its remaining neighbors and if the result is larger than the alpha value, this edge will

be removed [Causal-learn 2022c]. The consequence of this skeleton discovery function is

that the required edges are not taken into account, and required edges may be removed

because of a significant independence test.

The PC algorithm then proceeds with orienting the edges, first by using the background

knowledge. If node1 and node2 is forbidden, then orient the edge as node2 → node1. If

node1 and node2 is required, then orient the edge as node1→ node2. Then the edges are

oriented by looking for v-structures, as described in step 3 of the PC algorithm. Lastly,

the method of orienting the remaining edges as described by Meek (2013) is performed

to orient some other edges.

B.2 FCI-algorithm

The FCI-algorithm first performs a skeleton search by means of a Fast Adjacency Search

(FAS). FAS consist of a searchAtDepth0 function and a searchAtDepth for the other

depths.

Depth0:

The algorithm does the following between every two nodes. It first performs the inde-

pendence test. If the independence test is larger than the alpha value and the edges are

not required, the separating set between the two nodes is the empty set. If the variables

don’t contain a forbidden edge between them (in both directions), the nodes include

each other in their adjacency list. This step creates a first skeleton of the graph, by

excluding all forbidden edges in the adjacency lists.

Depth-x:

For each node a and one of their adjacent nodes b, all possible combinations of the adja-

cent edges of a (excluding b) of length x are created, which functions as the conditioning

set. It again performs the independence test, conditioning on the conditioning set. If

the independence test is larger than the alpha value and the edge between a and b is not

required, the separating set between the two nodes will be updated with the conditioning

set and the adjacency list will be updated by removing the nodes both ways out of their

own list.

https://github.com/py-why/causal-learn/blob/0.1.3.0/causallearn/utils/Fas.py#L246

Description of the search functions in the Causal-learn library 68

The FAS function returns a tuple of the found General Graph and the correspond-

ing separating set. The FCI algorithm then proceeds with reorienting the edges, by first

orienting all edges as o-o, and then orienting according to the background knowledge.

This is the same method as described in the PC algorithm. After this step, the edges

are further oriented by looking for v-structures. Then, the algorithm proceeds with step

4 of the FCI algorithm, by looking for possible separating sets. Every edge that may be

removed is checked if it is not required by the background knowledge before adding to

the possible separating set. Then the edges in this set are removed and the separating

set is updated accordingly. Lastly, steps 5 and 6 of the FCI algorithm are performed,

where the background knowledge determines the orientation of some edges as described

previously and other edges are oriented by identifying v-structures and remaining ori-

enting techniques [Causal-learn 2022b].

Appendix C

Create BackgroundKnowledge

In this section, the description is given on how to translate the TrainRideObjects to a

BackgroundKnowledge class. As described in Section 7.2.1, there are 3 types of edges:

forbidden, required and possible edges.

In our algorithm, all edges are first marked as forbidden. The reason to do this is that

most of the edges are forbidden and, this way, not all nodes need to be compared with

each other to determine if they are actually forbidden. This speeds up the computation

time. When an edge is marked later as ”required” or ”possible”, this ”forbidden” label

will be removed.

The next step is to find the required edges. The schedule of TrainRideObjects is ordered

per train number and timewise. The only check that needs to be performed is to check

if the train number at index i+ 1 is the same as at index i. If this is the case, we mark

the edge as required. Resulting, all subsequent events with the same train number are

marked required. Events that are not adjacent are not required.

The last step is to find the possible edges. Only trains that are at the same drp within

15 minutes are marked in our model as ”possible”, by removing the ”forbidden” label.

The first step is to create a dictionary with each station as key and as value the tuple,

(timestamp, TrainRideObject). An example is: {Bkl : [(8 : 15, T rainRideObject1), (13 :

05, T rainRideObject2)]}. Only within the list per station, the trains are evaluated to

each other, making our search space smaller. The list of trains per station is ordered

timewise. The trains are evaluated by comparing their planned time. If that lies between

15 minutes, the edge between these events is marked as ”possible”, by removing the edge

as ”forbidden”. The global algorithm is shown in Algorithm 1

69

Create BackgroundKnowledge 70

Algorithm 1 Find possible edges

1: station dict # our station dictionary
2: bk # our current background knowledge
3: for station, train list in station dict do
4: train list = sort on timestamp(train list)
5: for train index in range(len(train list)) do
6: (train time, train) = train list[train index]
7: for other train index in range(train index +1, len(train list)) do
8: (other train time, other train) = train list[other train index]
9: if (other train time - train time) <= 15 · 60 # seconds then

10: bk.removeForbiddenDependency (train, other train)

Appendix D

Improve computation speed for

BackgroundKnowledge class

When using the causal library, the computation speed increased significantly when

adding a BackgroundKnowledge class that consists of many forbidden or required edges.

These edges are stored in the required rules specs and forbidden rules specs variables,

which consist of a set of tuples. An example is shown below.

dict forbidden = ((”train1, ”train2”), (”train1”, ”train3), (”train3, ”train1”))

The functions is forbidden() and is required() performs an exhaustive search that

loops through all the required rules specs or the forbidden rules specs variable. As a

consequence, the more background information is added, the longer this search takes.

This slower BackgroundKnowledge class is in this research replaced by a new class:

FasterBackgroundKnowledge, which inherits from the BackgroundKnowledge class. It

consists of two dictionaries, one for the forbidden edges and one for the required edges.

The dictionary key is the name of one train, and the corresponding value is a list of the

names of the trains that should have a forbidden edge with that train. The previous

example of the dict forbidden variable is translated into the corresponding dictionary as

shown below

dict forbidden = {”train1” : [”train2”, ”train3”], ”train3” : [”train1”]}

When checking if node1 should have a forbidden edge with node2, the function is forbidden(node1,

node2) checks if node1 exists in the dict and retrieves the list of forbidden edges for node1

and checks if node2 is present. Using this function rather than the old is forbidden(node1,

71

Improve computation speed for BackgroundKnowledge class 72

node2) function, a smaller list has to be searched, which makes this version of the Back-

groundKnowledge class faster.

Note: in the file fas.py, line 286 of the library, there is a check if the provided Back-

groundKnowledge is of the correct type, by stating type(knowledge) == BackgroundKnowledge.

This should be changed to isinstance(knowledge, BackgroundKnowledge); the type

checking will still be executed, and due to inheritance, no errors will occur.

Appendix E

Improvement of the FAS-function

As described in Appendix B, the FAS-function consists of two main functions, searchAtDepth0()

and searchAtDepth(). After the improvement described in Appendix D, the FAS()

function was still slow. To put it in perspective: for a dataset that consists of 2427

variables and in 70 rows per variable, it took around 44 hours to complete. To speed up

the FAS-function, the weaknesses of this function are analyzed and listed below.

searchAtDepth0()

This function is slow, since it iterates over all node combinations and performs inde-

pendence tests between them. After this, it checks if those edges were required and if

they were not forbidden. Only if they were not forbidden, the nodes are added in the

adjacency list. If these nodes were forbidden, the adjacency list is not updated.

Solution: only keep the possible and required edges in the graph, by creating the

adjacency list only based on not forbidden edges. Then perform independence tests be-

tween edges in this graph, since there is now a reduced search space and the redundant

independent tests are not performed anymore.

searchAtDepth()

To perform an independence test between two nodes, all possible sets to condition on

are determined, the significance of independence is calculated and then checked if this

edge is not required. If this edge is required, then nothing happens. This makes the

previous work redundant. It would be better to first check if the edge is not required

and then perform the rest of the code.

The adjacency list is only filled with nodes that are not forbidden. However, when

looking for possible parents, each node combination is checked whether they are not

forbidden. Looking at the sequence of the code and the structure of the Background-

Knowledge that is created for this research, the edges are never forbidden, so this check

is redundant.

73

Improvement of the FAS-function 74

With these remarks, a new FAS() function is created. This function also consists of two

parts. The first part creates a graph with all edges connected that are not forbidden.

The second part performs the independence tests between the present adjacencies of the

nodes per depth. Here it first checks if the adjacent nodes are required and if so, it does

not check for independence and continues with the next adjacency. In this phase, there

is no check for forbidden edges necessary, since the forbidden edges are already pruned

in the first phase. Comparing the results of the old and new FAS function, the resulting

graphs were the same. The computation time decreased from around 44 hours to around

2 minutes.

Algorithm 2 FCI

1: Input: dataset matrix, background
2: Output: SCM graph with directed edges
3: Variables:
4: adjacencies: Dict,
5: separating set : Dict,
6: nodes : List
7:

8: For each column, create a node and add to node list
9: # Create a skeleton graph with all edges that are not forbidden:

10: for i← 0 to N do
11: for j ← i+ 1 to N do
12: if isforbidden(nodes[i],nodes[j]) and isforbidden(nodes[j],nodes[i]) then
13: Continue
14: else

mark nodes[i], nodes[j] as adjacency
mark nodes[j], nodes[i] as adjacency

15: maxDepth = 20
16: for d← 0 to maxDepth do
17: enough adjacencies for depth = False
18: for i← 0 to N do
19: adjx = adjacencies of node i
20: for j ← 0 to len(adjx) do
21: if isRequired(i,j) then Continue

22: Find all possible subsets from adjx/nodes[j] as condition set.
23: for all possible subsets do
24: enough adjacencies for depth = True
25: do independence test
26: if p value > threshold then
27: remove adjacency nodes[i], nodes[j]
28: remove adjacency nodes[j], nodes[i]
29: add separating set for nodes[i], nodes[j] with conditioning set

30: if not enough adjacencies for depth then
31: Break

Appendix F

MV-Fisher-z independence test

The used independence test method is the Missing Value Fisher-z independence test,

used from the Causal-learn library. This is the same as the general Fisher-Z independence

test, but rows that consist of empty values are removed. If the Dataframe will then be

empty, which means that there is no overlap in trains for any day, we return 1 by default,

since they are by definition independent of each other. The Fisher-Z test uses the Fisher

partial correlation method and is implemented by the causal-learn library as follows:

1) It first calculates the Pearson correlation coefficient matrix R, for which each matrix-

value is calculated as follows.

Ri,j =
Ci,j√
Ci,iCj,j

2) Then it computes the inverse of the matrix, using the function np.linalg.inv.

3) The correlation between the Xth value and the Y th value is calculated again by using

the Pearson correlation coefficient on the inverse matrix, which results into the partial

correlation value ρ̂XY ·Z , which includes the conditioning set z in the value.

ρ̂XY ·Z = −
C−1
i,j√

C−1
i,i · C

−1
j,j

4) Then this ρ-value is converted to a Z-value by the following Fisher Transformation

Formula [Glen n.d.]:

Z =
1

2
ln(

1 + ρ̂XY ·Z
1− ρ̂XY ·Z

)

To convert the Z-value to a p-value, several steps are preformed. First, the Z-value is

converted [CLeaR 2022]:

X =
√
(N − |z| − 3) · |Z|

75

MV-Fisher-z independence test 76

According to Wikipedia (2022), value X can be tested against a null hypothesis that the

partial correlation is 0. The hypothesis can be rejected if

X > Φ−1(1− α

2
)

Φ is the cumulative distribution function of a Gaussian distribution. If this formula

returns the boolean true, the tested values are independent of each other. The formula

can be rewritten by the following steps:

Φ(X) > 1− α

2

−1 + Φ(X) > −α

2

1− Φ(X) >
α

2

2 · (1− Φ(X)) > α

This last formula is included in the library, namely, stating that p-value = 2 · (1 −
norm.cdf(abs(X)) and p value > α must be true to be independent.

Appendix G

Graph to a Neural Network input

This section describes the method how the causal graph is translated to an input matrix

for the Neural Networks. The transformation from graph to input matrix is done in 3

steps. Each step is explained in one section.

G.1 Convert the graph to a NodeAndParents class

The first step is to convert the graph to a class that describes the parents per node,

called the NodeAndParents class. This class consists of several variables that are each

a TrainRideObject. It captures which TRO was the previous event, which was the 2nd

previous event and which train was at the same platform as the current train. The other

non-specified parents are captured in a list of dependencies, ordered by their planned

time.

The algorithm goes as follows: per node in the graph, its parents are retrieved. For each

of the parents, it is checked which type of parent it is (previous event, dep0 platform

or another non-specified parent). If it is the previous event, then its parents are also

called, such that the 2nd previous event is also found. Then, the previous event and

the second previous event are included in the NodeAndParents class. If the parent

is a dep0 platform, found by comparing both of the TRO their station and platform,

then this dep0 platform variable is set to the found TRO. If the parent is not either of

those two cases, it is included in the list of non-specified parents. After every parent

is assigned to their type, the list of non-specified parents is ordered by their planned

time. The result of this algorithm is a list of NodeAndParents classes. In total, there

are l NodeAndParents class in the list, where l is the amount of nodes in the graph. An

example of this algorithm is shown in Figures G.1 and G.2.

77

Graph to Neural Network input 78

Figure G.1: Input graph Figure G.2: Result of algorithm

G.2 Extract delays from the NodeAndParents class

The next step uses the NodeAndParents class and the created TrainRideObject matrix

introduced in Section 6.3 to find all the delays of each day and include the delays of the

parents as well. The result of this step is a list with a class denoting the input features

for the Neural Network, called NN input row class.

The working of how the delays are included per NodeAndParents object as input is

illustrated in Figure G.3. The first matrix denotes the matrix of the delays of the

TrainRideObjects. The arrows denote which columns need to be included, as they

are the parents of a specific train. The correct columns are found by looking at the

NodeAndParents object, which includes the TRO of all parents. Each TRO contains a

variable at which index it is present in the TRO matrix, hence the colored arrows.

Figure G.3: Capturing and positioning of the correct columns

Graph to Neural Network input 79

The first step is to only keep the desired columns, resulting in the second table. The

second step is to impute columns that are denoting a parent that is not present for

that specific train (in the figure denoted as the gray arrow). For example, there is not

an interacting train that is at the same platform as our train, this column cannot be

extracted from the TRO matrix. Such column is added in the second step at the correct

position. The final result is a matrix with the columns that are always at the same

index. The order is: current train, previous event, 2nd previous event, dep0-platform,

dep1, dep2, and dep3. Each row is a parameter for a NN input row class. In total, there

are k · l NN input row classes, where k is the amount of days and l is the amount of

nodes in the graph.

G.3 NN input row class to Dataframe

In this section, the function NN input class to df() is explained, where the list of NN input rows

are transformed to a Dataframe that can be used as input for the Neural Networks. The

function loops through the list of the NN input rows and preprocesses the data such

that it becomes a Dataframe row. Some columns are changed to a one-hot encoding,

and thus, some columns are expanded. For example, the day of the week column is

changed to 5 columns: day of the week0 to day of the week4. Each row is appended to

the Dataframe, resulting into a Dataframe with k · l rows, where k is the amount of days

and l is the amount of nodes in the graph.

Appendix H

Derivation of the loss function for

a Laplace distribution

The PDF of the Laplace distribution is the following 1 2, with variance being 2b2 :

f(x|µ, b) = 1

2b
exp(−x− µ

b
)

By applying the conditional log likelihood (
∑m

i=0 log p(y
(i)|x(i); θ)), it can be rewritten

as
m∑
i=1

− log 2b− x(i) − µ

b

Which can be rewritten as:

−m log 2b−
m∑
i=1

x(i) − µ

b

With µ being
∑m

i=1 x̂
m , we can rewrite the formula to:

−m log 2b−
m∑
i=1

||ŷ(i) − y(i)||
b

For this case then maximizing the log likelihood yields the same estimate as minimizing

the MAE (= 1
m

∑m
i=1 ||ŷ(i) − y(i)||) According to this derivation, the MAE would be the

most suitable loss function for the Laplace distribution.

1https://math.stackexchange.com/questions/922521/deriving-mean-and-variance-of-laplace-
distribution

2https://en.wikipedia.org/wiki/Laplace distribution

80

Appendix I

Results Amsterdam-Utrecht

railway

I.1 Number of Neural Networks and amount of train-,

test-, and validation data

The training set consists of 550,230 samples: 440,184 samples for testing and 110,046

samples for validation. The test set consists of 137,558 samples.

The set of fine-tuned NNs are bucketed per (drp, train series) and consists of 477 Neural

Networks. The maximum number of samples to train the NN per bucket is 4390 and

the minimum is 17. The mean is 1153 and the median is 651 samples. The amount of

samples to test on per fine-tuned NN is maximal 1124, minimal 1, on average 288, and

the median amount of samples is 165.

I.2 Model evaluation on the total test set and per station

The fine-tuned Neural Networks are tested and evaluated with two metrics: the Mean

Absolute Error (MAE) and the Root Mean Squared Error (RMSE). The MAE on the

total dataset is 10.03 and the RMSE is 36.87. The errors per drp in terms of MAE

and RMSE are shown in Figure I.1 and I.2. The largest errors at Asd (Amsterdam

Central Station) and Ut (Utrecht Central Station) can be explained by the fact that both

stations are large stations consisting of a large yard, allowing for more train interaction.

The spike of the RMSE value at Asdma (Amsterdam Muiderpoort aansluiting) can be

explained by the fact that there are 3 large estimation errors (2403.0466, 2463.8425,

81

Results Amsterdam-Utrecht railway 82

and 3140.458 seconds). Removing these outliers, the estimation errors MAE and RMSE

at Asdma would be 6.05 and 22.09 respectively. Also, removing a large outlier for

Ashd (Amsterdam Holendrecht) would change the MAE and RMSE to 6.12 and 12.56

respectively.

Figure I.1: MAE per drp Figure I.2: RMSE per drp

I.3 Testing NNs for Amsterdam-Utrecht with more spe-

cific test sets

In this section, the results are further analyzed by focussing on the events for which it is

known that a train interaction took place. When ProRail registered a train interaction,

the column ”cause” is filled with the corresponding train number. A downside to this

column is that if a train only hindered another train for even one second, this train will be

included in the column. Such interactions are too small to be noticed by our algorithm.

The dataset is therefore further reduced by removing rows where our algorithm did not

observe a possible interaction of non-trivial parents (i.e.: dep0 to dep3 are empty). This

subset is called: subset of rows including non-trivial parents and where ProRail found

an interaction.

In order to test the effect of the non-trivial parents included in our model, our model is

tested against another model. Our model is trained and tested with data containing the

columns about non-trivial parents. The other model is trained and tested on the same

sets, but the columns about the non-trivial parents are not present. In this chapter, we

will refer to the model with the columns that includes the non-trivial parents as `our

Results Amsterdam-Utrecht railway 83

model ’ and the other model without the columns regarding non-trivial parents as the

`baseline model ’. The results are denoted in Table I.1.

Test-set MAE RMSE
of test-
samples

Our model: Total test set 10.03 33.75 137,558

Baseline model: Total test set 9.99 37.47 137,558

Our model: where ProRail found an
interaction with the columns non-trivial

parents included
53.11 86.65 446

Baseline model: where ProRail found an
interaction excluding the columns

non-trivial parents
59.93 96.45 446

Table I.1: Results of the Asd-Ut line comparing it to another trained model

Appendix J

Results Utrecht-Eindhoven

railway

J.1 Number of Neural Networks and amount of train-,

test-, and validation data

The training set consists of 502,233 samples: 401,786 samples for testing and 100,446

samples for validation. The test set consists of 125,558 samples.

The set of fine-tuned NNs are bucketed per (drp, train series) and consists of 309 Neural

Networks. The maximum number of samples to train the NN per bucket is 4114 and

the minimum is 16 The mean is 1520 and the median is 1607 samples. The amount of

samples to test on per fine-tuned NN is maximal 1111, minimal 0, on average 406, and

the median amount of samples is 430.

J.2 Model evaluation on the total test set and per station

The fine-tuned model is tested and evaluated with two metrics: the Mean Absolute Error

(MAE) and the Root Mean Squared Error (RMSE). The MAE on the total dataset is

19.94 and the RMSE is 50.85. The errors per drp in terms of MAE and RMSE are

shown in Figures J.1 and J.2. The largest errors at Ut (Utrecht Central Station) and

Ehv (Eindhoven Central Station) can be explained by the fact that both stations are large

stations consisting of a large yard, allowing for more train interaction. Two prominent

outliers in the predictions contributed to the elevated RMSE value of Utvr (Utrecht

Vaartsche Rijn). Removing these two predictions, the MAE and RMSE of Utvr would

be 7 and 25.11 respectively.

84

Results Utrecht-Eindhoven railway 85

Figure J.1: MAE per drp Figure J.2: RMSE per drp

J.3 Testing NNs for Utrecht-Eindhoven with more specific

test sets

In this section, the results are further analyzed by focussing on the events for which it is

known that a train interaction took place. When ProRail registered a train interaction,

the column ”cause” is filled with the corresponding train number. A downside to this

column is that if a train only hindered another train for even one second, this train will be

included in the column. Such interactions are too small to be noticed by our algorithm.

The dataset is therefore further reduced by removing rows where our algorithm did not

observe a possible interaction of non-trivial parents (i.e.: dep0 to dep3 are empty). This

subset is called: subset of rows including non-trivial parents and where ProRail found

an interaction.

In order to test the effect of the non-trivial parents included in our model, our model is

tested against another model. Our model is trained and tested with data containing the

columns about non-trivial parents. The other model is trained and tested on the same

sets, but the columns about the non-trivial parents are not present. In this chapter, we

will refer to the model with the columns that includes the non-trivial parents as `our

model ’ and the other model without the columns regarding non-trivial parents as the

`baseline model ’. The results are denoted in Table J.1.

Results Utrecht-Eindhoven railway 86

Test-set MAE RMSE
of test-
samples

Our model: Total test set 11.78 43.93 125,558

Baseline model: Total test set 20.09 53.53 125,558

Our model: where ProRail found an
interaction with the columns non-trivial

parents included
41.21 82.14 752

Baseline model: where ProRail found an
interaction excluding the columns

non-trivial parents
59.65 100.29 752

Table J.1: Results of the Ut-Ehv line comparing it to another trained model

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 ProRail
	1.2 Challenges in Traffic Control
	1.3 Problem statement for the implementation of a decision support system
	1.4 Context of project
	1.5 Research question(s)

	2 Train related background information
	3 Literature review
	3.1 State of the art of train delay prediction methods
	3.1.1 Delay prediction using Linear Regression
	3.1.2 Delay prediction using Bayesian networks
	3.1.3 Delay prediction using Neural Networks

	4 Introduction to SCMs
	4.1 Causal discovery methods
	4.1.1 Peter-Clark (PC) algorithm
	4.1.2 Fast Causal Inference (FCI)
	4.1.3 Greedy Equivalence Search (GES)
	4.1.4 GFCI

	5 Overview of the steps of the complete method
	6 Data description
	6.1 Description data sets
	6.2 Preprocessing steps
	6.3 Dataframe to TrainRideObject matrix

	7 Finding causal relations
	7.1 Domain knowledge
	7.1.1 Definition of 'the same location'
	7.1.2 Ordering of trains

	7.2 Hybrid method
	7.2.1 Background knowledge
	7.2.2 Algorithm description
	7.2.2.1 Start with the complete graph, but exclude the forbidden edges
	7.2.2.2 Perform a skeleton search on the remaining edges

	7.2.3 Orient the edges

	8 Learning assignment functions by implementing Neural Networks
	8.1 Noise distribution
	8.2 Loss function
	8.3 Approach for constructing and evaluating the Neural Networks
	8.4 Layout of the Neural Networks
	8.5 Input variables

	9 Results
	9.1 Evaluation of the causal graph
	9.2 Number of Neural Networks and number of train-, test-, and validation data
	9.3 Model evaluation on the total test set and per station
	9.4 Testing our model with more specific test sets
	9.5 Classifying the predictions of our model by means of the baseline model
	9.6 Impact of the fine-tuned model
	9.7 Comparing the result to the paper of wen2020predictive
	9.8 Conclusion

	10 Discussion and Conclusion
	10.1 Future work
	10.1.1 Future work regarding finding the causal graph
	10.1.2 Future work regarding finding assignment functions
	10.1.3 Future work in general

	10.2 Concluding remark

	A Column Descriptions
	A.1 Dataframe from CSV file
	A.2 Dataframe after preprocessing

	B Description of the search functions in the Causal-learn library
	B.1 PC-algorithm
	B.2 FCI-algorithm

	C Create BackgroundKnowledge
	D Improve computation speed for BackgroundKnowledge class
	E Improvement of the FAS-function
	F MV-Fisher-z independence test
	G Graph to a Neural Network input
	G.1 Convert the graph to a NodeAndParents class
	G.2 Extract delays from the NodeAndParents class
	G.3 NN_input_row class to Dataframe

	H Derivation of the loss function for a Laplace distribution
	I Results Amsterdam-Utrecht railway
	I.1 Number of Neural Networks and amount of train-, test-, and validation data
	I.2 Model evaluation on the total test set and per station
	I.3 Testing NNs for Amsterdam-Utrecht with more specific test sets

	J Results Utrecht-Eindhoven railway
	J.1 Number of Neural Networks and amount of train-, test-, and validation data
	J.2 Model evaluation on the total test set and per station
	J.3 Testing NNs for Utrecht-Eindhoven with more specific test sets

