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Abstract 
 

 

The Crop Water Stress Index (CWSI) has emerged as a valuable tool in Precision Viticulture 

(PV) for assessing crop water stress over vast areas. This is particularly significant considering 

the increasing demand for water and limited water resources. Maximizing water efficiency and 

crop yield through irrigation scheduling is therefore of utmost importance. While various 

techniques have been employed to improve crop water stress analysis, the use of thermal point 

clouds remain relatively unexplored. This thesis aims to enhance crop water stress analysis 

methodologies within PV through the integration of remote sensing, thermal imaging, and point 

cloud technologies. The study focuses on evaluating the viability of using thermal point clouds 

to generate 3D point clouds with CWSI values and 2D CWSI orthomosaics. Comparative 

analysis of these data models determines the appropriateness of employing thermal point 

clouds for CWSI calculation within PV. Additionally, the research explores the influence of 

different flight configurations (nadir, oblique, and their combination) on CWSI outcomes, 

seeking to identify the most effective workflow for CWSI calculation using point clouds. The 

findings exhibit promising potential, showing that thermal point clouds can be effectively 

employed to generate CWSI point clouds. The research findings indicate that point clouds offer 

a more comprehensive representation of the canopy compared to orthomosaics, thus providing 

more detailed information. Volume calculations show that the combined workflow yields the 

most accurate results in terms of geometric representation (R2 = 0.72), followed by the nadir 

flight (R2 = 0.68), and finally the oblique flight (R2 = 0.54). This outcome indicates that the 

combined workflow is the optimal approach for CWSI calculations utilizing point clouds.  

 

Keywords: Crop Water Stress Index, 3D Thermal Point Clouds, UAV Remote Sensing, 

Thermal Imaging, Precision Viticulture. 
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1. Introduction 
 

1.1 Context 

Precision Agriculture (PA) is an innovative and effective approach to improve crop 

performance, rise economic benefits and mitigate the environmental impact by enhancing crop-

managing practices and limiting the use of pollutants (Comba et al., 2019). PA achieves these 

goals by using a range of advances technologies and cost-effective solutions that manage the 

temporal and spatial variability related to agriculture (Sassu et al., 2021). Precision Agriculture 

techniques have been increasingly implemented in viticulture over the last two decades, 

resulting in the practice called Precision Viticulture (PV) (Santesteban, 2017).  

 

Accurate crop monitoring procedures are essential for the successful implementation of PV 

processes. In this regard, remote sensing has emerged as a valuable approach, capable of 

providing vast amounts of data that provide valuable insights into various aspects of crop health 

and management (Comba et al., 2019). Remote sensing techniques enable the assessment of 

spatial patterns in crop biomass and yield through the utilization of diverse vegetation indices 

in combination with physiological traits. Common applications are Leaf Area Index (LAI) 

estimation, nutrient deficiency detection and health status for precise pesticide application 

(Matese & Di Gennaro, 2015) 

 

The introduction of the Unmanned Aerial Vehicle (UAV) has significantly boosted PV, 

complementing the development of satellite and aircraft remote sensing devices (Sassu et al., 

2021). While satellite and aircraft remote sensing devices have improved the spatial and 

temporal resolution in studying plant features, aircrafts are expensive and the spatial resolution 

of satellites is insufficient for PV (Sassu et al., 2021). In contrast, UAVs offer a cost-effective 

solution through the capability to carry sensors that provide high spatial and temporal 

resolution (Zhang & Kovacs, 2012), making them ideal for practices within PV.  

 

Additionally, PV benefits from the utilization of three-dimensional (3D) point clouds in crop 

monitoring, beyond the traditional use of two-dimensional (2D) mosaicked imagery from 

multispectral images (Comba et al., 2019). A point cloud is a large dataset consisting of points 

that correspond to a geodetic reference frame, representing the reflection of light from visible 

surfaces of objects (Comba et al., 2019). These point clouds can be created directly from laser 

scanners, typically through Light Detecting And Ranging Systems (LiDAR) (Mack et al., 
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2017). Alternatively, they can be created through multispectral and thermal imagery by 

software that relies on Structure from Motion (SfM) (Comba et al., 2019). SfM is a 

photogrammetry technique that creates a 3D structure from multiple 2D images through feature 

extraction and matching (Schonberger & Frahm, 2016). 

 

Moreover, the application of thermal imaging in the agricultural sector has increased in recent 

years due to advancements in sensors and reduced costs (Messina & Modica, 2020). Infrared 

thermal imaging is a non-contact and non-destructive technique that enables temperature 

mapping of materials, making it especially useful for fields such as agriculture. Thermal 

imaging has found numerous applications within agriculture, including bruise detection, 

irrigation scheduling, estimating crop yield and pathogen detection (Vadivambal & Jayas, 

2011).  

 

Furthermore, thermal imaging proves to be a reliable method for assessing crop water stress, 

as changes in plant temperature occur when they experience water deficits. Water deficits in 

plants induces stomatal closure, leading to a reduction in transpiration rate, reducing the 

evaporative cooling which in turn increases the leaf temperature (Buckley, 2019). The Crop 

Water Stress Sndex (CWSI) is an index that is derived from canopy temperature and has been 

applied to assess water deficit in various crops, including grapevines (Gutiérrez et al., 2018). 

The CWSI has become a valuable index in PA and PV due to its capability to efficiently assess 

crop water stress accurately over substantial areas. Due to the growing demand for water across 

multiple sectors and the negative effects of climate change on water resources, it has become 

essential to prioritize the efficient utilization of water for crop productivity. The insights 

provided by CWSI analysis can be applied to optimize irrigation scheduling, thereby 

maximizing water efficiency and crop yield (Zhou et al., 2021). 

 

While temperature is regarded as a valuable parameter for crop monitoring activities, 

multisensor approaches are often required to increase accuracy (Narvaez et al., 2017). The 

fusion of thermal data with 3D data, resulting in thermal point clouds, has become a useful 

method in multiple disciplines, since it enhances environmental monitoring practices (Jurado 

et al., 2022). Thermal point clouds have been successfully implemented in environmental 

endeavours such as the characterization of forest canopies (Webster et al., 2018) and assessing 

radiation dynamics of soil surfaces (González et al., 2019). However, most studies pertaining 
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to thermal point clouds have focused on different fields, such as energy inspections in buildings 

(Jurado et al., 2022).  

 

This study aims to bridge the existing research gap by exploring the utilization of thermal point 

clouds within the context of PV. Specifically, a crop water stress analysis of a vineyard is 

conducted using thermal point clouds. By combining the aforementioned benefits of remote 

sensing, thermal imaging and point clouds, there is the potential to further improve existing 

methodologies for crop water stress analysis.  

 

 

1.2 Research objectives 

The primary objective of this study is to assess the potential of employing thermal point 

clouds in the context of precision viticulture. To achieve this, the study involves the generation 

of both 3D point clouds with CWSI values and 2D CWSI orthomosaics. By calculating and 

analysing the differences between these two data models, the suitability of using thermal point 

clouds for CWSI calculation can be determined.  

 

Traditional remote sensing CWSI analysis typically relies on 2D orthomosaics (Bian at al., 

2019; Bahat et al., 2021l; Araújo-Paredes et al., 2022), which provide information mainly about 

the top of the canopy. In contrast, 3D point clouds can offer a more comprehensive 

representation of the canopy (Weiss & Baret., 2017; Pagliai et al., 2022), providing additional 

insights into the side of the canopy and its influence on the CWSI calculation. To fully explore 

the potential of using thermal point clouds for CWSI analysis, the study employs multiple 

workflows, consisting of a nadir and oblique flight, as well as the combination of the two.  

 

The study aims to investigate whether the flight configuration has an impact on the CWSI result 

and, if so, determine which workflow is most effective for CWSI calculation using point 

clouds. By examining the influence of flight configurations on CWSI outcomes and comparing 

the accuracy of different workflows, valuable insights can be gained to optimize the utilization 

of thermal point clouds in CWSI analysis within precision viticulture.  
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1.3 Research questions 

Based on the objectives of this research, the following research question has been 

developed: 

 

- To what extent can thermal point clouds be utilised to assess water stress in 

precision viticulture? 

 

To address this research question, the study is subdivided into the following sub-questions: 

 

- RQ1 - What is the current state of water stress studies using multispectral and 

thermal UAV imagery data? 

 

- RQ2 - How can thermal UAV data effectively be utilized to generate CWSI 

orthomosaics and CWSI point clouds? 

 

- RQ3 - What are the differences between the data models? 

 

- RQ4 – What is the influence of the flight angle on the CWSI calculation? 
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2. Theoretical Framework 
 

2.1 Thermal Imaging 

Temperature measurement methods used to rely on traditional instruments such as 

thermometers and thermocouples, which require direct contact with the material and provide 

localized temperature readings. However, the advent of infrared thermal imaging using remote 

sensors has revolutionized temperature measurement capabilities (Vadivambal & Jayas, 2011). 

This non-contact and non-invasive technique enables the mapping of large areas in a single 

scan, expanding the possibilities for temperature analysis. 

 

Infrared thermal imaging is based on the principle that all objects above -273 °C (0 K) emit 

radiation, and this emitted radiation is directly related to their temperature (Khanal et al., 2017). 

By capturing this radiation using thermal sensors, the information can be converted into 

temperature values. To understand the specific range in which thermal radiation is emitted and 

detected, Figure 1 provides an overview of the electromagnetic (EM) spectrum, highlighting 

the infrared (IR) region. The IR region can be categorized into two distinct regions: the 

reflected-IR region (0.7-3.0 μm), depicted in grey, and the emitted-IR region (3.0-100 μm), 

depicted in red. Within the emitted-IR region, there are three subcategories: the mid-wave 

infrared (MWIR) range (3-8 μm), the long-wave infrared (LWIR) range (8-15 μm), and the far 

infrared (FIR) range (15-100 μm). 

 

In the context of thermal remote sensing for vegetation studies, the thermal infrared (TIR) 

spectral range is of particular interest. While the exact definition of the TIR range may vary 

across different fields and applications, the widely accepted range for TIR remote sensing in 

vegetation studies is typically considered to be 3-14 µm, which encompasses the MWIR and 

LWIR ranges (Neinavaz et al., 2021). Figure 1 depicts the TIR range at the bottom. The LWIR 

part of the TIR range is particularly relevant for thermal remote sensing as it captures the 

emitted radiation from landscape features such as soil, water, and vegetation (Messina & 

Modica, 2020). 

 

 

.  
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Figure 1: Electromagnetic spectrum, highlighting the IR range (grey and red) and the TIR range in the bottom.  

Source: Messina & Modica (2020), edited by author. 

 

Besides thermal imaging, sensors that operate in the visible (VIS), near-infrared (NIR) and 

Shortwave infrared (SWIR) part of the spectrum are also useful for agricultural applications 

(Wójtowicz et al., 2016). By combining two or more bands in these wavelengths, numerous 

vegetation indices (VIs) have been established, enabling the estimation of various plant 

characteristics such as biomass, leaf area, ground cover and chlorophyll content (Khanal et al., 

2017).  Among these indices, the Normalized Difference Vegetation Index (NDVI), proposed 

by Rouse et al. (1974), is widely used. The index is calculated by dividing the difference in 

reflectance between the NIR and red regions by the sum of these two regions. Vegetation 

indices, such as the NDVI, are primarily derived from the spectral reflectance of vegetation 

pigments, particularly chlorophyll content (Zhang et al., 2021). In contrast, thermal imaging 

relies on the measurement of the surface temperature of plants, which is more sensitive to 

changes or damage in crop growth and can therefore sometimes respond faster than vegetation 

indices (Khanal et al., 2017) 

 

Due to its ability to detect changes at an early stage, recent technological developments and the 

reduction of sensor costs, thermal imaging has experienced a surge of popularity within the 
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field of PA (Khanal et al., 2017). Thermal imaging can be applied to numerous aspects of 

monitoring in agriculture. The most common applications include monitoring crop water stress 

for irrigation scheduling, determining disease and pathogen-infected crops, mapping crop 

yield, mapping soil texture, and monitoring crop maturity for optimized harvesting (Khanal et 

al., 2017). 

 

Thermal remote sensing has proven effective in detecting diseases and pathogens by capturing 

the impact they have on plant water stress and stomatal closure. Calderón et al. (2013) used 

thermal UAV imagery to detect the presence of infection by the fungus Verticillium dahlia, 

finding that the leaf temperature increased and the stomatal conductance reduced when the 

severity of the disease intensified. The study further revealed that crown temperature and the 

CWSI are among the best indicators for detecting the fungus Verticillium dahlia in the early 

stages, while other indices such as NDVI and cholorphyll indices showed effectiveness at later 

stages.  

 

In estimating crop yield, thermal sensors can be combined with red,green,blue (RGB) and/or 

multispectral sensors. Feng et al. (2020) employed all three types of sensors to investigate the 

ability of multiple vegetation indices and plant characteristics to estimate crop yield. They 

found that plant height was the best single yield predictor with a coefficient of determination 

(R2) of 0.90. However, the predictive model improved when other features were introduced. 

Combining temperature measurement with plant height resulted in one of the most accurate 

models for yield prediction, with an R2 of 0.94.   

 

Water stress monitoring is one of the most widespread applications of thermal remote sensing, 

and it is discussed in detail in the following section.  

 

 

2.2 CWSI 

 

2.2.1 Background 

Sustaining an optimal canopy temperature is essential for supporting the metabolic 

functions of plants. Transpiration plays a vital role in regulating leaf surface temperature (Egea 

et al., 2017). Through transpiration, liquid water within the plant is converted into vapor and 
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subsequently released through stomates. The conversion of liquid into vapour requires energy 

which is absorbed from the leaf surface. As a result, transpiration effectively reduces the 

temperature of the leaf (Gates, 1964). When a plant suffers from soil moisture shortage, the 

transpiration rate decreases which causes a rise in the leaf temperature (Testi at al., 2008). An 

increase in canopy temperature due to water deficiency has multiple negative effects on vital 

functions of the plant, which can result in a significant decrease in crop yield. Since canopy 

temperature is related to water stress it can be used as a good indicator to measure the water 

stress level in plants (Parkash & Singh, 2020). 

 

The mapping of crop water stress variability has gained significant importance for irrigation 

scheduling. In the 1960s, the primary instrument to measure the vegetative surface temperature 

was a hand-held thermometer. Tanner (1963) and Fuchs and tanner (1966) used this instrument 

to assess plant water status and overall plant health. However, introduction of the CWSI by 

Idso et al. (1981) and Jackson et al. (1981) revolutionized the practical assessment of plant 

stress levels based on canopy temperature. The CWSI provided a more systemic approach, and 

the following equation was formulated to calculate it: 

 

 
𝐶𝑊𝑆𝐼 =  

(𝑇𝑐 − 𝑇𝑎) − (𝑇𝑐 − 𝑇𝑎)𝑙𝑙

(𝑇𝑐 − 𝑇𝑎)𝑢𝑙 − (𝑇𝑐 − 𝑇𝑎)𝑙𝑙
 (1) 

 

 

In this equation, ll represents the lower baseline and ul the upper baseline. Tc represents the 

canopy temperature in Celsius and Ta the air temperature in Celsius, thus Tc – Ta represents the 

leaf-to-air temperature difference. The lower baseline denotes the leaf-to-air temperature 

difference of a plant experiencing no water stress and maintaining an optimal transpiration rate. 

Conversely, the upper baseline represents a plant under maximum water stress and a low 

transpiration rate. The value of CWSI typically ranges between 0 and 1, where 0 represents no 

water stress and 1 maximum stress (Walker & Hatfield, 1983), although negative values have 

also been reported (Sánchez-Piñero et al., 2022) 
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After the initial introduction of the CWSI in 1981, multiple ways of calculating CWSI have 

been introduced. One notable modification was proposed by Jones (1999), who introduced the 

following formula: 

 

 

 
𝐶𝑊𝑆𝐼  =

𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑤𝑒𝑡

𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡
 

 

(2) 

 

 

In this equation, Twet represents the temperature of completely transpiring leaves Tdry refers to 

the temperature of non-transpiring leaves and Tcanopy is the measured leaf temperature. Similar 

to formula (1), the values of the CWSI proposed by Jones (1999) typically fall between 0 and 

1. This formula is the most prevailing within water stress studies.  

 

 

2.2.2 Theoretical, Empirical and Statistical CWSI Approaches 

There are generally three main approaches for analyzing water stress using thermal 

remote sensing: theoretical (CWSIt), empirical (CWSIe) and statistical CWSI (CWSIs). To 

develop equation (1), Idso et al. (1981) and Jackson et al. (1981) established theoretical limits 

for the canopy-air temperature difference based on crop energy balance theory. This approach 

is therefore commonly referred to as CWSIt (Parkash & Singh, 2020). Although this approach 

has demonstrated successful applications in agriculture (Rud et al., 2014) and viticulture 

(García-Tejero et al., 2018), it is not without limitations. Due to the requirement of accurate 

meteorological data and long-term measurements, this approach can be time-consuming and 

resource-intensive (Zhou et al., 2021).  

 

On the other hand, CWSIe is calculated with artificial reference surfaces which can be obtained 

by directly measuring the dry reference temperature (Tdry) and the wet reference temperature 

(Twet) (Jones, 1999; Jones et al., 2002). Twet represents fully transpiring leaves and is obtained 

by spraying water on the leaves (Padhi et al., 2009; Fuentes et al., 2012), while Tdry represents 

non-transpiring leaves and is obtained by covering the leaves with petroleum jelly (Padhi et al., 

2009; Poblete-Echeverría et al., 2015). Another option to obtain Tdry is by adding a certain 

value X°C to the air temperature (Tair). X is dependant on the vapor pressure deficit (VPD) and 

usually ranges between 5 and 7 °C (Rud et al., 2014; García-Tejero et al., 2018). However, the 
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downside of these reference temperatures is that they are easily influenced by the location of 

the reference leaves and meteorological factors (Bian et al., 2019).  

 

In a study by Santesteban et al. (2017), the empirical approach was successfully applied to 

assess the potential of CWSI in estimating the patterns of variation in water status within a 

vineyard. The CWSI values acquired in a single day showed a strong correlation with stem 

water potential (Ψs) and stomatal conductance (gs) at the time of image acquisition. This 

finding demonstrates the potential of CWSI in monitoring instantaneous variations in water 

status within a vineyard. 

 

The last method, CWSIs, utilizes the temperature histogram combined with the air temperature 

to obtain the references values. Rud et al. (2014) used the mean of lowest 5% of the temperature 

histogram to obtain Twet., while for Tdry, they added 5 °C to the air temperature. This statistical 

approach has served as a foundation for subsequent variations and adaptations in the field of 

CWSI estimation. 

 

Park et al. (2017) proposed an adaptation of the statistical approach which they referred to as 

the adaptive estimation of crop water stress. Their method involves obtaining Twet and Tdry 

values by determining the critical values at the 99% confidence intervals of a Gaussian 

distribution fitted to the canopy temperature distribution using a Gaussian mixture model. 

However, relying solely on these critical values for Twet and Tdry may introduce significant 

uncertainty and potential errors. 

 

Bian et al. (2019) presented another alternative approach to the statistical method by 

incorporating the temperature histogram for both Tdry and Twet. They utilized the mean of the 

lowest and highest 0.5% of the temperature histogram to determine the reference values, 

introducing their approach as a simplified water stress methodology. Their approach showed 

more robust results than the empirical approach and the statistical approach using air 

temperature. In a study conducted by Araújo-Paredes et al. (2022), both the simplified approach 

and an air temperature model were utilized to estimate and spatialize CWSI in a vineyard. The 

simplified method involved calculating the average of the 1% extreme temperature values. This 

approach yielded a slightly higher correlation between CWSI and Ψs compared to the air 

temperature model. The study demonstrates the potential of the simplified approach in 

assessing the water status of vines after segmentation, highlighting its usefulness in vineyard 
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management. 

 

A major advantage of the histogram approach is that it eliminates the need for reference and 

meteorological measurements, significantly reducing its complexity (Zhou et al., 2021). 

However, it is important to note that this approach can exhibit biases at the canopy level when 

applied under different irrigation treatments. Specifically, when Twet is measured on the canopy 

level with a water deficit treatment, it tends to be higher than the actual value, while the 

measurement for Tdry in well-watered treatments tends to be lower than the actual value. These 

biases introduce inaccuracies in the CWSI calculation at the canopy level (Zhou et al., 2021).  

 

 

2.2.3 Canopy Segmentation 

In thermal imaging, the index of each pixel represents the temperature of the target. To 

obtain the value of Tcanopy with CWSI calculation, pure canopy pixels need to be separated from 

the background such as sky, soil and random vegetation. Different approaches have been 

employed to extract pure canopy pixels in thermal imaging, including the use of a temperature 

threshold, a region of interest (ROI) and a binary mask (Zhou et al., 2021). 

 

The ROI approach has been primarily implemented for ground-based thermal images rather 

than aerials. When using a ground-based platform, a specific area can be delimited in the 

middle of the thermal image that mainly includes an area of leaves (Bian et al., 2019). The 

average temperature of the selected ROI is then considered as Tcanopy.  

 

The temperature threshold approach relies on the reflectance difference between soil and 

canopy in thermal imagery to distinguish between them (Santesteban et al., 2017). By 

analyzing the bi-modal histogram that shows two temperature peaks assigned to soil and 

canopy, the two types of pixels can be differentiated. However, this method can wrongfully 

identify mixed pixels at the edges for pure canopy pixels (Rud et al., 2014). Furthermore, the 

approach is not resistant to spontaneous vegetation between canopy rows. Additionally, the 

temperature threshold approach struggles in accurately distinguishing canopy under severe 

water stress. This is because the temperature of stresses canopy can be incorrectly classified as 

soil, leading to a loss of canopy pixels which influences the reliability of the calculated CWSI 

(Zhou et al., 2021). 
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The last approach, the masking technique, involves creating a binary mask that allows to extract 

canopy in thermal imagery. The binary mask can either be generated using visible (RGB) or 

multispectral images. By defining the values that represent the canopy, these pixels are 

assigned a logical value of 1, while non-canopy pixels receive a logical value of 0. Overlaying 

the mask with the thermal image allows for the extraction of pure canopy pixels. When using 

RGB imagery, the logical value is determined by color features, since canopy and background 

colors have distinctive characteristics (Drew et al., 2019). In the case of multispectral images, 

the NDVI is often utilized to create the binary mask due to its reliable ability to distinguish 

between soil and vegetation (Zhou et al., 2021). However, a limitation of this technique is that 

it cannot distinguish natural occurring vegetation from the canopy itself. Another approach is 

to use the Canopy Height Model (CHM) as the binary mask, which uses the height information 

of the canopy to separate it from the soil and other vegetation (Cinat et al., 2019). This method 

offers a straightforward way to differentiate the canopy based on its vertical structure. 

 

 

2.3 Point Clouds 

Compared to 2D data, which can lack depth information and suffer from limitations in 

representing distances, 3D data offers a more complete and realistic representation of the world. 

(bron). As a result, the significance of 3D data is growing across multiple fields. In the domains 

of robotics and autonomous driving, the adoption of 3D data as the prevailing standard is 

already well-established (Pendleton et al., 2017; Weingarten et al., 2004). 

 

One effective way to represent 3D data is through 3D point clouds, which consist of XYZ 

coordinates and can contain additional information such as surface normals or RGB values 

(Bello et al., 2020). Compared to a 3D mesh model, point clouds offer a higher level of 

precision and the ability to capture fine details such as indents in objects. Point clouds consist 

of raw data without any interpolation, making them particularly useful for precise 

measurements within PA (Koenig et al., 2015), while 3D mesh models allow for more 

enhanced visualization. One of the downsides of point clouds, however, is potential noise 

disturbance that show up as holes in the model due to transparency or reflectivity (Tabib et al., 

2020). Furthermore, automatically identifying and categorizing objects withtin a point cloud 

can be complex due to the lack of explicit semantic labels. Object recognition algorithms often 
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rely on additional contextual information or machine learning techniques to classify objects 

accurately, which can be more challenging with point clouds compared to other data 

representations like 3D mesh models (Xie et al., 2020). 

 

Despite these challenges, point clouds have proven to be an effective data format in various 

disciplines, including architecture, engineering, geomatics and Building Information 

Modelling (BIM) (Bello et al, 2020). In recent years, the potential of point clouds has been 

demonstrated in PA and PV as well. For instance, Comba et al. (2019) utilized 3D point clouds 

derived from UAV imagery to assess the Leaf Area Index (LAI) of a vineyard, demonstrating 

a successful cost-effective alternative compatible with manual measurements. Torres-Sánchez 

et al. (2021) made use of UAV point clouds to propose a new method for the yield prediction 

of a vineyard. They successfully developed an unsupervised and automated workflow to detect 

grape clusters by using point clouds. Weiss & Baret (2017) described a vineyard 3D macro-

structure by estimating the row width, height and spacing using UAV point clouds. With 

optimal flight configuration, accurate estimations were achieved, although the quality of the 

dense point cloud influences the results. 

 

To expand the capabilities of point clouds, researchers have explored combining point clouds 

with thermal information in various disciplines. Thermal point clouds, successfully applied in 

building modeling, offer a valuable tool for analyzing building energy efficiency by providing 

more extensive information than 2D thermographs (Ramón et al., 2022). Despite their proven 

worth in multiple disciplines, their applicability within PA, specifically in PV, remains 

relatively unexplored. This study aims to fill this research gap by utilizing point clouds to 

measure crop stress and evaluating their potential benefits when integrated into existing PV 

methods.  
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3. Methodology 
 

3.1 Research Area 

The data was collected from a commercial vineyard located within "Rias Baixas AOP", 

in "Tomiño, Pontevedra," Galicia, Spain (X: 516989.02, Y: 4644806.53; ETRS89 / UTM zone 

29N). The vineyard dates from 1990 and is part of the ‘Terras Gauda Winery’ and uses the 

Vitis vinifera cv., Loureiro. The vines were planted with 2.5 meters between plants and 3 meters 

between rows with a NE-SW orientation, with cover crops between the vine rows. They were 

planted using the Vertical Shoot Position (VSP) system, where vine shoots are trained upward 

with the fruiting zone below. The plants were grafted on a 196.17C rootstock, which is resistant 

to active limestone. Appellation of Origin (AOP) rules and practices apply to the vineyard.    

 

 

 

Figure 2. Location of the Vineyard. Coordinates in ETRS89 UTM Zone 29N. 
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Figure 3. Enhanced view of the study area with the ROI displayed in red. Coordinates in ETRS89 UTM Zone 

29N. 

 

 

3.2 Data 

The platform used to acquire multispectral and thermal data was the DJI M300 RTK, a 

UAV which integrates a flight control system and an FPV camera. It allows obstacle avoidance 

and six-direction positioning. A MicaSense Altum-PT (AgEagle Sensor Systems Inc., Wichita, 

Kansas, USA) with multispectral and thermal sensors was used to gather the images. The 

camera captures images in 7 different bandwidths. 
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Table 1 

Center Wavelengths and Bandwiths of MicaSence Altum-PT. Source: MicaSense, 2022. 

Name Center Bandwidth 

Blue 475 nm 32 nm 

Green 560 nm 27 nm 

Red 668 nm 16 nm 

Red edge 717 nm 12 nm 

Near infrared 842 nm 57 nm 

Panchromatic 634.5 nm 463 nm 

LWIR (Thermal) 10.5 x 103 nm (10.5 μm)  6 x 103 nm 

 

 

Multiple flights were performed over the study area, for this research two flights are used. The 

specifications of the flights are shown below. 

 

 

Table 2  

Flight Specifications 

Angle Date Time Height 

Nadir (0 °) July 13th, 2022 12:20 30 m 

Oblique (30°) July 13th, 2022 18:30 30 m 

 

Both flights were performed on the same day, with the nadir flight earlier in the day than the 

oblique flight. The ground control points (GCPs) were located in the vineyard and 

georeferenced using the Trimble R2 Integrated GNSS system to improve the geometric 

accuracy of the image mosaicking process. 
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3.3 Workflow of the Methodology  

 The following workflow presents the step-by-step process utilized in this study. It 

serves as a visual guide to gain an overview and understanding of the methodology employed. 

Each step depicted in the workflow will be elaborated upon in the subsequent sections, 

providing explanations and justification for their implementation.  

 

 

Figure 4.  Workflow of the utilized methodology. 
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3.4 Digital Image Processing 

The drone images are processed using Agisoft Metashape Professional commercial 

software (Agisoft LLC, St. Petersburg, Russia). This software utilizes a SfM algorithm that 

reconstructs the surface by matching the digital images through automatically identifying 

related points in every orientation operation.  

 

 

Figure 5. Workflow of Image Processing in Agisoft Metashape Resulting in the Required Dense Clouds and 

Orthomosaics. 

 

After uploading the photos into Metashape, the reflectance is calibrated using the calibration 

panel images found in the folder. Metashape automatically recognizes these calibration images 

if the meta-data describes their purpose, and saves them in a separate file. If the panel of the 

camera is has been used before, the calibration information is stored in Metashape’s internal 

database. The next step involves the alignment of the photos, which is done through feature 

detection and matching algorithms that establish the relative positions of the images. The result 

of this step is a sparse point cloud that represents the scene. The sparse point is optimized by 

employing the gradual selection tool. Outliers of the model are deleted in this step and the 

photo alignment is optimized after each removal, ensuring a more accurate model. Afterwards, 

the model can be georeferenced with ground control points for higher accuracy. Initially, the 

model is converted to the local coordinate system, which in this case is ETRS89 UTM zone 

29N. The csv file containing the field’s GCP coordinates is uploaded, which are displayed as 

markers by the software. These markers are aligned with the GCPs that can be spotted in the 

corresponding images. After georeferencing the sparse point cloud, the high-quality dense 

point cloud can be created. This is done through computer vision algorithms that generate a 

precise and dense 3D representation of the area based on the sparse cloud. Quality was set to 

medium due to high computational power that was needed when using the combination of the 

nadir and oblique flight. Again, the model is optimized by deleting outlying points. Afterwards, 

a Digital Surface Model (DSM) is built by interpolating the dense cloud to produce a 

continuous surface that represents the topography of the scene. Finally, the orthomosaic is 

created by projecting the images onto the DSM. The resulting image is an orthorectified mosaic 

Multispectral and 
thermal UAV 
imagery data

Reflectance 
calibration

Photo alignment
Geo-

referencing
Dense Cloud

Digital Surface 
Model (DSM)

Orthomosaic
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of the scene that seems captured from a single perspective at a fixed height. 

 

3.5 CWSI Orthomosaics 

The subsequent sections of the methodology are organized according to the research 

questions addressed in this study. As the first research question has been covered in the 

literature review, this section begins with research question 2. Specifically, this section focuses 

on the first part of RQ2, which deals with how thermal UAV data can be utilized to generate 

CWSI orthomosaics.  

 

The CWSI, which relies on canopy temperature, is a widely adopted indicator for assessing 

plant water stress and mapping spatial variability (Bahat et al., 2021). In this study, the thermal 

band of the multispectral camera is utilized to evaluate the surface temperature of the vineyard's 

canopy. To derive accurate temperature values specifically related to the canopy, it is essential 

to extract pure canopy pixels while eliminating noise sources such as soil and grass. This 

process involves the creation of a binary mask,  utilizing ArcGIS Pro 3.0.2 (ArcGIS™ software 

by Esri®, Inc.). Initially, an NDVI mask was employed, where higher values represent 

vegetation and lower values represent soil. However, due to the presence of inter-row 

vegetation in the research area, this approach proved inadequate, as depicted in Figure 6. 
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Figure 6.  NDVI map of the vineyard showing inter-row vegetation. 

To overcome the aforementioned challenge, this study utilizes a CHM as an alternative 

approach. The CHM plays a crucial role in accurately extracting canopy pixels while 

effectively separating plant rows from the ground rows situated between the vines. 

 

The creation of the CHM involves the generation of a DSM and a Digital Terrain Model (DTM) 

using Metashape software. The DSM is generated by incorporating all the points from the point 

cloud, resulting in a file that represents the height of various objects within the study area. 

Simultaneously, the DTM is constructed by initially classifying the ground points within 

Metashape. 

 

Subsequently, the CHM is derived by subtracting the DTM from the DSM. This process 

ensures that the CHM specifically captures the vertical extent of the canopy while excluding 

the ground elevation. Afterwards, a threshold layer is created using a chosen threshold value 

of 0.5 meters. In this context, pixels with heights exceeding 0.5 meters are assigned a value of 

1, indicating their association with the canopy, while pixels below this threshold are assigned 

a value of 0. 
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The selection of a 0.5-meter threshold is based on the understanding that spontaneous 

vegetation typically does not attain this height, while all the cultivated plants in the vineyard 

are at least 0.5 meters tall. Consequently, this threshold effectively distinguishes the canopy 

vegetation from other objects and vegetation in the study area. A visual representation of the 

CHM is displayed in Figure 7. 

 

 

 

 

Figure 7. Obtaining the CHM from a vineyard, utilizing the DSM and DTM. 

 

Following the generation of the binary mask layer, the thermal layer of the orthomosaic is 

divided by the mask layer. This operation produces a new layer exclusively containing 

temperature values corresponding to the canopy pixels. To ensure proper unit conversion, these 

temperatures are divided by 100 and then subtracted by 273.15, effectively converting the 

values from Kelvin to Celsius. The workflow depicting the step-by-step procedure for the 

canopy extraction process is illustrated in Figure 8. 

 

 

 

Figure 8. Workflow for image processing for CWSI calculation.  
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The final step, calculating the CWSI, is done by applying equation (2). In the CWSI 

calculation, the measured temperature of the canopy pixels is compared to the lower and upper 

limits representing a non-stressed leaf (Twet) and a leaf in maximum stress (Tdry), respectively. 

As discussed previously, various approaches exist for determining the reference temperatures 

Twet and Tdry.  

 

Initially, an empirical approach following research such as Matese et al. (2021) was employed 

in this study. This involved coating vines with petroleum jelly to obtain the dry reference 

temperature, while plants were sprayed with water to obtain the wet reference temperature. 

However, a limitation was identified when calculating CWSI values using these references. 

The reference measurements were obtained in a shaded area, while the orthomosaics 

encompass sunlit areas with higher temperatures. Consequently, the CWSI models generated 

from these references produced inaccurate results, with values significantly exceeding the 

expected 0 to 1 range.  

 

To overcome this challenge, a modified approach known as the simplified CWSI approach 

(Bian et al., 2019; Araújo-Paredes et al., 2022) is employed. In this method, the temperature 

histogram is utilized to determine the wet and dry reference values. Specifically, the wet 

reference is calculated by averaging the lowest 0.5% of the histogram, while the dry reference 

is obtained by averaging the highest 0.5% of the histogram. This modification enables a more 

accurate assessment of water stress by aligning the reference values with the temperature 

distribution observed in the orthomosaics.  

 

3.6 CWSI Point Clouds 

This section focusses on the second part of RQ2, which explores the utilization of 

thermal UAV data in generating CWSI orthomosaics. When creating the orthomosaic using 

Metashape, the software generates point clouds for all seven bands, including the thermal band 

captured by the camera. This built-in capability of Metashape simplifies the process of 

generating thermal point clouds, enabling their direct application in research studies (Grechi et 

al., 2021; Guilbert et al., 2020). 
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To classify the thermal point cloud and separate the canopy from the soil and trunks, Metashape 

offers useful tools. The ground points of the point cloud were previously classified to create 

the Digital Terrain Model (DTM). Metashape's "classify ground points" tool automates this 

process. The software divides the dense cloud into cells and detects the lowest point in each 

cell. By triangulating these lowest points, an initial estimation of the terrain model is obtained. 

New points are then assigned to the ground class if they fall within a specified distance and 

angle from the terrain model. These parameters, the maximum angle, and distance, can be 

adjusted to optimize the classification. 

 

After exporting the classified point cloud as an XYZ file, specifically selecting the canopy 

class, the point cloud data is stored in a format that enables the reflectance values of each band 

to be stored in separate columns. This format facilitates the subsequent analysis of the thermal 

point cloud. The exported point cloud is then imported into CloudCompare (version 2.12.1) 

[GPL software], an open-source software renowned for its capabilities in manual editing and 

rendering of 3D point clouds. 

 

Within CloudCompare, the reflectance values of the thermal point cloud are stored as a scalar 

field within the file, ensuring that the spectral information is preserved for further analysis. The 

software provides tools for refining the point cloud by performing noise filtering techniques, 

which enhance the accuracy and quality of the data. This step aids in removing unwanted 

outliers from the point cloud, resulting in a cleaner representation of the canopy structure. 

 

Additionally, the final step of the point cloud classification involves manual intervention. 

Points that do clearly not belong to the canopy (soil or trunks) are carefully removed from the 

dataset. This manual deletion process ensures that the resulting point cloud is the most accurate 

representation of the canopy structure. 

 

Finally, the temperature values in the point cloud are converted from Kelvin to Celsius using 

the arithmetic tool provided by CloudCompare. The resulting temperature values are then used 

to calculate Twet and Tdry based on the temperature histogram of the point cloud. With these 

reference values, the CWSI values can be computed for each point in the point cloud using 

equation (2). This process ultimately generates a CWSI point cloud that represents the water 

stress levels across the research area. 
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3.7 Statistical Analysis 

This section addresses research questions 4 and 5, which are as follows: 

 

- What are the differences between the data models? 

- What is the influence of the flight angle on the CWSI calculation? 

 

 

3.7.1 Individual Plant Extraction 

To enable meaningful statistical comparisons, individual plants within the research area 

are isolated. This is achieved by creating a grid in ArcGIS Pro, where a rectangular polygon is 

defined around the research area and subsequently divided into multiple equal areas. A 

selection of the rectangular segments is then performed in a manner to ensure an equal 

distribution across the study area. Furthermore, smaller segments of canopy are not selected to 

avoid bias in CWSI and volume calculation, resulting in 51 polygons, or plants. 

 

 The same grid is applied to all orthomosaics and point clouds, ensuring consistent 

segmentation of plants for subsequent analysis. The grid-based plant isolation process is 

depicted in Figure 9 for both nadir orthomosaic and point cloud data. 
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Figure 9. Grid used to isolate individual plants. The left image illustrates the nadir orthomosaic, while the right 

image showcases the nadir point cloud. Coordinates are represented in ETRS89 UTM Zone 29N. 

 

It should be noted that the grid does not precisely correspond to actual individual vines in the 

vineyard due to variations in vine sizes and locations. However, the grid ensures that each 

"plant" is consistently isolated, enabling valuable analysis between different data models. 

Furthermore, the length of the polygon was set slightly over 2 meters to approximate the size 

of the actual plants.  
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3.7.2 Flight Angle Influence 

In this study, both nadir and oblique flights are employed. Additionally, a combined 

dataset is created by merging the images from both flights to generate orthomosaics and point 

clouds. The aim is to investigate the influence of flight angle on the CWSI calculation. Previous 

studies by Li et al. (2022) and Lin et al. (2021) have demonstrated the potential of oblique 

imagery for point cloud analysis in agriculture, as it can capture the sides and bottom of 

canopies more effectively than nadir flights. Furthermore, combining nadir and oblique flights 

resulted in more accurate outcomes compared to studying either angle individually. 

Considering the focus of this research on the potential of point clouds to capture a larger portion 

of the canopy, including the oblique flight is justified. 

 

 

3.7.3 Collecting Statistics 

After isolating the plants in all orthomosaics and point clouds, statistical analysis is 

performed to extract insights from the data models and evaluate the influence of the flight 

angle. For orthomosaics, zonal statistics in ArcGIS Pro is utilized. However, since zonal 

statistics only accepts integers, the CWSI values are first multiplied by 100 and converted into 

integers to preserve precision. This process generates a table containing the mean CWSI values 

of each plant for all three orthomosaics. 

 

For point clouds, CloudCompare does not provide a built-in zonal statistics function. Therefore, 

Python 3.10 is utilized to calculate the average CWSI values for each plant in the point clouds, 

which are stored in text files. The Python code loops through the point clouds, computes the 

average CWSI value, and saves the results in an .xlxs file. Finally, the statistics from different 

flights and data models are consolidated into a single file, which is then ready for linear 

regression analysis. 

 

 

3.7.4 Linear Regression Analysis 

Linear regression analysis is performed to compare the orthomosaic and point cloud 

data models for each flight. This analysis aims to identify differences between the two data 

models. Since both models use the same data and undergo similar processing steps, their values 
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should exhibit some similarities. However, due to the point cloud's ability to capture more 

information, differences are expected. 

 

To further investigate the disparity between orthomosaics and point clouds, the same analysis 

is conducted, but this time the top of the canopy is segmented. If R2 increases after 

segmentation, it indicates that the side and bottom portions of the canopy contribute to the 

differences in the orthomosaic. This finding would suggest that the CWSI point cloud provides 

a more detailed representation than the orthomosaic. In addition to comparing the orthomosaic 

and point cloud data models, linear regression analysis is also performed between the different 

flight angles. This analysis aims to explore the influence of flight angles on the CWSI 

calculation.  

 

 

3.7.5 Volume calculation 

To further explore the influence of the flight angles, the volumes of each plant in the 

point clouds are calculated and compared to the volumes derived from a LiDAR point cloud of 

the research area. The LiDAR dataset serves as ground-truth data due to its superior accuracy 

and point cloud density. By comparing the volumes, the most accurate point cloud creation 

method (nadir, oblique, or combined) can be determined. Although this comparison does not 

directly assess the accuracy of the CWSI calculation, it provides insights into how well the 

point cloud captures the canopy geometry, which, in turn, contributes to more accurate results 

in subsequent analysis, such as CWSI calculation. 

 

Python is utilized to calculate the volumes for all the point clouds. The LiDAR point cloud 

undergoes the same segmentation and classification steps as the other point clouds. The Python 

code loops through the plants and calculates their volumes using the convex hull method. 

 

The convex hull method is a geometric algorithm used to calculate the volume of a three-

dimensional object or point cloud. It involves constructing the smallest convex shape that 

encloses all the points of the object or point cloud. The resulting convex hull represents the 

outer boundary of the object (Baíllo & Chacón, 2021). To calculate the volume using the 

convex hull method, the algorithm computes the total volume of the convex shape by dividing 

it into smaller tetrahedrons or pyramids. The volume of each tetrahedron or pyramid is then 
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calculated based on its base area and height. By summing up the volumes of all the tetrahedrons 

or pyramids, the total volume of the object or point cloud enclosed by the convex hull can be 

determined.  

 

Once the volumes of each plant have been calculated and stored in an Excel file for all the 

flights, the next step is to perform linear regression analysis between the volumes derived from 

the three flights (nadir, oblique, and combined) and the volumes obtained from LiDAR data. 

By conducting linear regression, it can be assessed which flight provides the most consistent 

and accurate volume estimation, aiding in the evaluation of the quality and reliability of the 

geometry of the point clouds.  

 

Validation of remotely sensed CWSI values is typically conducted using ground-truth data, 

which involves direct measurements of plant physiological parameters such as leaf water 

potential (Ψleaf) and stomatal conductance (gs). These parameters have a strong correlation 

with CWSI and serve as reliable indicators for validation purposes (Zhou et al., 2021). 

However, in this research, the unavailability of expensive instruments like the pressure 

chamber for Ψleaf measurement and leaf porometer for gs measurement limits the direct 

validation of CWSI values. Despite this limitation, the methodology employed in this study 

aims to overcome this challenge and provide an alternative approach for evaluating the 

accuracy of CWSI through the data models and analysis described. 
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4. Results 
 

In the first section of the results, the orthomosaics and point clouds generated using 

ArcGIS Pro, CloudCompare, and Metashape are visualized. This section aims to showcase 

the process of producing the final products and provide an overview of the temperature and 

CWSI distribution within the study area for each of the orthomosaics and point clouds. In the 

second section of the results, the statistical analysis between the different flights and data 

models is shown to gain more insight into the obtained values.  

 

 

4.1 Visual Results 

 

4.1.1 Orthomosaics 

 

 

 

Figure 10. Orthomosaics of the study area from the nadir flight in RGB (left), thermal (middle) and the CHM 

threshold (right). Coordinates in ETRS89 UTM Zone 29N. 
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Figure 10 shows the orthomosaic in RGB, the thermal band in raw pixel values and the CHM 

threshold layer. The blue parts of the threshold layer represent non-canopy and contain 0 values 

and the green parts represent canopy which contain 1 values. The thermal layer (middle) is 

divided by this threshold layer to obtain the canopy-only pixels of the thermal layer. This layer 

is then converted into temperature values (Celsius), after which the CWSI layer can be created. 

The figure serves to illustrate how the CWSI layers are obtained, hence only the nadir flight is 

shown here, since the other flights follow the same process. The obtained CWSI orthomosaics 

for the different flights are shown below in Figure 11.  

 

 

 

 

Figure 11. Orthomosaics of temperature values of the nadir flight (left), the oblique flight (middle) and the two 

flights combined (right). Coordinates in ETRS89 UTM Zone 29N. 

 

The temperature variation between the nadir and oblique flights is most evident, with the 

former showing significantly higher temperatures. Specifically, the maximum temperature 

recorded during the nadir flight was 54.4 °C, whereas the oblique flight recorded only 44.8 °C. 

Consequently, the oblique orthomosaic is predominantly green and lacks any yellow or red 

elements. This temperature difference can be attributed to the difference in air temperature 

during the flights. Air temperature data was collected at 10-minute intervals from the nearest 

weather station, which is part of the official network of weather stations maintained by the 
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Meteorological Observation and Prediction Unit of the Government of Galicia. The nadir flight 

took place at 12:20, when the temperature was 35.9 °C, while the oblique flight was conducted 

at 18:30 when the temperature was 27.9 °C. Furthermore, all the orthomosaics indicate higher 

temperatures on the east side of the canopy than on the west. This outcome could be attributed 

to the east side receiving the most intense sunlight, leading to a temperature difference that 

could explain this. These temperature values resulted in the following CWSI orthomosaics.  

 

 

 

 

 

 

Figure 12. Orthomosaics of CWSI values of the nadir flight (left), the oblique flight (middle) and the two flights 

combined (right). Coordinates in ETRS89 UTM Zone 29N. 

. 

 

 

Despite the oblique flight capturing lower temperatures, the resulting CWSI orthomosaics 

exhibit similar trends, with the lowest values observed in the north and slightly higher values 

in the south of the vineyard. This similarity can be attributed in part to the CWSI calculation 

process, which normalizes values between 0 and 1. However, the statistical analysis is 
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necessary to determine the actual similarity of the CWSI values. Across all three orthomosaics, 

the east side of the canopy consistently displayed higher CWSI values. While some CWSI 

values below zero or above 1 were observed in both flights, they are not included here as they 

are minimal. These irregular values beyond the expected range of 0 to 1 occur due to the CWSI 

calculation methodology, which employs histograms. The reference values for CWSI 

calculation are the averages of the top and bottom temperature values, hence certain pixels 

contain higher or lower values than this average. 

 

4.1.2 Point clouds 

 

 

Figure 13.  Point clouds of nadir flight in RGB (left) and the classified version (right). 

The image on the left displays the RGB point cloud captured during the nadir flight of the entire 

field. The image on the right shows the same point cloud, with the ground points classified as 

brown and the canopy points as white. Both images depict a larger portion of the field beyond 

the study area, as segmentation has not been performed yet. The white points were exported as 

a text file and subsequently uploaded into CloudCompare, where additional processing was 

carried out to generate temperature data. Finally, the CWSI point cloud, illustrated in Figure 

14, was produced through further processing. 
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Figure 14. CWSI point cloud of nadir flight. 

The figure displays the CWSI point cloud obtained from the nadir flight. The point cloud was 

subsequently segmented using the same file that was used for the orthomosaic, which resulted 

in individual plants. Only the nadir flight is shown in this figure since displaying the entire map 

would make it challenging to discern any differences between the flights. To compare the 

various flights, the same plant (plant 1) from each flight is presented in Figure 15.  
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Figure 15. CWSI point cloud of plant 1 from the nadir flight (left), oblique flight (middle) and the combined 

flights. 

All three flights display a comparable pattern, with lower CWSI values at the top and higher 

values towards the bottom of the canopy. Across all flights, the highest CWSI values can be 

observed at the bottom of the canopy on the east side. However, the nadir flight exhibits slightly 

higher values on the west side of the canopy, where the other two flights show lower (blue) 

values. Furthermore, the oblique and combined flight point clouds offer more comprehensive 

coverage on the sides and particularly at the bottom.  
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4.2 Statistical results 

The statistical results are presented in the following manner. In the first section, the 

general statistics are provided, which include the values of the data models pertaining to 

temperature, CWSI values and quality. These statistics offer an overview and description of 

the data, allowing for a better understanding of the overall characteristics and trends within 

the datasets. The second section focusses on the linear regression analysis between the CWSI 

values and the last section deals with the volume calculations.  

 
 

4.2.1 General statistics 

The following results provide insight into the general statistics of the data models 

regarding the temperature, CWSI values and the number of points/pixels. Table 3 shows that 

the maximum temperature recorded across all flights and data models is high, particularly for 

the nadir and combined flights. These higher temperature values consequently lead to higher 

Tdry values. The maximum temperature and Tdry exceed the anticipated range based on previous 

studies (Bian et al., 2019; Araújo-Paredes et al., 2022). These values suggest the possibility of 

misidentifying some soil pixels and points as canopy pixels. However, it is important to note 

that the average temperature values align more closely with what is expected, indicating that 

these high temperatures are mostly outliers. 

 

Table 3  

General Statistics of Data Models 

Flight Data 

model 

Min 

temp 

Max 

temp 

Mean  

temp 

St. 

Dev. 

temp 

Min  

CWSI 

Max  

CWSI 

Mean 

CWSI 

Twet Tdry St. 

Dev  

CWSI 

Pixels/points 

(N) 

Nadir Ortho 31.9 54.4 37.9 3.42 -0.04 1.21 0.29 32.5 50.7 0.19 66,945 

 PC 31.7 56.2 38.9 3.69 -0.10 1.26 0.30 33.5 51.5 0.20 215,199 

Obl-

ique 

Ortho 31.4 44.8 34.9 1.86 -0.04 1.30 0.31 31.8 41.9 0.19 47,717 

PC 31.0 43.2 35.2 1.64 -0.09 1.20 0.35 31.9 41.3 0.17 181,372 

Com-

bined 

Ortho 31.8 55.5 38.3 3.83 -0.04 1.19 0.30 32.5 51.8 0.20 53,315 

PC 31.1 55.0 36.4 2.72 -0.06 1.27 0.23 32.2 50.1 0.15 208,687 
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The oblique flight has the lowest number of pixels/points for both the point clouds and the 

orthomosaic, while the nadir flight contains the highest. Although the combined flights create 

data models with images from both flights, these results indicate that this doesn't necessarily 

lead to more points or pixels. The most noticeable difference is the lower maximum 

temperature for the oblique flight in both the orthomosaic and the point cloud, with its mean 

temperature also being lower than that of the other two flights. Conversely, the CWSI values 

are highest in the oblique flight for both the point cloud and the orthomosaic. 

 

For the nadir and combined flights, the minimum and maximum temperature values of the point 

cloud are lower and higher, respectively, than those of the orthomosaic. This trend is also 

observed for the CWSI values. It is expected that the point cloud would have a wider 

temperature and CWSI range, as it uses the same data but is more complete. However, for the 

oblique flight, the orthomosaic shows a higher maximum temperature and CWSI value instead 

of the point cloud. 

 

4.2.2 Linear regression 

To further understand the differences between the orthomosaics and point clouds, 

statistical analysis using the mean CWSI values of each plant from each data model and flight 

was conducted. The point clouds and orthomosaic were segmented into individual plants and 

their mean CWSI values were calculated and stored in an xlsx file. Linear regression was 

performed between the means to identify any differences between the data models. Figure 16 

displays the results of the linear regression analysis between the orthomosaic and point cloud 

of each flight.  
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Figure 16. Linear regression between the CWSI orthomosaic and CWSI point cloud of the nadir flight (left top), 

the oblique flight (right top) and the combined flights (bottom). 

 

 

The R2 values indicate a low model fit and a discrepancy between the obtained CWSI values 

of the data models. It is assumed that the point cloud contains more detailed information 

compared to the orthomosaic, suggesting that there should be a noticeable difference between 

the two data models. If the R2 values were close to 1, it would imply that the point cloud and 

orthomosaic are very similar, raising the question of their additional value. However, these 

numbers alone do not provide information about whether the difference in values is caused by 

the additional CWSI values present in the point clouds. 
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To further analyze this, the top of the point clouds was segmented, and the regression analysis 

was repeated using only the top portion. Since the orthomosaic utilizes only the values from 

the top of the canopy, this approach should lead to an increase in R2. 

 

Figure 17. Linear regression between the CWSI orthomosaic and segmented CWSI point cloud of the nadir 

flight (left top), the oblique flight (right top) and the combined flights (bottom). 

 

Figure 17 demonstrates significant increases for all flights following the segmentation of the 

top of the point clouds. This finding suggests that the discrepancy between the orthomosaic 

and point cloud values is partially attributable to the additional information contained in the 

point clouds regarding the side and bottom of the canopy. However, despite these 

improvements, the R2 values remain relatively low. This indicates that there are other factors 

influencing the CWSI calculation when utilizing the point cloud approach. 
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To further explore the variations observed among different flights and data models, the 

subsequent figure presents linear regression results comparing flights within the same data 

model. For instance, the top left scatter plot shows the linear regression between the nadir and 

oblique orthomosaic. 

 

   

   

Figure 18. Linear regression between different flights of orthomosaics (top) and point clouds (bottom). 

 

Firstly, it is striking to observe the low R2 value when comparing the CWSI values obtained 

from the nadir and oblique flights during the point cloud analyses. This low R2 value indicates 

a significant variability between these two flight types. Given that both flights were conducted 

on the same day, one would expect the CWSI values to be more similar. In contrast, the R2 

values for the combined flights (nadir + combined and oblique + combined) are considerably 

higher at 0.66 and 0.64, respectively. The similarity of these R2 values suggests that the point 

cloud derived from the combined flights contains roughly equal contributions from both the 

nadir and oblique flights. 
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However, a different pattern occurs when considering the orthomosaic datasets. The R2 value 

for the nadir + combined orthomosaic is 0.93, while for the oblique + combined orthomosaic, 

it is only 0.12. This stark difference indicates that the orthomosaic dataset derived from the 

combined flights predominantly includes values obtained from the nadir flight, with minimal 

representation from the oblique flight. This suggests that oblique imagery enhances the analysis 

when utilizing 3D point clouds, but its impact is negligible when working with orthomosaics 

Moreover, the R2 values for the nadir and oblique flights within the orthomosaic dataset are 

both very low, at 0.11. This further emphasizes the substantial disparity in the CWSI values 

between the two datamodels.  

 

4.2.3 Volume calculation 

The subsequent section presents the results obtained from volume calculations 

performed on the point clouds derived from various flights, as well as the LiDAR point cloud. 

The volume measurements from the LiDAR point cloud are considered as ground-truth data 

due to its high accuracy. While the accuracy of volume calculations does not directly provide 

information about the CWSI calculation, it demonstrates how well the point clouds capture the 

actual geometry of the vineyard. Thus, a more accurate representation of reality leads to more 

precise results. 

 

The LiDAR point cloud underwent classification and segmentation using the same 

methodology and parameters as the other point clouds. The initial height and volume 

calculations are provided in Table 4. 

 

Table 4  

Average Heights and Volumes of Point Clouds 

Flight Mean height Mean volume 

Nadir 1.46 2.35 

Oblique 1.52 2.54 

Combined 1.51 2.54 

LiDAR 1.78 3.09 

 

Through these calculations, the following linear regression results between the point clouds 

and the LiDAR dataset were obtained.   
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Figure 19. Linear regression between point cloud volumes of each flight and LiDAR point cloud volume. 

 

The volume calculations display a relatively strong model fit for the nadir dataset with an R2 

of 0.66, and especially for the combined dataset with an R2 of 0.70. However, the oblique flight 

by itself shows the lowest correlation with LiDAR volume with an R2 of 0.55.  

 

Regarding the heights and volumes of the point clouds, they are quite similar, except for the 

LiDAR point cloud, which displays notably higher values. Despite applying the same 

classification and segmentation methodology, the average height of the LiDAR point cloud 

exceeds that of the other datasets by more than 20 centimeters. Consequently, to improve the 

model fit, the LiDAR point cloud was further segmented by excluding the bottom 20 

centimeters. This adjustment resulted in the following outcomes. 

 

  

Figure 20. Linear regression between point cloud volumes of each flight and the volumes of the segmented 

LiDAR point cloud. 
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The R2 values for the nadir and combined flights indicate an improvement of 0.02 and 0.01, 

respectively. However, there is a slight decrease of 0.01 in the R2 value for the oblique point 

cloud. Figure 20 illustrates that the combined datasets yield the most accurate volume 

calculation, making it the most suitable approach for generating a point cloud that closely 

represents the actual vineyard. The nadir flight demonstrates a similar level of accuracy, while 

the oblique flight, when considered alone, proves to be the least accurate.  

 

While these volume calculations do not directly reflect the accuracy of the CWSI calculation, 

they do highlight that the nadir flight is more likely to generate a high-quality point cloud 

compared to the oblique flight. Moreover, combining both nadir and oblique flights ensures 

the best results in terms of point cloud accuracy. 
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5. Discussion 
 

The objective of this study was to investigate the potential of using thermal point clouds 

within precision viticulture to assess water stress. To achieve this objective, 3D point clouds 

with Crop Water Stress Index (CWSI) values and 2D CWSI orthomosaics were created, and 

the differences between these data models were analyzed. The study also examined the impact 

of flight configuration on the CWSI calculation using point clouds. In this discussion the 

following points will be treated: address the research questions, interpret the results, discuss 

the limitations, and provide recommendations for future research. 

 

5.1 Research questions and results 

Research Question 1 (RQ1) aimed to understand the current state of water stress studies 

using multispectral and thermal UAV imagery data. The use of remote sensing data, including 

multispectral and thermal UAV imagery, has been widely explored in water stress assessment 

in various crops, including viticulture. These studies have demonstrated the potential of using 

these technologies to monitor and manage water stress in vineyards. This study contributes to 

this body of knowledge by specifically focusing on the use of thermal point clouds for CWSI 

analysis, which can offer a more comprehensive representation of the canopy compared to 

traditional 2D orthomosaics. 

 

RQ2 addressed the methods of creating CWSI orthomosaics and point clouds using thermal 

UAV data. The results demonstrated successful generation and analysis of CWSI orthomosaics 

and point clouds using ArcGIS Pro, CloudCompare, Metashape and Python. The CHM 

provides a straightforward way to separate the soil from the canopy for both the orthomosaics 

and the point clouds. However, the maximum temperature values, approximately 55 °C for the 

nadir and combined flights, and 44 °C for the oblique flight, are higher than expected. Bian et 

al. (2017), utilizing the simplified CWSI approach, recorded a maximum cotton canopy of 

around 40 °C while the air temperature was 37 °C, which was higher than during the nadir 

flight. Consequently, their Tdry was considerably lower compared to the findings presented 

here. Similarly, Araújo-Paredes et al. (2022) reported lower temperature and Tdry values using 

the simplified CWSI method in a vineyard. These results strongly suggest that some soil or 

other noise pixels/points were inadvertently included instead of canopy only. Although the 

average temperature and generated maps indicate that these values mostly represent outliers, 

their presence had an impact on the CWSI calculation due to the histogram approach employed. 
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The orthomosaics provided valuable information about temperature and CWSI distribution 

over the vineyard, particularly in the top of the canopy. On the other hand, the point clouds 

offered a more detailed representation of the canopy, allowing for analysis of the side and 

bottom regions. Based on the findings presented in Figure 15, a consistent pattern emerges, 

revealing lower CWSI values at the top of the canopy, which progressively increase towards 

the bottom. This trend can be attributed to the influence of soil heat emission. Soil has a higher 

reflectance rate than plants in the thermal spectrum (Santesteban et al., 2017), which can be 

seen in Figure 10. Consequently, it is likely that the heat of the soil is transferred to the lower 

regions of the canopy, potentially contributing to the observed upward trend in CWSI values. 

This additional information provided by the point clouds can enhance the accuracy of water 

stress assessment by considering the entire canopy structure.  

 

RQ3 and RQ4 aimed to explore the differences between the data models and the impact of 

flight angle on the CWSI calculation. The point clouds generated from the nadir and combined 

flights exhibited wider ranges of temperature and CWSI values compared to the orthomosaics. 

These differences can be attributed to the additional information captured by the point clouds, 

specifically from the side and bottom regions of the canopy. It is reasonable to expect that the 

minimum and maximum temperatures would exceed those of the orthomosaic since the point 

cloud captures more comprehensive data. 

 

However, the oblique flight did not follow this pattern, showing a maximum temperature of 

44.81 for the orthomosaic and 43.21 for the point cloud. One possible explanation for this 

inconsistency is a slight misalignment between the CHM and the temperature orthomosaic. As 

suggested by Zhou et al. (2021), misalignments in image co-registration can lead to the 

inclusion of soil pixels, which may account for the higher temperature values in the 

orthomosaic compared to the point cloud. 

 

The linear regression analysis indicated a moderate correlation between the values obtained 

from the orthomosaic and the point cloud, suggesting that the point clouds provide additional 

insights beyond what can be obtained from the orthomosaics alone. To further investigate this, 

the regression analysis was repeated, this time with the top of the point cloud segmented. The 

R2 values for each flight increased: the nadir flight from 0.44 to 0.55, the oblique flight from 

0.34 to 0.44, and the combined flight from 0.55 to 0.60. These increases highlight that part of 
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the differences between the point clouds and orthomosaics can be attributed to the additional 

information captured by the point clouds regarding the side and bottom of the canopy. This 

analysis suggests that point clouds offer advantages by considering the entire canopy structure. 

 

However, since the correlation between the orthomosaics and point clouds was still only 

moderate, it is important to note that factors other than the side and bottom regions of the point 

cloud contribute to the differences between the data models. As previously discussed, the 

inclusion of soil pixels in the orthomosaic and potential errors in the classification and 

segmentation of the point cloud could have influenced the results. While the ground point 

classification function of Metashape is a reliable tool, some over or underestimation is still 

possible, resulting in the inclusion of soil points or the exclusion of canopy points. 

Additionally, distinguishing between trunks and the canopy proved challenging in the point 

cloud analysis due to the limitations of the UAV-based data acquisition and medium-quality 

point clouds used in this study.  

 

Another regression analysis was performed to examine the relationship between CWSI values 

of different flights instead of different data models. The results indicated low R2 values 

between the nadir and oblique flights for both the point cloud and orthomosaic datasets, 

suggesting significant differences in CWSI between these flights. One possible explanation for 

this difference is the variation in temperature during the flight, resulting in the nadir flight 

recording higher temperatures compared to the oblique flight. Previous research by Agam et 

al. (2013) has shown that sunlight exposure can increase CWSI values in stressed trees by up 

to 0.3 within an hour, indicating that temperature differences can contribute significantly to the 

observed disparities in CWSI. Additionally, it is possible that the differences between the nadir 

and oblique flights are also influenced by the fact that both flights capture different parts of the 

canopy. However, if this were the case, it would be expected to have a greater impact on the 

point clouds rather than the orthomosaic. The results exhibited the opposite pattern, indicating 

that rather temperature difference than canopy coverage contributed to the observed 

differences. 

 

Furthermore, an interesting finding from this regression analysis is that the point cloud 

exhibited similar regression coefficients between the nadir and combined flights (0.66) and 

between the oblique and combined flights (0.64). In contrast, the orthomosaic datasets showed 

higher regression coefficients for the nadir flights (0.93) compared to the oblique flights (0.12). 
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These findings highlight the added value of including both nadir and oblique angles in the point 

cloud analysis, as it combines information from both flights more evenly. In contrast, for the 

orthomosaic datasets, the nadir angle contributes significantly more than the oblique angle. 

This emphasizes the importance of considering flight configurations and angles when 

analyzing CWSI using 3D thermal point clouds instead of 2D orthomosaics.  

 

The combination of nadir and oblique flights also demonstrated its added value in the volume 

analysis. When comparing point clouds to the LiDAR point cloud, which served as the ground-

truth data, the combined flights exhibited the highest R2 value (0.72), surpassing the nadir flight 

(0.68) and the oblique flight (0.54). This regression analysis highlights that the nadir flight is 

superior to the oblique flight in generating accurate point clouds, and the combination of both 

flights yields the best results. 

 

These findings align partly with the research conducted by Lin et al. (2021), who investigated 

the impact of different flight angles on LAI estimation using point clouds. They observed that 

a combination of nadir and oblique flights consistently yielded the best results. However, their 

study also indicated that the oblique flight alone outperformed the nadir flight alone due to its 

coverage of the lower part of the canopy which differs from the current research. One 

explanation for this difference is that after segmenting the bottom of the LiDAR point cloud, 

the R2 of the oblique point cloud slightly decreased, while the R2 values for the other two flights 

increased. This discrepancy suggests that segmenting the bottom of the LiDAR point cloud 

may have diminished the contribution of the oblique flight, which captures the bottom of the 

canopy more effectively. The lower overall lower R2 value of the oblique point cloud could be 

attributed to its lower quality, represented by a smaller point count (181,372 points compared 

to 215,199 points in the nadir point cloud). Although the convex hull method provided accurate 

results in estimating biomass using point clouds, Sangjan et al. (2022) showed that it can lead 

to volume overestimation in the presence of gaps within the point cloud. 

 

 

5.2 Limitations and recommendations 

Overall, the results of this study indicate the potential of using thermal point clouds for 

assessing water stress in precision viticulture. The point clouds offer a more detailed 

representation of the canopy structure, capturing information from the side and bottom regions 
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that are not captured by traditional 2D orthomosaics. This additional information can enhance 

the accuracy of water stress assessment and provide valuable insights into the overall water 

stress patterns within a vineyard. The findings of this study contribute to the existing literature 

on water stress assessment in viticulture and provide a foundation for further research in this 

field. 

 

However, it is important to acknowledge the limitations of this study. Many crop stress analysis 

studies rely on ground-truth data obtained through direct plant measurements, such as leaf 

water potential or stomatal conductance (García-Tejero et al., 2018). Unfortunately, due to the 

high cost associated with acquiring the necessary instruments, such ground-truth data was not 

available for this study. As a result, the exact accuracy of both the orthomosaics and the point 

clouds cannot be definitively determined. While the use of temperature histograms for CWSI 

calculation and the CHM model for canopy extraction are valid methods, it is important to 

recognize that errors can still occur. This study attempted to mitigate these limitations by 

performing regression analysis and incorporating the LiDAR point cloud, which served as a 

reference data source. However, it is essential to note that without direct ground-truth 

measurements, the assessment of the absolute accuracy of the orthomosaics and point clouds 

remains uncertain. Future research could address these limitations by incorporating ground-

truth data. By including direct plant measurements, it would be easier to determine the accuracy 

of the different methods and flights. This would help identify any shortcomings in the point 

cloud methodology and contribute to ongoing efforts to improve the methodology. 

 

Furthermore, another important note is that the nadir flight was conducted during a 

significantly warmer period compared to the oblique flight, resulting in higher canopy 

temperatures and subsequently leading to different CWSI values. This temperature discrepancy 

introduces additional complexity when attempting to draw meaningful comparisons between 

the two flights. If the flights had been conducted simultaneously, any differences in CWSI 

values could be solely attributed to the influence of the flight angle, as both flights have 

undergone the same processing. However, the variations in CWSI values between the two 

flights demonstrated that when combining the flights, the orthomosaic predominantly 

incorporates values from the nadir flight, whereas the point cloud achieves a more balanced 

representation. Nevertheless, it is recommended that future research endeavours focus on 

conducting flights at the same time to mitigate the confounding influence of temperature 
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variations. By ensuring simultaneous data collection, other factors can be minimized, allowing 

for a more accurate assessment of the specific impact of the flight angle on CWSI calculations.  

 

 

Finally, as previously discussed, the maximum temperature values strongly indicate that the 

analysis included not just canopy pixels and points, but also incorporated soil components. This 

suggests that the CHM utilized in the study did not perfectly separate soil from the canopy, 

leading to an influence on the accuracy of the CWSI calculation and subsequent analysis. To 

overcome this issue, excluding these outlier temperatures from the analysis would be 

preferable. However, establishing a clear threshold for identifying and removing such points 

and pixels becomes challenging and prone to arbitrary decisions if done manually. 

 

In order to ensure equal processing of both point clouds and orthomosaics, the values were 

retained as they were. While the use of edge detection algorithms, such as the Canny edge 

algorithm, has shown promise in addressing these issues in CWSI applications (Araújo-Paredes 

et al., 2022), their application to point clouds remains a complex undertaking and is still in the 

beginning stages of research (Wu et al., 2023). Given the requirement for consistent processing 

of point clouds and orthomosaics to optimize comparative analysis, the CHM was chosen as 

the approach in this research. 

 

Future research could benefit from exploring the integration of such algorithms into point cloud 

based CWSI analysis to enhance segmentation between soil and canopy. By utilizing advanced 

edge detection techniques, the accuracy and reliability of separating these components in point 

cloud data could be optimized, leading to more robust and accurate analysis results. 
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6. Conclusion 
 

This study aimed to explore the potential of utilizing thermal point clouds in precision 

viticulture for water stress assessment. By generating 3D point clouds with CWSI values and 

comparing them with 2D CWSI orthomosaics, valuable insights into the differences and 

advantages of these data models were gained. Additionally, the impact of flight configuration 

on CWSI calculation using point clouds was assessed.  

 

RQ 1 demonstrated that remote sensing data, including multispectral and thermal UAV 

imagery, have been extensively explored for water stress assessment in various crops, including 

viticulture. This study contributes by bridging the knowledge gap of the use of thermal point 

clouds within viticulture.  

 

 RQ2 addressed the methods of creating CWSI orthomosaics and point clouds using thermal 

UAV data. The CHM emerged as a useful tool for extracting canopy information and 

generating CWSI orthomosaics and point clouds. However, the results indicate that the model 

did not produce perfect outcomes and could benefit from optimization. Nevertheless, for the 

purpose of the exploratory analysis conducted in this research, the method proved to be 

sufficient. Utilizing point clouds allowed for analysis of the side and bottom regions, revealing 

a pattern of lower CWSI values at the top of the canopy, increasing towards the bottom. Such 

trends cannot be observed using orthomosaics, emphasizing the potential advantage offered by 

point clouds. 

 

RQ 3 and 4 aimed to further understand the differences between data models and assess the 

impact of flight angles on CWSI calculations. The point clouds exhibited wider temperature 

and CWSI value ranges compared, suggesting that the additional information captured from 

the side and bottom regions of the canopy contributed to these differences. The linear 

regression analysis revealed a moderate correlation between orthomosaic and point cloud 

values, indicating that point clouds provide additional insights beyond the orthomosaics alone. 

Segmenting the top of the point cloud improved the correlation, emphasizing the advantages 

of point clouds in considering the entire canopy structure. However, the low R2 values after 

segmentation indicate that the differences between the data models cannot be solely attributed 

to the inclusion of the side and bottom of the canopy in the point clouds. As a result, it is 

challenging to draw definitive conclusions about the accuracy of the CWSI point cloud. 



58 
 

 

The volume calculations demonstrated that the combination of nadir and oblique flights yielded 

the most accurate results, followed by the nadir flight alone, while the oblique flight showed 

the weakest performance. Although these findings do not directly pertain to the CWSI 

calculation, they suggest that capturing the canopy structure of the vineyard using a 

combination of nadir and oblique flights is likely to lead to more accurate CWSI assessments 

as well. 

 

Based on these findings, this study demonstrates that thermal point clouds have the potential 

to assess water stress in precision viticulture. They provide a more comprehensive 

representation of the canopy and offer valuable insights into temperature and CWSI 

distribution throughout the vineyard. The combination of nadir and oblique flights in point 

cloud analysis yields the most accurate canopy representation. However, further research is 

needed to address the identified limitations and optimize the methodologies for practical 

implementation in vineyard management. 
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