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1 Abstract

Technological advancements in different scientific fields may allow seismic ac-
quisition to be fully autonomous. Due to the high cost, it is still not plausible
for this technology to be used. Autonomous marine seismic acquisition requires
many expensive platforms and vessels to acquire high-quality seismic data. A
straightforward way to reduce the cost of such seismic surveys is by using fewer
platforms. However, this will result in acquiring fewer traces due to the spa-
tial under-sampling caused by using fewer sources and receivers. This project
aims to revisit new developments in compressive sensing techniques to handle
missing data by reconstruction from sparse seismic data. Using data from both
field and numerical settings, we looked into the role of wavefield gradients in
recovering missing data from highly subsampled observations. This included ex-
perimentation with subsampling, different sparsity-promoting solvers, and the
role of transformation of data to different sparse domains. The reconstruction
of different datasets with their gradients using compressive sensing techniques
showed promising results for regularly subsampled data. For the randomly sub-
sampled data, the results were not as promising since the F-K domain is not an
ideal sparse domain for such data.
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Figure 1: Autonomous marine vehicle and seismic acquisition setup (AMV),
from Moldoveanu et al. [9]

2 Introduction

Marine seismic data are usually acquired by towed streamers or stationary re-
ceivers. The towed-streamer acquisition is the more widely used of the two.
Many challenges face seismic acquisition, efficiency, cost, and environmental
and operational issues are some of these challenges. There have been multiple
studies in the field of autonomous seismic acquisition [5, 7, 9, 14, 15], which
is one way to combat some of the challenges faced by seismic acquisition. The
use of fully autonomous marine systems will help significantly in different fields,
from oil and gas exploration to oceanographic studies. Figure 1 shows an au-
tonomous marine vehicle that could be used for autonomous acquisition. Field
experiments comparing ocean-bottom cable (OBC) data to data acquired using
autonomous marine vehicles (AMV) in the Arabian Gulf [2] and the Gulf of
Mexico [8]. The results of these experiments showed the potential of this new
technology. Due to the high cost of this technology, it is still impractical for it
to be widely used.

One way to lower the cost is by acquiring fewer data. This compression
in space can be achieved by sparse spatial subsampling. Trading off coverage
for a lower cost introduces another problem of missing seismic data, which can
be detrimental to the whole seismic survey. Large spaces between sparsely
distributed data points introduce special aliasing according to the Nyquist-
Shannon theorem. The Nyquist-Shannon theorem states that the sampling
rate for regularly-sampled data must be at least twice its expected frequency to
produce a signal accurately and prevent aliasing [13]. To overcome these tra-
ditional constraints, reconstructing sparse irregularly-sampled data is an active
field of study [10, 4]. Here, we use the concepts of compressive sensing and
gradient-based reconstruction to lower the sampling rate than that required by
the Nyquist-Shannon theorem. Two densely sampled datasets were used to
test the gradient-based reconstruction, 2D seismic data, and synthetic ocean
turbulence data, with different subsampling patterns (regular and random).
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3 Compressive sensing

3.1 Compression vs compressive sensing

Both compression and compressive sensing utilize the sparsity of signals in dif-
ferent domains. Compression minimizes data size without lowering the quality
below a specific threshold. Compressive sensing, on the other hand, is a tech-
nique used to reconstruct a signal from fewer samples than what is required
by the Nyquist-Shannon theorem [6]. Compression transforms the measured
data into a different domain with a sparse representation of the signal. By only
keeping coefficients representing the signal and zeroing out everything else, we
are left with a sparse representation of the signal. Finally, this sparse represen-
tation is transformed back into the original domain. Compressive sensing uses
a similar technique, but instead of measuring the data and then throwing away
what is not needed, only a fraction of the data is measured.

Compressive sensing can be achieved under two conditions, sparsity
and incoherence. By sampling the data randomly, incoherence is achieved and
aliasing is avoided. By transforming the signal to a basis with a sparse repre-
sentation (like Fourier or Wavelet), the sparsity can be exploited to reconstruct
a full signal. Figure 2 shows how keeping only 5% of the data in the Fourier
domain is enough to reconstruct the original image with sufficient quality. Equa-
tions 1,2 and 3 show how the compressive sensing technique work. In equation
1, dmod is a modeled densely sampled data, df its sparse representation in the
Fourier domain, and FH being the adjoint Fourier transform. In equation 2, the
densely sampled data dmod is sampled, resulting in dobs with R being the restric-
tion operator. Finally, in equation 3, the densely sampled data is substituted
with its equivalent FH df and then solved for df .

dmod = FH df (1)

dobs = R dmod (2)

dobs = R FH df (3)
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Figure 2: Compression illustration with fast Fourier transform, from Brunton
and Kutz (2022) [3]
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3.2 Optimization problem

Equation 3 is an inverse problem where we need to find df that satisfies the
problem. However, there are many possible solutions making this an ill-posed
problem. Equation 4 shows the optimization problem.

min||R FH df − dobs|| (4)

Solving this problem requires more information. The constraint for this problem
becomes the sparsest possible solution that is consistent with the measurements.
The l0 norm shown in equation 5 counts the total number of nonzero elements
making it an indication of sparsity.

min||R FH df − dobs||+ λ||df ||0 (5)

However, using l0 norm as a constraint makes the problem non-convex and
computationally challenging to solve. Instead, an l1 norm is used, shown in
equation 4, which calculates the sum of the absolute values. Candes-Romberg-
Tao (2006) found that by minimizing the l1 norm, the sparsest solution that
satisfies the system of equations can be estimated. The solver that was chosen
is the fast iterative shrinkage-thresholding algorithm (FISTA) [1].

min||R FH df − dobs||+ λ||df ||1 (6)

As this is a large-scale inverse problem, it is not efficient to compute and manip-
ulate matrices explicitly. Instead, these operations can be described by functions
with matrix-vector products in forward and adjoint modes. Pylops [11] is an
open-source python library that was used throughout this project for linear
optimization.
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Figure 3: 1D signal in the frequency domain (top) and time domain (bottom)

4 Compressive sensing reconstruction

4.1 1D signal reconstruction

To put the compressive sensing technique into practice, we can look into a simple
1D signal and reconstruct it from under-sampled measurements. Figure 3 shows
a signal in the frequency and time domains. The signal has only two frequencies,
and according to the Nyquist-Shannon theorem, we need to sample it twice the
highest frequency. If we under-sample it, as shown in figure 4, we can see that
it is impossible to reconstruct the original signal. This is where compressive
sensing shines, where it can reconstruct an under-sampled signal.

Before reconstructing the signal, we compared the effects of regular
and random sampling. Figures 5 and 6 show a regularly sampled signal and its
reconstruction, respectively. While figures 7 and 8 show a randomly sampled
one and its reconstruction, respectively. The randomly sampled signal produced
a faithful reconstruction of the original signal. The problem was solved using
a sparsity-promoting solver that minimizes the L1 norm. If a non-sparsity pro-
moting solver was used, like least square, then the reconstruction fails, as shown
in figure 9, since we want the sparsest solution possible. Figure 10 show the
errors when using different regular and random sampling intervals. Random
sampling gives better results, with the reconstruction being faithful when using
much fewer data.
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Figure 4: Sampled signal (top) and interpolated signal (bottom)

Figure 5: Regularly sampled signal
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Figure 6: Reconstruction of a regularly sampled signal in the frequency domain
(top) and time domain (bottom)

Figure 7: Randomly sampled signal
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Figure 8: Reconstruction of a randomly sampled signal in the frequency domain
(top) and time domain (bottom)

Figure 9: Reconstruction using LSQR solver in the frequency domain (top) and
time domain (bottom)
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Figure 10: Regular and random sampling reconstruction errors with different
sampling intervals

4.2 2D seismic data reconstruction

After showing the compressive sensing technique working on a simple 1D signal,
The next step was to apply it to a real dataset. A 2D seismic data from the
Gulf of Suez was chosen first. Since the data is not sparse in the time domain,
it needs to be transformed into a domain with a sparse representation. In this
case, it was the F-K domain. Figure 11 shows a shot gather and its equivalent
in the F-K domain. Unlike the 1D signal, the 2D seismic data is not entirely
sparse in the F-K domain.

4.2.1 Preconditioning

The reconstruction problem is an underdetermined system of equations. To
help produce better results, a priori information is needed. A physics-based
preconditioner was implemented in the F-K domain as a mask, as shown in
figure 12. The dispersion in the F-K domain is estimated with a triangle shape
using the constant velocity of water. By adding the F-K domain preconditioner
to equation 3 mentioned before, it becomes equation 7.

dobs = R Pfk FH df (7)

4.2.2 Regular subsampling

Figure 13 shows the data subsampled regularly using only 50% of the data.
The subsampled data is transformed into the F-K domain. The data in the F-K
domain show an aliasing effect due to the gaps in the data. Precondition in the
F-K domain and then solve. Figure 14 shows the results, while figure 15 shows
the errors using different subsampling intervals.
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Figure 11: A shot gather in the time domain (left) and F-K domain (right)

Figure 12: F-K domain preconditioning
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Figure 13: Regular subsampling in the time domain (left) and F-K domain
(right)

Figure 14: Reconstruction of regularly subsampled data

13



Figure 15: Regularly subsampled data reconstruction errors with different sub-
sampling intervals

4.2.3 Random subsampling

Figure 16 shows the data subsampled randomly using only 50% of the data.
The subsampled data is transformed into the F-K domain. Unlike the regularly
subsampled data, the data is not aliased in the F-K domain. Figure 17 show the
reconstruction results, while figure 18 shows the errors using different subsam-
pling intervals. Comparing this to the regularly subsampled data, it produced
better results using the same subsampling interval.
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Figure 16: Random subsampling in the time domain (left) and F-K domain
(right)

Figure 17: Reconstruction of randomly subsampled data
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Figure 18: Randomly subsampled data reconstruction errors with different sub-
sampling intervals

Figure 19: Comparing reconstruction errors for randomly and regularly sub-
sampled data
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5 Gradient based compressive sensing

The use of gradients of the wavefield data can further improve reconstruction
using compressive sensing. Linden (1959) showed that by using the first-order
gradient, the minimum sampling rate required for a faithful reconstruction is
lowered by a factor of two. Robertsson et al. (2008) improved this by using
both the first and second-order gradients to lower the minimum sampling rate
by a factor of three. The problem with the first and second gradients becomes:

 d

ṡḋ

s̈d̈

 =

 RFH

ṡRFHD1

s̈RFHD2

m (8)

D1 = RFHdiag(ikn)F (9)

D2 = RFHdiag(ikn)
2F (10)

The first equation is the classical interpolation equation, and the sec-
ond and third equations are for the first and second-order derivatives, respec-
tively. d being the measured data, R the restriction operator, the inverse Fourier
transform, m the desired output, and D1 and D2 are the operators that apply
the spatial derivatives in the F-K domain. Since the derivative data may have
a different range from the data d, we scale these equations on both sides so that
inversion will not favor matching d over the other two datasets. Equations 9
10 are the Fourier-based models for spatial derivatives with diag(ikn) being a
diagonal matrix with wavenumbers.

5.1 2D Seismic data reconstruction

The same 2D seismic dataset from the Gulf of Suez is used here again but with
the incorporation of gradients. The first and second-order gradients were nu-
merically calculated from the well-sampled dataset. However, in a real scenario,
the gradient data must be measured by equipment, resulting in noisier gradient
data. Figure 20 shows the first and second-order deviates for the Gulf of Suez
dataset. Using the gradient data, the Gulf of Suez dataset was reconstructed
by subsampling the dataset regularly and randomly.

5.1.1 Regular subsampling

Figure 21 shows the reconstruction result by regularly subsampling a third of
the dataset, while figure 22 shows the error for different reconstructions using
different subsampling intervals. According to these results, the reconstruction
is faithful when using as low as a third of the dataset.
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Figure 20: A shot gather with its first and second-order derivatives

Figure 21: Reconstruction with regular subsampling
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Figure 22: Regularly subsampled data reconstruction errors with different sub-
sampling intervals

5.1.2 Random subsampling

Figure 23 shows the reconstruction result by randomly subsampling a third of
the dataset, while figure 24 shows the error for different reconstructions using
different subsampling intervals. Unlike the regularly subsampled dataset recon-
struction, the randomly sampled dataset reconstruction is not as good.

5.2 2D synthetic ocean turbulence data reconstruction

Another dataset was used to test the gradient-based compressive sensing tech-
nique. It is a synthetic ocean turbulence dataset that was generated from a
2D ocean turbulence model (figure 26). Even though there is no contrast in
the speed of waves in water, temperature and salinity variations caused by tur-
bulence cause a contrast in the same medium. The generated data include
direct arrivals and reflections from sediments and turbulence, with the direct
arrivals and sediment reflections having a strong amplitude compared to the
turbulence ones. For this reason, The direct arrivals and sediment reflections
were suppressed (figure 27). Figure 28 shows the synthetic dataset in the time
and F-K domains while figure 29 shows the synthetic dataset with its first and
second-order derivatives.

5.2.1 Preconditioning

Two physics-based priors were implemented for the synthetic turbulence dataset,
one in the time domain and another in the F-K domain, and are implemented as
masks where we expect the signal to belong. For the F-K domain preconditioner,
the dispersion is estimated with a triangle shape by using the constant velocity
of water (figure 30). For the time domain preconditioner, a constant wave speed
is assumed as it is in water. Figure 30 compares the result of the reconstruction
with and without the preconditioning mask, with the noise outside the desired
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Figure 23: Reconstruction with random subsampling

Figure 24: Randomly subsampled data reconstruction errors with different sub-
sampling intervals

20



Figure 25: Comparing reconstruction errors for randomly and regularly sub-
sampled data

Figure 26: 2D ocean turbulence model [12]
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Figure 27: Before (left) and after (right) filtering direct arrivals and sediments
reflections
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Figure 28: Synthetic data in the time domain (left) and F-K domain (right)

Figure 29: A shot gather with its first and second-order derivatives
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Figure 30: F-K domain preconditioning

area being eliminated. By taking the two preconditioners into account, equation
3 then becomes 11 with Pxt and Pfk being the space-time and F-K domains
preconditioners, respectively.

dobs = Pxt R Pfk FH df (11)

5.2.2 Regular subsampling

Figures 32 show the regularly subsampled turbulence dataset in the time and
F-K domains, respectively. The result of the reconstruction is shown in figure
33. It managed to reconstruct the original data with only a third of the data.
In figure 34, we compared different subsampling intervals and their errors, with
the reconstruction being faithful when using a third of the data or more.

5.2.3 Random subsampling

Figures 35 show the randomly subsampled turbulence dataset in the time and
F-K domains, respectively. The result of the reconstruction is shown in figure
36. This reconstruction is not as good as the regularly subsampled one, mainly
because of the large gaps in the data. Figure 37 show reconstruction errors
using different subsampling intervals, while figure 38 compares the regular and
random errors.
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Figure 31: Example before and after time domain preconditioning

Figure 32: Regular subsampling in the time domain (left) and F-K domain
(right)
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Figure 33: Reconstruction with regular subsampling

Figure 34: Regularly subsampled data reconstruction errors with different sub-
sampling intervals
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Figure 35: Random subsampling in the time domain (left) and F-K domain
(right)

Figure 36: Reconstruction with random subsampling
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Figure 37: Randomly subsampled data reconstruction errors with different sub-
sampling intervals

Figure 38: Comparing reconstruction errors for randomly and regularly sub-
sampled data
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6 Conclusion

Though highly desired, fully autonomous marine seismic acquisition remains
costly and not commercially viable. One way to reduce the cost is by acquiring
fewer data, relying thus on fewer and more efficient autonomous platforms.
However, this introduces another problem which is missing data. The goal is to
minimize the cost while at the same time acquiring as much information (with
fewer data) as possible. This can be achieved by using the compressive sensing
technique, which can reconstruct signals from under-sampled measurements.
Compressive sensing exploits the sparsity of a signal to recover it from fewer
samples than that required by the Nyquest-Shannon theorem. The use of first
and second-order gradients can further lower this requirement.

Two datasets were used, the Gulf of Suez seismic data and ocean tur-
bulence synthetic data, and subsampled regularly and randomly. The gradients
were computed numerically, which is not the same as gradient data acquired
in the field. This could produce worse reconstructions as the gradient data ac-
quired in the field is not as clean as the one computed numerically. Thus a more
thorough understanding of these reconstructions under realistic noise situations
is crucial, though it is beyond the scope of this study. The two datasets were
transformed to the F-K domain as it is sparser than the space-time domain, as
sparsity is a requirement for the compressive sensing technique.

The two datasets were reconstructed successfully by using only a third
of the data. However, The F-K domain is not ideal for this reconstruction as
it is not sufficiently sparse for the structure of seismic wavefields. This makes
the problem data-dependent, with data sparser in the F-K domain producing
better results. There are potentially better domains that could produce better
results. One such domain is the curvelet domain, which is known to be a sparser
representation of wavefields than the F-K domain.
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