
Exploring TCR TiRP Scores for
Treg Identification and
Population analysis
Name: Daan Bossche
Studentnumber: 6181406
Examiner: Can Kesmir
Group: Theoretische biologie en bioinformatica

Abstract

This paper examines the application of the TiRP score, a likelihood score for Treg cells, and its
underlying features for predicting T cell phenotypes (Treg or Tconv) and T cell population
dynamics. These features were investigated using a random forest classifier, clustering and
using the Bray-Curtis statistic. Non-overlapping TCR sequences from a reference dataset were
used to train and validate the random forest model, but the predictions were not
significantly better than random, indicating that the TiRP score and its underlying features
are insufficient to act as a definitive classifier. Afterwards, hierarchical clustering was
employed to investigate Tregness patterns in the Emerson dataset based on various features
such as age, gender, CMV status, and race, but no clear patterns emerged. Additionally,
Bray-Curtis (BC) similarity scores between the Emerson dataset and reference datasets were
calculated, showing equally high dissimilarity compared to Treg and Tconv populations,
indicating that the BC scores were non-informative on the nature of the donor T cell
repertoire. In addition, the BC scores did not exhibit significant changes with age or gender.
Overall, the TiRP score proved inadequate for population dynamics and classifier models due
to overlapping TCR, low diversity and the inherent noise in the scoring.

Layman summary

In this study, we investigated a scoring system called TiRP, which aims to predict the
phenotypes of immune cells known as T cells using a specific protein known as the T cell
receptor (TCR). This scoring system tries to determine if a T cell is a regulatory T cell (Treg) or
a conventional T cell (Tconv). These are two phenotypes with different roles in the immune
system. To accomplish this, we used an algorithm called a random forest classifier, which can
make predictions based on TCR data. The random forest is a machine learning method as
the machine learns to make decisions based on the data it is provided. Unfortunately, the
random forest model did not perform well in accurately determining the phenotype of T cells
based on the TiRP scores. We therefore also looked at other human factors such as age,
gender, and race to see if they had any relationship with the different types of T cells, but we
didn't find any clear patterns or connections. To further investigate T cell populations, we



used a statistical method called Bray-Curtis dissimilarity. This method helps compare
different groups of T cells using their TiRP score to see how similar or different they are.
Unfortunately, even with this method, we couldn't find any significant differences between a
group of donors and the known types of T cells.

In summary, the TiRP scoring system did not prove to be effective in predicting the types of
T cells or in analyzing changes in T cell populations. This study shows that it's challenging to
predict T cell types based only on the TCR sequence. We tried different approaches like
machine learning and statistical analysis, but we didn't obtain satisfactory results. Further
studies and alternative methods are needed to improve our understanding of T cell
populations and their classification using only their TCR.

Introduction

T cells play an important role in the host immune response (Kumar, Connors, en Farber
2018). They coordinate multiple aspects of the adaptive immune system, such as targeting
pathogens, and tumors, and induce the activation of B cells. In addition, they are involved in
immune responses throughout the body and can be active over long periods. Many different
effector T cells perform these functions. Apart from effector T cells, there is a subpopulation
of T cells involved in regulating the immune response generated by effector cells; the T
regulatory cells (Treg) (Savage, Klawon, en Miller 2020).

Tregs can influence the activation state of effector T cells and are involved in processes such
as preventing autoimmunity and maintaining immune homeostasis. A lack of functioning
Tregs can have strong adverse effects such as causing several autoimmune diseases, e.g.,
Systemic Lupus Erythematosus or Rheumatoid Arthritis (Scheinecker, Göschl, en Bonelli
2020). Under normal circumstances Tregs are identified by their Fox3P+ expression, a
regulatory T cell marker. In addition, previous studies have been trying to identify Tregs using
sequence motifs found in their T cell receptors (TCR) (Lagattuta et. al 2022).

The TCR is made up of two chains: the alpha and the beta chain, or gamma and delta chain.
Within the scope of this thesis, we will only focus on T cells with an alpha-beta TCR. The
alpha and beta chains together form a heterodimer that can recognize the peptide-MHC
complex during T cell activation. During the thymic development, both chains undergo VDJ
gene segment recombination (Michie en Zúñiga-Pflücker 2002). The alpha chain undergoes V
and J-segment recombination, and the beta chain undergoes V-D-J segment recombination.
This V-D-J recombination is a process by which the T cells semi-randomly join different gene
segments to generate the highly diverse TCR repertoire in the body. During this period of
development, T cell clones undergo positive and negative selection (Klein e.a. 2014). First,
positive selection takes place; in this process the immature T cells are tested for their binding
capability to the peptide-MHC complexes presented by thymocytes. Immature T cells should
be able to have a weak interaction with MHC-self peptide complexes to be protected from
death by neglect. If the immature T cells bind strongly to the MHC-self peptide they undergo
negative selection as these T cells will be autoreactive. For immature T cells with Treg fate,
the process is thought to be slightly different. After undergoing positive selection the
immature T cells that bind strongly to self-peptides, within a window of affinity, undergo Treg
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differentiation. This process generates Treg cells that have TCRs with an intermediate to
high-affinity interaction with a self-peptide presented via an MHC complex.

As the conventional T cells do not recognize self-peptides presented in the thymus, while
Tregs do, one can speculate that TCRs of both cell types could contain distinct sequence
patterns and underlying physical properties. Lagattuta et al 2022 attempted to identify
features of TCRs expressed by Treg and Tconv cells. They developed a score that uses
different features of the TCR beta (TCRB) chain of T cells to discriminate between T
conventional cells and T regulatory cells. This scoring named TCR-intrinsic regulatory
potential (TiRP), takes into account the CDR3Bmr region in addition to other key amino
acids of the TCRB, the V-gene and the J-gene on their likeliness of being a TCR from a Treg or
Tconv cell. Lagattuta et al showed that the TiRP score could be used to indicate the likelihood
of a TCR being from a Treg cell. We wanted to take this one step further and test if it was
possible to train a random forest binary classifier model on the TiRP score. This would enable
us to use the TiRP score to identify if a TCR from a T cell data set had a Treg origin or a Tconv
origin.

To this end, we trained random forest models on two reference T cell subsets made available
by Lagattuta et al 2022 and used different components of the TiRP. In addition, we wanted to
use the TiRP score to identify patterns in the composition of T cell populations. If the
Tregness of a population increases or decreases this should be identifiable using the TiRP
score. Known possible influences on the composition of T cell population are ea. age, sex and
CMV status. If the amount of Treg cells should increase/decrease due to any of these
features logically the TiRP score should reflect this as well and a pattern should be
observable.

Methods

TiRP score calculation

All coding was performed in Rstudio using R version 4.3.1. Lagattuta et al 2022 have made
their script for the calculation of the TiRP score available. The script was obtained from
‘https://github.com/immunogenomics/TiRP’. The script calculates the TiRP score based on
the CDR3 amino acid sequence, the J gene, and the V-gene. The script selects functional
chains by excluding internal stop codons and out-of-frame reads. In addition, the chains need
to be between 12 and 17 amino acids long to be considered. We used this script to calculate
TiRP scores for both the Emerson and the Reference data set. The script generates an output
file containing information represented in Table 1.
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Table 1. Overview TiRP score characteristics
An example of the output generated by the script provided by Lagattuta et al 2022 .TiRP
score is the sum of the jTiRP, vTiRP and the mTiRP.

Characteristic

Sample_name vgene CDR3 Jmotif

Keck0001_MC1 TCRBV05-05 CASSLLGQGYNEQFF NEQFF

CDR3MR length length_score pos_score

LLGQG 15 0 0

perc_score vgene_score p107_score p113_score

0.034 0 0 0.143

Jmotif_score total_score

-0.023 0.154

jTiRP vTiRP mTiRP TiRP

0.192 0.617 -0.018 0.791

Furthermore, different components of the TiRP score can be calculated by the utils.R script,
also provided by Lagattuta et al 2022. This script takes the same input as the TiRP.R file and
generates a detailed scoring file that contains different components of the TiRP score. There
was a small mistake in the utils.R file. The outputs of modified utils.R and TRiP.R scripts were
used to train random forest models, Bray-Curtis calculation, and clustering/heatmap
generation.

Random forest

The random forest model was trained using the ranger package in R. The performance of the
models was evaluated by calculating the ROC (Area under the curve) and the Matthews
correlation coefficient (MCC). To calculate these values the mltools package was used.
Unfortunately, it was not possible to directly use the output of the utils.R script to train a
random forest model because this script generated empty rows that contained no data when
the CDR3 was shorter than 17 amino acids for some of the features. These features are only
assigned a score when the CDR3 is of a certain length, for example, when the CDR3 is 14
amino acids long the features scored for amino acids 15-17 are left with an NA value. As
training with non-applicable (ie. NA values) was not possible in the ranger package, these
features were removed from the datafiles to train random forest models. Each model
consisted of 50 trees.
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Bray-Curtis

The TiRP score is continuous ranging from approximately -5 to 7.7. To be able to use this
score to calculate Bray Curtis similarity we divided the score range into 1000 bins and
counted the occurrences within each bin. The TiRP score distribution was then used to
calculate the Bray-Curtis similarity. The formula used for the Bray-Curtis similarity = (2 * S) /
(n1 + n2) Where: S is the sum of the absolute differences in species abundances between the
two samples, n1 is the total abundance of species in sample 1, n2 is the total abundance of
species in sample 2. The BC similarity is a score between 0 and 1, with 1 being identical and
0 being completely dissimilar.

Hierarchical Clustering

Since each donor in the Emerson dataset had a varying number of reads, we calculated the
quantiles of the TiRP score for each donor and used them for clustering. The 40% and the
60% quantile were left out for clustering as these had very little deviation in their values
between the different donors. This approach accounted for the diversity of TiRP scores by
capturing both the lowest and highest values, which could be influenced by factors like age.
Normalization was performed on each quantile group to ensure equal contribution to the
clustering process, especially important considering the distance-based clustering method
employed. Additionally, the standard deviation which was normalized and used in the
clustering process. Clusters and a heatmap were generated using the pheatmap package. The
following features were taken along in the creation of the heatmap; age range, gender, race
and CMV status.

Results

TiRP score analysis and dataset preparation

Two different datasets are used during this analysis. The first dataset contains TCR sequences
from healthy donors obtained from peripheral blood mononuclear cells (PBMCs) which have
been sorted as either Tconv or Treg based on FoxP3, a Treg marker. In total, this dataset
contains 14 Tconv donors and 8 Treg donors. The dataset was published by (Gomez-Tourino
et al. 2017)] and will be called the 'Reference dataset'. This dataset was used by Lagattuta et
al 2022 to develop the TRiP score. The second data set used contains TCR sequences from
786 healthy donors likewise obtained from PBMCs. This data set contains additional
information about the age, gender, ethnic group, racial group, and CMV infection status of
the donors. This data set was published by Emerson e.a. 2017 and will be called the 'Emerson
dataset' throughout the paper. For both data sets TRiP scores were calculated using TCR
sequences, and an overview of the score per CDR length in the Emerson data set can be
found in Fig1. A higher TiRP score is indicative of being a Treg and a lower one of Tconv
(Lagattuta et. al 2022). A majority of TCRs in the Emerson data set has a TiRP score around 0.
Only X% is higher than >3 which can be considered clearly as Treg. There is no clear
association to be seen between TCR length and TiRP score. An overview of most
characteristics in the Emerson data set can be found in Table 2. We decided to use three
different age ranges 0-19, 20- 59, and 60-74 for further analysis as earlier research has
shown that thymic activity changes the strongest between these age ranges (Sauce en Appay
2011).
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Figure 1: Overview of TiRP score per length of CDR3 of the Emerson dataset.
X-axis represents TiRP score, Y-Axis is total CDR3 count log10 scaled, String Length = CDR3
length.
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Table 2. Emerson Characteristics

Characteristic Female, N = 369 Male, N = 392

Age_range

0-19 26 (7.7%) 26 (7.7%)

20-59 288 (86%) 292 (86%)

60-74 22 (6.5%) 20 (5.9%)

Unknown 33 54

Racial_Group

African Race 5 (1.4%) 6 (1.5%)

Asian or Pacific Islander 26 (7.0%) 20 (5.1%)

Caucasian 227 (62%) 233 (59%)

Native American or Alaska Native 5 (1.4%) 5 (1.3%)

Unknown racial group 106 (29%) 128 (33%)

Virus_Diseases

Cytomegalovirus - 190 (51%) 230 (59%)

Cytomegalovirus + 179 (49%) 161 (41%)

Unknown 0 1

The total amount of Tconv reads is much greater than the Treg reads (Fig.2). This is to be
expected as Tconv cells make up the far majority of T cells in an individual. Moreover, there
were more donors for Tconv cells (see above). As reported by Ko et al. almost a third (29.5%)
of the Treg CDR3s are shared with Tconv cells (Fig. 2). These shared TCRs are known to have
features common with sequences distinct to Tconv but not with sequences distinct to Treg
(Owen et al. 2022). This suggests that there are probably 2 distinct Treg populations, one
with unique biophysicochemical properties and one which could have been a Tconv but due
to the influence of other factors the cell became a Treg.
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Figure 2: Overview of overlap and richness of Tconv and Treg TCRs within the Reference
dataset. Blue = Tconv TCRs, Yellow = Treg TCRs and Green = overlapping TCRs found in both
origins.

Predicting cell phenotype Using Random Forest Classifier

The TiRP score is a continuous value that estimates the likelihood of a TCR being a Treg cell,
and it cannot act as a definitive classifier. Therefore, we made use of a machine learning
algorithm, specifically a random forest classifier, to predict the origin of a TCR (Tconv or Treg)
using the TiRP score and its underlying components. Treg and Tconv cells sharing the same
TCR (Fig. 2) introduces noise in the random forest classifier. To mitigate this, we selected
non-overlapping TCR sequences from the reference dataset to train and validate the random
forest model. The training set contained 70% of total Treg sequences. Since the original
reference dataset contained more Tconv sequences than Treg sequences, a ratio of 1:3 (Treg:
Tconv) was chosen to prevent overfitting the model for Tconv sequences. Three different
learning approaches were employed: using only the TiRP score (see methods) (Fig. 3), the
extended TiRP score, and several data features generated with the utils.R script.
Subsequently, the remaining 10% and 20% of the data set were used as a validation and test
dataset, respectively, to measure the performance of the trained random forest models.
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Figure 3: Distribution of Reference dataset TiRP score
Black: TiRP score for T conventional cells, Red: TiRP score for T regulatory cells
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We trained three random forest models (as described in methods) using i) TRiP scores, ii) the
extended TiRP score, and iii) several features generated with the utils.R script and calculated
their performance on the test sets (through the ROC and Matthew correlation coefficients,
MCC). Both performance measures indicated that the predictions were hardly better than
the random predictions ( ROC= 0.54 for all three models and the MCC between 0.0884 –
0.151). Therefore neither the TiRP score alone nor the extended scores were able to
generate a model that can predict cell phenotype in a non-random manner. This could be
due to the large overlap of TiRP scores between Treg and Tconv cells (Fig 3). Still, TRiP scores
and TCR features might be useful to identify population patterns such as changes in Tregness
with lifetime and with gender.

Investigating Tregness Patterns and Feature Impact on Emerson Dataset Using Hierarchical
Clustering

The data made available by Emersson et al 2017 contains the T cell repertoire from
individuals between 0 and 74 age and therefore it allows us to study the change in Treg
fraction during a lifetime. Since our attempts to develop a predictor to classify Treg/Tconv
cells failed, we can not predict exact fractions of Treg and Tconv cells in the Emerson data set.
However, as the TRiP score indicates the tendency of a T cell to be a Treg, we might still see a
difference in T cell repertoires of different age groups. To this end, we (re)analyzed TRiP
scores of T cell repertoires in Emerson data.

Previously, it was found that the median TRiP score of an individual's repertoire is not
influenced by gender, age, or CMV status of a donor in the Emerson dataset (By Dana, results
not shown). Obviously, using a median value of the TRiP score to describe the whole
repertoire composition of Treg and Tconv cells results in severe information loss. We,
therefore, decided to re-investigate repertoire composition using more parameters to
describe an individual’s T cell repertoire.

Hierarchical clustering is an unsupervised machine-learning technique used to group similar
data points based on similarity or dissimilarity. This technique is valuable for identifying
patterns in a dataset. In our study, we aimed to determine if the Tregness of the Emerson
dataset changes over time as individuals aged. Additionally, we investigated whether other
features, such as gender, CMV status, and racial group, had an impact on the population's
Tregness. The clustering was performed to identify possible TiRP clusters in the Emerson
dataset based on the different features. The clustering using several quantiles, the median
and standard deviation to describe TRiP scores of a TCR population did not result in clear
patterns (Fig. 4). Only the minimum and maximum values of TRiP scores (Q0 and Q100
values) cluster clearly into two big classes. However, gender, age range, CMV status, and
racial group of the individuals in the Emerson data set, as indicated in vertical bars in Fig. 4,
do not differentiate between the two classes. The median column corresponds to the
previous analysis.
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Figure 4: Clustered heatmap of normalized TiRP score quantiles
Heatmap of normalized TiRP score quantiles from the Emerson dataset. Shown are the Q0,
Q10, Q20, Q30, Median, Q80, Q90 , Q100 and the standard deviation for each Emerson
donor's TiRP scores. Heatmap is row-clustered and four different features are shown for each
donor; Age, Racial group, CMV status and Biological sex.
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Next, we calculated the Bray-Curtis similarity between the two reference datasets from
Lagattuta et al 2022 and the Emerson dataset. The Bray-Curtis dissimilarity is a statistical
method that quantifies the similarities between two populations based on the counts of
each occurrence type in the respective populations. In our case, the total TiRP scores per
donor/origin in the Reference or Emerson dataset can be considered as populations.
Therefore, the Bray-Curtis dissimilarity can be employed to quantify whether the TiRP score
can indicate distinct populations of different T cells, namely Treg and Tconv. If the TiRP score
is indeed more similar between two Tregs (or two Tconvs) than one Treg and one Tconv, the
Bray-Curtis (BC) statistic can be used to identify Treg dynamics in a donor population. Using
this approach, we describe a repertoire by using the distribution of TRiP scores. That is, we
enhance the number of data points per individual from 9 as in Figure 4 to 1000 data points
(total number of bins in Bray Curtis statistics, see methods).

In Fig. 5A-B demonstrates that the Emerson data is highly dissimilar for both the Tconv and
the Treg Reference data sets. This can be observed by the scores ranging between 0.05-0.22
for the Treg BC scores and 0.05 - 0.30 for the Tconv BC scores. Moreover there is no apparent
change in the BC score compared to Tconv with an increase in age for both male and female
donors (Fig6). The BC score compared to the Tconv reference set doesn't change over time,
indicating that the TiRP score of a repertoire does not change over someone's lifetime. When
looking at the Treg male/female boxplot we see a similar pattern, the median BC score
remains under 0.3 indicating that the Emerson TiRP populations are highly dissimilar
compared to the Treg reference set and that gender has no impact (Fig7).
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Figure 5: Bray-Curtis scores generated against the Reference dataset.
(A): Bray-Curtis scores generated against the Treg entries of the Reference dataset. (B) Same
as A however scores are generated against the Tconv entries of the Reference dataset.
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Figure 6: Plotting of Bray-Curtis scores against Tconv data entries separated by age.
Scatterplots generated from Bray-Curtis scores from each Tconv data entry, splitted by age
and gender. Trendline per gender is shown.Pink: Female , Red: Male and Grey: Not Applicable
(NA).
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Figure 7: Plotting of Bray-Curtis scores against Treg data entries separated by gender.
Boxplots generated for Bray-Curtis scores against Treg data split by gender. Pink: Female ,
Red: Male and Grey: Not Applicable (NA). None of the differences are statistically significant.

Discussion

This paper examines the application of the TiRP score and its underlying features. According

to Lagattuta et al. (2022), the TiRP score is developed to quantify the propensity of a T cell to

become a Treg solely based on its TCR. To validate this, we attempted to train random forest

models using the TiRP score and the extended scores/data generated. Firstly, since all

randomly generated models were unable to accurately assign the phenotype of T cells based

on TCR, we can conclude that the TiRP score and its derivatives are unsuitable to train

classifiers for determining the origin (Treg or Tconv) of a TCR. Notably, even with a high TiRP

score of approximately 5.91, the Treg: Tconv chance ratio remained around 1:3 (Lagattuta et

al., 2022).
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The TiRP score is based on the biophysicochemical properties of the CDR3, known to

influence Treg fate, such as the presence of hydrophobic or larger amino acids like

tryptophan and tyrosine. Enhanced hydrophobicity increases the affinity to self-pMHC,

promoting Treg development. Another research group (Ko et al., 2020) utilized this

biophysicochemical information, along with V+ J gene information, to train a random forest

classifier model for mouse Treg TCRs. Their model accurately predicted the Treg or Tconv fate

of a TCR, contrasting the likelihood scoring approach of the TiRP score by Laguttuta et al.

Therefore, alternative approaches such as the one employed by Ko et al. or other machine

learning methods (Katayama et al., 2022) may be more effective in predicting Treg TCRs.

Considering that the Emerson dataset includes donor-related data, which could impact Treg

development, we sought to investigate this through the usage of clustering analysis using

TiRP scores. However, the clustering results did not reveal any distinct patterns based on age,

gender, racial group, or CMV status within the dataset. While this may indicate that these

features do not contribute significantly to the composition of the T cell repertoire, previous

research suggests that gender and age do influence Tregness (Robinson et al., 2022; Emerson

et al., 2017; Afshan, Afzal, & Qureshi, 2012), making this interpretation less likely.

Alternatively, The TiRP score may lack the capacity to provide meaningful information on

quantitative population dynamics. This observation is further supported by the failure of the

random forest model and the BC scoring of the donors.

Consequently, after the limited success of the random forest model and the clustering

approach, we calculated the BC scores of the Emerson dataset in comparison to the

reference set to examine population dynamics. As mentioned earlier, the BC score measures

population similarity, in this case, the ratio of TiRP distributed across 1000 bins. The results

indicated that the Emerson dataset exhibited similar dissimilarity to both Treg and Tconv

data. This can be attributed to the dataset containing TCRs from both Treg and Tconv cells.

However, since Tconv cells are more prevalent in the T cell repertoire, we expected the

Emerson dataset to be more similar to the Tconv set. Furthermore, when analyzing the BC

scores in relation to age and gender, no discernible patterns emerged, suggesting that these

features do not significantly influence the BC score. In conclusion, our attempt to predict

Treg and Tconv population dynamics using BC scores did not yield the expected results.

The scoring system of the TiRP score, based on the biophysicochemical properties of amino

acids in the CDR3 and the V/J gene, poses challenges in transforming a likelihood score into a

classifier. Exploring potential solutions remains unknown; however, the aforementioned

machine learning approach could be considered. Nevertheless, the issue of overlapping

Treg-Tconv TCR populations will inevitably impact such an approach (Wolf et al., 2016; Ko et

al., 2020). One possibility could be to initially focus on the non-overlapping TCRs from both

populations and introduce a third classification option that identifies the TCR as ambiguous,

thereby minimizing misclassifications.
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In summary, our findings demonstrate that the likelihood score generated by the TiRP script

is inadequate for population dynamics or the development of a classifier model, primarily

due to the presence of overlapping TCRs and their associated inherent noise.
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