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Abstract

Hydrological models are important tools for making streamflow predic-

tions and studying the effects of climate change on water resources around

the world. This study aims to improve a global hybrid hydrological stream-

flow framework based on PCR-GLOBWB and Random Forest (RF), with

the addition of satellite products. The selected satellite products are liq-

uid water equivalent from GRACE (Gravity Recovery and Climate Ex-

periment), snow cover fraction from JASMES (JAXA Satellite Monitoring

for Environmental Studies) and soil moisture from ESA CCI SM (Euro-

pean Space Agency Climate Change Initiative Soil Moisture). These prod-

ucts are selected because of their relevance for streamflow predictions.

Five global and seven Local (Australia, Canada and the United States)

model configurations were used for the RF model. The differences be-

tween configurations are based on the inclusion of state variables from

PCR-GLOBWB, catchment attributes, satellite products, lagged variables

for meteorological input and satellite products of 4 and 12 months and

exclusion of state variables from PCR-GLOBWB related to satellite prod-

ucts. The results showed that the global and local configurations did not

improve compared to the benchmark model (based on 51 predictors from

PCR-GLOBWB) and the addition of lag was not significantly effective ei-

ther. The configuration with only satellite and meteorological input and

satellite products did, however show good performance with only six pre-

dictors. After adding static variables to the previous configuration there

was equal performance to configurations with state variables from PCR-

GLOBWB. These result mean that good performance can be achieved with-

out the need for a hydrological model and with a limited number of vari-

ables.
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1. Introduction

Accurate hydrological models are a very import aspect of managing the

impact of climate change on water resources around the world [1]. The

modelling of the global hydrological cycle is done with Global Hydrologi-

cal Models (GHM), which simulate hydrological responses to weather and

climate variations. GHM’s are used for a variety of applications, including

flood and drought forecasting, studying the impact of climate change and

disaster management [2], [3]. All hydrological models contain errors due to

different factors, such as model structure, parameter values, initial condi-

tions or observational input data [4]. Traditionally, these errors have been

tackled with optimization techniques that aim at calibrating model parame-

ters to better fit historical streamflow records [5]–[7]. Recently, however, dif-

ferent studies have investigated the use of hybrid global streamflow mod-

eling frameworks, where statistical learning (SL) is used to improve GHM’s

[8]–[10]. Many different SL algorithms can be used to improve streamflow

predictions [11].

Shen et al. (2022)[8] developed a hybrid global streamflow framework

using a Random Fores (RF) based error updating procedure to improve

streamflow predictions from the PCR-GLOBWB GHM for three stations in

the Rhine and Meuse basins. The study used an extensive set of hydro-

logical variables obtained from PCR-GLOBWB and meteorological input

variables (precipitation, temperature and reference potential evapotranspi-

ration). The dependent variable for the RF model was the difference (error)

between the observed streamflow and the modeled streamflow by PCR-

GLOBWB. Interestingly they found that the RF model performed better for

an uncalibrated PCR-GLOBWB. Magni et al. (2023)[10] extended this work

to a global scale, increased the number of predictors obtained from PCR-

GLOBWB for the RF model, changed the dependent variable from an error

to the observed streamflow and included the modeled streamflow as a pre-

dictor. They achieved good performance for most stations and significantly

improved the predictions made by PCR-GLOBWB alone.

The use of a hybrid framework, as used by Magni et al. (2023)[10] does
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not solve the problem of incorrect parameter estimation [12]. Satellite-based

remote sensing, however, can provide an alternative to estimated hydrolog-

ical state variables, such as soil moisture, precipitation or snow water equiv-

alent [12]. The type of variables that can be estimated with remote sensing

raise the extra question of the use of lagged variables. Since all three vari-

ables have lagged effects in the hydrological cycle [13]–[15].

The aim of this study is to test if the use of satellite products can improve

the proposed hybrid framework of Magni et al. (2023)[10]. Satellite data can

be used as input forcing for a hydrological model or as input for the post-

processor of the hybrid framework. In this study we focus on the use of

satellite data as input for the post-processor. Although the use of satellite

data is not fit for long-term forecasting, it can be used for near-real time

forecasting [16]–[19] or to create a global streamflow reanalysis dataset [20].

This type of dataset is used for improvement of modeled streamflow values

in ungauged basins [21], [22] and becomes increasingly valuable due to the

trend in the reduction of the number of global gauging stations [23].

The main question of this study is:

How can the performance of a hybrid streamflow model be improved by

replacing specific state variables of the PCR-GLOBWB model with satellite

data?

To assist in addressing the main question, the following three sub-questions

are employed.

• Is it possible to largely or completely remove the PCR-GLOBWB vari-

ables as input for the post processor, while retaining high performance?

• Does lag added to the satellite and meteorological variables improve

performance?

• Is the hypothesized improvement dependent on region?

In order to answer the stated research question, the initial focus will be

data availability. Before satellite data can be used in the framework of Magni

et al. (2023)[10], station values needed to be extracted for all catchments in

the study. The RF model was trained with five global and seven local config-

urations. The configurations vary on the inclusion of PCR-GLOBWB state

variables, catchment attributes and lagged satellite or meteorological vari-

5



Introduction

ables. The local configurations are used to investigate if the performance

depends on the region and these are used to evaluate the lagged configura-

tions. The global configurations are not suitable for evaluating the lagged

configurations, since the large number of variables makes these configura-

tions computationally unfeasible.

This thesis is organized as follows. In section 2 an overview of the data

used is presented. Subsequently, section 3 gives a detailed description of

the methodology of how the satellite data is incorporated in the work of

Magni et al. (2023)[10] followed by the results in section 4. Section 5 presents

discussion points, while conclusions are given in section 6.
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2. Data

Data for this study is obtained from three different satellite products and

from previous research. Data from Magni et al. (2023)[10] can be found

at Zenodo [24] and contains streamflow observations, meteorological vari-

ables and fifty-one features from PCR-GLOWB for a period of 1979 to 2019

(a complete overview of all included features can be found in Table B.1).

The meteorological variables precipitation, temperature and reference po-

tential evapotranspiration were obtained from the CRU TS 3.2 dataset [25].

The streamflow data is available on the Global Runoff Data Centre (GRDC).

The station selection criteria were a minimum upstream catchment area of

10.000 km2 (based on Magni et al. (2023)[10]) and at least one month of ob-

servations without missing values for the period of 2002 and 2019. Figure

1 gives an overview of the available streamflow data for the 1227 selected

stations. We focus on the period Feb-2002 until Dec-2019, as most of the

satellite products are available for this period. More information about the

PCR-GLOBWB model can be found in section 2.2. Sections 2.3, 2.4 and 2.5

introduce the selected satellite products.

0 50 100
Available data (%)

Upstream area (km2)

10 000 < A < 100 000
100 000 < A < 500 000
500 000 < A < 1 000 000 
1 000 000 < A < 4 680 000

Figure 1: Global coverage of streamflow data. The color scale indicates the
percentage of missing discharge values for the period 2002-2019 and the size
of the point indicates the size of the catchment area for each station.
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Data

2.1 Pre-processing
Data made available by Magni et al. (2023)[10] was already pre-processed

and required no further manipulation. The satellite data, however, required

the same upstream normalization as performed on PCR-GLOBWB inputs

and outputs. Before the normalization could be achieved all three satel-

lite products were first transformed to the same 0.5o resolution (using the

setgrid cdo command [26]). Afterwards the upstream normalization was

achieved with the PCRaster Python framework [27]. Station values were

extracted by locating the nearest pixel corresponding to the GRDC station

coordinates. Any missing cell values in the upstream area of a station causes

the calculation for the entire catchment to result in a missing values. By

changing the missing cell value in the upstream area to zero prior to the

upstream normalization, the number of missing values per station was sig-

nificantly reduced, since the entire catchment needs to be missing before the

calculation results in a missing value. All the stations that did not contain

at least one month of data without missing values in either the observations

or the satellite data was excluded from the study.

To investigate the effect of lagged variables in this study, lag was added

to the satellite and meteorological variables. Four and twelve months lag

were selected, due to the potential inclusion of seasonal or yearly lagged

patterns.

2.2 PCR-GLOBWB
PCR-GLOBWB is a grid-based GHM that can be run with different spatial

resolutions. This study focuses on a uncalibrated PCR-GLOBWB run with a

30 arcmin (±50 km resolution at the equator) resolution [28]. PCR-GLOBWB

takes into account both natural hydrological processes as well as anthro-

pogenic influences (see various withdrawal features in Table B.1) [29]–[31].

PCR-GLOBWB was run with a daily timestep, after which the outputs

were upscaled to a monthly timestep to reduce computation time and make

them compatible with the satellite products used in this study.
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2.3 GRACE

2.3 GRACE
The Gravity Recovery and Climate Experiment (GRACE) mission was a

joint operation between the American National Aeronautics and Space Ad-

ministration and the German aerospace center starting in early-2002, with

the purpose of creating a precise survey of Earth’s time-variable gravity

field [32]. The mission consisted of two identical satellites, that employed a

satellite-to-satellite tracking system. The time varying-gravity field is mea-

sured by calculating the integrated difference in gravity acceleration of each

satellite [33]. Known gravity effects such as tides and and non-tidal mass

variations are removed as a post-processing step, which leaves the hydro-

logical signal due to water mass variations on land. There are, however, still

signals left from other processes including post-glacial rebound and seismic

activity [34]. From the final measured gravity field the changes in the Ter-

restrial Water Storage (TWS) can be calculated, which will be referred to as

the Liquid Water Equivalent (LWE) throughout this study.

Figure 2 gives an overview of the data availability for each GRDC sta-

tion, showing overall a good global coverage. The 15 year period contains

24 months of missing data.

0 50 100
Available data (%)

Upstream area (km2)

10 000 < A < 100 000
100 000 < A < 500 000
500 000 < A < 1 000 000 
1 000 000 < A < 4 680 000

Figure 2: Global coverage of LWE. The color scale indicates the percentage of
missing LWE values for the period 2002-2019 and the size of the point indi-
cates the size of the catchment area for each station.
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Data

2.4 SCF JASMES
The Snow Cover Fraction (SCF) product of the JAXA Satellite Monitoring

for Environmental Studies (JASMES) used in this study is derived from ra-

diance data obtained from two different satellite series: the Advanced Very

High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging

Spectroradiometer (MODIS) [35].

The AVHRR is used to obtain data from 1978 until 2005 and the MODIS

instruments are used to get data from 2000 till 2021 (originally until 2015,

which was later extended to 2021). The dataset has a spatial resolution of ap-

proximately 5 km and a bi-monthly temporal resolution. The radiance data

of the two satellite series was used to create a snow cover extent dataset,

which was converted to SCF [35]. The snow fraction values range from zero

(no snow) to one (completely covered).

Figure 3 gives an overview of the data availability for each station. Most

stations have a complete record of observations for SCF and there is no spa-

tial pattern to the missing values. The maximum percentage of missing val-

ues for a single station is less than one percent.

0 50 100
Available data (%)

Upstream area (km2)

10 000 < A < 100 000
100 000 < A < 500 000
500 000 < A < 1 000 000 
1 000 000 < A < 4 680 000

Figure 3: Global coverage of SCF. The color scale indicates the percentage of
missing SCF values for the period 2002-2019 and the size of the point indicates
the size of the catchment area for each station.
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2.5 ESA CCI SM

2.5 ESA CCI SM
The European Space Agency Climate Change Initiative Soil Moisture (ESA

CCI SM) is a remote sensing product, where many different satellite prod-

ucts are combined to form a single Soil Moisture (SM) dataset. Before a

satellite is included in this SM product it needs to satisfy certain criteria,

to ensure that the required quality of the overall product is not diminished

[36]. All satellite products included in the dataset are generated with mi-

crowave remote sensing tools to measure soil moisture. The current dataset

covers a period of 1979 to 2019 with a spatial resolution of 0.5o degrees. The

dataset is regularly updated, changing either the temporal or spatial resolu-

tion and extent [36].

Figure 4 gives an overview of the data availability for each GRDC sta-

tion. There is a clear pattern that is caused by limitations of the measuring

equipment. Microwave remote sensing tools are not capable of accurately

measuring SM in areas with abundant snow or ice cover [37]. This means

there is an increase in missing data during winter. Dense vegetation, like

in the tropics, is another cause for inadequate observations [38]. Stations

where the entire record was missing for this reason were entirely removed

from the current study.

0 50 100
Available data (%)

Upstream area (km2)

10 000 < A < 100 000
100 000 < A < 500 000
500 000 < A < 1 000 000 
1 000 000 < A < 4 680 000

Figure 4: Global coverage of SM. The color scale indicates the percentage of
missing SM values for the period 2002-2019 and the size of the point indicates
the size of the catchment area for each station.
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3. Method

In this study, a similar hybrid modelling approach is used as in Magni et

al. (2023)[10], with different combinations of input variables for the SL al-

gorithm. The choice of the correct satellite products that may help improve

streamflow predictions depend on knowledge of the hydrological cycle [39].

The terrestrial water storage (TWS) is a crucial part of the hydrological cycle

and can be calculated by summing up different parts of the water cycle [39],

[40]:

TWS = SnWS + CWS + SWS + SMS + GWS (1)

In Equation 1 the different storage components represent: Snow Wa-

ter Storage (SnWS), Canopy Water Storage (CWS), Surface Water Storage

(SWS), Soil Moisture Storage (SMS) and Ground Water Storage (GWS). Liq-

uid Water Storage (LWE) from GRACE was selected to replace TWS, Soil

Moisture (SM) from ESA CCI SM to replace SMS and Snow Cover Fraction

(SCF) from JASMES to serve as proxy for SnWS.

In the following sections the RF algorithm (section 3.1) and model setup

(section 3.2 will be further explained.

3.1 Random Forest
RF is a frequently used ensemble learning algorithm that uses multiple de-

cision trees as base learners and is an extension of bagging classification

trees [41]. To reach a final result, a tree is developed by minimizing an er-

ror function for each split in the tree (mean squared error was selected for

this study). In RF, a random subset of the full set of predictors is selected

for each node, from which a split (bootstrapping) is chosen, to ensure that

influential parameters do not dominate all trees. Different hyperparameters

can be used to tune the algorithm. Ntree is used to control the number of

trees in the forest, mtry the number of variables available for each split and

node size controls the depth of each tree. Ntree and node size were kept

constant through all runs of the model, the choice of these was based on
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3.2 Model setup

values found in the literature [42]. The number of trees was set at 200 for

the tuning phase of the model and at 1000 for training the final model, while

the node size was kept at 5 for both tuning and training phase. According

to Probst et al. (2019)[42], the performance of the model is not significantly

affected by the number of trees beyond 100, the stability of the variability,

however, is improved by an increase in the number of trees. For this reason

1000 trees were selected for training the final model.

The value for mtry has more influence on the performance of the model

and was therefore the only tuned hyperparameter [42]. Based on early tun-

ing attempts and the number of available predictors a range of values be-

tween 35 and 3 was selected, with most values between 25 and 14. The

Out-Of-Bag Root Mean Squared Error (OOB RMSE) metric was used to

choose the optimal value for mtry. The OOB RMSE is a kind of internal

cross-validation where for each tree certain rows are used for training and

the unused trees are used for validation (out-of-bag samples). The average

of all the out-of-bag predictions can then be used to calculate a OOB RMSE.

3.2 Model setup

3.2.1 Variable selection

Different model configurations were used, including the method used by

Magni et al. (2023)[10] as a benchmark, to investigate the benefit of using

satellite products in a hybrid global streamflow modeling framework. Be-

fore choosing the different model configurations, the parameters were di-

vided in time varying and static (describing catchment attributes) variables.

Time varying variables: meteorological inputs, hydrological state variables,

uncalibrated PCR-GLOBWB streamflow prediction and satellite products.

Static variables: topography, river channel characteristics, soil and Ground-

water properties, land use characteristics and climatic indices. More infor-

mation on all the variables extracted from PCR-GLOBWB can be found in

Sutanudjaja et al. (2018)[28] and a complete list is present in Appendix B.

Table 1 shows the different global model configurations that were used.

The pcr configuration is the benchmark configuration, containing all the pre-

dictors obtained from PCR-GLOBWB. The other four global model config-

urations contain a combination of satellite products, meteorological input
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Method

and PCR-GLOBWB predictors. The pcrSat is used to evaluate the effect

of replacing state variables related by the selected satellite products in the

benchmark configuration. PcrSatAdd assesses the effect of adding the satel-

lite products to the benchmark configuration.

The satMeteo configuration is employed to investigate what the perfor-

mance of the RF model is, without input from PCR-GLOBWB. If this config-

uration yields good results, it would mean a significant reduction in com-

putation time, because the run of PCR-GLOBWB is not necessary and the

RF model itself is much faster. The satMeteoStatic configuration is subse-

quently used to test the change in performance after adding catchment at-

tributes to the satMeteo configuration. These attributes are obtained from

PCR-GLOBWB and thus would need this model to be run in advance. The

attributes could, however be obtained from an external source, such as Kratzert

et al. (2023) [43].

Table 1: Predictors used in the different global model configurations. The *
indicates that the model configuration excluded: snowCoverSI, storUppTotal,
storGroundwater, storLowTotal. The streamflow prediction is obtained from
an uncalibrated PCR-GLOBWB.

pcr pcrSat
pcrSat-

Add

Sat-

Meteo

SatMeteo-

Static

Meteorological input X X X X X

Hydrological

state variables
X X* X

Streamflow prediction X X X

Satellite predictors X X X X

Static predictors X X X X
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3.2 Model setup

Following the global runs, the local runs were used to analyse the ef-

fectiveness of lagged variables and the effect on performance of training a

model on a specific region. Canada and Australia were selected, because

PCR-GLOBWB under-performed in these regions, while the United States

contained a mix of stations with both good and bad performance. A re-

gion with both good and bad performance is of interest, because the hy-

pothesized increase in performance might depend on performance in PCR-

GLOBWB. A RF model was trained for each region separately.

Table 2 shows the local model configurations that were used. Lagged

values of LWE and SCF were added for the pcrSatLag configurations, while

the satMeteoLag configurations also included lagged values for the meteoro-

logical inputs. The SM values contained too many missing values to be of

use in a lagged simulation, as rows with missing data would be multiplied

by the selected lag number.

Table 2: Predictors used in different local model configurations. The * indi-
cates that the model configuration excluded: snowCoverSWE, storUppTotal,
storGroundwater, storLowTotal. Lag is added to LWE and SCF for pcrSatLag,
satMeteoLag lag for the meteorological input variables. The streamflow predic-
tion is obtained from an uncalibrated PCR-GLOBWB.

pcr
pcr-

Sat

pcr-

Sat-

Lag4

pcr-

Sat-

Lag12

Sat-

Meteo

Sat

Meteo-

Lag4

Sat-

Meteo-

Lag12

Meteorological

inputs
X X X X X X X

Hydrological

state variables
X X* X* X*

Streamflow prediction X X X X

Satellite predictors X X X X X X

Static predictors X X X X

Lag 4 months X X X

Lag 12 month X X
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3.2.2 Training and evaluation

The Ranger package [44] was used to implement RF in R, which is capable

of fast implementation with high-dimensional data. The RF model requires

three hyperparameters (ntree, node size mtry) to be tuned. To reduce com-

putation time ntree and node size were kept constant, while only tuning

mtry (see Section 3.1).

Five random subsamples were created for training and testing. The

train-test split was achieved with a location-based approach, with about

70% of the stations used for training and 30% for testing. Each model con-

figuration in the same region (global, Australia, Canada or United States)

contained the same stations for training and testing. All data for training

and testing was aggregated in a single table to train the RF. An additional

train-test split condition was applied to ensure that about two-thirds of the

observations was present in the training set. This additional condition is

needed due to the high level of missing observations for some stations. Af-

ter training the RF model, new streamflow predictions are created for each

station in the test-set.

Following model training, the contribution of variables to a final pre-

diction can be determined by assessing their variable importance [45]. This

study used the ’impurity’ measure, based on the Gini criterion, which calcu-

lates the average decrease in Gini node-impurity over all trees per variable.

The performance is assessed individually for each station, using a station-

by-station approach. The Kling-Gupta efficiency (KGE) is selected for eval-

uating the performance of the model [46]. KGE is calculated by combining

three different components (see Equation 2): the linear correlation between

observation and prediction (r), the variability in the flow (σ indicating the

standard deviation) and a bias term (µ indicating the mean). KGE values

range from −∞ to 1, with scores above −0.41 indicating a good KGE value

[47].

KGE = 1 −
√
(r − 1)2 + (

σpred

σobs
− 1)2 + (

µpred

µobs
− 1)2 (2)
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4. Results

The results are organized in two sections. First results for the global model

configurations are shown (see section 4.1, followed by the local results (see

section 4.2.

4.1 Global runs

4.1.1 Variable importance

Figure 5 displays the variable importance for the five global configurations

averaged over the five subsamples. The figure only shows the 20 most im-

portant variables for each configuration. To ensure that even small changes

are discernible, all variables have been scaled to their square root.

The pcr, pcrSat and pcrSatAdd configurations present quite similar results

for most of the variables. It is, however, clear that the satellite products

LWE and SM are important and that SM is the most important satellite fea-

ture to be added to the model. Similar to the results found by Magni et al.

(2023)[10], the flow depth from PCR-GLOBWB is the most important pre-

dictor for all configurations that include this predictor.

The satMeteo configuration shows that the satellite products are more

important compared to the meteorological input predictors. This changes

with the addition of the static variables, in satMeteoStatic. The precipitation

is now more important than SCF. The error bars, in Figure 5, show the rel-

ative uncertainty of each predictor, which remains roughly constant for all

configurations.
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Figure 5: Square rooted mean decrease in impurity values of the top twenty
variables. The figure includes all five global RF configurations averaged over
the five subsamples. The different type of variables are indicated by color.
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4.1 Global runs

4.1.2 Tuning

Figure 6 shows the results of tuning the mtry hyperparamter, which was

performed for each subsample and each configuration. For all configura-

tions the ntry was kept constant at 200 and the node size at 5. The number

of tuned values depends on the number of predictors used in the configura-

tion. The configurations pcr, pcrSat and pcrSatAdd display small fluctuations

around the minimum OOB RMSE, with quite large differences between each

of the subsamples. The satMeteoStatic configuration shows less fluctuation

around the minimum OOB RMSE and contains far smaller differences be-

tween the configurations. The satMeteo configuration is only tuned for two

values of mtry and shows very little difference between the two values.

All configurations in figure 6, except for satMeteo, show a rapid decrease

followed by a slight increase. The increase is caused by overfitting on the

training data. The lowest values for each configuration and subsample were

selected and used for training the final model (see Table 3).
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Figure 6: RF tuning of mtry hyperparameter. Each panel shows all subsamples
and a single configuration. The lines indicate a OOB RMSE score and the dots
indicate the tuned mtry values. Using a fixed ntree of 200 and node size of 5.
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Results

Table 3: Optimal mtry values, obtained from tuning the following values:
35,30,27,25,24,23,22,21,20,19,18,17,16,15,14,4,3. satMeteo and satMeteoStatic are
limited by the number of available variables. Constant ntree of 200.

Configuration

Subsample
1 2 3 4 5

pcr 16 25 21 19 19

pcrSat 27 27 25 18 21

pcrSatAdd 23 27 21 21 19

satMeteo 3 3 3 3 4

SatMeteo-

Static
15 16 18 18 15

4.1.3 Performance

Boxplots for all global model configurations of KGE scores are visualized in

Figure 7. Each row in Figure 7 represents a subsample or the cumulative

of all subsamples (row indicated with C). Within each row, each boxplot

displays the performance of different configurations and the uncalibrated

PCR-GLOBWB prediction.

It is clear in Figure 7 that the performance of the different model config-

urations is not dependent on the selected subsample, which indicates that

the model is not overfitting on a specific region or set of stations. The con-

figurations pcr, pcrSat, pcrSatAdd and satMeteoStatic all show a significant

improvement in performance compared to the uncalibrated PCR-GLOBWB

(red boxplot). The four configurations also show very little differences be-

tween them, for all rows. There are only slight variations visible in the out-

liers for some of the subsamples, which are smoothed out in the cumulative.

The satMeteo configuration also shows significant improvement com-

pared to the uncalibrated PCR-GLOBWB configuration. This configuration,

however, shows a larger spread and an overall lower performance com-

pared to other four configurations.

20



4.1 Global runs
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Figure 7: Boxplots of KGE for all five subsamples and the uncalibrated PCR-
GLOBWB. The two dotted lines indicate an ideal KGE value of 1 and the mini-
mum "good" value of -0.41. The values are limited to -3 on the y-axis
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Figure 8 presents the cumulative distribution of KGE score averaged

over the five subsamples. Each line in the figure indicates a different config-

uration or the uncalibrated PCR-GLOBWB.

The cumulative distribution largely shows a similar pattern, as seen in

Figure 7, with all five performing significantly better compared to the uncal-

ibrated PCR-GLOBWB and satMeteo showing lower performance compared

to the other four configurations. The only difference between pcr, pcrSat,

pcrSatAdd and satMeteoStatic is that below 0 satMeteoStatic performs slightly

better compared to the other three, while the performance is very slightly

worse above 0. This results in median values of 0.478, 0.486, 0.488 and 0.431

for pcr, pcrSat, pcrSatAdd and satMeteoStatic respectively.
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Figure 8: Cumulative distribution functions of KGE for the five configurations
and the uncalibrated PCR-GLOBWB. The KGE results were averaged over
the five subsamples and the lower KGE scores are not shown and the x-axis
limited to -5.
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4.1 Global runs

Table 4 shows that even though the cumulative distribution for KGE is

very similar for some of the configurations, there are still large differences

for individual stations or catchments. Row 1 and 2 show stations (in Spain

and Ghana), where the satMeteo and satMeteoStatic configurations signifi-

cantly outperform the the other configurations. The rows three and four

show two stations (in the United States) for the opposite case where pcr,

pcrSat and pcrSatAdd outperform the other two configurations. For both

cases the uncalibrated PCR-GLOBWB has KGE values below -0.41.

Table 4: KGE values for individual stations (columns indicate GRDC stations)
averaged over the five subsamples for each configuration (rows). GH stand for
Ghana, ES for Spain and US for United States.

Station

Config. Uncalibrated

PCR-GLOBWB
pcr pcrSat

pcrSat-

Add

Sat-

Meteo

Sat-

Meteo-

Static

1531650 (GH) -5.87 -0.53 -0.66 -0.48 0.49 0.60

6226600 (ES) -12.01 -0.72 -0.76 -0.63 0.02 0.44

4122600 (US) -0.81 0.81 0.85 0.90 -0.69 -0.71

4122701 (US) -2.30 0.58 0.71 0.69 -0.64 -0.41
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4.2 Local runs
This section presents the results obtained from training the models on the

stations in Australia, Canada, and the United States. The variable impor-

tance is different for the locally trained models compared to the global model

(See Figure D.1 for Australia, Figure D.2 for Canada and Figure D.3 for the

United States). Similar to the global results, is that LWE and SM are still

high among the 20 most important predictors for Australia and the United

States. Canada, however, shows a difference in the importance of the satel-

lite products, where the SCF is the most important satellite product added

to the configurations pcrSat and pcrSatAdd. Further investigation of the dif-

ferences in variable importance fall outside the scope of this study.

It was found that there was no overfitting to specific stations for Canada

and the United States (see Figures D.5 and D.6). Australia, however, showed

that there was overfitting, because there were significant differences be-

tween the results for each subsamples (see figures D.4).

Figure 9 shows the cumulative distribution of the KGE scores, in which

the results for the 12 month lag are not included, because this configuration

did not show large differences with the 4 month lag (see Figure C.1). Sim-

ilarly to the global runs (see Figure 8) all configurations for Canada and

Australia show considerable improvement compared to the uncalibrated

PCR-GLOBWB run. The cumulative distribution of Australia, however, is

characterized by a very irregular pattern. It is difficult to visually find a clear

pattern between the different configurations. However the median values

indicate that pcrSat has the best performance (see Table 5).

Table 5: Median KGE values averaged over the five subsamples. The rows
indicate the countries and the columns the different configurations

Uncalibrated

PCR-GLOBWB
pcr pcrSat

pcrSat-

Lag4

Sat-

Meteo

Sat-

Meteo-

Lag4

Australia -0.10 -0.10 0.15 -0.01 -0.12 -0.1

Canada 0.15 0.53 0.54 0.51 0.34 0.40

United States -0.14 0.52 0.51 0.51 0.27 0.35
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4.2 Local runs

Upon further visual inspection of Figure 9 it was found that for Canada

and the United States there is very little difference between the pcr, pcrSat

and pcrSatLag4 configurations. For both countries the added lag slightly

improves the pcrMeteo configurations, which is also visible in the median

values for these configurations (see Table 5). For Australia it is unclear from

the figure if there is a difference with the addition of lag.
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Figure 9: Cumulative distribution function of KGE for five local configura-
tions and the uncalibrated PCR-GLOBWB. The results were averaged over the
five subsamples. AU indicates Australia, CA Canada and US United States.
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5. Discussion

The results in this study proved that the performance of a hybrid global

streamflow framework, with RF and PCR-GLOBWB, is not improved for

global runs or local runs in Australia, Canada and the United States. On

the other hand, it has been proven that the partial or complete removal of

variables from PCR-GLOBWB can still retain high performance in the RF

post-processor. Both the configuration only satellite products and meteoro-

logical input and the configuration with satellite products, meteorological

and catchment attributes show significant improvement compared to an un-

calibrated PCR-GLOBWB. The configuration including catchment attributes

even showed comparable performance to configurations with input of state

variables from PCR-GLOBWB. There are many studies in a review by Jiang

and Wang (2019)[12] stating either the benefit or drawbacks of using remote

sensing in streamflow predictions. This study however showed that there

are clear advantages to using remote sensing data in the proposed hybrid

framework. Before the configuration with satellite products, meteorologi-

cal input and catchment attributes can used to improve upon the method

proposed by Magni et al. (2023)[10], catchment attributes from an external

source need to be used, such as those from Kratzert et al. (2023)[43].

The added lagged variables did not significantly increase the overall per-

formance of the RF post-processor. We did, however find a slight difference

between the satMeteo and satMeteoLag4 for Canada and the United States.

Additional lag of 12 months did not change the performance and signifi-

cantly increases the number of missing values making the model less reli-

able. Other studies have found that the addition of lagged variables in hy-

drological models can improve performance [48]. The differnce with find-

ings in this study could be explained by the fact that RF is not an ideal

statistical learning algorithm to include lag, since it only adds a variable to

each row as an extra predictor, instead of looking for a pattern in the time

series. Different algorithms like the Long-short-term-memory (LSTM) algo-

rithm are better suited to test the effect of adding lag [49].

To further analyse the differences in performance for configurations with
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5.1 Limitations and recommendations

satellite products, local effects were investigated. These showed that the

models trained on different regions contain considerable differences, from

the global simulations. Part of these difference can be explained by a lack

of station values and therefore might not be statistically significant. This

can be seen in the model for Australia that contained a limited number of

stations, which could be a reason for the difference in performance.

5.1 Limitations and recommendations
The selection of predictors to be removed from the set of PCR-GLOBWB

predictors was based on their relation with the satellite products, but has

not been extensively tested. Further combinations of predictors should be

tested to find what the effect is of removing these specific predictors. Ad-

ditionally, there are many more available remote sensing products that can

improve streamflow predictors [12]. Two possible products are are evap-

otranspiration data from the Global Land Evaporation Amsterdam Model

[50] and precipitation from the Soil Moisture to Rain dataset [51].

For the research into local effects, three countries with low or mixed

performance in the PCR-GLOBWB were selected. But the performance of

hydrological models is not dependent on national borders. This selection

of countries is therefore not suitable for investigating the performance of

the model in different regions. Further research, should focus on clustering

approaches of relevant predictors to find regions with similar hydrological

characteristics.

Finally, the effect of missing data has not been considered in this study.

There are many months with missing data in the GRDC observations and

SM satellite data. The mechanism of missing data is an important aspect

of the effect of missing data [52], but has not been investigated. A solution

might be the application of a RF-based mixed effects model, which are often

used studies with repeated measurements on the same object. This type

of model is capable of dealing with time-series analysis, where there are

uneven records [53]. Additionally, to reduce the number of missing values

in the satellite observations, a method was used where missing values were

changed to zero. This approach reduces the overall averaged values and

more investigation into the effect of this method is needed.
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6. Conclusion

This study showed that adding LWE, SCF and SM satellite data to a hy-

brid framework using Random Forest and PCR-GLOBWB, does not im-

prove streamflow predictions on a global scale. However, satellite data,

meteorological data and catchment attributes can be used to create an ac-

curate model, with a relative small number of predictors. Additionally, a

model with only six predictors (three satellite and three meteorological) can

already increase performance. This means that a small model can be used

for quick streamflow predictions.

It has also been proven that a change in performance is dependent on

the location of the upstream basin and that the addition of lag does not

significantly improve predictions, when using a RF algorithm. This limita-

tion is likely caused by, how the RF algorithm gains additional information

from the lagged predictors. Therefore the effectiveness of lag cannot be truly

judged, based on the method used in this study

Future research may focus on: 1) increasing the number of predictor

variables extracted from satellite products to the hybrid framework; 2) cluster-

analysing stations where the addition of satellite products improves the

post-processor compared to the method proposed by Magni et al. (2023) [10]

; 3) applying different SL algorithms that are better equipped to deal with

lagged variables; 4) using mixed effects modelling.
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A. Appendix

All the codes used in this research can be found at: https://github.com/niekcde/PCR-

GLOBWB-satellite-RF-reanalysis.
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B. Appendix

Table B.1: All variables extracted from PCR-GLOBWB and used in the RF
model. Further description of the predictors can be found in

Variable Unit Description Type of predictor

pcrFlowDepth m/day
PCR-GLOBWB

daily streamflow

predictions

Varying

precipitation m/day
Meteorological

Input
Varying

temperature °C
Meteorological

input
Varying

referencePotET m/day
Meteorological

input
Varying

baseflow m/day State variable Varying

desalinationAbstraction m/day State variable Varying

directRunoff m/day State variable Varying

domesticWaterWithdrawal m/day State variable Varying

fossilGroundwaterAbstraction m/day State variable Varying

gwRecharge m/day State variable Varying

industryWaterWithdrawal m/day State variable Varying

interflowTotal m/day State variable Varying

irrigationWaterWithdrawal m/day State variable Varying

livestockWaterWithdrawal m/day State variable Varying

nonIrrWaterConsumption m/day State variable Varying

snowCoverSWE m State variable Varying

snowFreeWater m State variable Varying

storGroundwater m State variable Varying

storLowTotal m State variable Varying

storUppTotal m State variable Varying

surfaceWaterAbstraction m/day State variable Varying

surfaceWaterInf m/day State variable Varying

surfaceWaterStorage m State variable Varying
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Table B.1 continued from previous page

totalGroundwaterAbstraction m/day State variable Varying

totalEvaporation m/day State variable Varying

airEntry1 Catchment attributes Static

airEntry2 Catchment attributes Static

aqThick Catchment attributes Static

aridityIdx Catchment attributes Static

bankArea m2 Catchment attributes Static

bankDepth m Catchment attributes Static

bankWidth m Catchment attributes Static

demAverage m Catchment attributes Static

forestFraction Catchment attributes Static

groundwaterDepth Catchment attributes Static

KSat1 Catchment attributes Static

KSat2 Catchment attributes Static

kSatAquifer Catchment attributes Static

recessionCoeff Catchment attributes Static

resWC1 Catchment attributes Static

resWC2 Catchment attributes Static

satWC1 Catchment attributes Static

satWC2 Catchment attributes Static

slopeLength Catchment attributes Static

specificYield Catchment attributes Static

Storage1 Catchment attributes Static

storage2 Catchment attributes Static

storDepth1 Catchment attributes Static

storDepth2 Catchment attributes Static

tanSlope Catchment attributes Static

poreSize1 Catchment attributes Static

poreSize2 Catchment attributes Static

percolationImp Catchment attributes Static

catchment area m2 Catchment attributes Static
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C. Appendix
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Figure C.1: Cumulative distribution function of KGE for the five local model
configurations shown in the results section, the uncalibrated PCR-GLOBWB
and the 12 month lag. The results were averaged over the five subsamples.
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D. Appendix

D.1 Variable importance local configurations
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Figure D.1: Variable importance for Australia. Square rooted mean decrease
in impurity values of the top twenty variables. The figure includes all seven
local RF configurations averaged over the five subsamples. The different type
of variables are indicated by color.
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Figure D.2: Variable importance for Canada. Square rooted mean decrease in
impurity values of the top twenty variables. The figure includes all seven local
RF configurations averaged over the five subsamples. The different type of
variables are indicated by color.
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Figure D.3: Variable importance for the United States. Square rooted mean
decrease in impurity values of the top twenty variables. The figure includes all
seven local RF configurations averaged over the five subsamples. The different
type of variables are indicated by color.
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D.2 Boxplots local configurations
1

2
3

4
5

C

−3

−2

−1

0

1

−3

−2

−1

0

1

−3

−2

−1

0

1

−3

−2

−1

0

1

−3

−2

−1

0

1

−3

−2

−1

0

1

uncalibrated

pcr

pcrSat

pcrSatLag4

pcrSatLag12

satMeteo

satMeteoLag4

satMeteoLag12

Australia

Figure D.4: Boxplots for the region Australia of KGE for all five subsamples
and the uncalibrated PCR-GLOBWB. The two dotted lines indicate an ideal
KGE value of 1 and the minimum "good" of -0.41.
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Figure D.5: Boxplots for the region Canada of KGE for all five subsamples and
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value of 1 and the minimum "good" of -0.41.
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ideal KGE value of 1 and the minimum "good" of -0.41.
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