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 Abstract 
 Malaria is a large health threat on the African continent. The transmission of the parasite is 
 highly dependent on precipitation and temperature levels. Relatively low temperatures in the 
 highlands of Uganda can be inhibiting the current spread of malaria. Future climate change 
 may therefore cause a shift in the climatic suitability for malaria transmission in this region. 
 This study uses downscaled climate projections of temperature and precipitation values in 
 Uganda from 2015 to 2099 generated by the MPI-ESM1-2-LR climate model. This data is 
 used as input for a simplified version of the Liverpool Malaria Model. The model 
 mathematically simulates several processes of the malaria transmission dynamics on a daily 
 basis for every grid cell of the input data. The output consists of the daily basic reproductive 
 rate (R  0  ). The rate serves as a measure for the climatic  suitability for and intensity of malaria 
 transmission. Error margins for the climate projections are estimated through an ensemble 
 created on a spatial subset of Uganda and are combined with the input data. The malaria 
 model uncertainty is assessed through a sensitivity analysis using a one-at-a-time (OAT) 
 method. Results show an increase in areas where, on average, malaria will spread (R  0  > 1). 
 This is most notable under climate change scenarios SSP3-7.0 (up to 24.1% of the area) 
 and SSP 5-8.5 (up to 34.7% of the area). Several high-altitude locations in the west and east 
 of Uganda show higher R  0  values (R  0  ≥ 2.5) starting  from 2050. This is mainly caused by 
 high levels of projected precipitation in the aforementioned scenarios. These locations also 
 display the most notable increase in malaria transmission season length from 80 up to 120 
 days per year. The moment in time the season occurs appears stable. The error analysis 
 warrants caution regarding the interpretation of these results, showing high errors for 
 precipitation at high-altitude locations. Furthermore, the sensitivity analysis indicates a model 
 that is highly sensitive to its parameter settings. Additional research needs to be carried out 
 to calibrate the model parameters and to validate the outcomes of the current contribution. 
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 1. Introduction 
 Malaria has been an ever-present health threat in the continent of Africa. In sub-Saharan 

 Africa there have been 228 million cases and 405,000 deaths in 2018 alone (Mordecai et al., 

 2020). The way that malaria is transmitted, is dependent on several factors. These factors, 

 biotic or abiotic in nature, include precipitation and temperature levels. They partially 

 determine within which geographical reach the disease can occur and spread. Due to 

 anthropogenic global warming and climate change, these factors can become subject to 

 change. Therefore, it can be expected that the spatial distribution of Malaria will change as 

 well (Eikenberry and Gumel, 2018). 

 Multiple models have been proposed to simulate the spatial and temporal distribution of 

 malaria (Eikenberry and Gumel, 2018). One of these models is the Liverpool Malaria Model 

 (LMM), developed by Hoshen and Morse (2004). It attempts to simulate the parasite and 

 vector dynamics, using inputs of daily rainfall and daily temperatures. The output consists of 

 malaria incidence for a region, as well as other intermediate statistics, such as the size of the 

 mosquito population (Hoshen and Morse, 2004). The model has in later stages been 

 simplified by Jones (2007) to output the basic reproduction number (R  0  ). This model, the 

 LMM_R0 model, does not directly relate back to the population that is at risk of malaria. 

 Instead, it can give an indication of the climatic suitability for and intensity of malaria 

 transmission; if R  0  is larger than one, malaria will  spread. By doing so it can delineate, for 

 example, the start and end of the malaria transmission seasons (Caminade et al., 2014). 

 Recent developments in climate modelling have enabled researchers to feed the malaria 

 models output from climate projection models. One of these developments is the sixth phase 

 of the Coupled Models Intercomparison Project (CMIP6) (Eyring et al., 2016). CMIP6 has 

 enabled researchers to distribute, compare and access different climate model outputs. 

 Thereby it helps create a deeper understanding of the effects of climate change. The output 

 of CMIP6 has improved compared to its predecessor CMIP5. These improvements include 

 better projections of mean and extreme climate and more reliable results (for a 

 comprehensive overview of research focussing on CMIP6 improvements see Ayugi et al., 

 2021). Several models that are gathered in CMIP6 have subsequently been downscaled by 

 the Climate Impact Lab (CIL), resulting in a dataset containing daily maximum and minimum 

 temperatures and precipitation values (Gergel et al., 2023; Gergel et al., 2022). 
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 These projections can be used to analyse the changing temperatures and rainfall of regions 

 that are exposed to the threat of malaria. Combining this data with malaria models can 

 indicate whether a region will be susceptible to an increased or decreased risk of malaria. 

 The highlands of East Africa are considered to be an area that can become exposed to an 

 increased risk of malaria. In this region the malaria burden was previously rare but has 

 become more prevalent since the 1970s (Eikenberry and Gumel, 2018). In this region the 

 spread can be contained by the low temperatures at high altitudes. Rising temperatures 

 could create a more suitable climate for malaria to spread (Hay et al., 2002). Additionally, 

 malaria reproduction is heavily dependent on the availability of freshwater pools (Hoshen 

 and Morse, 2004) and the East African highlands is susceptible to biannual, seasonal 

 rainfalls. These span from March to May (MAM) and October to December (OND). This 

 could therefore, combined with rising temperatures, result in two highly suitable periods for 

 malaria transmission (Palmer et al., 2023). 

 This study will investigate the current outlook of the projected risk of malaria for a specific 

 case in the East African highlands: Uganda. The climatic suitability for and intensity of 

 malaria under four different climate scenarios will be analysed using the downscaled data 

 from the Climate Impact Lab. The data will serve as input for the LMM_R0 model, which 

 calculates the daily basic reproduction number (R  0  )  for a time period from 2015 to 2100. The 

 central research question is: How does the climatic suitability for and intensity of malaria 

 change under different climate change scenarios in Uganda between 2015 and 2100, and 

 what degree of uncertainty can be associated with these projections? To answer this 

 question we will answer the following questions and subquestions: 

 1.  How will the spatial and temporal variation of precipitation and temperature in 

 Uganda change, according to the different climate change scenarios? 

 2.  How does the spatial distribution of areas where, on average, R  0  > 1 change over 

 time, according to different climate change scenarios? 

 3.  How will the temporal and spatial variation of the malaria transmission season length 

 per climate scenario in Uganda change over time? 

 a.  Is there a difference in trend of the malaria transmission season length 

 between the biannual rainy seasons? 

 4.  Will the moment when the malaria transmission season occurs shift forward or 

 backward in the two respective rainy seasons? 
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 5.  How do error measures in climate projections and model output vary in terms of their 

 spatial and temporal distribution? 

 6.  How sensitive is the LMM_R0 model to different parameter settings? 

 The climate model that will be used for this analysis is the MPI-ESM1-2-LR model (MPI 

 model) (Wieners et al., 2019a; Wieners et al., 2019b), which has shown adequate results for 

 both temperature and precipitation forecasting in East Africa (Ayugi et al., 2021a, 2021b). 

 Data is available for four different climate scenarios that are further elaborated upon in the 

 data section of this paper. Assessment of temperature and precipitation trends will be carried 

 out with this dataset. The changes in malaria intensity and climatic suitability will be studied 

 by calculating daily R  0  values through the LMM_R0  model. Python code for the model is 

 accessible through the IBM Github repository of Kuehnert (2022) and has subsequently 

 been adapted to work with the xarray dataformat. 

 The alterations in the spatial distribution of areas suitable for malaria transmission will be 

 assessed by averaging R  0  over three 20-year time frames. The changing season lengths will 

 be measured by the periods where R  0  is larger than one. These values are compared over 

 the years but also between the biannual rainy seasons. The moment in time of the 

 transmission season will be assessed by calculating the average day-of-season count where 

 R  0  > 1. This will indicate where on average in the biannual season the malaria transmission 

 season occurs. 

 The uncertainty of the MPI model will be assessed by creating an ensemble of climate 

 projections from models that have shown adequate performance in predicting temperature 

 and precipitation in Uganda. This ensemble will be created for a spatial subset of Uganda, 

 covering an area of 1° x 1°. The standard deviation of the precipitation and temperature 

 values between models will be calculated for each datapoint and averaged over the two 

 spatial dimensions, resulting in a variable error band that can be added to the MPI climate 

 projections as a minimum and maximum value at each timestep. The spatial distribution of 

 these errors will also be assessed. Daily temperature and precipitation error values will be 

 averaged over time and plotted for three different time frames. Additionally, the spatial 

 distribution of R  0  error values will be determined by calculating them for all possible 

 combinations of precipitation and temperature data, sourced from the different models that 

 were gathered in the respective ensembles. Finally, the sensitivity of the model parameters 

 will be assessed by running the model for a range of possible parameter values. Through a 
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 one-at-a-time (OAT) analysis, all parameter values will be fixed apart from one. By doing so, 

 R  0  can be determined for a range of parameter settings. The average R  0  values and input 

 values per parameter will be plotted against each other to visualise the sensitivity of the 

 model for every parameter. 

 The report is structured as follows. First, a description of the datasets will be given, 

 highlighting their origin and how they have been pre-processed. Secondly, in the 

 methodology chapter, the report will elaborate on the biological malaria system and how it 

 relates to the calculations in the LMM_R0 model. Further methods for measuring and 

 comparing the malaria seasons will also be elaborated upon. Thirdly, the results will be 

 presented. Fourthly, the results will be discussed, after which the report will arrive at its final 

 conclusion. 

 2. Data 

 2.1. Data description 

 To estimate R0, this study uses data that is collected as part of the CMIP6 project, which 

 was started by the World Climate Research Programme (WCRP). The project, currently in 

 phase 6, is one of the foundations of climate research (Eyring et al., 2016). A multitude of 

 different global circulation models (GCM) are combined under its umbrella. Several of these 

 models have been downscaled by the Climate Impact Lab (CIL), providing daily temperature 

 and precipitation projections. From these models, the dataset from the MPI model has been 

 selected as the main model for this study (Wieners et al., 2019a; Wieners et al., 2019b). The 

 model, which was run by the Max Planck Institute for Meteorology in Hamburg, has shown 

 adequate performance for predicting both temperature and precipitation values in East Africa 

 (Ayugi et al., 2021a, 2021b). Additionally, the CMIP5 version of the model has been used in 

 another study to forecast malaria trends in the Lake Victoria basin, which is part of our study 

 region (Ototo et al., 2022). The CIL downscaled the output of this model using the Quantile 

 Delta Mapping (QDM) bias-adjustment method. Thereby they preserved trends in the 

 distribution tails of the data (Gergel et al., 2023). Bias correction and downscaling was done 

 through the historical ERA5 dataset (Hersbach et al., 2020; Sabater, 2019; Sabater, 2021). 
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 The data is accessible on the planetary computer from Microsoft (  Microsoft Planetary 

 Computer  , n.d.). Access to the data is provided through  the Planetary Computer STAC API, 

 that facilitates the import of the data to Python in the xarray dataformat, creating structured 

 and labelled multi-dimensional arrays. The data includes historical data, as well as 

 projections for different climate trajectories as established in the AR6 synthesis report of the 

 Intergovernmental Panel on Climate Change (IPCC, 2023a). The scenarios are defined by 

 different Shared Socioeconomic Pathways (SSPs) ranging from aggressive mitigation to no 

 mitigation of harmful effects on the climate: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 

 (Riahi et al., 2017). The temperature changes associated with these scenarios are further 

 elaborated upon in Table 1. The scenarios are named according to a template: SSP  x-y  .  X 

 refers to the SSP that describes the socioeconomic trends that underpin the different 

 scenarios.  Y  refers to the level of radiative forcing  resulting from the respective SSP in the 

 year 2100. This is expressed in watts per square metre (IPCC, 2023a). It should be noted 

 that scenario SSP5-8.5 has become less likely according to the IPCC. It can however not be 

 ruled out, as the relative temperature rise can also occur from lower emission scenarios 

 (IPCC, 2023b). 
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 Category description (likelihood)  GHG emissions scenario 

 Limit warming to 2°C (>67%)  Low (SSP1-2.6) 

 Limit warming to 3°C (>50%)  Intermediate (SSP2-4.5) 

 Limit warming to 4°C (>50%)  High (SSP3-7.0) 

 Exceed warming of 4°C (>50%)  Very high (SSP5-8.5) 

 Table 1:Description of scenarios and modelled pathways considered across the AR6 Working Group 
 reports of the IPCC. The description column denotes to what extent the global rise in temperature is 
 mitigated. The right column shows which greenhouse gases (GHG) scenarios are associated with 

 respective temperature rise. Values from IPCC (2023a). 

 The dimensions of the array with its extent and resolutions are described in Table 2. 

 Dimension  Extent  Resolution 

 Time - Historical  01/01/1950 - 12/31/2014  Daily 

 Time - SSP projections  01/01/2015 - 12/31/2100  Daily 

 Latitude  -90° to 90°  0.25° grid cells 

 Longitude  -180° to 180°  0.25° grid cells 

 Table 2: Dimensions of the dataset with their extent and resolution. 

 The dataset contains three variables across the aforementioned dimensions. The minimum 

 and maximum temperature (variables:  tasmin  and  tasmax  )  are provided in Kelvin (K) and 

 daily cumulative surface precipitation values are provided in mm day  -1  (variable:  pr  ). 

 Next to the main model, several other models have been selected to create ensembles for 

 an uncertainty estimation. These models were selected based on their availability within the 

 planetary computer, the number of climate scenarios covered by the model and their 

 performance regarding rainfall and temperature projections in Uganda and East Africa. For 

 each variable (temperature and precipitation) five models were selected to create an 

 ensemble. Table 3 shows an overview of which models were selected with references to the 
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 literature that formed the basis for selection and references to the origin of the model. All 

 models have the same dimensions and extent as presented in Table 2. 

 Variable  Model  Selection 
 reference 

 Origin reference 

 Precipitation  GFDL-ESM4  Ngoma et al. (2021a)  Krasting et al. (2018); 
 John et al. (2018) 

 CanESM5  Ngoma et al. (2021a)  Swart et al. (2019a); 
 Swart et al. (2019b) 

 NorESM2-MM  Ngoma et al. (2021a)  Bentsen et al. (2019a); 
 Bentsen et al. (2019b) 

 UKESM1-0-LL  Ngoma et al. (2021a)  Good et al. (2019); 
 Tang et al. (2019) 

 MPI-ESM1-2-LR  Ayugi et al., (2021b)  Wieners et al. (2019a); 
 Wieners et al. (2019b) 

 Temperature  FGOALS-g3  Ayugi et al. (2021)  Li (2019); Li (2019b) 

 MPI-ESM1-2-LR  Ayugi et al. (2021)  Wieners et al. (2019a); 
 Wieners et al. (2019b) 

 EC-Earth3  Babaousmail et al. 
 (2023) 

 EC-Earth (2019a); 
 EC-Earth(2019b) 

 BCC-CSM2-MR  Babaousmail et al. 
 (2023) 

 Xin et al. (2018); Xin et 
 al. (2019) 

 EC-Earth3-veg  Babaousmail et al. 
 (2023) 

 EC-Earth(2019c); 
 EC-Earth(2019d) 

 Table 3: Ensemble models per variable including reference to papers where the selection was based 
 on and the references to the original models. 

 2.2. Data preparation 

 2.2.1. MPI model data preparation 

 The data from the MPI model was imported to a Python environment using the xarray library. 

 Uganda was selected through a bounding box that was made up of the coordinates in Table 

 4. The topography of Uganda is shown in Figure 2. 
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 Area  Lon  Lat 

 Uganda  29° E - 35° E  2° S - 4.7°N 

 Ensemble area  30° E - 31° E  1° S - 0° 

 Table 4: Coordinates of the bounding box used to select Uganda 
 and the study region of the ensemble. 

 After selecting the area of Uganda, the data is further processed. The minimum and 

 maximum temperature values are converted to degrees Celsius by subtracting 273.15 from 

 the Kelvin units. The model requires daily average temperatures as input. These values are 

 however not directly available. Instead, the daily max temperature, offset by -5°C, will be 

 used, as was done in the original LMM (Hoshen and Morse, 2004). Therefore, five degrees 

 were subtracted from the maximum temperature values. Then, for every day the mean 

 precipitation of the previous ten days is calculated through a rolling window function xarray. 

 This will be used to calculate the new daily influx of mosquitoes. Lastly every year is divided 

 into two seasons: a spring season and a fall season. The seasons last from January 1 to 

 June 30 and from July 1st to December 31st respectively. This split ensures that the 

 biannual rainfalls (periods MAM and OND) occur in the middle of the season. When seasons 

 are mentioned in this report, they will refer to these periods. The malaria transmission 

 season (MTS) will refer to the period when the climate is suitable for malaria transmission 

 (R  0  > 1). 

 The 20 largest urban centres of Uganda were plotted on the R  0  and MTS length maps to 

 illustrate if and how the changing risk of malaria could affect these locations. The cities along 

 with their coordinates and population counts, based on a census conducted in 2014 by the 

 Uganda Bureau of Statistics, can be found in appendix A. It shows that 4,168,128 out of 

 34,634,650, around 12% of the population of Uganda, lived in the twenty largest urban 

 centres in 2014 (Uganda Bureau of Statistics, 2016). 
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 2.2.1 Ensemble data preparation 

 Due to computational limitations it was not possible to create an ensemble of 5 models for 

 the full extent of Uganda that spanned the entire timespan of the projections. Therefore, a 1° 

 x 1° spatial subset was selected. An area with a relative high degree of variation in altitude 

 was selected to compensate for the loss of spatial variation. The selected area is delineated 

 by the red box in Figure 2 and by the coordinates in Table 4. 

 3. Methodology 

 3.1 The LMM_R0 model and the malaria life cycle 

 To assess climatic suitability changes of the study region, this study will make use of the 

 LMM_R0 model from Jones (2007). The model uses input of rainfall and temperature to 

 calculate the basic reproduction rate (R  0  ) for every day. To do so the model is run forward in 

 time on a raster dataset that contains daily temperature and precipitation values. It will be 

 run on the raster dataset that was described above, with a 0.25° x 0.25° spatial resolution, 
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 containing daily values from 01-01-2015 to 31-12-2100. The model is a local model and 

 therefore does not simulate spatial interactions between grid cells. 

 In order to better understand the LMM_R0 model, a basic understanding of the malaria 

 system is required. The lifecycle of the malaria parasite and its vector host is a complex 

 phenomenon. Simply stated, malaria is caused by a parasite known as  Plasmodium  that can 

 infect human blood cells and reproduce in them. Once these parasites get consumed by a 

 susceptible vector host (in this case a female  Anopheles  mosquito) through a blood meal, 

 the parasite develops within the vector host. After this development, the vector host can 

 infect new human hosts by transferring the parasite to the new host through a blood meal. 

 These blood meals are taken by mosquitoes to grow eggs and thereby sustain the mosquito 

 population (Eikenberry & Gumel, 2018). All these processes are relevant when modelling the 

 spread of malaria. Figure 3 shows the most important aspects of malaria transmission as 

 modelled in the original Liverpool Malaria Model (Hoshen and Morse, 2004). An elaboration 

 on the different cycles and how they relate back to the LMM_R0 model can be found in the 

 subsections below. 

 3.1.1. The gonotrophic cycle 

 The gonotrophic cycle is concerned with the development of eggs within the vector host. 

 When fully developed, these eggs are deposited into suitable breeding areas (freshwater 

 pools), where the larvae can further develop. The egg development is highly temperature 

 dependent. To quantify the combination of temperature and time, a degree-day dependence 
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 was detected by Detinova (1962). Detinova concluded that the cycle for egg development 

 lasts 37 days above a temperature threshold  T  g  . Egg development will halt when the 

 temperature is below this threshold. The formula to calculate the length of the gonotrophic 

 cycle in days, dependent on temperature can be expressed as: 

 where  D  g  is the amount of degree days necessary for development,  T  t  the temperature at 

 day  t  in °C,  T  g  the threshold temperature in °C beneath which the development halts and 

 G  days, t  the length of the gonotrophic cycle in days at day  t  . In the tropics, the value of  G  days, t 

 lies around 3 days. 

 3.1.2. The sporogonic cycle 

 When a vector host has taken a blood meal from an infected person, then this mosquito will 

 become infected with a certain probability. This is called the inoculation efficiency for 

 mosquitoes and is represented in the model by parameter  c  . Once the parasite is inside the 

 mosquito midgut, sporogony occurs, leading to the development of parasitic forms that are 

 infectious to humans (Antinori et al., 2012). Again the progress of the sporogonic cycle is 

 degree-day dependent. The cycle lasts 111 degree-days above a threshold of 18°C 

 (Detinova, 1962). The length of the cycle in days can be expressed as follows: 

 where  D  s  is the amount of degree days necessary for development,  T  t  the temperature at 

 day  t  in °C,  T  s  the threshold temperature in °C beneath which the development halts (18°C in 

 this case) and  G  days, t  the length of the gonotrophic cycle in days at day  t  . 

 3.1.3. Mosquito population dynamics 

 The mosquito population survives every day with a probability  P  to the next day. This 

 probability is heavily dependent on temperature. To describe this relation, several mosquito 

 survival schemes have been proposed based on past experiments (Ermert et al., 2011). The 

 survival probability scheme used in this paper is based on the work of Martens (1998) and 

 follows the following distribution: 
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 Where  P  t  is the survival probability at day  t  , and  T  t  the temperature in °C at day  t  . The 

 probability can be multiplied by the mosquito population per day to determine the amount of 

 surviving mosquitoes to the next day. The relationship between temperature and the survival 

 probability has been visualised in Figure 4. 

 New mosquitoes enter the population when eggs have matured to larvae and pupae. These 

 eggs were oviposited into freshwater pools and therefore the development of new, immature 

 mosquitoes is highly dependent on the existence of water bodies (Hoshen and Morse, 

 2004). This availability of pools is simulated in the LMM_R0 model by computing the 

 average rainfall over the previous ten days: 

 where  mos  t  is the mosquito population at timestep  t  and  P  t-1  the mosquito survival probability 

 of the previous day.  R  mult  is the rainfall multiplier  that determines how many mosquitoes are 

 added proportional to the rainfall.  R  d  is the average  daily rainfall of the previous ten days and 

 R  offset  is the rainfall offset. In this case the model  assumes a linear relationship between 

 rainfall and new adult mosquitoes that enter the population. 
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 3.1.4. Calculating  R  0 

 The output of the model will be the basic reproduction rate  R  0  . The basic reproduction rate is 

 the average number of newly infected cases that is produced by one infectious case. In the 

 case of malaria, an infected case refers to an infected human host. The rate can give an 

 indication of when an outbreak can occur and its intensity. When  R  0  is larger than 1, the 

 disease will spread. If  R  0  is smaller than one, the disease will likely die out (Smith et al., 

 2007). Before calculating  R  0  the LMM_R0 model requires additional parameters. 

 Firstly it requires the human blood index (  HBI  ). The  human blood index is a fixed parameter 

 that indicates the preference of mosquitoes to bite humans over cattle. This preference is 

 used to calculate the human biting rate, that denotes the number of bites on humans made 

 by a single mosquito per day: 

 where  a  t  is the human biting rate at timestep  t  , and  G  days, t  the length of the gonotrophic cycle 

 in days at timestep t. Then, the adult mosquito mortality (  μ  ) is calculated. This denotes the 

 mosquito mortality rate for every timestep: 

 where  μ  t  is the adult mosquito mortality at timestep  t  and  P  t  the survival probability at 

 timestep  t  . 

 This enables the model to calculate the transmission potential. This can serve as an index of 

 malaria risk. If the transmission potential is high, then fewer mosquitoes are required for the 

 disease to spread (Jones, 2007). It is calculated as follows: 

 where  TP  t  is the transmission potential at timestep  t.  Next to variables that have been 

 calculated in previous steps, other fixed parameters are used to calculate the  TP  . The 

 inoculation efficiency for humans and for mosquitoes is respectively represented by 
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 parameter  b  and  c  . Inoculation efficiency denotes the probability that a susceptible human or 

 mosquito is infected with the parasite after an infectious bite. The human recovery rate is 

 represented by  r  . This rate denotes how quickly infected individuals clear an infection and 

 become susceptible again. This parameter is set at 0.0284, enabling 90% of the infected 

 population to become susceptible again after 80 days (Ermert et al., 2011). 

 Finally the transmission potential is multiplied by the mosquito population, resulting in  R  0  : 

 A full list of the parameters and their values can be found in appendix B. The calculations 

 are repeated in appendix C. 

 3.2. Quantifying changes in climatic suitability 

 3.2.1. Meteorological changes 

 An analysis of the temperature and precipitation values will illustrate how the weather in 

 Uganda will change under different climate scenarios according to the MPI climate model. 

 For every climate scenario the mean of the daily precipitation and temperatures are 

 calculated per year and plotted over time. Additionally, the spatial distribution will be 

 assessed by firstly calculating the mean spatial distribution of the daily values for the time 

 frame from 2015 to 2020. Then, the change in precipitation and temperature will be plotted 

 with respect to the time frames 2040-2060 and 2080-2099. By doing so, the changes in the 

 spatial distribution of weather can be assessed for different time frames. 

 3.2.2. Average spatial distribution of R  0 

 The spatial distribution of R  0  will be assessed in  a similar way as the meteorological changes 

 from section 3.2.1.. The average R  0  values will be  plotted on the map of Uganda for three 

 time frames: 2020-2040, 2050-2070 and 2080-2099. This will give an indication of how the 

 spatial distribution of areas where the average R  0  > 1 will change in the future. To quantify 

 these differences, the proportion of the study area where R  0  > 1 will also be calculated and 

 reported for every time frame. 
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 3.2.3. MTS length 

 The MTS length will be examined by evaluating how many days per year R  0  > 1. To smooth 

 out daily error, the rolling five-day average of R  0  will be taken, creating a more stable 

 estimate. Then, per season (spring and fall), the number of days with R  0  > 1 will be 

 calculated. The temporal trend in MTS length per season will be assessed by plotting the 

 spatial mean over time per scenario (including the error analysis). The average spatial 

 variation will be assessed by plotting the temporal mean of three twenty-year periods 

 (2020-2040, 2050-2070, 2080-2100) per scenario on a map of the area. 

 3.2.4. MTS moment in season 

 The occurrence, or the moment in the season when, on average, R  0  > 1 will be utilised to 

 determine if there is a shift in the average timing of the MTS within the biannual seasons. To 

 do so, the day-of-year counts (0 to 365) will be split up into two seasons. The day-of-year 

 count will be reset at the half year mark, creating a day-of-season count for the two seasons. 

 The days per year and season where R  0  > 1 will be registered and averaged. This will result 

 in the average moment in time of the MTS for that season. These values will be spatially 

 averaged for each season, creating two MTS moments per year (one for the fall season and 

 one for the spring season). These values will be plotted over time to analyse a possible shift 

 in when the MTS occurs in the season. 

 3.2.5. Error analysis 

 The uncertainty in the projections of temperature and precipitation will be assessed next to 

 the meteorological changes. This will be done through an analysis of an ensemble of 

 different climate models. The ensemble is created for each variable (temperature and 

 precipitation) and for each scenario from the models in Table 3. The error should reflect the 

 variation in the outcomes of the different, yet equally probable climate scenarios 

 (Woldemeskel et al., 2012). Therefore, the standard deviation between models will be 

 calculated for each datapoint. This will capture the variance in observations between 

 models. Then, the standard deviations will be averaged over the two spatial dimensions. 

 This will result in a dataset of standard deviations per timestep, per SSP scenario and per 

 variable that can be analysed over time. 

 The spatial error distribution will be calculated by averaging the precipitation and 

 temperature standard deviations over time for three time frames: 2020-2040, 2050-2070 and 

 18 



 2080-2099. Different combinations of ensembles will also be used to assess the spatial 

 distribution of the error of the R  0  estimates. There are 25 possible combinations between the 

 temperature and precipitation models that were selected for the ensemble (Table 3). Every 

 combination will serve as input for temperature and precipitation values in the LMM_R0 

 model. The standard deviations of R  0  will then be computed across these 25 iterations and 

 averaged over time for three time frames: 2020-2040, 2050-2070 and 2080-2099. 

 3.2.6. Sensitivity analysis 

 A sensitivity analysis will be conducted to assess how the different parameters of the model 

 can affect the model output. The parameter settings used by Kuehnert (2022) will be the 

 default settings of the model. The possible ranges of the parameters are specified for most 

 parameters in Jones (2007). The values for the rainfall offset parameter, human inoculation 

 efficiency (  b  ) and the mosquito inoculation efficiency  (  c  ) were not specified by Jones. To still 

 test parameter sensitivity, custom ranges were adapted. All parameter ranges can be found 

 in the parameter table of appendix B. 

 For each parameter a list of ten equally spaced values within this range will be generated. 

 The default settings of the model will be maintained for all parameters, apart from the 

 parameter under investigation. For every value per parameter, the R  0  values from 2015 to 

 2099 will be calculated for a single gridcell. This gridcell will be selected to have an average 

 R  0  of around 1, to ensure that the values can fluctuate  up and down. This point is located at 

 1.125°N and 34.12°E for SSP1-2.6. All values will be averaged over time, resulting in one R  0 

 value per parameter setting. The R  0  values will be plotted against the different input values 

 to visualise the sensitivity of the model to each parameter. 

 4. Results 

 4.1. Meteorological changes 

 4.1.1. Precipitation 

 The changes in the average daily precipitation in the projections of the MPI model per year 

 have been plotted in Figure 6. To address the uncertainty in the precipitation forecasts, the 

 values from the error analysis for every timestep have been added and subtracted from the 

 MPI values to create the error bands. The trends in error values are presented in section 

 4.1.3.. The precipitation values show some variation around the 5 mm per day mark for all 
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 scenarios. A larger degree of uncertainty can be observed in the SSP3-7.0 and SSP5-8.5 

 scenarios. The error bands become larger after 2075 with respect to the other two SSP 

 scenarios. 
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 The spatial distribution of the changes in mean daily precipitation values have been plotted 

 in Figure 7. Precipitation values are highest in the southwest of the country from 2015 to 

 2020. This corresponds to high-altitude locations in Uganda(see Figure 5). This pattern can 

 be observed across all four scenarios. The changes throughout the timeframes (6B: 

 2040-2060 and 6C: 2080-2099) don’t exclusively show the same distribution. For scenarios 

 SSP3-7.0 and SSP5-8.5 a similar distribution can be shown in the difference in precipitation; 

 it mainly increases where the precipitation hotspots occur. The average daily precipitation in 

 these two scenarios exhibits an increase of up to 5 or 6 mm, corresponding to a 20% rise. 

 SSP1-2.6 and SSP2-4.5 show only little increase or decrease in the amount of precipitation. 
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 4.1.2. Temperature 

 The temperature projections of the MPI model have been plotted in Figure 8. To account for 

 temperature forecast uncertainty, error bands were created by adding and subtracting values 

 from the error analysis for each timestep to the MPI. A positive trend can be detected in 

 scenarios SSP2-4.5, SSP3-7.0 and SSP5-8.5. Especially the latter two show a clear upward 

 trend in temperature. Scenario SSP1-2.6 shows a fluctuating but rather stable line around 

 the 23°C mark. 

 The spatial distribution of the mean daily temperature between 2015 and 2020 has been 

 plotted in Figure 9A. The difference between these values and the mean daily temperatures 

 from 2040 to 2060 and 2080 to 2099 have been plotted in Figure 9B and 9C respectively. 

 Temperatures are higher in the north of the country for all scenarios from 2015 to 2020. 

 Temperatures rise for all scenarios in Figure 9B, with notable increases observed in 

 SSP2.4-5 and SSP5-8.5, reaching a maximum of 1°C. In Figure 9C the temperature 

 increase becomes larger for all scenarios. For SSP5-8.5 this increase becomes more 

 pronounced up to around 2.5°C. The spatial focus of the temperature rises differs per 

 scenario and per plotted timeframe. Figure 9B shows a focus in the centre and east of the 

 country for SSP5-8.5, but in the north west for SSP3-7.0. This distribution per scenario is 

 continued in Figure 9C for SSP5-8.5, but not for the other scenarios. In this timeframe 

 SSP3-7.0 shows a focus of temperature rise across the south of the country. 
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 4.2. Average R  0  values 

 The average daily R  0  values for timeframes 2020-2040,  2050-2070 and 2080-2099 have 

 been plotted in Figure 10. The spatial distribution of the areas that show on average a 

 climatically suitable area for malaria transmission (R  0  > 1) are roughly similar across 

 scenarios and per timeframe. It can be observed that scenarios SSP3-7.0 and SSP5-8.5 

 show higher R  0  values within this spatial distribution.  For the same scenarios, from 2080 to 

 2099, an increased area for malaria transmission can be observed across the western 

 border of Uganda. Additionally, the area of Lake Victoria in the southeast displays an 

 average increase in R  0  , becoming a suitable area for  malaria transmission in the final time 

 frame. Two cities show to be located in an area with overall high R  0  values. These are Mbale 

 (in the East) and Kasese (in the West). Other cities that become exposed to an increased 

 risk in the final time frame of SSP5-8.5 include Jinja, Mukono and Kira around Lake Victoria 

 and Hoima in the Midwest of the country. 
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 Table 5 shows how the proportion of land where R  0  > 1 increases over time, per scenario. 

 SSP1-2.6 and SSP2-4.5 show a marginal increase, while scenario SSP3-7.0 and SSP5-8.5 

 display a large increase up to 34.7% of the land. Note that these values are computed over 

 the entire study area that is displayed in the maps, thereby also including R  0  values of 

 neighbouring areas of Uganda. 

 SSP1-2.6  SSP2-4.5  SSP3-7.0  SSP5-8.5 

 2020-2040  3.1%  3.1%  3.2%  3.1% 

 2050-2070  4.3%  4.9%  6.8%  13.6% 

 2080-2099  4.6%  7.3%  24.1%  34.7% 

 Table 5: Proportion of the study area where R  0  > 1. For every time  frame the average R  0  value was calculated per 

 grid cell (as displayed in Figure 10). Grid cells with R  0  > 1 were counted and divided by the total  number of grid 

 cells in the study area 
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 4.3. Malaria transmission season length 

 The malaria transmission season length is counted by computing the five-day 

 rolling-average of R  0  and taking the subsequent counts  of the days where R  0  > 1. To display 

 spatial and temporal trends, the average yearly values of these counts have been plotted on 

 the map of Uganda for each SSP scenario within the following timeframes: 2020-2040, 

 2050-2070, 2080-2099. The resulting plot can be seen in Figure 11. The MTS length 

 appears to increase at later points in time (rows). Additionally, this increase appears stronger 

 for scenarios SSP3-7.0 and SSP5-8.5. Specifically high values can be detected in the 

 high-altitude locations in the southwest. Additionally, the region covered by Lake Victoria 

 (southeast) also displays a relatively high increase in MTS length. Mbale and Kasese are 

 located in areas with relatively high and over time increasing transmission seasons (up to 

 120 days per year). Other cities that show a notable yet smaller rise in transmission season 

 length are Jinja, Mukono, Kira and Hoima. 

 The MTS length can be further analysed by splitting the data into a spring (January to June) 

 and fall (July to December) season. By doing so the trends per biannual rainy season can be 

 assessed. The plots for the fall and spring seasons are visible in Figure 12A and 12B 

 respectively. Regardless of the trends, it can be observed that the MTS is on average longer 

 in the fall season than in the spring season. The fall season also displays a more clearly 
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 defined trend upwards over time for scenarios SSP2-4.5, SSP3-7.0 and SSP5-8.5. Between 

 seasons an equal amount of variation around the trend can be observed for each scenario. 

 Between SSP scenarios, SSP3-7.0 and SSP5-8.5 show more variation around the trend 

 than scenarios SSP1-2.6 and SSP3-7.0. 

 4.4. MTS moment in time 

 The average moment of the MTS per season was plotted in Figure 13. Years were split into 

 two seasons with 182 days. All days per season where the five-year rolling average of R  0  > 1 

 were recorded. The daycounts were averaged to calculate the average moment when the 

 MTS occurs per gridcell. Values were averaged over the spatial dimensions and plotted as a 

 five-year rolling average to assess the trends. 

 The spring season shows fluctuating lines that do not display a clear overall trend across 

 scenarios. The average moment in season lies around the 110  th  day of the season. For the 

 fall season the scenarios start at a lower mark, around the 100  th  day. Only scenario 

 SSP5-8.5 shows a clear upward trend towards day 115. The other scenarios fluctuate more 

 around day 100. 
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 4.5. Error analysis 

 4.5.1. Weather error analysis 

 The error bands per SSP scenario and per variable can be plotted against time to see how 

 the error bands change per variable in the future. To facilitate trend recognition, the values 

 were plotted as a rolling 5-year average in Figure 9. 

 The precipitation standard deviations show considerable variation across SSP scenarios. 

 SSP1-2.6 and SSP2-4.5 show little variation, with the latter showing a slightly larger 

 increasing trend than the former. SSP3-7.0 and SSP5-8.5 show considerable variation, both 

 starting around 2.75 mm and ending around 4.0 mm. SSP5-8.5 shows a steeper trend in the 

 first 60 years but then seems to flatten out. 

 The temperature standard deviations show less variation. For all scenarios the standard 

 deviations seem to gradually increase up to the year 2085. At this point they diverge, where 

 SSP5-8.5 displays a relatively steep increase in trend from 1.55 to 1.75. 
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 The spatial distribution of the precipitation error was analysed for three time frames in Figure 

 15: 2020-2040 (15A), 2050-2070 (15B) and 2080-2099 (15C). Note that this is the spatial 

 distribution of the subset of the data as indicated in Figure 2 and 5. Precipitation error is 

 highest in the midwestern region of the area, reaching values up to 5.5 mm day  -1  . The error 

 measures for the different scenarios all show an increase over time. This increase is 

 relatively small for SSP1-2.6 and SSP2-4.5. The spatial distribution of the values displays a 

 similar pattern across different scenarios and time frames. 

 Figure 16 displays the spatial distribution of the temperature error for three timeframes: 

 2020-2040 (16A), 2050-2070 (16B) and 2080-2099 (16C). The precipitation errors are 

 highest across the north of the region, reaching values higher than 1.7°C. The values for the 

 different scenarios all appear to increase over time, with most notable increases for 

 SSP3-7.0 and SSP5-8.5. The spatial distribution of the values displays a similar pattern 

 across different scenarios and time frames. 
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 4.5.2. R  0  error analysis 

 The spatial distribution of the R  0  error is displayed in Figure 17. R  0  values were calculated for 

 all possible combinations of temperature and precipitation climate models of Table 3. For 

 every datapoint the standard deviation across these different model iterations was 

 calculated, resulting in an error measure for every gridcell and every timestep. The values 

 were subsequently averaged over time for time frames 2020-2040, 2050-2070 and 

 2080-2099. Values in the western region of the subset appear to be higher than in the east. 

 The error margin increases over time for all scenarios, yet more intensely for scenarios 

 SSP3-7.0 and SSP5-8.5. Values rise to a maximum of 0.6. Across scenarios, the spatial 

 distribution shows a roughly similar pattern. 

 4.6. Sensitivity analysis 

 Figure 18 displays the sensitivity curves for every parameter of the LMM_R0 model. Values 

 were altered using the OAT method. 
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 Several parameters have a small effect on the model, partially due to the limited range of 

 values that was tested. These are the  D  g  and  T  g  parameters.  The  HIA  and  r  parameters also 

 show a limited influence on the R  0  outcome. The parameters  c  , and  D  s  show a greater range 

 of output values that is equal to 1. The parameters  HBI, T  s  , b, Rainfall offset, Rainfall 

 multiplier  and  Survival type  display a large range  of output values. These parameters have a 

 large influence on the model output. The  Rainfall  multiplier  should be interpreted against the 

 fact that the true range of possible values was unknown to Jones (2007), making it more 

 difficult to estimate a correct range. Additionally, the high temperatures in Uganda show how 
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 the  T  s  parameter can result in a huge range of output  values. Decreasing the sporogonic 

 cycle length in days (which is done by increasing the temperature, or lowering the threshold 

 temperature) has a large effect on the output variable. A similar change can be seen for the 

 survival type  . The mosquito survival curve of Martens  (1998) peaks around 17 degrees 

 celsius at a survival probability of 0.9, and then decreases again to a value of 0.6 for days 

 where the temperature is 30°C (Figure 4). The probability curve of Craig et al. (1999) 

 decreases less quickly and maintains this maximum point of 0.9 up to a higher temperature. 

 The high temperatures in Uganda combined with this curve cause more mosquitoes to 

 survive to the following day. This effect accumulates up to the point where the model, on 

 average, outputs an R  0  larger than 12. 

 5. Discussion 
 Uganda, together with the rest of the highlands of East Africa, could become more 

 susceptible to the risk of an increased climatic suitability for malaria transmission. The 

 relatively low temperatures at high altitudes could inhibit the spread of the disease in the 

 present. Changes in temperature and precipitation due to climate change can cause the 

 disease to spread further, as the spread of disease is highly weather dependent. The results 

 section has illustrated how the spatial and temporal distribution of weather and malaria will 

 develop under the assumptions and different SSP scenarios of the MPI climate model and 

 the LMM_R0 model. 

 5.1. Climate projections 

 The precipitation trends show precipitation hotspots in the west, southwest and east of the 

 country. These areas are located at relatively higher elevation levels (Figure 5). Daily rainfall 

 in these hotspots does not increase substantially over the years for scenarios SSP1-2.6 and 

 SSP2-4.5. For the other two scenarios, these spots show a considerable increase up to an 

 average increase of 6mm per day from 2080 to 2099. These values should be interpreted 

 together with the relatively wide error bands as shown in Figure 6. The spatial pattern is 

 moderately consistent with historical patterns shown in Ngoma et al. (2021b), displaying 

 higher rainfall for the high mountain ranges in the east and west, as well as over Lake 

 Victoria. Overall, the MPI model predicts an increase in precipitation to various degrees. 

 Other studies have not specifically highlighted the hotspots that were observed in the MPI 

 output, but have assessed that Uganda can expect an increase in precipitation in the future 

 (Onyutha et al., 2021; Ngoma et al., 2021b; Ongoma et al., 2018; Almazroui et al., 2020). 

 Oyuntha et al. (2021), has shown that for scenarios SSP3-7.0 and SSP5-8.5 the annual 
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 rainfall could increase with 26.3%. This has not been observed in the current study. A 

 maximum increase in average daily precipitation of 20% could be found for the rainfall 

 hotspot in the west of the country. Other areas in the country also show an increase in 

 precipitation, but this increase is smaller. 

 The temperature values display more spatial variation in the projected changes. 

 Temperature in the north of the country is overall highest (around 27°C), and lowest in the 

 south (around 20°C). MPI projections show an increase in temperature for all scenarios, with 

 more specific areas of focus depending on time frame and SSP scenario. The overall 

 temperature increase is consistent with other studies that identified a warming trend in East 

 Africa (Ayugi et al., 2021). Additionally the rising temperature values over the different 

 scenarios are not fully in line with the global IPCC projections as presented in Table 1 (IPCC, 

 2023a). For example, the average projected temperature rise is limited to 3°C under 

 SSP5-8.5, instead of the global projected temperature rise that is larger than 4°C. However, 

 this was expected as Central East Africa has shown a lower temperature rise than the global 

 temperature rise across CMIP6 models (Almazroui et al., 2020). 

 5.2. Malaria modelling 

 The meteorological trends have had the following effects on the suitability for malaria 

 transmission. The proportion of areas where, on average, malaria is present substantially 

 increases as time progresses for scenarios SSP3-7.0 (up to 24.1%) and SSP5-8.5 (up to 

 34.7%). Additionally, the seasons appear to become more intense, with higher R  0  values, 

 especially in the areas where the rain hotspots are located. New climatically suitable areas 

 develop on Lake Victoria for the aforementioned scenarios from 2080 to 2099. 

 A similar distribution of areas and intensity can be observed for the MTS length. The rain 

 hotspot locations show a long and increasing yearly MTS up to around 140 to 160 days for 

 SSP3-7.0 and SSP5-8.5. The rest of the country displays lower values of around 40 to 60 

 days per year. It appears that the MTS length increases across time for all scenarios, with 

 SSP3-7.0 and SSP5-8.5 showing the most extreme cases. Splitting the MTS length up in the 

 biannual rainy seasons shows longer MTS seasons during fall than during spring. The fall 

 MTS length increases over time for scenarios SSP2-4.5, SSP3-7.0 and SSP5-8.5. This 

 increase is largest for the latter scenario, where the MTS length increases up to 80 days on 

 average. 
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 The average R  0  rates and MTS length show the sensitivity of the model towards rainfall. 

 Increased rainfall results in a high influx of new mosquitoes causing the R  0  values to spike at 

 the rain hotspots. New areas where R  0  > 1 do appear, but mostly around the areas where 

 rainfall and altitude are relatively high. A similar spatial distribution can be observed for the 

 MTS length. In the results of both sections it appears that rainfall has a high influence on the 

 output of the LMM_R0 model. On the contrary, the (changes in) the spatial distribution of 

 temperature show a smaller effect on the model. It appears that the average temperatures 

 are already high enough for creating a climatically suitable area for malaria transmission. 

 The rainfall can then exert a larger influence on the model. These high rainfall projections 

 appear to be correlated to the high elevation locations in Uganda. Therefore, indirectly, these 

 high elevation levels can be related to an increase in R  0  for this study. 

 This observation corresponds with the research of Colón-González et al. (2021). They noted 

 that regions in Africa located at an altitude of at least 1000 metres are more likely to have an 

 increase in MTS length over time than regions located below this level. This trend could be 

 observed for all six climate scenarios they tested. 

 Lake Victoria can potentially become a new climatically suitable area in the future. As it is a 

 water body, and thus uninhabited, the R  0  values become  harder to interpret here. It should 

 be added that in these natural bodies of water, even if they are smaller ponds, there can 

 exist aquatic communities containing predators that help to restrain the vector population 

 size by eating the larvae (Roux and Robert, 2019). The LMM_R0 model does not accurately 

 model these dynamics and might therefore overestimate R  0  values in this area. 

 The MTS moment in season does not show a clear trend. Values fluctuate over time 

 between day 100 and day 120 for all scenarios in the spring season. The MTS moment in 

 fall fluctuates less than the spring season from 2020 to 2060. Values lie approximately 

 between day 95 and 105. Starting from 2060, SSP5-8.5 diverges from this path and shows a 

 shift towards the end of the season (day 115). Thus, only the fall MTS moment of SSP5-8.5 

 moves to a later moment in the season. 

 There are some cities that appear to be at a particularly high risk of longer and more intense 

 malaria transmission seasons in the future. Kasese and Mbale are located in areas that can 

 be marked as hotspots for malaria transmission. These areas display relatively high R  0  rates 

 at the start of the study period, but also show the highest increase over time. Both areas are 

 subject to projected rainfall centres. It should be considered that a lot of major urban centres 

 are located close to Lake Victoria. These cities could become more susceptible to a higher 
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 risk of malaria at later time stages for SSP3-7.0 and SSP5-8.5. It should be noted here that 

 the effect of urbanisation is not incorporated into the LMM_R0 model. Urbanisation has 

 shown a negative effect on malaria transmission, reducing the mosquito biting rates and 

 transmission intensities (Hay et al., 2005). Therefore, R  0  estimates of urban areas produced 

 by the LMM_R0 model might be overestimated. 

 The findings of this study conflict to a degree with the global study that was carried out by 

 Caminade et al. (2014). They reported an average MTS length of three or more months for 

 the LMM_R0 model in Uganda from 2000 to 2010. Their study was inconclusive about 

 whether this would increase or decrease. This would mean that the average yearly MTS 

 length would be around 90 days per year. This was not observed in the output generated in 

 this study, where most regions show an average MTS length of below 90. Furthermore, 

 especially for SSP3-7.0 and SSP5-8.5, this study has reported an increase in MTS length 

 over time. It should be noted that Caminade et al. (2014) computed monthly R  0  values 

 instead of daily, complicating a proper comparison. 

 Caminade et al. (2014) also reported that the additional population at risk of malaria in East 

 Africa could increase substantially over time. This could be consistent with the spread of 

 malaria to some major urban centres in Uganda. Still, East Africa encompasses multiple 

 countries, such as Ethiopia, where the authors noted a substantial increase in MTS length in 

 the future. In contrast, other studies have even noted a decrease in population at risk in 

 Uganda. By using the MIASMA model, Lieshout et al. (2004) noted a scattered decrease in 

 population at risk of malaria for three out of four SRES emissions scenarios. Colón-Gónzalez 

 et al. (2021) noted a decrease in MTS length in Uganda for five out of six tested climate 

 scenarios as well. Only for scenario SSP5-8.5 they estimated an increase in Uganda. 

 5.3. Error and sensitivity analysis 

 The temperature and precipitation error bands increase over time. Projections that are 

 further in the future show a larger uncertainty between models. This error band is especially 

 large for the precipitation values. The average daily precipitation lies around 5mm day  -1  , with 

 error margins increasing up to 4.25mm day  -1  for scenarios  SSP3-7.0 and SSP5-8.5. The 

 temperature errors are more modest, reaching from 1.4°C to 1.75°C on an average 

 temperature that ranges from around 22°C to 26°C. The spatial distribution between the 

 error values of the two weather phenomena are not similar. Precipitation error values are 

 highest in the west of the ensemble region. This is approximately where the elevation levels 

 increase (Figure 5). Still, it should be noted that elevation levels across the south are also 
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 relatively high for the region, while the error values remain relatively low there. The 

 temperature error values are highest in the north of the study region. This does not seem to 

 coincide with a particular spatial distribution of the elevation levels. The error values of R  0 

 follow a distribution that shows a high similarity to the precipitation error distribution. High 

 error values are observed in the western region of the area. Overall it can be seen that error 

 values are highest for scenarios SSP3-7.0 and SSP5-8.5, particularly in the later time 

 frames. This is consistent with the previously observed temporal trends of the meteorological 

 phenomena. It therefore appears that uncertainty increases with time and with an increase of 

 projected global temperature rise across SSP scenarios. 

 The sensitivity analysis has shown the high sensitivity of the LMM_R0 model to its 

 parameter settings. The parameters  HBI, b, T  s  , Rainfall multiplier, Rainfall offset  and  Survival 

 type  have all shown an output range for R  0  that is larger than one. Very extreme values were 

 found for  Survival type, Rainfall multiplier  and  T  s  .  Other parameters, such as  c  and  D  s 

 display a range of output values that is equal to one. Overall this indicates that the model 

 shows a low robustness towards errors in the parameter values. Studies using the model 

 could result in disproportionate output values, if the parameter values are not accurately 

 calibrated towards the specific situation in the study region. Additionally, it shows that the 

 aforementioned parameters have a very high influence on the output of the model. These 

 should be carefully considered when running the model. 

 The error and sensitivity analysis both indicate that R  0  values could deviate substantially for 

 projections into the future. The R  0  error analysis  displays maximum values of 0.6. 

 Additionally, non refined parameter settings could introduce uncertainty to the R  0  estimates 

 ranging from small output differences (  D  g  , T  g  , r  )  to large output differences that could distort 

 the results (  Survival type, HBI  ). Together, these sources of uncertainty can introduce a large 

 range of possible output values. Depending on which parameters are changed and the study 

 region, R  0  values could vary by a margin of 0.3 to 4, or even 12 when considering the 

 survival type. This warrants caution when interpreting and using the output of this model. 

 5.4. Limitation and research opportunities 

 There are several limitations to this study that need addressing. Firstly, due to limited 

 resources it was not possible to calculate error bands that are representative of the entire 

 study region. The choice for a spatial subset to create the ensembles, limits the error 

 analysis to the geographical space of the ensembles. Additionally, this has led to a universal 

 error band that was applied to every gridcell of the MPI dataset. The spatial error distribution 
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 of the ensemble data was analysed, however this did not capture the spatial variation of the 

 entire study region. 

 Secondly, a note about the data produced by the CIL is required. All the data that the CIL 

 produced from their selection of CMIP6 models has been downscaled using the ERA5 

 reanalysis dataset (Hersbach et al., 2020; Sabater, 2019; Sabater, 2021). One of the known 

 issues of the ERA5 dataset, as stated on the website of the European Centre for 

 Medium-Range Weather Forecasts, is that it can suffer from rain bombs. Several times a 

 year the precipitation in small areas can become extremely large, especially in regions in 

 Africa that have a high altitude (  ERA5: Data Documentation  - Copernicus Knowledge Base - 

 ECMWF Confluence Wiki  , 2023). This is consistent with  the rain hotspots that were 

 observed for the MPI model at high-altitude locations in the east and west of the study 

 region. Research has shown that the southwestern region of Uganda can receive enhanced 

 rainfall in the period from June to August (Ogwang et al., 2015). Likewise, the historical 

 analysis of Ngoma et al. (2021b) shows a similar spatial distribution of rainfall patterns as 

 was observed in the projections. Still, the ERA5 rain bombs should be considered when 

 interpreting the precipitation data. 

 Thirdly, not all sources of uncertainty have been properly addressed. As R  0  has been 

 modelled using outputs from global climate models, there is some uncertainty that remains 

 unspecified. This concerns the uncertainty that is generated by the projections of different 

 greenhouse gas (GHG) emissions and their relative temperature rise as estimated by the 

 IPCC (2023a). Within these GHG scenarios, it was noted that scenario SSP5-8.5 has 

 become a less likely scenario (IPCC, 2023b). Therefore, any malaria projections and 

 estimations made within this scenario should be interpreted as an extreme, improbable 

 scenario. The uncertainty in the projections of the climate model have been addressed in the 

 form of the calculated error bands from section 4.5.1.. Lastly there is a degree of uncertainty 

 that is involved in the computation of R  0  . This uncertainty has been addressed through a 

 sensitivity analysis and has illustrated that the LMM_R0 model is very sensitive to its input 

 parameters. Due to limited time and resources it was not possible to accurately calibrate the 

 model according to observations in the study region. Instead, the parameter settings were 

 inferred from the literature. Even though these settings were carefully considered, the R  0 

 values should still be interpreted with the associated uncertainty that was noted in the 

 sensitivity analysis. 

 Lastly, it should be noted that the basic reproduction rate should not be compared to the 

 prevalence of the Anopheles mosquito or the malaria incidence. It solely indicates whether 
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 the climate is suitable for malaria transmission and with what intensity it can occur. The 

 model is not connected to a population dataset to infer incidence rate, nor is it modelling the 

 presence of the parasite. As Jones (2007) stated: “forecasts from such models can only 

 really be treated as simple indicators of malaria risk”. The model could become part of a 

 more comprehensive approach to help policy makers to identify possible future malaria risks. 

 Future research could focus on widening the study area, encompassing (larger parts of) East 

 Africa, and using a larger area to create ensembles for error assessment in the temperature 

 and precipitation values. This would result in a clearer picture of the error values between 

 datasets. Additionally, the CMIP6 project could be utilised for different types of malaria 

 models to assess variation between model projections based on renewed climate 

 projections. By doing so, researchers could create a sharper image of future changes in 

 malaria distributions across Uganda and (East) Africa. Challenges for future research lie 

 mainly in the accurate modelling of the dynamics of malaria transmission. These include, for 

 example, the incorporation of the effects of immunity to malaria, drug resistance of the 

 parasite and urbanisation into the model (Eikenberry & Gumel, 2018). Furthermore, 

 additional validation research could be done to more accurately calibrate the parameter 

 settings of the model. 

 6. Conclusion 
 The climatic conditions in Uganda appear to change in a manner that favours malaria 

 transmission. The malaria burden of Uganda shows an increase in the upcoming decades 

 under the assumptions of the LMM_R0 model and the MPI climate projections. Relatively 

 high increases can be found especially under the extreme scenarios of SSP3-7.0 and 

 SSP5-8.5. The regions with high elevation levels in the west and east of the country show 

 high spikes in average R  0  values and in MTS length  due to the high and increasing levels of 

 precipitation modelled in these areas. Cities that can become susceptible to a higher risk of 

 malaria include Mbale and Kasese. Likewise, the region around Lake Victoria shows to be 

 susceptible for an increase in suitability for SSP3-7.0 and SSP5-8.5. The current research 

 has shown that with these forcing climate scenarios a higher degree of error should be taken 

 into account for interpretation. Furthermore, the LMM_R0 model has shown to be highly 

 sensitive to its parameter settings, generating more uncertain estimates. More research 

 regarding the modelling of malaria in Uganda and East Africa could help validate the results 

 of this study, as well as generate additional output measures such as the Entomological 

 Inoculation Rate (EIR) or the incidence rate. 
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 7. Digital supplement 
 All scripts, data, licences, notices and images that were involved in the creation of this 

 document have been shared publicly through the following link:  digital_supplement  . Note 

 that some scripts import the data from the planetary computer. This data has already been 

 added to the folder, but scripts have been added for reference. Further instructions on the 

 content of the digital supplement is provided in a README file located in the supplement. 
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 Appendix 

 A. Uganda cities 
 Largest cities in Uganda according to the 2014 census conducted by the Uganda Bureau of 
 Statistics (Uganda Bureau of Statistics, 2016). 

 City  Latitude  Longitude  Population 
 (2014 census) 

 Kampala  0.3136  32.5811  1,507,114 

 Nansana  0.3639  32.5286  365,857 

 Kira  0.2350  32.3820  317,428 

 Makindye 
 Ssabagabo 

 0.1434  32.3336  282,664 

 Mbarara  -0.6133  30.6583  195,160 

 Mukono  0.3533  32.7553  162,744 

 Gulu  2.7817  32.2992  149,802 

 Lugazi  0.3833  32.9242  114,163 

 Masaka  -0.3411  31.7361  103,293 

 Kasese  0.1867  30.0881  101,557 

 Hoima  1.4319  31.3525  100,126 

 Lira  2.2472  32.9000  99,511 

 Mityana  0.4006  32.0422  96,075 

 Mubende  0.5575  31.3950  95,416 

 Masindi  1.6836  31.7222  94,439 

 Mbale  1.0806  34.1750  92,863 

 Jinja  0.4233  33.2039  76,057 

 Kitgum  3.2889  32.8778  75,594 

 Entebbe  0.0500  32.4600  69,430 

 Njeru  0.4311  33.1478  68,835 

 Total top 20 cities  4,168,128 

 Total population 
 Uganda 

 34,634,650 
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 B.  Parameters of the LMM_R0 model 
 The parameters of the LMM_R0 model are largely similar to the settings of Kuehnert et al. 
 (2022) and are set as follows: 

 Parameter  Measure  Explanation  Value  Value test range 

 R  mult  rainfall_multiplier  Rainfall to mosquito 
 linear multiplication 
 factor (per day) 

 1.0  0 to 100 (Unknown 
 in Jones (2007)). 

 R  offset  Rainfall to mosquito offset  0.0  0 to 10 (custom) 

 b  Inoculation efficiency for 
 humans 

 Probability of human 
 infection given an 
 infectious mosquito bite 

 0.5  0 to 1 (custom) 

 c  Inoculation efficiency for 
 mosquitos 

 Probability of mosquito 
 infection, when biting an 
 infectious human 

 1.0  0 to 1 (custom) 

 HBI  Human blood index  Preference of 
 mosquitoes to bite 
 humans over cattle. 

 0.5  0.5 to 1 (Jones, 
 2007) 

 r  Human recovery rate (per 
 day) 

 Rate denoting how 
 quickly infected 
 individuals clear 
 infection and become 
 susceptible again 

 0.0284  0.022 to 0.038 
 (Jones, 2007) 

 HIA  Human infectious age.  Number of days after 
 infection when humans 
 become infectious 

 15.0  10 to 20 days 

 T  g  Gonotrophic threshold 
 temperature 

 Minimum threshold for 
 the development of new 
 larvae inside a female 
 mosquito 

 9.0  9°C  to 9.9°C 
 (Jones, 2007) 

 D  g  Gonotrophic cycle length in 
 degree days 

 Amount of degree days 
 it takes for larvae to 
 develop inside a female 
 mosquito 

 37.0  36.5 to 37 (Jones, 
 2007) 

 T  s  Sporogonic threshold 
 temperature 

 Minimum threshold for 
 the development of the 
 malaria parasite within 
 the mosquito vector 

 18.0  9°C to 18°C 

 D  s  Sporogonic cycle length in 
 degree days 

 Amount of degree days 
 necessary for the 
 malaria parasite to fully 
 develop in the mosquito 
 vector 

 111  111 - 200 degree 
 days 

 stype  Survival type  Survival probability type: 
 0 = Martens (1998), 2 = 
 Craig et al. (1999) 

 0  0 or 2 
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 C.  Formulas of the LMM_R0 model 

 Gonotrophic cycle length in days, based on temperature  (T)  at timestep  t: 

 Sporogonic cycle length in days, based on temperature  (T)  at timestep  t: 

 Mosquito survival probability based on temperature  (T)  at timestep  t: 

 Mosquito population at timestep  t,  based on the mosquito  population of timestep  t-1,  the 
 mosquito survival probability of timestep t-1 and the average daily rainfall over the previous 
 10 days  (R  d  )  : 

 Human biting rate  (a)  at timestep  t,  denoting the  number of bites on humans made by a 
 single mosquito per day: 

 The adult mosquito mortality (μ) at timestep  t,  based  on the mosquito survival probability  (P): 

 The transmission potential at timestep  t: 

 R  0  at timestep  t: 
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