
UTRECHT UNIVERSITY

Department of Information and Computing Science

Applied Data Science master thesis

Enhancing table discovery and similarity evaluation in

data lakes

First examiner:

Enas Khwaileh

Second examiner:

Yannis Velegrakis

Candidate:

Víctor Díaz de Burgos Llaberia

July 5, 2023

Abstract

The discovery of relevant tables within a data lake is a crucial task for users

seeking to expand their available data and gain deeper insights into spe-

cific topics. In this thesis, we propose several approaches to address the

problem of table discovery using similarity metrics. Our main objective is

to find the most similar tables in a data lake to a given query table.

We begin by comparing the columns of the query table with those of the

candidate tables using Jaccard similarity. This pairwise comparison allows

us to compute their similarity score. It presents efficiency challenges due to

the extensive computational requirements. To overcome these limitations,

we investigate the use of keyword-based approaches. We propose using

the Yake and LDA algorithms to extract the keywords that best represent

the tables and determine the similarity score with weighted Jaccard simi-

larity. These keyword-based approaches yield comparable accuracy scores

to the column-based methods while offering improved efficiency. How-

ever, comparing keywords works poorer when tables contain data about a

similar but not exact same topic. We transform the keywords into embed-

dings using Word2Vec and BERT to be able to analyse the semantics of the

words. The similarity score in this case is determined by the weighted co-

sine similarity between the vectorized keywords. Furthermore, we evalu-

ate our models using the NDCG@10 evaluation metric, which assesses the

ranking of the top tables based on a labelled data lake we annotated. We

show that LDA combined with Word2Vec is the most efficient and accurate

model when tables contain sufficient natural language textual data.

In conclusion, our research presents a comprehensive exploration of ta-

ble discovery in data lakes, focusing on similarity-based approaches. We

provide insights into the efficiency and accuracy of various methods, em-

phasising the use of keywords and embeddings for table comparison. Our

findings contribute to the broader field of data discovery and serve as a

foundation for future research in improving table discovery techniques.

Contents

1 Introduction 3

1.1 Motivation and context . 3

1.2 Problem definition . 4

1.3 Literature review . 6

2 Data 15

2.1 Description of the data . 15

2.2 Preparation of the data . 16

3 Method 18

3.1 Description of the methods used 18

3.2 Practical considerations . 24

4 Experimental evaluation 27

4.1 Evaluation metrics . 27

4.2 Overview of the results . 28

5 Conclusion 35

5.1 Key findings and research questions 35

5.2 Limitations . 37

5.3 Future work . 37

Bibliography 43

2

1. Introduction

1.1 Motivation and context

The amount of data generated and collected in recent years has increased

exponentially mainly due to the proliferation of digital devices and tech-

nologies and it is expected to continue growing as more and more aspects

of daily life become digitised. This is certainly having a big impact in many

fields, and it opens up great opportunities for many individuals and organ-

isations. However, this data is collected by various systems at the same

time, and they all do it differently, resulting in data being saved in different

heterogeneous and disconnected datasets. Thus, when researchers are inter-

ested in some of it, they have to process it and put it together before being

able to use it. In order to do that, first they must identify which data is more

valuable for each specific use and this is not an easy task. It is known as

Dataset Discovery (Bogatu et al., 2020) and it consists of finding meaningful

datasets in a data lake of datasets. In this project we will focus on a part of

it: given a table, how do we compare it with other tables in a data lake, how

do we determine how similar they are and, how do we match it with the

most similar ones.

It is common for data scientists to have a table and want to enrich it

with new complementary data. To do so, they have to identify other tables

that may have similar content and then select what they are interested in.

The model that will be created during this thesis project will be helpful for

this task. Another occasion when this model will come in handy is when

data scientists have to employ synthesised data, since they will be able to

determine how similar it is to original data before using it (Liang, 2021).

In this project we focus on finding tables given a table, known as query

by example (Nargesian et al., 2018), but there are other methods to do it.

3

Introduction

Two widely used are the ones that use strings and keywords (Park & Lee,

2011) or structures (Chen et al., 2020) as queries. Both methods work simi-

larly, the only difference is how the query is defined. When using a string

the query contains the values that the model has to look for in the tables

while, when using a structure as a query, the information to look for is the

schema or metadata of the tables such as their column headers or data types.

The challenge of dataset discovery, or table discovery in our case, should

not be that complicated in essence. There are many metrics that can be used

to compare two tables and determine their similarity. However, the main

issue is that simple solutions such as a linear scan and comparison is very

time consuming and computationally expensive, meaning that it requires a

relatively large amount of time and computational power to be completed.

Therefore, the main goal of any research on the subject is to find an alterna-

tive algorithm that can yield good results in a short time.

Overall, a model that can find similar tables can significantly enhance

the efficiency and accuracy of any data related work. This search mecha-

nism would become an important and interesting tool for data scientists in

today’s data-rich environment.

1.2 Problem definition

As aforementioned, the problem we try to solve in this research is known

as table search with example as a query, or also referred to as table-based

search. To better understand where exactly the main complications lie, and

to provide a clear and comprehensive analysis of the factors contributing

to the problem, we delve into the description of key concepts within the

research domain below.

We assume the existence of an infinite set of names N. We assume the

existence of an infinite set of values V. An attribute is a pair of <n,v>, where

n∈N and v∈V where n is the attribute name and v is the attribute value. Let

A denote the set of all possible attributes, i.e., A = N×V.

A tuple is a sequence [a1, a2, ..., an], where ai∈A for i = 1..n. The cardinal-

4

1.2 Problem definition

ity of a tuple is the number of attributes it contains in its sequence. A schema

of a tuple [a1, a2, ..., an] is the sequence [n1, n2, ..., nn] where ni is the name of

the attribute ai, for i = 1..n.

A relation is a finite set of tuples that have all the same cardinality and

schema, also referred to as table. We denote by R the set of all possible

relations. The notion of schema extends naturally to the relation, to indicate

the common schema that all the tuples of the relation are having. A dataset

is a set of relations. A data lake is a finite set of datasets.

A query is a finite set of tables (t1, t2, ..., tn), where ti∈V , for i = 1..n. A

query describes a set of concepts that are of interest to the user. Let Q be

the set of all possible queries. Given a query q and a data lake D we are

interested in finding the datasets that are related to the query q. To define

relatedness we assume a match function match| D×Q→R and we consider

a dataset to be related if and only if, match(D,q)≥t, where t is a threshold.

In this work, we consider only datasets consisting of one relation, al-

though the setting can be generalised to multi-relation datasets. For this

reason, the terms dataset and relation will be used interchangeably.

Having defined all the necessary concepts, we must define the research

questions we want to answer during this research. These are the following:

• How to identify the most similar tables to a query table?

• What are the best similarity measures that can be used to identify the

quality of the retrieved relations?

• How to evaluate the models and how to determine whether the output

tables are the most similar ones to the query table?

To solve these questions there are some problems we may encounter.

Data lakes can contain a huge number of datasets and tables, and each of

them can, at the same time, also be enormous; therefore, to iterate over all

of them and find the most similar ones is not a trivial task. The efficiency of

the algorithm will be, hence, an aspect to bear in mind when designing it.

Moreover, other elements to consider are the available data that the tables

can have. Although some of them may include metadata describing their

5

Introduction

structure and the values it contains, often in big data lakes the available

data are only the cell values. For that reason, the proposed solution in this

research uses only what can be extracted from those values directly, and

not column headers or any other data. Other metadata could be useful but,

since it is not always accessible, it would restrict the types of data lakes for

which our model could be executed, and this research aims to find a solution

that can work at any time the user requires it.

1.3 Literature review

The idea of finding how the similarity between two tables is very much re-

lated with the concepts of table unionability and joinability. These two terms

refer to the concept of finding the best data that could enrich a given table

and they are well defined by (Koutras et al., 2021). Unionability refers to

adding complementary data as new rows using the same attributes; while,

on the other hand, joinability refers to merging two tables that have data

about the same entities but have complementary attributes, meaning that

the new data is added as new columns. However, as introduced in the

previous section, these tables, even containing similar data, usually have

very different structure and it is not easy to automatically determine which

columns or rows may be joinable or unionable. Moreover, as it can be seen

in Figure 1.1, two tables may not have the exact same attributes but still be

unionable (section b) and two cell values may not be written the same way

but still mean the same and be joinable (section d). Another issue that data

scientists encounter is that generally they use data extracted from data lakes,

and, as aforementioned, one of the characteristics of this kind of data reposi-

tories is that they store raw data with no attribute names; therefore, the only

information available to data scientists have to determine how similar two

tables are is the information contained in cell values.

In this section we will analyse how researchers have tackled this prob-

lem in previous works and we will describe the current state-of-the-art so-

lutions.

6

1.3 Literature review

Figure 1.1: Four cases of table relatedness scenarios. Figure extracted from
Koutras et al. (2021).

1.3.1 Unionability search

As Nargesian et al. (2018) describe, to find the unionability between two ta-

bles, we first have to find the unionability between each pair of attributes,

and then determine the unionability of the whole tables. They define three

different measures for comparing attributes: set, semantic, and natural lan-

guage unionabilities. For the first one they check the intersection of the cell

values just with some text preprocessing to have better results while for the

second one they also consider the semantics of the values. For instance,

the word Barcelona and its abbreviation BCN would be considered as two

different values for the first measure but as the same value for the second

one. They use an open ontology named YAGO (Suchanek et al., 2007) to do

that. Ontologies provide formal specifications of the vocabularies of con-

cepts and the relationships among them, in a domain of interest (Gagnon,

2007). Therefore, using ontologies data scientists can know, for instance,

that Madrid and Barcelona are both Spanish cities and can be considered

7

Introduction

similar. However, the coverage of these open ontologies may be quite poor

in many fields, and Nargesian et al. (2018) decided to use natural language

for their third unionability measure. More precisely, they use word embed-

dings. Word embeddings are vectorised representations of words that cap-

ture semantic and syntactic similarities between them (Levy & Goldberg,

2014). Therefore they consider nearby vectors in the embedding space to

be words that share a similar context. However, since they have to use pre-

trained models for word embedding because of the dimensionality of the

datasets, they may also yield poor results if the word to be embedded is not

in the training corpus. Therefore, they suggest using a statistical method

to decide which of the previous three unionability measures is the best in

every specific case, they call it ensemble unionability.

As mentioned before, the main issue with this kind of model is that

they are time consuming. The solution Nargesian et al. (2018) found is

to use Locality Sensitive Hashing (Leskovec et al., 2014) to act as a proxy

for Jaccard and cosine similarities, which they found are highly correlated

to the measures they propose. With this, they can find the best candidate

attributes to be united and then, compute for them the exact unionability

score to see if they actually share a similar domain. Their goal is to find

the most unionable tables to a query table and what they do is first to find

the most unionable attributes from each table using the method previously

described and then, compare only the attribute with the higher unionability

score from each table. It saves a lot of computational time, and they showed

that this approximation does not lead to missing many of the actual top-k

most unionable tables. Once they have the candidate tables, they find the

alignment that maximises the unionability score with the query table. Re-

garding the results and efficiency of the model, they affirm that they can

get good precision and recall using natural language when the number of

tables to find is large. When it is small, using the intersection of the cell

values without considering the semantics is what yields better results. They

assure they can achieve interactive response times. Using the semantics of

the words did not work for them due to the small coverage of available

ontologies.

8

1.3 Literature review

To solve this problem of ontologies, Khatiwada et al. (2023) propose to

create a synthesised knowledge base (KB). They include the ontology of the

cell values and also the relations between the different attributes of the ta-

bles. They label the values with the type of information they contain and, an

interesting aspect they include are different granular levels for each value;

for instance, for a city they may label it as a city but also as a region and a

place, to be more flexible when comparing it with other location types. To

create the synthesised KB, they exploit the knowledge of the data lake itself.

Data lakes are where all the possible tables to be united are stored. They

look at the co-occurrence of information across the tables in it and they map

the values from the query table to other columns in the table in the data

lake where these values appear. With that they define both attribute and

relationship semantics. Then, they represent each table as a graph where at-

tributes are nodes and branches are the relation that connects them. Finally,

they only have to look for similar trees to the query one to find the most

unionable tables.

They called this model SANTOS and, after benchmarking it against other

models they see a clear effect on using the relations between attributes and

not only their semantics. Moreover, they proved that the synthesised KB

works well when there is no existing KB that can describe the data in the ta-

ble. However, this model takes three times what others take to index all the

tables. However, once it is created for the specific data lake, it has a query

time of only seven seconds.

Mountantonakis and Tzitzikas (2020) also propose a solution to the union-

ability search problem based on the semantics of the attributes and val-

ues. To deal with the time-consuming issue, they propose an algorithm that

adapts to the input datasets to make the model more efficient. They use

a lattice-based incremental algorithm based on set-theory properties and

pruning and regrouping methods. To find the similarity between tables it

uses the information coverage, enrichment, and uniqueness of their values.

This solution is 1000 times faster than a normal straightforward linear-scan,

and it is even faster when they do more pruning of tables before processing

them and they proved that it still yields good results.

9

Introduction

1.3.2 Joinability search

To recall, the aim of doing joinability search is to find tables that can add

new information to the query table as new columns. To do so, what many

researchers do is to first find the joinability with respect to an attribute of

the query table and see how much the new table could contribute. Zhu

et al. (2016) propose a method that analyses the containment of a column

with respect to another which means to analyse how much from a set can

be found in another set. As other aforementioned papers, they measure this

value using Jaccard, in this case Jaccard set containment score. The main

idea is to, given an attribute of the query table, find a column of another

table that contains as much of the domain of the attribute of the query table

as possible; they define domain as a set of values that characterises a data

set. Therefore, what they are looking for in the attributes of the candidate

tables are values that contain as much information about the same field as

the query table as possible.

They do not use Jaccard similarity for this because it favours domains

with smaller size and the resulting candidate attributes to be joined would

be biassed to the cardinality of the sets. Set containment, on the contrary, is

agnostic to the difference in the sizes of the domains. However, with LSH,

which is the method they use to index the values and estimate the metrics,

they can only estimate the Jaccard Similarity and not the set containment.

To solve the cardinality problem is to first create a partition of the sets and

then, they run the LSH algorithm for the values of each of the partitions. Fi-

nally, to estimate the set containment score they use the inclusion-exclusion

principle. They call this procedure the LSH Ensemble. It improves the over-

all accuracy over the baseline of the benchmarking they did by as much

as 25However, even if they use dynamic indexing, the accuracy decreases

when new data arrives. And, since it is supposed to be used with real open

data, it is not something we want for our model. Fernandez et al. (2019)

solved it with LAZO. They propose a method that not only uses the contain-

ment but also the similarity between columns. They, again, use the Jaccard

metrics to measure that and they use LSH to estimate them. They tweak

10

1.3 Literature review

LSH in order to obtain not only the candidate attributes but also their scores

with respect to the Jaccard similarity and containment. Thanks to that, they

can do some error correction and generate more accurate estimations. They

can do it because they know the containment score can, at most, be as large

as the cardinality of the smaller table; therefore, if the estimation does not

meet this condition, they know it is not correct and the algorithm can fine

tune some parameters in order to get better results.

They affirm that LAZO is a practical method to use in data discovery sce-

narios because it achieves good estimation results and, unlike LSHEnsem-

ble, it does not deteriorate when new data arrives. Moreover, they can

match the accuracy of more complex methods but with less time-consuming

algorithms without any quality loss.

Zhu et al. (2019) propose JOSIE which, unlike other models, is not based

on estimations but on exact measures. They use the exact intersection size

of the two columns. The columns to be compared are always one column

from one of the tables of the data lake and one column of the query table

which the user has chosen as the one from which the algorithm has to look

for candidate pairs. This column from the query table is known as the join

column. Most of the models for joinability search have this column as an

input as well as a threshold that the algorithm uses to find columns whose

similarity score is over it. However, JOSIE lets the user set the number of

most joinable tables they want to have as an output. Researchers did it this

way because they say it may be confusing for users that do not know ex-

actly what the data is about to set a specific threshold. Another important

feature JOSIE has is that it is adaptive to the data distribution and it is not

sensitive to the characteristics of the data. This is interesting when using

real data from big open data lakes which all have very different structures.

Researchers showed that JOSIE out-performs other models on these real-

world data lakes. Since it is based on exact metrics it is 3 to 4 times slower

than other approaches based on estimations. However, it finds all the can-

didate pairs and does not miss the 10% to 40% that approximate techniques

can be missing.

11

Introduction

Other researchers such as Yang et al. (2019) also propose solutions to the

joinability search based on set containment and intersection. In this case,

they propose a sketch technique, namely GB-KMV, which approximates and

estimates the measure but still out-performs LSH Ensemble in both accuracy

and efficiency. However, the model only works when assuming some char-

acteristics of the data that may not always be true. Therefore, it is a data

dependent method that, although it has been tested with real-world data,

may not always work fine. Santos et al. (2021) also propose a solution based

on a sketch technique, they name it Correlation Sketches. They estimate

correlations between columns from unjoined datasets with the descriptions

of the columns they have precomputed. For that, they use hashing func-

tions which may lead to some approximation error. Similarly to other work

aforementioned, their algorithm addresses this issue but, in this case, it does

not rely on assumptions. They showed that it is effective and derives high-

quality rankings of most joinable tables.

1.3.3 Keyword extraction and word embeddings

Much of the knowledge from unionability and joinability research can be

extrapolated to the problem we are trying to solve and this is what we will

do in this project. However, we have to, naturally, analyse as well what has

been achieved in dataset discovery when the main goal was to simply find

similar tables without the need of merging them. To do so, the structure of

the tables is not as important as with methods mentioned above, and the

interest falls directly to their content.

S. Zhang and Balog (2021) propose treating tables as sets of terms that

can be then compared to other sets of terms representing other tables. They

propose two options to select the terms that represent the tables: either use

all words or use only the entities present in the tables. They find these en-

tities using a knowledge base as we have seen other models do. Once they

have them, they find their semantic vector representation using word em-

beddings with Word2Vec (Mikolov et al., 2013). As mentioned above, word

embeddings capture semantic and syntactic similarities between words; there-

12

1.3 Literature review

fore, after this step, researchers are able to find similarities regarding the se-

mantic meaning of the tables and not just the raw content. In this case, other

data from the table apart from the core values in the cells such as table title

or columns headings are used only to determine the most relevant terms;

however, Trabelsi et al. (2019) propose a similar model that uses these ad-

ditional data to find the embeddings in order to have a more context aware

representation of the words.

Now, the terms are represented in the vector space and, therefore, the

similarity metric they have to use is cosine similarity. However, each table

is represented by several vectors and this metric only compares two vec-

tors. They propose two solutions to solve this issue, find the centroid of

the vectors representing each table and then compute the cosine similarity

between these two vectors, or compute the pairwise similarity between all

vectors and then aggregate the results.

For the evaluation of the outcomes they use the Normalised Discounted

Cumulative Gain (NDCG). It is a measure of ranking quality that compares

the relevance of the items returned by the search engine to the relevance

of the item that a hypothetical ideal search engine would return (Chi &

Roberts, 2023). They state that their results can improve retrieval perfor-

mance substantially. Moreover, they compared the model using word em-

beddings to using other semantic representations of the terms and the for-

mer outperforms the others.

Similarly, the research made by Rossiello et al. (2017) also concludes that

embeddings created with Word2Vec are the best semantic representation for

terms when we are interested in their similarity. They propose a centroid

approach for the similarity measure where they select the closest terms to

the centroid of the document, and then they compare them with the word

embeddings of other tables in the data lake. In their case, they seek for the

similarity of text documents instead of tables, but since we are interested

in only the words of the table, we can also treat them as such. However,

we have to bear in mind that most of the tables do not contain structured

sentences but only single words or concepts. Therefore, models such as

13

Introduction

the one proposed by Boudin (2018) where keyphrases are extracted from

documents instead of simple keywords.

This process of determining the terms that best describe the tables is

known as keyword extraction. After the text first has gone through this

operation, the table search model only has to deal with a few terms per

table instead of the whole raw text. Thus, its efficiency can be improved.

Miah et al. (2021) suggest using YAKE (Campos et al., 2018) or TopicRank

(Bougouin et al., 2013). The former uses word features such as the word

frequency while the latter uses topic modelling algorithms which cluster

the text into topics and select the most relevant keywords for each of them.

Both methods yield similar results. Then, they propose to, as other meth-

ods, use word embeddings and cosine similarity to determine the similarity

between tables. However, in this case they also propose other approaches.

Once they extract the keywords, there is no need to transform them into

vectors, other similarity metrics can be applied to the keyword sets such as

Jaccard similarity. The output of this approach is much worse than using

word embedding, but, at the same time, it is much less complex and more

efficient. Therefore, at the end, the decision of the method to be employed

must always take into account the context of the dataset discovery to eval-

uate whether its efficiency or its accuracy is more valuable.

14

2. Data

2.1 Description of the data

The goal of this research is to develop a model that remains independent of

the specific input data and can be universally applied to any data lake of

interest to users. This type of models are known as data-agnostic models

(Guidotti & Monreale, 2020). As such, the functionality of the model does

not heavily depend on the selection of the input data. Instead, the focus

lies on utilising data that can provide a robust evaluation of the model’s ac-

curacy and efficiency. Therefore, the data chosen for this study has been

selected based on its potential to facilitate a thorough assessment of the

model’s performance. By leveraging tables that offer diverse challenges and

opportunities for evaluation, we can effectively gauge the model’s effective-

ness in practical scenarios. For this purpose, three different table corpora

have been used.

One of them is WikiTables (Bhagavatula et al., 2013, 2015) which con-

tains all tables in Wikipedia, over 1.6M tables. For each of these tables dif-

ferent information is available: title, little caption or description, title of the

Wikipedia page where it is included, number of columns, number of rows,

column headers and the data of the cells of the table. It is a good corpus for

testing purposes because it contains a wide variety of topics; however, since

all tables are extracted from articles, they may generalise poorly due to their

small dimensions (Langenecker et al., 2021). However, it has been widely

used in previous researches and it helped compare our results with the state-

of-the-art models for table search and dataset discovery. Its tables have, on

average, 11 rows and 5 columns. Another table corpus used was GitTables

(Hulsebos et al., 2023). It contains 1M tables extracted from GitHub and its

tables are much bigger than the ones from WikiTables, they have, on av-

erage, 142 rows and 12 columns. For easier and more efficient testing, we

15

Data

sampled 30 tables from both corpora that will act as our data lakes. We also

sampled 5 other tables that will be the input queries for which the model

has to find and rank the most similar tables. Then, to be able to discover

the effectiveness of our model, we labelled the sample tables with respect to

their similarity with the input tables. These labels will be used to determine

how similar the output tables actually are to the query table.

Finally, we used a last table corpus taken from Nargesian et al. (2018).

This corpus comprises 24 tables with highly diverse schemas, ranging from

smaller tables with 25 rows to larger ones with 106,415 rows. The number of

columns in these tables also varies, ranging from 4 to 21. However, its most

significant value for our purposes lies in the fact that it predominantly con-

sists of textual data. This particular corpus serves as a valuable resource to

assess the significance of incorporating such textual values for the accurate

functioning of our proposed model. Similar to the other two table corpora,

we labelled the similarity between query tables and tables in the data lake

to enable accurate evaluation of the model’s performance. In this case, due

to the limited number of tables in the corpus, query tables are selected from

the data lake itself, and are part of it when they do not act as queries.

2.2 Preparation of the data

The model we propose only operates with the information contained in the

cell values of the tables because data lakes often do not have any other meta-

data available and we do not want a model that is restricted to specific types

of data lakes. Therefore, we discard all other metadata that WikiTables con-

tains and we only keep the actual data of the tables. Once we have it, the

first thing we do is to merge all values in one big text variable. We do it be-

cause, as it will be described in the method section, our model works with

tables as texts which are then processed to find other texts about similar

topics in the data lake.

In order to derive meaningful insights from the textual data, it is imper-

ative to perform a preliminary data cleansing process wherein the tables are

appropriately formatted to meet the requisite criteria. To do so, some ba-

16

2.2 Preparation of the data

sic text preprocessing steps are carried out, including lower casing, symbol

and punctuation removal and lemmatization and tokenization. Moreover,

we decided to not include numerical columns in our study because they

contain very little information about what a table is about and can reduce

the matching criteria. Similarly, we also get rid of all words that are neither

verbs nor nouns because they do not help us determine the topic of a table

either. Another step in our preprocessing pipeline is the separation of con-

catenated words into individual words. This process involves identifying

and separating strings that contain a lowercase letter followed immediately

by an uppercase letter. This step is particularly important when working

with tables since many of them contain concatenated words rather than

properly segmented words. By isolating and splitting these concatenated

words, we can ensure that each component is treated as a distinct word.

This preprocessing step significantly enhances the accuracy and effective-

ness of subsequent analyses.

17

3. Method

3.1 Description of the methods used

This section presents the solution we propose for dataset discovery in terms

of similarity matching between tables. To recall, the main goal of this re-

search is to design an algorithm that finds and ranks the most similar tables

in a data lake with respect to a query table given by the user. Different

approaches are introduced in the following pages, starting with the most

straightforward solutions and finishing with the most advanced methods.

All the proposed approaches follow the same structure: we iterate through

all the tables in the data lake determining their similarity score with the

query table, we rank those values and we return the k most similar tables,

being k a number established by the user which tells the model how many

of them it has to output. The differences in the approaches we introduce

are, therefore, in the methods used to determine the similarity between two

tables.

3.1.1 Simple similarity

In our first proposed solution, we compare the columns of the query table

with those of each candidate table in the data lake using Jaccard similarity.

The similarity score between two tables is computed by taking the mean of

the Jaccard similarity values of each column pair. This approach, known

as pairwise Jaccard similarity, compares all pairs of columns, resulting in a

time-consuming process with a complexity of O(N · M), where N and M

represent the number of columns in the query and candidate tables, respec-

tively. This comparison needs to be performed for every table in the data

lake, further impacting the efficiency of the approach. Additionally, we can

also extend this comparison to the rows of the tables, considering the shared

entities, but given that tables typically have more rows than columns, the ef-

18

3.1 Description of the methods used

ficiency of this approach is even lower.

As mentioned in previous sections, other researchers have used differ-

ent types of estimations for Jaccard similarity that can make the computa-

tional time of the algorithm decrease, for instance, min-Hash (Ji et al., 2013).

However, we decided not to continue exploring this approach and try to,

instead of comparing the whole tables, find the words that best describe

the content of the tables and compare them to determine the similarity of

two tables. These words are referred to as keywords and, as K. Zhang et al.

(2006) describe, they summarise a document concisely and give a high-level

description of the document’s content.

3.1.2 Keywords similarity

As defined by Hulth (2004), keyword extraction is the task of selecting a

small set of words/phrases from a document that can describe the meaning

of the document; in our case, the documents are the tables. It is a natural

choice to simply use word tokens to represent table content (S. Zhang & Ba-

log, 2021). To do so, as mentioned in Section 2.2, the first step is to convert

tables into texts and preprocess them. Once the tables are in the required

format, we can apply the keyword extraction methods we use to determine

the concepts that best describe the tables and compare them to find the most

similar tables. In this research two methods have been used: Latent Dirich-

let Allocation (LDA) (Blei et al., 2003) and Yake (Campos et al., 2020).

LDA is a popular topic modelling algorithm used in natural language

processing (Putri & Kusumaningrum, 2017). It is designed to discover hid-

den thematic structures within documents. It assumes that each document

is a mixture of various topics, and each word in the document is generated

from one of these topics. By applying probabilistic inference techniques,

LDA enables the identification and extraction of underlying topics, provid-

ing valuable insights on large text datasets. The output is normally a list of

topics with the keywords that best represent each of them. However, since

most of the tables do not contain more than just one topic, we set the num-

ber of topics to derive from each of them as one. Therefore, the output we

19

Method

get is the list of keywords that best represent the table. Moreover, the al-

gorithm outputs the weight each of the keywords has in the overall topic

distribution of the table. Those values will be used when comparing two

sets of keywords to determine their similarity.

Not all values in the tables have the same importance when detecting

the topic of a table. For instance, categorical attributes with a short number

of unique values in their cells typically have more meaningful information

than attributes that contain open data where most of the cells have very

diverse values. Therefore, giving more weight to specific columns could be

a good idea. However, since LDA works with the number of times each

word appears in the text, it already gives more importance to the columns

with less varied values because they appear repeatedly in several rows of

the table. Therefore, no attribute weight is required for the algorithm to run

accurately.

There are keyword extraction methods that work good for other pur-

poses but not for dataset discovery. This is because, in our case, we de-

termine the keywords for each table without taking into account any other

table. This is a requirement for our model because data lakes may not be

static and the tables they contain may be different each time the model is

run. Therefore, if we used a method that worked with all tables from the

data lake together to extract the keywords for each of them, such as the ones

using TF-IDF to examine the relevance of the words (Qaiser & Ali, 2018), the

model would have to be executed every time the data lake changed. More-

over, the keywords for the query table could not be extracted or they could

only be extracted if the algorithm was run again including both the query

table and the candidate tables. Therefore, since the efficiency of the model is

something we have to bear in mind in this research, these types of methods

have to be discarded.

Yake uses multiple local features from the documents to extract the key-

words. Hence, since it does not use any other characteristic from the data

lake, it can be run for each table individually. An interesting option Yake

has is that output keywords can also be composed of more than one word,

20

3.1 Description of the methods used

sequences that are known as n-grams. For instance, if a table contains data

about countries, ‘North Macedonia’ could be extracted as a single keyword

and it could be differentiated from, for example, other tables containing the

word ‘north’. Other methods are also capable of extracting keyphrases but

we cannot use them because we deal with text from tables and it usually

does not contain sentence structured cells but only words and concepts.

Similarly to LDA, Yake outputs the importance each of the keywords has on

the overall text of the table. Therefore, the output of both methods has the

same structure: a set of keywords with their corresponding weight. Thus,

the same similarity metric can be employed for both of them.

The similarity metric used to compare two sets of keywords is Weighted

Jaccard Similarity. It, as the regular Jaccard Similarity, uses the intersection

and the union of both sets but, in this case, it incorporates the weights to the

equation as well. Depending on the weights of the words of the intersection,

the similarity score will be smaller or larger. The model computes this value

for all the candidate tables with respect to the query table, rank them and,

return the top-k most similar tables.

3.1.3 Embeddings similarity

To determine the similarity between sets of keywords, we previously em-

ployed Jaccard similarity, which primarily focuses on the lexical similarity.

It involves comparing sets of keywords directly without considering their

underlying meanings. However, simple Jaccard similarity fails to recognize

the similarity between synonyms or words that pertain to the same topic.

For example, words like "dog" and "cat" are not synonymous, but they both

represent domestic animals. In certain cases, a user may seek a table on

animals in general when the query is specific to a particular animal. Ad-

ditionally, considering that tables often contain limited textual content, it

becomes crucial to identify similar tables even when the words used are not

an exact match. To address these challenges, we employ semantic similarity

through the utilisation of word embeddings.

Word embeddings, also known as word representations or word vector-

21

Method

izations, are dense vector representations of words used in natural language

processing tasks. They capture both semantic and syntactic information of

words and can be used to measure word similarities (Liu et al., 2015). The

main idea is that every word is represented in a multidimensional space as

a vector, where semantic relationships are preserved. For instance, the vec-

tors representing animals will all be placed together and their distance will

be small. This suggests that distances and between embedded word vectors

are to some degree semantically meaningful (Kusner et al., 2015). Therefore,

our solution converts each keyword to a word embedding and then deter-

mines the similarity between the sets of vectors. For the vectorization of

words we propose two methods: Word2Vec (Mikolov et al., 2013) and Bidi-

rectional Encoder Representations from Transformers (BERT) (Devlin et al.,

2018).

The Word2Vec algorithm uses a neural network model to learn word

associations from a large corpus of text. We used a pretrained model by

Google (“Google Code Archive - Word2Vec”, 2013) which includes word

embeddings for a vocabulary of 3 million words that they trained on roughly

100 billion words from a Google News dataset. It has been widely used in

previous research (Khatua et al., 2019; Wang et al., 2018; S. Zhang & Balog,

2021). It has been verified that word embeddings trained based on Google

News data and on a table corpus lead to comparable performance (Deng

et al., 2019); therefore, there is no need to train our own model. Moreover,

a model trained using only table data would not yield good results because

the words have no context and the model would not be able to establish re-

lations between words. Deng et al. (2019) designed a similar model named

Table2Vec that converts tables into embeddings. It could be useful for com-

paring tables in a more straightforward approach but not in our case be-

cause it uses table elements that often data lakes do not contain: caption

and attribute names.

A limitation the pretrained Word2Vec model has is that it can only vec-

torize words that have an already associated vector in the model. This

means that, it may happen that some keywords cannot be vectorized. This

is a recurrent issue for us because tables often contain abbreviations and

22

3.1 Description of the methods used

other symbols that are extracted as keywords and the pretrained vectorizer

model does not know about. Moreover, Google’s pretrained model can only

be used with single words and not with n-grams. And, as aforementioned,

a feature Yake has is that it can extract n-grams as keywords. To be able

to deal with this type of keywords another vectorizer we propose is a pre-

trained model for BERT.

BERT is an influential and extensively utilised model renowned for its

ability to generate word embeddings that are rich in context and meaning.

Its sophisticated architecture, built on Transformers (Wolf et al., 2020), em-

powers BERT to capture relationships between words, resulting in highly

effective representations. We used a pretrained version of it offered by Hug-

ging Face, “bert-base-uncased”, but it does not work the same way as a pre-

trained model for Word2Vec does. In this case, the model is not static and

words that it has never seen before can still be vectorized which is useful

for both abbreviations and n-grams. This model is mainly used to capture

contextual information which, when vectorizing keywords, is not available.

Therefore, choosing between using Word2Vec or BERT will depend on the

input tables and on the model used to extract the keywords. It is important

to notice that to better compare the query table with the tables in the data

lakes, all of them have to be processed using the same models.

After obtaining the embeddings, we proceed to compare the sets of key-

words across different tables. This process follows a similar structure to the

previously described version, where the raw sets of keywords were com-

pared. We iterate through all the tables in the data lake, comparing their

embeddings, determining their similarity, and subsequently ranking the ta-

bles. However, in this case, we utilise Weighted Cosine Similarity as our

similarity metric. It calculates the regular cosine similarity between vectors

and incorporates the weights generated by the keyword extraction meth-

ods. Since each table is characterised by multiple keywords, each having its

own corresponding embedding, the model performs pairwise cosine simi-

larity computations between all the embeddings of the query table and the

candidate table. The results are then aggregated to derive a similarity score

calculating the average of all the cosine similarity values. This value is then

23

Method

compared to the similarity score of the other candidate tables in order to

rank them and find the most similar ones.

3.2 Practical considerations

To complement the detailed description of our model’s architecture and

functionality, this subsection focuses on the practical considerations and

method settings associated with its implementation. By evaluating the ad-

vantages, limitations, and potential applications of our model, we aim to

provide valuable insights into its feasibility and applicability. Furthermore,

we discuss specific settings and configurations that were utilised to optimise

its performance. This examination of practical considerations and method

settings enhances our understanding of the model and provides valuable

information for its implementation in various contexts.

The first aspect to consider when executing the model is that the prepro-

cessing of the text and the vectorization of words can be time-consuming,

especially when dealing with extensive data in tables and data lakes. How-

ever, one advantageous characteristic of the proposed models is that they

only need to be executed once for each table. This means that the model in-

curs computational expense primarily during the initial run with new data.

Once the tables are converted into keywords and these keywords are trans-

formed into embeddings, the resulting sets can be stored for future exe-

cutions. Therefore, there is no need to rerun the entire model, except for

processing the query table and any new tables in the data lake. After this

initial step, the subsequent process of computing similarity scores and rank-

ing them should be relatively quick and straightforward.

In scenarios where tables are small or contain limited textual data, it

is important to acknowledge that our models may yield less satisfactory

results. The models heavily rely on the textual content within the tables

for accurate keywords, embeddings, and subsequent similarity calculations.

Furthermore, it is worth noting that tables predominantly composed of nu-

meric values pose challenges not only for our proposed models but for any

model in general. This is primarily due to the limited information that can

24

3.2 Practical considerations

be extracted from raw numerical data alone. The absence of explicit textual

content makes it difficult for models to derive meaningful insights and rela-

tionships from such tables. However, it is possible for certain models to mit-

igate these challenges by leveraging additional data beyond the cell values,

such as attribute names or table descriptions. By incorporating such sup-

plementary information, these models have the potential to enhance their

understanding and interpretation of the numeric-centric tables.

A parameter we have to set in our model is how many keywords have to

be extracted for every table. Ideally, since each keyword is associated with

its corresponding weight, the more the better in order to be able to compare

accurately the different candidate tables. However, the amount of textual

data a table has can affect the number of keywords that can be successfully

extracted. Therefore, if we set it too high, the algorithm may not be able to

extract a sufficient number of keywords from these tables. As a result, an

imbalance may arise among the tables, impacting the overall performance

and reliability of the algorithm. The incorporation of weights in our model

serves as well to mitigate the impact of the potential imbalance among ta-

bles. We chose to initially set the parameter to extract 10 keywords. This

value served as a starting point, allowing us to gather preliminary insights.

However, it is important to note that this parameter has to be fine-tuned

based on the observed results and the characteristics of the tables.

Finally, another aspect to consider is that depending on the specific model

used, different approaches to text preprocessing may be required. It is par-

ticularly relevant when considering the extraction of n-grams as keywords

(Miah et al., 2021). Techniques such as stemming and lemmatization, which

aim to reduce words to their base or root form, can significantly influence

the results. For instance, after lemmatization, the phrase "United States"

would be transformed into "Unite State". While this transformation may

seem subtle, it can potentially affect the recognition of the keyword as a

country by the vectorizer algorithm. Consequently, it is essential to care-

fully evaluate preprocessing steps to ensure the preservation of meaningful

information and accurate representation of the tables in the model.

25

Method

The code for the proposed models can be found in https://github.com/

victordiazdeburgos/tablediscovery.

26

https://github.com/victordiazdeburgos/tablediscovery
https://github.com/victordiazdeburgos/tablediscovery

4. Experimental evaluation

4.1 Evaluation metrics

The chosen evaluation metric for assessing the accuracy of the proposed

models is Normalised Discounted Cumulative Gain (NDCG) as previously

utilised by other researchers such as Trabelsi et al. (2019) and S. Zhang

and Balog (2021). It measures the effectiveness of a ranking algorithm by

considering both the relevance of the recommended items and their posi-

tions in the ranked list. It compares the output ranked tables of our mod-

els with what an “ideal” table search engine would return. In the context

of table search by example with respect to similarity measures there is no

pre-existing ground truth available against which to compare the rankings.

Therefore, to establish a benchmark for evaluation, we created our own la-

bels by annotating the similarity of the query tables with the tables in the

data lake. We defined three levels of similarity: 0 for no similarity, 1 for a

similar topic, 2 for the exact same topic.

In previous research, Mean Average Precision (MAP) has also been com-

monly used as an evaluation metric Khatiwada et al. (2023) and Nargesian

et al. (2018). However, using MAP requires a labelled ground truth that rep-

resents the ranking of candidate tables, rather than just their level of simi-

larity. Due to the characteristics of the table corpora used, defining such a

ranking was not feasible. As a result, we opted to utilise Normalised Dis-

counted Cumulative Gain (NDCG) as our evaluation metric. Following the

approach of S. Zhang and Balog (2021), we focus our evaluation on compar-

ing the top 10 tables in the ranking. Therefore, the specific evaluation metric

we employ is NDCG@10 where the value “10” indicates the number of top

tables in the ranking that are considered for evaluation.

A good model should not only provide accurate rankings but also oper-

27

Experimental evaluation

ate efficiently. Hence, we consider efficiency as another important metric for

evaluating the proposed models. We measure this by tracking two types of

executions. The first type involves processing all the candidate tables along

with the query table, which includes model-specific operations like extract-

ing keywords or converting them into embeddings, and then finding the

similarities scores and generating the ranked results. However, it’s worth

noting that the data lake processing, which typically consumes more time,

only needs to be done once. For subsequent executions on the same data

lake, the keywords and embeddings can be stored and reused. Therefore,

the second execution measures the time it takes to process only the query

table, determine its similarity with all candidate tables, and return the rank-

ing, mimicking the scenario where a preprocessed data lake is used.

4.2 Overview of the results

To evaluate the proposed models we will start analysing the experimen-

tal results obtained with the table corpus from Nargesian et al. (2018). It

contains tables with mostly textual data which, in theory, should be the set

up that benefits the most keyword extraction algorithms and consequently,

word vectorizers. The average NDCG@10 score of the four queries used

can be seen in Figure 4.1. Additionally, the average execution times of all

the models are shown in Figure 4.2.

Simple similarity measures work very well with these specific queries

and corpus. However, it is very computationally expensive and the effi-

ciency decreases exponentially as the data lakes get larger. As mentioned

in Section 3.1.1, this model computes the Jaccard similarity for every pair

of columns for every candidate table, therefore, the more columns and the

more tables the more computationally expensive the model is. We can see

that, with a data lake of just 23 tables, its execution time is already 8 times

larger than the least efficient among the other models. Moreover, unlike the

other models, this approach does not provide the option to skip any part of

the process during the executions that come after the data lake has already

been processed once. This is why the execution time shown in Figure 4.2 is

28

4.2 Overview of the results

Figure 4.1: Average accuracies for 4 queries with the table corpus of Nargesian
et al. (2018)

Figure 4.2: Average efficiencies for 4 queries with the table corpus of
Nargesian et al. (2018)

29

Experimental evaluation

the same for both bars regarding this model.

The average accuracy score for the two methods using keyword simi-

larity is nearly perfect as well. LDA, however, exhibits significantly faster

processing times compared to Yake. Figure 4.2 shows a substantial differ-

ence in Yake’s runtime, depending whether it processes the entire data lake

or it utilises a preprocessed one. The reason for that is the large amount

of time Yake requires to extract the keywords for each table; consequently,

this model is much more time consuming when processing the data lake

compared to when it only processes the query table. This difference also

demonstrates that the time to execute the weighted Jaccard similarity, used

to determine the similarity between two sets of keywords, is negligible in

comparison to the time spent extracting the words that best represent the

tables.

The models transforming the keywords into embeddings and then de-

termining its similarity with weighted cosine similarity work poorer than

the others. It can be attributed to the table corpus we are using because it

contains either very similar tables, even tables sharing the same schema, or

completely different tables. Thus, the keyword similarity models work well

because similar tables use the exact same words for certain attributes and

Jaccard similarity is a good measure in this case. Embeddings are thought

to be useful when finding tables about similar topics and categories where

the analysis of the semantics of the words makes the difference in order to

match related but not identical words. In terms of efficiency, BERT is slightly

more time consuming than Word2Vec. However, there is almost no differ-

ence to the running time of the models using only keywords. Therefore,

we can also consider the aggregated execution time by the vectorizers to be

negligible.

Analysing the accuracy in Figure 4.1 we can see that, when using word

embeddings, the model works better having extracted keywords with LDA

than with Yake. This is because Yake has a feature, which the authors call

Word Positional, that values the words occurring at the beginning of a docu-

ment more. It is based on the assumption that relevant keywords often tend

30

4.2 Overview of the results

to concentrate more at the beginning of a document (Mishra, 2022) but, in

the case of documents being tables, this feature does more harm than good

because tables are not ordered and first rows do not contain more informa-

tion than any other row. Yake, for instance, would have been interesting to

use if we had decided to include attribute names as a factor for our model.

However, as mentioned earlier, we decided not to do it because data lakes

may not contain this feature, and we want the models to be data-agnostic in

order to be useful for any type of table corpus. Therefore, we can expect the

models using Yake as a keyword extraction method to be less accurate.

Due to the limitations of Yake as a method for extracting keywords from

tables, we are unable to evaluate the effectiveness of our models when us-

ing n-grams as keywords. While we could extract n-grams from tables using

Yake and vectorize them with BERT, the resulting accuracy would not be a

reliable indicator. It would be challenging to determine whether any inac-

curacies stem from the ineffectiveness of n-grams or from Yake’s inadequate

extraction of keywords. However, accuracies in Figure 4.1 show that Yake

yields good results when only comparing sets of keywords without consid-

ering their semantic meaning. Despite the fact that the extracted keywords

may not fully represent the entire table, they prove to be sufficiently repre-

sentative for the tables in the tested corpus. This is mainly attributed to the

presence of highly similar tables within the corpus for which Yake can still

identify sufficiently representative keywords.

The other two table corpora, GitTables and WikiTables, do not meet the

desired criteria to be used in the evaluation of our models. Due to the large

number of tables they contain, the randomly sampled candidate and query

tables were not similar enough in order to be annotated and generate la-

belled ground truth data. To address this limitation, we opted to selectively

analyse tables of interest. However, this approach may introduce bias into

the evaluation results. As a result, instead of focusing on computing aver-

age results across multiple queries, as we did with the previous corpus, we

focused on examining the performance of the proposed models on specific

individual queries. This allows us to assess their effectiveness in specific

scenarios while minimising the impact of potential biases.

31

Experimental evaluation

Figure 4.3 shows the accuracy of the models for a query and candidate

tables sampled from GitTables. The query has been specifically selected be-

cause it is very similar to other tables in the data lake but, as the majority

of the table in this corpus, contain fewer text than the previously analysed

extracted from Nargesian et al. (2018). We can see that the simple similarity

model is not the best in this case. Instead, comparing the sets of keywords

works better. Now that there is less text and it is more challenging to ex-

tract the meaningful keywords, we can appreciate how the model performs

poorly when comparing the embeddings of the Yake’s keywords. How-

ever, since the similarity between the query table and some of the candidate

tables is still very high, comparing keywords using both LDA and Yake

still works better than using their vectorizations. In terms of efficiency, it is

worth mentioning that, as shown in Figure 4.4, processing the entire data

lake still takes a noticeable amount of time, even with smaller tables. Inter-

estingly, the model that combines the two more time-consuming methods,

Yake and BERT, is as slow as the simple similarity model. Therefore, in this

case, it does not only suffer from bad accuracy but also from slow processing

time.

Figure 4.3: Accuracy of the models for a query with less text but still very
similar to some candidate tables

32

4.2 Overview of the results

Figure 4.4: Efficiency of the models for a query with less text but still very
similar to some candidate tables

Finally, we examine a scenario where the query table contains only a

few text entries and does not match exactly with any candidate table in the

data lake. As depicted in Figure 4.5, the NDCG@10 scores for this query are

notably lower due to the limited textual information in the table. Notably,

in this case, the use of embeddings proves beneficial, as it outperforms the

models that do not utilise them. When comparing Word2Vec and BERT,

Figure 4.5 demonstrates that BERT performs better. This discrepancy can

be attributed to the fact that we employ pretrained models, and tables with

minimal text may contain words that are not fully recognized by these mod-

els.

A key distinction between Word2Vec and BERT lies in their vectoriza-

tion capabilities. Word2Vec can only vectorize words present in a prede-

fined dictionary, while BERT encompasses the vectorization of all words by

establishing relationships with other precomputed embeddings. However,

as we can see in Figure 4.6, this extra computing process takes time and

it decreases the efficiency of the model. A similar challenge was faced by

Nargesian et al. (2018), where the absence of a suitable pretrained model

impeded the vectorization of certain words. The limited coverage of pre-

33

Experimental evaluation

trained vectorizer methods poses a constraint, as some keywords extracted

from tables may be from attributes containing codes or abbreviations not

present in natural language. As a result, the selection of an appropriate

method must consider both the query table’s characteristics and the tables

within the data lake, recognizing the potential limitations of pretrained vec-

torizers for specific use cases.

Figure 4.5: Accuracy of the models for a query with few text and not
substantially similar to any candidate table

Figure 4.6: Efficiency of the models for a query with few text and not
substantially similar to any candidate table

34

5. Conclusion

5.1 Key findings and research questions

In this project we have proposed multiple approaches to solve the problem

of table discovery using similarity metrics among tables. The main idea

is to find the most relevant tables in a data lake based on their similarity

to a given query table. This aims to assist users to access a broader range

of relevant information and enrich their dataset facilitating deeper analysis

about the topic. We have proposed seven different models. The most simple

one uses Jaccard similarity to compare columns or rows of the tables and

determine their similarity score. It works well when there exist very similar

tables in the data lake, but it is extremely time consuming. To address this

challenge we proposed to extract the words that best describe the topic of

the tables and compare them. We used two keyword extraction methods for

that which are LDA and Yake. Both of them yield comparable results when

tables in the data lake use the exact same words as the query table but they

work poorer when tables share the topic but not the words.

In order to be able to match related but not exact same keywords, we

suggest analysing their semantic meaning. To do so, we used word embed-

dings and we vectorized the words with pretrained models of Word2Vec

and BERT. The former is much more efficient but, since it uses a prede-

fined dictionary, it can only find the embeddings of the words in natural

language, and not words which often tables contain such as abbreviations

and codes. BERT is able to vectorize all kinds of words and, although it

is not always trivial to find embedding of some concepts, it works slightly

better than Word2Vec when unnatural keywords are extracted from the ta-

bles. When combining the two keyword extraction methods and the two

vectorizers, the results showed that LDA is much more accurate than Yake

when extracting meaningful keywords. This is because Yake is thought to

35

Conclusion

be used in texts, which do not have the same structure as tables. Therefore,

from the proposed models, LDA combined with Word2Vec is what yields

better results when tables contain enough natural language to be processed,

while LDA combined with BERT is the appropriate choice when tables con-

tain more abbreviations and other types of words. However, as with many

other approaches from previous research, our models can only work when

tables have enough textual data to be analysed and evaluated.

Both of the keyword extraction methods proposed output not only the

set of keywords but also the importance they have in the table. Hence, we

use these weights when determining the similarity between two tables. For

the models that compare the set of keywords, we use weighted Jaccard sim-

ilarity. On the other hand, to compare the embeddings, we use weighted

cosine similarity. Once we have the similarity score of the query tables with

all the tables in the data lake, we rank them and return the most similar

ones.

Finally, to assess the performance of our models, we conducted an evalu-

ation process that involved annotating and labelling the similarity between

sample query tables and candidate tables. The chosen evaluation metric for

this task was NDCG@10 (Normalised Discounted Cumulative Gain at 10).

While other metrics such as MAP (Mean Average Precision) serve a sim-

ilar purpose, we found that NDCG@10 was better suited for our specific

scenario. This choice was primarily driven by the absence of a readily avail-

able ground truth against which we could compare the results. Given the

unavailability of ground truth, NDCG@10 provided a reliable measure to

evaluate the effectiveness of our models in ranking and recommending rel-

evant tables. Additionally, we also assessed the efficiency of the models by

analysing their running time. We tracked the execution time during differ-

ent stages of the models, and it complemented our assessment of accuracy

and provided a comprehensive understanding of the overall performance

of the proposed models.

36

5.2 Limitations

5.2 Limitations

Despite the promising results and contributions of this research, there are

certain limitations that need to be acknowledged and taken into consid-

eration when interpreting the findings. As aforementioned, the proposed

models yield good results when tables contain enough textual data to be

analysed. The first limitation of this study is the small size and limited con-

tent of the tables. Often tables may contain only a limited number of records

or lack the diversity required to extract meaningful keywords. Additionally,

a significant portion of them may consist predominantly of numeric values

rather than textual data. As a result, the ability to perform comprehensive

keyword extraction or analyse the textual content of the tables may be lim-

ited, thereby affecting the depth and accuracy of the analysis conducted in

this study.

The second limitation pertains to the absence of an available ground

truth table for evaluation. In the context of the problem addressed in this

thesis, a ground truth table refers to a well-established and validated dataset

against which the performance of the proposed approaches can be com-

pared. However, due to the novelty nature of the problem, the lack of a

readily available ground truth table poses challenges in evaluating the effec-

tiveness and accuracy of the developed methodologies. Consequently, the

evaluation of the proposed approach may rely on alternative means such

as expert judgement on the labelling of similarities, introducing potential

biases or uncertainties in the assessment process.

5.3 Future work

To mitigate the limitations and to enhance the performance of the proposed

models, there are multiple potential improvements that could be explored

and implemented. The first one is to try to use as much data as possible

in order to better determine what the topic of a table is about. Some ta-

ble corpora include attribute names and other metadata that we have not

used in order to create a data-agnostic model that can work also with table

37

Conclusion

corpora that do not have this information available. However, it is unfor-

tunate to disregard such valuable information available. Thus, it might be

interesting to design a model that can analyse the schema and structure of

the table and identify the relevant information that can be used. Then, the

attribute name or information such as the title or a little description of the

table that sometimes is available, would be also introduced in the keyword

extraction methods with a higher weight in order to improve the accuracy

of the models when determining the most meaningful words.

Other data that is not analysed in our models are the numerical values.

M. Zhang and Chakrabarti (2013) and Trabelsi et al. (2019) propose inspect-

ing them in order to evaluate if they are structured such as dates, times,

prices or any other recognizable format. The inclusion of this feature in the

models, however, would need a redesign of the whole algorithm since it

cannot be easily input in the proposed text analysis. A feature that could

be implemented easier could be the normalisation of non-standard words.

This involves transforming symbols or abbreviations into normal natural

language words. For instance, converting “€” into “euro” or “min” into

“minute” would help the model to better extract relevant keywords that

can be then vectorized into embeddings.

As a part of the future work, another important step would be to com-

pare the results obtained by other researchers to determine the effectiveness

of our proposed approaches relative to the current state of the art models.

Benchmarking our models against existing methods can provide insights

into their performance and help us understand their strengths and limita-

tions. However, in order to facilitate a fair comparison, it is crucial to estab-

lish a proper ground truth that serves as a reliable reference for evaluating

the performance of different models. This will enable a comprehensive and

objective assessment of the effectiveness of our proposed approaches in the

context of existing research.

Finally, the versatility of our proposed model extends beyond table search

with query as an example. It can be adapted for various types of dataset

discovery tasks. For instance, after transforming candidate tables into key-

38

5.3 Future work

words, we can search for tables using a single keyword as a query. This can

be done by either transforming the keyword into an embedding or search-

ing for an exact match within the sets of keywords of each of the tables in

the data lake. Furthermore, since we treat tables as text, a similar model

can be applied to discover other types of documents or schemas that can be

converted into text format, not limited to tables alone. This opens up pos-

sibilities for leveraging our approach in diverse data discovery scenarios,

providing a flexible and scalable solution for discovering relevant datasets

across different domains.

In conclusion, this thesis has introduced an innovative approach to ta-

ble discovery using similarity metrics and keyword extraction. The pro-

posed models have demonstrated promising results in accuracy and effi-

ciency, offering users a valuable tool to expand their data knowledge. Fur-

ther research can explore enhancements such as incorporating metadata and

benchmarking against existing models. Overall, this work contributes to the

field of data discovery and opens up possibilities for improved data explo-

ration and informed decision-making.

39

Bibliography

Bhagavatula, C., Noraset, T., & Downey, D. (2013). Methods for exploring
and mining tables on Wikipedia. https://doi.org/10.1145/2501511.
2501516

Bhagavatula, C., Noraset, T., & Downey, D. (2015). TabEL: Entity Linking in
Web Tables. https://doi.org/10.1007/978-3-319-25007-6\{_}25

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Jour-
nal of Machine Learning Research, 3, 993–1022. https ://doi .org/10.
5555/944919.944937

Bogatu, A., Fernandes, A. A. A., Paton, N. W., & Konstantinou, N. (2020).
Dataset Discovery in Data Lakes. https://doi.org/10.1109/icde4830
7.2020.00067

Boudin, F. (2018). Unsupervised Keyphrase Extraction with Multipartite Graphs.
https://doi.org/10.18653/v1/n18-2105

Bougouin, A., Boudin, F., & Daille, B. (2013). TopicRank: Graph-Based Topic
Ranking for Keyphrase Extraction. https://hal.science/hal-00917969

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A. M., Nunes, C., & Jatowt,
A. (2018). YAKE! Collection-Independent Automatic Keyword Extractor.
https://doi.org/10.1007/978-3-319-76941-7\{_}80

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A. M., Nunes, C., & Jatowt,
A. (2020). YAKE! Keyword extraction from single documents using
multiple local features. Information Sciences, 509, 257–289. https ://
doi.org/10.1016/j.ins.2019.09.013

Chen, Z., Jia, H., Heflin, J., & Davison, B. D. (2020). Leveraging Schema Labels
to Enhance Dataset Search. Springer Science+Business Media. https :
//doi.org/10.1007/978-3-030-45439-5\{_}18

Chi, J., & Roberts, A. (2023). Normalized Discounted Cumulative Gain (NDCG).
https://arize.com/blog-course/ndcg/

Deng, L., Zhang, S., & Balog, K. (2019). Table2Vec: Neural Word and Entity
Embeddings for Table Population and Retrieval. https://doi.org/10.
1145/3331184.3331333

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. ht
tps://doi.org/10.48550/arXiv.1810.04805v2

Fernandez, R., Min, J., Nava, D., & Madden, S. (2019). Lazo: A Cardinality-
Based Method for Coupled Estimation of Jaccard Similarity and Con-
tainment. https://doi.org/10.1109/icde.2019.00109

Gagnon, M.-P. (2007). Ontology-based integration of data sources. https://
doi.org/10.1109/icif.2007.4408086

Google Code Archive - Word2Vec. (2013). https://code.google.com/archiv
e/p/word2vec/

40

https://doi.org/10.1145/2501511.2501516
https://doi.org/10.1145/2501511.2501516
https://doi.org/10.1007/978-3-319-25007-6\{_}25
https://doi.org/10.5555/944919.944937
https://doi.org/10.5555/944919.944937
https://doi.org/10.1109/icde48307.2020.00067
https://doi.org/10.1109/icde48307.2020.00067
https://doi.org/10.18653/v1/n18-2105
https://hal.science/hal-00917969
https://doi.org/10.1007/978-3-319-76941-7\{_}80
https://doi.org/10.1016/j.ins.2019.09.013
https://doi.org/10.1016/j.ins.2019.09.013
https://doi.org/10.1007/978-3-030-45439-5\{_}18
https://doi.org/10.1007/978-3-030-45439-5\{_}18
https://arize.com/blog-course/ndcg/
https://doi.org/10.1145/3331184.3331333
https://doi.org/10.1145/3331184.3331333
https://doi.org/10.48550/arXiv.1810.04805v2
https://doi.org/10.48550/arXiv.1810.04805v2
https://doi.org/10.1109/icde.2019.00109
https://doi.org/10.1109/icif.2007.4408086
https://doi.org/10.1109/icif.2007.4408086
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Bibliography

Guidotti, R., & Monreale, A. (2020). Data-Agnostic Local Neighborhood Gen-
eration. https://doi.org/10.1109/icdm50108.2020.00122

Hulsebos, M., Demiralp, Ç., & Groth, P. (2023). GitTables: A Large-Scale Cor-
pus of Relational Tables. Proc. ACM Manag. Data, 1(1). https://doi.
org/10.1145/3588710

Hulth, A. (2004). Combining Machine Learning and Natural Language Pro-
cessing for Automatic Keyword Extraction.

Ji, J., Li, J., Yan, S., Tian, Q., & Zhang, B. (2013). Min-Max Hash for Jaccard
Similarity. https://doi.org/10.1109/icdm.2013.119

Khatiwada, A., Fan, G., Shraga, R., Chen, Z., Gatterbauer, W., Miller, R. J., &
Riedewald, M. (2023). SANTOS: Relationship-based Semantic Table
Union Search. Proc. ACM Manag. Data, 1(1), 1–25. https://doi.org/
10.1145/3588689

Khatua, A., Khatua, A., & Cambria, E. (2019). A tale of two epidemics: Con-
textual Word2Vec for classifying twitter streams during outbreaks.
Information Processing and Management, 56(1), 247–257. https://doi.
org/10.1016/j.ipm.2018.10.010

Koutras, C., Siachamis, G., Ionescu, A., Psarakis, K., Brons, J., Fragkoulis, M.,
Lofi, C., Bonifati, A., & Katsifodimos, A. (2021). Valentine: Evaluating
Matching Techniques for Dataset Discovery. https ://doi .org/10 .
1109/icde51399.2021.00047

Kusner, M. J., Sun, Y., Kolkin, N. I., & Weinberger, K. Q. (2015). From Word
Embeddings To Document Distances, 957–966. https :// jmlr . csail .
mit.edu/proceedings/papers/v37/kusnerb15.pdf

Langenecker, S., Sturm, C., Schalles, C., & Binnig, C. (2021). Towards Learned
Metadata Extraction for Data Lakes. BTW, 325–336. https://doi.org/
10.18420/btw2021-17

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of Massive Datasets.
Cambridge University Press.

Levy, O., & Goldberg, Y. (2014). Dependency-Based Word Embeddings. htt
ps://doi.org/10.3115/v1/p14-2050

Liang, O. (2021). How to measure statistical similarity on tabular data? —
demonstrated using synthetic data. https://medium.com/@olivia.
liang032/how- to- measure- statistical- similarity- on- tabular- data-
demonstrated-using-synthetic-data-66a1aa60084d

Liu, Y., Liu, Z., Chua, T.-S., & Sun, M. (2015). Topical Word Embeddings. Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
29(1). https://doi.org/10.1609/aaai.v29i1.9522

Miah, M. S. U., Sulaiman, J., Sarwar, T. B., Zamli, K. Z., & Jose, R. (2021).
Study of Keyword Extraction Techniques for Electric Double-Layer
Capacitor Domain Using Text Similarity Indexes: An Experimental
Analysis. Complexity, 2021, 1–12. https://doi.org/10.1155/2021/
8192320

Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Efficient Estimation
of Word Representations in Vector Space. https://arxiv.org/pdf/
1301.3781

41

https://doi.org/10.1109/icdm50108.2020.00122
https://doi.org/10.1145/3588710
https://doi.org/10.1145/3588710
https://doi.org/10.1109/icdm.2013.119
https://doi.org/10.1145/3588689
https://doi.org/10.1145/3588689
https://doi.org/10.1016/j.ipm.2018.10.010
https://doi.org/10.1016/j.ipm.2018.10.010
https://doi.org/10.1109/icde51399.2021.00047
https://doi.org/10.1109/icde51399.2021.00047
https://jmlr.csail.mit.edu/proceedings/papers/v37/kusnerb15.pdf
https://jmlr.csail.mit.edu/proceedings/papers/v37/kusnerb15.pdf
https://doi.org/10.18420/btw2021-17
https://doi.org/10.18420/btw2021-17
https://doi.org/10.3115/v1/p14-2050
https://doi.org/10.3115/v1/p14-2050
https://medium.com/@olivia.liang032/how-to-measure-statistical-similarity-on-tabular-data-demonstrated-using-synthetic-data-66a1aa60084d
https://medium.com/@olivia.liang032/how-to-measure-statistical-similarity-on-tabular-data-demonstrated-using-synthetic-data-66a1aa60084d
https://medium.com/@olivia.liang032/how-to-measure-statistical-similarity-on-tabular-data-demonstrated-using-synthetic-data-66a1aa60084d
https://doi.org/10.1609/aaai.v29i1.9522
https://doi.org/10.1155/2021/8192320
https://doi.org/10.1155/2021/8192320
https://arxiv.org/pdf/1301.3781
https://arxiv.org/pdf/1301.3781

Bibliography

Mishra, A. (2022). Keyword Extractor YAKE! - Aditya Mishra - Medium.
https://medium.com/@adityamishra.rishu/keyword- extractor-
yake-35870de21a0d

Mountantonakis, M., & Tzitzikas, Y. (2020). Content-based Union and Com-
plement Metrics for Dataset Search over RDF Knowledge Graphs.
Journal of Data and Information Quality, 12(2), 1–31. https://doi.org/
10.1145/3372750

Nargesian, F., Zhu, E., Pu, K. Q., & Miller, R. J. (2018). Table union search on
open data. Proceedings of the VLDB Endowment, 11(7), 813–825. https:
//doi.org/10.14778/3192965.3192973

Park, J., & Lee, S.-G. (2011). Keyword search in relational databases. Knowl-
edge and Information Systems, 26(2), 175–193. https : / / doi . org / 10 .
1007/s10115-010-0284-1

Putri, I., & Kusumaningrum, R. (2017). Latent Dirichlet Allocation (LDA) for
Sentiment Analysis Toward Tourism Review in Indonesia. Journal of
physics, 801, 012073. https://doi.org/10.1088/1742-6596/801/1/
012073

Qaiser, S., & Ali, R. (2018). Text Mining: Use of TF-IDF to Examine the Rele-
vance of Words to Documents. International journal of computer appli-
cations, 181(1), 25–29. https://doi.org/10.5120/ijca2018917395

Rossiello, G., Basile, P., & Semeraro, G. (2017). Centroid-based Text Sum-
marization through Compositionality of Word Embeddings. https :
//doi.org/10.18653/v1/w17-1003

Santos, A., Bessa, A., Chirigati, F., Musco, C., & Freire, J. (2021). Correlation
Sketches for Approximate Join-Correlation Queries. https://doi.org
/10.1145/3448016.3458456

Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago. https://doi.org/
10.1145/1242572.1242667

Trabelsi, M., Davison, B. D., & Heflin, J. (2019). Improved Table Retrieval
Using Multiple Context Embeddings for Attributes. https : / / doi .
org/10.1109/bigdata47090.2019.9005681

Wang, Y., Liu, S., Afzal, N., Rastegar-Mojarad, M., Wang, L., Shen, F., Kings-
bury, P., & Liu, H. (2018). A comparison of word embeddings for the
biomedical natural language processing. Journal of Biomedical Infor-
matics, 87, 12–20. https://doi.org/10.1016/j.jbi.2018.09.008

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,
P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., & Rush, A. M. (2020). Transformers: State-of-the-Art
Natural Language Processing, 38–45. https : / / doi . org / 10 . 5281 /
zenodo.5347031

Yang, Y., Zhang, Y., Zhang, W., & Huang, Z. (2019). GB-KMV: An Aug-
mented KMV Sketch for Approximate Containment Similarity Search.
https://doi.org/10.1109/icde.2019.00048

Zhang, K., Xu, H., Tang, J., & Li, J. (2006). Keyword Extraction Using Support
Vector Machine. Springer Science+Business Media. https://doi.org/
10.1007/11775300\{_}8

42

https://medium.com/@adityamishra.rishu/keyword-extractor-yake-35870de21a0d
https://medium.com/@adityamishra.rishu/keyword-extractor-yake-35870de21a0d
https://doi.org/10.1145/3372750
https://doi.org/10.1145/3372750
https://doi.org/10.14778/3192965.3192973
https://doi.org/10.14778/3192965.3192973
https://doi.org/10.1007/s10115-010-0284-1
https://doi.org/10.1007/s10115-010-0284-1
https://doi.org/10.1088/1742-6596/801/1/012073
https://doi.org/10.1088/1742-6596/801/1/012073
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.18653/v1/w17-1003
https://doi.org/10.18653/v1/w17-1003
https://doi.org/10.1145/3448016.3458456
https://doi.org/10.1145/3448016.3458456
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1109/bigdata47090.2019.9005681
https://doi.org/10.1109/bigdata47090.2019.9005681
https://doi.org/10.1016/j.jbi.2018.09.008
https://doi.org/10.5281/zenodo.5347031
https://doi.org/10.5281/zenodo.5347031
https://doi.org/10.1109/icde.2019.00048
https://doi.org/10.1007/11775300\{_}8
https://doi.org/10.1007/11775300\{_}8

Bibliography

Zhang, M., & Chakrabarti, K. (2013). InfoGather+: Semantic Matching and
Annotation of Numeric and Time-Varying Attributes in Web Tables.
https://doi.org/10.1145/2463676.2465276

Zhang, S., & Balog, K. (2021). Semantic Table Retrieval Using Keyword and
Table Queries. ACM Trans. Web, 15(3), 1–33. https : / / doi . org / 10 .
1145/3441690

Zhu, E., Deng, D., Nargesian, F., & Miller, R. J. (2019). JOSIE: Overlap Set
Similarity Search for Finding Joinable Tables in Data Lakes. https :
//doi.org/10.1145/3299869.3300065

Zhu, E., Nargesian, F., Pu, K. Q., & Miller, R. J. (2016). LSH ensemble. Pro-
ceedings of the VLDB Endowment, 9(12), 1185–1196. https://doi.org/
10.14778/2994509.2994534

43

https://doi.org/10.1145/2463676.2465276
https://doi.org/10.1145/3441690
https://doi.org/10.1145/3441690
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.14778/2994509.2994534
https://doi.org/10.14778/2994509.2994534

	Introduction
	Motivation and context
	Problem definition
	Literature review

	Data
	Description of the data
	Preparation of the data

	Method
	Description of the methods used
	Practical considerations

	Experimental evaluation
	Evaluation metrics
	Overview of the results

	Conclusion
	Key findings and research questions
	Limitations
	Future work

	Bibliography

