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Abstract: 
In the Netherlands, management of coastal dunes has changed focus from short-term flood prevention 
and drinking water protection to long-term biodiversity promotion and back-dune development. To 
understand the impact of dune management activities, efficient monitoring methods are required. The 
use of unmanned aerial vehicles (UAVs) to provide images of areas of interest, and convolutional neural 
networks (CNNs) to segment these images, are promising developments in remote sensing. 
Additionally, human-in-the-loop machine learning (HITLML) provides an efficient way to annotate 
remotely sensed images for land cover classification. Vegetation phenology has shown to impact 
identifiability from aerial images in some applications. However, the viability of the combined 
application of these four elements (UAVs, CNNs, HITLML and phenology) to coastal dune monitoring 
is yet to be assessed. Here we show that these elements can potentially be effective in monitoring coastal 
dune development. We found that phenology impacts CNN performance, and CNNs trained on multi-
season data perform more consistently than single-season CNNs. Additionally, increasing training data 
volume does not always improve CNN performance. Overall multi-season models’ performance 
(measured by f1 score) was around 5% better than season-specific CNNs, which is in line with findings 
of other research. Predictions on specific seasons revealed roughly equivalent performance by season-
specific and multi-season CNNs. The impact of increasing the dataset size had minimal effect on model 
performance. White dunes were most error-prone of all habitat types, being most frequently incorrectly 
predicted as grey dunes. Our results demonstrate that in the context of dune habitat analysis, training 
data should comprise seasonal diversity, and that beyond a certain point, increasing the sample size 
(without additional temporal diversity) is likely to have a limited effect. We anticipate our research to 
lead to improved practices in automated dune monitoring. Diversity of data appears to have a greater 
impact on model performance than volume alone, and CNNs provide a useful way to create habitat 
maps for automated dune monitoring. Additional research should incorporate other factors, such as the 
impact of weather conditions on results, as well as using ensemble models. 
 
1. Introduction 
 
1.1 Motivation and Context 
Historically, dune management in the Netherlands has been focussed on safety, such as flood prevention 
and drinking water protection, at the expense of biodiversity and back dune development (Jackson & 
Nordstrom, 2011). More recently, the focus of dune management has become to restore aeolian 
transport, thus simultaneously promoting sustainable dune development and biodiversity (Arens et al., 
2013). One strategy to do this has been to excavate notches in the foredune (e.g., in Zuid-Kennemerland) 
and monitor dune and vegetation development over time (Ruessink et al., 2018). However, manual 
monitoring is resource intensive, and thus an automated solution is needed. Convolutional neural 
networks (CNNs) have been successfully used to distinguish between vegetation types from aerial 
images with high accuracy (Kattenborn et al., 2019). CNNs, when combined with human-in-the-loop 
machine learning (HITLML), could present a viable solution to monitoring dune development 
(Buscombe et al., 2022), because they have the potential to automatically generate habitat maps with 
limited human input. Prior research suggested the relevance of vegetation phenology to CNN 
performance (Yang et al., 2019), however more research in this direction is required (Katal et al., 2022). 
In this project, CNNs will be used to segment vegetation types from aerial images, based on images 
from different seasons, to assess the viability of this automated dune monitoring approach. 
 
1.2 Literature Review 
 
1.2.1 Coastal Dune Habitats 
The lifecycle of dunes consists of several components, progressing from embryonic dunes (which are 
youngest and closest to the sea) to shrub/woodland (most mature and furthest from the sea) (Hesp, 
1991). To allow for more practical and informative monitoring, four specific habit types will be focussed 
on in this project: embryonic dunes, white dunes, grey dunes and shrubs. Embryonic dunes are 
characterized by mostly sand, and some pioneering marram grass (Natura 2000, 2008a). White dunes 
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consist of mainly marram grass, with sand visible between grass growths due to mosses not yet having 
had time to develop (Natura 2000, 2008b). Grey dunes are similar to white dunes in containing marram 
grass, but will typically have a mossy base (resulting in them appearing grey in spring and green in 
summer), and may contain low herbaceous vegetation in addition to or instead of marram grass (Natura  
2000, 2008c). Finally, shrubs, the most mature of these habitat types, consist of larger herbaceous 
vegetation (such as sea buckthorn, or hippophae rhamnoides, as well as other larger plants) (Natura 
2000, 2008d). Monitoring dune development by focusing on these four habitat types allows for insight 
into dune lifecycle without unnecessary complications. 
 
1.2.2 UAVs for Habitat Analysis 
UAVs are remote-controlled aircraft that have been used in generating landscape imagery over large 
areas. They can efficiently generate high-quality multi-spectral imagery over a large area in a short time, 
making them a promising alternative (or compliment) to land-based surveying. Aerial images can 
identify areas that field-based methods miss, however, they can also produce false-positives (e.g., due 
to shadows and water), for an agreement of around 70% between field-based and aerial habitat 
assessments (Oldeland et al., 2021). In terms of efficiency, UAVs can cover an area of 18ha over two 
30-minute flights, thus evidencing the rapidity of data collection and the potential for drone imagery to 
be used instead of field data for habitat classification. Recent research successfully used drone imagery 
to map habitats of dune systems. For example, Cruz et al. (2023) applied random forest models to UAV 
dune images, comprising various layers of spectral and topographical information, and combined using 
principal component analysis resulting in accuracy of around 92%. This study indicates the potential 
for using UAV images and machine learning techniques for creating accurate habitat maps of coastal 
dune areas.  
 
1.2.3 Human-in-the-Loop Machine Learning: 
One of the challenges of using UAV images for habitat classification is the resource-intensity of 
labelling data to be used to train models (Vitousek et al., 2023). To address this, a new development in 
artificial intelligence combines the efforts of humans and machines: human-in-the-loop machine 
learning (Mosqueira-Rey et al., 2023). This takes several forms, however most relevant to the problem 
at hand (classification of land cover) is termed assisted annotation and predictive annotation (Buscombe 
et al., 2022), which lead to the development of the application DashDoodler. With DashDoodler, 
humans create sparse annotations (‘doodles’), which act, together with the image itself, as inputs to a 
multilayer perceptron (Bishop, 2006) and conditional random field models (Kumar & Hebert, 2006). 
These machine learning models serve to complete the annotation on a per-pixel basis that the human 
annotator has indicated. These models are re-initialized for each image, and the approach is iterative, 
ensuring that the result is acceptable to the human annotator. This approach is 3 – 10 times faster than 
manual annotation, and it avoids some its pitfalls (including incomplete labels, as well as detecting finer 
patterns that are too time consuming for humans to annotate) (Buscombe et al., 2022). Refer to Figure 
1 for an illustration of a DashDoodler workflow. 

Figure 1: Illustration of the DashDoodler workflow. The original image tile (left) has sparse annotations (doodles) applied to it (middle) by 
the annotator, from which the annotated image is generated (right) using machine learning models. 
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1.2.4 CNNs for image segmentation 
CNNs have been used successfully in the segmentation of images captured by UAVs for the purposes 
of habitat mapping (Kattenborn et al., 2019). Image segmentation involves separating an image, on a 
per-pixel basis, into components to enable analysis of the image (Kattenborn et al., 2021). What 
distinguishes CNNs from other neural network architectures is that they contain at least one 
convolutional layer, which applies the convolution operation to the input feature map (LeCun et al., 
1998). Convolution involves passing a filter (also known as a kernel) of a specified size across the entire 
input feature map – refer to Figure 2). This is done via a ‘sliding window,’ which ensures that patterns 
between neighbouring pixels are considered by the model. From this process, a new feature map is 
created, which is populated based on the results of this filtering operation. When a CNN is trained, 
kernel values are estimated such that the patterns most relevant to the task are learned. Typically, 
throughout a CNN, multiple convolutional layers are used, with differing numbers of layers and feature 
map sizes, which allow for the detection of patterns. As a result, CNNs have a key advantage over other 
machine learning methods relevant to image segmentation, as they consider not just pixel values in 
isolation, but also relationships between pixels. In addition to being theoretically well-suited to image 
segmentation tasks, CNNs have also proven to be useful in segmenting habitats from UAV images. One 
study found that their feed-forward neural network outperformed their random forest model in the 
classification of vegetation types from UAV images (Oldeland et al., 2021).  
 

 
Figure 2: illustration taken from Podareanu et al. (2019) of convolution operation, using a 3x3 convolutional kernel and 8x8 source layer. 

A CNN’s architecture refers to the specifications and arrangement of the components of its various 
layers. One common architecture of CNNs used for image segmentation is known as UNet 
(Ronneberger et al., 2015). This method was originally developed for biomedical image segmentation, 
but has been used successfully in numerous UAV image segmentation tasks, with studies achieving 
accuracies from around 84% (Kattenborn et al., 2019). The network gets its name from the shape of the 
arrangement of its layers, which are arranged in a U-shape and allows for localization of predictions 
(i.e. a class label per pixel), as well as efficient use of training data (Ronneberger et al., 2015).  
 
Recently, ResUNet (Zhang et al., 2018) was developed as an improvement on UNet, which makes use 
of residual learning (He et al., 2015) to further optimize use of training data. Residual learning involves 
creating skip connections between layers, which allow for the passage of information from earlier layers 
to later layers, without being first passed through each intermediate layer. These skip connections allow 
for a reduced number of parameters to train, without negatively impacting performance. Zhang et al. 
(2018) achieved a 1% increase in accuracy using a ResUNet compared to a standard UNet, with having 
only ¼ of the parameters. One study using a ResUNet in remote sensing image segmentation 
(Diakogiannis et al., 2020) achieved an overall F1 score of 92.9% on the ISPRS Potsdam dataset. The 
results indicate that higher performance is possible with ResUNets compared to UNets, while requiring 
less training data. 
 
Due to their increasing popularity in the segmentation of geographical images (Kattenborn et al., 2021), 
a pipeline has been developed for the implementation of various CNN architectures for these tasks 
(Buscombe & Goldstein, 2022). This software, called Segmentation Gym, provides a platform for 
training and fitting CNN models, and has been developed for use in conjunction with DashDoodler 
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(Buscombe et al., 2022). Segmentation Gym also allows for augmentation of training datasets, whereby 
new training data is created through the manipulation (e.g. rotations, cropping, and flipping the images 
and associated labels) of existing training data, thus allowing for more robust models without additional 
annotation. Segmentation Gym will be used in training and fitting CNNs used in this thesis. 
 
1.2.5 Phenology and CNN habitat classification 
Several studies have reported increased species identification accuracy when plant phenology is taken 
into consideration when using UAV images. For example, a study that used RGB UAV imagery at 10cm 
resolution to identify invasive tree species found that incorporating phenological information (i.e., 
including summer images, when the tree species of interest displayed red flowers), improved the 
accuracy of neural network models by around 5% (Pearse et al., 2021). Another study used multi-
spectral UAV imagery and random forest models to identify dune habitats in Ireland (Cruz et al., 2023). 
They found that incorporating multi-seasonal data in their model increased accuracy by around 8%. 
Finally, Pöttker et al. (2023) used convolutional neural networks to map plant communities in grasslands 
and found that classification accuracy increased by around 5-10% when multi-phenological (i.e. 
spanning multiple phases of plant life cycles) data was incorporated into their convolutional neural 
network models. All of the above suggests that vegetation phenology impacts its ability to be identified 
by CNNs from UAV images, prompting a systematic review (Katal et al., 2022) to highlight the need 
for further research in considering vegetation phenology in habitat identification. 
 
1.3 Research Questions: 
The overarching objective of this thesis is to contribute to the automated mapping of dune habitats from 
high-resolution UAV imagery. Based on the literature review, the following two research questions were 
formulated: 
 

1. How do drone images captured in different phenological phases or seasons affect the 
differentiability of habitat types in the Dutch dune environment? 

2. What are some of the benefits and drawbacks of using HITLML for habitat mapping? 
 
1.3.1 Translation of research question into data science question 
The intention behind the first research question is to investigate whether a model trained on data from 
an earlier temporal period could be useful in predicting a habitat map in a later period. To get the best 
performance, should training data of two seasons be combined, or should a model trained only on the 
intended prediction season be used? Additionally, what happens to model performance when a non-
matching season is predicted, as well as when a later period is predicted? Finally, what differences in 
performance are evident when comparing a model trained on a 100% combined season dataset, 
compared to a model trained on a random selection of half of each season’s training datasets. To answer 
these sub-questions, a total of four CNNs are required – refer to section 3.1.2 for details.  
 
2. Data 
The dataset (Ruessink, 2023) used for this project comprises several orthomosaics that were stitched 
together from 3-banded (red, green and blue: RGB) photographs taken with a UAV. The EPSG:28992 
coordinate reference system was used, with the following spatial extent (in meters): easting from 98300 
to 99200, northing from 492900 to 494100. Images have a resolution of 18000 × 24000 pixels, with 
spatial resolution of 5cm/pixel. For additional specifications of the dataset, refer to Ruessink et al. 
(2018). To answer the first research question, the following spring and autumn datasets were selected, 
see Table 1. Spring 2021 data was unfortunately unavailable, and thus spring 2022 data was used in its 
place. Two time periods (2018 and 2021/22) were used to investigate how the performance of models 
trained on an earlier period perform in creating habitat maps for a later period. For all datasets, spring 
was prior to the start of the growth season, while autumn is at the end of it. Visualizations are presented 
prioritizing first temporal period, and then season, for ease of comparison. The second research question 
was answered in the course of answering the first research question. 
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Table 1: Datasets used 
File reference Date captured Meteorological Season & year 
20211013_005.tif 13/10/2021 Autumn_2021 
20220302_005.tif 02/03/2022 Spring_2022 
20180917_005.tif 17/09/2018 Autumn_2018 
20180419_005.tif 19/04/2018 Spring_2018 

 
2.1 Selected data exploration results 
Refer to Figure 3 for an overview of the datasets used in this project. The vegetation in the spring images 
have limited contrast with the surrounding sand, while the vegetation in autumn appears to be lusher 
and greener and thus has more contrast with the surrounding sand. Additionally, there appear to be 
differences in weather conditions in the images. For example, spring 2018 and autumn 2021 were 
captured in cloudy conditions, while autumn 2018 and spring 2022 in sunny conditions (as evidenced 
by the strong shadows and harsh lighting in the latter two). These conditions will likely impact CNN 
segmentation performance.  

To better understand the differences in differentiability (based on colour) between the different habitats, 
a specific location was chosen in each of spring 2018 and autumn 2018 and annotated using 
DashDoodler. The original image was then masked with each label and a histogram was plotted of the 
resulting RGB values (Figure 4). From the visualization it seems that white and grey dunes are more 
similar in colour signatures for spring 2018 than in autumn 2018, as shown by the locations of the mode 
pixel counts of each colour (i.e., the histogram peaks). In spring 2018, they appear to be closer together 
than in autumn 2018, and in autumn 2018 they are more spread out, implying greater differentiability. 
The same can be said about sand and shrubs – in spring 2018 they have similar modal pixel values for 
each colour band (both are clustered at around 200), while in autumn 2018 the modal values are further 
apart (shrubs: roughly 100, sand: roughly 200).  
 
  

Figure 3: Overview of datasets used. Axes are denominated in meters, representing eastings and northings, using the EPSG:28992 
coordinate reference system. 
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2.2 Ethical and legal considerations of data: 
The dataset used (Ruessink, 2023) is available under the Creative Commons Attribution 4.0 license, 
which allows for free use for the dataset provided that the source is credited and that no additional 
restrictions have been placed (Creative Commons, 2023). As due credit has been given and no further 
restrictions placed on readers of this paper, the legal considerations of this dataset have been met. This 
dataset contains images of people, however, the resolution is far too low (5cm/pixel), and the angle 
inadequate (top-down) to uniquely identify them. Additionally, the people that may appear in the dataset 
are not the subject of research. Therefore, the relevant ethical and legal requirements have been met. 
 
3. Methods 
The methods section of this thesis has been split into two components, first of which is the pre-
processing and annotation of data, focussing on the preparation of data for training and testing models. 
This is followed by model training and evaluation, which focusses on using the data from the first 
component to train and test the models.  
 
3.1 Pre-processing & Annotation 
 
Figure 5 outlines the data preparation and analysis steps. 

Figure 5: Process flow for data preprocessing and annotation. 

Figure 4: Comparison between Spring and Autumn habitat type differentiability. The histograms were generated by masking the image 
tile (500*500 pixels) for each image label, and then counting the number of occurrences of each red, green and blue pixel value. 
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3.1.1. Clipping and Retiling 
Beginning with stitched, georeferenced orthomosaics (as described in section 2), the images were first 
clipped to the area of interest (easting range 98400 to 98930, northing range 493058 to 493990). For 
the purposes of annotation and model fitting, the images were required to be retiled, as otherwise they 
would be too large. This was performed using GDAL’s retile Python API, and both .jpg and .tif files 
were generated in this process (.jpg for model training and testing, .tif for geolocating model predictions 
for re-stitching). A resolution of 500x500 pixels was selected because it represents an area of 25mx25m, 
which is a practical size for containing sufficient habitat diversity, while still being small enough to 
train a model on without consuming too much memory. Habitat diversity in training data is important 
for the CNN to be able to differentiate between multiple habitat types in the same image tile. 
 
3.1.2. Test annotation: DashDoodler 
DashDoodler (Buscombe et al., 2022) was used in the annotation of testing and training data. Prior to 
sampling training and testing data, two people annotated 15 tiles from Autumn 2021 to get a sense of 
which habitat types could be difficult to discern from one-another. The results of this are presented in 
the confusion matrix in Figure 6, which indicates that sand and grey dunes were generally agreed on by 
the annotators (93% and 88% of the time respectively). White dunes appear to be mislabelled as grey 
dunes (35% of the time), and shrubs as grey dunes (26% of the time). The latter findings were used to 
inform the sampling of training data, resulting in sampling more images appearing to contain white 
dunes and shrubs than others. The goal of sample selection in this context was to provide a training set 
that captures the complexity of the AOI (Area of Interest) – not to have habitat types in the same 
proportion as the AOI. 

Following the discussion of differences, a further sample of 5 images was selected to determine the 
consistency of annotations. For this sample, Cohen’s kappa (Cohen, 1960), a measure of inter-annotator 
reliability, was calculated to be 0.84, which indicates almost perfect agreement between annotators. 
Although ultimately all sampled images were annotated by a single annotator, this test provides some 
evidence for the between-sample consistency of annotation. 
 
3.1.3. Sample Selection 
The spring 2018 dataset (see Figure 3), is relatively incomplete (i.e. contains substantially more white 
space than the other images), likely due to the weather conditions on the day. Figure 7 compares the 
same region in spring 2018 with autumn 2018, illustrating the relative blurriness of spring 2018. 
 
  

Figure 6: Confusion matrix of test sample results, showing pixel-level habitat type confusion. 
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As a result of the somewhat compromised image availability in spring 2018, that orthomosaic was used 
as a basis for sample selection, as there should be an existing tile in other seasons for every tile in spring 
2018, but not necessarily the other way around. In total, 102 images were selected from spring 2018 
and autumn 2018 to form the training datasets, representing a total of 2550m2 of land area in each 
aforementioned season. The testing datasets comprised 15 images (representing 375m2) from each 
orthomosaic presented in Figure 3. Given the data volume requirements of the models, as well as taking 
the spread of habitat types in the AOI and the number of habitat classes intended to be predicted into 
consideration, the testing and training dataset sizes were considered to be sufficient.  
 
The same geographic locations were sampled across all testing and training datasets. This ensured 
consistency between datasets, allowing for the assessment of the impact of phenological/seasonal 
factors without confounding results with location variability. See Figure 8 for a visualization of the 
locations sampled. 

 
Figure 8: Visualization of location consistency of training (green) and testing (red) split between datasets. 

Despite being sampled from the same geographic locations, in the training datasets there are more 
shrubs and white dunes visible in autumn 2018 compared to spring 2018, see habitat land coverage 
splits in Figure 9. This follows from the points discussed around Figure 4, where, based on colour, 
shrubs appeared more sand-like in spring 2018, while in autumn 2018 they were more differentiable. 
Additionally, the ‘Other,’ class is larger in spring 2018 than in autumn 2018. This arose from water in 
the northern part of the AOI, which received this classification, and was not present in autumn 2018 
(wherein, ‘Other’, comprised mainly roads and people). Additionally, the testing and training datasets 
are quite different from each other, and not representative of the orthomosaic as a whole (which would 
contain far more sand cover, which is easier to predict based on 3.1.2). One reason for this is the seasonal 

Figure 7: Blurry images in spring 2018 (left) likely due to windy conditions, compared to clear image from 
autumn 2018 (right). This also resulted in a less complete orthomosaic as shown in Figure 3. 
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visibility of certain habitat types, however another is that the testing dataset was designed to provide a 
challenging benchmark to assess model performance, to see how they would perform in difficult 
conditions (large degree of habitat diversity). 

3.1.4. Full annotation: DashDoodler, Corrections and Adjustments 
The testing and training datasets were annotated using DashDoodler, however some errors were noted 
in this process, specifically in the annotation of low-contrast images, as well as images containing 
shadows. The annotation of low-contrast images generally led to DashDoodler performing in 
unexpected ways (see Figure 10). Without sufficient contrast, the models used could not segment the  

Figure 10: A low contrast image (left middle) is doodled in two different ways. One way separately annotates shadows (top middle – see the 
purple annotation), while the other does not (bottom middle). The results show that to get close to the desired results (top right), shadows in 
low contrast images need to be separately annotated as ‘Other’, otherwise unexpected results (e.g. the annotation of sand, despite it not 
having been doodled) may occur (bottom right). 

Figure 9: Habitat proportions in training (left) and testing (right) datasets. 
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images as intended by the user, and so classes were annotated seemingly at random. To correct this, an 
additional class was annotated (‘Other’) for shadow regions, which sufficiently reduced within-class 
variance for an annotation to be generated in line with what was expected.  
 
Another consequence of shadows in images is that DashDoodler assigned null labels to certain pixels 
(represented as black in the annotated images) – see Figure 11. There were 66 labels exhibiting black 
pixels, 65 of which occurred in autumn 2018, while only one in spring 2018. The labels were adjusted 
by means of a Python script, which replaced black pixels with purple pixels (representing the ‘Other’ 
habitat classification). This allowed the images to be used in training and testing the models, at the 
expense of some noise (i.e. shadows being labelled as ‘Other’). 
 

3.2 Model Training and Evaluation 
 The process followed in training and evaluating the models is presented in Figure 12.  

This section does not go into detail about each step of the training and evaluation process. Instead, the 
focus is centred around translating the first research question into data science questions that can more 
easily be tested, as well as providing information and justification of key modelling assumptions. 
  
3.2.1. Model Training – Assumptions and Specifications 
Refer to Table 2 for an overview of the datasets used to train each model. 
 
Table 2: Model and training dataset overview 

Model Spring 2018 training data Autumn 2018 training data 
spring_2018 102 tiles Not applicable 
autumn_2018 Not applicable 102 tiles 
combined_large 102 tiles 102 tiles 
combined_small 51 tiles (randomly sampled) 51 tiles (randomly sampled) 

 
3.2.1.1.  Model Training: Specifica6on and Tes6ng Data Augmenta6on 
Segmentation Gym (Buscombe & Goldstein, 2022) was used to train and specify the models. All models 
had the same hyperparameters and thus differed only by their respective training datasets. The 

Figure 11: Portion of source image (left) and black pixels predicted by 
DashDoodler (right) for the shadow region, indicating errors in classification. 

Figure 12: Process flow for model training and evaluation. 
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hyperparameters that have the most impact on model performance are the batch size and loss function 
(Buscombe & Goldstein, 2022), which, together with model architecture and input layer dimensions, is 
discussed below. 
 
The models were trained on a desktop having an Nvidia GTX 1080 with 8GB RAM. Model architecture 
was specified as ‘resunet’ (Diakogiannis et al., 2020). Batch size should generally be as large as graphics 
card RAM allows (Buscombe & Goldstein, 2022), as this determines how many samples are considered 
before updating model parameters. However, a larger batch size ensures a closer fit to the data, thus too 
high a batch size can be detrimental due to overfitting. The batch size used in all models for this thesis 
was 5 images. 
 
A model’s loss function determines how the model is penalized in relation to differences between actual 
and predicted values, which, in turn, determines how model weights are updated through training. Given 
that the dataset is relatively unbalanced between classes (see Figure 10), the loss function selected 
should be relatively insensitive to class imbalances. Therefore, the Dice loss function (Sudre et al., 
2017) was used as it meets this criterion.  
 
Input image size was specified as 512x512 pixel resolution, as the model architecture is only compatible 
with image resolutions in increments of 128 pixels, so as a result, the 500x500 input images were 
upscaled to 512x512 pixel resolution. For details on the configuration files containing the 
hyperparameters used in each model, see Appendix 1. 
 
Data augmentation (Eaton-Rosen et al., 2018) refers to creating new samples from the training data by 
adjusting training images and their labels, thus creating new training samples. These adjustments can 
include mirroring, rotating and cropping/zooming. The purpose of this is to prevent the model from 
memorizing the data (i.e., overfitting), as well as to make the model more generalizable to changes in 
the form of images. Such augmentation was performed in the training of these models, thus increasing 
the number of tiles in each training dataset five-fold. 
 
3.2.2 Model Evaluation – Quantitative and Qualitative 
Two model evaluation methods (quantitative and qualitative) was used to assess model performance 
(see Figure 13). For a quantitative performance evaluation, models were fitted to testing data and F1 
scores were calculated for each dataset-model pair. The qualitative evaluation involved fitting each 
model to entire orthomosaics of the spring 2022 and autumn 2021 datasets. The resulting tiles were then 
re-stitched using metadata from the original .tif file (refer to retiling of images in section 2: Data), and 
predicted orthomosaics were formed. Once stitched, a comparison was made between each orthomosaic 
to determine how each model performs on a broad level on each dataset. 
 
3.2.2.1 Evalua6on – Quan6ta6ve Metrics 
The quantitative performance of the neural networks will be evaluated using the F1 score, as well as 
confusion matrices, both of which have been commonly used in evaluation performance of multi-class 
classifiers (Sokolova & Lapalme, 2009). A confusion matrix is a table presenting proportions of actual 
and predicted classifications for each class, providing insight into which specific classes are sufficiently 
similar to become confused with one-another. This is useful to gain insight into the performance of the 
model relating to specific classes. The F1 score is calculated as the harmonic mean of precision and 
recall. Precision is calculated as true positives/total predicted positives, while recall is calculated as true 
positives/total positives. The F1 score combines these two measures into a single number for a concise 
view of model performance, having a maximum value of 1 (indicating only correct predictions) and a 
minimum of zero (indicating only incorrect predictions).  
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙	𝑎𝑐𝑡𝑢𝑎𝑙	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 



 14 

3.2.2.2 Evalua6on – Qualita6ve 
Although quantitative metrics do help to understand some aspects of model performance, they do not 
provide complete insight into it. Some factors, such as the general appearance of predictions (e.g. 
visibility of tiles), as well as ecological plausibility (e.g. the locations of predicted habitat types). To 
better understand model performance in respect of these factors, complete orthomosaics were predicted 
by each model on the spring 2022 and autumn 2021 datasets and analysed further. 
 
4. Results and Analysis 
This section has been split into two components, focussing on a quantitative (4.1) and a qualitative 
evaluation (4.2) of model performance. Figure 13 presents a training history of each model, illustrating 
how each model’s iou (intersection over union, an accuracy measure) and loss developed as the number 
of epochs (the number of times the entire training set has been fed into the model) increased. All models 
except for spring 2018 stopped after around 50 epochs, which is likely due to the activation of early 
stopping conditions to prevent overfitting. Spring continued for longer (to around 90 epochs) probably 
because of the limited differentiability between habitat types previously discussed, requiring more 
training.  

 
4.1 Quantitative Performance Analysis 
As illustrated in Figure 14, the combined models had the best overall performance, with an overall F1 
score of around 5% - 10% higher than that of season-specific models and remaining closer to 5% when 
only considering datasets from an unseen time period (overall_2022). Additionally, for specific seasons, 
the combined models perform as well as or better than the season-specific models. This implies that the 
combined models learned additional patterns by which vegetation can be recognized through exposure 
to training data from different seasons, and possibly lighting conditions. The difference between the 
two combined models is minor, with combined_small sometimes outperforming combined_large. 
Performance of all models were relatively low on the spring 2022 dataset which seems to be related to 

Figure 13: Training history of each model. mean_iou refers to mean intersection over union, which is an accuracy measure. 
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the weather conditions on the day. For season-specific models, performance deteriorated by around 10% 
(spring) - 15% (autumn) when applied to a matched season at a later (unseen) period. The same 
degradation can be seen when applying a season-specific model to its unmatched season. However, in 
both cases, the degree of degradation is greater for the autumn model than the spring model, which 
could result from the spring model having been relatively underfit compared to the autumn model.  

 
Figure 15 shows the differences in lighting conditions between each testing and training dataset. Spring 
2022 appears to have the most prominent shadows and harshest lighting of all datasets. These lighting 
conditions appear to be most similar to autumn 2018 than the other datasets. This could at least partially 
explain why combined models perform better than the season-specific model on the spring 2022 dataset. 
For combined models, training data included tiles that are season-consistent (i.e., spring 2018) and 
lighting-consistent (i.e., autumn 2018) with spring 2022. 

The confusion matrices in Figures 16 and 17 provide insight into the proportions of classes predicted 
for each true class, which give an indication of which classes might have similar appearances to other 
classes. The performance of all models degraded less for the autumn 2018 to 2021 datasets, compared 
to the spring 2018 to 2022 datasets. This is demonstrated by values close to 1 in the diagonal lines 
extending from the top left corner to the bottom right corner for autumn, but not for spring, suggesting 
that the spring 2022 dataset was more challenging for all models. 

Figure 14: F1 Score per model and dataset. Overall_2022 contains Spring 2022 and Autumn 2021 test data. 

Figure 15: Different lighting conditions between the datasets. Spring 2022 has particularly harsh shadows, with lighting conditions most 
comparable with autumn 2018. 
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The extract from the confusion matrices in Table 3 suggests that using a season-matched model is better 
than using a season unmatched model. For example, the spring 2018 model predicted white dunes as 
grey dunes 88% of the time for the autumn 2018 dataset (2021: 58%), while for the spring 2018 dataset 
it only made this mistake 14% of the time (2022: 18%). The same pattern emerges for the autumn 2018 
model, which made this mistake 45% of the time for spring 2018 (2022: 47%), while for the autumn 
2018 dataset this was only 11% (2022: 10%).  
 

Figure 16: Comparison of spring datasets between periods and models. 

Figure 17: Comparison of autumn datasets between periods and models. 
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Table 3: Erroneous predictions of white dunes as grey dunes - higher error rates occur with season-mismatched models. 

 Datasets 
Models Spring 2018 Autumn 2018 Spring 2022 Autumn 2021 
Spring 2018 model 14% 88% 18% 51% 
Autumn 2018 model 45% 11% 47% 10% 

 
Combined models generally appear to perform as well as, if not better than, the season specific models, 
and there does not appear to be much of a difference between the combined model trained on a larger 
dataset compared to a smaller dataset. For example, concerning the autumn 2021 dataset, the small 
combined model outperforms the autumn 2018 model in certain areas (identification of ‘Other’ habitats, 
as well as slightly in the identification of sand and shrubs). On this dataset, the large combined model 
outperforms the small combined model only in the identification of white dunes (96% vs 78%), in which 
it also outperformed all other models for this dataset. However it did not outperform the small combined 
model outright in the other habitats. This performance was repeated in the spring 2022 dataset, whereby 
the combined models outperformed the season-specific model in classifying shrubs and grey dunes, 
which comprised most of the testing dataset. The season-specific model was marginally better in 
classifying white dunes (correct 51% of the time, compared to 47% and 29% for the large combined 
and small combined models respectively). There was little performance difference between the large 
combined and small combined models. 
 
Generally, we see a tendency of models to confuse grey dunes with white dunes, especially for the 
spring 2018 model, wherein these dune habitats appeared very different to how they appeared in 
autumn. This model performed especially poorly on autumn 2018 data (confusing these habitat types 
88% of the time), while this improved on autumn 2021 data (58% of the time). These results are in line 
with Figure 6, which showed that between human annotators, there was confusion between grey and 
white dunes, as well as between grey dunes and shrubs. 
 
The spring 2022 dataset was challenging for all of the models, demonstrated by the low values of top-
left to bottom-right diagonals in Figure 16. Even the best performing model by F1 score (the small 
combined model) confused white dunes and shrubs with grey dunes 36% and 35% of the time 
respectively. This could be due to the shrubs casting shadows, making for difficult predictions by the 
models in the spring 2022 dataset. 
 
4.2 Qualitative Performance Analysis 
The purpose of this section is to further analyse and compare the performance of each of the models on 
each dataset, reaching beyond the scope of the testing dataset and quantitative analysis. 
 
4.2.1 Analysis of overall habitat maps 
Overall, the predictions of the entire orthomosaics appear to present promising results for use in 
automated habitat modelling. The overall habitat maps (Figure 18), show that there are differences in 
model performance that appear to be in line with the findings identified in the preceding section (for 
example, that that autumn 2018 model struggles to correctly identify shrubs and white dunes, classifying 
them as grey dunes 90% and 47% of the time respectively). However, there are some new insights that 
are gleaned from the orthomosaics themselves that are absent from the confusion matrices.  
 
Firstly, the orthomosaics display signs of tiling, whereby it becomes visible where exactly the stitching 
of the tiles making up the orthomosaic took place. This is particularly visible in Figure 19, at around 
98475:493390, however, it can be seen in all the orthomosaics. One possible solution could be to retile 
the source image with different tile locations, predict habitat maps on each of those tiles, stitch them 
together and then create a new habitat map based on the modal habitat type for each pixel. Another 
solution could be to use ensemble modelling, which averages out the predictions of multiple models.   
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Secondly, embryonic dunes (represented by the diagonal line starting at around 98400:493200 and 
ending at 984550:493900 in Figure 18) contain several predictions as ‘Other’ by each of the combined 
models in the autumn 2021 dataset. Curiously, for the combined small model and spring 2018 models 
applied to the spring 2022 dataset, we see many predictions for shrubs in that area, which is ecologically 
virtually impossible. This could be due to the textures in the sand from vehicles driving in that area, as 
well as shells on the beach (red rectangle of Figure 19), which appear to be consistent with the 
appearance of shrubs in spring (Figure 20). The combined small model managed to predict vehicle 
tracks (starting at 98450:493340 to 98470:493420) as ‘Other’, while the spring 2018 model did not. 
This is caused by most of the ‘Other’ habitat in the spring 2018 training dataset containing water (which 
is clear, and thus appears green), while for autumn 2018 this comprised mostly roads. As a result, the 
combined small model can make this distinction, despite never having been trained to recognize such 
patterns in sand as road before.  
 

Figure 18: Stitched orthomosaics generated by each model fitted to the spring 2022 and autumn 2021 datasets. 
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Figure 19: Predictions of spring 2022 data influenced by appearance of shrubs changing between seasons. The red/black rectangles 
represent either predicted or trained shrub regions. 

Figure 20: Differences in appearance of shrubs between spring and autumn. The red rectangles highlight how the predictions of shrubs in the above figure 
could have come about. 
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5. Conclusion and Discussion 
The purpose of this project was to investigate how drone images captured in different phenological 
phases or seasons affect the differentiability of habitat types in the Dutch dune environment. To test 
this, four neural network models were trained on different datasets (representing spring 2018, autumn 
2018, a combined dataset, and a dataset comprising 50% of each of the spring 2018 and autumn 2018 
datasets), and various analyses carried out. 
 
Using a model that was trained on a specific season to predict a habitat map of its corresponding season 
yielded the best results, while the opposite was true for season-mismatched predictions. The combined 
models generally performed as well as, if not better than, seasonally matched models. Additionally, 
there were minimal performance differences between combined large and combined small models, 
which illustrates that increasing training data volume does not necessarily improve performance. 
Finally, the degree of model performance degradation from one period to another can vary quite 
drastically – for autumn 2018 to 2021 this was less than spring 2018 to 2022. However, lighting and 
weather effects could have impacted these results and to an extent confounded the impact of season 
alone. This brings into question the roles played by weather and lighting conditions and the importance 
of incorporating these conditions into training data. 
 
The results of other studies (Kattenborn et al., 2019; Cruz et al., 2023) are similar, however their 
experimental setups were different. They both used digital elevation models (DEMs) together with RGB 
orthomosaics as inputs into their models, while in this study only RGB orthomosaics were used. 
Additionally, other studies achieved higher F1 scores of around 84% (Kattenborn et al., 2019). Finally, 
Cruz et al. (2023) also considered the role played by seasons and found that combined models performed 
better than season-specific models. For the current project, DEMs were not considered relevant because 
the AOI had been artificially disturbed (through the digging of notches in the dunes), which destroys 
relationships that could exist between elevation and habitat type. The higher accuracies of other studies 
stem from several factors. These include larger training set sizes, different approaches (feature 
extraction rather than HITLML, the former of which is much more time-consuming) and the 
combination of the use of DEMs with undisturbed natural sites. 
 
This study has several implications. Firstly, it seems that having a more diverse training dataset, rather 
than an outright larger one, has a larger impact on model performance. Thus, when data collection 
resources are limited, it is more beneficial to annotate a greater variety of data rather than focussing on 
outright volume. Secondly, weather conditions have a rather substantial impact on model performance 
and should be factored into selection of training data samples, or perhaps even through data 
augmentation. This could be incorporated through casting shadows based on DEMs (sun), as well as 
blurring parts of the image (wind). Finally, the use of HITLML has benefits, through faster annotation 
times, however there are also drawbacks associated with it (most prominently, longer post-processing 
times). For future projects, sufficient resources should be allocated to best capitalize on these benefits 
and address the drawbacks (e.g., including team members with sufficient programming skills). 
 
This study also highlights the need for future research using neural networks for remote sensing 
applications. The use of ensemble modelling (i.e., combining predictions of several models to create a 
final prediction) could be better understood in its application to this subject area. For instance, by 
comparing a single combined model with a set of ensemble models trained on different splits of that 
dataset (e.g., by weather conditions and/or season). Another factor worth looking into in this specific 
study area is, instead of using DEMs as previously discussed, the distance to the sea per pixel could be 
incorporated to potentially reduce ecologically impossible predictions (such as shrubs close to the sea).   
 
Overall, this research suggests that the combination of CNNs and HITLML are promising tools for uses 
in automated habitat mapping. Care should be taken in sampling a sufficiently diverse training dataset 
(across seasons as well as weather conditions) to make the best use of human and computational 
resources, for the most reliable and useful results. 
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Appendix 1: Configuration file 
All models were trained using the same configuration files, however the only difference between files 
is the name given to the model. The spring 2018 model config file is presented here as an example. 
 
{ 
  "TARGET_SIZE": [512,512], 
  "MODEL": "resunet", 
  "NCLASSES": 5, 
  "KERNEL":9, 
  "STRIDE":2, 
  "BATCH_SIZE": 6, 
  "FILTERS":6, 
  "N_DATA_BANDS": 3, 
  "DROPOUT":0.1, 
  "DROPOUT_CHANGE_PER_LAYER":0.0, 
  "DROPOUT_TYPE":"standard", 
  "USE_DROPOUT_ON_UPSAMPLING":false, 
  "DO_TRAIN": true, 
  "LOSS":"dice", 
  "PATIENCE": 10, 
  "MAX_EPOCHS": 100, 
  "VALIDATION_SPLIT": 0.5, 
  "RAMPUP_EPOCHS": 20, 
  "SUSTAIN_EPOCHS": 0.0, 
  "EXP_DECAY": 0.9, 
  "START_LR":  1e-7, 
  "MIN_LR": 1e-7, 
  "MAX_LR": 1e-4, 
  "FILTER_VALUE": 0, 
  "DOPLOT": true, 
  "ROOT_STRING": "spring_v2_resunet_512", 
  "USEMASK": false, 
  "AUG_ROT": 5, 
  "AUG_ZOOM": 0.05, 
  "AUG_WIDTHSHIFT": 0.05, 
  "AUG_HEIGHTSHIFT": 0.05, 
  "AUG_HFLIP": true, 
  "AUG_VFLIP": false, 
  "AUG_LOOPS": 10, 
  "AUG_COPIES": 5, 
  "SET_GPU": "0", 
  "WRITE_MODELMETADATA": false, 
  "DO_CRF": false, 
  "LOSS_WEIGHTS": false, 
  "MODE": "all", 
  "SET_PCI_BUS_ID": true, 
  "TESTTIMEAUG": true, 
  "WRITE_MODELMETADATA": true, 
  "OTSU_THRESHOLD": true, 
  "TF_GPU_ALLOCATOR" : "cuda_malloc_async", 
  "CLEAR_MEMORY" : true 
} 
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Appendix 2: Scripts Used 
The following scripts were used in this project, and have been made available in the following link: 
https://github.com/murson/ads_thesis 
 
Name Description 

cohens_kappa.ipynb Calculate Cohen’s kappa inter-annotator reliability between 
image labels. 

download_images.ipynb Downloads and clips all source images. 

retiling_and_file_mgt.ipynb Retiles source images, as well as performs file operations 
(renaming, sampling, etc). 

img_comparison.ipynb Creating the visualization in Figure 4. 
model_histories.ipynb Plot model training histories in Figure 13. 

confusion_matrix.ipynb Creation of confusion matrices, f1 score visualization, 
testing & training dataset land cover analysis. 

stitching.ipynb Stitching of predicted labels into orthomosaics. 

img_analysis.ipynb 
Analysis of which labels contain black pixels, and then 
recolouring those as purple, as well as fixing the .npz file 
produced by DashDoodler to this effect. 

 
 


