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Abstract 
 
Global hydrological models (GHMs) enable global estimation of freshwater availability, but 

their uncertainties and limitations hinder precise predictions. Multi-model combination (MMC) 

is a promising solution that combines the outputs of numerous hydrological models to create 

an ensembled output that surpasses the individual hydrological models. Moreover, the use of 

Machine Learning (ML) as a hybrid post-processing strategy is growing in popularity. 

However, there is a need to combine these two methods and investigate their performance in 

streamflow predictions. In this study, we demonstrate that using Random Forest (RF) as a non-

linear MMC approach significantly enhances streamflow forecasts when multiple global 

hydrological models' outputs are combined. In streamflow forecasting, the RF-MMC method 

outperforms individual models and linear MMC approaches, demonstrating its potential. In 

addition, incorporating catchment attributes improved the generalizability of the RF-MMC 

method when tested on a river basin that was not in the training set. Significant potential exists 

for the application of RF-MMC to generate accurate streamflow forecasts, thereby providing 

valuable support for water resource management, flood mitigation, and decision-making 

processes. Future research can investigate additional machine learning algorithms and 

incorporate additional variables to improve the predictive ability and generalizability of MMC 

strategies in hydrological modelling. 
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1 Introduction 
Water plays a vital role in numerous aspects of human well-being, ecological systems, 

economic operations, and geographical phenomena (Milly et al., 2005). The study pointed out 

that, some locations in the world could potentially see a significant reduction of up to 30% in 

runoff by 2050, which could have enormous regional and global implications. In their research, 

Zhang et al. (2023), highlighted the potential for water scarcity in different parts of the world 

to be exacerbated by climate change and increased social economic development. According 

to the same study, streamflow is critical in delivering key freshwater supplies for both humans 

and ecosystems. Reliable and accurate long-term streamflow prediction is essential to make 

sufficient and informed decisions in water resource management and flood mitigation (Shen et 

al., 2022).  

 

There are various parameters that influence streamflow such as precipitation, 

evapotranspiration, air temperature and land use (Liu et al., 2016; Yaseen et al., 2017). The 

random variables involved in streamflow are complex and non-linear, posing challenges to a 

complete understanding of the hydrological cycle (Sharma & Machiwal, 2021). To simulate 

streamflow, hydrological models have been widely employed (Y. Chen et al., 2011; Jia et al., 

2001; Yang et al., 2020). Global estimation of freshwater availability is made possible by 

global hydrological models (GHMs) (Eisner, 2016) and are characterized by a simplification 

of hydrological phenomena to be able to support multi-decadal hydrological simulations at a 

global scale (Zaherpour et al., 2019). However,  the model outputs may contain significant 

errors despite the use of sophisticated calibration techniques (Shen et al., 2022). This is because 

hydrological models are imperfect representations of reality and they produce uncertain 

estimations even with access to highly accurate meteorological data (Beck et al., 2017). These 

uncertainties arise from the simplified structure of the models, inaccuracies in input data, and 

a lack of correct understanding of hydrological processes (Mohammadi et al., 2021). 

 

A classic strategy for dealing with the uncertainties of conventional hydrological models is to 

combine the results of different models to produce a combined output that exceeds the 

individual hydrological models. This is known as Multi-Model Combination (MMC), and it 

involves combining the outputs of multiple models into a single variable using techniques such 

as mean or median. According to Shamseldin et al. (1997) and Xiong et al. (2001), no single 

model is universally optimal for all seasons and catchments, as they can vary significantly. As 

a result, a thorough combination of numerous estimates generated from different models can 

be expected to produce a more comprehensive and accurate depiction of catchment response 

than each individual model.  

 

Shen et al. (2022) developed an error-updating procedure to correct streamflow predictions 

from PCR-GLOBWB using Random Forest (RF), an ensemble tree-based algorithm. The 

authors used both meteorological input and simulated hydrological state variables and runoff 

as predictors of observed streamflow for three catchments in the Rhine basin. The authors 

showed that RF can improve prediction errors for both calibrated and uncalibrated simulations. 

Magni et al. (2023) successfully extended such a hybrid framework to the global scale. The 

authors incorporated catchment attributes such as topography and river channel characteristics 

as additional predictors for observed discharge, along with state- and meteorological variables 

of PCR-GLOBWB. According to the findings, using static catchment features as additional 

predictors helped reduce the predictive error of the RF-based post-processing strategy. 

Combining these two approaches, Zaherpour et al. (2019) proposed integrating machine 

learning (ML) and MMC in GHMs. The authors presented a method to blend simulated runoff 



5 

 

from five different GHMs in 40 large catchments across the globe, covering a total area of 

100.000 km2. The authors defined two MMC methodologies: one using Gene Expression 

Programming (GEP) and one with a less sophisticated Ensemble Mean (EM). When compared 

to the top performing GHM, the GEP's median performance improvement exceeded 45%, 

reaching more than 100% when compared to the EM. 

 

Given the uncertainties associated with traditional hydrological models and the potential 

benefits offered ML and MMC approaches, the aim of this study is to evaluate the use of a non-

linear ML model such as RF as a MMC in improving streamflow prediction and model 

reliability. The decision to use RF as an MMC is predominantly influenced by Magni et al.'s 

(2023) demonstration of RF's performance in streamflow predictions by incorporating 

meteorological inputs, hydrological state variables, and catchment attributes. In comparison, 

we assess the performance of individual GHMs and a simple linear combination of their outputs 

using Multiple Linear Regression (MLR). Zaherpour et al. (2019) also employed MLR and 

compared it with a non-linear MMC approach using Gene Expression Programming (GEP), 

providing a relevant benchmark for our study. 

 

This study thus aims at answering the following research question: 

 

How can a machine-learning-powered multi-model combination approach improve 

streamflow predictions by combining outputs from different global hydrological models? 

 
The following sub-questions are followed as a guide for the research process: 

 

1. Can a non-linear combination of GHMs simulations using RF achieve better 

performance for streamflow prediction compared to individual hydrological models? 

2. How well does a RF-MMC generalize when trained and tested on different river basins?  

3. How does combining streamflow simulations from different GHMs using MLR as a non-

linear model improve streamflow prediction accuracy when compared to non-linear 

RF-MMC approach ? 

4.  How does the proposed RF-MMC strategy compare to the hybrid post-processing 

technique developed by Magni et al. (2023). 

5. Does the inclusion of static PCR-GLOBWB attributes improve the generalization 

ability of the RF-MMC approach for predicting streamflow? 

 

To answer the first sub-question, we will combine the outputs from three GHM and use RF to 

predict streamflow. The predicted discharge will be evaluated using Kling-Gupta Efficiency 

(KGE) (Gupta et al., 2009) and compared to the KGE of the individual GHMs simulations. The 

RF model will be trained on stations in Rhine basin and subsequently tested on stations in Elbe 

and Maas basin to test its generalization ability. Additionally, MLR will be applied to forecast 

streamflow and examine whether a simple linear combination of GHM outputs can perform 

similar to the RF-MMC method. In addition, the hybrid post-processing method developed by 

Magni et al. (2023) will be compared to the proposed multi-model combination strategy. 

Finally, we examine whether catchment attributes enhance the generalizability of RF-MMC. 

 

The report is organized as follows: we begin with a description of the study area and description 

of the dataset in section 2. We then explain the methodologies employed, including the GHMs, 

ML algorithms, and multi-model combination strategy in section 3. In section 4, the results of 

research are then presented. Section 5 concludes the research by discussing the research 

findings, limitations,  and prospective areas for further research.  
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2 Study area and Data  

2.1 Study area 
In this study, we look at 50 European catchments with a variety of hydrological features.  These 

catchments are spread throughout three major river basins: the Rhine, the Elbe, and the Maas. 

Thirty of the total fifty catchments are in the Rhine basin, thirteen in the Elbe basin, and the 

other seven in the Maas basin (Figure 1). These stations' catchment sizes range from 10,000 to 

160,000 square kilometres, with stations in the Maas basin typically covering smaller 

catchment areas.  

 

 
Figure 1:  Study area, Rhine, Elbe and Meuse Basin. The green dots show the location of the gauging 

stations,  and the lines indicate the rivers.   

The Rhine basin is characterized by a variable flow regime that is governed by factors such as 

precipitation patterns, snowmelt, and tributary contributions. The average annual precipitation 

ranges from 500 mm in the low-lying areas to 2000 mm in the Alpine regions (Khanal et al., 

2019). This river basin has a varied land use, such as agricultural areas, urbanized areas, and 

forested zones, with the area surrounding Basel (Switzerland) having more grassland, surface 

water and glaciers. The upper part of the Rhine basin is in the high altitudes of the Alpine 

region. As a result of this, the streamflow is mainly influenced by snow and glacier melt in 

spring and summer (Shen et al., 2022). The streamflow regime of the lower parts of the Rhine 

basin is predominantly influenced by heavy rainfall and reaches its peak in late winter and is 

lowest in the summer.  

 
The Elbe River basin flows across Germany from the Czech Republic to the North Sea. The 

Elbe River, like the Rhine, has a discharge regime that is impacted both by rainfall and snow. 

Water levels are normally higher in the winter and spring, and lower in the late summer and 

autumn. Precipitation in the Elbe River basin varies with elevation. Higher altitude place 

getting more rain compared to lower altitude. This fluctuation adds to the Elbe River's distinct 
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discharge characteristics, influencing its flow regime and water levels throughout the year 

(Hesse, 2018). As mentioned by the same author, the yearly rainfall in the Elbe River varies 

across different altitudes, ranging from 1700 mm in higher altitude places to as low as 450 mm 

in lower altitude areas. It is worth noting that the lower altitude zone, which accounts for around 

one-third of the Elbe River basin and is in both Germany and the Czech Republic. 

 
The Maas River begins in the French Alps and runs through Luxembourg, Belgium, and the 

Netherlands before reaching the North Sea. However, for computational considerations, this 

study concentrates primarily on the Maas basin's Dutch and Flemish regions. The average 

annual precipitation in this part of the river basin is 700-800 mm (de Wit et al., 2007). The 

discharge regime of the Maas River basin is primarily influenced by rainfall and is highest in 

the winter and at the beginning of spring. According to de Wit et al. (2007), a decrease in the 

average discharge occurs naturally in the autumn months. Unlike the Elbe and Rhine rivers, 

the Meuse River’s streamflow is consistent throughout the year and does not have high peaks 

caused by snowmelt or glacier runoff. 

 

2.2 Data 
As mentioned in the introduction, in this study we will combine the outputs of three GHMs to 

improve streamflow predictions. The outputs of the GHMs have been made available on the 

eartH2Observer Water Cycle Integrator (WCI) portal (Schellekens et al., 2017). The models in 

the eartH2Observer project, including the ones used in this study, are fundamentally different 

from each other, but they are all driven by the same daily 0.5° WATCH Forcing Data ERA-

Interim (WFDEI) meteorological dataset (Weedon et al., 2014). This allows for the comparison 

and study of the outputs of the various models. The retrieved dataset has a monthly temporal 

resolution and covers 1979 to 2012.  

 

A preliminary investigation was conducted to examine the data resources accessible on the 

WCI data portal that were relevant to the study. This review provided insight into the data 

availability, quality, and overall fit of the data for the research aims. Based on the preliminary 

research, the following three GHMs have been selected: WaterGAP3, PCR-GLOBWB and 

LISFLOOD. Before the final run of the GHMs, Schellekens et al. (2017) used specific 

initialization processes for each model to account for the distinct characteristics of each model 

and to ensure that they accurately depicted the climatic conditions. Beck et al. (2017) built 

upon the work of Schellekens et al. (2017) and evaluated a set of model outputs described in 

the same study with discharge from 966 medium-sized watersheds and found that the calibrated 

models performed best. In their effort, the scientists calibrated several GHMs, including 

WaterGAP3 and LISFLOOD (excluding PCR-GLOBWB) and made updates to the outputs of 

these GHMs on the eartH2Observe Water Cycle Integrator (WCI) data portal. 

 

The variable importance found by Shen et al. (2022) is considered to select two to three state-

variables for each of the GHMs. The authors discovered that the influence of state variables 

varied depending on the characteristics of the catchment. Snow water equivalent and surface 

water storage variables were shown to be critical in minimizing prediction errors in catchments 

where glacier melt contributed considerably to the discharge regime. In contrast, the authors 

stressed the relevance of groundwater components as important contributors in places where 

rainfall plays a dominant role in the discharge regime. The number of variables investigated in 

this study is limited due to computing restrictions and the short period of the thesis. Besides 

the discharge and meteorological variables, the following three state variables are considered 

for each GHM: snow water equivalent, soil moisture, and surface water storage. Table 1 gives 
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a complete description of these variables. Furthermore, the GHMs considered in this study are 

described in paragraphs 2.2.1 to 2.2.3.  

  

2.2.1 WaterGAP3  
Water – Global Assessment and Prognosis-3 (WaterGAP3) hydrological model is part of the 

WaterGAP suite of models used to assess and predict global water resources and their use. The 

first version was initially proposed in 1996 and is described in Alcamo et al. (1997). The model 

included a simpler representation of water use and availability (ALCAMO et al., 2003) and has 

since been further developed and improved (Müller Schmied et al., 2021). Additionally, 

WaterGAP consists of five sectoral water use models (irrigation livestock, household, 

manufacturing, and thermal power plant cooling) (Döll & Siebert, 2002; Flörke et al., 2013) 

and a large-scale water quality model (Eisner, 2016; Schellekens et al., 2017). WaterGAP3 is 

a grid-based, integrative assessment tool that is used to investigate the current state of global 

freshwater resources. The model is also used to examine the potential impacts of global changes 

in the water sector, particularly in the context of climate change and human interventions (Döll 

et al., 2003; Eisner, 2016; Müller Schmied et al., 2021b). The WaterGAP3  hydrological model 

is simulated at daily timestep; however, monthly data aggregation is also available. The model 

is used to simulate both the global and local water cycles. This is a water balance model that 

incorporates interception, soil water, snow, groundwater, and surface water as the key 

components of water storage. As elaborated by Schellekens et al. (2017), the WaterGAP3 

model made available on the  eartH2Observe data portal was first re-run ten times using the 

first year of accessible meteorological forcing to initialize the storage component before the 

final run was made. Furthermore, the model was calibrated before being regionalized to 

ungauged catchments by multiple linear regression (Beck et al., 2017). 

 

2.2.2 PCR-GLOBWB 
PCR-GLOBWB (Sutanudjaja et al., 2018) is a global hydrological model that uses a grid-based 

technique to represent the Earth's water cycle dynamics. It simulates streamflow and a wide 

range of state variables, allowing for a complete analysis of global hydrological dynamics. The 

framework structure in interconnected modules, namely: an irrigation and water consumption 

model, a meteorological model, a land surface model, a groundwater model, a surface water 

routing component and irrigation and water use model. However, it should be noted that the 

data provided on the eartH2Observe WCI data portal (tier 1) does not encompass this particular 

water use component from the standard PCR-GLOBWB model. Before the final run of PCR-

GLOBWB, Schellekens et al. (2017) carried out a 68-year initialization period by conducting 

two consecutive preliminary runs from 1979 to 2012. The parameters rely solely on previous 

variable estimation and were not calibrated.  

 

2.2.3 LISFLOOD 
LISFLOOD (Van Der Knijff et al., 2010) is a grid-based hydrological model that simulates 

hydrological cycle. The model can replicate the full water cycle, from rainfall to water in rivers, 

lakes, and groundwater. The model has a wide range of applications, including water and 

climate studies as well as forecasting floods and droughts. LISFLOOD consist of numerous 

modules that simulate different hydrological processes. This platform offers complete 

hydrological dynamics study and simulation. These models contain potential and actual 

evapotranspiration, snow cover and melt assessment, and soil water balance analysis across 

three layers. Prior to starting the main simulation, a complete run from 1979 to 2012 was 

performed to create the model (Schellekens et al., 2017). The model was then calibrated using 
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WFDEI forcing, and its performance was thoroughly evaluated using daily streamflow data 

(Beck et al., 2017). 

 

 

 

 

 

  

Table 1: Hydrological variables from GHMs and Meteorological  Forcing variables used for the study. 

Variable  Source Unit Explanation 

lis_dis LISFLOOD m/day  Simulated river discharge. 

lis_SWE LISFLOOD kg/m2  Snow water Equivalent 

lis_SurfMoist LISFLOOD kg/m2  Surface soil moisture 

pcr_dis PCRG-LOBWB m/day  Simulated river discharge. 

pcr_SWE PCR-GLOBWB kg/m2  Snow water Equivalent 

pcr_SurfMoist PCR-GLOBWB kg/m2  Surface soil moisture 

pcr_SurfStor PCR-GLOBWB kg/m2 Surface water storage (lakes, reservoirs, 

rivers, and inundated water) 

wg3_dis WaterGAP3 m/day  Simulated river discharge. 

wg3_SurfStor WaterGAP3 kg/m2  Surface water storage (lakes, reservoirs, 

rivers, and inundated water) 

wg3_SWE WaterGAP3 kg/m2  Snow water Equivalent 

wg3_RootMoist WaterGAP3 kg/m2  Root zone soil Moisture 

meteo_rain Meteorology  kg m-2 s-1 Rainfall rate.  

meteo_tair Meteorology  K Temperature measured in Kelvin degrees.  
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3 Methods 
In this research, two ML models are applied: Random Forest and Multiple Linear Regression. 

In the following sections, we will go over the data pre-processing approach, the ML models 

used, and the setup and evaluation of the models. 

 

3.1 Pre-processing 

3.1.1 Observed discharge 

Observed discharge data was obtained from the dataset made public by Magni et al. (2023). 

This is the target variable in the ML modelling. The authors downloaded the data from the 

Global Runoff Data Center (GRDC) and chose stations based on two constrains: stations with 

at least a 10,000 km2 upstream area, and at least one year of data between 1979 and 2019. They 

also converted the discharge (m3/s) into flow depth (m/day). This transformation is given as: 

  

𝑓𝑑 =  𝑞
86400

𝐴ups
 

 

Whereby “𝑓𝑑” denotes the flow depth in meters per day (m/d), “𝑞”defines the discharge in 

cubic meters per second (m3/s). The numerator 86400 denotes the number of seconds in a day 

(s/d-1) and "𝐴ups" expresses the upstream area in square meters (m2).  

 

3.1.2 Meteorological and GHM variables 

 

For each variable from Table 1, a separate NetCDF file was retrieved from the eartH2Observe 

WCI data portal. The files were then divided into single monthly timesteps to minimize the 

computational time for subsequent steps. Each variable was then resampled to 0.5-degree 

spatial resolution and uniform spatial extent, allowing for accurate and comparative analysis 

on a unified scale. Upstream normalization was performed on all the variables (except 

discharge variables) using PCRaster Python framework (Karssenberg et al., 2010).  

 

For the extraction of station specific values, the GRDC stations within the study region that 

satisfied the constraints defined above were used. The extraction of station values was done by 

locating the nearest pixel in the dataset that matched the coordinates of each GRDC station. 

This is repeated for each timestep and variable. The extraction procedure concludes by saving 

the extracted values along with the corresponding date of each station into a Comma-separated 

values file (csv). Subsequently one predictor table was created for each station which contains 

all the variables by combining the extracted csv files. The discharge variables form the GHMs 

were also converted into flow depth. Furthermore, the extracted GRDC discharge is added into 

the predictor table, creating a complete dataset for training and validation. The state variables 

and meteorological input variables were standardized using z-score normalization. This 

ensures a zero mean and a standard deviation of one allowing for a clearer input to the machine 

learning models. During this stage, we also cleaned the dataset by removing observations with 

no data. Finally, the dataset was divided into separate subsamples based on GRDC stations for 

cross-validation purpose in order to overcome overfitting. This is required to evaluate the 

model's performance on unobserved data and to assure its generalizability. Figure 2 shows  the 

entire workflow of the data-processing steps that were carried out.  
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3.2 Machine Learning models 

3.2.1 Random Forest 

 
Random Forest (RF) (Breiman, 2001) is a ML algorithm that combines bagging and feature 

sampling strategies to address the problem of overfitting in ML models. Bagged trees are 

formed by taking a random sample from the dataset with replacement. These trees are 

frequently high in variance, and reduced bias. However, this complexity can result in 

overfitting, which can be prevented by taking the average of all projections.  Furthermore, with 

RF, features are sampled randomly at each tree node. Because an independent sample of the 

attributes is chosen at each node, the tree will overcome overfitting on features that are 

corelated. In this study, RF was implemented using ranger package from R (Wright & Ziegler, 

2017).  

 

To enhance the performance of the RF model, hyperparameter tunning was performed on two 

important parameters: the number of trees (ntrees) and the number of features (mtry). The 

tuning procedure was divided into two sections. The initial focus was on fine-tuning the mtry 

parameter while maintaining the number of trees fixed at 200. This method enables us to 

determine the best number of attributes to consider at each node. The same method was then 

used to tune the number of trees while using the mtry value obtained in the previous phase. 

This two-step tuning process was adopted from the work of Magni et al. (2023).  

  

Figure 2: Data pre-processing workflow for creating predictors table. This 

was performed using Python. 
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3.2.2 Multiple linear regression 
Multiple linear regression is executed by simply taking only linear dependencies between the 

response variable and each of the independent variables. The MLR model was implemented 

using the lm function from the base package in R. The general equation of the MLR models is 

given below.  

 

𝑦 =  𝛽0 +  𝛽1𝑥1 ∙  𝛽2𝑥2  ⋯ ⋯ 𝛽𝑛𝑥𝑛 +  𝜖 

 

The term y is the dependent variable, the letter 𝛽0 represents the constant term, 𝛽1.... 𝛽𝑛 are the 

regression coefficients, and 𝜖 is the error term. 

 

MLR may be limited by multicollinearity. When multicollinearity exists, 𝑥1 may be linearly 

dependent on another explanatory variable, such as 𝑥𝑛, resulting in inaccurate coefficient 

estimates and an unreliable model. Lafi and Kanene (1992) identified four main symptoms of 

multicollinearity, including: (1) large standard errors, (2) unexpected coefficient signs due to 

high correlation with other variables, (3) high correlations between predictor and response 

variables without statistical significance, and (4) correlation coefficients among 

explanatory/predictor variables are large but the overall ability of the model’s ability to explain 

the variation in the response variable is considerably low. 

 
In order to test for multicollinearity, the Variation Inflation Factor (VIF) (Marriott et al., 1985) 

will be used. The VIF is defined as: 

 

𝑉𝐼𝐹𝑗 =
1

1 − 𝑅𝑗
2 

 

where 𝑅𝑗
2 is the coefficient of determination for the regression of 𝑥𝑗 on the remaining 

variables. There is a multicollinearity if the VIF is larger than 10. The VIF factor is calculated 

using the VIF function in the car package in R. 

 

3.3 Model setup and evaluation 

3.3.1 Experiment setup 

 
To investigate the best combination of variables, we will explore three distinct variable 

combinations, each of which will provide useful insights into the predictive capabilities. We 

will then run for each variable setup a separate model and investigate how well the setup can 

predict observed streamflow. Besides the predicted streamflow using the ML models, we will 

also compute the arithmetic mean of the GHMs. The arithmetic mean of the discharge of GHMs 

will be given as average in the results section. A visual representation of the modelling strategy 

with different variable setups is shown in Figure 3. 
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3.3.2 Evaluation metric 

 
The performance of the ML in predicting streamflow is evaluated using Kling-Gupta 

Efficiency (Gupta et al., 2009). This metric quantifies the similarity between measured and 

predicted discharge with a single number. The equation of KGE and its components is given 

below. 

 

 

𝐾𝐺𝐸 =  √(𝑟 − 1)2+ (𝛼 − 1)2 + (𝛽 − 1)2  

 

𝑟 =  𝐶𝑜𝑣( 
𝑞𝑝,   𝑞𝑜

𝜎𝑝 ∙ 𝜎𝑜 
) 

 𝑎 =
𝜎𝑝 

𝜎𝑜
 

𝛽 =   
𝜇𝑝 

𝜇𝑜
 

 
Where “𝑟" denotes the correlation coefficient between predicted and observed discharge, 

“𝑎" represents bias ratio based on standard deviation and “𝛽” represent variability ratio based 

on mean. The resulting KGE value from the above equation ranges from -∞ to 1, with a perfect 

performance having a value of 1. KGE values that are less than -0.41 indicate that a model fails 

to outperform the mean flow benchmark and is therefore viewed as bad model performance 

(Knoben et al., 2019). 
 

Figure 3: Experiment setup and various variable configurations 
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3.3.3 Validation setup 

 
To validate the ML- MMC, four distinct validation setups were used to evaluate the model's 

performance and generalization capabilities. For the first two setups a 5-fold cross-validation 

setup was applied while the last two setups were designed to test the model’s ability to 

generalize to new river basins. Figure 4 shows these validation setups visually. For each setup, 

the validation is carried out by applying the trained ML model to its matching test dataset on 

station-by-station basis.  
 

The first setup, all_stations,  utilizes a 5-fold cross-validation in which 35 training set stations 

were randomly picked from all available stations for each fold. The remaining stations were 

employed to test the trained model. This method allowed the model's efficacy to be assessed 

across a diverse set of stations with various features. The second setup is called rhine_only 

setup and uses 5-fold cross-validation as well. Using this set up, we only sample from stations 

in the Rhine basin. This will enable us to investigate the model's performance on a specific 

region of interest. 

 

To assess model generalization capabilities, setups C and D were created. The model was first 

trained on the catchments in the Rhine watershed and then tested on the catchments in Elbe 

and Maas for setup rhine_elbe and rhine_maas respectively.  These two setups were evaluated 

only once (without cross-validation) for both configurations to quickly examine how well the 

model performed when applied to entirely different river basins. 

 

 

 

 

 

  

Figure 4: Four validation setups. (A) applies 5-fold cross-validation on all stations, sampling 35 stations 

for training. (B) focuses on Rhine stations using 5-fold cross-validation. C and D test model generalization by 

training on Rhine and testing on Elbe 
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3.3.4 Benchmark setup 
The performance of the RF-MMC (allpredictors) is compared with the alternative hybrid post-

processing strategies proposed by Magni et al. (2023) (PCR-allpredictors). The purpose of this 

comparison is to see how well the RF-MMC predicts streamflow compared to the method 

developed by Magni et al. (2023). The benchmarking dataset contains a total of 53 attributes, 

27 of which are specific to catchment characteristics. The remaining variables include the full 

set of PCR-GLOBWB time-dependent state variables as well as meteorological variables. We 

can limit the possible influence of catchment features on benchmarking results by 

concentrating on only one river basin, allowing for a more precise and specific evaluation of 

the MMC technique. For that reason, the rhine_only setup will be used as a cross-validation 

setup.  

 

Additionally, we investigate whether additional catchment attributes could improve the 

generalization ability of the RF-MMC approach. To achieve this, we added the static attributes 

from PCR-GLOBWB to the allpredictors setup, creating a new dataset with an additional 27 

features (allpredictors_catch). The validation configurations rhine_elbe and rhine_maas will 

be utilized to test the performance of the enhanced data set. All the different variable setups 

considered in this study including the two benchmarking setups are given in Table 2.  

 
Both setups described above were run with mtry of 25 and ntrees of 300, based on the findings 

of Magni et al. (2023).  

 
Table 2: All the variable setups considered in the study, including the benchmarking dataset retrieved from Magni et al. 

(2023) study. 

Setup GHM- 

Discharge 

GHM- 

Meteo 

GHM- 

State 

variables 

PCR-

GLOBWB 

Variables1   

PCR-

GLOBWB 

Catchment 

attributes2 

dis_only X 
    

dis_meteo X X 
   

allpredictors X X X 
  

allpredictors_cacth X X X 
 

X 

PCR_allpredictors  
   

X X 

 

  

 
1 Variables from Magni et al. (2023) 
2 Variables from Magni et al. (2023) 
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4 Results  

4.1 Random Forest  

4.1.1 Tunning and training 
 

The optimum hyperparameters applied for each variable setup are given in Table 3. Due to the 

limited number of predictors, hyperparameter optimization, as described in section 3.2.1, was 

not conducted for all_dis setup. Therefore, for this configuration, the mtry parameter was set 

to 1 and the ntrees value was set to 300. Please see Appendix A for a plot demonstrating the 

RF hyperparameter tuning outcomes for all_dis_meteo and allpredictors setup.  

 

 
Table 3: Optimal RF hyperparameters for the different variable setups 

 

 

During training, each variable setup was run separately for the different cross-validation setups. 

After training the RF on the dataset, the variable importance was extracted from the model and 

saved for further investigation. Figure 5 shows the variable importance plot of the different 

variable setups and when all_stations cross-validation is used. There was no difference found 

in the variable importance between the different cross-validation setups. From this figure, we 

can observe that three out of the four WaterGAP3 variables to be positioned in the top half of 

the most informative variables, and three out of four PCR-GLOBWB variables were in the 

bottom half. Following that, the KGE plots of the discharge variables provided further proof 

that WaterGAP3 outperformed PCR-GLOBWB in terms of simulating observed discharge. 

This distinction stems from the fact that the parameters in WaterGAP3 and LISFLOOD were 

calibrated, whereas the parameters in PCR-GLOBWB were not. 

 

 

 

Variable setup ntrees mtry 

all_dis 300 1 

all_dis_meteo 300 3 

allpredictors 300 4 
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Figure 5: Square rooted mean decrease in impurity values for the three variable setups. Green colour indicate 

WaterGAP3 variable, blue colour represent LISFLOOD variables, red colour show the PCR-GLOBWB variables and  

orange colour indicate the meteorological input. The orange  bar indicates the standard deviation setup. .  

 

4.1.2 Validation setup: all_stations and rhine_only  
 

The results for the RF model for all_stations and rhine_only setups are shown in Figure 6 and 

Figure 7 respectively. The figure shows the cumulative distribution (CDF) of KGE values for 

each of the RF models (solid lines) in combination with the individual GHMs discharges and 

their mean (dashed lines). For all three variable configurations (all_dis, all_dis_meteo and 

allpredictors), the RF predictions showed a clear and considerable improvement over the 

individual process-based GHMs. WaterGAP3 and the average discharge performed better than 

the LISFLOOD and PCR-GLOBWB discharge. 

 

Table 4 shows the percentage gains in KGE values for each setup compared to the average 

discharge of the GHMs. The median KGE values in this table and subsequent tables are 

calculated in two steps. First, sub-sample medians are calculated to mitigate the effect of 

a) 

b) 
 

c) 
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outliers on the averaging procedure. The average of these median values is then presented for 

analysis. Under the setup all_stations sampling strategy, the all_dis variable setup improved 

by 18% while all_dis_meteo improved by 25%. For the cross-validation rhine_only, all_dis 

setup improves the KGE by 8% while all_dis_meteo had an improvement of 19% over the 

average discharge. The allpredictors configuration shows the greatest improvement of 39% 

and 34% for cross-validation setup all_stations and rhine_only respectively.  

  

Figure 6:  Cumulative distribution Function (CDF) of KGE values for all_stations setup. The bold lines show 

the predicted discharge of the different variable setups, and the dashed lines indicate the discharge of the 

individual GHMs and their mean. 

Figure 7:  Cumulative distribution Function (CDF) of KGE values for rhine_only setup. The bold lines 

show the predicted discharge of the different variable setups, and the dashed lines indicate the discharge of 

the individual GHMs and their mean. 
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Table 4: RF results: Percentage KGE improvement over average discharge, setup All stations and Rhine 

only.  

Setup 
Median 
KGE All 
stations 

KGE performance 
All stations 

Median KGE 
rhine only 

KGE performance 
rhine only 

average 0.58 - 0.64 - 
all_dis 0.69 +18% 0.71 +8% 
all_dis_meteo 0.73 +25% 0.79 +19% 
allpredictors 0.81 +39% 0.87 +34%  

 

4.1.3 Validation setup: rhine_elbe and rhine_maas 
This validation setup is designed to examine the generalization ability of the RF-MMC for 

streamflow prediction. This is done by training the RF-MMC with catchments in Rhine basin 

and was validated on catchments in Elbe and Maas basins. The results of these two setups are 

given in Figure 8 and Figure 9. 

 

For the additional setups, the RF-MMC performance decreased significantly for all three 

variable configurations. The predicted discharge with all_dis showed a decrease of 10% and 

27% for rhine_elbe and rhine _maas respectively. Model setups where meteorological 

variables and discharge variables were combined showed a decrease of performance of 26% 

and 44% compared to the average discharge. Surprisingly, allpredictors had the largest 

decrease in performance with a 144% decrease in performance compared to the average in 

rhine_elbe setup. This is because the model captures the specific patterns and noise that are 

present in the Rhine catchments which are not present in the Elbe or Maas. Based on these 

results, the RF fails to generalize to new river basin that was not included in the training sets, 

resulting in poor performance. It is worth mentioning that some transfer of knowledge can be 

observed in the rhine_maas setup (see Figure 9) especially in stations where the individual 

hydrological models are underperforming. Additionally, some GHMs have KGE values of less 

than -5, whereas all forecasts have KGE values greater than -1. 

 
Table 5: RF results: Percentage KGE improvement over average discharge,  setup Rhine Elbe and Rhine 

Maas.  

Setup 
Median 

KGE Elbe 
KGE performance 

Elbe 
Median KGE Maas 

KGE 
performance 

Maas 

average 0.59 - 0.52 - 
all_dis 0.53 -10% 0.38 -27% 

all_dis_meteo 0.44 -26% 0.29 -44% 
allpredictors -0.26 -144% 0.52 0 
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4.2 Multiple linear regression 

 

The results of the MLR are presented in Table 6 and Table 7. The MLR streamflow predictions 

failed to show any improvements over the individual GHMs. For variable setup all_dis, the 

MLR performed worse than all the individual GHMs. Appendix D shows the plots of the 

cumulative distribution (CDF) of KGE values for each of variable setup.  

 

The MLR approach underperformed when compared the RF-MMC approach in all setups. 

Additionally, the model performed worse than the average discharge in all three configurations. 

The All_dis variable setup resulted in a 63% loss in performance for  all_stations setup and a 

71% decrease for rhine_only setup. The setup all_dis_meteo reduced performance by 30% for 

Figure 8: Cumulative distribution Function (CDF) of KGE values for rhine_elbe setup. The bold 

lines show the predicted discharge of the different variable setups, and the dashed lines indicate the 

discharge of the individual GHMs and their mean. 

Figure 9: Cumulative distribution Function (CDF) of KGE values for rhine_maas setup. The bold 

lines show the predicted discharge of the different variable setups, and the dashed lines indicate the 

discharge of the individual GHMs and their mean. 
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all_stations and 40% for rhine_only setup. Moreover, using allpredictors setting resulted in a 

17% loss in performance in all_stations and a 21% decrease in rhine_only performance. The 

performance of the MLR when tested on a new river basin were significantly worse than all 

other models, with rhine_elbe setup having a median KGE of -0.62 which is more than 200% 

decrease from the average discharge. 

 
Table 6: RF results: Percentage KGE improvement over average discharge, setup All stations and Rhine 

only 

Setup 
Median 
KGE All 
stations 

KGE performance 
All stations 

Median KGE 
rhine only 

KGE performance 
rhine only 

average 0.58 - 0.64 - 
all_dis 0.22 -63% 0.19 -71% 
all_dis_meteo 0.42 -30% 0.39 -40% 
allpredictors 0.49 -17% 0.51 -21% 

 

 
Table 7: RF results: Percentage KGE improvement over average discharge, MLR, setup Rhine Elbe and 

Rhine Maas 

Setup 
Median 

KGE Elbe 
KGE performance 

All stations 
Median KGE 
rhine only 

KGE performance 
rhine only 

average 0.59 - 0.52 - 

all_dis -0.46 178% 0.15 -72% 

all_dis_meteo -0.59 199% 0.28 -47% 

allpredictors -0.62 205% 0.38 -27% 

 

 

Summary of the coefficients generated from the MLR model for all_stations setup is presented 

in Appendix C. The results of the coefficients demonstrates that the three discharge variables, 

namely wg3_dis, lis_dis, and pcr_dis, have the most significant impact among the variables 

investigated. Surprisingly, the coefficient associated with wg3_dis and pcr_dis were found to 

be negative, contradicting the observed positive association between simulated discharge and 

observed discharge.  

 

Based on the large difference in KGE values between the MLR and the standard GHMs, as 

well as the unexpected negative coefficient sign of discharge variables and the large correlation 

between the variables, a VIF test was performed to explore whether there was a violation of 

the multicollinearity assumption.  Appendix B shows the results of VIF along with the 

correlation analysis. The results show that the collinearity assumption is violated by the MLR 

model. The VIF scores reveals the presence of collinearity issues among the model's predictor 

variables. 
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4.3 Benchmarking RF results  

 
In this section we present the results of the comparative analysis between the RF-MMC 

(allpredictors) and the alternative hybrid post-processing strategies proposed by Magni et al. 

(2023) (PCR-allpredictors). Figure 10 depicts the outcomes of these two models. The figure 

shows the Cumulative Distribution Function (CDF) of KGE values in the two RF predictions. 

The results show that the MMC setup, allpredictors,  outperforms the hybrid post-processing 

strategy across most of the predictions.  It is worth noting that the PCR_allpredictors model 

catches up to the MMC-based models at around KGE value of 0.87 and subsequently 

outperforms the MMC-based model in terms of performance. The hydrograph plot depicted in 

Appendix E demonstrates that the MMC method outperforms the PCR-allpredictors dataset, 

especially at low discharge volumes. 

 

 
Figure 10Cumulative Distribution Function (CDF) of KGE values of RF-MMC (allpredictors) and the alternative hybrid 

post-processing strategies (PCR_allpredictors). The blue line depicts the PCR_allpredictors setup and the red line shows the 

allpredictors setup. 

Besides the above comparison, we also investigate weather catchment attributes could enhance 

the generalization ability of the RF-MMC approach. The results of this analysis can be found 

in Appendix F For rhine_elbe setup, allpredictors_catch improved 100% of all bad performing 

stations under the MMC allpredictors setup (KGE < -0.41). However, allpredictors_catch did 

not have the same success with the rhine_maas setup. This is mainly because Elbe basin is 

more similar the Rhine basin than the Maas basin in terms of catchment characteristics. Due to 

this, the model was able to transfer the patterns learned from the Rhine basin to the Elbe, but 

not the Maas basin. 
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5 Discussion and conclusion   
 

This study aimed to evaluate the performance of using a non-linear machine learning model, 

specifically Random Forest (RF), as a Multi-Model Combination (MMC). The outputs of three 

Global Hydrological Models (GHM) have been combined, namely: PCR-GLOBWB, 

LISFLOOD and WaterGAP3 and RF was applied as a MMC solution. The main research 

question was: How can a machine-learning-powered multi-model combination approach 

improve streamflow predictions by combining outputs from different global hydrological 

models? 

 

We evaluated the efficacy of the RF-MMC method in improving streamflow forecasts relative 

to the discharge of individual global hydrological models. Using MLR, the performance of the 

nonlinear RF-MMC approach was compared to that of a linear MMC. In addition, the 

generalizability of the RF-MMC method when tested on a river basin which was not included 

in the training set. Moreover, we compared the performance of the RF-MMC method with that 

of the hybrid post-processing method devised by Magni et al. (2023). Finally, the effect of 

incorporating static PCR-GLOBWB attributes on the generalization ability of the RF-MMC 

approach for streamflow prediction was investigated. 

 

The results of RF-MMC demonstrated a clear improvement over the individual GHMs in the 

setup where all available stations were used in the cross-validation setting. Similarly, when 

trained and test on a single river basin, the RF-MMC worked remarkably better than the 

individual GHMs. The best performing variable setup was the allpredictors, which achieved a 

median KGE of 0.81 and 0.87 for all_stations and rhine_only setups, corresponding to a 39% 

and 34% improvement over the average GHMs discharge, respectively. These findings confirm 

the benefits of applying RF as a non-linear multi-model combination of the outputs of global 

hydrological models for streamflow prediction. This finding validates the premise  of Ajami et 

al. (2006) who argued that, combining uncalibrated multiple simulations predictions is more 

effective than relying on the best-calibrated individual model. The authors compared several 

MMC approaches  that are used for streamflow forecasting. Similar results were also found by 

Zaherpour et al. (2019) who investigated the application of Gene Expression Programming 

(GEP) as a non-linear MMC solution and compared it with the individual GHMs and their 

mean. The authors found that the non-linear multi-model combination has considerable 

performance gain when compared to the individual GHMs and their ensembled mean, further 

supporting the findings of this study.   

 

Despite the promising performance of RF-MMC approach, it underperforms when its 

generalization potential is tested on a different river basin. This method showed limitations 

when extrapolating to stations whose catchments were not in the training set, resulting in poor 

performance. However, because the RF-MMC model in this validation setup was trained only 

on the Rhine basin, the dataset may be weak in diversity, resulting in a limited representation 

of different catchment characteristics. This shortcoming can be addressed by increasing the 

dataset to encompass a diverse variety of catchments. As a result, the model may be able to 

capture overall discharge patterns across multiple catchments rather than focusing primarily on 

unique noise found in a single river basin.  

 
According to the findings, the MLR-MMC approach underperformed across all the validation 

setups when compared to the RF-MMC approach. This is likely due the violation of the 

collinearity assumption in the model. Multicollinearity in regression analysis decreases 
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prediction stability and raises coefficient standard errors, resulting in less accurate and 

unreliable forecasts (Chan et al., 2022). When all_stations and allpredictors setup are 

evaluated, the VIF results of the MLR model are alarming. The discharge factors have a VIF 

greater than 5, which is cause for worry according to Menard (2002). Furthermore, the VIF of 

the snow water equivalent variables from PCR-GLOBWB and WaterGAP3 are both greater 

than 70, indicating a significant collinearity issue. It is notable that collinearity evaluation was 

conducted after MLR model application, which is a limitation of the study because it should 

ideally precede model application. To adequately address the question of whether GHM 

outputs can be extrapolated using MLR, the issue of collinearity must be addressed. In the 

future, efforts could be made to investigate approaches such as ridge regression (Hoerl, 1962), 

to increase the stability and dependability of MLR predictions. Similarly, another possible area 

for investigation is to transform the features using Principal Component Analysis (PCA) as 

proposed by Lafi & Kaneene (1992) to mitigate the collinearity effect prior to testing MLR. 

 

Furthermore, when the RF-MMC was benchmarked against the hybrid method, 

PCR_allpredictors, developed by Magni et al. (2023), the RF-MMC had better KGE 

performance for predictions up to KGE of 0.87. This further demonstrates the potential of 

hybrid streamflow modelling using machine learning and multi-model combination approach.  

As an additional benchmark, we investigated whether incorporating catchment attributes from 

PCR-GLOBWB could enhance the generalization ability of the RF-MMC approach. We found 

that combining the outputs of global hydrological models with catchment attributes enhanced 

the ability of the model to generalize to a river basin that was not included in the training set. 

However, this is conditional on the inclusion of training datasets that have catchment 

characteristics similar to those of the validation dataset. Based on these findings, future 

research could consider incorporating HydroBASINS (Lehner & Grill, 2013), a global high-

resolution data set that offers detailed data about river basins and their characteristics, as a 

dataset to improve the framework with additional catchment attributes.  

 

The multiple-model combination strategy utilized in this study has some limitations. First, it 

only includes a subset of outputs from three GHMs, which does not represent the complete 

range of GHMs and their outputs. To enhance the approach, it is necessary to investigate the 

inclusion of additional variables such as groundwater storage and evapotranspiration. 

Expanding the scope of process-based GHMs and integrating a broader range of variables 

would improve the approach's predictive ability and generalizability. Secondly, the varying 

calibration status of the models had a direct effect on the predictive performance of each model. 

To accurately assess the variable importance and predictive ability induvial models, it is 

recommended that all models included in the analysis be calibrated or uncalibrated. Lastly, 

only one non-linear MMC approach (i.e., Random Forest (RF)) has been applied. It is important 

to investigate the effectiveness of other ML models such as XGBoost (T. Chen & Guestrin, 

2016) as MMC approach.  

 

In conclusion, this research showed the potential of generating accurate streamflow predictions 

when machine learning techniques, specifically RF is employed to combine outputs from 

different global hydrological models. We observed that the RF-MMC outperformed individual 

GHM for streamflow predictions. The strategy proposed was also compared to the established 

hybrid approach developed by (Magni et al., 2023) and showed better KGE performance for 

most of the predictions. Additionally, including catchment characteristics led to a better 

generalization of the RF-MMC approach. However, more research is needed to further improve 

the non-linear MMC approach for more reliable streamflow predictions.  
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Code availability  

The source codes used in this study can be found at this repository on GitHub.  

  

mailto:https://github.com/HassanAli99/ADS_Final_Thesis
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Appendix  
Appendix A:  RF hyperparameter tuning 

 

Figure A 1 shows the results of the RF hyperparameter tunning for all_stations 

setup  

Figure A 1: RF hyperparameter tuning. (a-c) Tuning of mtry, using a fixed ntree of 200. (d-f) Tuning of ntrees, using 

the optimal mtry calculated in the previous step. 
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Appendix B: Analysis of Correlation and Variable Inflation Factor (VIF)  

Figure B 1 mean correlation heatmap, Allpredictors 

Figure B 2 shows the VIF test results. The red bars reflect VIF values greater than 10, indicating 

strong multicollinearity, whereas the dotted line represents a VIF value greater than 5.  

Figure B 2 Mean VIF Allpredictors 
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Appendix C: MLR Coefficients 
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Appendix D: Results Multiple linear regression 

  

Figure D 1: Results MLR, Cumulative Distribution Function (CDF) of the KGE values. Panels A and B display the results of the All-

stations and Rhine_only setup, while Panels C and D show the results of Rhine-Maas and Rhine Elbe respectively. Each Figure has its own 

margin that corresponds to its minimum KGE value. 
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Appendix E: Comparison of RF-MMC approach with PCR-Allpredictors  

 

   

Figure E 1: Flow depth and discharge for the Kleinheubach station in Germany for MMC predictions 

(MMC_allpredictors) and benchmark model (PCR_allpredictors) 
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Appendix F: Generalization ability of RF-MMC approach with catchment attributes  

 

B) 

A) 

Figure F 1: Cumulative Distribution Function (CDF) of KGE values of RF-MMC (allpredictors) and the RF-MMC with 

catchment attributes from PCR-GLOBWB (allpredictors_catch). The bold lines show the predicted discharge of these two 

setups, and the dashed lines indicate the discharge of the individual GHMs. Pane A, B show the results of rhine_elbe and 

rhine_maas setup respectively. Each Figure has its own margin based on its minimum KGE value. 
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