
UTRECHT UNIVERSITY

Department of Information and Computing Science
Department of Physical Geography

Applied Data Science Master Thesis

A Universal Approach: Utilizing Machine Learning to

Mimic the Dynamics of Large-Scale, High-Resolution

Numerical Models of Geographical Systems

First examiner:
Prof. Dr. Derek Karssenberg

Second examiner:
Oriol Pomarol Moya (MSc.)

Candidate:
Rick ten Eikelder (BSc.)

Cohort:
2022-2023

30th June 2023

Abstract

Complex Earth System processes are commonly studied in the field of geosciences
using computationally intensive models. These models often require significant
computational resources, resulting in long simulation times. One proposed solu-
tion is surrogate modelling, where a part of the complex simulation model is re-
placed by a Machine Learning (ML) model. In this study, the feasibility of using a
transparent Random Forest (RF) model as a universal surrogate for different nu-
merical models of geographical systems is evaluated. The performance of the RF
model is assessed in terms of its ability to replicate various pixel-based numerical
models, its interpretation capabilities, and its generalisation to unseen data. The
accuracy of the results differ significantly between simulation models. The model
used in this research is capable of emulating simple simulation models but per-
forms poorly on more intricate models. However, the results demonstrate that the
RF model effectively emulates geographical models. With this research a first step
is made to construct a general software framework to a universal approach of us-
ing ML-models as surrogates models in simulations of geographical systems.

Contents

1 Introduction 1

2 Methods 3

2.1 Surrogate modelling . 3

2.2 Simulation models . 4

2.3 Machine learning approach . 6

2.4 Data . 8

3 Results 10

3.1 Proof of concept: one-step prediction 10

3.2 Simulation predictions trained on state variable 13

3.3 Simulation predictions trained on external input

and neighbourhood interactions 15

3.4 Interpolation and extrapolation analysis 18

4 Discussion 24

5 Conclusion 26

Bibliography 30

6 Appendix A - Simulation models A - 1

6.1 Details on game of life . A - 1

6.2 Details on forest fire simulation . A - 2

6.3 Details on snow model . A - 3

7 Appendix B - Software stack B - 1

1. Introduction
In the field of geosciences, computationally intensive models are used extensively
to study complex phenomena and simulate various Earth System processes. These
models play a crucial role in understanding geological formations, weather pat-
terns, climate dynamics, and other intricate systems [1]–[4]. With the advancement
of computational power, geoscientists increasingly rely on numerical calculations
to approximate the behaviour of these phenomena. However, it is important to
recognise that there are inherent limitations imposed by the available computing re-
sources. The computational time required for these models increases significantly
with larger extent, higher resolutions, and increased intricacy of the models. For
instance, fully-coupled mid-resolution global climate models, which are used in
geoscience, may require weeks to run on supercomputers [5]. This example un-
derscores the substantial computational demands of such models, highlighting the
need to consider the available computing resources and the reduction of computa-
tion time. For example, in forest fire models the computation time roughly follows
O(n)3 where n is the number of cells of one dimension of the grid, assuming a
square simulation space [6].

There are many different approaches to reducing computation time without the
loss of resolution or scale. One of these approaches is to implement machine learn-
ing (ML) models to take over various parts of the simulation model. If the simula-
tion model is coupled with the ML model this construction is called a hybrid model
[7], [8]. There are studies where ML is used to downscale spatial and temporal as-
pects of the models [9]–[12]. Integration of ML models in physics-based models is
a growing trend within the field of Earth science [7]–[18].

Over the past few years, the implementation of ML algorithms to support large
numerical models has gained significant popularity. This rise in popularity has
led to a proposal advocating for the standardised use of ML in climate simulations
[19]. However, there are differing views among scientists regarding the integration
of ML models to supplement climate models. Some argue that the validity of the
model is compromised since the ML model fails to represent the physical processes
it predicts [20]. Nevertheless, studies have demonstrated that ML methods can
accurately approximate the underlying equations governing the model output data
of the simulation model it replaces [21], [22]. It is important to note that the accuracy
of ML methods heavily relies on the quality of the data.

To address the challenges associated with computational limitations, it is es-
sential to evaluate the possibilities of using ML to reduce computation time. In
this regard, the utilisation of a ML model to function as a surrogate model offers a
promising solution. This approach has been performed in several other disciplines
with Artificial Neural Networks (ANN) models [23]–[28]. ANN models can ac-
curately represent physics-based patterns, even non-linear patterns. However, the
scientific results of these geophysical and climate models are used by politicians

1

Introduction

and other policy makers in their decision making process [29]. Therefore, there is
a significant need for a transparent decision-making process within the algorithm,
allowing for a clear understanding of how predictions are made. The calculations
of a NN model quickly become very complex and it is not always clear how the
algorithm came to its final result. A Random Forest (RF) model offers more trans-
parency if the structure of the algorithm is kept small. A RF model is considered
transparent because it allows for interpretation and understanding of its predictions
through the examination of individual decision trees and feature importance.

The primary objective of this research is to evaluate the possibility of utilising
a transparent RF model as a universal surrogate for different types of numerical
models of geographical systems. An important aspect of this objective is the uni-
versality of the approach. This research is a start in the development of a general
methodology and software. During this study, the software framework is written
as general as possible and allows for any pixel-based simulation to be emulated by
the RF model. This objective is divided into the following research questions:

Main question: Can a universal RF model emulate different types of pixel based
numerical models of geographical systems?

• How does the RF model perform when it is trained exclusively on the state
variable, the variable of interest?

• To what extent is the performance of the RF model dependent on neighbour-
hood interactions and external input such as precipitation and temperature?

• How effectively does the RF model generalise to unseen data, in terms of in-
terpolation and extrapolation?

To answer these questions, the research starts predicting a single step, applying the
RF model to the following simulations: game of life, forest fire model, and snow
accumulation model. Subsequently, the aim is to assess the RF model’s ability
to predict complete simulations using only the state variable from the simulation
models. Additionally, the research will explore the incorporation of external input,
such as precipitation and temperature, to enhance the performance of the RF model
on complete predicted simulations. In order to evaluate the model’s generalisabil-
ity and limitations, the performance on interpolation and extrapolation is analysed.
The code can be found on the github repository [30].

2

2. Methods
This chapter provides a general introduction to surrogate modelling which is fol-
lowed by the update functions of the simulation models used in this research. For
more details on the simulation models see the appendix 6. This chapter continues
with details on the RF model and the predictive performance evaluation methods
used in this research.The chapter ends with details on the structure and organisa-
tion of the data.

2.1 Surrogate modelling
Surrogate modelling provides a valuable framework for emulating simulation mod-
els, because of its ability to approximate the behaviour of simulation models while
reducing computational demands. By understanding the underlying framework
and key concepts, we can better appreciate the applicability and advantages of sur-
rogate modelling in emulating diverse simulation models, such as the snow accu-
mulation simulation and forest fire simulation. The approach to surrogate mod-
elling involves constructing a ML model that aims to emulate the behaviour of the
simulation model. By doing so, the surrogate model offers a computationally effi-
cient alternative to running time-consuming forward simulations.

Let us denote the state variables at the current timestep for a specific grid cell
as S(x, y, t), where x and y represent the spatial coordinates and t represents the
timestep in the simulation. Let us also denote the external input and parameters
at the current timestep for the same grid cell as I(x, y, t) and P(x, y), respectively.
The update function that calculates the state variables for the next timestep based
on the current state variables, inputs and parameters, is described by the following
equation:

S(x, y, t + 1) = f(S(x, y, t), I(x, y, t), P(x, y), N(S(x, y, t))) ∀ x, y, t ∈ Q. (2.1)

Where f() represents the update function, N(S(x, y, t)) represents the state variable
of the neighbouring cells at timestep t and Q is the set containing all possible com-
binations ofx, y and t. This factor is included to account for the spatial dependencies
and interactions between adjacent cells. This allows for a more comprehensive and
realistic representation of the system dynamics and evolution over time. The sur-
rogate model can only receive the same inputs as the simulation model it emulates.
Therefore, the surrogate model can be described by the same structure, where the
only difference is that the update function f is replaced by the ML model Z,

S(x, y, t + 1) = Z(S(x, y, t), I(x, y, t), P(x, y), N(S(x, y, t))) ∀ x, y, t ∈ Q. (2.2)

The ML model predicts the state variable S(x, y, t+1) one timestep ahead. This
prediction, now S(x, y, t), the neighbourhood information N(S(x, y, t)), the input

3

Methods

I(x,y,t) and parameters P(x, y) form the data on which the next prediction is made.

2.2 Simulation models
In this subsection, the simulation models employed in this study are described.
The primary focus of this section is to describe the governing equations of the sim-
ulations, not on describing the physical understanding of the system represented
by these models. The governing equations describe the underlying pattern of the
data that the surrogate ML-model is intended to learn. In each subsection the cor-
responding update function is provided. These update functions are denoted by
equations with a similar structure as Eq. 2.1, which serve as a direct representation
for the inputs required by the surrogate model to emulate that specific simulation
model. More detailed information about the simulation models can be found in
Appendix 6.

2.2.1 Cellular automata - (game of life, forest fire)

The game of life and forest fire simulations used in this study are based on cellular
automata. Therefore, a short general overview of cellular automata (CA) is de-
scribed. In a CA model, space and time are discrete and the interactions are purely
local. The spatial element in CA is a 2-dimensional grid, where each position in
the grid (cell) takes a value describing the state of the system at time t, S(x, y, t).
During all simulations in this study, the neighbourhood N(S(x, y, t)) is defined to be
all of the adjacent cells of each cell at (x,y,t) see Figure 2.1 for an illustration. Where
the neighbourhood of the target cell (circled) is defined to be all of the cells directly
adjacent. The states of all cells are updated by a system that can be represented by
the simpler simulation model equation (2.1). In CA models each cell can take one

Figure 2.1: Schematic overview of a neighbourhood as defined in this study [31].

of multiple states, in the CA simulations employed in this study each cell can either
have the value 0 or 1. For the game of life simulation the states 0 and 1 mean that

4

2.2 Simulation models

the cell is dead or alive, respectively. For the forest fire simulation the states 0 and
1 mean that the cell is ’OFF’ or ’ON fire’, respectively. The transition from one state
to another is determined by a transition rule [32].

2.2.2 Game of Life simulation

In the game of life simulation the state variable S(x, y, t) can either be ’alive’ =
1 or ’dead’ = 0. The value for the state variable is determined by the number of
neighbours that are ’alive’. See appendix 6 for a more detailed description of the
simulation. The update function for the game of life simulation is described by Eq.
2.3,

Sg(x, y, t + 1) =

{
1, if ∑ N(S(x, y, t)) = 2 or 3

0, Otherwise.
(2.3)

Where Sg(x, y, t+ 1) represents the new state of the cell at time step t+1, ∑ N(S(x, y, t))
counts the alive neighbours. The update function follows the general form of Eq.
2.1 without any input I(x, y, t) or parameters P(x, y).

2.2.3 Forest fire simulation

Similarly to the game of life simulation, the state variable S(x, y, t) is one of two
states, ’ON fire’ or ’OFF’. In contrast to the game of life simulation, which is fully
deterministic, the forest fire model contains a stochastic component. The probabil-
ity of a cell changing state to ’ON’ is calculated in the simulation, see appendix 6
for a more detailed description on how this is calculated. The update function of
the forest fire model is described by Eq. 2.4,

S f (x, y, t + 1) =

{
0, if pburn < u and S f (x, y, t) = 0

1, Otherwise
for u ∈ U. (2.4)

Where S f (x, y, t + 1) represents the state variable, pburn represents the probability
of the cell to change state to ’ON fire’ and U is the uniform probability distribution
on the interval [0-1]. The state variables of the neighbourhood, the elevation and
the parameter values for α and R are explicit requirements for the calculation of
pburn.Thus, for emulating the forest fire model,S(x, y, t), N(S(x, y, t)), elevation as
input I(x, y, t)elevation and the parameters P(x, y) α and R are used to train the RF.

2.2.4 Snow accumulation model

In the snow model the state variable S(x, y, t) represents the amount of accumulated
snow on each cell in meter. This is calculated in various steps, more details on this
can be found in the Appendix 6. The update function of this simulation model is

5

Methods

described by Eq. 2.5,

Ss(x, y, t + 1) =

{
Ss(x, y, t) + Snow f all − Snowmelt, if Snowmelt < Ss(x, y, t)

Snow f all, Otherwise
(2.5)

Where the conditional statement sets a boundary to prevent the model from gener-
ating negative values for snow accumulation. Snowmelt and Snowfall are calculated
based on the precipitation I(x, y, t)precipitation, the temperature I(x, y, t)temperature, the
elevation I(x, y, t)elevation and the temperature lapse rate P(x, y)TLR. These inputs
and parameter are also used to train the ML model.

2.3 Machine learning approach
As mentioned in the introduction, transparency of the model is important when
applying a ML model as a surrogate for an important climate model. A RF model
is considered transparent because it allows for interpretation and understanding
of its predictions through the examination of individual decision trees and feature
importance. Therefore, a RF algorithm is chosen which is kept limited in its con-
figuration, to accommodate the transparency. A RF model is transparent because it
is build up of a series of binary splits that represents the decision-making process
of the model, which can be easily visualised and understood. This interpretability
makes it easier to trace and explain the reasoning behind the model’s predictions.A
RF is an ensemble learning algorithm that combines the predictions of multiple de-
cision trees to make more accurate predictions. See Figure 2.2 for an example of part
of a decision tree used to model the game of life simulation. The RF model operates
by constructing multiple decision trees during the training phase and averaging
their outputs to obtain the final prediction. At each decision the gini index is op-
timised, the algorithm optimises for the highest level of homogeneity in the data
after the split. The samples used to make each decision are sampled from the data
set available at the first node. In this study bootstrapping is used, this entails that
at the first node of a tree a random subset of the total available data is chosen [33].
Each decision tree is then trained on one of these subsets using a random selection
of features. By introducing randomness in both the data and feature selection, the
RF model reduces the risk of overfitting and improves generalisation.

2.3.1 Random forest configuration

In designing the RF model, the trade-off between accuracy and transparency is
taken into account. With the goal in to make a first step towards a universal sur-
rogate ML model for geographical systems, the RF configuration is unchanged
throughout the study. The RF configuration is limited to contain a maximum of
10 trees, each with a maximum depth of 10 decision layers. This limitation of the
number of trees and the depth helps prevent excessive complexity and potential

6

2.3 Machine learning approach

Figure 2.2: Part of a possible decision tree for emulating the game of life simulation. Each
rectangle represents a decision. The arguments in each rectangle are from top to bottom:
decision criteria, impurity of data index, number of samples used to make this decision,
number of samples. The terms in the image such as ’bottom’, ’left’ refer to the neighbours
of the cell.

overfitting, making the model more transparent and easier to interpret. For the
game of life and forest fire simulations a RF classifier model is used. For the snow
accumulation model a RF regressor model is used. To summarize, the configura-
tion of the model is kept the same with the following arguments: Maximum trees
(nestimators = 10), maximum tree depth (maxdepth = 10) and include bootstrapping
as discussed in the theory section.

2.3.2 Performance evaluation methods

The performance of the RF method is evaluated in different ways for different mod-
els. The game of life and forest fire simulations assign a Boolean value to each pixel
and can therefore be evaluated by constructing a confusion matrix. From the re-
sults of this confusion matrix the corresponding accuracy can be calculated. In the
next stages of the research full simulations are predicted. In evaluating the forest
fire model, a timeseries of the area of the fire is generated for comparison with sim-
ulations. Unlike the snow model evaluation, where tracking the amount of snow
provides a clear timeseries, the forest fire model considers cells as ’OFF’ until they
change state to ’ON’. This information only reveals the timestep when a single cell
changes state. However, the forest fire has a stochastic component, and the ratio
between α and R affects the fire’s direction.

Predictions on the snow accumulation model are evaluated on the mean squared
error (MSE) between the predicted amount of snow and simulated amount of snow
on each pixel over the complete time of the simulation. The MSE is a commonly
used and easy to interpret metric. This generates a map with the MSE of each pixel.

7

Methods

The snow accumulation model is also evaluated on the timeseries of the amount of
snow on 4 points in the simulation, see Fig 2.3.

Figure 2.3: Evaluation points for the snow model.

The points are chosen based on the pattern of the amount of snow on these points
during the simulation. Two of these points showed an increasing pattern in the
amount of snow and the other two showed an oscillating pattern of accumulation
and complete melting of the snow.

2.4 Data
All data used in this research is generated by simulations. The forest fire simulation,
snow accumulation simulations and the data regarding the elevation, temperature
and precipitation are provided by the PCRaster tutorial [34].

2.4.1 Training and test data

The target feature is for every simulation at all stages throughout the studies the
state variable of the next timestep S(x, y, t+1). The training data is generated by run-
ning the simulation model with different values for the parameter P(x, y). For the

8

2.4 Data

interpolation and extrapolation studies an extra simulation is run with the parame-
ter that is to be emulated by the RF. This last complete simulation is not contained in
the training data and kept separate to test the model predictions. The RF emulates
a full simulation step wise, it predicts the state variable for t+1. At each prediction
step the model receives the previous prediction S(x, y, t), possible external input
I(x, y, t), neighbourhood N(S(x, y, t)) and parameters P(x, y) for the next prediction.
This way, at each time step the surrogate model receives the same information that
would otherwise be given as input to the simulation model at this timestep. This
process is schematically visualised in Figure 2.4. In the proof of concept predictions

Figure 2.4: A schematic representation of the prediction cycle.

only the state variables S(x, y, t) and neighbourhoods N(S(x, y, t)) are taken into
account for training and testing. For the rest of the research the training data is
represented in Table 2.1. The testing data always contained one full simulation that
was executed with the testing parameter P(x, y).

Table 2.1: This table shows an overview of which features are taken into account for em-
ulating which model
Models S(x, y, t) N(S(x, y, t)) I(x,y,t) P(x, y)
Game of life Cell dead = 0 or alive = 1 S(x, y, t) - -

for each neighbour
Forest fire Cell ‘ON fire’ = 1 or ‘OFF’= 0 1 IF any of the neighbours = 1 Digital Elevation Map R

α

Snow Amount of snow in meter - Precipitation, TLR
Temperature
Digital Elevation Map

In the part of the research where the influence of the input I(x, y, t) is evaluated, the
models are first trained on only the state variables S(x, y, t) so that the prediction
is solely based on the previous prediction. These results are then compared to a RF
model that is trained on features as described in Table 2.1.

9

3. Results
In this chapter the results of the study are presented. Firstly, the universal RF model
is tested for one-step prediction across three distinct simulation models: the game of
life simulation, a forest fire model, and a snow accumulation model. Subsequently
the influence of the external input I(x,y,t)is evaluated. This chapter concludes with
the results of the interpolation and extrapolation study.

3.1 Proof of concept: one-step prediction
The results of the one step prediction on the game of life, forest fire model and snow
model are described in this chapter.

3.1.1 Game of Life

The RF model classifies each cell as either ’alive’ or ’dead’. Dead pixels are black
and alive pixels are white. In Figure 3.1 the target state is shown on the left and the
prediction is shown on the right. The prediction performs well except on the edge
of the simulation. In emulating the game of life simulation, the RF is supposed to
pick up on the algorithmic relation between a state and it’s neighbours as explained
in Appendix 6.

(a) Target for the prediction. (b) Prediction

Figure 3.1: Comparing the target state and the predicted state for a one-step prediction
of a game of life simulation. White squares are ’alive’ and black squares are ’dead’ in the
simulation. The left figure shows the target and the right figure shows the prediction.

10

3.1 Proof of concept: one-step prediction

The wrong classifications at the edge are an artefact of a differently defined neigh-
bour in the simulation then in the data preparation for the ML model. This method
for determining neighbours is only used at the game of life simulation. However,
this problem is reduced as the simulation space increases. The ratio of the edge to
the total amount of pixels is 4x

x2 , where x is the size of one edge of the simulation
space in a square simulation. Overall the RF model performs well as can be seen in
the confusion matrix in Figure 3.2a. The accuracy of the prediction is 0.987.

(a) Confusion matrix of the prediction of the
game of life simulation. Where 0.0 represents a
pixel that is ’dead’ and 1.0 represents a pixel that
is ’alive’, with on the vertical axis the target val-
ues, on the horizontal axis the simulated values.

(b) Confusion matrix of the prediction of the
forest fire simulation. Where 0 represents a pixel
that is ’OFF’ and 1 represents a pixel that is ’ON’,
with on the vertical axis the target values and on
the horizontal axis the simulated values.

Figure 3.2: Confusion matrices for the forest fire simulation [right] and game of life simu-
lation [left] one step predictions.

3.1.2 Forest Fire

For the emulation of the forest fire simulation, the RF model classifies any pixel
on the map to be either ’OFF’ or ’ON FIRE’. The result of the one step prediction
is shown in Figure 3.3, with on the left the target state and on the right the pre-
dicted state. The overall shape of the fire is the same in the prediction and the
target. Around the edges of the fire there are some small deviations. The overall
performance is shown in the confusion matrix in Figure 3.2b. The accuracy of the
prediction is 0.998. This is a good indication that the RF can accurately predict one
step of the forest fire simulation.

11

Results

(a) Target for the prediction. (b) Prediction

Figure 3.3: Comparing the target state and the predicted state for a one-step prediction
of a forest fire simulation. Grey squares are ’OFF’, the red squares are ’ON’ fire. Blue
squares are not on the map.

The values outside of the map (grey), but in the simulated space (blue) are not taken
into account in the confusion matrix and accuracy calculation because these would
disrupt the accuracy measure. The accuracy is determined only by the pixels on the
map.

3.1.3 Snow accumulation model

In contrast to the previous two classification models, a RF regressor model is now
constructed to predict the amount of snow. The one step prediction is depicted in
Figure 3.4, on the left is the target state and on the right is the predicted state.

(a) Target for the prediction. (b) Prediction

Figure 3.4: Comparing the target state [left] and the predicted state[right] of a snow accu-
mulation simulation. The colors on the map illustrate the snow depth in meters for each
pixel.

12

3.2 Simulation predictions trained on state variable

The predicted amount of snow is too high, but the spatial pattern of the prediction
approximate the target simulated state well.

3.2 Simulation predictions trained on state variable
The data used to train the RF-model in this section contains only the state variables
of the previous step S(x, y, t).

3.2.1 Forest Fire

To evaluate the evolution of the forest fire the simulated and predicted area of the
fire is compared at each timestep, see Figure 3.5. The predicted fire does not increase
in size.

Figure 3.5: The area of the fire per timestep. The green line represents the area of the sim-
ulated fire. The blue line represents the area of the predicted fire. In these predictions
only the previous state is used as input for the next state.

The ML-model was unable to learn the underlying pattern governing the fire spread
in the simulation. This was to be expected, there is no causal link between not being
on fire and catching on fire. The simulated fire only spreads by proximity, since
burning projectiles are not included in the simulation model.

13

Results

3.2.2 Snow accumulation model

In this section, the predicted forest fire and snow model are evaluated. The pre-
dictions of the model based only on the state variable for the snow accumulation
model are shown in Figure 3.6. The amount of snow is evaluated on the 4 points
described in the methods section, see Fig 2.3 in the simulated space.

Figure 3.6: The amount of snow calculated on four points. RF model exclusively trained
on S(x, y, t). The green line represents the amount of snow at each timestep of the simu-
lation model, the blue line represents the amount of snow at each timestep of the predic-
tions of the ML-model.

The ML-model did not learn the underlying pattern of the snow accumulation
based on the amount of snow in the previous step only. This makes sense since
the future amount of snow is not only dependent on the current amount of snow.
The predictions of the ML-model are fluctuating slightly, in the timeseries of point

14

3.3 Simulation predictions trained on external input
and neighbourhood interactions

four is visible that there is a relatively small, random deviation from the starting
point in the predictions. The predictions do not follow the trend of the simulated
timeseries on these points. The error on each pixel, averaged over the timeseries, is
shown in Figure 3.7.

Figure 3.7: The mean squared error (MSE) between the predicted and simulated values.
The MSE is calculated per pixel averaged over the timeseries.

Since the predicted values are practically unchanged over the timeseries, this MSE
map can be used as a reference for maximum error for this simulation trained on a
TLR of 0.005.

3.3 Simulation predictions trained on external input
and neighbourhood interactions

In this chapter the results are presented on full simulations including external input,
neighbourhood interactions and parameters. The RF model in this section has been
trained on the features as described in Table 2.1.

3.3.1 Forest Fire

The results in this subsection are based on the RF model trained on S(x, y, t), N(S(x,
y, t)), I(x, y, t)elevationand parameters P(x, y), α and R. This result is compared to the
previous predicted fire spread in Figure 3.8.

15

Results

(a) Including neighbouring pixels. (b) No neighbouring pixels.

Figure 3.8: Compare performance of RF model with and without neighbourhood, param-
eters and external input. The green line represents the area of the simulated fire. The blue
line represents the area of the predicted fire.

The RF model is able to predict the increase in the area of the fire. The area of
the predicted fire increases faster then that of the simulated fire. The difference in
performance is evident and in line with expectation. The importance of each feature
is evaluated to demonstrate the importance of the neighbouring pixels, see Figure
3.9.

(a) Feature importance is computed as the mean
and standard deviation of accumulation of the
impurity decrease within each tree [35].

(b) The feature importance is determined based
on the model performance by randomly shuffling
one feature [36].

Figure 3.9: Feature importance for the RF trained on the forest fire simulation.

The evaluation of feature importance indicates that the contribution of neighbour-
ing pixels to the prediction is substantial. This is in line with expectation since the
Pburn is explicitly dependent on N(S(x, y, t)).

16

3.3 Simulation predictions trained on external input
and neighbourhood interactions

3.3.2 Snow accumulation model

The temperature lapse rate (TLR) for the predicted simulation is 5e-3 [◦C km−1].
The following results are generated by the RF trained on the parameter TLR. The
predictions are compared to the predictions of the previous section in Figure 3.10.

(a) Including I(x, y, t) and P(x, y) in the model. (b) Solely trained on S(x, y, t).

Figure 3.10: Compare performance of RF model with and without I(x, y, t) and P(x, y).
The amount of snow in meter calculated on four points. The green line represents the
target amount of snow, the blue line represents the predicted amount of snow.

17

Results

(a) I(x, y, t) and P(x, y) included in the
model. (b) Model solely includes on S(x, y, t)

Figure 3.11: The MSE of the predictions solely based on S(x, y, t) [right] is compared to
the predictions based on S(x, y, t), I(x, y, t) and P(x, y) [left]. The MSE is calculated per
pixel averaged over the timeseries.

The abrupt transitions are accurately represented in the predictions that include I(x,
y, t) and P(x, y), as seen in Figure 3.10a. There is a significant discrepancy between
the predicted amounts of snow and the target. The error of these predictions is com-
pared to the baseline error in Figure 3.11. The map with the MSE of the predictions
including the external input and parameters, is shown in Figure 3.11a. The error
is lower over the entire map for the model that included I(x, y, t) and P(x, y). No-
tably, the highest error is lower, approximately 0.035 compared to 0.08. The spatial
pattern is similar in both predictions.

3.4 Interpolation and extrapolation analysis
This section demonstrates the performance of the RF model in predicting simula-
tions with interpolated/extrapolated parameters P(x, y). The forest fire emulations
are tested on α and R. The snow accumulation model is tested on TLR.

3.4.1 Interpolation

The predictions in this subsection emulate a simulation of which the P(x, y) lies
within the range of values for this parameter used in the training data.

Forest Fire

The forest fire simulation is tested on interpolation for both α and R. The results
for α and R can be seen in Figure 3.13 and Figure 3.12, respectively. The evaluation

18

3.4 Interpolation and extrapolation analysis

of the performance on interpolated values of R involves maintaining a constant
α during both the training and testing phases, here α = 0.05. The outcomes are
presented in Figure 3.12. This simulation is divided into two segments, with Figure
3.12a illustrating the prediction of the simulation with R = 0.2, while Figure 3.12b
showcases the prediction of the simulation with and R = 0.3.

(a) Train: R = [0.005, 0.015, 0.02, 0.025, 0.003,
0.035]
Test: R = [0.01]

(b) Train: R = [0.005, 0.01, 0.015, 0.025, 0.003,
0.035]
Test: R = [0.02]

Figure 3.12: Constant α = 0.05. Interpolation of R. The green line represents the area of
the simulated fire. The blue line represents the ML predictions.

For both values of R, the RF model successfully predicts the curve for the first 30
predictions, with the prediction for R = 0.01 being significantly more accurate then
the previous result shown in Figure 3.8a. However, around the 30th predictions, the
model starts to overestimate the rate of the fire spread for R = 0.02. The evaluation
of the performance on interpolated values of α involves maintaining a constant
R during both the training and testing phases, here R = 0.01. The outcomes are
presented in Figure 3.13. This simulation is divided into two segments, with Figure
3.13a illustrating the prediction of the simulation with α = 0.2, while Figure 3.13b
showcases the prediction of the simulation with α = 0.3. The RF model appears to
be less effective in interpolating predictions of α. For both values of α the model
overestimates the growth rate of the fire. The underperformance of the model on
interpolation of α becomes clear when comparing Figure 3.13a with Figure 3.12a.
Both final simulations are performed with the values α = 0.2 R = 0.01. The training
data for different values of α does not represent target simulation accurately.

19

Results

(a) Train: α= [0.05, 0.1, 0.15, 0.25, 0.3, 0.35]
Test: α = [0.2]

(b) Train: α = [0.05, 0.1, 0.15, 0.2, 0.25, 0.35]
Test: α = [0.3]

Figure 3.13: Constant R = 0.01, interpolation of α. The green line represents the area of
the simulated fire. The blue line represents the ML predictions.

Snow accumulation model

In general it is clear that the predictions follow the pattern of the simulated snow
accumulation, as seen in Figure 3.14. The patterns between the prediction and target
of the individual points fits better compared to Fig ??.

(a) Train: TLR = [0.001, 0.003,
0.004, 0.005]
Test: TLR = [0.002]

(b) Train: TLR = [0.001, 0.002,
0.004, 0.005]
Test: TLR = [0.003]

(c) Train: TLR = [0.001, 0.002,
0.003, 0.005]
Test: TLR = [0.004]

Figure 3.14: The amount of snow in meter calculated on four points. The green line rep-
resents the amount of snow at each timestep of the simulation model, the blue line repre-
sents the amount of snow at each timestep of the predictions of the ML-model.

The MSE map of these predictions as can be seen in Figure 3.18. The MSE of all
interpolated emulations are below 0.006 max. This is not lower then the previous

20

3.4 Interpolation and extrapolation analysis

best MSE of 0.04 at the predictions of Figure 3.11a. In the simulations with a lower
LTR the target is lower in general.

(a) Interpolated on TLR of
0.002.

(b) Interpolated on TLR of
0.003.

(c) Interpolated on TLR of
0.004.

Figure 3.15: MSE of predictions on interpolated TLR. The MSE between the predicted
and simulated values. The MSE is calculated per pixel averaged over the timeseries.

3.4.2 Extrapolation

The predictions in this subsection emulate a simulation of which the P(x, y) lies
outside the range of values for this parameter used in the training data.

Forest Fire

The RF emulating the forest fire simulation is tested on extrapolated values of α
in Figure 3.16a and on extrapolated values of R in Figure 3.16b. The evaluation
of the performance on interpolated values of R involves maintaining a constant
α during both the training and testing phases, here α = 0.05. The outcomes are
presented in Figure 3.12. This simulation is divided into two segments, with Figure
3.12a illustrating the prediction of the simulation with R = 0.2, while Figure 3.12b
showcases the prediction of the simulation with and R = 0.01.

Snow accumulation model

Extrapolation of TLR. It is visible in Figure 3.17 that the extrapolation for low rates
of TLR are slightly better then the extrapolation for higher rates. However, in both
cases the emulation unperformed.

21

Results

(a) Constant R = 0.01.
Train: α = [0.25, 0.3, 0.35, 0.4, 0.45, 0.5]
Test: α = [0.2]

(b) Constant α = 0.2.
Train: R = [0.02, 0.03, 0.04, 0.05, 0.06, 0.07]
Test: R = [0.01]

Figure 3.16: Extrapolation of α (left) and R (right). The green line represents the area of
the simulated fire. The blue line represents the ML predictions.

(a) Train: TLR = [0.002, 0.003, 0.004, 0.005] Test:
TLR = [0.001]

(b) Train: TLR = [0.001, 0.002, 0.003, 0.004] Test:
TLR = [0.005]

Figure 3.17: Extrapolated results of the TLR of the snow accumulation model. The green
line represents the amount of snow at each timestep of the simulation model, the blue
line represents the amount of snow at each timestep of the predictions of the ML-model

The MSE map of the lower LTR is much lower then the MSE of the higher rate.
However, this is not necessarily due to a better prediction. The target values of
the lower rate are much lower since the temperature drops less on higher altitudes,

22

3.4 Interpolation and extrapolation analysis

there is less snow on each pixel.

(a) Extrapolated on TLR of 0.001. (b) Extrapolated on TLR of 0.005.

Figure 3.18: MSE of predictions on extrapolated TLR. The MSE between the predicted
and simulated values. The MSE is calculated per pixel averaged over the timeseries.

23

4. Discussion
In this research a universal approach towards surrogate modelling for simulation
models of geographical systems is explored. The ML algorithm used in this research
is a RF-model. This RF model has the same configuration for each simulation it
emulates during the study, to test the universality of this approach. The research
starts with a proof-of-concept, where the RF model predicts one timestep of three
different simulation models. The simulation models that are used are the game of
life simulation, a forest fire model and a snow model. In the proof of concept stage
is seen that the model can predict the forest fire model and game of life simulation
with an accuracy of 99,8% and 98,7%, respectively. The predictions on the snow
model were too high, but the RF model predicted the overall spatial pattern of snow.

Based on the promising results of the proof-of-concept stage, the research con-
tinued in the next stage, focusing on examining the impact of external inputs I(x, y,
t) and neighbourhoods N(S(x, y, t)) on the predictive performance of the forest fire
and snow model. The results show that I(x, y, t) and N(S(x, y, t)) are of great impor-
tance in emulating the simulated model. Not taking the N(S(x, y, t)) into account
for the forest fire or disregarding precipitation and temperature in the snow model
results in predictions that deviate only slightly around the starting point. These re-
sults answer the first and second sub-questions: How does the RF model perform when
it is trained exclusively on the state variable? and To what extent is the performance of the
RF model dependent on neighbourhood interactions and external input such as precipitation
and temperature?

The research concluded by testing the RF model on its ability to perform on ex-
trapolated and interpolated parameters of the simulation model. The performance
of the RF model on interpolation and extrapolation differs substantially between
simulation models. The RF model seems to perform well on interpolation for the
parameter R and well on the extrapolation of both parameters of α and R for the
forest fire model. These results answer the third sub-question: How effectively does
the RF model generalise to unseen data, in terms of interpolation and extrapolation?

These findings combined offer a glimpse into the Main research question: Can
a universal RF model emulate different types of pixel based numerical models
of geographical systems? The universal RF model in its current configuration per-
formed well in the proof of concept. It can emulate simpler simulation models,
such as the simplified forest fire model used in this research. The RF model did not
seem to capture the details of the snow model. However, these shortcomings can
be improved by allowing for different configurations of the RF model.

It is important to acknowledge certain limitations within this study. The RF
model configuration in this study is kept relatively simple. The maximum tree
depth of 10 is unlikely to pick up on more complex patterns such as the patterns
underlying the snow model. The study of a more complex, less transparent RF
model as a universal surrogate can be an interesting addition to this research. An-

24

other limitation in this study is the diversity of simulation models used to test the
universality of this approach. The scope of the research can be expanded by includ-
ing a wider range of simulation models and geographical systems would improve
the universality of the research. This could involve different spatial scales, different
types of simulations, or additional variables of current simulations. Furthermore,
relaxation of the transparency constraint would allow for the evaluation of differ-
ent ML algorithms. Exploring the temporal dependencies in the simulation models
by implementing a recurrent neural networks or to pick up on spatial dependen-
cies without explicitly defining N(S(x, y, t)), offers promising directions for future
research.

Finally, in the forest fire models, the propagation and outline of the fire relies sig-
nificantly on a nuanced ratio between the parameters α and R. In future research,
when assessing the performance of a universal surrogate model on parameter in-
terpolation and extrapolation, it is important to maintain the ratio between these
parameters instead of altering them individually. Modifying the parameters indi-
vidually may lead to unrealistic outcomes.

25

5. Conclusion
An initial step has been taken towards implementing a ML-model as a universal
surrogate in simulation models for geographical systems. Despite its limited con-
figuration in this study, the RF model shows promising capabilities in emulating
various simulation models, when external inputs and neighbourhood interactions
are implemented in the training. While the current configuration of the RF model’s
is suitable for simpler simulation models, it demonstrates limitations in accurately
emulating more intricate models such as the snow model.

Finally, it is important to consider the implications and potential applications of
the findings in this research. The software developed in this research serves as a
foundation for emulating any pixel-based model using an RF model. A first step
is made in the direction of a general software framework for utilising ML-models
as surrogate models in simulation models of geographical systems. By advancing
this software to incorporate different ML models the software framework can fur-
ther enhance its emulation capabilities and handle even more complex simulation
models.

26

Bibliography
[1] J. Braun, P. Van Der Beek, P. Valla, et al., “Quantifying rates of landscape

evolution and tectonic processes by thermochronology and numerical model-
ing of crustal heat transport using pecube,” Tectonophysics, vol. 524, pp. 1–28,
2012.

[2] J. L. Kavanagh, S. L. Engwell, and S. A. Martin, “A review of laboratory and
numerical modelling in volcanology,” Solid Earth, vol. 9, no. 2, pp. 531–571,
2018.

[3] P. Favreau, A. Mangeney, A. Lucas, G. Crosta, and F. Bouchut, “Numerical
modeling of landquakes,” Geophysical Research Letters, vol. 37, no. 15, 2010.

[4] R. Hassani, D. Jongmans, and J. Chéry, “Study of plate deformation and stress
in subduction processes using two-dimensional numerical models,” Journal of
Geophysical Research: Solid Earth, vol. 102, no. B8, pp. 17 951–17 965, 1997.

[5] K. Kochanski, D. Rolnick, P. Donti, and L. Kaack, “Climate change+ ai: Tack-
ling climate change with machine learning,” in AGU Fall Meeting Abstracts,
vol. 2019, 2019, GC33A–04.

[6] I. Karafyllidis and A. Thanailakis, “A model for predicting forest fire spread-
ing using cellular automata,” Ecological Modelling, vol. 99, no. 1, pp. 87–97,
1997, ISSN: 0304-3800. DOI: https://doi.org/10.1016/S0304- 3800(96)
01942-4. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0304380096019424.

[7] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating physics-
based modeling with machine learning: A survey,” arXiv preprint arXiv: 2003.04919,
vol. 1, no. 1, pp. 1–34, 2020.

[8] E. Goldstein, G. Coco, A. Murray, and M. Green, “Data-driven components in
a model of inner-shelf sorted bedforms: A new hybrid model,” Earth Surface
Dynamics, vol. 2, no. 1, pp. 67–82, 2014.

[9] A. A. Kajbaf, M. Bensi, and K. L. Brubaker, “Temporal downscaling of pre-
cipitation from climate model projections using machine learning,” Stochastic
Environmental Research and Risk Assessment, vol. 36, no. 8, pp. 2173–2194, 2022.

[10] S. Rasp, M. S. Pritchard, and P. Gentine, “Deep learning to represent subgrid
processes in climate models,” Proceedings of the National Academy of Sciences,
vol. 115, no. 39, pp. 9684–9689, 2018.

[11] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, and N. Carval-
hais, “Deep learning and process understanding for data-driven earth system
science,” Nature, vol. 566, no. 7743, pp. 195–204, 2019.

[12] K. Chattrairat, W. Wongseree, and A. Leelasantitham, “Comparisons of ma-
chine learning methods of statistical downscaling method: Case studies of
daily climate anomalies in thailand,” Journal of Web Engineering, pp. 1397–
1424, 2021.

27

https://doi.org/https://doi.org/10.1016/S0304-3800(96)01942-4
https://doi.org/https://doi.org/10.1016/S0304-3800(96)01942-4
https://www.sciencedirect.com/science/article/pii/S0304380096019424
https://www.sciencedirect.com/science/article/pii/S0304380096019424

Bibliography

[13] G. Camps-Valls, D. Tuia, X. X. Zhu, and M. Reichstein, Deep learning for the
Earth Sciences: A comprehensive approach to remote sensing, climate science and
geosciences. John Wiley & Sons, 2021.

[14] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer,
“Machine learning–accelerated computational fluid dynamics,” Proceedings of
the National Academy of Sciences, vol. 118, no. 21, e2101784118, 2021.

[15] F. Hamilton, A. L. Lloyd, and K. B. Flores, “Hybrid modeling and prediction
of dynamical systems,” PLoS computational biology, vol. 13, no. 7, e1005655,
2017.

[16] N. D. Brenowitz, B. Henn, J. McGibbon, et al., “Machine learning climate
model dynamics: Offline versus online performance,” arXiv preprint
arXiv:2011.03081, 2020.

[17] K. Dagon, B. M. Sanderson, R. A. Fisher, and D. M. Lawrence, “A machine
learning approach to emulation and biophysical parameter estimation with<?
xmltex\break?> the community land model, version 5,” Advances in Statistical
Climatology, Meteorology and Oceanography, vol. 6, no. 2, pp. 223–244, 2020.

[18] P. A. O’Gorman and J. G. Dwyer, “Using machine learning to parameterize
moist convection: Potential for modeling of climate, climate change, and ex-
treme events,” Journal of Advances in Modeling Earth Systems, vol. 10, no. 10,
pp. 2548–2563, 2018.

[19] X. Wang, W. Xue, Y. Han, and G. Yang, “Efficient climate simulation via ma-
chine learning method,” arXiv preprint arXiv : 2209.08151, 2022.

[20] S. Kawamleh, “Can machines learn how clouds work? the epistemic implica-
tions of machine learning methods in climate science,” Philosophy of Science,
vol. 88, no. 5, pp. 1008–1020, 2021.

[21] F. Regazzoni, L. Dede, and A. Quarteroni, “Machine learning for fast and re-
liable solution of time-dependent differential equations,” Journal of Computa-
tional physics, vol. 397, p. 108 852, 2019.

[22] T. Qin, K. Wu, and D. Xiu, “Data driven governing equations approxima-
tion using deep neural networks,” Journal of Computational Physics, vol. 395,
pp. 620–635, 2019.

[23] J. H. Faghmous and V. Kumar, “A big data guide to understanding climate
change: The case for theory-guided data science,” Big data, vol. 2, no. 3, pp. 155–
163, 2014.

[24] V. M. Krasnopolsky and M. S. Fox-Rabinovitz, “Complex hybrid models com-
bining deterministic and machine learning components for numerical climate
modeling and weather prediction,” Neural Networks, vol. 19, no. 2, pp. 122–
134, 2006.

[25] L. J. Slater, L. Arnal, M.-A. Boucher, et al., “Hybrid forecasting: Blending cli-
mate predictions with ai models,” Hydrology and Earth System Sciences, vol. 27,
no. 9, pp. 1865–1889, 2023.

28

Bibliography

[26] P. Parisouj, H. Mohebzadeh, and T. Lee, “Employing machine learning algo-
rithms for streamflow prediction: A case study of four river basins with differ-
ent climatic zones in the united states,” Water Resources Management, vol. 34,
pp. 4113–4131, 2020.

[27] P. Stolfi and F. Castiglione, “Emulating complex simulations by machine learn-
ing methods,” BMC bioinformatics, vol. 22, no. 14, pp. 1–14, 2021.

[28] S. Scher, “Toward data-driven weather and climate forecasting: Approximat-
ing a simple general circulation model with deep learning,” Geophysical Re-
search Letters, vol. 45, no. 22, pp. 12–616, 2018.

[29] C. C. IPCC, Mitigation of climate change. contribution of working 557 group iii to
the sixth assessment report of the intergovernmental panel on climate 558 change,
2022.

[30] H. ten Eikelder, Utilize-machine learning to capture dynamics of large scale high
resolution numerical models, https://github.com/RicktenE/Utilize-Machi
ne-Learning-to-Capture-Dynamics-of-Large-Scale-High-Resolution-
Numerical-Models, 2023.

[31] The nature of code, https://natureofcode.com/book/chapter-7-cellular-
automata/, (Accessed on 02/03/2023).

[32] A. Alexandridis, D. Vakalis, C. Siettos, and G. Bafas, “A cellular automata
model for forest fire spread prediction: The case of the wildfire that swept
through spetses island in 1990,” Applied Mathematics and Computation, vol. 204,
no. 1, pp. 191–201, 2008, ISSN: 0096-3003. DOI: https://doi.org/10.1016/
j.amc.2008.06.046. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0096300308004943.

[33] 1.10. decision trees — scikit-learn 1.2.2 documentation, https://scikit-learn.
org/stable/modules/tree.html, (Accessed on 06/23/2023).

[34] D. Karssenberg, O. Schmitz, P. Salamon, K. De Jong, and M. F. Bierkens, “A
software framework for construction of process-based stochastic spatio-temporal
models and data assimilation,” Environmental Modelling & Software, vol. 25,
no. 4, pp. 489–502, 2010.

[35] Feature importances with a forest of trees — scikit-learn 1.2.2 documentation, http
s://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_
importances.html, (Accessed on 06/20/2023).

[36] 4.2. permutation feature importance — scikit-learn 1.2.2 documentation, https:
//scikit-learn.org/stable/modules/permutation_importance.html#:~:
text=The%20permutation%20feature%20importance%20is,model%20depend
s%20on%20the%20feature., (Accessed on 06/20/2023).

[37] W. L. Fons, “Analysis of fire spread in light forest fuels,” Journal of Agricultural
Research, vol. 72, pp. 92–121, 1946.

[38] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009, ISBN: 1441412697.

29

https://github.com/RicktenE/Utilize-Machine-Learning-to-Capture-Dynamics-of-Large-Scale-High-Resolution-Numerical-Models
https://github.com/RicktenE/Utilize-Machine-Learning-to-Capture-Dynamics-of-Large-Scale-High-Resolution-Numerical-Models
https://github.com/RicktenE/Utilize-Machine-Learning-to-Capture-Dynamics-of-Large-Scale-High-Resolution-Numerical-Models
https://natureofcode.com/book/chapter-7-cellular-automata/
https://natureofcode.com/book/chapter-7-cellular-automata/
https://doi.org/https://doi.org/10.1016/j.amc.2008.06.046
https://doi.org/https://doi.org/10.1016/j.amc.2008.06.046
https://www.sciencedirect.com/science/article/pii/S0096300308004943
https://www.sciencedirect.com/science/article/pii/S0096300308004943
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/modules/permutation_importance.html#:~:text=The%20permutation%20feature%20importance%20is,model%20depends%20on%20the%20feature.
https://scikit-learn.org/stable/modules/permutation_importance.html#:~:text=The%20permutation%20feature%20importance%20is,model%20depends%20on%20the%20feature.
https://scikit-learn.org/stable/modules/permutation_importance.html#:~:text=The%20permutation%20feature%20importance%20is,model%20depends%20on%20the%20feature.
https://scikit-learn.org/stable/modules/permutation_importance.html#:~:text=The%20permutation%20feature%20importance%20is,model%20depends%20on%20the%20feature.

Bibliography

[39] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. DOI: 10.
1038/s41586-020-2649-2. [Online]. Available: https://doi.org/10.1038/
s41586-020-2649-2.

[40] W. McKinney, “Data Structures for Statistical Computing in Python,” in Pro-
ceedings of the 9th Python in Science Conference, S. van der Walt and J. Millman,
Eds., 2010, pp. 56–61. DOI: 10.25080/Majora-92bf1922-00a.

[41] PCRaster, Software for environmental modelling, Oct. 2010. [Online]. Available:
https://pcraster.geo.uu.nl/.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learn-
ing in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[43] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science
& Engineering, vol. 9, no. 3, pp. 90–95, 2007. DOI: 10.1109/MCSE.2007.55.

[44] Welcome to imageio’s documentation! — imageio 2.31.1 documentation, https://
imageio.readthedocs.io/en/stable/, (Accessed on 06/23/2023).

30

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://pcraster.geo.uu.nl/
https://doi.org/10.1109/MCSE.2007.55
https://imageio.readthedocs.io/en/stable/
https://imageio.readthedocs.io/en/stable/

6. Appendix A - Simulation models

6.1 Details on game of life
The game of life simulation aims to simulate if life as described by certain rules can
live in a randomly initiated state of cells being alive or dead. the simulation works
based on a set of algorithmic rules determining the state of each cell. Each cell can
be classified as either alive or dead. The rules that dictate the evolution of the cells
are as follows:

Birth: (Before birth a cell is considered dead). A dead cell comes to life in the
next timestep, if exactly three cells in it’s neighbourhood N(S(x, y, t)) are alive. This
rule represents reproduction, where a new cell is born due to favourable conditions.

Survival: A living cell continues to live on the next timestep if it has two or three
neighbouring cells that are alive. This rule reflects the idea that a cell can sustain its
existence when surrounded by enough support.

Death: A living cell dies in the next timestep if it has fewer than two neighbour-
ing cells that are alive (underpopulation) or more than three neighbouring cells that
are alive (overpopulation). These conditions represent that a cell cannot thrive due
to insufficient support or excessive competition for resources. These rules are ap-
plied simultaneously to all cells at each timestep and described by the following
update function,

Sg(x, y, t + 1) =

{
1, if ∑ N(S(x, y, t)) = 2 or 3
0, if ∑ N(S(x, y, t)) < 2 or > 3.

(6.1)

Where Sg(x, y, t + 1) represents the new state of the cell at time step t+1,
∑ N(S(x, y, t)) counts the alive neighbours. The update function follows the general
shape of Eq. 2.1 without any I(x, y, t) or P(x, y). The neighbours at the edges are
defined in such a way that it takes the value of the pixel on the other side of the
grid.

A - 1

Appendix A - Simulation models

6.2 Details on forest fire simulation
depending on the complexity of the model each cell can have more states. In the
case of forest fires simulations the grid of the CA simulation represents a landscape
in which a forest fire can take place or has taken place. The most important factors
determining the spread of a fire are the vegetation type, wind, humidity, topogra-
phy, fuel density and spotting [37]. In this study only the topographical data I(x,
y, t), the output of the previous step S(x, y, t) and the neighbouring cells N(S(x, y,
t)) are used as features for the model. In this research a simplified model is used to
simulate a forest fire [32].

6.2.1 Topography
The topography is an important factor, as an increase in temperature changes the
density of the air surrounding the fire, the less dense air moves opposite gravity
and rises, together with radiated heat from the fire, pre-heating the vegetation in at
higher altitudes. The steeper the slope, the faster the fire spreads in that direction
[6]. The probability of catching fire, determined by the topography surrounding the
cell is given by:

pt = Re(α θe) (6.2)

Where R is the spread rate in a flat landscape, α determines the strength of the
effect of the slope and θe refers to the slope between the cell and its neighbour. The
calculations for determining the slope are shown in equation Eq. 6.3,

θe =

{
tan−1(E1−E2

l) if horizontal/vertical neighbour
tan−1(E1−E2

l
√

2
) if diagonal neighbour

(6.3)

Where E1 − E2 denotes the difference in elevation between the cell and its neigh-
bour, l is the length of one cell. The probability of a cell changing state pburn can
then be described as,

pburn = ph ∗ pt. (6.4)

Where ph is a constant probability of a cell catching fire (when a neighbouring cell
is on fire) and pt is the probability given by the topography (flat or curved).

A - 2

6.3 Details on snow model

6.3 Details on snow model
6.3.1 Temperature lapse rate (TLR)
For the duration of this simulation, each day the temperature was measured at a
meteorological station at a height of 2058.1m. One day is presented by one timestep
in the simulation, t → t + 1. The temperature for the other cells in the map, T(x, y,
t), is calculated based on this temperature and the relative elevation to the meteoro-
logical station and the Temperature Lapse Rate (TLR), as described in the equation
below,

T(x, y, t) = T(xms, yms, t) + (E(x, y)− E(xms, yms)) ∗ TLR. (6.5)

Where T(x, y, t) represents the temperature on each cell at each timestep, E(x,
y) represents the elevation of each cell and xms, yms represent the coordinates of the
meteorological station. Note that this calculation happens at time t, this calculation
occurs for each cell at each timestep once. Also note that TLR is constant during
the complete simulation, it is initially set to 0.005 [◦C km−1].

6.3.2 Defining snowfall and melt
The model uses T(x, y, t) to determine if the precipitation is snow or rain.

P(x, y, t) =

{
P(x, y)SNOW , if T(x, y, t) < 0.0
P(x, y)RAIN, if T(x, y, t) ≥ 0.0

(6.6)

The model also takes into account how much snow potentially melted and flowed
out of the cell. The amount of melted snow is calculated as a function of T(x, y, t),
where the following linear relationship is assumed between T(x, y, t) and the melt
rate,

M(x, y, t) = T(x, y, t) ∗ K (6.7)

Where M(x, y, t) is the amount of melted snow at time t, and K is the rate set to
0.01 [m ◦C−1]. The direction in which the melted snow streams follows a local drain
direction map. This local drain direction map is derived from the topographical
data and is not on by itself an input for the model. This simulation model has two
dynamic drivers I(x,y,t), temperature and precipitation, and one static input P(x, y),
the topographical data.

A - 3

7. Appendix B - Software stack
The software used during this research is listed below.

Primary software:
Python version(3.10)[38]

For data manipulation:
numpy version(1.23.5)[39]
pandas version(1.5.3)[40]

For the forest fire simulation and snow accumulation models:
PCRaster version(4.4.0) [41]

For the random forest model, performance measure and some visualisations:
scikit-learn version(1.2.1)[42]

For visualisations and animations:
matplotlib version(3.6.3)[43]
imageio.v2 version(2.25.0)[44]

B - 1

	Introduction
	Methods
	Surrogate modelling
	Simulation models
	Machine learning approach
	Data

	Results
	Proof of concept: one-step prediction
	Simulation predictions trained on state variable
	Simulation predictions trained on external input and neighbourhood interactions
	Interpolation and extrapolation analysis

	Discussion
	Conclusion
	Bibliography
	Appendix A - Simulation models
	Details on game of life
	Details on forest fire simulation
	Details on snow model

	Appendix B - Software stack

