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1. Introduction 

 
1.1. Motivation and context 

We are doing this research in association with TAUW, which is an organization that is committed to 

sustainable development, environmental stewardship, and social responsibility. They aim to 

contribute to a more sustainable and resilient future by providing solutions that balance economic, 

environmental, and social interests. 

TAUW uses the NDFF database to advise on measures pertaining to biodiversity and policy. Together 

with dedicated fieldwork that is complementary to these insights, they utilize this database to 

monitor biodiversity and provide limited insight into the current status of biodiversity. 

The Dutch National Database on Flora and Fauna, or NDFF, has more than 20 million records spanning 

more than 40 years and practically all significant taxa found in the Netherlands. 

The NDFF is a data warehouse that was built to house information about the distribution of plants 

and animals in the Netherlands. The collection includes observations from structured surveys as well 

as chance observations made by volunteers. The database as a result suffers from frequent observer 

effects, such as places with higher documentation than others. 

The database specifically includes geospatial information related to species observations, species 

occurrences, and species-specific attributes such as abundance, habitat preferences, and 

conservation status. This information is usually collected through field surveys, monitoring programs, 

and citizen science contributions. 

Researchers, conservationists, policymakers, and the general public can access the NDFF data to gain 

insights into the biodiversity of the Netherlands and support conservation and management 

decisions. 

Throughout our research, we would predict missing data caused by the common observer effects that 

are often present in the NDFF.  

We want to predict values of the occurrence of butterflies based on environmental characteristics and 

observations from the NDFF for areas where we don’t have any information. Based on other areas 

that are better represented in the database, we would build our training set by combining lots of other 

data that describe the ecotope or habitat of that particular species.  

A machine learning model that has been trained on the environmental traits of the more documented 

locations can be used to forecast the frequency of occurrences in the less well-recorded areas to fill 

in these "gaps" in the data. Data such as satellite imaging, land use data, soil data, distance to 

roads/build-up, etc. should be able to describe these qualities. 

Following data preparation, a machine learning model can be trained on a subset of the data. Support 

vector machines, random forests, linear regression (with or without feature interaction), etc would 

all be contenders. Regularization techniques can be employed to enhance the model's performance 
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because not all features will be of equal importance to it. A comparison between various models will 

be done in our research.  

 

1.2. Research Question 

We want to be able to make estimates for places where we don't have any observations, hence we're 

interested in forecasting a species' occurrences.  

In places where we lack knowledge, we would like to make predictions about values such as the 

presence/absence of certain species. It’s better to create the training set by integrating additional 

data that speak to an ecotope or habitat of that specific species based on other places that are better 

represented in the NDFF such as vector data or aerial photography (Top10NL, Natura2000, etc.). Our 

main research question of this study is: 

RQ: How can we use machine learning to fill the gaps in the NDFF? 

To answer this question, two research areas have been formulated: 

RQ1: We will focus more on modeling the presence/absence of species rather than just predicting 

their count. 

RQ2: Along with that, we will also focus on the features which help us to predict whether the species 

is observed or missing. 

Our research is distributed into the following stages: 

A. The production of a "ready for analysis" data set with attributes of a location or area listed in 

each row together with the matching occurrence counts. We assembled data from many 

sources, choose the appropriate level of aggregation (such as area size), and included 

fabricated 0 counts. 

B. Using machine learning algorithms such as linear regression, support vector regression, 

random forests, etc., analyze this data set to produce predictive models. Additionally, this 

section aims to provide light on the characteristics/features that are crucial for predicting the 

presence/absence of a species. 

C. Reviewing the developed models. 

 

1.3. Literature Overview 

The goal of species distribution modeling (SDM) or predicting where a species is likely to be found, 

is to identify patterns of space (and occasionally time) in which a species occurs. Powerful machine 

learning methods have recently attracted a lot of attention as a solution to difficult ecological 

problems (Elith Jane Elith et al. – Presence-only and Presence-absence Data for Comparing Species 

Distribution Modeling Methods 70 et al. 2006).  
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When developing an SDM, a number of factors need to be taken into account, such as the suitability 

of the underlying model assumptions, the choice of modeling algorithms, the tuning of the model 

parameters and complexity, the selection of background data, and the availability of species data and 

environmental predictors (Araujo et al. 2019). Predictions may be greatly influenced by these factors. 

Given the variety of possible methodologies, the selection of the modeling algorithm is frequently 

significant among these factors. There is continual interest in detecting broad trends in predictive 

performance across methodologies because the predictive success of different methods varies 

(Pearson et al. 2006; Thuiller et al. 2009). 

Species-distribution modelers frequently use model averaging or ensemble modeling because it is 

thought to have a stronger predictive power and to be more trustworthy than single models (Araujo 

and New 2007, Marmion et al. 2009; Hao et al. 2019).  

In biogeography, various types of generalized linear models (GLMs), classification and regression trees 

(CART), ecological niche factor analysis (ENFA), genetic algorithms (GA), point pattern analysis 

algorithms, maximum entropy-based techniques, and similar methods are preferred for spatial 

prediction. The kind of occurrence records we use—presence-only records, presence/absence 

records, counts, or real measurements of a species' attributes—determine the kind of model we can 

employ in significant part. (T. Hengl; H. Sierdsema) 

In Ecological modeling, forecasting species abundance and predicting species presence or absence 

are two different goals. Estimating a species' population size or quantity in a certain location while 

taking environmental conditions and habitat features into account is the process of predicting species 

abundance. Its goal is to quantify a species' abundance, such as its population size or biomass, in 

order to gain knowledge of its population dynamics and geographic dispersion. A species' occurrence 

at a certain area or habitat is the focus of forecasting species presence/absence, on the other hand. 

Understanding species distribution patterns and guiding conservation efforts, these models evaluate 

the presence or absence of a species based on elements like environmental variables and habitat 

appropriateness. 

It is less well-established how species traits affect the accuracy of abundance models as compared to 

that of presence/absence models. According to theory, it may be difficult to accurately predict 

abundance for some species, such as those with wide geographic ranges and dense populations 

(Chisholm and MullerLandau 2011, Peterson et al. 2011, Yaez-Arenas et al. 2014, Chu et al. 2016, 

Bowler et al. 2017, Yenni et al. 2017, Hallett et al. 2018). Contrarily, rare (low mean abundance) 

species with constrained niches frequently display more stable populations, and as a result, 

abundance might be more predictable (Yenni et al. 2017). A species distribution model's performance 

may also be impacted by the qualities of the data.  

By being less regionally and environmentally biased, more samples generally enhance the 

performance of species distribution models, which should also enhance the performance of 

abundance models (Yaez-Arenas et al., 2014). These consequences haven't been examined, though. 

The performance of species distribution models is frequently correlated with species and data 

properties. For conservation and management applications, specifically in relation to commonness 

and rarity, it is essential to establish how and why model performance varies for different species. 
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Common species frequently make the biggest contributions to ecosystem functioning in terms of their 

local and regional abundance (Genung et al. 2020). Low abundance and range-restricted species may 

be given priority for conservation since they are more likely to go extinct (Purvis et al. 2000; Ceballos 

et al. 2020) and may have special functions in ecosystems (Violle et al. 2017). In general, species with 

smaller ranges, less endemicity, and non-migratory behaviours perform better in species distribution 

models; performance is also favorably impacted by the number of observations (McPherson and Jetz 

2007, Newbold et al. 2009, Chefaoui et al. 2011, Thuiller et al. 2019). 

 

2. Data 

 
2.1. Motivation for choice of target species 

 

Our motivations behind the choice of the target species are listed below: 

I. The "Heideblauwtje" species with a variety of traits are interesting for our research since they 

are also modeled by NDFF which can help us to validate our research in the future. 

II. We chose the insect species based on the NDFF's thorough documentation, low dispersal, and 

lack of significant reliance on the presence of other kinds of animal species. Abiotic factors 

like vegetation characteristics, plant habitats, etc have a greater influence on these 

occurrences. 

 

2.2. Data sources and pre-processing  

 

We compared the land use classification found in open data sources (such as BRT TOP10NL, N2000, 

etc.) for the view landscapes and biotopes that are of importance for identifying biodiversity. The 

majority of these data sources were obtained at PDOK or nationaalgeoregister. 

Our Area of Interest (AOI) or the geographic extent of our research was Amersfoort / RD New -- 

Netherlands - Holland – Dutch (EPSG:28992). 

Some of the dataset's components were also created using satellite images that the planetary 

computer had downloaded in response to our AOI shapefile. 

The general strategy for data preparation was:  

1. Downloading the data 

2. If necessary, reprojecting to epsg:28992 

3. Clipping to the AOI's maximum extent  

4. Using the CLC (Corine Land Cover dataset) 2018 as a model for rasterizing  

5. Conversion to CSV  

https://www.pdok.nl/datasets
https://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/home
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6. Combining all CSV data into a single final dataset.   

7. Next, variable names were cleaned. 

 

The NDFF was cleaned by removing all data older than 2012 and records whose area exceeded the 

size of a cell. 

The ndff_combined_dataset.csv file contains the merged dataset. Also, there is the target raster 

named “rasterized_ndff_count.tiff” and a document “named lookup_merged_categories.txt” that 

defines the categories which are merged in the dataset.  

Each record in the CSV file is an observation with information on how it was done. The observation 

may be a point or polygon. The butterfly observations are also added per year to the dataset, as well 

as there is a column containing the total. 

Binary maps are added to datasets with only one category. Datasets with numerous categories are 

added as a stacked TIF, where each band represents a binary map for a single category.  

The number of rows is 207,957 rows and 31 columns in the combined data set with 1243 non-zero 

records, where the grid cell size is 100x100m. 

The ndff_count_total is the total abundance of observations in each row, corresponding to a cell 

(center). This represents the total of all observations made over the previous ten years (earlier data 

are not indicative of a species' current distribution).  

Additionally, we got rid of the dataset's extremely long category names. More variable truncation was 

a possibility, but we ultimately decided not to consider it because it would make the dataset harder 

to understand.  With regard to several of the categorical variables, we consolidated the categories 

with extremely low counts.  

 

2.3. Selected data exploration 

 

NDFF is built on observer records (point registrations). The number of observer logs is large in both 

urban and natural regions that are easily accessible to people, but it is low or non-existent in areas 

that are either difficult to access or not as well-known as natural areas. Additionally, there is a wide 

range in the number of observations made by each contributor. As a result, the dataset is biased 

because flora and fauna are only found in specific locations clustered together or close to the 

residences of few contributors. The quantity of observer logs also changes over time. 

Thus, using the NDFF alone to study biodiversity will only provide extremely limited insights at this 

time. To build a model regarding the NDFF, further open geographic data will be needed like 

environmental elements like a biotope or a natural habitat. The model should become familiar with 

these environmental traits that might be related to the existence of an observation.  



8 
 

Considerable amounts of information are available, including the BRT, BGT, BAG, AHN, Natura2000, 

BRP (gewaspercelen), TOP10NL, soil maps, "Houtopstanden," as well as aerial or satellite imagery for 

research.  

The following are environmental predictors of interest for our research analysis: 

Input features: 

I. AAN 

II. bro_genese 

III. bro_landform 

IV. BRP_gewas 

V. cbs_landuse 

VI. clc2018 

VII. ndvi_2022 

VIII. natura_2000 

IX. fysisch_geografische_regios 

X. nationale_parken 

XI. NOK_begrenzing 

XII. NOK_beheer 

XIII. NOK_planologische_ehs 

XIV. NOK_verwervinginrichting 

XV. SGM_ondergrond 

XVI. Stiltegebieden 

XVII. Wetlands 

 

See Table 1 for the description of different data sources(features). 

 

Table 1: Description of the features used for the model. 

 

Features Description Domain values 

 
natura_2000 Natura 2000 is a geospatial dataset 

that combines the information 

about Natura 2000 protected areas 

with the PDOK infrastructure. It 

includes data on the boundaries and 

locations of Natura 2000 sites within 

the Netherlands, potentially 

accompanied by additional 

geographic information provided by 

PDOK. 

Integer values: 

 0 (Not 
protected area) 

 1 (Protected 
area) 
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wetlands Wetlands contain geospatial 

information about the boundaries 
and locations of wetland areas 
within the Netherlands. It may 
include details about different types 
of wetlands, such as their size, 
hydrological characteristics, and 
associated vegetation. 

 

Integer value: 

 0 (Not wetland 
area) 

 1 (Wetland 
area) 

 
nationale_parken Nationale Parken includes 

geospatial information about the 

boundaries and locations of 

national parks within the 

Netherlands. It may provide details 

about the size, boundaries, and key 

features of each national park, such 

as notable landscapes, habitats, and 

recreational facilities. 

Integer values: 

 0 (Not National 

Park area) 

 1 (National Park 

area) 

 

 
fysisch_geografische_regios Fysisch Geografische Regios 

contains geospatial information 

about the boundaries and locations 

of different physical geographic 

regions within the Netherlands. 

These regions could be classified 

based on various factors such as 

landform types, soil characteristics, 

or hydrological patterns. 

 
Object values: 
This is a dataset on its 
own without categories 
being merged. 

 
Basic Registration of Crop Plots 
(BRP): 
 
BRP_gewas 
 
 
 

BRP_gewas specifically focuses on 

the crop or agricultural land use 

information associated with each 

registered parcel. It provides 

geospatial data that identifies the 

types of crops cultivated on 

different parcels of agricultural land 

in the Netherlands. 

 
Object values: 
The categorical values 
that have a very low 
count, that is those that 
are very rare in the 
dataset, were merged 
together. 

Agricultural Area Netherlands 
(AAN) 

AAN includes data on the 

boundaries and characteristics of 

agricultural land parcels throughout 

the country. It may contain 

Integer values: 

 0 (Not 

agricultural 

area) 
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information such as land use types, 

crop types, agricultural practices, 

parcel sizes, and ownership details. 

 1 (Agricultural 

area) 

 
Normalized Difference 
Vegetation Index (NDVI): 
 
ndvi_2022 

NDVI is a widely used vegetation 

index in remote sensing and satellite 

imagery analysis. It is calculated 

from the reflectance values of red 

and near-infrared (NIR) light 

wavelengths captured by satellite 

sensors. It is a valuable tool for 

assessing vegetation health, 

density, and biomass. It provides 

information on vegetation growth, 

changes, and spatial distribution 

over time. 

 
Float values: (-0.00009 

to +0.5) 
 

NDVI is mainly derived 
from the below 
formula: 
 
NDVI = (NIR - Red) / 
(NIR + Red) 
 

 
cbs_landuse 
 
 
 

CBS_landuse contains geospatial 

information about the land use 

categories and their spatial 

distribution across the country. It 

includes categories such as 

residential areas, agricultural land, 

forests, industrial zones, water 

bodies, and other land use types. 

The dataset also provides attributes 

such as area size, land use codes, 

and possibly additional information 

about land use patterns and trends. 

 
Object values: 
The categorical values 
that have a very low 
count, that is those that 
are very rare in the 
dataset, were merged 
together. 
 

 Building site 

 Cemetery 

 Dry natural area 

 Other 
agricultural 
usage 

 Other inland 
water 

 Sports ground 

 Water with 
recreational 
usage 

 Wet natural 
area 

 Woodland 
 

 
Nature measurement on map 
(NOK): 

NOK typically includes geospatial 

information related to nature 

Integer values: 

 0 
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i. NOK_begrenzing 

ii. NOK_beheer 
iii. NOK_planologische_ehs 
iv. NOK_verwervinginrichting 

conservation and management 

efforts. It contains data on various 

aspects, such as the boundaries of 

protected areas, habitat quality, 

biodiversity assessments, ecological 

connectivity, and species 

distributions. The dataset may also 

include information about specific 

nature management actions, 

restoration projects, and 

conservation targets. 

 1 

 
stiltegebieden Stiltegebieden contains geospatial 

information about the boundaries 

and locations of designated quiet 

areas throughout the country. 

These areas are typically chosen 

based on their natural 

characteristics, distance from major 

roads or urban centers, and absence 

of significant noise sources. 

Stiltegebieden is often established 

to protect and preserve natural 

soundscapes, promote a sense of 

calm and relaxation, and provide 

opportunities for solitude and 

reflection. 

Integer values: 

 0 (Not a quiet 
area) 

 1 (Quiet area) 

 
National Database of Flora and 
Fauna (NDFF): 
 

i. ndff_count_total 
ii. ndff_count_2012 
iii. ndff_count_2013 
iv. ndff_count_2014 
v. ndff_count_2015 

vi. ndff_count_2016 
vii. ndff_count_2017 

viii. ndff_count_2018 
ix. ndff_count_2019 
x. ndff_count_2020 

xi. ndff_count_2021 
xii. ndff_count_2022 

 

NDFF is the national database that 

collects and manages data on the 

occurrence, distribution, and 

characteristics of various plant and 

animal species in the Netherlands. It 

serves as a central repository for 

biodiversity information and is 

maintained by various 

organizations, including 

government agencies, research 

institutions, and citizen science 

initiatives. 

 
Integer values: 
 
ndff_count_total: 0 to 
3780 
ndff_count_2012: 0 to 
81 
ndff_count_2013: 0 to 
362 
ndff_count_2014: 0 to 
227 
ndff_count_2015: 0 to 
322 
ndff_count_2016: 0 to 
518 
ndff_count_2017: 0 to 
2001 
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ndff_count_2018: 0 to 
916 
ndff_count_2019: 0 to 
91 
ndff_count_2020: 0 to 
157 
ndff_count_2021: 0 to 
211 
ndff_count_2022: 0 to 
134 
 

 
Corine Land Cover (CLC): 
 
clc2018 
 
 

Corine Land Cover is a pan-

European program that aims to 

classify and map land cover across 

the continent. It provides 

standardized information about 

different land cover categories, such 

as forests, agricultural areas, 

wetlands, urban areas, water 

bodies, and other land cover types. 

The dataset classifies land cover 

based on satellite imagery and 

other available data sources, 

allowing for the assessment of land 

use patterns, environmental 

changes, and habitat fragmentation. 

 
Object values: 
This is a dataset on its 
own. 
 

 112 -
Discontinuous 
urban fabric 

 121 - Industrial 
or commercial 
units 

 124 – Airports 

 142 - Sport and 
leisure facilities 

 211 - Non-
irrigated arable 
land 

 231 – Pastures 

 243 - Land 
principally 
occupied by 
agriculture with 
significant areas 
of natural 
vegetation 

 311 - Broad-
leaved forest 

 312 - 
Coniferous 
forest 

 313 - Mixed 
forest 

 321 - Natural 
grasslands 

 322 - Moors 
and heathland 
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Target Variable (Calculated Per Area): 

ndff_count_total (Total species count for 10 years) 

ndff_count_2012 

ndff_count_2013 

ndff_count_2014 

ndff_count_2015 

 331 - Beaches - 
dunes – sands 
 

 
Base Registration Subsoil (BRO): 
 

i. bro_genese 
ii. bro_landform 

 
 
 

BRO aims to collect and manage 

data related to the geological, 

hydrological, and geotechnical 

properties of the subsurface. It 

includes information about soil 

composition, groundwater levels, 

geological formations, and other 

relevant subsoil features.  It includes 

geospatial information such as 

borehole locations, soil profiles, 

lithological descriptions, 

hydrogeological parameters, and 

geotechnical data. It is collected 

through various methods, including 

drilling, sampling, and geophysical 

surveys. 

 
Object values: 
The categorical values 
that have a very low 
count, that is those that 
are very rare in the 
dataset, were merged 
together. 

 
Soil Map (SGM): 
 
SGM_ondergrond 
 

Soil Map represents the distribution 
and characteristics of soils within a 
specific area or region.  Soil maps 
typically provide information about 
soil types, soil properties (such as 
texture, organic matter content, pH, 
and nutrient levels), soil depth, and 
other relevant soil characteristics. 
These maps are created through 
field surveys, soil sampling, 
laboratory analysis, and spatial 
interpolation techniques. 

 
Object values: 
The categorical values 
that have a very low 
count, that is those that 
are very rare in the 
dataset, were merged 
together. 
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ndff_count_2016 

ndff_count_2017 

ndff_count_2018 

ndff_count_2019 

ndff_count_2020 

ndff_count_2021 

ndff_count_2022 

See Table 2 in Appendix A, section 7.1 for an overview of the data. 

 

3. Method 
 

3.1. Selected methods description 

In our research, we sampled pseudo-absences from locations where there are no observations, and 
using the selected model, we predict all the locations with zero and pseudo-absence observations on 
which we trained our model on. 
 
An overview of all used methods can be found in Table 3 from Appendix B (section 7.2). 

Our initial findings indicated that making predictions about species abundance levels holds limited 

potential. There is way too much noise in the NDFF count data, or there is not enough information in 

the environmental data to estimate abundance. We tried with linear regression model for that but it 

performed quite poorly (accuracies of +/- 10%). The accuracy might be improved significantly with a 

lot more data and careful tuning, but we think the improvements would only be slight and would not 

be feasible given our time and computational resource constraints. On the other hand, our initial 

findings for classification (presence/absence) indicate accuracy levels of about 90%. So, we made our 

move to the classification decision. 

For pre-processing the data, we used one-hot encoding to convert categorical variables into numerical 

representations to use with models that primarily handle numerical data. Also, we used 

MinMaxScaler to scale/transform the input features to a given range. 

We experimented with different machine learning models and evaluated their performance using k-

fold cross-validation scores which helped us to measure how our model predicts out-of-sample. 

We proceeded with classification models like the Decision Tree classifier, Random Forest classifier, 

Extra Trees classifier, Support Vector Machine, K-Nearest Neighbors, and Naive Bayes to analyze our 

research data. Our models helped us to conclude which features are of more relevance to our 

research using the Recursive Feature Elimination technique from Scikit Learn.  
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To perform hyperparameter tuning in the Random Forest Classifier, we used Grid Search with cross-

validation to search through a range of hyperparameter values and find the optimal combination. 

The best model was then evaluated based on Accuracy, F1-Score, Precision, Recall, training time, 

scoring time, and AUC-ROC and we made predictions on the test set using that model. 

 

3.2. Motivation for Used Methods 

 

For our research, we have experimented with various machine learning models. As mentioned in 

section 3.1, we focused on classification models to predict the presence/absence of species due to 

the nature of the data. Below are some important models used along with their motivation for our 

study. 

Random Forest (RF) is an ensemble learning method that is effective for species presence/absence 

prediction due to its ability to handle complex interactions between predictor variables and capture 

non-linear relationships. RF can handle high-dimensional data, account for variable importance, and 

provide robust predictions. When building each tree, RF only picks a random subset at each split of 

the predictor variables. This results in decorrelated trees and lowers the final model's variance, both 

of which improve predictive performance (Hastie et al. 2009). 

Decision Tree is a simple yet powerful algorithm for classification tasks. It partitions the predictor 

variables based on their values to create a tree-like model. Decision trees are intuitive to interpret, 

handle both numerical and categorical data (through one-hot encoding in Python), and can capture 

complex decision boundaries. It can manage correlations between predictor factors and species 

presence that are non-linear. They are capable of calculating the relative weights of various features 

(such as environmental variables) in the classification process. We can determine which 

characteristics have the biggest effects on the classification of species presence by looking at the tree 

structure. The key factors influencing species distributions can help us to prioritize data collection 

efforts and direct future ecological studies. 

Extra trees classifier helps one to construct multiple decision trees using random feature subsets and 

random splits to improve diversity and reduce overfitting. It can handle high-dimensional data, 

provide feature importance measures, and perform well in the presence of noisy or irrelevant 

features.  

We know that Logistic Regression models the relationship between predictor variables and the 

probability of species presence/absence using a logistic function. LR is computationally efficient, 

interpretable, and can handle both continuous and categorical predictors (through one-hot encoding 

in Python. However, it assumes a linear relationship between predictors and the log odds of 

presence/absence. 

Complex linkages and significant predictors are adeptly captured by Random Forest and Extra Trees 

Classifier. While Logistic Regression calculates probability and manages several types of predictors, 

Decision Trees offer interpretability. Naive Bayes effectively manages high-dimensional data whereas 

KNN takes local context and spatial linkages into account.  
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We concentrated on the above modeling approaches that helped with model fitting and model 

selection when deciding which ones to include. By punishing and reducing regression coefficients, for 

example, regularization approaches (Friedman et al. 2010), hyperparameters tuning, and the Random 

elimination technique enhanced the predictive performance of models (James et al. 2013). These 

techniques also cause a significant decrease or removal of unimportant features. 

 

4. Results and analysis 

In Appendix D, section 7.4 (Figures 6, 7, 8, 9, and 10), we provide the descriptive analysis.  

We considered the species which had a count equal to and greater than 1 as presence and all others 

as an absence. 

In our research, we have combined 1243 records of presence and an equal amount of absence records 

randomly from the absence data to form a balanced dataset for our model. We have performed 5-

fold cross-validation on this dataset with Decision Tree and Random Forest model. We found that the 

mean cross-validation score for Random Forest (0.82) is higher than the Decision Tree (0.76) model.  

Also, we improved the performance of the RF model using data pre-processing, feature engineering, 

and hyperparameter tuning. We have performed hyperparameter tuning on our RF model with 

parameters as follows: 'n_estimators': [100, 200, 300], 'max_depth': [None, 5, 10], 

'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'max_features': ['sqrt', 'log2'].  

As a result, we have received optimal parameters ('max_depth': 10, 'max_features': 'sqrt', 

'min_samples_leaf': 2, 'min_samples_split': 5, 'n_estimators': 300). 

We have used 80% of this dataset as training data and the rest 20% as testing data. We have tried 

various classification models to evaluate and compare performance metrics. Overall, we found that 

the Random Forest model gives good results with parameters received through hyperparameter 

tuning. 

Also, after successful model evaluation, we have predicted the presence of species for the whole 

absence data.   

In our analysis, we found that the Random Forest (RF) models’ accuracy was much higher compared 

to other machine learning models. It helped us to predict species presence/absence with about 91% 

accuracy.   

Table 4 in Appendix C (section 7.3) provides an overview of our findings regarding all model’s key 

performance metrics. 

In Figure 1, we have filled the gaps and visualized the outcome for the complete dataset. It shows 

the possibility of species’ presence predicted by our model. 
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Figure 1: Visualization of the prediction of butterfly presence using Random Forest. 

In Figure 2, we have shown the features which are more important to predict the presence of 

butterflies. Some feature names include actual features along with important values for that 

feature. 

 

Figure 2: Barplot of top 10 features predicting butterfly presence/absence using Random Forest. 
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From Figure 3, we can see that the AUC score for the Random Forest model is better than other 

models. 

 

Figure 3: Plots for the ROC curve for each model with the AUC score displayed in the legend. 

In Figure 4, we can see Support Vector Machine takes more time to train and score the model. On the 

other hand, Naive Bayes and Logistic Regression take less scoring time but give less accuracy. Also, 

Random Forest takes an average time to train along with less time to score and good accuracy. 

 

 

Figure 4: Radar Chart showing a comprehensive view of the performance of each model across 

multiple metrics. 
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5. Conclusion and discussion 
 

5.1. Implications and Considerations for domain setting 

 
A. After data analysis, we found that for the butterfly species, there have been no absence 

records in the NDFF during the past ten years across the entire Netherlands. 

B. The features that can predict whether the species count is available for a certain location are 

also of much interest to our research.  

C. We have considered different performance metrics of various models to find the best model 

and parameters for making good predictions. 

D. As discussed with TAUW, we considered that older records are not relevant for our current 

distribution of butterflies.  

 

5.2. Interpretation and Discussion 

 

It is possible to estimate species geographic distributions using a variety of environmental factors. 

Although some modeling strategies generally outperform others, no one model is better than another 

in every circumstance. Autocorrelation, complex and nonlinear interactions, and changing spatial 

interaction are frequent features of natural systems. In these cases, nonparametric models frequently 

perform better than conventional parametric models (Evans and Cushman 2009). 

Previous studies have shown that one of the main sources of variability in species presence/absence 

model performance is the structure of data (Fielding and Haworth 1995), especially the prevalence 

of species (Leathwick et al. 2006, Meynard and Quinn 2007, Syphard and Franklin 2009, Santika 2011, 

Madon et al. 2013) and the strength and shape of environmental gradients (Thuiller et al.2003, Austin 

et al. 2006, Santika and Hutchinson 2009, Hoffman et al. 2010, Santika 2011). 

Here, we compare a variety of statistical and machine-learning methods frequently used for 

estimating species distributions. Our results highlight the significance of considering the peculiarities 

of presence-absence data when deciding how to implement different methods, in addition to 

providing particular conclusions concerning the effectiveness of alternative techniques. All models 

were fitted using the Python programming language. 

The research shows good results with classification models for the presence/absence of species and 

the Random Forest classifier with hyperparameter tuning gave us optimal prediction with approx. 91 

% accuracy. 

Table 4 in Appendix C (section 7.3) provides an overview of our findings regarding the model’s 

performance metrics. 
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5.3. Threats to validity 

 

Some of the threats which our analysis may lead to are: 

I. It's possible that there may be a discrepancy between the time at which a count was 

conducted and the time at which the feature values for that region were computed (for 

instance, if the area was once woodland but over that 10-year period houses were erected 

there). This is one of the aspects that was not considered in my analysis. 

II. It can be challenging to successfully combine several data sources because Heideblauwtje 

observations may be gathered using a variety of different techniques. For instance, 

observations obtained by experts and volunteers have significantly different collection biases 

than the ones acquired through a well-designed scientific survey. It can be difficult to handle 

these biases in a rigorous, systematic manner, especially when dealing with big data sets made 

up of hundreds of diverse projects, each with its own unique sampling methods. It is 

frequently necessary to read up on the project's literature in order to comprehend the 

protocols employed for a particular data-gathering project inside a bigger repository. There 

aren't any readily available, defined definitions or methods for quantifying bias for many 

projects, though. 

III. We know that observers are more likely to visit and report sightings in some areas than others 

(hereinafter referred to as "observer bias"), and presence-only data, which contain 

information on species existence but not absence, are subject to bias.  

 

 

5.4. Future work 
 

A. For our future research, we can focus on using deep learning algorithms where we can include 

features that are directly or indirectly influencing the habitat for butterflies as our input. 

B. We can compare the predictions of our models against those of the NDFF-built models like 

‘De Kansenkaart’ (models the likeliness of a species) for our future analysis, which may provide 

us with meaningful insights. 

C. We can enhance our research using backward (or forward) stepwise regression to select only 

the features that contribute the most to predicting the observation count. 

D. In order to confidently study biodiversity using the NDFF and external data sources, we can 

correct for spatio-temporal factors that can be found in the NDFF. 

E. A critical area for model improvement is the incorporation of environmental variation at the 

appropriate spatiotemporal scale for a given species (Roslin et al. 2009; Ashcroft et al. 2014; 

Rebaudo et al. 2016), particularly for projections of future climate effects on species 

occurrence and abundance (Gillingham et al. 2012; Hannah et al. 2014; Maclean et al. 2015; 

Woods et al. 2015). 

F. Fieldwork can be used to find an external source of validation in addition to the standard 

(spatial) evaluation techniques. The species and the locations to be selected will aid to 

determine this. 
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7. Appendix 

7.1. Appendix A: Remarks on data 

Table 2: Data description regarding the input features in our dataset. 

Features Categories Merged Data type Data source 

cbs_landuse 
 

Yes object https://www.pdok.nl/intr
oductie/-/article/cbs-
bestand-bodemgebruik 

 

NOK_begrenzing 
NOK_beheer 
NOK_planologische_ehs 
NOK_verwervinginrichting 

No int64 https://www.pdok.nl/geo
-services/-/article/natuur
meting-op-kaart-nok- 

ndvi_2022 
 

No float64 https://www.pdok.nl/geo
-services/-/article/luchtfo

to-pdok 

clc2018 
 

No object https://land.copernicus.e
u/pan-european/corine-
land-
cover/clc2018?tab=downl
oad 

 

fysisch_geografische_regios 
 

No object https://www.pdok.nl/intr
oductie/-/article/fysisch-
geografische-regio-s 

 

natura_2000 
 

No int64 https://www.pdok.nl/geo
-services/-/article/natura-
2000 

https://www.pdok.nl/introductie/-/article/cbs-bestand-bodemgebruik
https://www.pdok.nl/introductie/-/article/cbs-bestand-bodemgebruik
https://www.pdok.nl/introductie/-/article/cbs-bestand-bodemgebruik
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://www.pdok.nl/introductie/-/article/fysisch-geografische-regio-s
https://www.pdok.nl/introductie/-/article/fysisch-geografische-regio-s
https://www.pdok.nl/introductie/-/article/fysisch-geografische-regio-s
https://www.pdok.nl/geo-services/-/article/natura-2000
https://www.pdok.nl/geo-services/-/article/natura-2000
https://www.pdok.nl/geo-services/-/article/natura-2000


23 
 

nationale_parken 
 

No int64 https://www.pdok.nl/geo
-services/-
/article/nationale-parken 

 

SGM_ondergrond Yes object https://www.pdok.nl/intr
oductie/-/article/bro-
bodemkaart-sgm- 

 

We used Bro to create the 
two variables: genese and 
landforms 
 

bro_genese 
bro_landform 

 

bro_geomorfologischekaart
_genese -> bro_genese 
bro_geomorfologischekaart
_landfrom -> bro_landform 

object https://www.pdok.nl/-
/wms-service-voor-bro-
geomorfologische-kaart 

BRP_gewas Yes object https://www.pdok.nl/intr
oductie/-
/article/basisregistratie-
gewaspercelen-brp- 

 

AAN No int64 https://www.pdok.nl/intr
oductie/-
/article/agrarisch-areaal-
nederland-aan 

 

Stiltegebieden 
 

No int64 https://www.pdok.nl/geo
-services/-
/article/stiltegebieden 

 

Wetlands No int64 https://www.pdok.nl/geo
-services/-
/article/wetlands 

 

7.2. Appendix B: Annotated scripts of method settings 

Table 3: Overview of model implementation settings for predicting butterfly presence/absence and 

corresponding important features selection.  

Machine Learning Model Used techniques 

Random Forest Classifier  Load necessary packages and dataset 
 Check the descriptive statistics of data and its shape 
 Extract categorical and numeric features from the data 
 One-hot encoded the categorical columns 

https://www.pdok.nl/geo-services/-/article/nationale-parken
https://www.pdok.nl/geo-services/-/article/nationale-parken
https://www.pdok.nl/geo-services/-/article/nationale-parken
https://www.pdok.nl/introductie/-/article/bro-bodemkaart-sgm-
https://www.pdok.nl/introductie/-/article/bro-bodemkaart-sgm-
https://www.pdok.nl/introductie/-/article/bro-bodemkaart-sgm-
https://www.pdok.nl/-/wms-service-voor-bro-geomorfologische-kaart
https://www.pdok.nl/-/wms-service-voor-bro-geomorfologische-kaart
https://www.pdok.nl/-/wms-service-voor-bro-geomorfologische-kaart
https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-
https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-
https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-
https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-
https://www.pdok.nl/introductie/-/article/agrarisch-areaal-nederland-aan
https://www.pdok.nl/introductie/-/article/agrarisch-areaal-nederland-aan
https://www.pdok.nl/introductie/-/article/agrarisch-areaal-nederland-aan
https://www.pdok.nl/introductie/-/article/agrarisch-areaal-nederland-aan
https://www.pdok.nl/geo-services/-/article/stiltegebieden
https://www.pdok.nl/geo-services/-/article/stiltegebieden
https://www.pdok.nl/geo-services/-/article/stiltegebieden
https://www.pdok.nl/geo-services/-/article/wetlands
https://www.pdok.nl/geo-services/-/article/wetlands
https://www.pdok.nl/geo-services/-/article/wetlands
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 Combine encoded categorical and numeric columns 
 Convert non-zero values in the target column to 1 and store it 

in a new column 
 Filter dataset based on an equal number of zero and non-zero 

values of the above column 
 Extract the independent variables (X) and the dependent 

variable(Y) 
 Split dataset into training set and test set 
 Apply non-negative transformation using MinMaxScaler 
 Create a pipeline with preprocessing, feature selection, and 

model 
 Define the hyperparameters and their possible values 
 Perform Grid Search with k-fold cross-validation 
 Create a Random Forest Classifier with the tuned parameters 
 Fit the model to the data 
 Predict the response for the test dataset 
 Evaluate the model, and check its accuracy, precision, and 

recall 
 Visualize the model predictions using contextily, 

GeoDataFrame, and its CRS (epsg:28992) 

Decision Tree Classifier  Load necessary packages and dataset 
 Check the descriptive statistics of data and its shape 
 Extract categorical and numeric features from the data 
 One-hot encoded the categorical columns 
 Combine encoded categorical and numeric columns 
 Convert non-zero values in the target column to 1 and store it 

in a new column 
 Filter dataset based on an equal number of zero and non-zero 

values of the above column 
 Extract the independent variables (X) and the dependent 

variable(Y) 
 Split dataset into training set and test set 
 Create a Decision Tree model object 
 Train Decision Tree model using training data 
 Predict the response for the test dataset 
 Evaluated the model, and checked its accuracy, precision, and 

recall 
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 Visualized the tree using the decision tree model 

Linear Regression (Used for 
predicting butterfly 
occurrence count) 

 Load necessary packages and dataset 
 Check the descriptive statistics of data and its shape 
 Extract categorical and numeric features from the data 
 One-hot encoded the categorical columns 
 Combine encoded categorical and numeric columns 
 Convert non-zero values in the target column to 1 and store it 

in a new column 
 Filter dataset based on an equal number of zero and non-zero 

values of the above column 
 Extract the independent variables (X) and the dependent 

variable(Y) 
 Perform linear regression on the extracted dataset 
 Determined the coefficient of determination, 𝑅² 
 Predicted the response 

 

Extra Trees Classifier, KNN, 
Naïve Bayes, Logistic 
Regression, SVM 

 Load necessary packages and dataset 

 Split dataset into training set and test set 

 Create a list of various classification models 

 Iterate through list of models to train them with training data 

 Test these models with test data to check the results 

 Calculate and compare performance metrics (accuracy, 
precision, recall, F1-score, and AUC-ROC) of all the models 

 Plot various graphs to compare the performance of these 
models 

Features Selection  Get important features from the model (Random Forest) using 
Recursive feature elimination (RFE) technique 

 Create a list of these feature names 

 Sort the features in descending order based on their 
importance 

 Visualize the top 20 important features 

 

7.3. Appendix C: Full method exploration results 

Figure 5 shows that the Random Forest model stands out based on performance metrics and gives 

good results. 
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Figure 5: Parallel Coordinates plot showing different performance metrics for each model. 

Table 4: A summary of performance metrics for implemented models. 

Model Performance 

Random Forest Classifier  RF accuracy: 0.91 

 RF precision: 0.89 

 RF recall: 0.93 

 RF F1-score: 0.91 

 RF AUC-ROC: 0.97 

 Hyperparameter values: {'max_depth': 10, 'max_
features': 'sqrt', 'min_samples_leaf': 2, 'min_sam
ples_split': 5, 'n_estimators': 300} 

Extra Tree Classifier  Extra Tree accuracy: 0.90 

 Extra Tree precision: 0.88 

 Extra Tree recall: 0.94 

 Extra Tree F1-score: 0.91 

 Extra Tree AUC-ROC: 0.96 
 

Logistic Regression  LR accuracy: 0.90 

 LR precision: 0.88 

 LR recall: 0.93 

 LR F1-score: 0.91 

 LR AUC-ROC: 0.95 
 

K-Nearest Neighbors  K-NN accuracy: 0.90 

 K-NN precision: 0.88 

 K-NN recall: 0.93 

 K-NN F1-score: 0.90 
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 K-NN AUC-ROC: 0.94 
 

Decision Tree Classifier  Decision Tree accuracy: 0.90 

 Decision Tree precision: 0.89 

 Decision Tree recall: 0.92 

 Decision Tree F1-score: 0.90 

 Decision Tree AUC-ROC: 0.90 
 

Naive Bayes 
 

 Naive Bayes accuracy: 0.76 

 Naive Bayes precision: 0.68 

 Naive Bayes recall: 1.00 

 Naive Bayes F1-score: 0.81 

 Naive Bayes AUC-ROC: 0.76 

Linear Regression (Used for predicting 
butterfly occurrence count) 

 Coefficient of determination (R^2 value): 0.14 

 

7.4. Appendix D: Descriptive Analysis 

From Figure 6, we found that the total number of butterflies was relatively high in 2017 as compared 

to other years. 

 

        Figure 6: Lineplot of the trend of butterfly occurrences per year. 

The following Figure 7, shows the presence of butterflies in various regions for each year. 
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        Figure 7: Visualization of butterflies’ presence year wise. 

 

 

        Figure 8: Visualization of butterflies’ presence based on total ndff count. 

The following heatmap provides a visual representation of the pairwise correlation between the 

features, where higher correlation values are indicated by brighter or darker colors. Positive 
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correlations are shown in one color gradient (e.g., red), while negative correlations are shown in the 

opposite gradient (e.g., blue). The values in the heatmap can help identify relationships and patterns 

among the input features in the dataset. 

 

            Figure 9: Heatmap of the pairwise correlation between input features. 

In Figure 10, classification tree shows the decision flow based on important features.  

 

        Figure 10: Decision Tree Model up to depth 3 for better readability. 


