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Abstract 
Small to medium-sized enterprises (SMS) are critical for the global economy, but face challenges in 

liquidity management due to limited access to external financing and market uncertainties. This 

study systematically evaluates the effectiveness of multilayer perceptrons and support vector 

regression models in predicting liquidity for SMEs. Through multiple experiments conducted on a 

dataset of 496 companies, the study reveals potential for both models, although they exhibit a large 

number of limitations and sensitivity to data quality and size. Notably, the MLP model demonstrates 

a closer alignment to target values compared to SVR. While the models are not suitable for practical 

use, the findings highlight the importance of refining both models to improve liquidity forecasting. 
This research contribute to more effective decision making processes, benefitting long-term success 

and sustainability of SMEs as contributors of the economy. 

1. Introduction 
Small to medium-sized businesses (SMEs) are to great importance for the global economy. In 

2021, about 22.8 million SMEs were active in the EU-27, these accounted to 99.8% of all enterprises 
in the non-financial business sector. These SMEs employ 64.4% in the NFBS and account to 51.8% of 
the added value. (European Commission, 2022) . It is impossible to overstate the significance of 
liquidity management for small to medium-sized businesses. Liquidity, as the foundation of financial 
stability, is essential to a company's ability to meet short-term obligations, maintain operational 
effectiveness, and invest in growth opportunities. A company that has enough liquidity can navigate 
through times of financial instability while avoiding the risks of insolvency, bankruptcy, and 
reputational harm. Since they frequently have limited access to external financing and are more 
vulnerable to market fluctuations and economic uncertainties, SMEs in particular face special 
challenges relating to liquidity management. 

For SMEs, effective liquidity management is integral to their long-term success and 
sustainability. It helps them avoid cash flow disruptions, which can adversely affect their ability to 
pay suppliers, employees, and other stakeholders. In addition, a sound liquidity position enables 
SMEs to capitalize on strategic investment opportunities, positioning them for future growth and 
competitiveness. Consequently, research focused on improving liquidity forecasting and management 
for SMEs is of paramount importance, as it can provide valuable insights and tools to help these 
businesses better manage their financial resources. The accounting liquidity, the ease with which an 
individual or company can meet their financial obligations with the liquid assets available to them 
(Fernando, 2023), is an important predictor for companies. As a decline in liquidity is predictive for 
a greater risk of bankruptcy is small and medium sized firms (Pompe & Bilderbeek, 2005). 

In this paper, we provide a systematic evaluation of liquidity forecasting models for SMEs. We 
test multilayer perceptrons (MLP), along with support vector regression (SVR) on their ability to 
predict financial data. Multiple experiments were conducted to examine how these models work on 
a dataset including 496 different companies. This study was done by conducting numerous 
experiments on the task.  

We found that the models show promise in predicting liquidity for SMEs, although they 
exhibit certain limitations and sensitivity to the quality and size of the data used. Our results show 
that both the SVR and the multilayer perceptron MLP face challenges when predicting larger values. 
It was observed that the choice of the model does not significantly affected their predictive 
performance across different sectors, but the variability in their performance across different 
financial codes suggests further research could explore this direction. Interestingly, the study found 
that the MLP model showed a closer alignment to the target value compared to the SVR. While the 
models are not ready for practical use, these findings suggest that MLP, with further refinement has 
potential for improved performance in liquidity position.  
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This study serves as a stepping stone towards the development of more refined predictive 
models for liquidity management in SMEs, ultimately contributing to more effective decision-making 
processes in these vital contributors to the economy. 

 

2. Related Work 
The study on liquidity forecasting has been evolving over time.  This has mainly been because 

of technological improvements. Early approaches mainly relied on financial ratios and simple 
statistical models to assess liquidity. As the market changed and new technologies emerged, 
researchers began to explore more sophisticated methods. Mramor and Valentincic (2003) proposed 
a model for forecasting the liquidity of very small private companies based on their financial 
statements and some key financial ratios, while Wisniewski (2008) developed a dynamic 
econometric model to assess the liquidity in small and medium enterprises. More recently, 
researchers have been examining the application of advanced machine learning techniques to 
liquidity forecasting. For instance, Wisniewski (2022) investigated the relationship between liquidity 
and debt recovery in small enterprises using an empirical system of interdependent equations.  

While studies that focus on small enterprises have applied more econometric appliances on 
liquidity forecasting, other fields of financial forecasting have also been applying techniques in the 
field of machine learning. Cao and Tay (2001) used support vector machines to forecast financial 
timeseries data and Mahfoud & Mani (1996) used genetic algorithms to forecast the stock market. 
Weytjens et al. (2019) compared multiple methods to predict cash flow. In the beginning more 
“classic” methods were examined. These methods are ARIMA (Ho & Xie, 1998), which is an 
autoregressive integrated moving average and Facebooks’ Prophet (Taylor & Letham, 2017), which 
tries to fit additive regression models, also known as ‘curve fitting’. Later on, multi-layered 
perceptrons and long short-term memory networks were used. These studies concluded that neural 
networks are more accurate for day-to-day cash flow prediction as compared to ARIMA and Prophet.  

 

3. Preliminary’s 
3.1. Support Vector Regression 
Support Vector Regression (SVR) is a regression technique that builds upon the principles of 

Support Vector Machines (SVM). SVR aims to map data to a high-dimensional feature space using a 
specific kernel function. It tries to find an optimal hyperplane that can predict continuous outputs 
rather than performing classification, as seen in SVM. The SVR tries to find this hyperplane in a 
higher-dimensional feature space. In this extended space, the SVR searches for a function, the 
hyperplane, that for most data points, will can deviate from the true output no more than threshold 
ε.  
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Figure 1 - Example of a SVR fitting a hyperplane in hyperdimensional feature space 

 
In the framework of ε-insensitivity, SVR uses a cost function that disregards error that fall 

within a certain distance from the real value (Smola and Scholkopf, 2004). This creates an e-
insensitive tube around the estimated function, within which no penalties are assigned for errors. 
Predictions outside this tube are penalized by the SVR, proportional to the extent of the deviation. 
These characteristics make the SVR’s reputation as “robust”, as it is less susceptible to outliers. 

During training the SVR, the following objective function and constraints are (Smola and 
Scholkopf, 2004): 

minimize  
1

2
∥ 𝑤 ∥2   

 

subject to  { 
𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ ε
⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ ε

 

 
Where 𝑥𝑖 is a training sample with target value 𝑦𝑖 . The prediction for the sample is the inner 

product plus intercept ⟨𝑤, 𝑥𝑖⟩ + 𝑏, and ε is the insensitivity parameter. This formula assumes that a 
function exists that approximates all pairs (𝑥𝑖, 𝑦𝑖) with ε precision. In other words, the assumption is 
that the problem is feasible. This may not be the case, and some errors may be wanted to be allowed. 
The C hyperparameter controls the trade-off between allowing training errors and forcing strict 
margins. A smaller C value creates a wider margin, which allows more violations of the margin. This 
may result in a simpler model, at the potential of a higher bias error. A larger value for C aims for a 
larger margin violation penalty, which corresponds to a narrower margin. Therefore, the model could 
be more complex, leading to higher variance error, but will be more accurate with respect to the 
training data. The C hyperparameter controls the slack variables 𝜉, 𝜉𝑖

∗ , which allow otherwise 
infeasible constraints of the optimization problem. With the C parameter added, we conclude the 
following formula stated in Cortes & Vapnik (1995): 

minimize   
1

2
∥ 𝑤 ∥2+ 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑙

𝑖=𝑖
 

 

subject to {

𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜖 + 𝜉𝑖

 ⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
∗

𝜉, 𝜉𝑖
∗ ≥ 0

 

The interplay between the C and ε parameters is a delicate balancing act. Together, these 
parameters define the width of the ε-insensitive tube and the severity of the penalties for violations 
of this tube. The ε parameter regulates the size of the ε-insensitive zone, within no penalty is given 
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for errors. By contrast, the C parameter controls the penalty for observations that fall outside this ε-
insensitive zone.  

The incorporation of different kernels in SVR provides flexibility. By enabling the model to 
manage both linear and non-linear data relationships, the SVR can fit a wide range of data. By 
selecting suitable kernel functions and adjusting the parameters, it’s feasible to model complex 
patterns and relationships in the data, which makes SVR a flexible and usable tool in machine 
learning, capable of tackling a broad range of regression problems (Cortes & Vapnik, 1995).  

3.2. Multi-layer Perceptron 
Multi-layer perceptrons are feedforward networks, which means that information in the 

network only flow in one direction. The network is organized in multiple layers, including an input 
layer, one or more hidden layers, and an output layer. Each layer consists of interconnected ‘nodes’, 
which simulate the neurons in the human brain. Every node produces an output by applying an non-
linear function to its inputs from the layer below. As all neural networks, MLPs are used to estimate 
the true, unknown function that explains the output vector y in function of the input vectors x 
(Goodfellow et al., 2016).  

 

Figure 2 - Example of a Multi-layer Perceptron with 4 input nodes, 4 hidden nodes and a single output node 

These networks are called neural because they are closely inspired to neuroscience. The 
dimensionality of the hidden layers determines the width of the model. Each element of the vector 
may be interpreted as resembling a neuron.  

Backpropagation is a fundamental algorithm in training neural networks, including MLPs. At 
its core, backpropagation is an application of the chain rule from calculus used to compute gradients 
efficiently. During the forward pass of network training, inputs are propagated through the network's 
layers to generate an output. This output is then compared with the expected output, and the 
difference forms a 'loss' or 'error.' Backpropagation comes into play in the backward pass, where this 
loss is propagated back through the network. Starting from the output layer and moving toward the 
input layer, the algorithm calculates the gradient of the loss function with respect to the network 
parameters (weights and biases). This gradient, also called the gradient descent, is calculated as 
followed (LeCun et al., 2015):  

Δ𝑤(𝑡) = −𝜖
𝑑𝐸

𝑑𝑤(𝑡)
+ 𝛼Δ𝑤(𝑡 − 1) 

In which Δ𝑤(𝑡) is the current gradient iteration, 𝜖 is the bias, 𝑑𝐸 is the error and 𝑑𝑤(𝑡) is the weight 

factor. The learning rate is depicted by 𝛼 and Δ𝑤(𝑡 − 1) is the weight of the previous iteration. 
These gradients indicate the direction in which the parameters should be adjusted to 

minimize the loss and improve the accuracy of the network. As the backpropagation is performed 
iteratively, the network's parameters are updated in each iteration, which allows the model to learn 
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complex patterns in the data over time. This iterative learning process is a key aspect of the 
supervised learning algorithms used in MLPs. 

Instead of a layer of only nodes, it is also possible to add dropout layers to a MLP. Dropout 
layers are a regularization technique used in neural networks to mitigate overfitting and improve 
generalization performance (Srivastava et al., 2014). The main idea is to randomly “drop out” a 
certain percentage of the nodes or units in a layer during training, preventing them from contributing 
to the forward pass and backpropagation. One of the key advantages of dropout layers is that there is 
no need for complex regularization technique or extensive hyperparameter tuning.  

 

4. Experiments 
In this section we will experimentally show which patterns can be found in predicting the 

liquidity of companies in the Netherlands. Proving the impact and precision of MLPs and LSTM in 
predicting liquidity predictions. 

 

 

Figure 3 - Number of Data Points for Each Year 

All experiments were conducted on financial data of Dutch SMEs. The timeframe of the 
dataset is from January 2016 to December 2022. The dataset consists all transactions within the 
timeframe. To make the task more manageable, all transactions were grouped in monthly sums. This 
also eases the prediction process, as otherwise the models would also need to predict the amount of 
transactions in a given month. After grouping 107863 rows of data remained, with each row 
resembling a financial month per reference classification (RCSFI code), per company (division). The 
dataset consists of financial data of 496 companies in the Netherlands. Outliers outside of the 97.5% 
quantile were left out  as most these months were deemed hard to predict, although there will be an 
experiment where outliers are kept in the dataset.. All data has been normalized with normal scaling 
to enhance the predictability of the models. The division and RCSFI codes are one-hot encoded to 
improve prediction. The models will be evaluated on their precision in predicting the net amount for 
each RCSFI code per division. Summarizing these amounts would result in the liquidity position for a 
company. Each experiment will be evaluated through the mean absolute error (MAE) and root-mean-
square error (RMSE). The mean absolute error is used to make the results easily interpretable and to 
not overly penalize outliers. The root mean-square error will be used to give a higher weight to 
outliers. To give a better overview of the performance of the models, both metrics are used. 
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Figure 4 - Timeline of values for a single division. Note that some RCSFI codes have little datapoints at this particular 
company as these RCSFI codes are not used frequently by the company 

4.1. Performance experiments 

4.1.1. Choosing models 
The models for all experiments were optimized on the dataset, of which all data before 2022-

01-01 has been made the training set and data after is the test data. For building the MLP, an 
exploratory research method was applied. Multiple experiments with different complexities were 
conducted before determining the most effective one. The most optimal model was determined by 
the lowest RMSE, while keeping the model as small as possible to prevent overfitting. For this reason, 
dropout layers are also introduced.  As result, the model that was used had an input layer of 1000, 
two hidden layers with 800 and 500 nodes and a output layer of a single value. A dropout of 10% was 
applied after every layer. The model was trained using TensorFlow’s’ RMSProp with a learning rate 
of 0,001. 

The hyperparameters for the SVR were found using a grid search over the hyperparameters 
using a linear kernel. Non-linear kernels such as radial basis function (RBF) and polynomial were 
deemed to computationally expensive, slowing down the process. Therefore, a linear kernel was used 
to train the model in a reasonable timeframe e. Using grid search, in which the trained model was 
compared to test data. In the end, the hyperparameters were set on C = 0.1, ε = 0.1 and 10000 
maximum iterations. 

4.1.2. Assessing the impact of window size on accuracy 
In this experiment, the point of the train-test split is gradually changed, such that the train set 

involves more data, and the test set is at a later timepoint. The object is to see how the model performs 
over time. The model stability can be observed, by seeing whether the performance deteriorates, 
stabilizes, or improves, also the robustness and predictive power can be observed. With this analysis, 
we may also see how the model handles temporal dynamics, as the model must deal with new trends 
and data. 
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Experiment Train-test split 

2.1 2017-01-01 

2.2 2018-01-01 

2.3 2019-01-01 

2.4 2020-01-01 

2.5 2021-01-01 

2.6 2022-01-01 
Table 1 - Train-test splits for different experiments 

For each experiment, the training set spans from the beginning of the dataset, which is January 2016, 
up to the point where the train-test split is made. Subsequently, the test set is a full year for each 
individual experiment.  

Figure 5 illustrates a decline in error for the MLP as the time-test split is pushed back, notably 
after the transition from experiment 2.1 to 2.2. This could be attributed to the model’s complexity, 
which require larger quantities of training data for more accurate predictions. The continuous 
improvement observed across all experiments suggest that both models are generalizing effectively 
and that the predictive power enhances over time. On the other hand, the SVR shows no signs of 
improving and stays on the same level throughout all experiments. Interestingly, the MLP model 
starts of performing worse compared to the SVR, but performs better when the dataset includes more 
data.  

4.1.3. Testing the consistency and temporal dependence 
In the sliding window analysis, a ‘window’ of consecutive data points is defined, which 

predicts the next points. This continually trains on a new set and predicts the subsequent points. This 
process continues over the whole data range. The sliding window analysis is conducted to assess the 
temporal dependence of the model, the robustness and generalization capability. 

 Figure 5 - Results for experiments 2.1 to 2.6 
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Experiment Train year Test year 
3.1 2016 2017 
3.2 2017 2018 

3.3 2018 2019 
3.4 2019 2020 
3.5 2020 2021 
3.6 2021 2022 

Table 2 - Distribution for the train and test data 

For each experiment, both the training set as the test set consist of data for one year, with the 
test set being the consecutive year of the training set.  

 
Figure 6 – Results for experiments 3.1 to 3.6 

In Figure 6 is visible that the error moves around a little bit for the MLP and stays the same 
for the SVR. The fluctuating error for the could be attributed to the amount of data points, as it looks 
to resemble the plot in Figure 3. This observation suggests that the MLP, given its complexity, may 
require a larger quantity of data points to perform optimally. This theory is also supported by higher 
error rate compared to the experiments in section 2, which indicate that the model might have too 
little data to its structure. Nonetheless, the small fluctuations for the MLP implies that the model 
remains reasonably robust. On the other hand, the SVR consistently reaches the same error for all 
experiments. This consistency could be interpreted as a sign of the model’s stability and reliability.  

Despite the stability for both models, the error rate is quite high across all experiments. This 
suggests that while the model is stable, it may not be as efficient or accurate as required. The models 
may struggle to capture the underlying patterns, or the models may not be the best given the 
complexity and characteristics of the dataset. 

4.1.4. Assessing impact of data volume on robustness 
In this experiment the number of divisions in the data will be decreased to examine how the 

model handles a diminishing availability of data. Observing the results of this may provide valuable 
insight in the efficiency and scalability of the model. If the model continues to perform reasonably 
well with reduced data, it may indicate a high level of robustness and the potential to deliver useful 
insights even in data-scarce situations. Decreasing the data size may also help identifying at which 
point the models begin to significantly lose predictive accuracy, which can help at better 
understanding the minimum data requirements for the model.  
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The data was reduced through randomly sampling divisions from the dataset. In experiment 
4.1 the full dataset is utilized, without exclusions. For experiment 4.2 half of the divisions are 
randomly selected and omitted, reducing the dataset to 50% of its original size. Finally, in experiment 
4.3 the dataset is reduced by randomly excluding 75% of the divisions. 

In the experiments, it has been observed that a substantial reduction in data leads to an 
increase in both MAE and RMSE. This suggests that the predictive performance of the models under 
study ss significantly influenced by the size of the input data. Due to the learning capability of MLP 
being strongly influenced by the richness of data, a reduced dataset may not adequately represent 
the diversity of the input space. Thus, the network may fail to learn and generalize effectively. In the 
case of SVR, the reduced dataset may not provide the sufficient variability and density required to 
define a optimal hyperplane, causing the model to underfit.   

4.1.5. Testing impact of external datasets on model performance 
To examine whether the performance of the models can be improved by adding external data 

to the datasets. As external information might impact the performance of companies, both a dataset 
with consumer confidence (experiment 5.1) and one with the customer price index (experiment 5.2) 
are tested. Both datasets are gathered from the website of the Dutch Central Agency for Statistics 
(CBS). The datasets are joined to the original dataset on the transaction date.  

The external datasets did not appear to contribute to the predictive accuracy of the models. 
This lack of improvement could come from several factors, such as irrelevance of the added variables 
to the target output, or the external data not being complimentary to the original dataset. This does 
not necessarily mean that adding external dataset does not have impact, it might be that these 
external datasets, in combination with added variables from within the company might have more 
impact. The results are visible in appendix. 

4.1.6. Testing resilience to outlier data 
In the data preparation for all experiments, outliers that were beyond the 95th percentile were 

excluded to preserve data homogeneity and potentially enhance the performance of both the SVR and 
MLP. This decision was primarily driven by the concern that the presence of extreme values might 
distort the learning process, skewing the generalizability and reliability of the models. To examine 
the robustness of the models in real-world scenarios, where outliers often exist, we reintroduce these 
data point into the analysis and evaluate the impact on the model. 
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Model MAE RMSE 
MLP 1382 2525 
MLP + outliers 6657 35125 
SVR 1678 2939 
SVR + outliers 7972 56584 

Table 3 - Results for experiment 6, with and without outliers 

The introduction of outliers back into the dataset has resulted in extreme increase in both 
MAE and RMSE, with RMSE experiencing an even more pronounced escalation. This suggests a 
significant deterioration in the model’s performance when dealing with more irregular and complex 
data including outliers. The increase could be due to the model trying to adjust its predictive 
parameters to accommodate extreme values and thus overfitting. The more dramatic increase in 
RMSE is of even greater concern, as the RMSE places more weight on larger errors by squaring the 
individual prediction errors before averaging. Therefore, a large increase in RMSE suggests that the 
outliers are causing even more substantial errors. The results underline the sensitivity of both 
models. It may be beneficial to explore techniques that are more resilient to outliers or apply a more 
advanced outlier detection mechanism.  

4.1.7. Robustness against noise 
This section further investigates the robustness and resilience of the models. Additional 

experimental process involving the addition of Gaussian mixture noise to the dataset. Gaussian 
Mixture Models (GMMs) represent a probabilistic model that assumes all data points are generated 
from a mixture of finite number of Gaussian distributions. By adding noise generated from GMMs, we 
aim to examine the stability and performance of our models under circumstances of increased 
uncertainty and variability. 

Experiment Noise 

default 0 

7.1 0,01 
7.2 0,1 

7.3 1 

7.4 10 
Table 4 - Division for experiments in 7 

The noise addition serves to simulate real-world scenarios where data may be contaminated 
with various type of noise and disturbances, and to assess how well the models can handle such 
conditions. The underlying hypothesis is that a robust model should be able to maintain a reasonable 
performance level, even in the presence of such noise.  

 



12 
 

It is observed that the error metrics increase significantly with each subsequent experiment, 
indicating a degradation in the model performance. As much as that the increase in errors 
necessitated the use of a logarithmic scale on the plot for a clearer visualization of results. This trend 
underscores a substantial decrease in the model’s prediction accuracy as the level of noise increases. 
It suggests that that while the SVR and MLP may handle a certain degree of noise, their performance 
deteriorates as the noise level becomes more extreme. These findings provide valuable insights into 
the sensitivity of noise, which can be crucial in future model selection and the development of 
strategies for noise handling in real-world applications. 

 

4.2. Practical Application 
Following the extensive evaluation of the SVR and MLP under various experimental 

conditions, the next step involves the exploration of their potential practical applications. As the goal 
of forecasting is not merely attaining a high accuracy on a given dataset, but the successful 
implementation of these models in real-world scenarios to solve practical problems. The 
performance, robustness, and resilience of the SVR and MLP models have been assessed in relation 
to varying data volumes, outlier presence, addition of external dataset and Gaussian noise. While 
these experiments have provided valuable insights into the characteristics of and limitations of the 
models, there is still room to examine their usability in real-world scenarios. All of these statistics are 
based on the results of the default model, which has its train-test split on January 1st 2022.  

4.2.1. Sector-specific analysis 
At first the results for companies will be divided per sector, to see if some sectors can benefit 

more from using the models than others. The characteristics of the financial landscape for each sector 
can be quite different. Factors as market trends, regulatory environment and sector volatility can 
influence financial data differently, leading to unique data patterns within each sector. By conducting 
analysis that respects these specific dynamics, we can better assess the performance and suitability 
of the models for real-world scenarios. 

Figure 7 - Results for experiment 7 on a logarithmic scale 
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Figure 8 - Errors scores across sectors using the baseline model. Note that sectors have varying data occurrences. Excluding 
sector L, E and T due to insufficient data occurrences. 

As illustrated in Figure 8, the error scores marked variations across different sectors. This 
heterogeneity can potentially be attributed to the different financial characteristics inherent to each 
sector. For instance, some sectors may have exhibited a more predictable trajectory throughout the 
financial year than others. Other sectors may have more substantial fluctuations, anomalies, or 
unique patterns. However, does not fully reconcile with the observed discrepancy between the MAE 
and RMSE. Under the assumption that sectors with more extreme values would contribute to more 
extreme errors in the RMSE compared to the MAE.  Yet, this expected pattern is not conclusively 
evident in the results. 

It is also visible that there are almost no differences between the MLP and SVR when 
comparing both with each other. The difference between error margins is the same for all sectors. 
This suggests that there are no sectors which may be more beneficial to one model than the other.  

4.2.2. RCSFI analysis 
In this part, the error metrics for each RCSFI code individually will be examined. Since 

different RCSFI code may have distinct underlying characteristics, understanding the distribution of 
errors across these codes can provide valuable inside. For instance, one RCSFI code may yield higher 
errors compared to others, indicating potential issues or challenges associated with that particular 
code. By focusing on understanding these factors contributing to the errors, it becomes possible to 
develop targeted strategies or interventions to address those specific challenges and improve the 
accuracy of predictions.   
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Figure 9 - Error scores across different RCSFI classifications. Excluding WBel due to insufficient data occurrences 

The results in Figure 9 show that there is a big discrepancy in the error scores for different 
RCSFI codes. RCSFI codes like Wafs, WFbe and WRed perform exceptionally well as compared to other 
codes. It is not exceptional then that these codes are respectably amortizations, financial incomes and 
expenses and shares. These are all codes that resemble a very stable source of income and outcome. 
The values for these predictions will not fluctuate as much as other RCSFI codes, such as WOmz, which 
relates to the net sales, but also WKpr, which is the cost of sales. Both codes are more prone to 
substantial variations in amounts, making them more challenging to predict.  Both models are not 
able to correctly predict these amount with the current information. There may be more data, such 
as indicators for predicting sales, needed to correctly predict the values corresponding to these codes. 

Overall, the results reinforce the understanding that certain RCSFI codes, such as 
amortizations, financial incomes and expenses, and share, have more consistent and predictable 
patterns, resulting in lower error rates. In contrast, codes like net sales and cost of sales are more 
susceptible to significant fluctuations which opens challenges for precise predictions.  

This analysis underscores the importance of considering the inherit characteristics and 
volatility of each RCSFI code when evaluating the performance of predictive models. By recognizing 
these distinctions, further steps can be taken to improving the accuracy of predictions for codes that 
are prone to larger fluctuations.  

4.2.3. Prediction quality 
In this subsection, the focus is to compare the predicted verses actual values for both SVR and 

MLP. The predicted vs. actual plot, is a commonly used graphical representation for assessing the 
performance of predictive models. By plotting predicted values against the actual ones, we can 
visually inspect the extent to which the model’s predictions align with the reality.  

In an ideal scenario, the scatter plot would show a homogeneous distribution along the 
diagonal line, without a noticeable pattern. This would indicate an accurate prediction irrespective of 
the actual output value. However, patterns in the residual or systemic deviations from the diagonal 
line would signal issues. Systemic deviations from the diagonal line might imply a model bias, where 
the model consistently underpredicts or overpredicts the target variable. By analysing these plots, we 
aim to obtain qualitative insights about the behaviour of the models and identify any specific areas of 
strength and weakness. These insights will further enrich our understanding of these models’ 
performance and may contribute to more informed decision-making in future studies and appliances 
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Figure 10 - Predicted vs. Actual plot for the SVR 

As depicted in Figure 10, the predictive performance for the SVR exhibits certain limitations. 
It appears that the model struggles to predict values out of a specific range, leading to a narrow band 
of predictions primarily in the positive value range. Altough, this band widens for negative values, it 
remains relatively constrained. Furthermore, a siginificant portion of predicted values deviate 
considerably from the optimal red diagonal line, resulting in a plot that does not hold any 
resemblence to the expected optimal line. This discrepancy coulg potentially be attributed to the use 
of a linear kernal. Due to linear kernels assuming a linear relationship between the input features and 
the target variable, it might not capture the inherent non-linear patterns present in the dat. As a 
result, the model’s ability to accurately predict values beyond the target range is limited. To improve 
this predictive performance, it may be worth to consider using a different kernel, such as RBF. These 
kernels are more capable of capturing complex relationships between the features and the target 
variable.  

 

 

Figure 11 - Predicted vs. Actual plot for the MLP 

In comparison to the results obtained from the SVR, Figure 11 shows more resemblance of 
the target line. While the model still faces challenges in accurately predicting larger positive values, 
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there is a wider band of positive value predictions compared to the SVR model. Although the results 
still do not meet the requirements for practical use, the increased similarity to the target line suggests 
improved performance of this model. This is further supported by most error scores, which indicate 
better predictive accuracy. Despite remaining gaps between the predicted values and the target line, 
the closer alignment indicates that this model captures more of the underlying patterns in the data. 
However, further enhancements may still be needed to achieve a sufficient level of prediction. 
Exploring different model architectures, such as more complex neural networks or ensemble 
methods, could potentially lead to better results.  

 

 
Figure 12 - Density plot for the actual values and predicted values by the MLP and SVR 

Our findings earlier are also supported by the density plot in Figure 12Fout! 
Verwijzingsbron niet gevonden.. In this plot is visible that for the values around 0, both models are 
able to grasp how the actual data behaves, but around that the models predict different values. 
Especially the pronounced clusters around the negative values suggest that both models tend to 
predict considerably different values compared to the actual ones within these regions of output 
space. This observed behaviour implies that while the SVR and MLP models demonstrate satisfactory 
performance for values around 0, they may struggle to accurately predict values outside this range.  

5. Discussion 
The experimental analysis conducted on both models provide valuable insights into their 

performance and applicability in predicting cash flow and liquidity position.  
In the experiments section, we found that both models do not work well enough to be applied 

by accountants in a real world scenario. In respect to this, the MLP performs better over a number of 
tasks when comparing it to the SVR with the MLP performing better over a number of tasks when 
compared to the SVR.  Both models were found to be sensitive to the size and quality of the data. This 
suggests that both models are reliant on robust, clean and representative datasets to ensure optimal 
performance. Similarly, the reintroduction of outliers and noise significantly increased the error 
metrics, pointing to difficulties to maintaining predictive accuracy under these conditions. 

Additionally, the predicted vs. actual plots revealed that while MLP managed to capture more 
of the underlying patters than the SVR, which did not hold much resemblance to the target data. Both 
models struggled with accurate predictions for larger values, especially in the positive range. This 
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suggests a limitation in their ability to effectively manage the complexities of financial data and 
indicates a potential area for further exploration. 

Interestingly, the performances of the two models were not significantly different across 
various sectors. This suggests that the decision to utilize one model over another should not 
influenced by the sector under investigation. However, variations in model performance across 
different RCSFI codes indicate that the specific financial aspects being predicted should influence 
model selection. 

Despite the limitations observed, our findings offer a substantive contribution to the existing 
body of knowledge on machine learning applications in liquidity forecasting. The sensitivity of both 
SVR and MLP models to size and quality of data underscores the importance of comprehensive data 
management practices in machine learning projects. Data preprocessing techniques, such as outlier 
and noise handling must be implemented to enhance model performance. 

The potential for further refinement and explorations is evident from the experiments, as 
performance lacks to ensure real-world usability. Future work could consider using a SVR with a 
different kernel, such as RBF, which can capture more complex relationships between variables. For 
MLP, experimenting with more complex architectures may yield better performance. 

Although the inclusion of external datasets did not lead to improvement in present study, it 
should not deter future research into adding more predictors. The inclusion of extra internal data 
would be recommended for future investigation, as this might better help in predicting future course 
of a company as opposed to the external data added earlier.  

6. Conclusion 
While the present study has contributed to a deeper understanding of the capabilities and 

constraints of SVR and MLP models in predicting financial prediction in Dutch SMEs, it is not 
recommended to apply the current model to real-world scenarios. As the findings have demonstrated 
that both the SVR and MLP models possess significant sensitivity to the size and quality of the data 
used. Our findings also highlight that a sufficient volume of data is crucial for achieving optimal model 
performance. Furthermore, our study illuminated the models’ limitations in handling complexities of 
financial data. Especially with values that deviated further from most predictions. This is also 
supported by the larger error scores for RCSFI codes that show bigger variation in the amount of 
money that gets handled, like the WOmz code for net sales. This variability suggests that the specific 
financial aspects being predicted can influence the choice of the model, this requires further 
investigation.  

In summary, while this research has provided valuable insights into the predictive capacities 
of SVR and MLP models in the context of predicting liquidity position. It is important to note that the 
selection and application of machine learning models should be guided by the unique requirements 
of the task and data at hand. By building on the findings on this study, we can continue to advance our 
understanding of machine learning applications in financial prediction, and develop more refined 
predictive models. 
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I. Appendix I 
This part of the appendix includes all test results from the Performance Experiments section in 4.1. 

The results include the test results of both the MLP and SVR. The first error scores are the error 

scores on the normalized dataset, the second pair of error scores are transformed back to normal 

values. 

Experiment 2: 
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Experiment 2.1: Train the model with data from Jan. 2016 until Dec. 2016 and test with data from 

Jan. 2017 until Dec. 2017 

MLP: 

MAE: 0.4261371312309283 

RMSE: 1.5669248707308419 

MAE: 1931.9658480803876 

RMSE: 3304.75239364593 

 

SVR: 

MAE: 0.37764570633949696 

RMSE: 0.6525514493716149 

MAE: 1712.1216008201568 

RMSE: 2958.4539513107998 

 

Experiment 2.2: Train the model with data from Jan. 2016 until Dec. 2017 and test with data from 

Jan. 2018 until Dec. 2018 

MLP: 

MAE: 0.34896906749978635 

RMSE: 1.1906280521306645 

MAE: 1583.820661986129 

RMSE: 2729.6179261016846 

 

SVR: 

MAE: 0.3716744203709538 

RMSE: 0.6376755579486715 

MAE: 1686.8705098343223 

RMSE: 2894.1353899796786 

 

Experiment 2.3: Train the model with data from Jan. 2016 until Dec. 2018 and test with data from 

Jan. 2019 until Dec. 2019 

MLP: 

MAE: 0.31324259202880633 

RMSE: 1.3081016886859567 

MAE: 1417.0317679459545 

RMSE: 2476.055596268678 

 

SVR: 

MAE: 0.37366744152900094 

RMSE: 0.6542566111834799 

MAE: 1690.3787991934228 

RMSE: 2959.6945889941962 

 

 

Experiment 2.4: Train the model with data from Jan. 2016 until Dec. 2019 and test with data from 

Jan. 2020 until Dec. 2020 

MLP: 

MAE: 0.312128323038391 

RMSE: 1.388591753980912 
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MAE: 1410.12309498697 

RMSE: 2608.6769098116342 

 

SVR: 

MAE: 0.3646159895057975 

RMSE: 0.6420233272008189 

MAE: 1647.2501658893584 

RMSE: 2900.5119431811727 

 

Experiment 2.5: Train the model with data from Jan. 2016 until Dec. 2020 and test with data from 

Jan. 2021 until Dec. 2021 

MLP: 

MAE: 0.30307166078463227 

RMSE: 1.29119268079975 

MAE: 1358.670474605443 

RMSE: 2436.434423834808 

 

SVR: 

MAE: 0.371015000114837 

RMSE: 0.6514271978305008 

MAE: 1663.2605238505494 

RMSE: 2920.3486165753143 

 

Experiment 2.6: Train the model with data from Jan. 2016 until Dec. 2021 and test with data from 

Jan. 2022 until Dec. 2022 

MLP: 

MAE: 0.3153261273252727 

RMSE: 1.3050354793526038 

MAE: 1412.1913509656033 

RMSE: 2549.9648113607363 

 

SVR: 

MAE: 0.37488476347848304 

RMSE: 0.656363578634987 

MAE: 1678.9253285882999 

RMSE: 2939.5311420715766 

 

Experiment 3: 

Experiment 3.1: Train the model with data from Jan. 2016 until Dec. 2016 and test with data from 

Jan. 2017 until Dec. 2017.  

MLP: 

MAE: 0.332895640643987 

RMSE: 1.247669320434794 

MAE: 1509.2394991402027 

RMSE: 2669.5962996508747 

 

SVR: 

MAE: 0.3776300956738865 

RMSE: 0.6525677847310537 
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MAE: 1712.0508271893534 

RMSE: 2958.528010465406 

 

Experiment 3.2: Train the model with data from Jan. 2017 until Dec. 2017 and test with data from 

Jan. 2018 until Dec. 2018. 

MLP: 

MAE: 0.3685140025444335 

RMSE: 1.1707813946073924 

MAE: 1673.8913097050174 

RMSE: 2895.6511962368913 

 

SVR: 

MAE: 0.3698783227125679 

RMSE: 0.6377124257140993 

MAE: 1680.0884122094715 

RMSE: 2896.6640945780587 

 

Experiment 3.3: Train the model on data from Jan. 2018 until Dec. 2018 and test with data from Jan. 

2019 until Dec. 2019.  

MLP: 

MAE: 0.30565069801774786 

RMSE: 1.2862451635326102 

MAE: 1376.284098314289 

RMSE: 2551.612831190164 

 

SVR: 

MAE: 0.3719927516657564 

RMSE: 0.6582817191650068 

MAE: 1675.0091335098664 

RMSE: 2964.111228206668 

 

Experiment 3.4: Train the model on data from Jan. 2019 until Dec. 2019 and test with data from Jan. 

2020 until Dec. 2020. 

MLP: 

MAE: 0.28083866303122257 

RMSE: 1.219699173268476 

MAE: 1265.1413147143908 

RMSE: 2436.4645164852222 

 

SVR: 

MAE: 0.3625556037104745 

RMSE: 0.6446240640450516 

MAE: 1633.2654076676858 

RMSE: 2903.9467987252738 

 

Experiment 3.5: Train the model on data from Jan. 2020 until Dec. 2020 and test with data from Jan. 

2021 until Dec. 2021. 

MLP: 

MAE: 0.32192027282162994 
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RMSE: 1.4037233569313752 

MAE: 1408.7750481764715 

RMSE: 2449.747122008863 

 

SVR: 

MAE: 0.3770686208324786 

RMSE: 0.6707253595388329 

MAE: 1650.1131219543822 

RMSE: 2935.202389843805 

 

 

 

Experiment 3.6: Train the model on data from Jan. 2021 until Dec. 2021and test with data from Jan. 

2022 until Dec. 2022. 

 

MLP: 

MAE: 0.3115044011088801 

RMSE: 1.2970320315145056 

MAE: 1389.2636832881535 

RMSE: 2549.3323177710977 

 

SVR: 

MAE: 0.3724641962972156 

RMSE: 0.6580858231631739 

MAE: 1661.1353865044707 

RMSE: 2934.9657204123696 

 

Experiment 4:  

Experiment 4.1: Decrease the number of divisions with 50% 

MLP: 

MAE: 0.17892276859256087 

RMSE: 0.38543577954279507 

MAE: 801.8303629306724 

RMSE: 1727.3045438645695 

 

SVR: 

MAE: 0.2703112237771535 

RMSE: 1.048672700989415 

MAE: 1211.3815812783469 

RMSE: 2391.419293227503 

 

Experiment 4.2: Decrease the number of divisions with 75% 

MLP: 

MAE: 0.25553055510703765 

RMSE: 0.5095596525570809 

MAE: 1138.170982278992 

RMSE: 2269.6542476806662 
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SVR: 

MAE: 0.31652614637148596 

RMSE: 1.15809788463156 

MAE: 1409.8543927879955 

RMSE: 2662.480189054445 

 

Experiment 5: 

Experiment 5.1: Adding the consumer confidence dataset.  

MLP: 

MAE: 0.31227519413397636 

RMSE: 0.5792622028582972 

MAE: 1398.5277162263903 

RMSE: 2594.231822167411 

 

SVR: 

MAE: 0.3749076590712107 

RMSE: 1.2509457418028274 

MAE: 1679.0278667394557 

RMSE: 2939.635254754767 

 

Experiment 5.2: Adding the CPI dataset.  

MLP: 

MAE: 0.3113486441149564 

RMSE: 0.5649565158725685 

MAE: 1394.3781518353105 

RMSE: 2530.1636488039667 

 

SVR: 

MAE: 0.37494136011433205 

RMSE: 1.2508923085458525 

MAE: 1679.1787972130533 

RMSE: 2939.800145899893 

 

Experiment 6 

Experiment 6.1: Adding the existing outliers to the data.  

MLP: 

MAE: 0.10668778424861194 

RMSE: 0.5628795891373318 

MAE: 6657.720355462023 

RMSE: 35125.81063008761 

 

SVR: 

MAE: 0.12775012374272068 

RMSE: 0.9202554497972566 

MAE: 7972.089837448926 

RMSE: 56584.0568284587 

 

Experiment 7: 
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Experiment 7.1: Adding Gaussian noise to test and training data (standard deviation = 0.01)  

MLP: 

MAE: 0.3064581062340936 

RMSE: 1.322533529332814 

MAE: 1372.4758259011858 

RMSE: 2505.589008580252 

 

SVR: 

MAE: 0.37546735768297596 

RMSE: 0.6560515619380072 

MAE: 1681.534482817818 

RMSE: 2938.1337720354054 

 

Experiment 7.2: Adding Gaussian noise to test and training data (standard deviation = 0.1)  

MLP: 

MAE: 0.33139964903858393 

RMSE: 1.3977950209640406 

MAE: 1484.1767874805262 

RMSE: 2529.8952004472553 

 

SVR: 

MAE: 0.39703264519980447 

RMSE: 0.6594425280645599 

MAE: 1778.114848192872 

RMSE: 2953.320249248906 

conf 

Experiment 7.3: Adding Gaussian noise to test and training data (standard deviation = 1)  

MLP: 

MAE: 0.9122532098539292 

RMSE: 1.637575959942448 

MAE: 4085.535526990174 

RMSE: 5187.794237160231 

 

SVR: 

MAE: 0.9349895654252746 

RMSE: 1.1870752599707721 

MAE: 4187.360533921406 

RMSE: 5316.328949762349 

 

Experiment 7.4: Adding Gaussian noise to test and training data (standard deviation = 10) 

MLP: 

MAE: 11.270403150721926 

RMSE: 14.162616394301208 

MAE: 50474.61821998911 

RMSE: 63332.40887175743 

 

SVR: 
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MAE: 11.264887358167114 

RMSE: 14.132072343332684 

MAE: 50449.91568564092 

RMSE: 63290.63358699366 

 

II. Appendix II 

 

Figure 13 - The plot for section 4.1.5 in which external datasets were added to assess model performance. Experiment 5.1 
added the consumer index, 5.2 added the customer confidence interval 

 

 

Figure 14 - The plotted results for section 4.1.6 in which outliers got added back into the dataset to assess the model resilience 
to outliers. 
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Figure 15 - Barplot to visualize the number of occurrences for each sector in the test dataset for the baseline model 

 

Figure 16 - Barplot to visualize the number of occurrences for each RCSFI code in the test dataset 


