
1

Enhancing Relational Event History Data Analysis: Multiple Imputation for Missing

Values handling in Social Network Research

Jesse J. van der Wensch (5453062)

Mahdi Shafiee Kamalabad

Gerko Vink

Master Applied Data Science, Utrecht University

July 7, 2023

2

Abstract

Missing data can have significant effects on reliability of results and lead to incorrect

conclusions. This study examines the effectiveness of multiple imputation in relational event

history data. The study compares the estimates of a relational event model of the complete data

with a 100 simulations where missing data was generated using the assumption that the data is

missing completely at random (MCAR). It was found that, overall, the imputation method gave

accurate estimates. However, the significance of the estimations changed from being not

significant to significant. This change in significance should be taken into consideration when

interpreting results after imputation.

Keywords: Relational event history, REH, relational event model, REM, missing values,

multiple imputation

3

1. Introduction 4
1.1 Missing data mechanisms 4
1.2 Social networks 5
1.3 Relational event history 6
1.4 Relational event models 7

2. Data 9
3. Methods 10

3.1 Missing data imputation 10
3.2 Missing data generation 12
3.3 Imputation 13
3.4 Analysis 14

4. Results and discussion 15
5. Conclusion 17
References 19
Appendix 22

4

1. Introduction

Researchers often encounter the problem of missing data, which can have a significant impact on

the reliability of results and lead to incorrect conclusions (Little & Rubin, 2019). A simple

approach to handling missing data is to conduct a complete case analysis, which involves

ignoring the missing data. However, this approach may often lead to bias under certain

conditions (Schafer & Graham, 2002). To address this issue, multiple imputation (MI) is

commonly used. MI is a method of imputation that estimates parameters to impute a value of the

missing data and takes uncertainty in regard by imputing a value multiple times (Schafer &

Graham, 2002). However, like all imputation methods, MI has its own limitations which should

be taken into account. For example, the appropriate model to impute missing values should be

selected. Selecting the wrong model can lead to invalid estimates of the parameters (Nguyen et

al. 2017). Therefore, it is important to evaluate the performance of MI and other methods in

different contexts to assess their robustness. One area that has received limited attention is how

missing data affects social network analysis and the strategies to handle missing data in social

networks (Huisman, 2009). The lack of studies on this subject leaves a gap in our understanding

of the effects of missing data on social networks as it can have significant implications. This

paper focuses on missing values in social networks.

1.1 Missing data mechanisms

An important question to ask when handling missing data is why the data is missing.

Rubin (1976) describes three different types of missing data known as, missing at random

(MAR), missing completely at random (MCAR) and missing not at random (MNAR). When the

5

data is missing purely by chance and the probability of missing is the same for all cases then it is

said to be MCAR.

Pr(R = 0| Yobs,Ymis,ψ) = Pr(R = 0|ψ)

If the probability of missing depends on an external factor that is known to the researcher

then it is MAR since the researcher knows why it is missing. An example of MAR is when older

people are less likely to complete a survey than younger people. Here age is a variable that

increases the probability of missingness.

Pr(R = 0| Yobs,Ymis,ψ) = Pr(R = 0| Yobs,ψ)

We speak of MNAR when neither MAR or MCAR holds. This means that there is some

unobserved variable that influences the probability of missingness. For example a weighing scale

might wear out over time which leads to more missing data after long use (van Buuren, 2018).

Pr(R = 0| Yobs, Ymis, ψ)

1.2 Social networks

A social network is a network that consists of nodes and edges with nodes that can

represent anything that can have a connection and edges, which represent a relation between the

two nodes. The relation can be anything from being close friends to a fleeting conversation, a

link to a different webpage or any type of connection (Newman, 2018). Figure 1 is a visual

representation of a social network.

6

Figure 1. A network friendship network between members of a club. Every circle represents a

member of the club and the line represents the connection between members.

Note. From Networks, by M. F. Newman, 2018, Oxford University Press eBooks.

Analysing these networks can tell us something about the dynamics of those networks

and see what people are important, what roles they play, what groups are highly interconnected

and how things like diseases or rumours spread through a network (Golbeck, 2013). There are

numerous ways you can apply network analysis such as, preventing a disease from spreading any

further or you can approach people with the most influence within a network to spread a message

quickly.

1.3 Relational event history

Relational event history is a type of network data. Relational event history data is a

sequence of interactions over time between two individuals in the network (Meijerink-Bosman et

al., 2022). The data contains a column of who is at the sending side of the interaction, who is at

7

the receiving end and at what time the interaction occurred. Each row in Table 1 represents a

relational event which is defined as a “discrete event generated by a social actor (the sender)

towards one or more targets (the receiver)” (Butts, 2008). Essentially representing an interaction

between two individuals at a specific moment. For example, sending a message or liking a post.

Table 1. Relational event history data.

time sender receiver

10:30 Jesse Myriam

10:32 Myriam Jesse

10:34 Jesse Myriam

10:38 Myriam Jesse

1.4 Relational event models

A well established model for analysing relational event history data is the relational event

model (REM). The REM can predict what event might occur at a certain time in the future. The

REH serves as the basis for modelling the probability of the next relational event occurring in the

sequence. The probability of who will interact at a certain time is determined by the event rate λ.

𝑙𝑜𝑔 λ = 𝑥1 * β1 + 𝑥2 * β2 ...

To calculate the event rate, a risk set of N(N-1) events is constructed. A risk set is a set of

all possible interactions at time t. Predicting the probability of the subsequent events is

influenced by both exogenous and endogenous predictors. Exogenous predictors are variables

that provide additional contextual information about the events such as age, gender or personality

8

(Meijering-Bosman et al., 2023). On the other hand, Endogenous predictors summarise

information about the network up to a specific point in time. One example of an endogenous

predictor is reciprocity, which is the tendency of a person in the network to initiate the event

towards a person given the number of past events with the same person (Leenders et al., 2016).

REM allows the study of the dynamics of social networks and estimates how specific factors

influence what interaction will happen and when.

The impact of missing data on REM is a topic that has not been extensively researched.

However, it is known that missing data can introduce significant biases and errors in the

estimation of network properties and parameters. Previous studies have shown that missing data

can affect the measurement of network density, centrality, clustering, assortativity, and

robustness (Kossinets, 2006; Smith & Moody, 2013). For example, missing data can lead to an

underestimation of network density which is a measure of how many connections exist between

nodes in a network, and an overestimation of network centralization, meaning that there are a

few nodes in the network that have too much influence on the rest of the network (Kossinets,

2006). This can lead to inaccurate conclusions about the structure and properties of the network

being studied. Furthermore, Smith and Moody (2013) found that the effects of missing data vary

depending on the type of network and the research question being addressed.

This paper explores if the current approach to missing data works in the REH data, in the

context of relational event models (REM). The objective of this study is to determine whether

multiple imputation is a viable imputation method for REM. We will examine whether MI

produces accurate estimations of missing data and evaluate its impact on REM estimates. The

findings of this study can provide an effective solution for handling missingness in REM and

contribute to further research in social networks where data is missing.

9

2. Data

The data used for this study is a part of the Apollo 13 mission communications transcript

from Kamalabad et al. (2023). The Apollo 13 mission is the infamous moon mission where an

exploding oxygen tank forced the astronauts to abandon the moon landing. The data include

communication between ground crew and the communication between the flight directors and

the astronauts. The contents of the communications are not relevant to this study so the transcript

of the messages were excluded. The dataset contains three columns: time, sender and receiver.

The data is 3882 rows long, each row is indicative of a communication event with a time point,

the sender and the receiver. Both the sender and receiver column consist of 15 unique actors. In

total there are 16 unique actors across both sender and receiver this is due to specific actors only

occurring in either the sender or receiver column. In the data the names of the actors from the

original transcript are replaced with numbers. A digital version of the original Apollo 13 dataset

is a publicly available dataset and can be accessed on Github (Tseng, 2020).

Table 2. First four rows of the Apollo data used.

time sender receiver

11849.2 18 2

11854.2 2 18

11885.2 18 2

11890.2 2 18

… … …

10

3. Methods

To evaluate the effectiveness of multiple imputation on missing values in relational event history

data, the results of a REM on the original data and the multiple imputed data are compared. For

the REM some network statistics were calculated using remify (Arena, 2003) and remstats

(Meijerink-Bosman et al, 2023). The REM was conducted using the cox proportional hazard

(coxph) function from the survival package (Therneau, 2023) in r.

Since a subset from Kamalabad et al. (2023) was used, the same statistics are used as in

their study. Which are:

Reciprocity

Reciprocity measures how likely person A is to reply to a message from person B, if

person A has received a message from person B recently (Pilny et al. 2016).

Indegree sender

Indegree sender captures the popularity of a sender of a message in the network, based on

how many messages they receive.

Outdegree receiver

Outdegree receiver reflects the activity level of a person in the network, based on how

many messages they send as a receiver.

3.1 Missing data imputation

There are multiple ways to deal with missing data. One can simply ignore the missing

data and only analyse complete cases. However, this may result in loss of information, decrease

in statistical power and to serious bias when data is not MCAR (Little & Rubin, 1987). Another

more popular method is multiple imputation (Rubin, 1987). Multiple imputation is a method

11

where the analyst imputes two or more values for the missing values creating multiple datasets.

Then, the desired analysis is conducted on each completed dataset, and the estimates are pooled.

Figure 2 is a visual representation of the process.

Multiple imputation has several advantages over other methods. It preserves the

variability and uncertainty of the missing data and it allows for valid statistical inference under

the assumption of MAR and MCAR (van Buuren, 2018). However, Multiple imputation may not

work well when the proportion of missing data is high or when data is MNAR (Sterne et al.,

2019).

Figure 2. The steps of multiple imputation. From left to right it starts with the incomplete data and then

creates multiple sets of imputed data following an analysis on the data and pools the results in the last

step.

Note. Scheme of main steps in multiple imputation. From Flexible Imputation of Missing Data.

(2nd edition., p. 19), by S. van Buuren, 2018, CRC Press. Copyright by 2018 by Taylor &

Francis Group, LLC.

12

3.2 Missing data generation

Before imputing, missing data had to be generated first. Following the “Strategies for

simulated missingness” by Vink (2022), MICE was used to create 100 simulations of missing

data. For the missing data generation the percentage missing was set at 20% to introduce a

significant amount of missingness without affecting the results of the analysis of the multiple

imputations too much. Although it is usually not the case for missing data the missing data

mechanism of MCAR was used for the generation. MCAR was chosen because when multiple

imputation is not a valid method for imputation in this case then the method will also not hold for

MAR.

To avoid losing actors from the dataset due to missing values, we randomly selected 1500

rows as a sufficient set to include all actors, this was done due to time restriction of the study.

Then the set was removed from the original dataset and created 33% missingness in the

remaining dataset, which resulted in roughly 20% missingness overall when we combined the

two sets again. The missing data pattern for the generation was that either sender (actor 1) or

receiver (actor 2) was missing at one time but not both. Figure 3 is a plot of the missing pattern

of all simulations.

13

Figure 3. Aggregated missing data pattern of every simulation. The numbers on the left are how often

the pattern occurs in the data. Red means the value is missing in the row. The numbers on the bottom are

how many values are missing in that column.

3.3 Imputation

For imputation with MICE, the variables sender and receiver were used as predictors for

the missing values. The number of imputations were set at 5 and the amount of iterations were

set at 5 since inferential validity is often achieved after 5 to 10 iterations (Oberman et al. 2021).

The number of iterations is how many times MICE goes through each variable to estimate new

values for the missing values. The amount of imputations refer to how many datasets it creates

where the missing values were imputed with the given amount of iterations. The method of

imputation had to be a custom version of the predictive mean matching (pmm) method. The

custom pmm was made to avoid generating loops in the data where actors are initiating

interactions with themselves. This conditional mean matching made sure that the imputed value

14

was not the same as the corresponding receiver or sender. Pmm would also ensure imputation of

realistic values.

3.4 Analysis

Finally, a relational event model, with Reciprocity, OutdegreeReceiver and

IndegreeSender as predictors was fitted and pooled within each simulation, using the coxph

function. For the data to work with coxph, the data was altered to look like the data in table 3

where status means whether that interaction happened at time = t, yes (1) or no (0). The number

of interactions between sender and receiver is the risk set of N(N-1).

Table 3. Example of a risk set. Every row is a possible combination of interaction at a given time. The

status column shows whether the combination actually happened in the relational event history.

time sender receiver status

1 a b 1

1 b c 0

1 c a 0

1 a c 0

1 b a 0

1 c b 0

2 a b 0

… … … …

After running the analysis the results were averaged over a hundred simulations. The

imputation method is evaluated using the criteria proposed by Obermann and Vink (2023). The

15

criteria for the assessment are the raw bias, coverage and confidence interval width of the

estimates. The raw bias of the estimate is the difference between the estimate and the true

estimate. The raw bias should be close to zero, indicating that the estimate is close to the true

estimate. Coverage rate is the proportion of confidence intervals that contain the true value.

Typically the coverage should not fall below 95%. When the coverage falls below 95%, it

indicates an estimate of poor quality. A high coverage rate (> .95) may indicate that the

confidence interval is too wide and that the method used is inefficient and leads to inferences that

are too conservative. Lastly, the average width of the confidence interval is the difference

between the lower and upper end of the confidence interval. A small average width indicates

statistical efficiency. However, when the average width is too small it may cause the coverage

rate to fall below 95% (van Buuren, 2018).

4. Results and discussion

First a relational event model was performed on the original data to get the true model to

compare the simulations to. Table 4 shows the results of the pooled REM. Here, reciprocity has

a positive but not significant effect on the chance of an event happening (β = 2.36e-02, p =

0.204) along with outdegreeReceiver, which has a non significant negative effect (β = -9.11e-05,

p = .220). However, indegreeSender did have a positive significant effect (β = 4.31e-04, p = <

.001).

16

Table 4

Relational event model on the fully observed Apollo 13 data.

β SE z p

reciprocity 2.36e-02 1.86e-02 1.27 .204

indegreeSender 4.31e-04 7.40e-05 5.83 < .001

outdegreeReceiver -9.11e-05 7.44e-05 -1.23 .220

Based on Obermann and Vink (2023), to evaluate the imputation method the bias,

coverage and confidence interval width are calculated from the simulations.

The average REM results of the hundred simulations can be found in Table 5. What is

different here is that the estimates of the imputed model are all significant with a very small p

value (< 0.001) instead of only indegreeSender being significant as in the true model. The bias of

the effects are all near 0 indicating that the bias is negligible. Which was to be expected since the

missing mechanism was MCAR (Obermann & Vink, 2023). Further, the coverage for

Reciprocity (.99) and IndegreeSender (1.00) are both very high. However, the coverage of

OutdegreeReceiver (.97) is somewhat lower but still very high. A coverage that is higher than .95

means that there exists a narrower interval where the confidence interval would still yield valid

results. The coverage rates of all variables are very high, which means that the method is

effective but there is room for improvement in efficiency. However, this does not affect the

validity of the inference (Obermann & Vink, 2023). And lastly, the confidence intervals appear

to be very small with small average widths for Reciprocity (4.85e-03), indegreeSender

(1.34e-04) and outdegreeReceiver (1.80e-05). The confidence interval width of the three

variables appears to be relatively small, which suggests that in combination with the coverage

and the bias that multiple imputation is a valid approach for the missing data problem when

17

assuming MCAR in relational event history data. However, the estimates in the simulations are

all significant where in the original data only indegreeSender was significant. This can be due to

using a fixed set to keep all actors in the data and thus missingness is only generated in a part of

the data, resulting in small between variance, smaller confidence intervals and smaller p-values

(van Buuren, 2018).

Table 5. Relational event model averaged over 100 simulations with 5 imputations

True
estimates

estimates SE p 95% CI
[LL, UL]

cov bias

Reciprocity 2.36e-02 2.41e-02 0.0009 < .001 [2.17e-02, 2.65e-02] 0.99 5.35e-04

IndegreeSender 4.31e-04 4.22e-04 2.41e-05 < .001 [3.36e-04, 4.89e-04] 1.00 -9.07e-06

OutdegreeReceiver -9.11e-05 -9.16e-05 3.24e-06 < .001 [-1.00e-04, -8.26e-05] 0.97 4.13e-07

The distribution of all estimates of the simulations can be found in the appendix (Figure

4-6). All the distributions appear to be normally distributed. With only indegreeSender being

slightly left skewed.

5. Conclusion

The aim of the study was to see if multiple imputation is a valid method for handling

missing data in relational event history data given MCAR. The findings suggest that the method

does have some utility and seems to give unbiased estimates when under the MCAR assumption.

18

However, after imputation the significance of some parameters changed. This could lead to

incorrect conclusions from the analysis.

This study has some limitations. First, the assumption of MCAR is not always a

reasonable assumption to make when using the imputation on real missing data. However, the

MCAR assumption helps to test if multiple imputation can generate accurate estimations. The

next step will be to see if multiple imputation still gives accurate estimations when under the

MAR assumption.

For the missing data generation 1500 rows were randomly selected to function as a

sufficient set so that the risk sets would be equal in length. The problem arises when one actor is

infrequent in the dataset. When an actor only appears once or twice in the data it could be that,

when generating missing data with the MCAR mechanism, the actor could be eliminated in its

entirety purely by chance. Future research should look if this has an effect on the estimates and if

it does look for a solution for this problem.

Moreover, the rather big change in significance is a field of interest. The reason why this

happens could be due to the fixed rows previously mentioned. More imputations than five could

also benefit the results of the imputation method.

Lastly, this study only looked at when one of the sender or receiver was missing, an

interesting case to study will be to see if multiple imputation is still effective when complete

edges are missing from the network.

Overall the multiple imputation does seem to give accurate estimates when assuming

MCAR but the change from not significant to significant estimates is something to be taken into

consideration before interpreting the results.

19

References

Arena, G. (2023). GitHub - TilburgNetworkGroup/remify: A package that transforms REH data

from/to other formats or other sources to a REH structure that is suitable for the

packages in remverse. GitHub. https://github.com/TilburgNetworkGroup/remify

Butts, C. T. (2008). 4. A Relational Event Framework for Social Action. Sociological

Methodology, 38(1), 155–200. https://doi.org/10.1111/j.1467-9531.2008.00203.x

Huisman,M.(2009).Imputation of missing network data: Some simple procedures. Journal of

Social Structure,10(1) 1-29. https://doi.org/10.21307/joss-2019-050

Kossinets, G. (2006). Effects of missing data in social networks. Social Networks, 28(3),

247–268. https://doi.org/10.1016/j.socnet.2005.07.002

Meijerink-Bosman M, Arena G, Karimova D, Lakdawala R, Shafiee Kamalabad M, Generoso

Vieira F. (2023). TilburgNetworkGroup/remstats: Computes Statistics For Relational

Event History Data. rdrr.io. https://rdrr.io/github/TilburgNetworkGroup/remstats/

Meijerink-Bosman, M., Back, M. D., Geukes, K., Leenders, R. T. a. J., & Mulder, J. (2022).

Discovering trends of social interaction behavior over time: An introduction to relational

event modeling. Behavior Research Methods.

https://doi.org/10.3758/s13428-022-01821-8

Meijerink-Bosman, M., Leenders, R. T. a. J., & Mulder, J. (2022). Dynamic relational event

modeling: Testing, exploring, and applying. PLOS ONE, 17(8), e0272309.

https://doi.org/10.1371/journal.pone.0272309

Newman, M. F. (2018). Networks. In Oxford University Press eBooks.

https://doi.org/10.1093/oso/9780198805090.001.0001

https://doi.org/10.1111/j.1467-9531.2008.00203.x
https://doi.org/10.3758/s13428-022-01821-8
https://doi.org/10.1371/journal.pone.0272309
https://doi.org/10.1093/oso/9780198805090.001.0001

20

Nguyen, C. D., Carlin, J. B., & Lee, K. J. (2017). Model checking in multiple imputation: an

overview and case study. Emerging Themes in Epidemiology, 14(1).

https://doi.org/10.1186/s12982-017-0062-6

Oberman, H. I., Van Buuren, S., & Vink, G. (2021). Missing the Point: Non-Convergence in

Iterative Imputation Algorithms. arXiv (Cornell University).

https://doi.org/10.48550/arxiv.2110.11951

Oberman, H. I., & Vink, G. (2023). Toward a standardized evaluation of imputation

methodology. Biometrical Journal. https://doi.org/10.1002/bimj.202200107

Pilny, A., Schecter, A., Poole, M. S., & Contractor, N. (2016). An illustration of the relational

event model to analyze group interaction processes. Group Dynamics: Theory, Research,

and Practice, 20(3), 181–195. https://doi.org/10.1037/gdn0000042

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. (1987c). In Wiley series in

probability and statistics. Wiley. https://doi.org/10.1002/9780470316696

Therneau, T. M. (2023, March 12). Survival Analysis [R package survival version 3.5-5].

https://cran.r-project.org/package=survival

Tseng. (2020). GitHub - issa-tseng/apollo13rt: Apollo 13 in real-time. Flight director’s loop,

transcript, information, and more. GitHub. https://github.com/issa-tseng/apollo13rt

Smith, J. C., Moody, J., & Morgan, J. (2017). Network sampling coverage II: The effect of

non-random missing data on network measurement. Social Networks, 48, 78–99.

https://doi.org/10.1016/j.socnet.2016.04.005

Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., Wood, A. M.,

& Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological and

https://doi.org/10.1002/bimj.202200107
https://cran.r-project.org/package=survival
https://github.com/issa-tseng/apollo13rt
https://doi.org/10.1016/j.socnet.2016.04.005

21

clinical research: potential and pitfalls. BMJ (Clinical research ed.), 338, b2393.

https://doi.org/10.1136/bmj.b2393

Van Buuren, S. (2018). Flexible Imputation of Missing Data, Second Edition. In Chapman and

Hall/CRC eBooks. https://doi.org/10.1201/9780429492259

22

Appendix

Figure 4

Figure 5

23

Figure 6

```{r}

devtools::install_github("TilburgNetworkGroup/remify")

devtools::install_github("TilburgNetworkGroup/remstats")

devtools::install_github("gerkovink/mice@match_conditional")

```

```{r}

##### Load packages

library(mice, warn.conflicts = FALSE) # for imputation and

amputation

library(purrr, warn.conflicts = FALSE) # for functional

programming

library(furrr, warn.conflicts = FALSE) # for functional futures

library(magrittr, warn.conflicts = FALSE) # for pipes

library(dplyr, warn.conflicts = FALSE) # for data manipulation

library(tibble, warn.conflicts = FALSE) # for tibbles

library(remstats, warn.conflicts = FALSE) # for REM statistics



24

library(remify, warn.conflicts = FALSE) # for converting

library(data.table, warn.conflicts = FALSE)

library(survival, warn.conflicts = FALSE) # for REM analysis

library(tidyverse, warn.conflicts = FALSE)

set.seed(123)

##### Load data

con <-

url("https://github.com/mshafieek/ADS-Missing-data-social-network/raw

/main/literature_%20REM/Tutorial_REM_REH_DATA/UUsummerschool.Rdata")

load(con)

apollo <- as_tibble(PartOfApollo_13) %>%

rename(

actor1 = sender,

actor2 = receiver

)

whichcol <- c("", "actor2", "actor1")

names(whichcol) <- colnames(apollo)

# use the custom pmm method

method <- make.method(apollo)

method[c(2,3)] <- "pmm.conditional"

#### set with sufficient actors & dyads

set.seed(123) # fix seed to realize a sufficient set

indic <- sample(1:nrow(apollo), 1500)

remify(apollo[indic, ], model = "tie") %>% dim()

#### Combine the sufficient set and the incomplete set

make_missing <- function(x, indic){

sufficient <- x[indic, ]

miss <- x[-c(indic), ] |>

# prop is set to .4 to get close to .2 missingness since almost

half of the dataset is used for the sufficient set



25

ampute(prop = .33,

mech = "MCAR",

patterns = matrix(c(1,0,1,

1,1,0),

nrow=2,

byrow=TRUE)) %>%

.$amp

combined <- rbind(sufficient,

miss)

return(combined[order(combined$time), ]) # sort it all like apollo

}

##### Missing pattern

pattern <- matrix(c(1,0,1,1,1,0), nrow=2, byrow=TRUE)

##### predictor matrix

predictormatrix <- matrix(c(0,0,0,0,0,1,0,1,0), nrow=3, byrow=TRUE)

##### Model-based finite populations

mbased_finite_apollo <-

furrr::future_map(1:100, ~ {

make_missing(apollo, indic) %>%

mice(m = 5,

maxit = 5,

method = method,

whichcolumn = whichcol,

predictorMatrix = predictormatrix,

print = FALSE)

}, .options = furrr_options(seed = 123))

##### Missing data pattern of all simulations.

missing_pattern <- mbased_finite_apollo %>%

map(~.x %>% .$data) %>%

do.call("rbind", .) %>%

md.pattern()

##### Defining effects for the relational event model

effects <- ~ -1 + reciprocity(scaling = ("std")) + indegreeSender() +



26

outdegreeReceiver()

##### Function to get the statistics of the previously defined

effects.

stats_function <- function(data) {

# remify the data

reh <- remify::remify(edgelist = data, model = "tie")

# calculate effect statistics

statsObject_imp <- remstats(reh = reh, tie_effects = effects)

# Return the statistics

return(statsObject_imp)

}

##### Function for making the data compatible with coxph()

prepare_coxph_data <- function(statsObject, apollo) {

risk_sets <- attr(statsObject, "riskset")

risk_sets <- risk_sets %>% select(-'id')

# Get the times

time <- apollo$time

# merge riskset with each timepoint

combined <- merge(risk_sets, time, by = NULL)

combined <- combined %>% rename("time" = "y")

combined <- lapply(combined, as.numeric)

combined <- as.data.frame(combined)

# Create matrices for subtraction to make a status column for coxph

combined_matrix <- data.matrix(combined)

matrix_rows <- nrow(combined)

repeated_df <- apollo[rep(seq_len(nrow(apollo)), each = 240), ]

repeated_df <- repeated_df[, c(2,3,1)]

apollo_matrix <- data.matrix(repeated_df)



27

status_matrix <- apollo_matrix - combined_matrix

# create a status column

status <- as.integer(rowSums(status_matrix == 0) ==

ncol(status_matrix))

status <- as.data.frame(status)

# Add status to the combined set

combined <- cbind(combined, status)

# Extract statistics and add them to the dataframe

reciprocity <- statsObject[,,1]

indegreeSender <- statsObject[,,2]

outdegreeReceiver <- statsObject[,,3]

combined$reciprocity <- c(reciprocity)

combined$indegreeSender <- c(indegreeSender)

combined$outdegreeReceiver <- c(outdegreeReceiver)

return(combined)

}

###### TRUE ANALYSIS

true.reh <- remify(edgelist = apollo,

model = "tie")

# calculate stats

stats <- remstats(tie_effects = effects,

reh = true.reh)

# use the function to create the correct format of the dataframe

true.cox.set <- prepare_coxph_data(stats, PartOfApollo_13)

# fit cox model

true.cox.fit <- coxph(Surv(time, status) ~ reciprocity +

indegreeSender +

outdegreeReceiver,

data=true.cox.set)



28

true <- coefficients(true.cox.fit)

true.cox.fit

###### Running the REM on all simulations divided into 10 blocks.

Results1 <-

mbased_finite_apollo[1:10] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% ## pool

coefficients

.$pooled %>% ## extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%



29

column_to_rownames("term") # `term` as rownames

)

Results2 <-

mbased_finite_apollo[11:20] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames



30

)

Results3 <-

mbased_finite_apollo[21:30] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames

)

Results4 <-



31

mbased_finite_apollo[31:40] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames

)

Results5 <-

mbased_finite_apollo[41:50] %>%

map(~.x %>% # for every simulation

complete("all") %>%



32

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames

)

Results6 <-

mbased_finite_apollo[51:60] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox



33

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames

)

Results7 <-

mbased_finite_apollo[61:70] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +



34

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames

)

Results8 <-

mbased_finite_apollo[71:80] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool



35

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames

)

Results9 <-

mbased_finite_apollo[81:90] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true



36

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames

)

Results10 <-

mbased_finite_apollo[91:100] %>%

map(~.x %>% # for every simulation

complete("all") %>%

map(~.x %>% # for every imputation

stats_function() %>% # do stats function

prepare_coxph_data(apollo = apollo) %$% # prepare cox

ph

coxph(Surv(time, status) ~

reciprocity +

indegreeSender +

outdegreeReceiver)) %>%

pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

.$pooled %>% # extract table of pooled coefficients

mutate(true = true, # add true

df = m-1, # correct df

riv = Inf, # correct riv

std.error = sqrt(t), # standard error



37

statistic = estimate / std.error, # test statistic

p.value = 2 * (pt(abs(statistic),

pmax(df, 0.001),

lower.tail = FALSE)), # correct

p.value

`2.5 %` = estimate - qt(.975, df) * std.error, #

lower bound CI

`97.5 %` = estimate + qt(.975, df) * std.error, #

upper bound CI

cov = `2.5 %` < true & true < `97.5 %`, # coverage

bias = estimate - true) %>% # bias

select(term, m, true, estimate, std.error, statistic,

p.value,

riv, `2.5 %`, `97.5 %`, cov, bias) %>%

column_to_rownames("term") # `term` as rownames

)

##### Combining Results

Results <- list(Results1,

Results2,

Results3,

Results4,

Results5,

Results6,

Results7,

Results8,

Results9,

Results10) %>%

purrr::flatten()

#saving Results

save(Results, file = "simulations.RData")

##### Adding percentage bias and average width to the Results

#function for average width and percentage bias.

AW <- function(df) df[["97.5 %"]] - df[["2.5 %"]]

PB <- function(df) 100 * abs((df[["estimate"]] - df[["true"]]) /



38

df[["true"]])

Results_with_extra <- lapply(Results, function(df) {

df$PB <- PB(df)

df$AW <- AW(df)

df

})

###### Average sims

Reduce("+", Results_with_extra) / length(mbased_finite_apollo)

```

```{r}

##### Creating a list of all estimates for every statistic

reciprocity <- Results %>%

map(~.x %>% .["reciprocity", ]) %>%

do.call("rbind", .)

indegreeSender <- Results %>%

map(~.x %>% .["indegreeSender", ]) %>%

do.call("rbind", .)

outdegreeReceiver <- Results %>%

map(~.x %>% .["outdegreeReceiver", ]) %>%

do.call("rbind", .)

```

```{r}

##### A density plot of all estimates for every statistic

outdegreeReceiver %>%

ggplot(aes(x = estimate)) +

geom_density() +

labs(x = "outdegreeReceiver estimates", y = "Density") +

theme_classic()

indegreeSender %>%

ggplot(aes(x = estimate)) +



39

geom_density() +

labs(x = "indegreeSender estimates", y = "Density") +

theme_classic()

reciprocity %>%

ggplot(aes(x = estimate)) +

geom_density() +

labs(x = "reciprocity estimates", y = "Density") +

theme_classic()

```

True model

Evaluation of multiple imputation

