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Abstract 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with a large 

genetic component. Many of the variants seen in ALS patients and controls are so rare that a 

potential association between the variant and ALS cannot be detected with genome-wide 

association studies (GWAS). Instead, rare-variant burden (RVB) tests can be used, which 

combine the signal of all variants in a gene into one signal. A potential limitation of this 

technique is that the signal of a group of damaging variants can be weakened by the presence 

of neutral or protective variants in the same gene. Because damaging mutations might occur 

in different densities across the gene, this research aims to reduce the limitation of testing 

neutral and damaging mutations together by using two different methods of grouping variants: 

a functional domain-based method and a spatial clustering method based on the distances 

between variants. Both methods were tested on three ALS-associated genes: SOD1, FUS and 

NEK1. The patterns of damaging mutations found in previous studies of SOD1 and FUS were 

replicated, i.e. no hotspots were seen in SOD1, while robust hotspots of rare and ultra-rare 

variants were seen in the C-terminus of FUS. In NEK1, two clusters dependent on single 

intermediate-frequency variants were seen. Additionally, an enrichment of damaging rare 

variants was found at the N-terminus of NEK1. While the spatial clustering method resulted in 

more consistent hotspots of ALS variants than the functional-domain based methods, 

combining both methods strengthens the evidence for hotspots and facilitates the 

interpretation of the significant results. All in all, this method has the potential to find new 

hotspots in known ALS genes or new genes that are associated with ALS.  
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Layman’s Summary 
Amyotrophic lateral sclerosis (ALS) is a disease in which neurons controlling muscles die off, 

causing increasing muscle weakness and eventually death. For many patients the cause of 

their disease is unclear, amongst other reasons because most variations in their DNA, also 

called variants, are very rare. This makes it hard to pinpoint singular disease-causing variants. 

Instead of looking at single variants, rare-variant burden (RVB) tests look at the effect on ALS 

of all rare variants in a whole gene simultaneously. Not all variants in a gene result in a harmful 

effect on that gene. In some genes, damaging mutations group together in specific areas of 

the gene. This study tries to find these areas within genes by testing separate groups of 

variants in a gene, rather than all groups combined. We aim to see if we can find so-called 

hotspots of ALS variants that all contribute to the disease together. 

     By using and extending software developed by our research group to perform these RVB 

tests, we zoomed in on groups of variants in three genes that are known to be associated with 

ALS. In two of these genes (SOD1 and FUS) our methods replicated previous findings 



regarding the distribution of variants in those gene. On the third gene (NEK1) we applied our 

method and found an enrichment of potentially damaging variations in the beginning of the 

gene. These results show that selecting groups of variants in genes is a promising way of 

uncovering the important parts of known ALS genes and potentially finding new ALS genes.  

  



Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a lifetime incidence 

of two to three out of 1000 individuals (van Rheenen et al., 2021). It causes degeneration of 

upper and lower motor neurons, resulting in symptoms such as spasticity and muscle wasting, 

respectively (Hardiman et al., 2017). In around 10% of all cases, a Mendelian inheritance 

pattern is seen, which classifies them as familial ALS (FALS) (Lattante et al., 2020). The other 

cases are classified as sporadic ALS (SALS). For about 20% of all cases, a genetic cause is 

known for the alteration of the functioning of motor neurons (Vasta et al., 2022). The other 

cases are probably caused by an interaction between genetic and environmental factors 

(Hardiman et al., 2017; Lattante et al., 2020; Vasta et al., 2022). ALS genes can be related to 

various cellular properties, for example axon structure and function, vesicle transport, and 

protein homeostasis (Hardiman et al., 2017). The dysregulation of these properties can result 

in motor neuron injury and aberrant accumulation of proteins typical to ALS. An example of 

this is seen as a result of prolonged mislocalisation and aggregation of truncated forms of TDP-

43, encoded by the gene TARDBP, that is observed 97% of ALS patients (Hardiman et al., 

2017; Suk & Rousseaux, 2020). This could for example, lead to reduced mitochondrial function 

through gain-of-function mechanisms and reduced microtubule outgrowth through loss-of-

function mechanisms (Hardiman et al., 2017; Suk & Rousseaux, 2020). Additionally, genetic 

variants in SOD1, present in 20% of FALS and 5% of SALS cases, result in misfolded proteins 

that cause dysregulations in the ubiquitin-proteasome system and oligodendrocyte 

degeneration (Ferraiuolo et al., 2016; Pal et al., 2020; Urushitani et al., 2002).  

Since 2002, one technique used to find genes associated with a trait or disease outcome is 

the use of genome-wide association studies (GWAS) (Thomas et al., 2005; van Rheenen et 

al., 2021). In GWAS, common genetic variants are tested for a significant association with 

disease phenotype (S. Lee et al., 2014; Tam et al., 2019). Advantages of GWAS are the 

success rate of finding new variant-trait associations for various types of genetic variants and 

the insights it can provide into complex traits and ethnic variation in those traits (Tam et al., 

2019). In ALS research, this technique indirectly led to the association of genetic variants in 

C9orf72 with 30-40% of FALS cases and 7% of SALS cases (DeJesus-Hernandez et al., 2011; 

Majounie et al., 2012). However, several aspects of GWAS, both generally and specific to ALS, 

have limited its potential. For example, GWAS has a high multiple testing burden due to the 

large number of variants included in a single analysis (Tam et al., 2019). Additionally, the 

genetic architecture of ALS suggests that rare variants are more indicative of ALS risk than 

common variants (van Rheenen et al., 2021; van Rheenen et al., 2016). Both of these 

limitations are key to the development of rare-variant association studies.  

     Rare-variant association studies aim to analyse a section of genetic variation that is 

overlooked in GWAS, namely variants with a low minor allele frequency (MAF) (S. Lee et al., 

2014). In order to analyse the role of rare variants in complex diseases, such as ALS, various 

rare-variant burden (RVB) tests have been developed (Povysil et al., 2019). At their core, RVB 

tests calculate the association of a whole gene, rather than single variants, with a disease by 

combining the information of all variants in a gene into one burden score for the gene. This is 

thought to be more powerful than testing single variants, because the low frequency of each 

individual variant makes the rare single variants very unlikely to be significantly associated with 

a disease. Traditional burden tests can be divided into binary collapsing and count collapsing 

methods. The binary collapsing approach aggregates the information of all variants of a gene 

fitting the chosen selection criteria by analysing the presence of any genetic variant as a 

predictor for phenotype, i.e. diseased or healthy (Cirulli et al., 2020; Povysil et al., 2019). That 

is, if there are no variants found in the gene, the score for that gene will be 0. If there are one 



or more variants in the gene, the score for that gene will be 1. In the count collapsing approach, 

one uses the total number of variants of the gene found in a patient as a predictor for phenotype 

instead (S. Lee et al., 2012; Povysil et al., 2019). Not all variants found in a dataset are of 

interest in an RVB test. Selection criteria that can be considered for identifying qualifying 

variants are the MAF and functional annotations, such as loss-of-function (LOF) or missense 

variants (Cirulli et al., 2020; Povysil et al., 2019).  

The use of the RVB tests described above has led to the discovery of several new ALS risk 

genes. For example, by selecting non-sense, splice-altering, or deleterious variants with MAFs 

below 0.1% found in all protein-coding genes, the gene NEK1 was identified as a risk gene for 

ALS (Kenna et al., 2016; van Rheenen et al., 2021). It was mutated in around 3% of the ALS 

cases in the study, interacts with other ALS-associated proteins and plays a role in the 

regulation of DNA repair (Kenna et al., 2016). Another study found KIF5A to be related to ALS, 

which is involved in the axonal transport of, for example, neuro-filaments (Nicolas et al., 2018). 

The presence of genetic variants in KIF5A is correlated with a lower age of onset and higher 

median survival time (Nicolas et al., 2018). Interestingly, most ALS-related genetic variants in 

this study were found in only one domain of the protein, which is involved in cargo binding. 

Similarly, mutations in FUS are most often found in the Arg-Gly-Gly (RGG-)repeat region and 

nuclear localisation sequence (NLS) at the C-terminus of the gene (Kwiatkowski et al., 2009; 

Shang & Huang, 2016). This suggests that the harmful effects of genetic variants in ALS-

related genes can be localised to sections of the gene, rather than spread across the whole 

gene. In fact, a study by Cooper-Knock et al. (2019) even implies that the strength of RVB 

tests is insufficient for detecting associations with ALS when harmful variants are concentrated 

in smaller sections of the gene, rather than spread throughout the whole gene. While there are 

RVB tests that account for the presence of a small number of causal variants amongst other 

variants in the same gene, these tests will not tell you where the causal variants are located.  

In order to investigate how burden tests can be used to find enrichments of causal variants 

associated with ALS, also called hotspots, supervised and unsupervised methods have been 

suggested to divide genes into smaller groups of variants. On the one hand, Gelfman et al. 

(2019) describe a supervised approach in which redefined functional domains are used as the 

unit of interest instead of whole genes (Figure 1B). An advantage of this method is that if a 

domain present in a specific gene is highly associated with ALS, the functional annotations 

facilitate the biological interpretation of this result. Additionally, domains can occur in different 

genes. Thus, if a domain is found to be associated with ALS, other genes that contain the 

Figure 1 - Handling an unequal 
distribution of variants in a 
gene can be done in a 
supervised and unsupervised 
manner. If a gene is expected to 
have hotspots of mutations related 
to a disease, these could be found 
by selecting only a part of the 
variants in that gene. This can, for 
example, be done in a supervised 
manner by selecting variants that 
fall inside functional domains (B) 
or in an unsupervised manner by 
dividing the variants in groups with 
a high variant density (C). (partly 
adapted from Gelfman et al., 
2019, p. 810) 

A 

B 
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same domain can be of interest for future studies. On the other hand, Loehlein Fier et al. (2017) 

describe an unsupervised spatial clustering approach that splits all variants into groups where 

the distance between two consecutive variants on the genome is larger than expected (Figure 

1C). This approach is based on the idea that disease-associated variants could lie closer 

together on the genome than random variants, for example because they cause a disruption 

of the same function of a gene (Loehlein Fier et al., 2017). Their method has already yielded 

promising results in data from Alzheimer’s patients. While the spatial clustering method 

ensures that all the variants in the selected dataset are present in a cluster, one could argue 

that the clusters obtained from this method are overfitted to the set of variants that is used. 

Therefore, before general statements can be made about the coordinates of potential hotspots 

of ALS mutations, it is important to know how robust the clusters are that the spatial clustering 

algorithm finds. That is, only if a cluster is found in a certain part of the gene independently of 

the variant set that is used to assign the clusters, then we can make conclusions about 

potential hotpots found with this method.  

The aim of this study is to research whether selecting variant sets using spatial clustering 

or functional domains can be used to replicate known hotspots of ALS mutations. If this 

technique replicates known hotspots, it is a promising technique to find new ALS hotspots and 

potentially even new ALS genes. We focus on three known ALS genes, where SOD1 and FUS 

serve as a proof of concept and NEK1 is analysed to apply the methods to a gene where it is 

unsure whether it contains hotspots of ALS mutations. A second aim of this study is to quantify 

the robustness of the clusters found using the spatial clustering method to establish if the 

results are specific to our dataset or not. That is, we aim to research whether the clusters we 

find based on our variant set are still found if the variant set that is used to assign clusters 

varies. The data analysis is done by extending an R package called RVAT (Rare-Variant 

Association Toolkit), designed specifically for research with rare variant association tests. 

RVAT brings together multiple components of RVB tests. Firstly, it allows for easy preparation 

of the data by building a database. In combination with a list of variants of interest, this 

database can be used for performing association tests. Additionally, lists of genes that should 

be tested can be combined with the results of association tests to run gene set analyses. Lastly, 

several methods are provided to intuitively visualise results with qqplots, manhattan plots, 

forest plots, and density plots. To facilitate data analysis of RVB tests, we have extended the 

package by building an interactive app with the R package Shiny.  

  



Methods 

 

Whole genome sequencing datasets 

The first dataset with genomic variants used for this project is taken from Project MinE (Van 

Rheenen et al., 2016, 2018) and can be browsed on http://databrowser.projectmine.com. The 

ALS and control samples in this dataset have been aligned to genome build 37.75 and have 

been annotated using snpEFF (Single Nucleotide Polymorphism Effect) (Cingolani et al., 2012), 

as also described by Nicolas et al. (2018). This dataset contains 10,502 ALS samples and 

26,035 controls. The b37.75 dataset has only been used to assess the robustness of the spatial 

clustering method. The second dataset used for this project is a currently unpublished 

extension of the original dataset aligned to genome build 38.105. This dataset contains 13,128 

ALS samples and 69,775 controls. The b38.105 dataset has been used for RVB tests and 

calculating the robustness of the spatial clustering method. Quality control (QC) of the variants 

has been performed in accordance with the methods described by van Rheenen et al. (2021). 

This QC includes standard metrics such as correcting for population stratification and sex of 

the samples, in addition to the sequencing quality of the samples.  

Mapping genomic coordinates to transcript coordinates 

Both the spatial clustering method and the functional domains method were conducted with 

transcript coordinates. We chose to use transcript coordinates for the functional domains, 

because the coordinates of the domains we collected are also transcript-based. In the case of 

the spatial clustering, transcript coordinates were used because genomic coordinates 

introduce large distances between variants in different exons which would be absent in the 

protein. To map the genomic coordinates to transcript coordinates, we first selected the 

canonical transcript for each gene in the Ensembl b37.75 gtf or Ensembl b38.105 gtf 

(depending on the version of the dataset) by selecting the longest transcript based on total 

exon length. If multiple transcripts were longest, all were selected as canonical transcripts.  

We distinguish between variants that fall inside the exons of a transcript and variants that flank 

the exons. For variants inside the exons, the transcript position was calculated by subtracting 

the cumulative width of the introns before the exons that the variant is in from the genomic 

position. Variants were said to flank an exon if they were within 12 base pairs on either side of 

the exon. These variants are included because they have a high probably of influencing 

splicing. The position of variants before an exon was changed to the first position of the exon; 

the positions of variants after an exon was changed to the last position of the exon.  

Assignment of sets of variants 

Supervised domain-based clustering 

To make sets of variants found in functional domains, we retrieved the coordinates of Ensembl 

b38.105 domains for Interpro domains, coiled coils, transmembrane helices, low complexity 

regions, and cleavage sites. These were collected manually from the bioMart archive  

http://dec2021.archive.ensembl.org/biomart/martview/. Domain start and end coordinates 

were changed from amino acid positions to base pair positions to match the variant coordinates. 

Variant sets of all transcript-domain combinations in the dataset were made. If domains 

consisted of multiple unique ranges – either non-overlapping or overlapping but from different 

sources – each of these ranges was analysed as a separate domain. Transcript-domain 

combinations that spanned more than 90% of the width of the whole transcript were excluded 

from the analysis. The function domainVarSet from the RVAT package was used for assigning 

domain-based variant sets (Supplementary Materials 1). Separate sets of variants were made 

for variants previously classified as synonymous, moderate, or loss-of-function (LOF) variants. 

Synonymous variants are mutations that do not result in a change in amino acid. Moderate 

http://databrowser.projectmine.com/
http://dec2021.archive.ensembl.org/biomart/martview/


variants do result in a change in amino acid, and for LOF variants this is predicted to disrupt 

the function of the protein.  

Unsupervised spatial clustering  

Our method for clustering variants along genes based on their genomic distance is based on 

the method described by Loehlein Fier et al. (2017). The genomic distance is defined as the 

number of base pairs between variants. In brief, this algorithm tries to find clusters of variants 

along a gene by comparing the median and mean distance between a group of consecutive 

variants. If the mean distance between all variants in a window exceeds the median distance, 

two variants in the group are said to be too far apart from each other to belong to the same 

cluster. This has been chosen as a metric because the mean is influenced strongly by outliers, 

whereas the median is not. Loehlein Fier et al. (2017) recommend choosing a group with 50-

200 variants, i.e. a window size of 50 to 200. However, since the number of variants per gene 

in our gene set varies from 1 to 9539, it would neither be effective to choose a minimum window 

size of 50, nor to only choose one window size for all genes. Instead, we chose to assign larger 

window sizes as the number of variants in a gene increased. Specifically, for 0-15 variants the 

window size was 6, after which the window size was increased with 2 variants for each multiple 

of 16 variants (Equation 1).  

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = 6 + 2 ∗ ⌊
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠

16
⌋                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

To ensure that distances between the last variant of a window and the first variant of the next 

window are not ignored, the windows overlap by a number of variants defined by the ‘overlap’ 

parameter. We selected the overlap to be half of the window-size so that each variant is 

selected twice. Using the function genPartVarSet in the RVAT package, for both the b37.75 

and b38.105 dataset, we assigned sets of variants for each gene consisting of the clusters 

defined by the distances between the variants. All variants in the dataset, regardless of the 

phenotype of the samples or the MAF of the variants, were used to cluster the variants. 

Afterwards, separate sets of variants were made for moderate variants, synonymous variants, 

and LOF variants.  

Robustness of the spatial clustering method 

In order to estimate to what extent the results of the spatial clustering method can be 

generalised to other datasets, we need to know how robust the clusters are that are found. To 

estimate the robustness of the spatial clustering, we adapted the method to define the 

robustness of a clustering method described by Lu et al. (2019). In this method, the robustness 

of a clustering is found by repeating the clustering a large number of times with slightly different 

values for a selected parameter. In our case, this parameter is the number of samples in the 

dataset. Then, for each unique pair of units, e.g. samples or genes, we count in how many 

iterations this pair occurs in the same cluster. The robustness of this pair is defined as the 

number of co-occurrences (o) divided by the number of iterations (r). The robustness of the 

clustering method as a whole is the mean of the scores of all pairs. The number of pairs is 

indicated as d and the sum of all occurrences of all pairs together is t. This is summarised in 

Equation 2. 

𝑅 =  
∑ 𝑜 𝑟⁄

𝑑
=

𝑡

𝑑𝑟
                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

We calculated the robustness for two types of units. Firstly, we took variants as unit. Since 

using a subset of the data can cause variants to disappear, the robustness of variant pairs 

containing these disappearing variants can artificially become low. We therefore adapted the 

formula by dividing the frequency of a variant pair by the number of iterations that the two 



variants occurred in together, rather than by the total number of iterations. Secondly, we took 

the base positions of a transcript as units. Since base positions are always present in a 

transcript, regardless of the samples that are included in the dataset, we did not need to adjust 

the method in Equation 2. For each method, to compare the robustness of subsetted clustering 

with the clusters found using the whole dataset, we also calculated the robustness of the 

clustering using only the pairs of units that were present in the clustering based on the 

complete dataset. This shows whether the clusters that are found using the complete dataset 

are enriched compared to clusters that arise from taking subsets of the data.  

 

The subsets of the data were made by selecting a certain number of samples and including all 

the variants that occurred at least once in any of the selected samples. We selected 500, 1000, 

1500, 2500, 5000, 10,000, 15,000 and 20,000 random samples from both the b37.75 and 

b38.105 dataset. Additionally, we took all the ALS samples and an equally large number 

controls for both the b37.75 dataset (10,507 ALS samples and 10,507 controls) and the 

b38.105 dataset (13,128 ALS samples and 13,128 controls). Lastly, for the b38.105 dataset 

we took all controls and half of the ALS samples (6564 ALS samples and 69,775 controls). We 

repeated the subsetting 500 times for each number of samples. This process was performed 

for five ALS genes (SOD1, FUS, TARDBP, NEK1, and C21orf2 or CFAP410), a potential ALS 

gene (SCHBP1) and four randomly selected genes (FGR, VEGFA, NIPAL3, and SCYL3).  

 

Rare variant association testing 

RVAT  

The package RVAT facilitates each step of RVB tests, from making sets of variants to 

performing RVB tests and gene set analyses to visualising the results. An introduction to the 

package can be found at https://kkenna.github.io/rvat/. Most of the data infrastructure and 

functions necessary to perform association tests and visualise the results was already present 

before the start of this study. This data infrastructure is summarised in Supplementary 

Materials 2. To facilitate our analyses we extended the rvatViewer functionality and introduced 

the genPartVarSet and domainVarSet functionalities.  

 

The rvatViewer is an app that facilitates interactive data analysis of RVB tests and gene set 

analyses. It has been built with the package R shiny. Using this rvatViewer, it is possible to 

make manhattan plots, qqplots, comparison plots, density plots, and forest plots on the 

appropriate object types. When coordinates of tracks such as domains and clusters are loaded, 

it is possible to zoom into the results of cluster/domain analyses or single-variant association 

test results per unit. This is illustrated in the following video: https://tinyurl.com/Unit-viewer-

RVAT.  

 

Burden tests 

Burden tests were run on whole genes, clusters, and domains; the moderate, synonymous, 

and LOF sets of variants were all included. Three different combinations of filters were used: 

1) minCarriers = 1, maxMAF = 0.05; 2) minCarriers = 1, maxMAF = 0.001; 3) minCarriers = 1, 

maxCarriers = 5. These filters reflect three types of variants: intermediate-frequency variants 

with a MAF between 0.001 and 0.05; rare variants with a MAF below 0.001; and ultra-rare 

variants with 1-5 carriers. The statistical test ‘firth’ was used, because this test resulted in 

acceptably low genomic inflation values. The genetic model ‘allelic’ was used, meaning that it 

is assumed that a heterozygous variant has less effect on a patient than a homozygous variant. 

We focussed on moderate variants only. 

The results were filtered based on the P-values of the same units in control-control burden 

tests. That is, if a unit had a P < 1.0x10-5 in the case-control burden tests, it was marked as a 

https://kkenna.github.io/rvat/
https://tinyurl.com/Unit-viewer-RVAT
https://tinyurl.com/Unit-viewer-RVAT


potentially interesting result. A new burden test was run with all the potentially interesting sets 

of variants using only control samples to see if this result could be a false positive. For each 

control cohort, we tested all samples within that cohort against the samples that were not within 

that cohort. If a filter-unit-test combination had a P-value < 1.0x10-4 in the control-control 

burden test, this filter-unit-test combination was marked as a false positive result and removed 

from the results of the case-control burden tests. Not only does this remove false positive 

results, it also has the potential of reducing genomic inflation of the results. For zooming in on 

specific genes, five ALS genes were selected: SOD1, FUS, NEK1, TARDBP and KIF5A (the 

last two genes only as supplemental materials). 

For the single variants that were studied from domains and clusters of interest, single-variant 

association results were generated using the statistical test ‘firth’.  

Domain set enrichment analysis 

Gene set association tests were run on sets of domains. These sets of domains were defined 

as every occurrence of a domain across the genome. This resulted in a set of domains 

containing all coiled coils, one with all transmembrane domains, one with all low complexity 

regions, and one with all cleavage sites. Each Interpro domain was assigned its own domain 

set. We used a linear model as statistical test and a competitive null hypothesis, which means 

that we test for differential expression of domains in a domain set versus the other domains in 

the dataset. We also selected domain sets with <= 1000 domains, because at very large 

numbers of units the domain set becomes too biologically aspecific to give a meaningful 

interpretation of a potential significant result.  

  



Results 

To answer the question whether functional domains or spatial clusters of variants can be used 

to find hotspots of ALS mutations, various types of plots were used to visualise burden test 

results. We incorporated these visualisation methods in an app called the rvatViewer built with 

R Shiny. Specifically, to facilitate zooming in on a unit, be it a gene, functional domain, or 

spatial cluster, we built the ‘Unit viewer’ in this app.   

 
Distinct patterns of association to ALS can be found across different ALS genes 

We performed burden tests using the statistical test ‘firth’ on spatial clusters and domain-based 

clusters found in 13,128 patients and 69,775 controls. Both spatial clustering and domain-

based clustering gave rise to clusters that recover known hotspots of ALS mutations. However, 

as can be seen in Figure 2, this is more often the case in variant sets defined by spatial 

clustering than by domain-based clustering. Figure 2 zooms in on two known ALS genes, 

namely SOD1 and FUS. We see distinct patterns of associations in these two genes. In SOD1, 

strong associations with ALS are found across the whole gene, for both the domain-based 

clusters (orange blocks) and spatial clusters (blue blocks). In FUS, on the other hand, there is 

only one strong association with ALS found in a spatial cluster at the C-terminus of the gene.   

For the results of TARDBP and KIF5A, see Supplementary Materials 3.  

 

The presence of a cluster or domain showing a significant association with ALS does not 

automatically imply that there is a hotspot of ALS mutations in that gene. Several sections of 

the gene could show moderately interesting results, making it difficult to say whether there is 

a heterogeneous distribution of causal variants at all and if so, which area of the gene is most 

interesting. We say there is an indication of the presence of a hotspot of ALS mutations in a 

gene if the P-value of the most significant domain or cluster, corrected for the multiple testing 

burden within the gene, is lower than the P-value of the whole gene. We need to correct for 

multiple testing within the gene, because we are testing the same variants multiple times, 

meaning that the results are not independent. The correction is done using the statistical 

method ACAT-O (Liu et al., 2019). This omnibus test combines the P-values of all domains 

and spatial clusters in a gene into one P-value for the whole gene while taking the sparsity of 

causal variants and potential differences in effect size of the domains and clusters in the gene 

Figure 2 – Distinct patterns of ALS mutations can be found across ALS genes. In these mutations plots, the blue dots are the 
locations of the variants inside a gene; the blocks underneath the x-axis indicate the functional domains (orange) and spatial 
clusters (blue). If the colour of the block is darker, there are overlapping domains in that region. The lollipops indicate the -log10(P)-
value of RVB tests on the selected domains and clusters. The red line indicates the genome-wide significance threshold (around 
0.05x10-6). The grey dotted line indicates the -log10(P)-value of an association test on the whole gene. P-values were cut at 1x10-16. 
A) There are no singular hotspots of ALS mutations in SOD1. B) There is a single hotspot of ALS mutations found in the C-terminus 

of FUS.  

A B 



into account. It is thus expected to give a P-value lower than the P-value of a burden test on 

the whole gene if a cluster of causal variants is present, and an equal or higher P-value if this 

is not the case.  

     In SOD1 (Figure 2A), splitting up the gene in functional domains or spatial clusters gives 

rise to groups of variants throughout the whole gene that are either more significant (not visible 

in the figure, since P-values were cut at 1x10-16) or less significant than the whole gene. This 

is reflected in that the P-value of the whole gene and omnibus P-value of all domains and 

clusters are both smaller than 1x10-16. The fact that these P-values are essentially the same 

indicates that there is no single hotspot in SOD1 that contains ALS-associated mutations.  

     In FUS (Figure 2B), the C-terminus is more significant in the spatial clusters than in the 

whole gene. However, this is not the case for the domain-based clustering results. Just like in 

SOD1, this is reflected in the P-values. FUS as a whole has a P-value of 1.17x10-7 (OR = 

1.944). All the domains combined have an omnibus P-value of 0.498, which shows that the 

domains that were defined in FUS do not contain any rare variant signal. However, including 

the spatial clusters resulted in an omnibus P-value of 4.44x10-16, which is much lower than the 

P-value of the RVB test on the whole gene. The spatial cluster in question only contains rare 

variants. Four of these variants had more than 5 carriers and are therefore not considered 

ultra-rare. Two of those variants showed evidence of single variant signal (P = 9.07x10-11 and 

P = 2.99x10-7). However, the analysis of the cluster in question with only ultra-rare variants still 

results in a genome-wide significant signal (P = 3.36x10-9, OR = 6.74). This implies that the 

signal seen in FUS is found in a hotspot of variants, rather than a single variant. These results 

are further supported by the fact that the effect size of the cluster in question is 6.644, more 

than three times as high as the effect size of the whole gene, indicating that the variants in this 

cluster are more important to ALS development than the other variants in the gene.  

 

NEK1 contains both single-variant driven signal and an enrichment of rare damaging variants 

NEK1 as a whole has a P-value of 1x10-16 (OR = 1.70) and an omnibus P-value of 1.48x10-14. 

In Figure 3, we see both significant results for functional domains and spatial clusters (for 

details on the variants in the selected clusters and domains, see Suppl. Materials 4). Firstly, 

the domain labelled as ‘3’ is part of a low complexity region with a P-value of 3.87x10-14 and 

an effect size of 5.62. The removal of the rare variant in the cluster (rs199947197) increases 

the P-value to 0.75 (OR = 0.77), showing that this signal is driven by one of the variants in this 

domain, rather than the whole domain. Secondly, the spatial cluster labelled as ‘2’ shows a 

significant location on the other side of NEK1 (P = 7.77x10-16, OR = 2.04). The removal of the 

intermediate-frequency variant (rs200161705) results in an increased P-value of 2.78x10-3 (OR 

Figure 3 - NEK1 contains single-
variant and rare variant-driven 
signal. 1) This set of variants at the 
N-terminus of NEK1 is driven by a 
set of rare and ultra-rare variants. 2) 
The signal in this cluster is mostly 
driven by a single, intermediate-
frequency variant: rs200161705. 
Removal of this variant results in a 
P-value of 2.78x10-3. 3) The signal in 
this domain is mostly driven by a 
single rare variant: rs199947197. 
Removal of this variants results in a 
P-value of 0.75.  

1 

2 

3 



= 1.98), which, while still more significant all the clusters and domain in the middle and end of 

the gene, indicates that a large part of the signal is driven by a single variant. Lastly, the cluster 

labelled ‘1’, overlapping partly with three domains on the left, has a P-value of 2.95x10-6 (OR 

= 2.88) when including rare and ultra-rare variants. Including only ultra-rare variants gives a P-

value of 2.48x10-4 (OR = 3.07). Combined with the fact that the P-value of all the regions that 

have not been discussed are much higher than those of clusters ‘1’ and ‘2’, we thus see an 

enrichment of rare causal variants in the N-terminus of NEK1. All in all, NEK1 contains both 

single-variant driven signal and cluster-driven signal.  

 

Prioritisation of candidate genes can be done using domain set analyses 

A theoretical advantage of domain-based clustering is that if a domain is significant in one 

gene, it could also be an interesting target in another gene. Because domains are annotated 

according to their function, it is possible to test the association with ALS of all occurrences of 

a functional domain across the genome. If such a domain set has a significant association with 

ALS while none of the separate domains are significant, this could point at cellular function that 

is important in, for example, ALS pathology. However, domain sets can only be an interesting 

target if they do not contain a very large number of genes. This makes the domain too aspecific 

to be biologically relevant.  

 

As an example of this use of domain-based variant sets, we defined a domain set as all the 

occurrences of a domain across the genome. The functional domains from Ensembl are thus 

divided into domain sets consisting of all low-complexity domains, all transmembrane helices, 

all coiled coils, all cleavage sites, or Interpro domains with a specific function. To calculate the 

significance of the association between that domain set and ALS, we then compare the burden 

test results of the domains in the domain set with those outside of the domain set. When 

filtering for biologically specific domain sets (<1000 occurrences of a domain across the 

genome), we are left with only Interpro domains (Table 1). The three most significant of these 

results are domain sets that contain a domain present in SOD1. If the results obtained from 

using single domains as domain sets are promising, the analysis could be extended to make 

domain sets of, for example, domain families.  

 

Preliminary evaluations of the robustness of the spatial clustering method 

As opposed to domain-based clustering, spatial clustering is completely tailored to the selected 

dataset. The inclusion or exclusion of samples can change the variant pool in such a way that 

different clusters are found than with another set of samples, because the distances between 

the variants change. This means that the clusters obtained with the spatial clustering method  

 

Table 1 – The top results of domain set association tests reveal previously found protein functions related 
to ALS. The three most significant results, whose functions are related the oxidation pathways of the cell, were 
driven by SOD1.  

geneSetName Function Ngenes P Effect 

IPR024134 Superoxide dismutase (Cu/Zn) / 
superoxide dismutase copper 
chaperone 

3 7.92x10-6 2.693 

IPR001424 Superoxide dismutase, copper/zinc 
binding domain 

2 1.16x10-5 3.233 

IPR036423 Superoxide dismutase-like, 
copper/zinc binding domain 
superfamily 

3 8.78x10-5 2.341 

IPR026261 RanBP-type and C3HC4-type zinc 
finger-containing protein 1/SHARPIN 

2 1.39x10-4 2.778 

IPR043197 Plakin 5 4.30x10-4 1.611 



can easily be overfitted to the data. To examine this possibility, we did a preliminary evaluation  

of the robustness of the spatial clusters. We used a method adapted from those described by 

Lu et al. (2019). In this method, one aspect of the clustering is changed across a number of 

iterations, after which the mean frequency is taken of the occurrence of each pair of units in 

the same cluster across all iterations. The more frequently pairs of units co-occur, the more 

often the clusters are identical. Thus, we can say that the more frequently pairs of units co-

occur, the more robust the spatial clustering method is. The parameter we changed was the 

number of samples that is included in the dataset. We used two different types of unit to 

calculate the robustness of the spatial clustering method: variants and base positions.    

 

The rationale behind using variants as units is that the positions of the variants is what 

determines the location of the cluster. If we compare which variants make up each cluster 

across iterations, we thus know how the clusters change with differing sample sizes 

(Supplementary Materials 5). A drawback of this approach is that if a variant in the middle of a 

cluster is absent in some subsets of the samples, the score of that cluster decreases, even 

though the cluster still covers the same area on the gene. Since we are looking at spatial 

clusters, and not just groups of units, one could argue that the base positions that the clusters 

cover are more important than the variants present in the clusters. Thus, by using base 

positions as units, we can calculate how robustly the clusters cover certain areas of the gene. 

An additional advantage to using base positions as units is that they are not unique to our 

dataset, as opposed to dataset-specific variants, so we can better generalise the robustness 

of the method to other datasets. 

      Generally speaking, Figure 4 (blue datapoints) shows that lowering the number of samples 

adversely affects the robustness of the clustering. This relates to the fact that many of the 

variants in our dataset have few carriers, so the more samples are left out, the more likely it is 

that variants will not be sampled. Therefore, the distances between the remaining variants can 

change such that new groups of variants emerge. If clusters change, their position changes, 

which reduces their robustness. Vice versa, the more samples are included, the more dense 

potential groups of variants will be and the higher the likelihood that variants are frequently 

clustered together.  

     The method described above calculates the robustness of clusters relative to the clusters 

found across the iterations, not in relation to a reference clustering. Because we want to know 

to what extent the clusters we found in the whole dataset are overfitted to our data or not, we 

also attempted to calculate the robustness of the clustering of a subset of the data compared 

to the clustering based on the whole dataset. We did this by comparing the robustness of the 

position pairs that are present in the original clustering to the robustness of all the position 

pairs (Figure 4; yellow datapoints). This showed that the positions that co-occur in the original 

cluster also co-occur more often across all iterations than the position pairs that arise due to 

changes in the clustering. In turn, we can thus say that the clusters found using the whole 

dataset are more robust than other potential clusters, regardless of the sample size.  

     While the maximum robustness achieved using the method calculating robustness 

relatively across iterations is only 0.474 out of a possible 1.0, the fact that clusters present in 

the original clustering have a higher robustness (0.799) supports that the spatial clustering 

method can relatively reliably find similar clusters, regardless of the samples in the dataset. 

Additional support for this is that the spatial clustering method gave rise to clusters that confirm 

previous findings of ALS hotspots (Figure 2).  

 

Discussion 
 

The aim of this study was to research whether selecting variant sets using spatial clustering or 

domain-based clustering can be used to find hotspots of ALS-associated mutations in known  



 

ALS genes. If this is the case, these methods could potentially also be used to search for new 

hotspots or new genes associated with ALS. For the clustering methods to be successful, they 

need to recover known ALS hotspots after filtering out common variants.  

     For this exploratory analysis, we focussed on FUS, SOD1, and NEK1. In the case of FUS, 

we found a significant cluster in the C-terminus of the gene using the spatial clustering method. 

For SOD1, we found several strongly associated regions spread out over the whole gene with 

both clustering methods. In the case of NEK1, for the domain-based clustering method we 

found a cluster that was entirely driven by a single rare variant. Using the spatial clustering 

method, we found one significant variant cluster largely driven by a single intermediate-

frequency variant, and a cluster at the N-terminus that was driven by the complete set of rare 

and ultra-rare variants in that cluster. All of these clusters had a positive effect size, which is 

to be expected of genes that are known to be related to an aspect of ALS. 

Interpretation of inspected genes 

Our results show that of the three inspected genes, the spatial clustering methods resulted in 

significant results that could potentially point at hotspots of ALS mutations in SOD1, FUS, and  

NEK1. The domain-based clustering method, however, did not find potential hotspots for FUS. 

Firstly, SOD1 has not been shown to have hotspots of ALS variants; rather, the causal variants 

are spread throughout the whole gene (shown for example in figure 1 of Ruffo et al., 2022). 

Thus, the large number and spread of significant functional domains and spatial clusters that 

we found throughout SOD1 supports previous findings.  

     Secondly, FUS has been shown to contain hotspots of ALS mutations in the C-terminus of 

the gene (Kwiatkowski et al., 2009; Shang & Huang, 2016). According to Shang & Huang 

Figure 4 - Robustness of spatial clusters based on the complete dataset is higher than that of all clusters 
found by subsetting the dataset. For the b37.75 and b38.105 dataset, several subsets of samples were taken 
500 times per sample size. For each of these subsets, the robustness of all base position pairs was calculated. 
The blue data points (bottom row) indicates the robustness calculated with the original method described by Lu et 
al., (2019). The golden data points (top row) indicates the robustness scores calculated when only using the 
position pairs that occurred in the clustering of the whole dataset. The difference in score implies that the position 
pairs found in the original clustering, and by extension the clusters in the original clustering, are more robust than 
the other possible clusters that could be found.  



(2016), this hotspot is located at an RGG-repeat region and especially the NLS, ranging from 

amino acids 453-501 and 510-526 respectively. Figure 2B shows that the NLS is not covered 

by any of the functional domains in our dataset, explaining why we did not find a domain-based 

signal in FUS. The spatial clustering method, on the other hand, did give rise to a cluster that 

covered the variants in and around the NLS. The cluster contains two rare single variants that 

are significantly associated with ALS. Removing these variants from the cluster resulted in a 

higher, but still genome-wide significant, P-value for the cluster. This implies that even though 

the presence of the single variants makes the cluster more significant, the signal is still spread 

over the whole cluster, rather than a single variant. We can therefore conclude that there is 

indeed a hotspot of ALS mutations in the C-terminus of FUS as suggested by Shang & Huang 

(2016). 

     Lastly, there is no evidence yet regarding ALS hotspots in NEK1. We found three interesting 

areas in this gene. Using the domain-based clustering method, we found a genome-wide 

significant domain containing four ultra-rare variants (1-5 carriers) and one rare variant (MAF 

< 0.001). However, removal of the rare variant from the cluster resulted in a non-significant 

result (P = 0.75, OR = 0.77), indicating that the signal in this cluster was caused by the single 

LOF variant rs199947197, rather than the whole cluster. This variant is located near the C-

terminus of NEK1, specifically around a nuclear export signal (Nguyen et al., 2018) and a 

coiled coil segment that has been reported to be involved in the interaction of NEK1 with the 

ATR-ATRIP complex (Melo-Hanchuk et al., 2017). This interaction is important in a NEK1-

mediated DNA damage response by ATR (S. Liu et al., 2013), meaning that a mutation in this 

coiled coil domain could result in a reduced DNA damage response. In addition to the domain-

based cluster, we found a genome-wide significant spatial cluster closer to the N-terminus of 

NEK1. Similar to the domain-based cluster, removal of the most common variant in this cluster 

causes the P-value to increase to 2.78x10-3 (OR = 1.98). While this is not genome-wide 

significant, it is still more significant than all the other domains and clusters towards the C-

terminus of NEK1. Lastly, at the N-terminus of NEK1 we found a cluster located in the kinase 

domain of NEK1 that showed a stronger association of rare and ultra-rare variants with ALS 

than the spatial cluster next to it. The signal in this area of the gene can therefore be associated 

with the aforementioned involvement of NEK1 in a DNA-damage response (S. Liu et al., 2013). 

To conclude, apart from the LOF variant rs199947197, most of the signal in NEK1 is found in 

an enrichment of variants at the N-terminus of the gene, which is important in the function of 

NEK1 in a DNA-damage response.  

Evaluation of domain-based clustering and spatial clustering 

Both the domain-based clustering method and the spatial clustering method have strengths 

and limitations. The first strength of the domain-based clustering method is that the domains 

are already functionally annotated, meaning that if we find a significant association between a 

domain and ALS, these annotations can aid in the interpretation of the results. The second 

strength of this method is that the coordinates we obtain for the domains have been defined 

independently of our dataset, which makes it possible to generalise potential results to other 

datasets. However, the fact that we are dependent on other studies for the coordinates of the 

domains also points at a limitation of the domain-based method. The specific dataset with 

domain coordinates that is selected for the analysis can influence the final results that we get. 

Not only might domains not be available for all genes or transcripts in the genome, domains 

do not always cover the entire gene. While this is to be expected of functional domains, it also 

means there is a chance that mutational hotspots are missed. This limitation could partially be 

solved by selecting a different set of domain coordinates. For example, Gelfman et al. (2019) 

perform domain-based clustering based on functional domains collected and described by 

Gussow et al. (2016) and Marchler-Bauer et al. (2013). Gelfman et al. (2019) define a 

functional domain as either a domain in the Conserved Domain Database (CCD) (Marchler-



Bauer et al., 2013) or the spaces between two of those domains in the same gene. This 

approach solves the problem of potentially missing important variants. However, with regards 

to FUS, the only significant cluster that they found was actually a group of variants between 

CCD domains, which overlapped with the aforementioned RGG-repeat. Essentially, this 

means that they still did not find a functional domain in FUS present in their dataset that was 

associated with ALS, so the problem of being dependent on the selected dataset with domain 

coordinates remains.  

 

The aforementioned weakness of domain-based clustering is absent from the spatial clustering 

method. Clusters defined by spatial clustering cover the whole gene and do not miss signal at 

the end of the gene, because these variants are also included in the clusters. However, one 

could argue that the clusters that are found using the spatial clustering method are overfitted 

to the dataset, since the clusters are based on the distance between only the variants included 

in the selected dataset. Our exploratory analysis of the robustness of this method (based on 

Lu et al., 2019), however, implies that the clusters that are found are not completely dependent 

on the dataset, but occur more frequently than other potential spatial clusters. To further study 

the robustness of the spatial clusters across datasets, we could use the spatial clustering 

algorithm on other datasets, such as the data provided by the Genome Aggregation Database 

(gnomAD) (Karczewski et al., 2020). An additional point to keep in mind regarding the spatial 

clustering of variants is that the spatial clustering method does not have the advantage of the 

domain-based clustering method that a function has already been described for significant 

results. Spatial clusters are purely based on the distances between variant positions in a 

transcript, not on biological functions. In order to find a potential biological function behind a 

significant cluster, it is thus still necessary to look at the domain structure of a protein.  

     To conclude this section on spatial clustering, we want to point out that the method could 

also be used for different purposes than just finding groups of variants. For example, the 

method could be used to find differences in variant positions between cases and controls. An 

R package called DoEstRare has been developed that looks for clusters of disease-associated 

variants and evaluates differences in variant positions between cases and controls (Persyn et 

al., 2017).  Both the clustering method described by Loehlein Fier et al. (2017) and the method 

to find differences in gene structure between cases and controls described by Persyn et al. 

(2017) have been tested on Alzheimer’s and not ALS. However, the fact that we found 

evidence of hotspots of ALS mutations using spatial clustering suggests that we might find 

differences in gene structure between cases and controls in ALS as well. 

 

Whether the domain-based clustering or the spatial clustering method is most suitable for a 

specific research question depends on the aim of the research. If the aim is to research a 

process or cell function associated with ALS, the best approach would be domain-based 

clustering, since functional domains are annotated so that domains with the function of interest 

can be selected for analysis. Alternatively, the annotations can be used to find new processes 

related to ALS. This can be done by analysing single domains, domain sets of single domains, 

or domain sets of domain families. An example of a method that tries to find signals in domain 

sets of single domains is the R package REBET (Zhu et al., 2018). This package first defines 

groups of variants based on function and functional impact, after which it tries all combinations 

of clusters within a gene to find the selection of clusters that collectively show the strongest 

association to a disease.  

     If the aim is to find single rare variants that could be the cause of part of the disease 

phenotype seen in a sample, then the spatial clustering method would be better suited. 

Considering a traditional RVB test takes all variants in a gene and gives one output, it can be 

hard to find variants in significantly associated genes that are an interesting target for further 

research. By using the spatial clustering method, you narrow down the scope of potentially 



interesting variants to only the variants in a significant cluster, rather than all the variants in the 

entire gene. This facilitates the selection of variants that cause the ALS phenotype and thus 

furthers our knowledge of the genetic component of ALS.  

     In the end, the best results are likely obtained using a combination of both methods, since 

neither focussing on the position nor the function of a variant cluster is guaranteed to capture 

all promising variant groupings. Combining the results of these methods is especially powerful 

when significant clusters and domains (partially) overlap. This can simultaneously facilitate 

narrowing down on the potentially interesting variants in a cluster and finding the function of 

the protein that is disrupted by these variants. 

Impact and future research 

The use of a clustering method for association testing is important to study which area of 

associated genes actually cause the signal of the whole gene. While rare-variant association 

tests such as SKAT (S. Lee et al., 2014) and ACAT-V (Y. Liu et al., 2019) are designed to find 

genes in which smaller numbers of variants are causal amidst variants with potentially 

opposing effects, these tests do not identify in which region of the gene the smaller groups of 

causal variants are located. Thus, the clustering methods can help us narrow down which 

areas of the genes are important, even if this signal is not driven by a single intermediate-

frequency variant, but a group of rare or ultra-rare variants.  

     Future research into the topic of RVB tests on spatial clusters can focus on the quantifying 

the robustness of the spatial clusters found using our dataset. As previously mentioned, one 

approach for this could be to collect data from other datasets, such as gnomAD (Karczewski 

et al., 2020), and comparing the locations of the clusters found in those datasets to the clusters 

we have found in this study. Additionally, future studies can look into how a spatial cluster is 

actually defined in space. Currently the method divides variants in groups based on one-

dimensional differences between them, i.e. the distance in base-pairs on a transcript. However, 

not all variants that are far apart in a transcript are also far apart in the protein. Therefore, it 

would be worth researching whether clusters of variants can be found in three-dimensional 

models of proteins that have a stronger association with ALS than other regions of the gene.  
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Supplementary materials 

1 – Code domainVarSet() 

domainVarSet = function(gdb,output,varSetName,unit_domainID, unitName, unitTable,  

        positions = "POS", domains, domainsID = "domain_ID",  

       domainsStart="domain_start", domainsEnd="domain_end") { 

   

  gdb <- gdb(gdb) 

  domains <- readr::read_delim(domains, col_names = TRUE) 

  if (sum(c(domainsID, domainsStart, domainsEnd) %in% colnames(domains)) != 3) { 

     error("The `domains` file must contain columns with domain IDs, start  

    positions, and end positions. Check whether the default columns  

   `domain_ID`, `domain_start`, and `domain_end` are present, or define  

   similar columns that are present in the `domains` file!") 

  } 

   

if (length(unit_domainID == 1) { 

    if (substr(unit_domainID, nchar(unit_domainID)-2, nchar(unit_domainID)) %in%  

        c("txt", "csv", "tsv")) { 

      unit_domainID <- as.character(read.table(unit_domainID)[,1]) 

  } 

} 

   

  snpEff <- getAnno(gdb, unitTable) 

  if(sum(c("CHROM", positions, "VAR_id", unitName) %in% colnames(snpEff)) != 4) { 

    error("The `unitTable` must contain the columns 'CHROM', `positions`, 

    'VAR_id', and `unitName`. Check whether the correct `positions` and 

  `unitTable` names were given!") 

  } 

   

  snpEff_gr <- GenomicRanges::GRanges(seqnames = snpEff$CHROM, ranges =  

     IRanges::IRanges(start = snpEff[[positions]], width = rep(1,  

         nrow(snpEff))), VAR_id = snpEff$VAR_id, unit = snpEff[[unitName]]) 

   

  snpEff_chroms <- rbind(snpEff[,c("CHROM", unitName)]) %>% distinct() 

  colnames(snpEff_chroms) <- c("CHROM", "unit")  

   

  VAR_ids_W <- unname(sapply(unit_domainID, getVARidWeights, snpEff_chroms =  

    snpEff_chroms, snpEff_gr = snpEff_gr, domains = domains, domainsID = 

                   domainsID, domainsStart = domainsStart, domainsEnd = domainsEnd)) 

   

varSetName <- rep(paste0("domains_", varSetName), length(unit_domainID)) 

  varSetsDF <- data.frame(unit = unit_domainID, VAR_id_W = VAR_ids_W,  

     varSetName = varSetName) 

  varSetsDF <- varSetsDF[varSetsDF$VAR_id_W != "",] 

  varSetsDF <- varSetsDF %>% tidyr::unite(V1, unit, VAR_id_W, varSetName, sep = "|") 

  readr::write_delim(varSetsDF, output, col_names = FALSE) 

} 

 

getVARidWeights <- function(unit_domainID, snpEff_chroms, snpEff_gr, domains, domainsID,  

      domainsStart, domainsEnd) { 

  transcript <- unlist(strsplit(unit_domainID, "_", fixed = TRUE))[1] 

  if (transcript %in% snpEff_chroms$unit) { 

    ranges <- GenomicRanges::GRanges(seqnames = unique(snpEff_chroms[snpEff_chroms$unit  

        == transcript,"CHROM"]), ranges = IRanges::IRanges(start =  

         domains[[domainsStart]][domains[[domainsID]] == unit_domainID,  

           domainsStart], end = domains[domainsEnd]][domains[[domainsID]] ==  

          unit_domainID, domainsEnd])) 

     

    snpEff_gr_small <- snpEff_gr[grepl(transcript,snpEff_gr$unit, fixed = TRUE),] 



    sub_by_overlap <- IRanges::subsetByOverlaps(snpEff_gr_small, ranges) 

     

    if (length(sub_by_overlap) == 0) { 

      return(“”) 

    } else { 

      return(paste0(paste0(unique(sub_by_overlap$VAR_id), collapse = ","), "|",      

             paste0(rep(1,length(unique(sub_by_overlap$VAR_id))), collapse = ","))) 

    } 

  } else {return("")} 

} 

   

2 – Process diagram of association testing within the RVAT package  

 

This overview shows that a gdb including a vcf and variant information and a varSet are 

necessary to make a genoMatrix, which is turn is the input of the assocTest function. The 

results of association tests and gene sets have their own class, which all fall under the class 

rvatResult. The methods for visualisation can be split into methods that were already defined 

before my projects and methods that we defined in this study. This last group consists of forest 

plots, topResult, manhattanGeneSet, and densityplot.  

  



3 – Mutation plots TARDBP and KIF5A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. KIF5A only shows evidence of a hotspot of ALS mutations for one of the spatial clusters, 

not in any of the domains. The P-value for the whole gene is 6.17x10-10 (OR = 1.31). Including 

only the domains results in an omnibus P-value of 0.75, while including the spatial clusters 

gives an omnibus P-value of 2.68x10-11. Removing intermediate-frequency variants from the 

cluster causes an increase in P-value from 2.97x10-12 (OR = 1.44) to 0.054 (OR = 1.61). This 

implies that the signal seen in KIF5A is single-variant driven.  

B. TARDBP shows strong evidence for a hotspot in both the spatial clusters and the domain-

based clusters. This supports the previously reported hotspot of ALS mutations in TARDBP. 

The P-value for the whole gene is 1.995x10-8 (OR = 2.64), whereas the omnibus P-value of all 

domains and spatial clusters combined is 2.00x10-15. The P-value of the cluster with all variants 

up to intermediate-frequency variants is 1.00x10-16 (OR = 9.18), and remains low with only 

ultra-rare variants (P = 4.53x10-10, OR = 8.36). The right-most domain has a P-value of 

1.28x10-10 (OR = 33.17) when including everything up to intermediate-frequency variants, and 

a P-value of 2.92x10-6 (OR = 20.4) when including only ultra-rare variants. This implies that 

the signal in TARDBP is driven by the whole group of variants in the cluster and domain.  

A 

B 



4 – Variant information of spatial clusters and domains in NEK1 

The single variant association test results were generated by Paul Hop using the statistical 

test ‘firth’.  

The cluster number correspond with the clusters seen in Figure 3. The variants in bold text 

are the variants driving the most significant signals in NEK1.  

Cluster Variant 
ID 

MAF Case 
Carriers 

Ctrl 
Carriers 

Single variant 
association test 
P-value 

OR rsID 

1 6643455 4,94E-05 2 6 0,2860188 2,35336699 rs1383934287 

 6643456 6,15E-06 1 0   rs1131690775 

 6643457 4,28E-05 5 2 0,00619511 8,17930522 rs387906890 

 6643458 6,12E-06 0 1   rs387906890 

 6643459 6,09E-06 1 0   rs765039384 

 6643462 6,09E-06 0 1    

 6643465 1,22E-05 0 2 0,85108613 1,35129378 rs201610555 

 6643466 1,22E-05 1 1 0,32434273 3,45116133 rs756261702 

 6643467 1,83E-05 1 2 0,89867716 1,148811 rs764374761 

 6643470 6,19E-06 0 1   rs779421511 

 6643500 3,01E-05 2 3 0,08855707 4,64268354 rs760763407 

 6643501 6,03E-06 1 0   rs1313271072  

 6643502 3,62E-05 2 4 0,16081711 3,3375705 rs115005766 

 6643506 1,09E-04 3 15 0,85223985 0,89546006 rs201350526 

 6643507 1,21E-05 0 2 0,78863138 1,55348116 rs750846188 

 6643508 1,81E-05 2 1 0,05456074 7,37546962 rs781184197 

 6643510 6,03E-06 0 1   rs1431339437 

 6643513 1,21E-05 2 0 0,0709521 11,589821 rs780748559 

 6643514 1,81E-05 1 2 0,22315799 3,95283761 rs1770058884 

 6643517 1,21E-05 0 2 0,98450593 1,03071342 rs35093214 

 6643519 6,05E-06 0 1   rs1282967368 

 6643554 4,24E-05 4 3 0,00458326 8,35006304 rs1049502301 

 6643555 1,81E-05 1 2 0,53366352 2,03273551 rs1270134755 

 6643558 6,03E-06 0 1   rs1770585618 

 6643559 6,03E-06 1 0    

 6643561 6,03E-06 0 1    

 6643562 6,03E-06 0 1    

 6643640 6,15E-06 1 0   rs1404362599  

 6643641 6,08E-06 0 1    

 6643642 6,06E-06 1 0   rs200825809 

 6643643 1,21E-05 2 0 0,0419785 13,4472848 rs200825809 

 6643644 6,05E-06 0 1   rs773222357 

 6643646 1,21E-05 1 1 0,31193774 3,40566545 rs749503943 

 6643647 6,04E-06 1 0   rs761234040 

 6643648 6,04E-06 0 1    

 6643649 6,05E-06 1 0   rs753341812 

 6643650 6,09E-06 1 0    

 6643652 6,26E-06 0 1   rs1264653671 

2 6643098 6,08E-06 0 1   rs925864732 

 6643102 2,42E-05 1 3 0,53986975 1,8876726 rs755410424 

 6643108 6,03E-06 0 1   rs1458362114 

 6643112 6,05E-06 0 1   rs745711143 

 6643114 6,03E-06 0 1    

 6643115 3,62E-05 4 2 0,06788285 4,63409024 rs775516158 

 6643118 7,23E-05 4 8 0,19985989 2,20507727 rs10034957 

 6643120 6,03E-06 0 1   rs756685207 

 6643121 1,21E-05 0 2 0,93126415 1,14535724 rs756685207 

 6643122 6,03E-06 1 0    

 6643123 6,03E-06 0 1   rs777255986 

 6643124 1,21E-05 2 0 0,16250004 6,7584655 rs753392280 

 6643126 6,03E-06 0 1   rs201587614 

 6643130 2,41E-05 2 2 0,04965825 6,55662358 rs794727032 

 6643131 1,21E-05 0 2 0,96526306 1,07043929  



 6643211 6,03E-06 1 0   rs1322422661 

 6643213 6,03E-06 0 1   rs760983006 

 6643216 0,003690 174 438 5,973E-14 2,05984989 rs200161705 

 6643217 2,41E-05 3 1 0,0138901 10,3116414 rs191859401 

 6643219 6,03E-06 0 1   rs142236342 

 6643222 6,03E-06 0 1   rs1371101243 

 6643224 6,03E-06 0 1   rs756066992 

 6643225 6,03E-06 1 0    

 6643228 3,02E-05 1 4 0,4393302 2,19198808 rs765712201 

 6643229 1,21E-05 2 0 0,06323551 15,2318633 rs772747361 

 6643230 6,03E-06 1 0   rs772747361 

 6643231 1,21E-05 2 0 0,01006538 26,2533145 rs762504963 

 6643232 1,81E-04 5 25 0,82696431 1,11204831 rs61737748 

 6643236 6,03E-06 0 1   rs1767386066 

 6643238 6,03E-06 0 1    

 6643239 1,81E-05 0 3 0,90693246 1,19820528 rs886059235 

 6643240 1,81E-05 2 1 0,01748918 12,2905109 rs1402701809 

 6643245 1,81E-05 0 3 0,84671483 0,75366739  

 6643247 6,03E-06 0 1   rs1767393763 

 6643251 6,05E-06 0 1   rs1451246726 

 6643252 3,64E-05 0 6 0,56804405 0,4704587 rs747225801 

3 6641863 1,21E-05 0 2 0,24593852 0,2113076  

 6641865 6,03E-06 1 0    

 6641867 1,21E-05 0 2 0,84422614 1,37111504 rs764463497 

 6641872 1,21E-05 1 1 0,90486727 1,14885756 rs779767983 

 6641874 4,88E-04 42 39 2,5535E-15 6,39387433 rs199947197 

  



5 – Robustness of spatial clustering using variant pairs 

This plot shows three trends in the robustness of a spatial clustering based on the frequency 

that two variants occurred in the same cluster over 500 iterations. Both the robustness in 

b37.75 and b38.105 were calculated at sample sizes 500, 1000, 1500, 2500, 5000, 10,000, 

and 20,000. For b37.75, we also took all controls and a subset of cases, which resulted in 

21,014 cases. For b38.105, we also took 25,000 random samples, all cases and a subset of 

controls (26,256 samples) and all controls and half of the patients (76,339 samples).  

The green (bottom) datapoints show the robustness of our clustering using the original 

calculations described by Lu et al. (2019). There is an upward trend in the robustness, which 

can be explained by the fact that the more variants are included, the more likely variants are 

to frequently co-occur in a cluster. However, overall the robustness remains low using this 

method because instead of altering a parameter in the clustering algorithm, we took a subset 

of the data. This meant that it was virtually impossible for rare variants to occur in all iterations. 

Subsequently, this caused the maximum number of times certain variant pairs could occur 

together to be lower than 500. We corrected for this in the orange (middle) datapoints by 

calculating the robustness of a variant pair using the maximum number of iterations in which 

they could occur together, instead of the total number of iterations we performed. Here, we 

see a downward trend towards roughly the same robustness as with the original method at 

higher sample sizes. This can be explained by the fact that this method calculates the 

robustness relative to all the clusters found in the 500 iterations, and not in relation to a 

reference clustering. At smaller sample numbers, variants are more likely to end up in the same 

cluster than they are at larger samples numbers, resulting in a higher robustness score. This 

is because the variants will, generally speaking, be further apart from each other, leading to a 

smaller gap between the mean and median distance between variants, which in turn results in 

fewer and thus more similar clusters over iterations. In an attempt to compare the robustness 

results to a reference clustering, we also calculated the robustness of only the variant pairs 

that were present in the original clustering with all samples included (blue/top datapoints). The 

robustness of these variant pairs is much higher than that of the complete list of variant pairs, 

implying that the clusters that are found in the cluster based on the whole dataset are more 

robust than the clusters that could emerge through taking a subset of the data.  


