
Faculty of Science

Parallelization of the cost distance algorithm

Master Thesis

Ewout van der Velde - 6509223

Applied Data Science

Supervisors

Prof. dr. Derek Karssenberg
Physical Geography

Dr. Kor de Jong
Physical Geography

Dr. Oliver Schmitz
Physical Geography

07-07-2023



Abstract

Cost distance tool are embedded in various geographic information systems (GIS) giving insights into
spatial relationships. Most GIS software use a serial cost distance algorithm. Cost distance calculations
have a strong sequential nature due to the order we access cells in the raster. This limits the development
of a parallel algorithm, hindering the usage of multiple processes for faster computation. This paper
proposes a parallelization framework, accounting for the sequential nature while running in parallel.
By dynamically distributing partitions to different processes, we ensure full workload distribution and
minimising idle times for processes. Relative strong and weak scaling efficiencies drop below 80% when
run with more than 3 and 2 workers respectively. We notice that this is partly caused by the fact that the
size of the input data and the amount of work a worker has to perform, do not scale linearly. When scaling
to more workers, we expect to run into a performance bottleneck caused by input output operations of the
root node. Recommendations are made for future research to limit the amount of input output operations
by statically assigning partitions to workers.

i



CONTENTS ii

Contents

1 Introduction 1

2 Methods 2
2.1 Cost Distance Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Results 10

4 Discussion 13

References I

A Measurements II



1 INTRODUCTION 1

1 Introduction

Distance plays a critical role in various geographic systems (Eastman, 1987), offering insights into spatial
relationships and enabling optimized decision-making. Understanding distances between objects such as
schools and houses is essential for tasks such as site selection for new schools or finding the nearest school
to a house. By minimizing distances, we can enhance efficiency, identify optimal locations, and streamline
transportation networks (Douglas, 1994). In practice, we can represent the world as a raster (Olsson, 1985)
and perform calculations on this raster to determine the shortest path between points. Cost distance analysis,
also known as cost path analysis, is a tool embedded in most geographic information systems (GIS) (ArcGIS,
2023; GRASS, 2023; QGIS Development Team, 2009; Karssenberg et al., 2010) that enables the determination
of optimal routes or paths based on cost considerations. Building on the distance calculations in geographic
systems, cost distance analysis also considers factors next to the physical distance between locations. In cost
distance analysis, these additional factors are in the form of a cost raster where we can assign different costs
to cells in a raster. These costs can be derived from landscape characteristics such as slope, land cover types,
or other attributes relevant to an analysis. By considering these costs together with the distances between
cells, we can make a quantification of the total cost required to travel between locations on a raster.

While multiple algorithms exist for calculating cost distance (Eastman, 1987), many GIS platforms rely on
the approach proposed by Douglas (1994). Algorithms like that of Eastman (1987) treat the cost raster as a
network problem, restricting movement between cells to predefined paths. These movements are orthogonal,
diagonal, and sometimes a knight move (GRASS, 2023). In contrast, Douglas’ algorithm treats the raster
as a continuous field, allowing movement in continuous space. By embracing the continuous field approach,
we can obtain more realistic results for various applications, as real-world space is continuous as well. It is
worth noting that working with a continuous field introduces longer computation times compared to discrete
field approaches.
However, one major limitation of these existing cost distance algorithms is their sequential nature. Like the
Dijkstra shortest path algorithm, these algorithms calculate the minimal accumulated cost distance to a cell
in order from lowest possible cost to highest possible cost. This dependency to know the global minimum of
non-calculated cells can pose a problem when parallelizing the algorithm. When parallelizing an algorithm,
the aim is to speed up computation time by distributing the workload over multiple processes. The challenge
for us is that processes do not share resources and we thus cannot know the global minimum accumulated
cost of non-calculated cells.

To the best knowledge of the author, only one proposal for a parallel cost distance algorithm has been made
in the past. Wang et al. (2013) divides the raster into p partitions and distributes them over p processes.
This method has multiple drawbacks, for instance when a partition is made up of no-data values, it does not
do any work and is idling, waiting for calculation in other processes to finish.
We propose and evaluate a new parallel algorithm that dynamically distributes partitions to different pro-
cesses, making sure no process is idling unnecessarily.
In this paper we aim to answer the following questions: How can a scalable parallel cost distance algorithm
be developed with no processes idling unnecessarily? How does this algorithm scale? What are the potential
bottlenecks when scaling the algorithm?
We developed a parallelization framework that dynamically distributes partitions to different processes, and
is able to use existing serial algorithms in a parallel environment. We find that the algorithm does not have
good weak relative scalability for multiple worker processes. The poor weak relative scalability is mainly
caused by the fact that the workload per worker does not scale linearly with the raster size. Depending on
partition size, the strong relative scalability is above or around 80%, for up to 4 worker processes. A potential
bottleneck when scaling further will be the dependency on I/O operations by the root node, used for storing
intermediate states of the accumulated cost raster.



2 METHODS 2

2 Methods

2.1 Cost Distance Algorithm

Distance

Cost distance builds on the concept of distance calculations. When computing distances on a computer,
we can project the world onto a raster and perform distance calculations on this raster. We have multiple
methods to calculate distances on a raster. We will use one of the simpler methods where we can only move
one cell at a time, either orthogonal or diagonal.

Figure 1: Example of distance calculations on a raster.

If the raster cells are the size of a unit cell, moving to raster points directly next to each other, the distance
traversed will be 1. If we were to move diagonally, according to the Pythagorean theorem the distance would
be

√
2. Using this information, we can, for each cell in the grid, determine how far away they are from a

designated source cell by accumulating the distances. To do this we start at a source cell. If we want to know
the total distance to travel to this cell, the answer is simply 0, since we are already at this cell (see figure
1). For its direct neighbours (yellow), the total distance to move to the source will be 1. For its diagonal
neighbours (blue), the total shortest distance to the source cell will be

√
2. For the green cell it gets more

complicated as there are multiple paths to get here. From the source we can go diagonal and then right once,
right once and diagonal, or right twice and then up. For the total accumulated distance we then get

√
2+ 1,

1 +
√
2 or 1 + 1 + 1 respectively. We see that, although the first two paths have the same total distance, the

minimum distance from the source cell to the green cell equals 1 +
√
2. With this method we can eventually

calculate the minimum distance from a source cell to all other cells.

Cost distance

If we were to use these distance calculations in the real word, we quickly find that the results are not always
useful. Although we may know the minimum distance, we do not know if the path to get there is actually
good. This path might try to traverse untraversable terrain. In cost distance analysis we encapsulate extra
information in our calculation in the form of an additional raster. This raster could be a height map, terrain
map or any other user defined feature map. Each cell in this raster represents the ”cost” to be in that cell.
If we add this cost raster, we can calculate the cost distance (CD) to travel between neighbouring cells. The
cost to move between cell i to j can be calculated with

CDi,j =
costi + costj

2
× di,j

where costi the cost of cell i, costj the cost of cell i and di,j the distance between cell i and j.
Since we are interested in the minimum accumulated cost, and not just the cost distance between two cells,
we calculate the minimum of the cost distances to move between each neighbouring cell added to their



2 METHODS 3

accumulated cost distance. We refer to this as the accumulative cost distance ACD and can in practice be
calculated with

ACDi = min {CDi,j +ACDj} |j ∈ N

where ACDi the accumulated cost distance at cell i, ACDj the accumulated cost distance at cell j, and N
the set of all neighbouring cells.
The same way as with the distance calculations we can than calculate the ACD for each cell.

Figure 2: Example of cost distance calculations on a raster.

We see that in figure 2 step two is already different than in figure 1. This is caused by the addition of a
cost raster. We are interested in the green cell, so we calculate the ACD it would take to get there from
its neighbours. From the source cell to the green cell entering from the neighbour on its left it would cost
3+2
2 ×1+3.54 = 6.04, from the bottom neighbour 2+2

2 ×1+7.00 = 9 and from diagonal 5+2
2 ×

√
2+3.50 = 8.45.

We see that the cheapest route would be to enter from the left, giving us an ACD of 6.04 for the green cell.

2.2 Parallelization

Sequential or serial programs run on a single process on a single core. Serial algorithms work step by step in a
sequential fashion, enabling the usage of results obtained in calculations made before the current calculation.
The main drawback with serial algorithms is that they do not use the full computational power of modern
machines which have multiple cores. To use the full computational power, we need to run an algorithm in
parallel. This way we can use all cores of the processor to perform computations, theoretically decreasing
the run time of an algorithm.

Currently there are multiple ways to calculate the ACD in a relatively efficient way for the entire raster
(Eastman, 1987; Douglas, 1994). The most popular one used in GIS software is a serial algorithm based on



2 METHODS 4

that of Douglas (1994). To run efficiently, these algorithms make smart use of data structures such as heaps
and priority queues to keep track of the order cells need to be processed in. Similar to the Dijkstra Path
finding algorithm, we start by assigning an ACD of 0 at the source locations, and an ACD of infinity to
all points in the raster. For the cell with the lowest ACD, we calculate the ACD for its neighbouring cells.
If the calculated ACD is lower than the already stored value in the ACD raster, we update the raster to
the new value. Since we know that the ACD can only go up when moving between cells, and we know that
the current cell already had the lowest ACD, we know there is no cheaper way to get to the current cell.
Therefor we can mark this cell as checked and we do not have to visit this cell again. We now move to the
next lowest ACD and do the process over again. Eventually we have checked all the cells and know that we
have found the global solution for the minimum ACD. In practice this means that we access the raster in a
non-structured, random-access pattern. This means point by point where points do not have to be close to
each other.

Standard parallelization techniques usually involve dividing the raster into structured partitions and dis-
tributing these partitions to dedicated processes. If we were to take his route, we are posed with the problem
that the Dijkstra like algorithms does not work anymore. Each process can only access its own partition, and
we cannot be certain if the next lowest ACD in the partition is the lowest possible ACD for this cell, as there
might be a cheaper route possible when moving from another partition. This means that the local solution of
a partition is not necessarily the global solution for that partition. This gives us the challenge that we cannot
calculate the local solution for each partition and assume we have a global solution and stop calculations. If
we want a global solution we have to make corrections to the partitions after we made calculations for the
partitions.

A current proposal for a parallel algorithm for cost distance analysis is that of Wang et al. (2013). Wang
divides the raster into P partitions, where P the number of processes, and assigns these to the processes to
calculate local ACD and makes correction in a final pass through. The drawback of this method is that it
may be possible for a process to wait until a neighbouring partition is done with an initial calculation before
it can start doing work on its own partition. This could happen when source cells are unevenly distributed
over the raster or when we have a lot of no-data values in parts of the raster. Assigning processes to partitions
with only no-data values results in processes doing no calculations at all.

This paper will take an approach based on that of Wang et al. (2013). We will develop a parallelization
framework, allowing the user to use regular serial algorithms in a parallel setting. To work around the
drawback of the algorithm by Wang et al. (2013), we chose to divide our raster in > P partitions, and
dynamically assign partitions to processes whenever they can be calculated.
As mentioned before, in the serial algorithm it was relatively easy to know when we found a global solution
for our ACD raster. To keep track of the status of the calculations, we use a root node. This root node
registers which processes are busy and have found a local solution for a partition. This root node is also
in charge of I/O operation on the accumulated cost raster to prevent concurrent writing of the raster by
multiple processes. From here on, we will refer to all processes that are not the root node, as workers.
We can only start the ACD calculations at source cells since it is the only place where we know the accumu-
lated cost of. Each worker searches predefined partitions of the source raster for source cells. If a partition
contains at least one source cell, we send the location of the partition to the root node to store in a list, now
referred to as list k.
After all workers have gone through the predefined partitions, the workers can request a partition location
and the corresponding partition of the ACD raster from the root node.
The worker reads the source raster and cost raster from file for its own partition including a buffer to calculate
costs on the boundary of the partition.
We run a serial ACD algorithm on the partition. If we find that there is a cell update of the ACD on the
edge of the partition, we keep track of which side of partition this update was on. When the serial algorithm
is done, we add the neighbouring partitions from the edges that had updates to a list. We send this list to
the root node together with the ACD raster.
The root node will add the received neighbouring partitions to list k if they are not already in the list. If list
k is empty and all workers are waiting for a new partition, we have found the global solution and terminate
the program. If not, we hand out partitions of list k to workers waiting for a new partition.



2 METHODS 5

One major drawback of dynamically handing out partitions is that we need to save results intermediately.
This is because we do not know which process will (re)calculate which partitions, making it not possible to
store intermediate results in the memory of a process. This does mean that we probably spend much time
with I/O and sending data from one process to the root and back for the I/O operation.

Pseudocode

Define padding size

Define partition size

Load metadata from raster

Create a list with all partition locations

Root node:

Initialize:

Make cumulative cost raster same shape as cost raster with infinite costs

Wait for all other workers to send partition locations with source

cell(s) and add these to a list of partitions to update

Create an empty list with partitions working on

Create queue with available workers

In main loop:

If all workers are in the queue and there are no partitions to update:

Send message to all worker to terminate

In handout loop:

If worker available queue empty:

Break handout loop

Valid partitions is partitions to check - partitions working on

If no valid partitions:

Break handout loop

Get worker from queue

Send partition from valid partition to worker

Add partition to the list with partitions working on

Wait worker to send message

Save received partition to main raster

Remove partition from set with partition currently worked on

Add worker back to worker available queue

If message has new partition locations:

add received partition to partitions to update

Worker node:

Initialize:

Read a predefined partitions of the raster to find if they contain source cells

Send partition location where there are source cells to the root node

In main loop:

Wait for partition from the root node to work on

If partition location is termination command:

Terminate process

Read in partition location with padding from source and cost raster

If partition location is on edge of global raster:

Pad the partition to be a square

Do serial cost distance on the partition



2 METHODS 6

If the cumulative raster has changed:

Add neighbours of the partition to a list

Send the cumulative raster with neighbour list to the root node

A flowchart representation of the algorithm can be found in figure 3.

2.3 Implementation

The algorithm is coded in Python and Message Passing Library (MPI) (Message Passing Interface Forum,
2021) is used to facilitate communication between processes. We setup one root node and multiple workers.
We have chosen to divide the raster into square partitions. This was due to the practical reason that squares
are easier to work in code with than rectangles. The algorithm should also work on rectangular partitions.
If the cell is on a boundary from the global raster, we pad the boundary of the partition with infinite costs,
this is again to make sure we are only working with squares.
The serial algorithm used by the workers is inspired on the Dijkstra shortest path algorithm. The Python
code of the parallel algorithm can be found on the authors’ GitHub (Velde, 2023).

2.4 Evaluation

CPU Intel Core I7-8750H
Cores 6
Logical processors 12
CPU base frequency 2.2GHz
CPU load frequency ∼ 4GHz
RAM 16GiB
OS Windows 11 Home 22H2
Python 3.10.9
MPI mpi4py

Table 1: Hardware and software used for the experiments.

We perform experiments to characterise the performance and scalability of the parallel cost distance algo-
rithm. Testing is done on a laptop with properties described in table 1. There are two major limitations of
this setup.

1. We cannot use all of the CPU’s capabilities since Windows is running background processes next to
our tests.

2. The CPU has a variable clock speed. The system will dynamically change its clock speed according to
the load it is given. At a high load it goes to a stable high of ∼ 4GHz, but when the load is low it may
throttle back to the base speed of 2.2GHz.

The goal of the scalability experiment is to determine how well the algorithm is able to make good use of
additional resources. In our case the additional resources are in the form of adding more processes.

We evaluate two kinds of scalability: strong scalability and weak scalability. Strong scalability is relevant if
you are interested in speeding up an existing model. A model that has a high strong scalability can make
good use of additional resources to make it finish faster (Jong et al., 2022).
An effective way to evaluate strong scalability is with the relative strong scalability efficiency (RSEstrong)

RSEstrong =
TS,1

P × TS,P
× 100% (2.1)

where P the number of processes, TS,1 the latency when using one process and TS,P the latency when ran
with P processes while keeping the problem size constant.



2 METHODS 7

Figure 3: Flowchart of the proposed algorithm. Coloured ellipses are communication points between the root
node and the workers.



2 METHODS 8

With this definition we run into a problem. If we were to use only one process, we would have only a root
node or only a worker and the algorithm would never finish. For now we will disregard the root node as a
process, as it does no calculations on any partition, and calculate RSEstrong with the number of workers
instead the number of processes. The fact that we need a minimum of two processes is a drawback of the
algorithm, and we will reflect on the choice to ignore the root node as a process in the discussion.
For the strong scalability evaluation we use a raster of 3000x3000 cells. The cost raster is randomly generated,
and the source raster contains 20 source cells. We evaluate RSEstrong for three different scenarios.

1. Uniform distribution of costs and uniform distribution of source cells.

2. Non-uniform distribution of costs and uniform distribution of source cells. Costs in lower half of the
raster are significantly higher than in top half.

3. Uniform distribution of costs and non-uniform distribution of source cells. All source cells are in the
lowest ten percent of rows.

We evaluate with partition sizes of 250, 500 and 1000 as we expect partition size to have influence on the
scalability.
To mitigate the variance in the latency caused by the variable clock speed of machine where we run the tests
on, we run each experiment five times and use the average latency.

By measuring weak scalability, we characterise how well the algorithm manages a higher total workload with
additional processes.
To measure the weak scalability, we scale the overall raster size with the number of processes we run the
algorithm with. If we were to double the number of processes, we would double the number of raster cells as
well. To calculate the weak scalability efficiency, we use

RSEweak =
TW,1

TW,P
× 100% (2.2)

where TW,1 the latency to run the algorithm with only one process, and TW,P the latency when ran with P
processes on a raster that is P times as large as the one used for TW,1.
We run into the same problem as with RSEstrong where one process gives no result. We again will disregard
the root node as a process and focus on the number of workers.
For the weak scalability we start with a raster of 1000x1000 with 20 randomly generated source cells. For
each worker added, we add 1000 rows and 20 sources to the raster. We evaluate with the same three different
raster scenarios as with RSEstrong.

1. Uniform distribution of costs and uniform distribution of source cells.

2. Non-uniform distribution of costs and uniform distribution of source cells. Costs in lower half of the
raster are significantly higher than in top half.

3. Uniform distribution of costs and non-uniform distribution of source cells. All source cells are in the
lowest ten percent of rows.

Again, we do this five times and use the average latency.
Both the strong and weak scalability experiments will be run with a minimum of two processes and a
maximum of nine. Two processes are the minimum number of processes for the algorithm to run, and during
preliminary testing we found nine to be the maximum to not over saturate the CPU when ran combined with
Windows background processes.
Although it is normal to exclude time in I/O operations from the scalability testing, it is included in these
tests, as I/O plays a vital role in transferring information between processes and expect this to be a limitation
of the algorithm itself.
One assumption that we make in the weak scalability test is when we increase our raster size linearly with
the number of workers, we keep the workload per worker equal. Since our parallelization method can call for
updates on partitions that are already calculated, we expect that this assumption will not hold. To obtain



2 METHODS 9

an insight in how much this may affect weak scalability, we track the number of partitions (re)calculated per
worker. To quantify these findings, we calculate the relative workload (RW ) with

RWP =
N1 × P∑P

i=1 Ni

(2.3)

where P the number of workers, RWP the relative workload for P workers, N1 the workload for worker 1
when run with a total of 1 worker, and Ni the workload of worker i when run with P workers. If the workload
scales linearly we would expect RW to be equal to 1, if the workload per worker becomes higher, we expect
that RW > 1. Additionally, we will also track how many times a cell needs to be (re)calculated by the
algorithm. Both the RW and number of (re)calculations of cell will be calculated with a partition size of 100
for 3 different scenarios.

1. Uniform distribution of costs and uniform distribution of source cells.

2. Non-uniform distribution of costs and uniform distribution of source cells. Costs in lower half of the
raster are significantly higher than in top half.

3. Uniform distribution of costs and non-uniform distribution of source cells. All source cells are in the
lowest ten percent of rows.

We stated before that the root node of the algorithm will not be counted as a process, as it does not perform
any computations on the raster itself. The work that it does, for the limited number of processes used, is
expected to be negligible compared to the workload of the other processes. To check if the impact of the
claim that the work done by the root node is negligible, we profile the root node to reflect on the validity of
our RSE results in the discussion.



3 RESULTS 10

3 Results

For the evaluation of RSEstrong for variable number of worker processes at different raster arrangements, we
find the result in figure 4. For uniform cost and uniform source cell distribution we see that for partition
sizes 250 and 500, the RSEstrong is high at 80% for up to three workers, while a partition size of 1000 only
has a high efficiency at two workers. For more workers, we see that the RSEstrong declines. The scalability
increases with non-uniform costs and uniform source cell distribution for partition sizes 250 and 500 and
remains high when ran with up to 4 workers. For the non-uniform distribution of source cells, we see that a
partition size of 1000 has poor scalability in general, while for 250 and 500 it has high scalability for up to 5
and 6 workers.
The average latency for each number of workers for RSEstrong can be found in appendix table 2.

(a) Uniform costs and uniform source distribution. (b) Non-uniform costs and uniform source distribution.

(c) Uniform costs and non-uniform source distribution.

Figure 4: Strong relative scaling efficiency per number of workers when run at a raster size of 3000x3000 for
different partition sizes. Dotted lines are linear scaling and serial scaling added for reference.

For the evaluation of RSEweak for variable number of worker processes at different raster arrangements, we
find the result in figure 5. For uniform cost and uniform source distribution, we notice that RSEweak for
all partition sizes rapidly declines. We see that the scalability is high at 80% for two workers. After this
the scalability drops for all partitions. For non-uniform costs and a uniform source cell distribution we find
that RSEweak gets better compared to the other scenarios. With uniform costs and non-uniform source cell
distribution, we find that the scalability is worse and has near serial like scalability.



3 RESULTS 11

(a) Uniform costs and uniform source distribution. (b) Non-uniform costs and uniform source distribution.

(c) Uniform costs and non-uniform source distribution.

Figure 5: Weak relative scaling efficiency per number of workers when run with a raster size linearly scaled
to the number of workers, keeping the workload per worker equal in theory. Dotted lines are linear scaling
and serial scaling added for reference.

The average latency for each number of workers for RSEweak can be found in appendix table 3.

To check whether the workload increases linearly with the raster size, we see in figure 6a the RW . Raster
size is scaled linearly with the number of workers. If the workload were to scale linearly with the number of
workers, we would see that the RW stays constant. We find the RW increases when increasing the raster
size for both uniform costs and uniform source cell distribution, as well as for uniform costs and non-uniform
source cell distribution. The RW scales linearly when using a non-uniform costs raster with a uniform source
cell distribution. Figure 6b shows similar results, as the number of cells (re)calculated is closely related to
the number of partitions (re)calculated. Both results used for figure 6a and 6b can be found in appendix
table 4 and 5 respectively.

To argue whether the root node can be handled as a non-process, we profiled the root node. Results can be
seen in figure 7. We see that a lot of time is spend in the MPI recv function. This time also includes the
time that the function is waiting for a MPI send from a worker. We estimate the time it took to actually
receive data to be equal to the MPI send of the root, as these communicate nearly an identical amount of
data. We see when adding more workers, relatively more time of the root node is spend not waiting and
an increasing amount of time is spent in GDAL functions. The rasterIO and Flushcache are both used in
reading and writing rasters to files.



3 RESULTS 12

(a) Relative workload per worker as calculated with
equation 2.3. Dotted line is linear scaling added for ref-
erence.

(b) Average number of recalculated cells.

Figure 6: Increase in workload per worker during RSEweak evaluations at a partition size of 100.

Figure 7: Relative time in function calls by the root node. Note the y-scale does not start from 0 to make it
possible to read of the small fractions of time spend in functions at lower numbers of workers.



4 DISCUSSION 13

4 Discussion

As seen in figure 4, RSEstrong for a uniform cost distribution and uniform source cell distribution drops
below 80% when having more than 4 workers. We note that the decline is stronger for a partition size of
1000. This is to be expected for our raster, as when having a partition size of 1000 on a 3000x3000 raster
grid, means that we can have a maximum of 9 partitions and workers. This has the effect that workers will
spend a lot of time idling waiting for neighbouring partitions. The assumption that we make from these
results, is that a partition size of 1000 is too large for the relatively small size of our raster. For further
research it would be a good idea to test the partition sizes on a larger raster, to see if this effect decreases.
For a non-uniformly distributed cost raster with a uniform distribution of source cells, we find that RSEstrong

goes up for all partition sizes. This is to be expected as we have little chance of costs travelling in the raster
from the high-cost part to the low-cost part, causing recalculations of cells.
The results for the uniform costs and non-uniform source cell distribution, affirm our assumption that a
partition size of 1000 is too large for a 3000x3000 raster. We see that RSEstrong is plainly bad for this
partition size. This is to be expected as all source cells are in the lowest 10 percent of rows, the 300 bottom
rows. Meaning that in the first iteration of our algorithm, only a maximum of 3 workers can start with
calculations, instead of all workers. This causes all other workers to wait for the first iteration to finish,
before we can go on to the next iteration.

The results in figure 5 shows that we have in general poor RSEweak for both uniform costs and source cell
distribution, as well as for uniform costs and non-uniform source cell distribution. In comparison, the uniform
source cell distribution with non-uniform costs yields good RSEweak up to 3, 4 and 5 workers for partition
sizes of 500, 250 and 100 respectively. It is understandable that RSEweak decreases when given more workers
and a larger raster size when the sources are non-uniformly distributed, as all sources are clustered and
chances are higher that we need to do more recalculations of cells when moving further away from the source
cells. As we get further away the accumulated cost becomes more uniform, causing more recalculations due
to neighbours that have slightly lower accumulated costs. This is confirmed in figure 6b, where we see more
recalculations are needed when source cells are clustered. In contrast, non-uniform cost distribution with
uniform sources achieves better RSEweak. This is also to be expected as we will have less recalculations,
caused by the same reason as why the scalability was bad for non-uniform sources. The accumulated costs
also become less uniform and thus the chance at recalculations of cells becomes smaller.

We expected in section 2.4 if we were to increase the raster size, the total workload would increase not at
the same, but a higher rate, increasing the workload per worker. We can clearly see that this is the case in
figure 6a. This result is caused by a fundamental part of the algorithm in its current form where we randomly
hand out partitions to workers and thus cannot be mitigated by tuning input parameters of the algorithm. In
future work, one could try to implement a sorting structure where we store the maximum ACD of a partition.
If we hand out partitions with lowest maximum ACD first, we decrease the chance that an updated partition
has to spread to far back into already calculated raster partitions. This method has resemblance with how
we currently calculate the ACD in the serial part of the algorithm. Using the fact that the ACD can only
increase when moving between cells, this method lowers the number of recalculations per partition, therefore
lower the overall workload and therefore lower workload per worker. A downside of this approach is that we
give the root node more tasks, which in turn means that it cannot use the time spend on this new task to
communicate with workers, possibly letting workers idle unnecessarily.

The fact that we treated the root node as a non-process seems to be acceptable for our weak and strong
scalability tests, given the results from figure 7. The root node spends most time waiting for other processes,
meaning that the effect off the root node being busy, making a worker wait, has no significant effect on the
overall performance of the algorithm. However, the claim does not work in general. We see that the amount
of time spent doing I/O operations increases quite a bit when adding more workers. This is a clear indication
that the root node will become a bottleneck when adding more workers, since it starts using more time doing
things that are not communicating between processes. Therefore, one could easily argue that for this reason
only we should always see the root node as a worker as well. As stated before, currently this would mean that
we cannot calculate TS,1 and TW,1 from eq.(2.1) and eq.(2.2) respectively, as the algorithm would never finish
with only a root node or worker node. A relatively easy way to solve this problem is to give the root node



4 DISCUSSION 14

the capability to also carry out cost distance calculations. This could be done in multiple ways, where the
simplest would be to check the total amount of processes spawned, and if this is only one, solve everything in
the owe process, and if more than one, use the algorithm in the current form. This would however mean that
when using 1 or 2 processes, we would get no performance gain since we do the exact same amount of work
with the same number of processes doing actual calculation. A better way would be to use multi-threading
in the root node and let it both calculate ACD and be open to do communication with other workers. Both
methods would make the calculations of the relative scalability efficiency fairer, as we are not excluding a
process from the total number of processes.

For future research we recommend creating an algorithm that does not dynamically hand out partitions to
workers. As discussed in the method section we chose to dynamically hand out partition to keep the downtime
per process to a minimum. This however created a problem that we cannot store an in between state of
the partition in memory, as we do not know to which worker we (re)send a partition to for (re)calculations.
We also cannot store the total raster in memory of a single process, as the size could be too large to fit in
memory. This meant we that had to introduce a way to communicate intermediate results, and the path
chosen was to use I/O. In hindsight, the performance gain of keeping all processes busy probably does not
weigh up to the increased amount of time spend in I/O operations. For the number of workers used in
testing for this paper, I/O operations did not become a bottleneck, but when adding more workers, this
bottleneck will become noticeable in performance. If we were to use statically assigned partitions, we can
store a local copy of the partition in memory of that process, reducing the I/O operations to a minimum
where we need to only read once and write once. Another benefit is that we do not have to send entire
partitions between processes, but only the boundaries. When using smaller partitions as done in this paper,
this is not the most important problem to solve. However, scaling to larger partitions, the amount of memory
to store/send the raster increases exponentially and this will likely become a new bottleneck if we were to
send entire partitions. For reference, the maximum partition size in this paper is 1000x1000 with is around
0.07GiB, whereas a 20000x20000 raster is around 3GiB. Sending only the boundary in the latter case means
we only send 20000*4 = 80.000 cells between the process, compared to 20000*20000 = 400.000.000, which is
a decrease of 0.02% of data to be send.
To conclude, we have shown that we could develop a parallel cost distance algorithm that minimized idling
time of processes. This was done by dynamically distributing partitions. RSEstrong of the algorithm drops
below 80% when run with more than three workers, while RSEweak drops below 80% after when run with
more than two workers. The low RSEweak is to be expected since the workload per worker does not scale
linearly when increasing the raster size. A potential bottleneck when scaling to more workers will be the
amount of I/O by the root node, as was shown that relative time spend in I/O increases drastically when
adding more workers.



REFERENCES I

References

ArcGIS (Feb. 2023). Distance accumulation (spatial analyst). url: https://pro.arcgis.com/en/pro-
app/latest/tool-reference/spatial-analyst/distance-accumulation.htm.

Douglas, David H. (1994). “Least-cost Path in GIS Using an Accumulated Cost Surface and Slopelines”. In:
Cartographica: The International Journal for Geographic Information and Geovisualization 31.3, pp. 37–
51. doi: 10.3138/D327-0323-2JUT-016M. eprint: https://doi.org/10.3138/D327-0323-2JUT-016M.
url: https://doi.org/10.3138/D327-0323-2JUT-016M.

Eastman, J Ronald (1987). “Graduate School of Geography Clark University”. In: Worcester, MA, is in
the process of analysing recent satellite images and secondary growth in the southern Yucatan peninsular
region.

GRASS (Feb. 2023). GRASS manual. url: https://grass.osgeo.org/grass82/manuals/r.cost.html.
Jong, Kor de et al. (2022). “Scalability and composability of flow accumulation algorithms based on asyn-
chronous many-tasks”. In: Computers & Geosciences 162, p. 105083. issn: 0098-3004. doi: https://doi.
org/10.1016/j.cageo.2022.105083. url: https://www.sciencedirect.com/science/article/pii/
S0098300422000462.

Karssenberg, Derek et al. (2010). “A software framework for construction of process-based stochastic spatio-
temporal models and data assimilation”. In: Environmental Modelling & Software 25.4, pp. 489–502.
issn: 1364-8152. doi: https://doi.org/10.1016/j.envsoft.2009.10.004. url: https://www.
sciencedirect.com/science/article/pii/S1364815209002643.

Message Passing Interface Forum (June 2021). MPI: A Message-Passing Interface Standard Version 4.0. url:
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

Olsson, Lennart (1985). “An Integrated Study of Desertification”. English. Defence details Date: 1985-12-18
Time: 10:00 Place: Lund External reviewer(s) Name: Townshend, John Title: Reader Affiliation: University
of Reading —. Doctoral dissertation.

QGIS Development Team (2009). QGIS Geographic Information System. Open Source Geospatial Foundation.
url: http://qgis.osgeo.org.

Velde, Ewout van der (June 2023). Parallel cost distance algorithm. Version 1.0.0. url: https://github.
com/EwoutvanderVelde/parallel_cost_distance.

Wang, Y et al. (May 2013). Parallel Algorithm for Calculating Cost Distance of Raster Data.

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/distance-accumulation.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/distance-accumulation.htm
https://doi.org/10.3138/D327-0323-2JUT-016M
https://doi.org/10.3138/D327-0323-2JUT-016M
https://doi.org/10.3138/D327-0323-2JUT-016M
https://grass.osgeo.org/grass82/manuals/r.cost.html
https://doi.org/https://doi.org/10.1016/j.cageo.2022.105083
https://doi.org/https://doi.org/10.1016/j.cageo.2022.105083
https://www.sciencedirect.com/science/article/pii/S0098300422000462
https://www.sciencedirect.com/science/article/pii/S0098300422000462
https://doi.org/https://doi.org/10.1016/j.envsoft.2009.10.004
https://www.sciencedirect.com/science/article/pii/S1364815209002643
https://www.sciencedirect.com/science/article/pii/S1364815209002643
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://qgis.osgeo.org
https://github.com/EwoutvanderVelde/parallel_cost_distance
https://github.com/EwoutvanderVelde/parallel_cost_distance


A MEASUREMENTS II

A Measurements

Size Workers Latency (s)

250 1 744.57
250 2 410.30
250 3 300.83
250 4 243.02
250 5 211.56
250 6 196.22
250 7 191.99
250 8 173.15
500 1 569.97
500 2 309.50
500 3 236.21
500 4 201.61
500 5 178.79
500 6 165.89
500 7 146.95
500 8 139.09
1000 1 407.48
1000 2 236.21
1000 3 189.85
1000 4 167.36
1000 5 150.89
1000 6 162.65
1000 7 157.03
1000 8 142.20

(a) uniform cost, uniform sources.

Size Workers Latency (s)

250 1 2049.24
250 2 1079.62
250 3 763.19
250 4 608.35
250 5 527.81
250 6 515.53
250 7 508.62
250 8 483.37
500 1 1057.32
500 2 575.63
500 3 350.61
500 4 286.05
500 5 268.53
500 6 236.05
500 7 217.47
500 8 214.90
1000 1 513.67
1000 2 370.08
1000 3 300.86
1000 4 233.12
1000 5 240.66
1000 6 239.86
1000 7 247.26
1000 8 255.39

(b) Uniform costs, non-uniform
source.

Size Workers Latency (s)

250 1 830.50
250 2 413.31
250 3 292.67
250 4 246.14
250 5 219.11
250 6 207.74
250 7 209.10
250 8 200.16
500 1 560.92
500 2 278.31
500 3 205.50
500 4 179.63
500 5 172.92
500 6 175.27
500 7 169.36
500 8 176.72
1000 1 517.44
1000 2 282.51
1000 3 235.83
1000 4 183.62
1000 5 162.21
1000 6 148.67
1000 7 160.21
1000 8 177.26

(c) Non-uniform cost, uniform
sources.

Table 2: Average latency of 5 runs per configuration at 3 different partition sizes for the RSEstrong evaluation.
Total raster dimension are 3000x3000.



A MEASUREMENTS III

Size Workers Latency (s)

100 1 78.15
100 2 96.38
100 3 108.93
100 4 146.96
100 5 141.21
100 6 147.68
100 7 167.39
100 8 202.68
250 1 54.04
250 2 56.48
250 3 70.29
250 4 80.68
250 5 96.28
250 6 98.90
250 7 112.20
250 8 111.73
500 1 40.28
500 2 50.50
500 3 59.55
500 4 64.48
500 5 75.55
500 6 83.99
500 7 88.19
500 8 107.22

(a) uniform cost, uniform sources.

Size Workers Latency (s)

100 1 188.78
100 2 300.96
100 3 387.02
100 4 608.19
100 5 915.26
100 6 1446.53
100 7 2172.71
100 8 2568.36
250 1 95.76
250 2 136.69
250 3 141.51
250 4 250.69
250 5 325.17
250 6 387.55
250 7 493.18
250 8 605.74
500 1 51.52
500 2 73.29
500 3 83.89
500 4 130.40
500 5 165.87
500 6 211.90
500 7 250.49
500 8 327.66

(b) Uniform costs, non-uniform
source.

Size Workers Latency (s)

100 1 115.5
100 2 107.56
100 3 110.42
100 4 135.30
100 5 120.52
100 6 158.53
100 7 170.42
100 8 224.08
250 1 65.96
250 2 62.66
250 3 72.39
250 4 83.22
250 5 90.88
250 6 103.60
250 7 117.02
250 8 129.10
500 1 54.00
500 2 63.22
500 3 59.50
500 4 75.07
500 5 79.83
500 6 90.60
500 7 102.70
500 8 114.60

(c) Non-uniform cost, uniform
sources.

Table 3: Average latency of 5 runs per configuration at 3 different partition sizes for the RSEweak evaluation.



A MEASUREMENTS IV

Cells Partitions (re)calculated Average per worker

1000000 889 889
2000000 2580 1290
3000000 4244 1415
4000000 6598 1650
5000000 10934 2187
6000000 12578 2096
7000000 19093 2728
8000000 17529 2191

(a) uniform cost, uniform sources.

Cells Partitions (re)calculated Average per worker

1000000 4532 4532
2000000 15146 7573
3000000 28920 9640
4000000 52326 13082
5000000 90790 18158
6000000 146970 24495
7000000 215556 30794
8000000 252744 31593

(b) Uniform costs, non-uniform source.

Cells Partitions (re)calculated Average per worker

1000000 2076 2076
2000000 4402 2201
3000000 6346 2115
4000000 8944 2236
5000000 9462 1892
6000000 12668 2111
7000000 13964 1995
8000000 17841 2230

(c) Non-uniform cost, uniform sources.

Table 4: Number of partitions (re)calculated with average amount that a partitions (re)calculated per worker
for 3 raster scenarios. A partition size of 100 was used.



A MEASUREMENTS V

Cells Cells (re)calculated Average times cell (re)calculated

1000000 16431764 16.4
2000000 44761597 22.4
3000000 74694459 24.9
4000000 116103352 29.0
5000000 188503596 37.7
6000000 219841605 36.6
7000000 333523638 47.6
8000000 290172547 36.3

(a) uniform cost, uniform sources.

Cells Cells (re)calculated Average times cell (re)calculated

1000000 38375386 38.8
2000000 124345481 62.2
3000000 220682171 73.6
4000000 421990035 105.5
5000000 712969080 142.6
6000000 1151352169 191.9
7000000 1708295630 244.0
8000000 2002923358 250.4

(b) Uniform costs, non-uniform source.

Cells Cells (re)calculated Average times cell (re)calculated

1000000 24578897 24.6
2000000 44986914 22.5
3000000 64250221 21.4
4000000 95544459 23.9
5000000 94453387 18.9
6000000 124934772 20.8
7000000 136375453 19.5
8000000 174017569 21.8

(c) Non-uniform cost, uniform sources.

Table 5: Number of ACD calculations with average amount that a cell has been (re)calculated for 3 raster
scenarios. A partition size of 100 was used.


	Introduction
	Methods
	Cost Distance Algorithm
	Parallelization
	Implementation
	Evaluation

	Results
	Discussion
	References
	Measurements

