
1

Master’s Thesis – Master Sustainable Business and Innovation

Future proof ESG reporting software: How do
architecture styles and usability relate to it?

Master thesis Sustainable Business and Innovation
Name Fieke Dhondt

Student number 9677267

Date July 7, 2023

Supervisor Dr. M. M. H. Chappin

Second reader Dr. Iryna Susha

Word count 19774

2

ABSTRACT

Introduction - Evolving regulations and business needs are shifting the reporting of environmental,
social and governance (ESG) principles to software tools that can collect, measure, assess and audit ESG
data. ESG reporting software should be flexible and robust to adapt to regulations and unforeseen
events and thus should be future proof.
Theory - Future-proof software tools should handle changes with acceptable risk and without
compromising the quality delivered. Past literature highlighted how future-proof software tools are
primarily formed by the design feature architecture style. The extent to which ESG software tools were
future-proof and which software design factors related to this had not been widely covered in the
literature. Therefore, this research focused on how a system architecture style relates to the extent to
which an ESG reporting software tool is future proof. More specifically, this study looks at the flexibility
and robustness of nine ESG reporting software solutions in combination with design features. Besides
that, the usability of these software tools has been assessed to identify how the concepts future-proof
and usability are related.
Methods - A combination of semi-structured interviews and a structured part were conducted with
software architects and system implementers for these nine tools. In addition, desk research was
performed, and usability scores from an additional independent research platform were consulted.
Results - Overall, the future-proof scores of the participating software vendors were generally high. The
findings further show no clear relation between architecture styles and the future-proof ratings of the
participating ESG reporting tools. However, other design features such as the cloud service methods,
coding methods, offering and ESG type seemed to relate to flexibility or robustness. Regarding usability,
only two tools received a high score, and it seemed that high flexibility was related to usability in two
ways. For most tools, high flexibility resulted in lower usability, but in other cases, high flexibility and
future-proof scores were related to high usability.
Discussion/Conclusion – In some instances, the difference in results were related to the specific ESG
context. In other instances, it related to additional features that possibly impacted future proof. Thus,
the findings imply that the extent to which ESG reporting software tools are future proof is not solely
related to architecture styles or usability. Instead, numerous other factors relate to future-proof ESG
software scores.

Keywords: ESG reporting software, architecture, future proof, flexibility, robustness, usability

3

TABLE OF CONTENTS
1 Introduction... 7

1.1 Scientific and societal relevance .. 9

2 Theoretical background .. 10

2.1 Business information systems .. 10

2.2 Future ready and future proof ... 11

2.2.1 Flexibility ... 11

2.2.2 Robustness .. 12

2.3 Software design features ... 13

2.3.1 System architecture .. 13

3 Methodological framework... 17

3.1 Research design.. 17

3.2 Sampling strategy ... 17

3.3 Data collection.. 17

3.4 Operationalisation .. 20

3.4.1 Future proof .. 20

3.4.2 Usability ... 23

3.4.3 Matrix table ... 25

3.4.4 Software design features .. 25

3.5 Data analysis ... 27

3.5.1 Desk research .. 27

3.5.2 Interviews .. 28

3.6 Research quality indicators .. 28

3.6.1 Reliability and validity ... 28

4 Results ... 30

4.1 Profile description software cases ... 30

4.2 Future proof ... 32

4.3 Software design features ... 33

4.3.1 Architecture... 35

4.3.2 Additional features .. 37

4.3.2 Usability ... 43

5 Discussion & conclusion .. 46

5.1 Discussion ... 46

5.1.1 Future proof .. 46

5.1.2 Software design features .. 46

5.1.3 Usability ... 48

4

5.2 Limitations and future research ... 49

5.3 Contribution to literature ... 50

5.4 Conclusion .. 51

5.5 Managerial implications ... 52

6 Literature References .. 54

Appendices ... 62

Appendix A Data sources ... 62

Appendix B Interview guide ... 64

Appendix C Coding tree .. 69

Appendix D Overview of results ... 74

5

LIST OF FIGURES
Figure 1 Types of business information systems (own figure) .. 11
Figure 2 Typology of architecture principles (Furrer, 2019) ... 13
Figure 3 Quality characteristics and quality sub-characteristics as adapted from (ISO, 2011; Saher, et al.,

2020)... 14
Figure 4 Simplistic representation of architecture styles as adapted from Taibi et al. (2020) 15
Figure 5 Overview of the number of people reached out to and eventual interviews........................... 19
Figure 6 Division of future proof, flexibility and robustness scores .. 33
Figure 7 Number of software cases per architecture style ... 35
Figure 8 Future proof score and architecture styles... 36
Figure 9 Overview of the relationship between flexibility, robustness and the architecture styles 37
Figure 10 Overview of the relationship between flexibility, robustness and cloud service methods 38
Figure 11 Overview of the relationship between flexibility, robustness and system offering 39
Figure 12 Overview of the relationship between flexibility, robustness and ESG type 41
Figure 13 Count of software heritages ... 41
Figure 14 Overview of the relationship between future proof and usability ... 44
Figure 15 Overview of the relationship between flexibility, robustness and usability 44

LIST OF TABLES
Table 1 Flexibility attributes of business information systems ... 12
Table 2 Robustness components of business information systems ... 13
Table 3 Overview of system architecture and corresponding quality sub-characteristics 16
Table 4 Data collection and aim ... 18
Table 5 Data sources... 20
Table 6 Example of scoring future proof .. 20
Table 7 Scale of flexibility ... 21
Table 8 Example of scoring flexibility .. 22
Table 9 Score rating according to scale .. 22
Table 10 Scale of robustness .. 22
Table 11 Scale of usability... 23
Table 12 Example of scoring usability ... 24
Table 13 Matrix table of the results for flexibility, robustness, future proof and usability ratings for each

data source ... 25
Table 14 Overview of additional concepts studied ... 25
Table 15 Definition of included concepts ... 26
Table 16 Overview of software tool features ... 34
Table 17 Matrix table of the results for architecture, deployment model and quality characteristics .. 36
Table 18 Table of possible patterns between flexibility, robustness, future proof and additional factors

 .. 43
Table 18 Overview of data sources for each component ... 62
Table 19 Interview guide .. 64
Table 20 Coding tree... 69
Table 21 Overview of results .. 74

file://///Users/fiekedhondt/Desktop/Thesis%20Fieke%20Dhondt.docx%23_Toc139481320
file://///Users/fiekedhondt/Desktop/Thesis%20Fieke%20Dhondt.docx%23_Toc139481321
file://///Users/fiekedhondt/Desktop/Thesis%20Fieke%20Dhondt.docx%23_Toc139481322
file://///Users/fiekedhondt/Desktop/Thesis%20Fieke%20Dhondt.docx%23_Toc139481328
file://///Users/fiekedhondt/Desktop/Thesis%20Fieke%20Dhondt.docx%23_Toc139481329

6

LIST OF ABBREVIATIONS

BPM Business Performance Management
CPM Corporate Performance Management

CSR Corporate Social Responsibility
CSRD Corporate Social Responsibility Disclosure
EHS / EH&S Environmental, Health and Safety
EPM Enterprise Performance Management
ERP Enterprise Resource Planning
ESG Environmental Social Governance

GRC Governance, Risk and Compliance
IaaS Infrastructure as a Service
IS Information System
LCA Life Cycle Assessment
MSA Microservice Architecture
PaaS Platform as a Service

PMS Performance Management System
SaaS Software as a Service

S-ERP Sustainable Enterprise Resource Planning
SOA Service-oriented Architecture

7

1 INTRODUCTION

Environmental degradation is becoming a more significant problem, and stakeholders are demanding
businesses to respond by integrating sustainability into their current practices (Fernandez-Feijoo, et al.,
2014). As part of this response, corporate social responsibility (CSR) and managing environmental social
and governance (ESG) issues are emerging as business propositions for long-term sustainability goals
(Chelawat & Trivedi, 2016). CSR is merely a voluntary approach towards integrating social and
environmental sustainability into the business processes and the interaction among stakeholders
(Commission of the European Communities, 2001). In comparison, ESG integrates environmental,
social, and governance into a corporation's business model. The difference between the concepts is that
CSR approaches governance indirectly, whereas governance is explicitly incorporated in ESG (Gillan, et
al., 2021).

One output of ESG and CSR is sustainability reports that intend to communicate the sustainability aims
to shareholders and other stakeholders (Du, et al., 2010; Fortuna, et al., 2020). Even though there is an
increase in reporting due to stakeholder pressure (Fernandez-Feijoo, et al., 2014; Almagtome, et al.,
2020), sustainability reporting still contains a different quality and degree of transparency than
traditional financial reporting (Littan, 2019). One way to improve the quality of reporting is through a
mandatory reporting directive (Wang, et al., 2018; Mion & Loza Adaui, 2019). Recognising these
challenges, the Corporate Social Responsibility Disclosure (CSRD) was accepted by the European Union
(EU) in November 2022 as a mandatory reporting framework.

The CSRD has been developed to set one clear directive for disclosing social and environmental
challenges and how companies operate and manage these issues. The framework is based on a double
materiality framework, defined as the risk to the organisation from sustainability issues and the
organisation's impact on people and the environment (European Commission, 2021a). The CSRD
introduces eleven disclosure requirements that cover relevant ESG elements for corporations in the EU.
Corporations are required to digitally tag more than 1000 sustainability data points to contribute to the
single European access point (ESAP) and seize the opportunities digital tools offer. Eventually, the ESAP
will be a digital platform that collects and stores corporations' publicly disclosed financial and
sustainability information (European Commission, 2021b).

Mandatory ESG reporting, such as the CSRD, requires corporations to deliver reliable data and to
measure, assess and monitor their impacts (McEwan, et al., 2021). Spreadsheets and other forms of
manually tracking the impact of the organisations are inefficient and unable to grasp the completeness
and validity of the data needed to report (Bakarich, et al., 2020). Therefore, business information system
(IS) based ESG reporting software is becoming necessary to support ESG performance tracking and
increase the quality of reporting to external stakeholders. Pan, et al. (2022) also acknowledge growing
opportunities for intelligence business software solutions to increase visualisation, track, and
benchmark an organisation's ESG performance. ISs are software and hardware networks that gather,
store and process data intending to provide knowledge and digital products (Thambusamy & Salam,
2010; Loeser, et al., 2017; Helbig, et al., 2021).

Continuously changing regulations, and new requirements towards data delivery, such as the ESAP,
require ESG reporting software to be future proof. Meaning that information systems should be flexible
in responding to future laws, regulations, and operational, organisational, and consumer requirements
(Said, et al., 2015). Pee et al. (2021) also recognise the need for flexible and resilient systems, as
regulations and unprobeable events will change the future. The information system platforms should
furthermore be extensible and incorporate mandatory reporting requirements to comply with current
regulations and be able to uptake future requirements (Helbig, et al., 2021). Thus, a future proof
software system should be flexible enough to adapt to change and be robust enough to handle changes.

8

When focusing on information systems in general, it seems that de degree to which software tools are
future proof has not been studied extensively. It has been mentioned how specific design features of
the software, and specifically the architecture style of a software tool, is an important aspect for future
proof systems (Furrer, 2019). Furrer (2019) also identified how specific quality characteristics relate to
future proof software systems. Another study in this context links flexibility and robustness to future

proof software systems (Bass, et al., 2012), but the degree to which specific software tools are future
proof has not been included. When looking more closely at flexibility and robustness, specific software
flexibility characteristics have been compared in various literature (Knoll & Jarvenpaa, 1994; Mahinda
& Whitworth, 2004; Gebauer & Schober, 2006; Chen, et al., 2009; Thuan, et al., 2020) and various
robustness components have been discussed (Losavio, et al., 2003; Barber & Salido, 2015). Thus, it has
been mentioned how architecture styles and quality characteristics might relate to future proof
software and that these software tools should be flexible and robust to be future proof.

Besides the focus on future proof aspects, the usability of business IS in changing environments is an
important aspect. Usability is one of the quality characteristics that have been mentioned by Furrer
(2019). Business IS should not only be able to adapt to uncertain events but should also satisfy user
requirements regarding the usability of the system (Palanisamy & Boyle, 2010). Various relations
between flexibility and usability have been identified. Various studies examined the interplay between
flexibility and usability and highlighted how flexibility had a positive (Palanisamy, 2012; Li & Nielsen,
2019) or negative (Lidwell, et al., 2010) impact on usability. Other studies have compared information
systems on an aspect related to usability, but mainly focused on system adoption (Jamous, et al., 2012;
Hoang, et al., 2019; Zhang, et al., 2021) and the future readiness of users (Mitropoulos & Douligeris,
2011; Green, et al., 2014). It seems that previous studies did not compare various information systems
on usability in combination with their ability to be future proof but did identify various linkages between
usability and flexibility.

Studies above specifically focused on general IS research; when looking at prior research on ESG
software, literature covered the adoption of ISs and their link to sustainability reporting in Australian
organisations (Seethamraju & Frost, 2016; Hoang, et al., 2019). Other studies examined the value and
specific capabilities environmental enterprise systems (EES) deliver by comparing various software
vendors (Hoang, et al., 2016; Jamous, et al., 2012) or through interviews with vendors and organisations
(Hoang, et al., 2017). Even though the study from Seethramraju & Frost (2016) does suggest that future
research could examine the ability of these systems to adapt in an organisation or technical context, it
seems that the specific degree to which these systems are future proof has not been studied in the
context of ESG.

Current studies on ESG-related business information systems have mainly focused on the adoption and
value of these specific systems (Jamous, et al., 2012; Hoang, et al., 2016; Seethamraju & Frost, 2016;
Hoang, et al., 2017; Hoang, et al., 2019). Even though it has been noted in various literature that the
adaptability, resilience and flexibility of information systems are required to keep track of changing
sustainability requirements (Said, et al., 2015; Helbig, et al., 2021; Pee, et al., 2021), this has not been
widely covered. Thus, it seems that the extent to which current ESG reporting software tools are future
proof has not been studied. In addition, the question of how the architecture exactly relates to future-
proof systems has not been extensively studied, especially not with a focus on ESG reporting software.
Lastly, the literature on the relation between flexibility in the context of future proof ESG reporting
software and usability is limited. Thus, to what degree the current ESG reporting software systems are
future-proof and how architecture and usability relate to this still need to be determined.

Therefore, this study aims to cover how a systems architecture style and usability relate to future proof
ESG reporting software. Specifically, this research will explore the relation between architecture and

9

future proof ESG reporting software and future proof ESG reporting software and usability by means of
comparing existing ESG reporting software. Hence the following research question:

How are system architecture and usability related to ESG reporting software system’s ability to be future
proof?

1.1 Scientific and societal relevance
The contributions of this thesis relate to scientific, societal, and practical relevance. The contribution to
current research is threefold and will be discussed first. Following, the societal and practical relevance
will be discussed.

A rise in sustainability directives and regulations increases the need for ESG reporting tools that are
future proof to respond to future changes. However, the actual degree to which ESG reporting tools are
future proof has not been widely covered in the literature. Thus, this study enhances existing literature
by linking future proof concepts to the specific context of ESG reporting software. More specifically, this
research links the existing literature on future proof concepts, split in flexibility and robustness, to
existing ESG reporting software. In addition, design features have been mentioned in past research as
an important aspect of future proof software. The link between these software design features and
future proof ESG reporting software has not been studied in a case study format. Therefore, this thesis
will contribute to the existing literature by examining if there is a relation between design features and
the extent to which ESG reporting software tools are future proof. Lastly, usability has been identified
as an important attribute for software systems, and a possible link between future proof software and
usability has been identified. This thesis will add to the existing literature by examining the possible link
between the extent to which ESG reporting software tools are future proof and usability.

Next to the scientific relevance, the findings of this study hold societal relevance as well. This relevance
mainly relates to increased knowledge of ESG reporting software and the importance of its design. ESG
reporting software tools are important for visualisation, tracking and benchmarking the performance of
organisations. Data transparency and collection are an important part of ESG, especially in the context
of new upcoming regulations such as the CSRD. By addressing specific design features of these tools,
the findings can contribute to the development and implementation of software solutions that promote
transparency, improved tracking and benchmarking of ESG data.

In addition to the scientific relevance, the results of this thesis will also relate to practical relevance for
software vendors, system implementers and end-users. This thesis generates insights for vendors in
how ESG reporting software can be designed to be future proof. Thus, this study can possibly guide
specific aspects of the development of ESG software solutions that are flexible and robust for future
changes and upcoming regulations. The research is also relevant for implementers and end-users. When
implementers and end-users are more aware of possible design features related to future proof
software, it allows them to consider and incorporate these features more effectively and in accordance
with their own objectives.

10

2 THEORETICAL BACKGROUND

2.1 Business information systems
Business information systems can be subdivided into various types of systems, such as enterprise
performance management (EPM) systems, enterprise resource planning (ERP) systems, governance risk
and compliance (GRC) systems, environmental, health and safety (EHS) software and environmental,
social and governance (ESG) reporting systems, as presented in Figure 1. Each of these systems has a
different role to play in an organisation, which will be elaborated upon below.

The first system type, EPM systems, are used to manage, analyse and report on data and complement
ERP systems. EPM cloud solutions should align with ERP systems to ensure agility. EPM systems are also
referred to as corporate performance management (CPM) systems, business performance management
(BPM) systems, or performance management systems (PMS) (Druzhaev, et al., 2019). EPM systems are
not necessarily ESG reporting software but can contain an ESG reporting solution.

Whereas EPM systems are focused on the business process, ERP systems are designed to manage and
process data from different departments, such as HR, accounting, or finance, in one system. As part of
ERP systems, Sustainable Enterprise Resource Planning (S-ERP) systems are emerging (Chofreh, et al.,
2014). S-ERP systems manage and report ESG impacts and align organisational operations, people, and
products (Chofreh, et al., 2020). Some ERP vendors include an ESG reporting solution in their software
systems, but this is not always the case.

Another system that can be used to track and organise organisational information is a GRC system. This
type of IS system collects and stores GRC data in one tool to manage risks, guide organisations to comply
with regulations and sustain a governance structure (Papazafeiropoulou & Spanaki, 2016). New
opportunities are emerging, and vendors are integrating ESG risks and reporting add-ons into GRC tools.

In contrast to GRC systems, the EHS system focuses more specifically on environmental, health and
safety risks and compliance. Organisations can use EHS software to capture and analyse EHS-related
incidents. Information in these systems is often related to health and safety, waste management and
sustainability. As a part of these software types already includes a sustainable component, it often
includes an ESG solution (Hoang, et al., 2016; Verdantix, 2023).

ESG reporting solutions can be part of ERP, EPM, GRC, EHS or other systems, but ESG reporting software
can also be a standalone software system. ESG reporting systems are software used by businesses to
track, measure, manage and report on ESG principles. The software is specifically designed for ESG use
and often complies with global ESG standards such as the CSRD (Enghaug & Hallan, 2022). Therefore,
this research will include five types of business information systems: ERP, EPM, GRC, and EHS systems
with an ESG solution and ESG systems.

11

Figure 1 Types of business information systems (own figure)

2.2 Future ready and future proof
ESG software solutions must be able to cope with high uncertainty and be able to adjust to new requests
and upcoming regulations (Said, et al., 2015; Helbig, et al., 2021; Pee, et al., 2021). Various definitions
of future ready and future proof business information systems will be provided.

Future readiness of information systems can be understood as delivering continuous improvement and
preparing for future challenges (Martinsons, et al., 1999). Future readiness relates to the learning and
growth trajectory of an information system. Until now, future readiness was perceived mainly from an
adopter approach and the degree to which a corporation is ready for information system products and
services. Future readiness, in this sense, was thus primarily related to the internal use of information
systems by corporations (Martinsons, et al., 1999).

A concept more related to the software system itself is the concept of future proof. Future proof is often
linked to a technology that can handle complex change and unpredictability with low effort but with
acceptable risk (Furrer, 2019). Therefore, the definition of future proof suits this thesis's aim better as
it focuses more specifically on the ability of a software system to handle change without compromising
the system's quality. Drawing on the existing information systems literature, there are two attributes of
which future proof is composed. These are the flexibility and robustness of the business IS (Bauer &
Maurer, 2011) and will be further explained in the following sections.

2.2.1 Flexibility
Flexibility has been used interchangeably with many related terms, such as customisability, adaptability
and changeability. Definitions of flexibility slightly differ. Reichert and Weber (2012) define flexibility as
the ability of a system to adjust to unpredictable inputs. Furrer (2019) refers to changeability and defines
this as the adaptation of the system when a change occurs and the effort it takes. Thus, the first
definition concerns the ability to handle a change, whereas the second definition relates to the ease of
making a change. The second definition will be applied to this research as it is most suitable for the
concept of future proof.

12

Flexibility is an important aspect of ESG software as regulations and legislations are constantly adjusted,
and therefore systems need to be able to respond to new regulation requests (Cruz & Matos, 2023).
Besides that, user needs and intrinsic motivations to become more sustainable are increasing the
demand for new sustainability features in existing solutions. Software solutions should be able to
respond to this in a timely matter (Hilpert, et al., 2014). There are two types of change related to ESG
reporting flexibility: foreseen and unforeseen. Foreseen change is often related to changes that a
business IS can prepare for; an example of this are regulations. Unforeseen changes can be linked to a
change in user demands, which, especially in competitive markets, can vary rapidly (Jacome, et al.,
2011).

Information systems literature has widely studied flexibility (Gebauer & Schober, 2006; Chen, et al.,
2009; Thuan, et al., 2020). However, the approach to identifying the flexibility of a system differs. Two
studies that mainly focused on the system's ability instead of the user's perspective were carried out by
Knoll and Jarvenpaa (1994) and Mahina and Whitworh (2004). Knoll and Jarvenpaa (1994) divide
flexibility in terms of functionality, use and modification. Mahina and Whitworh (2004) conceptualised
the general flexibility of the system, the flexibility by detection and the flexibility by the response.
Flexibility in modification and flexibility in response are most suitable to measure changeability as the
attributes relate to the ease with which it can be modified. Certain components are left out as they do
not relate to the definition of flexibility used in this study. Table 1 presents the combination of flexibility
attributes.

Table 1 Flexibility attributes of business information systems

Main
concepts

Components Conceptual definitions Adapted from

Flexibility in
modification

Goal adjusting The ability to change the system according to
feedback.

(Knoll & Jarvenpaa,

1994; Hilpert, et al.,

2014)

Flexibility in
response

Responsiveness The speed with which the system can be adjusted. (Knoll & Jarvenpaa,

1994; Hilpert, et al.,

2014)

 Adaptation The ease in adjusting the software to a new end-
use which has not been recognised before.

(Mahinda &

Whitworth, 2004)

2.2.2 Robustness
The system's robustness relates to how the system can withstand uncertainty till a certain amount. A
robust system should withstand unpredictable changes and contain its functionality (Knoll & Jarvenpaa,
1994; Jiménez-Ramírez, et al., 2015). In terms of ESG, as regulations and business needs are
continuously changing (Cruz & Matos, 2023), a software system should be able to handle these foreseen
and unforeseen changes (Jacome, et al., 2011).

There are three main components of robustness: stability, recoverability and reliability. Recoverability
can be identified according to the system's ability to recover from errors or failures, and reliability as
the ability to continue performing in unpredictable conditions (Barber & Salido, 2015). The stability of a
system has often been used interchangeably with robustness, but the definition for both slightly differs.
Barbey & Salido define stability (2015) as a system that can adapt to a new valid solution with slight
modifications. However, this definition of stability overlaps with flexibility. Another definition of stability
is the ability of the system to prevent unintended consequences from modifications made (Losavio, et
al., 2003). The definition for stability of Losavio, et al. (2003) will be used for this study in combination
with the definitions of recoverability and reliability by Barber & Salido (2015) to form the concept of
robustness. The three robustness components are presented in Table 2.

13

Table 2 Robustness components of business information systems

Robustness
components

Definition Adapted from

Stability The ability of the system to prevent unintended consequences
from modifications made.

(Losavio, et al.,
2003)

Recoverability The system’s ability to recover once an error or failure occurs. (Barber & Salido,
2015) Reliability The capability of the software to continue performing under

unexpected conditions.

2.3 Software design features
The design of the software has been identified as a possible factor that could relate to the extent to
which a software tool is future proof. One feature that has been mentioned as a factor that could
influence future proof software systems is the architecture of a software system (Bass, et al., 2012;
Furrer, 2019).

2.3.1 System architecture
As defined by ISO, IEC, and IEEE (2022), the architecture of a system is the concepts and properties
essential for the software and the leading principles that realise the evolvement over time. Software
architecture continuously changes and adapts to new requirements (Oudshoorn, 2004; Furrer, 2019).
These architectures are structured according to a horizontal and vertical layer system layer, as
presented in Figure 2. The horizontal layer provides containers for each function. There are five
horizontal layers: business architecture, applications architecture, information architecture, integration
architecture and technical architecture. The horizontal layers are mainly focused on the functionality of
an organisation, whereas the vertical layer provides additional quality components such as safety,
security and real-time architecture. Both the horizontal and vertical layers cross each other as each
vertical component is also relevant to the horizontal components (Furrer, 2019).

Figure 2 Typology of architecture principles (Furrer, 2019)

Quality components are part of the vertical architecture and are important requirements for the
architecture. There are various software qualities, depending on the end use of the system. The quality

14

characteristics of sustainability software have been studied in literature and encompass many
characteristics that can be assigned (Koziolek, 2011; Calero, et al., 2013; Calero, et al., 2014; Koçak, et
al., 2014; Venters, et al., 2014; Saher, et al., 2020). Quality characteristics that these studies have
identified are maintainability, portability, usability, efficiency, compatibility, and reliability. Each quality
characteristic can be further divided into sub-characteristics to enhance the measurability of these
concepts (see Figure 3). These sub-characteristics are, in some instances, linked to the architectural
styles due to the design of the architecture, whereas others, such as efficiency, reliability and usability,
are overarching characteristics. Efficiency will not be considered a quality characteristic in this study as
it contains trade-offs with the attribute flexibility (Subramanyam, et al., 2012). Reliability will not be
used as it is too similar to robustness. Usability will be explained later as a separate overarching quality
characteristic.

Figure 3 Quality characteristics and quality sub-characteristics as adapted from (ISO, 2011; Saher, et al., 2020)

Various styles of architecture are suitable for systems that include ESG reporting. Some common
architectures are monolithic, service-oriented, microservice and serverless architecture; Figure 4
presents an overview of these styles. A software tool is not necessarily limited to one architecture and
can use a combination of architectures. The various architectural styles and corresponding sub-
characteristics have been linked and will be explained below, and a summary is presented in Table 3.

The first style of architecture, monolithic architecture, is a single unit that holds all the components in
one system, such as the collection of data, storage and user interface. This relatively simple architecture
is difficult to scale (Ponce, et al., 2019). Monolithic architectures are the least related to the system
quality characteristics and only correspond with reusability when there is a small code file (Slamaa, et
al., 2021). Overall, the monolithic architecture is expected to relate the least to flexibility due to its lack
of scalability (Götz, et al., 2018). Consequently, as it is not related to flexibility, it is unlikely that this
architecture style relates to future proof software systems. A combination of a monolithic architecture
and cloud deployment will likely lead to a more future-proof system as the installability and
replaceability of the cloud increases flexibility and scalability (Fink & Neumann, 2009; Lenhard, et al.,
2013). However, it is still unlikely that a monolithic architecture style will relate to future proof systems.

15

Service-oriented architectures contain multiple services that can be reused for multiple applications.
This architectural style is generally perceived to relate to flexibility and robustness (Tsai, et al., 2014;
Hustad & Olsen, 2021). Service-oriented architecture has also been linked to multiple quality
characteristics such as reusability, analysability, modularity and replaceability (Haoues, et al., 2017;
Slamaa, et al., 2021). The only limitation is that a service-oriented architecture binds all services to one
context, which could limit flexibility (Cerny, et al., 2018). Nevertheless, a service-oriented architecture
is expected to relate to a future proof software system.

The third architecture style, microservice architecture, is an improved variation of the service-oriented
architecture (Sewak & Singh, 2018) and comprises connected independent modules. These parts all
have their own infrastructure and databases. Microservice architectures are likely to relate to flexibility
and robustness, as they are more scalable and reliable than other architectures (Hasselbring &
Steinacker, 2017; Slamaa, et al., 2021). Microservice architectures are linked to the quality
characteristics of modularity, replaceability, reusability and analysability (Newman, 2015; Balalaie, et
al., 2016; Auer, et al., 2021; Slamaa, et al., 2021). Thus, a microservice architecture is expected to relate
to future proof software systems.

The last architecture style is the serverless architecture relating to software tools hosted on external
cloud providers such as Microsoft Azure or AWS. This type of architecture is expected to be more
efficient than other architectures (Rajan, 2018). Quality characteristics that are linked to a serverless
architecture are analysability, modularity and interoperability (Racicot, et al., 2019; Poth, et al., 2020).
Besides, this architecture is expected to relate to robustness and high flexibility (O'Meara & Lennon,
2020; Poth, et al., 2020; Lakhai & Bachynskyy, 2021). Thus, a serverless architecture is expected to relate
to future proof software systems.

Proposition 1: Serverless, Microservice, service-oriented architecture styles will likely relate to future
proof software systems, whereas monolithic architecture will likely not relate to future proof software
systems.

Figure 4 Simplistic representation of architecture styles as adapted from Taibi et al. (2020)

In addition to the architecture style, the deployment model has been linked to various quality
characteristics. A software’s deployment model influences how end-users can access software. There
are two common deployment models for software: on-premises and cloud. Software tools that are on-
premises are installed on the client’s servers, whereas the cloud can often be reached through a web
browser. A combination of the deployment model and the architecture style leads to different quality
characteristics, depending on the deployment model. Cloud deployment models are flexible and
scalable and can be accessed from any location. The specific deployment model can also influence
quality sub-characteristics such as reusability, replaceability, interoperability and installability of the

16

system. These quality characteristics are generally present for cloud deployment models (Garg, et al.,
2011; Oh, et al., 2011; Muntes Mulero, et al., 2013). The quality characteristics of cloud deployment
models will be combined with the other four architecture types as this style is often combined with
other architectures (Al-Debagy & Martinek, 2018).

Table 3 Overview of system architecture and corresponding quality sub-characteristics

Quality

Sub-
characteristics

Architecture

On-
premises
Monolithic

Cloud
Monolithic

On-
premises
Service-
oriented

Cloud
Service-
oriented

On-premises
Microservice

Cloud
Microservice

Cloud

Serverless

Analysability x x x x x

Installability x x x x

Modularity x x x x x

Interoperability x x x x

Replaceability x x x x x x

Reusability x x x x x x

2.3.1.2 Usability
The usability of a system is context-specific (Speicher, 2015) and depends on the software systems
design and workload (Poth, et al., 2020). It is an overarching characteristic that is relevant for all
architecture types. Therefore, this study will consider usability a separate quality characteristic. Usability
of the system refers to how the system can be used, how easy it is to learn the system, and the
operability and attractiveness of the system. Operability is the capacity and ease to control the system.
Other characteristics, such as understandability and learnability, relate to the experiences of previous
users in learning and understanding the system (Saher, et al., 2020).

Past literature has identified various types of relations between flexibility and usability. According to
Lidwell et al. (2010), there is a trade-off between flexibility and usability, meaning that high flexibility
would decrease usability. This trade-off is explained through the complexity of a software system. The
complexity of a system increases with higher flexibility and, therefore, impacts the system’s usability
(Lidwell, et al., 2010). Nevertheless, this might not be the case for all software, as some enterprise
software systems are considered to be both highly flexible and usable (Dvořák, et al., 2017). Other
studies did find a link between inflexible software systems and usability problems (Mahrin, et al., 2008;
Li & Nielsen, 2019; Rakovic, et al., 2020). Rakovic, et al. (2020) analysed various software systems from
the user’s point of view through a survey. Inflexible ERP software systems gained lower scores from
users (Rakovic, et al., 2020). Flexible software, on the other hand, leads to user-friendly systems and
helps prepare organisations to face changes (Palanisamy, 2012; Li & Nielsen, 2019).

Proposition 2: A low flexibility rating and, thus, a low future-proof rating will likely relate to low usability.

17

3 METHODOLOGICAL FRAMEWORK
This section covers the methodology used for this thesis and explains the research design, sampling
strategy, data collection, operationalisation, data analysis, and research quality indicators.

3.1 Research design
The aim of this thesis is to understand how various software architecture types and usability relate to
various extents of future proof ESG reporting systems. This thesis followed a comparative case study
research design. Therefore, various ESG reporting software tools were compared to identify patterns.
According to Bryman (2012), this design type compares various cases to differentiate characteristics and
eventually identify patterns. A deductive approach is used as the characteristics were derived from
existing literature. A qualitative approach suited this thesis most, as the thesis aimed to gain more in-
depth knowledge about how software architecture and quality characteristics relate to future proof ESG
software. The data was analysed at a single point in time. The unit of analysis of this thesis was defined
as ESG reporting software tools for the collection, measurement and reporting of ESG performance for
enterprises.

3.2 Sampling strategy
Software vendors were selected according to a generic purposive sampling approach (Bryman, 2012).
The first step of sampling was done by selecting vendors through the research platforms Verdantix and
IDC. Verdantix is a research platform and advisory firm that specialises in, among others, digital
strategies for ESG & sustainability (Verdantix, 2022). The International Data Corporation (IDC) is a
market intelligence provider for information technology and includes an ESG module (IDC, 2023). Both
firms provide market information about ESG vendors. The vendors were selected according to their link
with ESG reporting. A total of 56 vendors were identified accordingly.

The second step of selecting vendors was performed by identifying if they included an ESG reporting
module that contained environmental, social and governance aspects. As some of the vendors did not
include a reporting module on all ESG principles, the population size was reduced to 49 vendors. Due to
limitations, only 25 of these 49 vendors were contacted to participate in an interview. Eventually, nine
software tools participated in this study after reaching out to all 25 vendors.

Larger software tools are usually implemented by consultants in a client’s organisation. System
implementers inform clients on how to adopt and integrate a software solution into their business
operations. These system implementers were interviewed for each software solution to reduce the
possibility of software vendors overestimating their tools. This thesis is written as part of an internship
at a consulting firm. Therefore, a snowball sampling approach was used to sample the system
implementers. Snowball sampling is defined by Bryman (2012) as a sampling approach where the
researcher reaches out to a group of people and gathers other contacts through this group of people.

3.3 Data collection
The thesis was carried out according to three main phases. The first phase involved verifying the
architecture styles, interview subjects and scales with industry experts. In the second phase, the system
type, architecture styles and other relevant features were identified through desk research. In the third
and last phase, semi-structured interviews accompanied by a structured part were held with
representatives of software vendors and system implementers. Data on the software systems were
collected through three phases, as presented in Table 4.

18

Table 4 Data collection and aim

Data collection
phases

 Aim

Preparation phase Consultation with
industry experts

Before the interviews were held, industry experts were consulted
to provide feedback on the interview questions and the aim of the
study.

Desk research
phase

Documents and
desk research

The aim of this phase was to get a general overview of the features
and architecture of the vendor’s system and to familiarise with the
software before the interviews.

External
independent
research firm

Usability scores were derived from an external independent
research firm for six out of nine software to strengthen the
findings of the research.

Interview phase

Test interview
vendor

Before the interview with vendors were held, a test interview with
a vendor was conducted to practice and to check the relevance of
the interview questions.

Semi-structured
interviews vendors

This phase was used to validate the findings from the document
and desk research and to get an understanding of the flexibility
and robustness of the system.

Semi-structured
interviews
implementers

The aim of the last data collection step was to reduce the
overestimation of software vendors and increase validity by means
of verifying the data. Furthermore, usability questions were
included in these interviews to estimate the usability of the
software.

Two industry experts reviewed interview questions and the aim of the thesis during the preparation

phase. Furthermore, a test interview was held with an additional vendor to ensure that the question

came across as intended. After this phase, several adjustments were made to the questions.

After the consultation with industry experts, desk research was carried out to familiarise with the

software vendors and the solutions they provide. Online research was conducted through the vendor’s

websites, by attending webinars, watching YouTube videos from the vendors, community platforms,

and an external independent research firm, as presented in Table 5 and Appendix A. Where possible,

the usability findings of an external independent research firm were used to provide additional insights

into the usability of the software.

The combination of a semi-structured interview with a structured part was used as certain questions

required additional explanations, and a survey would not generate the required in-depth answers.

However, to generate a score for flexibility, robustness and usability, Likert scale questions were

implemented in the interviews. The interviews were conducted via Microsoft Teams, as most software

vendors are based worldwide. The interview guide can be found in Appendix B.

All characteristics and future proof indicators were covered during these semi-structured interviews
with representatives of the software vendors. Representatives of the software vendors were either
software engineers or technical architects with knowledge of the system’s architecture. The vendors
were contacted either through representatives of the internship firm or directly by e-mail. In cases
where the direct e-mail of software architects was known, these were contacted directly. In other
instances, the general company e-mail was used. Next to that, for certain vendors, system implementers
were interviewed through semi-structured interviews to validate the data from software vendors.

19

Eventually, all interviewed implementers came from within the internship firm. During the interviews
with software vendors, contact details of possible implementers were requested. Only one vendor
architect provided the contact details of an implementer, but even this implementer worked at the
internship firm. In addition, five other consulting firms with an alliance or partnership with the
interviewed vendors were contacted, but none responded. Clients that use these specific software tools
were not contacted as they only experienced their specific case with the software tool, whereas
implementers generally work for multiple clients and can therefore provide a more holistic view.

Fifteen interviews were held for nine software solutions to determine how various software
architectures and system quality characteristics relate to the flexibility and robustness of ESG reporting
systems. Eight vendors and seven implementers participated in the interviews. One implementer had
worked with multiple software and therefore provided information for two software. The breakdown
of people reached out to is provided as follows. A total of 107 people were reached out to, of which 76
were contacted through a direct e-mail, 21 through an info e-mail, seven through LinkedIn, and three
through the vendor’s website. Initially, 83 people were contacted, of which 52 did not respond after a
reminder, 14 directed me further, 11 could not help me further, and six participated in the interviews.
Seven additional interviews came out of the e-mails that were directed further, and two out of other
interviews (see Figure 5).

Figure 5 Overview of the number of people reached out to and eventual interviews.

An overview of the used data sources for each software is provided below in Table 5. For two software

tools, the vendors did not respond or could not participate due to a conflict of interest. Therefore, a

system implementer with more technical knowledge was interviewed. A system implementer is missing

for four out of nine software tools. To fill these data gaps, insights into usability from an external

independent research platform were used.

20

Table 5 Data sources

 Desk Research Interviews

Name Website Webinar YouTube
Community
platform

External
research
platform

Vendor
representatives

Implementers

Software
1

✓ ✓ ✓ ✓ 1 1

Software
2

✓ ✓

✓ ✓ 1 2

Software
3

✓ ✓ ✓

✓

2

Software
4

✓

✓

✓ 1

Software
5

✓

✓ 1

Software
6

✓

✓

✓

2

Software
7

✓

 2 1

Software
8

✓ ✓ ✓

✓ 1

Software
9

✓ ✓

1

3.4 Operationalisation
Variables were operationalised according to the literature that is presented in the theoretical
framework.

3.4.1 Future proof
The concept of future proof is rated on a high, medium, and low scale and combines the total scores
from flexibility and robustness. A software tool is considered to be future proof if both flexibility and
robustness are high, as presented in Table 6. The scaling processes for flexibility and robustness will be
further explained in the next sections.

Table 6 Example of scoring future proof

Flexibility Robustness Future proof

Software X High Medium Medium

Software Y High High High

Software Z Medium High Medium

21

3.4.1.1 Flexibility
Two main concepts of flexibility were used in this study: flexibility in modification and flexibility in
response. These concepts were split into three main components: goal adjusting, just-in-time adjusting
and adaptation.

As had been mentioned earlier, one of the most important aspects of ESG reporting software tools is
being flexible in responding to new sustainability standards and regulations and responding to new
business needs of clients (Hilpert, et al., 2014). Therefore, the indicators defined by Knoll and Jarvenpaa
(1994) and Mahina and Whitworh (2004) have been adjusted to fit the specific flexibility needs of ESG
reporting software tools.

A five-point Likert scale has been used to scale the concept of flexibility in combination with insights
from the interviews. The Likert scale range has been defined and adjusted together with two industry
experts. The scale for flexibility is presented in Table 7.

Table 7 Scale of flexibility

Concept Indicator Range

Goal adjusting When a new sustainability
regulation is implemented, the
system can adjust easily

1

strongly
disagree

2 3

neutral

4 5

strongly agree

Responsiveness How long does it typically take to
implement a new sustainability
regulation?

1

> 8 weeks

2

7,8

3

4-6
weeks

4

2,3

5

1 week

Goal adjusting When a new business need is
recognised, the system can adjust
easily.

1

strongly
disagree

2 3

neutral

4 5

strongly agree

Responsiveness How long does it typically take to
implement a new functionality
following a new business need?

1

> 1 year

2

10-
12

3

7-9
months

4

4-6

5

1-3 months

Adaptation Are new functionalities added for
all users or separately for specific
users

1

all

 5

separately

Each participant was asked to explain the various concepts for the specific tool and was asked to rate
the concept from 1 to 5, as explained in the interview guide in Appendix B. The scores for flexibility were
noted for each question and then merged to a total score for that participant, as presented in Table 8.
Eventually, all the scales were transformed to a high, medium or low score. The scoring matrix of the
Likert scale for high, medium, and low scores is presented in Table 9. As multiple sources rated the
software, these eventual low, medium and high scores were combined to gain a total score for a
concept. These scores were used to get an initial impression of the flexibility of the software, and the
reasoning behind these scores was further explained during the interviews.

In addition, the explanations given during the interviews were compared to see if vendors and
implementers had a corresponding experience with the software tool and if the scores corresponded
with the explanations given. If an interviewee would only give high scores (agree or strongly agree) but
the explanations provided indicate that the software is not as flexible as the other participating software

22

tools, the researcher would interfere and adjust the total given score for a software tool. This
interference only occurred once for the concept robustness and will be explained later on.

Table 8 Example of scoring flexibility

 Flexibility
Sources x y Z Average Score Total

Vendor Software x 3 4 5 4 High

High
Implementer Software x 5 4 5 4,7 High

Table 9 Score rating according to scale

Scale rating Score

1-2 Low

2,1-3,9 Medium

4-5 High

3.4.1.2 Robustness
The robustness concepts of Losavio et al. (2003) and Barber & Salido (2015) have been adapted to fit
the robustness of ESG software tools. These software tools should be able to withstand adaptations
made to the software without compromising the quality that is delivered.

For each concept, two to three questions have been formed to scale the robustness of the software
tools, as presented in Table 10. Software reliability measures how well respondents think a software
tool provides the required services (Roca, 2019). This concept has been adjusted to fit the requirements
of changing ESG software tools. A possible way to identify the stability of a software tool is by looking at
the unexpected effects after a change, such as bugs or downtime (Losavio, et al., 2003; Barber & Salido,
2015; Salama, et al., 2019). The statements focused on bugs have been specified to fit the ESG context
to mainly focus on a change in the software due to a new regulation or reporting format and to fit the
user’s business needs. Recoverability can be measured in the amount of time it takes to recover and the
degree to which the software is able to recover (Pan & Hu, 2014). The range for the recoverability time
has been defined in accordance with industry experts and during the test interview.

The same scoring method applies as for flexibility (see Table 8 & Table 9). The insights from the
interviews, Likert scale questions, and various sources are thus combined to gain a total score for the
concept robustness and understand the reasoning behind it.

Table 10 Scale of robustness

Concept Indicator Range

Reliability How confident are you after
changing the tool about the
system's - Accuracy

1

not at all

2 3

neutral

4 5

extremely
confident

Reliability How confident are you after
changing the tool about the
system's - Reliability

1

not at all

2 3

neutral

4 5

extremely
confident

23

Concept Indicator Range

Stability Unexpected bugs often occur after
a change in the system - For a new
regulation or reporting format

1

strongly
agree

2 3

neutral

4 5

strongly
disagree

Stability Unexpected bugs often occur after
a change in the system - To
streamline to the user's business
needs

1

strongly
agree

2 3

neutral

4 5

strongly
disagree

Stability The system rarely experiences
downtime or outages after a
change is implemented

1

strongly
disagree

2 3

neutral

4 5

strongly
agree

Recoverability The system can recover from
failure or outages - Effective

1

strongly
disagree

2 3

neutral

4 5

strongly
agree

Recoverability How long does it typically take to
resolve system issues or bugs
following a change in the system?

1

> a day

2

9-23
hours

3

6-9
hours

4

1-6
hours

5

< 1 hour

The interviews were crucial in verifying the alignment between the assigned scores and the
accompanying explanations. In one case, there was a discrepancy between the given scores for
robustness and the interview insights. The implementer explained during the interview that this specific
ESG software was considered to be highly robust, but the total score for robustness came down to
medium. The explanation and eventual robustness score thus differentiated. In addition, another
implementer that was interviewed for the same software also indicated that it was a robust software
and scored it as high. An additional scoring column was added to ensure that the correct total score was
given for this specific case, as presented in Table 15. In this column, an additional score was given by
the researcher based on the interview insights. Eventually, the total score now comes down to high,
corresponding with the insights from the interviews.

3.4.2 Usability
Saher et al. (2020) defined specific quality characteristics for sustainable software systems for change
management, of which usability is one aspect. The three given concepts of learnability,
understandability and operability will be used for this thesis. Learnability was focused on learning to use
the system and the efficiency of this, and understandability was focused on whether the software was
suitable for the business needs. Operability relates to whether the system is easy to use and control.

In this thesis, the usability of various software tools will be reviewed through a system implementer’s
perspective on the implementation and use of ESG reporting solutions. Interviewees were asked to
explain their experience with using and implementing the software in a client’s organisation. In addition,
implementers were asked to rank the statements presented in Table 11. Usability questions have only
been asked to system implementers.

Table 11 Scale of usability

Concept Indicator Range

Learnability Learning to operate the systems is easy. 1 2 3 4 5

24

Concept Indicator Range

strongly
disagree

neutral strongly
agree

Learnability Learning to operate the system went
quickly

1

strongly
disagree

2 3

neutral

4 5

strongly
agree

Understandability The system is unnecessarily complex 1

strongly
disagree

2 3

neutral

4 5

strongly
agree

Understandability The system is easy to navigate through 1

strongly
disagree

2 3

neutral

4 5

strongly
agree

Operability The system is easy to access. 1

strongly
disagree

2 3

neutral

4 5

strongly
agree

Operability The system is easy to use 1

strongly
disagree

2 3

neutral

4 5

strongly
agree

Operability The system is easy to implement in a
client’s organisation

1

strongly
disagree

2 3

neutral

4 5

strongly
agree

In addition to the interviews, the usability scores from an external research platform have been used to
extend the usability scores of this thesis. Usability scores for this platform were assessed through 2.5-
hour live demonstrations and various questionnaires with vendors, users and industry experts. The
concept of usability used by this research platform focused on the system's user-friendliness and the
implementation services provided. The external research platform used a three-point scale to score
software on their usability scores.

The total score for usability is derived a bit differently as it includes both the external research platform
and interviewed implementers. An example of how these scores are combined is presented in Table 12.
The total score from the external research platform has been recalculated to fit the five-point scale of
this thesis. Eventually, both scores from the implementer and external platform are combined to form
a total score for usability.

Table 12 Example of scoring usability

 Usability
Sources x y Z External average

(3-point scale)
Average
(5-point scale)

Score Total

Implementer Software x 3 4 3 3,3 Medium

Medium
External research platform 1,6 2,7 Medium

25

3.4.3 Matrix table
A matrix table with the results for flexibility, robustness, future proof and usability ratings is presented
in Table 13. The software solutions are ordered based on their future proof score. Not all interviews
were performed with both a vendor and an implementer. Therefore, for only three software both a
vendor and an implementer were interviewed. Two of the three software tools that included both a
vendor and implementer scored the same for flexibility and robustness. When interviews were
conducted with two vendors or two implementers, contradicting scores were observed twice regarding
robustness and three times concerning usability. In addition, one software did not receive a score for
usability as no implementer was found, and the usability score was not available on the external
research platform.

Table 13 Matrix table of the results for flexibility, robustness, future proof and usability ratings for each data source

Name
Flexibility Robustness

Future
proof

Usability

V1 V2 I1 I2 T V1 V2 I1 I2 R T T I1 I2 ER T

Software
1

H H High H H

High High H High

Software
2

H H H High H H

High High H H M High

Software
3

 H H High H M H High High H M M Med

Software
4

H High H

High High M Med

Software
5

H High H

High High M Med

Software
6

 H H High M M

Med Med H M M Med

Software
7

H H H High H M L

Med Med M Med

Software
8

M Med H

High Med M Med

Software
9

M Med H

High Med NA

Note: V1 is vendor interview one, V2 is vendor interview two, I1 is implementer interview one, I2 is implementer two, R is
researcher, ER is external research platform and T is total. H is high, M is medium, L is low.

3.4.4 Software design features
Besides flexibility, robustness and usability, data collection also consisted of additional concepts related
to the software tools' design, as presented in Table 14. A division has been made on whether these
concepts have been included due to their relevance in theory or as advised by industry experts. Some
concepts have been added after the interviews as part of an iterative research approach. The concepts
that were included later on were mentioned during interviews as important enablers of either flexibility
or robustness.

Table 14 Overview of additional concepts studied

Concept Explanation Included in
accordance
with

Heritage With what type of business information systems, the vendors originally
started with.

Theory

Architecture Whether the software tool used a serverless, microservice, service-oriented,
or monolithic architecture.

Theory

26

Concept Explanation Included in
accordance
with

Quality sub-
characteristics

Which of the quality characteristics the software tool corresponded with. Theory

Deployment
model

Whether the software tool was offered on the cloud or on-premises, or a
combination.

Theory

Cloud service
methods

Whether the software tool was SaaS, PaaS, IaaS or a combination. Theory

Offering Whether the software tool was offered completely off-the-shelf, modifiable
off-the-shelf, or a combination.

Industry
Experts

ESG type What type of ESG software the vendors offered, either focused on ESG
reporting or a different type.

Industry
Experts

Pricing model Which type of pricing model the vendors used, ranging from subscription
base, consumption base, or pay-as-you-go.

Industry
Experts

Tenancy Whether the software tool deployed a multi-tenant or single-tenant cloud,
or a combination.

Interviews

Coding methods Whether the software tool included low code/ no code Interviews

Founded The year in which the software tool was founded. Interviews

ESG solution
added

The year in which the ESG solutions has been added to the software tool. Interviews

The definitions of various concepts mentioned in Table 14 have been provided in Table 15. The concepts
have been identified both during the interviews and desk research. Vendors were asked during the
interviews about the concepts that were derived from theory or that had been included due to the
advice of industry experts. During the desk research, almost all concepts were identified as most
vendors exactly described the concepts online.

Table 15 Definition of included concepts

Concept Definition

Source

Quality sub-
characteristics

Analysability The ability of the software to detect
the effect of a change or to detect
reasons for failure.

(Saher, et al., 2020)

Installability The ability of a software to be
installed in any type of
environment.

Modularity Components that do not have an
impact on other components.

Replaceability The ability of a system to be
replaced by another product in the
same environment.

Reusability The ability of a software component
or module to be reused in other
systems.

27

Concept Definition

Source

Interoperability The ability of the software to be
coupled to other software systems

Cloud service
methods

SaaS Software as a service (SaaS) is an
on-demand software type, such as
an application that is provided on a
subscription basis to users.

(Kavis, 2014; Odun-Ayo, et al.,
2018)

 PaaS Platform as a service (PaaS) is a
cloud service where users can host
their own applications on.

 IaaS Infrastructure as a service (IaaS)
provides virtualised resources such
as servers, storage and networking
infrastructure.

Offering Off-the-shelf The software is used “as-is” (Carney & Leng, 2000)

Modifiable off-
the-shelf

The software can be modified or
customised after it has been
purchased

Custom
development

The software is specifically
developed for the specific business
need

Pricing model Subscription
base

The number of usage and services
are fixed beforehand

(Bhargava & Gangwar, 2016; Wu,
et al., 2019)

 Pay-as-you-go Billed based on usage afterwards

 Consumption
base

Credits are bought in advance and
users pays for the amount of usage

Tenancy Multi-tenant Multiple users sharing the same
database

(Mietzner, et al., 2009)

 Single tenant Each customer has their own
instance and a separate database

3.5 Data analysis
Throughout the study, several qualitative data sources were used for the data analysis. The data were
analysed through a matrix table to generate one dataset and create an overview of the data to allow
detailed analysis of the selected cases (Miles, et al., 2014). The data analysis of the desk research and
interviews will be executed differently.

3.5.1 Desk research
During this phase, the collected data from the desk research was structured and categorised. During the
desk research phase, concepts such as the architecture, the quality sub-characteristics, cloud service
methods, deployment model, pricing model, tenancy, coding methods, and offering were sought. These
concepts were often literally mentioned on the vendor's website, on community platforms or in
webinars. In most cases, vendors published the included concepts online, but sometimes this was not
the case. Hence, interviews were employed as a means to verify and validate the gathered data. The

28

findings were systematically assigned to each software vendor and eventually incorporated into the
matrix table. An overview of the used data sources per software case is presented in Table 13.

3.5.2 Interviews
During the interviews, interviewees were asked various Likert scale questions and were asked to provide
more in-depth explanations behind the given scores.

3.5.2.1 Semi-structured part
Interviewees were asked to explain and justify the assigned flexibility, robustness and usability scores.
The interviews were recorded and transcribed to ensure that all data was captured. The qualitative data
analysis software NVivo 20 was used to code the transcripts and structure the findings. A Thematic
inductive coding approach was utilised. This type of coding process starts with identifying and labelling
text sections into codes, and similar text sections are added to the same codes (Bryman, 2012). Where
possible, the categories were connected to the Likert scale questions to make it easier to complement
these results with in-depth explanations. All interviews were recoded for a second time to ensure that
no codes were missing and to include new concepts from the iterative process. Eventually, the codes
were merged and linked when codes touched the same subject to reduce overlap. A complete overview
of the codes can be found in Appendix C.

Additional findings emerged from the interviews. Vendors and implementers discussed other possible
influential factors related to the software solutions' flexibility and robustness. These factors were
added to a table with an overview of all results, which can be found in Appendix D.

3.5.2.2 Structured part
The Likert scale questions were asked to identify possible relations between architecture and the future
proof level and usability and flexibility scores. The scores from each respondent have been averaged
and merged with other sources to create a total score for flexibility, robustness, future proof and
usability for each software solution. The insights from the in-depth interview questions and Likert scale
scores have been combined in a total results table in Appendix D.

A matrix table containing the scores from each data source in combination with the characteristics was
used. The first phase of the interpretation is related to the presentation of the architectural styles and
their corresponding quality characteristics. Then the first proposition stated in the theoretical
framework was compared based on the flexibility and robustness of each software in combination with
the architecture type. Additional factors that might relate to the future proof scores of the software
were examined, and similarities in the data were interpreted. These factors were mentioned by
interviewees in the interviews and, later on, added to rule out potential alternative explanations for
future proof scores. Following that, the results for usability and the accompanying proposition were
discussed on eventual patterns. Eventually, the propositions and reasons behind the differences are
presented in the discussion.

3.6 Research quality indicators

3.6.1 Reliability and validity
By employing predeveloped software characteristics that have been tested and used by other studies,
construct validity can be achieved. However, some other issues relating to sampling, data collection and
analysis can occur. The sampling's techniques validity is limited as non-probability sampling is used, and
the vendors have been contacted from a pre-selected list. Due to this, a possible sampling bias can occur
as these vendors have been recognised as the most renowned software vendors, overlooking smaller
vendors, which could influence the eventual future proof scores. Another issue is that not all data can
be collected through observations or desk research, and therefore, interviews with software vendors
were included. This increases the likelihood of manipulation as these vendors might overestimate their

29

own software. To reduce this, system implementers were interviewed, and external market research
was used to combat this. In addition to that, the scores and in-depth explanations were compared to
ensure that these were consistent. This is also known as data triangulation which increases the validity
of the research (Bryman, 2012). One limitation of this triangulation is the eventual bias if certain
software tools include an extra verification step and others do not. Therefore, in cases where no vendor
could be reached, two implementers were interviewed, of which at least one needed to have a software
architecture background.

30

4 RESULTS
This chapter will present the results of the collected and analysed data. First, background information
on the collected software tools will be provided to introduce the various cases. The scores for flexibility,
robustness and usability are also given for each case, including a short explanation for each of the scores.
The second part of the results will focus on future proof scores, patterns, and data similarities between
the architecture, related quality sub-characteristics, and flexibility and robustness. In order to rule out
potential alternative explanations and factors that may relate to the future proof scores, additional
software design features were examined. These included factors such as the type of cloud service
methods, coding methods, offering, and the type of ESG software, which will be further discussed in
subsequent sections. Eventually, patterns between usability, flexibility and future proof are discussed
to understand their relations. An overview of all results can be found in the table in Appendix D.

4.1 Profile description software cases
A total of nine ESG software solutions were assessed in this study, of which four out of the nine software
tools originally started as GRC software, three as ESG software and the remaining two as BPM or EHS
software. The majority of the ESG software solutions focus on reporting, whereas two software solutions
differentiate from this and focus mainly on carbon management and LCA. Most vendors have launched
their ESG solution in the past four years, whereas other vendors have been in this industry since the
early 2000s.

Software 1

Software 1 originally started as a GRC system but has expanded over the years to fairly all types of

business information systems, including an ESG reporting solution. The software is priced according to

subscription bases and is offered to users in three ways: off-the-shelf, modifiable off-the-shelf, and it

can be custom developed. A combination of service-oriented and microservice architectures are used

with on-premises, single-tenant cloud and multi-tenant cloud deployment models. The software tool

scored high for flexibility. The main reasons for this high score are related to the fact that the solution

is built on a platform where users can adjust the solution without coding. Even though several

regulations are offered out of the box, users can also add customised reporting formats. Robustness

scores are also high as issues are aimed to be resolved instantly, and the service teams are located in

every continent of the world to ensure that someone is always working on the issue. Overall, the ability

to be future proof for this software is high; this is also reflected by other interviewees who mentioned

Software 1 as an example of flexible and robust software. In terms of usability, the software also

received a high score. The usability scores are high as users are already familiar with the interface and

software, as most users will use the ESG solution as an add-on from the original GRC system.

Software 2

Software 2 started as ESG reporting software. The software is priced according to a consumption-based

model and is offered to users as an off-the-shelf software. A combination of a microservice and

serverless architecture is used for the tool in combination with a cloud deployment model. Flexibility

scores are high as regulations and reporting features can be adjusted instantly, but the customisation

of functionalities needs to be done by the Software 2 team. Robustness is also scored as high, but it

must be noted that the system implementers have tested the tool and worked with it by themselves

but did not implement it in a client’s organisation. Therefore, the scores for bugs and outages were

often marked as not applicable. Overall, the ability to be future proof for this software is high. The

usability score was also marked as high by the two implementers and medium by the external research

platform.

31

Software 3

Software 3 was originally an EHS software that added an ESG reporting solution to its software. The

software is priced according to a subscription-based model and is offered to users as either an off-the-

shelf or modifiable off-the-shelf software. A combination of a microservice and serverless architecture

is used for the tool in combination with a cloud deployment model. The software scored high for

flexibility as it can be configured, and most factors can be adjusted by the system implementers.

According to the two implementers, the software is marked as one of the more robust software tools,

resulting in a high robustness score. Therefore, the ability to be future proof for this software is high.

Usability was scored as a medium, and the main reasons given for this related to the intuitiveness and

complexity of the software. However, there was a difference between the two implementers as one

scored usability as high and the other as medium. The score from the analysis platform was also included

for this software and came down to medium.

Software 4

Software 4 is a BPM system that initially focused on EHS, asset management and quality management,
and recently they added an ESG reporting solution. The software is priced as a pay-as-you-go depending
on the usage and is offered as modifiable off-the-shelf. The software uses a service-oriented
architecture with on-premises or multi-tenant cloud deployment models. The software scored high for
flexibility, which is mainly related to the no-code platform, where users can adjust the platform without
needing to code. As most changes are possible to adjust in the configuration layer, the process of
adjusting the software is rapid. Robustness scores are high as well. As the ESG solution has just been
added recently, robustness scores were mainly based on the overall platform, as there were not enough
use cases available. Most bugs that occurred related to the lack of testing on the user’s end but not
necessarily to the software tool’s abilities. Overall, the software solution’s ability to be future proof is
high. The score for usability was also derived from an analysis platform and was scored as a medium
based on a combination of data on the user-friendliness of the software, the number of languages that
were provided and the software support. Software 4 can mainly improve its training offering, as they do
not offer out-of-the-box training for users.

Software 5

Software 5 started as a GRC system and later added an EHS and ESG reporting solution to the software.
The software is priced according to a subscription base and is offered to users as a modifiable off-the-
shelf model. The software uses a service-oriented architecture with a single-tenant cloud deployment
model. Flexibility scores are high as users can change a large part of the out-of-the-box solution by
themselves without interference from the software vendor. Therefore, changes can be made relatively
fast. Bugs relating to data are taken very seriously, and the robustness of the software is, therefore,
scored as high. Overall, the ability to be future proof for this software is high. The score for usability was
also derived from an analysis platform and was scored as medium. The software is offered in a large
variety of languages to support various types of end users.

Software 6

Software 6 originally started as a GRC software and, later on, added an ESG reporting solution. The
software is priced according to subscription and consumption bases and is offered to users in three
ways: off-the-shelf, modifiable off-the-shelf and custom development. The software uses a service-
oriented architecture with a cloud deployment model. Flexibility scores are high as the software is highly
customisable, and almost anything is possible to be adjusted. However, due to this high customisation,
the robustness of the software is lacking and is impacting the performance of the software, resulting in
a medium score for robustness. The implementer of this software advised that Software 6 should set

32

boundaries for the amount of customisation that can be made to ensure that the performance is not
affected. Overall, the ability to be future proof for this software is medium. Usability scores are medium
as the software is not as intuitive as other software, but there is the possibility to customise it completely
to make it more intuitive for end-users.

Software 7

Software 7 started as a GRC system and added an ESG reporting solution to their current GRC software.

The software is priced according to subscription bases and is offered to users in three ways: off-the-

shelf, modifiable off-the-shelf and can be custom developed. A combination of all architectures is used

for the platform with the deployment models on-premises and single-tenant cloud deployment. The

software scored high for flexibility as changes are implemented fast, and most changes can be

accomplished by small configurations. Robustness is scored as medium, as most changes that were

implemented resulted in bugs, and clients have had considerable downtime. Besides that, most bugs

that occur for an older release are reoccurring for newer releases as newer releases are not tested

properly for all bugs. The service team is only located in one continent, which relates to issues with

communication and the amount of time that is worked on solving bugs. So, where the software is able

to quickly adjust new functionalities, the quality that it delivers is lacking. Overall, the ability to be future

proof for this software is medium. The usability of the tool is “not worse than other GRC tools”

(Implementer Software 7) and is straightforward for users that are a bit familiar with it; therefore, it is

scored as medium. The main issue for usability is related to implementation in a client’s organisation,

as support and knowledge from Software 7’s side were missing.

Software 8

Software 8 is an ESG software with a main focus on carbon accounting. The software is priced according

to subscription bases and is offered to users as a completely off-the-shelf product. The software uses a

serverless architecture with a multi-tenant cloud deployment model. Flexibility scores are medium as

users cannot modify any aspect by themselves and must wait for the software vendor to adjust changes.

Due to this, users will need to wait on new releases to have certain functionalities incorporated.

However, not all requested functionalities will be added as it needs to bring a certain value to the

software. Robustness, on the other hand, is high as the architecture is built to resolve bugs quickly.

Overall, the ability to be future proof for this software is medium. The score for usability has also been

derived from an external research platform and was scored as medium. The score was based on the

implementation and training services that were offered and the user-friendliness of the software.

Software 9

Software 9 originally started as an ESG system focusing mainly on Life Cycle Assessments and
compliance. The software is priced on a subscription basis and is mainly offered to users as an off-the-
shelf model. However, it is possible to request a modification of certain aspects, but this is less common
for this software. The software uses a microservice architecture with deployment models on-premises
and cloud deployment. Flexibility is scored as medium as changes in the software are mostly adjusted
for all users. Thus, users cannot easily adjust aspects of the software by themselves. Changes will be
implemented with new releases, which do happen biweekly. Robustness, on the other hand, is scored
high as testing is an important part of the software resulting in the goal of zero downtime and a low
number of bugs. Overall, the ability to be future proof for this software is medium. No usability scores
are present for this software.

4.2 Future proof
Based on a combination of the semi-structured and structured questions, the determination of the
extent to which an ESG software solution was future proof was examined. As discussed in the methods

33

section, a mean score for future proof was computed by averaging interviewee responses on the
flexibility and robustness of the software tools. These scores were supported by the explanations given
during the interviews. The results and the scores from each participant are presented in Table 13, and
the breakdown of future proof, flexibility and robustness scores are presented in Figure 6.

There were several notable
observations identified. First,
the scores for the concept of
future proof are rather high.
Out of nine software tools,
five scored high for future
proof, and four scored
medium. No software tool
received a low score for
future proof. Second, when
looking more closely into
flexibility and robustness, two
software tools scored
medium for flexibility and
two for robustness. None of

the software tools received a low total score for either flexibility or robustness, and none of the software
received both a medium flexibility and robustness score. Third, implementers not only gave medium
scores, but some vendors also scored their tools as medium. Indicating that vendors would not always
score their software as high.

The importance of flexibility and robustness of the software tools has been mentioned by interviewees
as well. In terms of flexibility, the need for adjustable software was recognised by multiple interviewees
and was also explained well by the vendor from Software 4 "The ESG landscape, especially with like
scope 3 emissions, these are changing all over the place and so the requirements of what the tool needs
to do to accommodate are also always evolving.”. In addition, adjusting a regulation format was not
necessarily a problem as multiple software did not use out-of-the-box frameworks but allowed users to
customise the necessary data fields and workflows. These custom frameworks were mentioned to be
used due to the evolving landscape and to be able to respond quickly to new regulations. Especially
since “time is not a luxury that customers have” (Software 2 Implementer 2)

In terms of robustness, multiple interviewees mentioned that “bugs are a natural occurrence” (Vendor
Software 5), and are part of software development. Testing is an important aspect of avoiding bugs, and
the importance of avoiding bugs varies across vendors. In terms of ESG and new regulation frameworks,
robustness problems would not necessarily happen for these types of changes. However, ESG is very
data-driven, so bugs would mainly relate to data collection of the software, as explained in the following
quote by the vendor from software 4 “If the data would change, you have to get something new in from
a system that we have not done before. There might be a bug in terms of that it doesn’t load properly”.

4.3 Software design features
Each software tool had a different composition of design features. An overview of some of these
features is presented in Table 16. It will be discussed later on how each of these software design features
relates to future proof, flexibility and robustness. First, the architecture styles will be explained, followed
by additional features and insights.

Figure 6 Division of future proof, flexibility and robustness scores

34

Table 16 Overview of software tool features

Name Heritage ESG Type Offering
Deployment
model

Architecture Tenancy
Cloud
service
methods

Coding
methods

Founded
ESG
solution
added

Software
1

GRC
ESG
Reporting
Software

Modifiable
off-the-
shelf &
Custom
developed

Cloud, On-
premises

SOA, MSA
Multi- &
Single-
tenant

PaaS,
SaaS

Low
code, no
code

2004 2021

Software
2

ESG
ESG
Reporting
Software

Off-the-
shelf

Cloud
MSA,
Serverless

Multi-
tenant

SaaS 2004 2004

Software
3

EHS
ESG
Reporting
Software

Modifiable
off-the-
shelf

Cloud
MSA,
Serverless

Multi-
tenant

SaaS 2000 2017

Software

4
BPM

ESG
Reporting
Software

Modifiable
off-the-
shelf

Cloud, On-

premises
SOA

Multi-

tenant
SaaS

Low
code, no
code

2005 2022

Software
5

GRC
ESG
Reporting
Software

Modifiable
off-the-
shelf

Cloud, On-
premises

SOA
Single-
tenant

PaaS
Low
code, no
code

2008 2021

Software
6

GRC
ESG
Reporting
Software

Modifiable
off-the-
shelf

Cloud, On-
premises

All
Single-
tenant

SaaS
Low
code, no
code

1999 2021

Software
7

GRC
ESG
Reporting
Software

Modifiable
off-the-
shelf &
Custom
developed

Cloud, On-
premises

SOA
Multi- &
Single-
tenant

SaaS 2004 2022

Software
8

ESG
Carbon
Management
Software

Off-the-
shelf

Cloud
MSA,
Serverless

Multi-
tenant

SaaS 2020 2020

Software
9

ESG

Product
Lifecycle
Assessment
Software

Off-the-
shelf

Cloud MSA
Multi- &
Single-
tenant

Becoming
SaaS

 2001 2001

Note: MSA = Microservice architecture, SOA = Service-oriented Architecture

35

4.3.1 Architecture
During the desk research and interviews, five
distinct architecture variations were
identified, with three of them being
combinations of different architectures,
while the remaining two were standalone
architectures, as presented in Figure 7.
Among the nine software solutions analysed,
three utilised the service-oriented
architecture, while another three vendors
employed a combination of microservice and
serverless architectures. The remaining three
software solutions were built on a
microservice architecture, a combination of
service-oriented and microservice
architectures, and a combination of all

architectures, including the monolithic approach. Interesting to note that all software at least included
a service-oriented architecture or microservice architecture.

The inclusion of the quality sub-characteristics analysability, installability, modularity, replaceability,
reusability and interoperability were examined through desk research and in the interviews. These
quality characteristics were deemed to be important for ESG software. It was furthermore expected
that software with a service-oriented or microservice cloud architecture included all these quality
characteristics. During the interviews, some vendors already mentioned that the software tool
contained certain quality characteristics without being explicitly asked about it. In other instances, the
characteristics were explicitly asked. Almost all software contained the requested quality
characteristics. For one software solution, not enough information was available online, and the
implementer was not sure about certain characteristics. The eight other software tools likely contained
all quality characteristics as they all include either a service-oriented or microservice architecture in
combination with cloud. According to the cited literature, these quality characteristics should be present
for these types of architectural styles, which corresponds with the results found. In addition, the vendor
from Software 7 mentioned how these quality characteristics are fundamental aspects of the software
tools. An overview of the quality characteristics of each vendor is presented in Table 17. No strong
pattern emerges as there is no variation in the outcomes for these characteristics but a variation in
future proof scores.

4.3.1.1 Future proof and architecture
According to previous literature, serverless, microservice and service-oriented architectures would
likely relate to more flexible and robust software, whereas a monolithic architecture was considered to
not relate to high flexibility and robustness. Consequently, the first proposition was formulated as
follows:

Serverless, Microservice, and Service-oriented architecture styles will likely relate to future proof
software systems, whereas Monolithic architecture will likely not relate to future proof software systems.

To determine whether proposition one is supported, an examination of the future-proof scores and the
corresponding architecture styles is provided, as presented in Figure 8 and Table 17.

1

1

3

3

1

All MSA MSA x Serverless SOA SOA x MSA

Figure 7 Number of software cases per architecture style

36

 Five software tools support the proposition, as they
include a service-oriented, microservice or serverless
architecture and score high in terms of future proof.
Nevertheless, the software tool that scored medium
for future proof also included these architecture
styles. There was only one tool software with a
monolithic architecture, but it was combined with all
other architecture types as well. So, it is unclear to
what degree monolithic architecture contributed to
this medium score, as the software was a combination
of architectures and not solely monolithic. Thus, it
seems like there is no clear pattern between the
architecture styles and future proof scores, as
serverless, microservice and service-oriented
software both received high and medium scores for
future proof.

Table 17 Matrix table of the results for architecture, deployment model and quality characteristics

Name Architecture
Deployment
model

Quality
characteristics

Flexibility Robustness Future proof

Software 1 SOA, MSA
Cloud, On-
premises

All High High High

Software 2 MSA, Serverless Cloud All High High High

Software 3 MSA, Serverless Cloud All High High High

Software 4 SOA
Cloud, On-
premises

All High High High

Software 5 SOA
Cloud, On-
premises

All High High High

Software 6 SOA
Cloud, On-
premises

NA High Medium Medium

Software 7 All
Cloud, On-
premises

All High Medium Medium

Software 8 MSA, Serverless Cloud All Medium High Medium

Software 9 MSA Cloud All Medium High Medium

Note: MSA = Microservice architecture, SOA = Service-oriented Architecture

When examining the concepts of flexibility and robustness individually, there is hardly a noticeable
pattern, as presented in Figure 9. The two software that scored medium for flexibility had either a
microservice architecture or a combination of microservice and serverless architectures. These
architectures were also utilised by software that scored high for flexibility. Regarding robustness, a slight
pattern emerges, as five out of six software with a microservice architecture, either in combination with
another architecture or on its own, resulted in high robustness. The two software tools with serverless
architecture also scored high for robustness, except for the software with all architecture styles.

Figure 8 Future proof score and architecture styles

37

Figure 9 Overview of the relationship between flexibility, robustness and the architecture styles

Hence, based on the results of this thesis, it can be concluded that proposition one is not supported.
The adoption of a microservice or service-oriented architecture style did not necessarily relate to a
future-proof ESG software system. The architecture style alone cannot be considered the sole
determinant of a software system's flexibility or robustness, as indicated by the findings from the
interviews. During the interviews, participants did not explicitly mention these architecture types as
primary drivers of flexibility and robustness. Instead, other factors such as the utilisation of cloud service
methods, coding methods, software offerings, and the type of ESG software were deemed more
important in influencing flexibility and robustness.

4.3.2 Additional features

Within this section, additional influences that potentially relate to the concepts of this study are

considered, providing a comprehensive understanding of the research findings. These findings emerged

both through consultation with industry experts and during interviews with vendors and implementers.

A lot of different factors were indicated. For heritage, deployment model and tenancy, no relation

emerged with flexibility, robustness or future proof. The cloud service methods, coding methods,

offering and ESG type, did seem to demonstrate a possible relation between flexibility, robustness or

future proof in general. First, insights that did seem to result in possible patterns will be discussed.

Eventually, the insights that did not seem to have a relation to flexibility, robustness or the level of future

proof are briefly discussed, as these factors were still deemed important by the interviewees.

4.3.2.1 Cloud service methods
The cloud service methods, software as a service (SaaS) and platform as a service (PaaS) were mainly
used, as presented in Figure 9. SaaS is a cloud software used as an application, whereas PaaS is a
platform where applications can be hosted and managed on. One software was still in the process of
becoming SaaS and has therefore not been considered in Figure 10.

An interesting finding emerged from software tools with a PaaS cloud service, as the two software that
used this service both scored high for future proof. The benefits of PaaS have also been acknowledged
by the vendors that are offering these services. The vendor from Software 1 argues, “that is where the
prominence of platform is very key and important, because these features could change there. Could be
new set of applications coming out in the future, but with the platform it is capable of spinning this off
very quickly.”. This interviewee thus indicates that a PaaS platform is able to release new applications
quickly. In addition to that, the implementer from Software 1 also suggests that the use of PaaS makes
the process of ESG data collection more easily, as explained by the following quote: “It is leveraging the

38

same platform as all the other modules. Which means that if I want to collect data on ESG, I have data
from everything else already in the platform.”. The absence of a PaaS service does not necessarily mean
that a software tool cannot score high for future proof, as three out of six software that used a SaaS
service also scored high for future proof.

Figure 10 Overview of the relationship between flexibility, robustness and cloud service methods

The results suggest that software tools that offer a PaaS cloud service are possibly related to higher
scores for both flexibility and robustness. It must be mentioned that there were only two cases in this
study that contained this cloud service method.

4.3.2.2 Coding methods
In addition to the cloud service, the coding methods show a possible relation to flexibility scores. The
presence of a low code, no code method emerged as a possible factor for higher flexibility. This specific
coding method enables adjustments without the requirement of programming skills. This method
reduces development time and minimises the need for user programming input. Consequently, end-
users find it easier to make modifications to the software. All software instances that incorporated a
low code, no code method scored high in terms of flexibility, with three out of four also achieving high
future proof scores. However, it should be noted that the absence of this method did not necessarily
result in lower scores.

The following quotes from various vendors also explain the advantages of this type of method. The
vendor from Software 4 proposed, “We make the configuration changes, which is no code, so we can
very rapidly, you know, turn that around ...” “So we’re able to meet with these large customers,
understand their process and really very rapidly configure a solution for their needs without touching
code, without writing Java and. The platform will handle all of the business logic.”. The vendor from
Software 5 added, “… that’s the fastest route. If you can use our configuration tools or our design toolkit,
to be more precise, they can do these changes in less than five days, depending on the size of the changes.
But that’s one of the reasons why our customers love our software, especially large enterprise customers
because they are in control of a lot of the things, they don’t have to wait on us. If they wanted to add
new fields, someday tomorrow, you know there’s a new regulation and suddenly they have to have this
new workflow. They can do that themselves, …”.

The results suggest that software tools possibly score higher in terms of flexibility and future proof by
utilising a low code, no code method. Software tools offering a low code, no code method are able to
respond faster to changes and allow the end-user to make certain changes to the software by

39

themselves. It is worth noting that the absence of this method did not necessarily result in lower scores
for flexibility and future proof.

4.3.2.3 Offering
The software instances were offered in various ways, either completely off the shelf, modifiable off the
shelf or with the possibility for custom development. Software that is modifiable off-the-shelf is
essentially an off-the-shelf product, but it can be modified.

Several observations can be made from the findings presented in Figure 11, which will be further
explained by quotes from the interviews. First, five out of nine software that scored high for flexibility
offered either modifiable off-the-shelf or custom-developed software. Second, off-the-shelf software
tools scored twice medium for flexibility and once high. Medium robustness scores were only perceived
for either modifiable or custom-developed software, but modifiable or custom-developed software
scored four times high for robustness. The findings will be further substantiated with interview quotes.

Figure 11 Overview of the relationship between flexibility, robustness and system offering

Software that is modifiable off the shelf can be adjusted after an end-user buys the software, whereas
custom development is completely built from scratch and designed specifically for the end user. The
higher flexibility scores for these two offering types can be explained by the fact that these software
tools are easier to configure and either already offer out-of-the-box solutions that can be adjusted, or
they could completely design a functionality for the client. This is also explained by the vendor from
Software 4, “So we have what we call just a starting point or off the shelf, and a lot of companies will
insist that that’s all they want. But we always include some professional services to set up the product.
Then through some engagement, there’s very often, more often than not, quite a bit of configuration in
that no code environment to fine-tune exactly what they’d like to see.”. Suggesting that clients often
want to adjust and configure a software tool after they already bought the off-the-shelf variant.
Therefore, certain vendors allow the off-the-shelf variant to be modified. The implementer from
Software 6 also indicated that “90% of their clients are happy with the capabilities provided by the
software. So, it does cover a lot of things.”. However, “… ‘Software 6’ provides the ability to actually
enhance their solution. It’s not like the vendors who need to go and implement this from scratch.”.

Furthermore, two out of three software with an off-the-shelf offering scored medium for flexibility, as
presented in Figure 10. This could be explained by the fact that off-the-shelf software only offers
solutions that are accessible to all users. The vendor from Software 8 also explains this with the following

40

quote “Right now, it is completely off the shelf. So, all of our users use the same product more or less.”.
Even though flexibility might be lower for off-the-shelf, Software 9 said to have the following reason for
that “We try to stay as a product as much as we can. Because we want to make it so that each of our
customers can profit from our further developments, we want to be a product company. And for that,
it’s important to do not too much customising.”. This also applies to Software 8 as they explain how they
will adjust all functionalities for all users “And what we’re finding right now is that most of the time when
one of them requests functionality it applies to everyone...”

Software that is offered completely off-the-shelf scored high for robustness in all three instances.
Whereas software that is custom developed or modifiable off the shelf for two out of four software
scored medium for robustness. It was highlighted in the interviews that custom-developed software
tends to give more robustness problems. According to the implementer for Software 1, “the only bugs
we can see are linked to the custom development.”. Software 6 agrees that there are problems with
custom development and explains it as follows “So yes, we have encountered performance problems as
a part of this implementation because it was a very custom code, and it is a very complex code.”.

The results suggest that software that is modifiable off the shelf or can be custom developed possibly
relates to higher flexibility scores, whereas software that is completely off the shelf possibly relates to
higher robustness scores. This does not necessarily mean that modifiable or custom-developed software
tools are less robust, as four out of six software tools that offered this were perceived to be highly
robust.

4.3.2.4 ESG type
In terms of the specific ESG type, there were three different types of ESG software included in this study,
of which seven out of nine had a main orientation on ESG reporting, and two software had a different
main focus. One of them was a carbon accounting software tool, and the other was an LCA and
compliance software tool. In terms of flexibility, the two differentiating ESG software received a medium
score, as presented in Figure 12. The difference in these scores can be explained by the extensibility of
adjusting reporting and functionalities. Both of these software vendors change functionalities for all
users and include detailed calculations to accompany new regulations.

There are also differences in how ESG reporting solutions are offered for each vendor. In some cases,
an agnostic approach was offered, meaning that they do not literally define all metrics. The vendor from
Software 5 explained that “… if a customer is doing GRI, it’s probably about 60% there for CSRD”.
Therefore, these vendors do not include all questionnaires separately, as there is a lot of overlap
between ESG regulations. Other software solutions did include out-of-the-box frameworks from
separate regulations. A downside of this is in cases when vendors want a subscription for a specific ESG
framework, as it can take more time to adjust. As explained by the vendor from Software 7, “What takes
long is actually connecting to, like, SASB, for example. Speaking to their team for a subscription that in
itself takes more time. At least when we initially did SASB, that was my experience with trying to get
them onboarded and get them to agree to a partnership and all that.”. Meaning that out-of-the-box
frameworks in these cases could impact flexibility.

41

Figure 12 Overview of the relationship between flexibility, robustness and ESG type

Thus, there seems to be a possible relation between the specific ESG type and how detailed and
specified the ESG calculations are and the flexibility of the offered software solutions.

4.3.2.5 Additional insights
Certain factors that were mentioned during the interviews did not necessarily seem to relate to the
scores for flexibility, robustness or future proof. These factors relate to software heritage, deployment
model and tenancy.

First, the heritage of the software. The software examined started from various origins before the ESG
solutions were added. Some software tools were initially developed as ESG or EHS software, whereas
others were regular business information systems, as presented in Figure 13. In the interviews, it was
mentioned how software that was not originally created for ESG tends to be more flexible, as explained
by the implementer from Software 2 “So, ‘Software 1’, if I just want to reflect, then it allows a bit more
flexibility that way because ‘Software 1’ wasn’t created for ESG, right? So, it certainly gives you more
flexibility sometimes”. However, no clear pattern emerged in the results.

Figure 13 Count of software heritages

In addition, another possible factor that was mentioned during the interviews was the specific
deployment model. Both on-premises and cloud deployment models were considered. On-premises
refers to desktop applications, while a cloud model is web-based. Some interviewees related on-
premises with possible robustness problems. The implementer of Software 7 shed light on a possible

1

1

3

4

BPM

EHS

ESG

GRC

42

explanation for these lower robustness scores: "I think they are faster for the cloud, so the problems are
for the on-prem. I think they can fix the bugs faster on the cloud.". The implementer from Software 3
also suggested that certain clients switch to a cloud model as these are generally faster than on-
premises models. None of the participating software vendors employed solely an on-premises
deployment model. Therefore, distinguishing the precise impact of on-premises on robustness is
challenging, and no clear pattern emerges.

The cloud deployment model can be further classified as either multi-tenant or mono-tenant. Multi-
tenancy implies multiple users sharing the same database, while mono-tenancy means that each
customer has their own instance and a separate database and is also referred to as single-tenant. During
the interviews, the interviewees predominantly emphasised how a mono-tenant configuration
contributed to higher robustness. This is also illustrated by the following quotes from the vendor from
Software 1 “It’s a mono-tenant organisation. Meaning that every customer has its own technical
environment. So you don’t have to put the system down because you need to, you know, do something
on another tenant which has a problem or something like that, it never happens.” “Each customer has
its own environment, unique mono tenant, which means as well if you want to migrate to a new data
centre, it’s very easy as well because you take the tenant here, to mirror as well to have backups etc. It’s
very, very simple, so it’s a bit more expensive of course. To do that like this, but in terms of security,
reliability and resilience. “This was also reflected by the implementer from Software 3, that worked with
a multi-tenant software that scheduled weekly downtime to work on the platform. “… there are
scheduled downtimes, and some of them are during the business day, but they aren’t as a result of
changes. So just as a result of the normal working schedule…”. The interviewees thus suggest that single
tenancy would relate to higher robustness and flexibility. However, this pattern does not necessarily
emerges in the results.

4.3.2.6 Summary of results
The study's additional findings provide insights into various factors that potentially relate to flexibility,
robustness, and future-proof ratings of the software solutions. The analysis considered both factors that
showed a relation and additional factors without a relation that were mentioned in interviews. As
presented in Table 18, only five possible patterns emerged. Most of the time, these patterns were linked
to the design of the case and were observed for flexibility. In most cases, a factor led to a positive effect,
but the absence of this factor did not necessarily lead to a negative effect. In addition, the chances of
patterns in the data were generally smaller as variation in the outcomes for robustness and flexibility
was limited; only two software scored medium for flexibility and two for robustness.

The most interesting patterns related to the specific cloud service methods, methods of coding, offering
and ESG type. It seemed that software that used the specific cloud service PaaS related to high
robustness and flexibility score for the two cases. But this did not exclude software with SaaS from
scoring high for both robustness and flexibility. The same accounted for the presence of a low code, no
code method, as this was related in all four cases to high flexibility. Software without low code, no code,
also scored high for flexibility, but not consistently. The software offerings modifiable off-the-shelf and
custom development options related to high flexibility scores for all cases. Furthermore, ESG software
with a more specified focus demonstrated lower flexibility than general ESG reporting software. These
findings highlight that there are possibly more factors than just architecture that could relate to
flexibility, robustness and the future proof level.

43

Table 18 Table of possible patterns between flexibility, robustness, future proof and additional factors

 Flexibility Robustness Future Proof

Offering X X
Heritage /
ESG type X
Pricing model
Deployment model /
Architecture
Quality characteristics

Tenancy /
Cloud service methods X

Coding methods X
Founded
ESG solution added

Note: An X indicates that there is a possible pattern, a / indicates that an interviewee mentioned this as a possible
explanation for flexibility or robustness

4.3.2 Usability
Eventually, the usability of the software was examined. As stated in the theoretical framework, usability
is an important aspect of a software tool as it will influence the use and experience of users by learning
and using the software. Relating to the usability scores for the nine ESG software cases. None of the
software scored low for usability, but only two out of eight software scored high for usability. The other
software tools scored medium for usability. For one software, no usability score is present as no
implementer was found, and the usability scores were not available on the external research platform.

Previous literature mentioned that flexibility and usability are linked, as inflexible software would likely
lead to low usability of the software as the system is not flexible enough to adjust to a user’s wishes.
Thus, the second proposition was formulated as follows:

A low flexibility rating and, thus, a low future-proof rating will likely relate to low usability.

To determine whether proposition two is supported, an overview of the future proof, flexibility,
robustness, and usability scores is provided in Figure 14 and Figure 15. Some observations can be made
regarding flexibility and usability scores and future proof and usability scores. First, two out of five
software with a high future proof rating received a high usability rating. This might indicate that a high
future proof rating is not necessarily related to high usability. Second, the three software with a medium
future proof rating also received a medium usability rating. The other software tool with a medium
future proof score did not have a usability score. Third, five out of seven software tools that scored high
for flexibility scored medium for usability. Notably, no software with a medium future proof or flexibility
score received a high usability score.

Relating to the high flexibility and medium usability scores, the high flexibility of the software has been
mentioned by interviewees as a possible factor of increased complexity for users. The implementer from
Software 7 also explains this for a project he has implemented as follows “… it’s sometimes because the
clients customise it heavily, and then it makes it more complex as well.”. The same applied to the
implementer from Software 3, that explained how customers sometimes make it complex for
themselves as they request a vast number of changes.

44

As mentioned before, ESG is fairly data-driven, and the amount of data that needs to be reported on for
new upcoming regulations is extensive. Interviewees have mentioned how a vast amount of data fields
or the complexity of the software impacts the ease of use for end-users. This is also explained in the
following quote by the vendor from Software 5 “So a user will go this system is hard to use, but it’s not
hard because we did that, but it’s because the customer wants to fill in 400 fields”. Therefore, a specific
ESG aspect might be linked to the usability of the software as well as many different data points that
need to be added to ESG software tools.

The two software that did score high for usability were relatively mature. For one of the software, the
ESG solution is only added as an add-on. Consequently, users were already familiar with the software,
leading to a higher usability score, as explained by the implementer of Software 1. “… as I said, we use
customers who are already ‘Software 1’ customers, so they already use the technology and it’s just the
same interface. It’s the same logic. Creating a report is the same thing as they do today for the modules,
so it’s very easy.” Usability of the other software was scored as high due to its maturity resulting in an
easy-to-use and intuitive software, as explained by the second implementer of Software 2. “… when we
say mature, one of the reasons is how fault programme it is, how easy it is to use, how much-varied
functionality it gives, how much we can tweak the existing structure to the advantage of any particular
use case, and it normally takes bots in most of if not all of them in that sense, yeah.”.

This analysis will also reflect robustness scores to examine if there was a potential relation between
robustness and usability, as it is part of future proof as well. A medium score for robustness also resulted
in a medium score for usability, but high robustness only resulted in high usability in two out of five
cases (see Figure 15). One of the causes of this was that due to robustness problems, the performance
of the software was lacking, which impacted the whole user experience. The implementer from
Software 6 explained, “Or there should be functional and technical consultants which, when we are
implementing a system, will need to kind of set boundaries, OK. That if you go beyond that, you’re
impacting the usability and performance of a system to a point where it might not be liked by the end
users. So, they need to probably define the boundaries”.

The other software that scored medium for robustness reflects how usability scores are fairly lower.
This was explained in the interview as an interplay between high customisation, which will lead to a
more complex software to use and also results in robustness problems as the performance of the
software is not working as it is intended to work. According to the implementer from Software 5, this

Figure 14 Overview of the relationship between flexibility,

robustness and usability
Figure 15 Overview of the relationship between

future proof and usability

45

has to do with the fact that “the clients customise it heavily, and then it makes it more complex as well.”
And later on, explains that less customisation is better for performance.

Hence, based on the results from this thesis, the second proposition is not supported. No software
scored low for either flexibility or future proof and therefore, this relation could not be explored.
Furthermore, medium flexibility resulted in one instance of medium usability, but this was also the only
case with a medium flexibility score and a present usability score. Notably, software that scored high for
flexibility mainly received medium usability scores and that none of the software with medium future
proof or flexibility scores received a high usability rating. This might indicate that there is a possible
trade-off between high flexibility, which can result in lower usability scores.

46

5 DISCUSSION & CONCLUSION
This chapter discusses the results of the study and provides possible explanations why both propositions
were not supported. Additionally, the limitations of this study with accompanying recommendations for
future research are discussed, followed by contributions of this study to the literature. At the end of this
chapter, the conclusion is provided, which answers the posed research question and eventually, the
managerial implications of this study are provided.

5.1 Discussion

5.1.1 Future proof
Due to changing regulations for organisations and evolving business needs to become more sustainable,
organisations are shifting to software tools to report on their ESG efforts. ESG software needs to be
future proof to cope with these changing regulations and business needs (Said, et al., 2015; Helbig, et
al., 2021; Pee, et al., 2021). Previous literature did not cover to what extent ESG software tools are
future proof and how this can be measured. Therefore, this thesis aimed to study to what extent ESG
software tools are future proof and which factors relate to this. By operationalising future proof in the
concept’s flexibility and robustness in the context of ESG reporting software, the concept of future proof
has been made measurable. Even though both propositions were not supported, various results
emerged relating to the future proof factors and additional insights that might relate to these future
proof ratings.

First of all, it is interesting to note that all participating software tools scored either medium or high for
the concept of future proof, and no software received a low score. This means that the overall score for
future proof was relatively high. A possible explanation for this is that all software tools included in this
study offer renowned ESG reporting solutions, which have been implemented in many larger
organisations and were preselected by an external research platform. So, even though the proposed
model to measure future proof seemed to be successful, the sampling approach might have had an
impact on the eventual future proof outcomes.

The specific context in which this study has been performed might also have influenced the eventual
future proof scores of these software tools. ESG is a fairly data-driven problem, and data is coming from
a vast number of places. In addition, it was mentioned how software tools are still figuring out how to
perfectly design their tools for ESG data. This also relates to the findings of a study that suggested that
ESG data and reporting are not as mature as financial reporting (Littan, 2019).

5.1.2 Software design features
It seemed that three main approaches on how to tackle ESG data complexity were formed. First, one
group of software tools approached more of a generalist approach allowing end-users to modify most
aspects of the software. Second, software tools that were specifically designed emerged, which, for a
large part, allowed modification of the software. The last group are very specific niche software which
focuses on detailed calculations. A different level of flexibility was perceived for more niche-focused
software that aimed to tackle the data collection of ESG. The two software tools with a more niche focus
towards ESG scored lower for flexibility, as they aimed to offer software made for all users, including
complex calculations and detailed sustainability metrics.

47

5.1.2.1 Future proof and architecture
Previous literature studies suggested that architecture relates to future proof information systems
(Bass, et al., 2012; Furrer, 2019). The specific architecture styles of serverless, microservice and service-
oriented architecture were considered to relate to robust and flexible software (Newman, 2015;
Balalaie, et al., 2016; Auer, et al., 2021; Hustad & Olsen, 2021; Slamaa, et al., 2021), whereas a
monolithic architecture was considered to be less related to flexible and robust software (Götz, et al.,
2018). Hence the following proposition was formed: Serverless, Microservice, and Service-oriented
architecture styles will likely relate to future proof software systems, whereas monolithic architecture
will likely not relate to future proof software systems.

This proposition was not supported by the findings of this study, as serverless, microservice or service-
oriented architectures did not necessarily relate to future proof software tools. These three
architectures were related to software tools with medium and high outcomes for future proof.
Furthermore, it was expected that a monolithic architecture would likely not relate to future proof
software. The software that included a monolithic architecture scored medium for future proof.
However, the solution used a combination of architectures, making it unclear to distinguish the
influence of the monolithic architecture. Therefore, no clear patterns emerged between future proof
software and specific architecture styles. These findings do not align with previous literature that did
indicate that these architectural styles led to more flexible and robust or less flexible and robust
software systems. This can possibly be explained by the theory that was used. Most literature used was
largely based on general enterprise software (Newman, 2015; Balalaie, et al., 2016; Götz, et al., 2018;
Auer, et al., 2021; Hustad & Olsen, 2021; Slamaa, et al., 2021) and has not necessarily been specified
towards ESG reporting software. This thesis specifically focused on ESG reporting solutions. Two
possible explanations for the difference between the literature and the findings in this study might
relate to the selected quality sub-characteristics, and other design factors that influence the degree to
which ESG reporting software tools are future proof.

According to findings from past literature, specific quality characteristics were identified for
sustainability software, and in this study, these were linked to the various architecture styles. Eventually,
the quality sub-characteristics analysability, installability, modularity, interoperability, replaceability and
reusability were considered as these seemed to relate to the considered architecture styles. As good as
all software covered all the quality sub-characteristics that were selected for this study. This finding was
expected as every software tool either had a cloud microservice or service-oriented architecture in
combination with another architecture type. Therefore, these findings align with existing literature that
highlighted how these specific quality characteristics applied to microservice and service-oriented
architecture styles (Fink & Neumann, 2009; Lenhard, et al., 2013; Newman, 2015; Balalaie, et al., 2016;
Haoues, et al., 2017; Auer, et al., 2021; Slamaa, et al., 2021). Furrer (2019) identified that quality
characteristics are essential for future proof software. These quality characteristics were used as an
additional factor to form the first proposition and to determine differences in quality for the various
architecture types. It also seemed that quality characteristics do not necessarily relate to the extent to
which an ESG reporting software tool is future proof, as software that included all quality sub-
characteristics also received medium future proof scores.

Thus, it seems that architecture style and quality sub-characteristics do not necessarily relate to the
extent to which an ESG software tool is future proof. Even though the proposition was not supported,
the findings did suggest a variation between the future proof scores for the participating ESG software
tools and provided insights into other factors that might possibly explain these differences. The cloud
service methods, coding methods, and offering were related concepts to the architecture that, in these
nine cases, might be related to the robustness and flexibility of this software.

48

5.1.2.2 Additional features
When focusing on cloud service methods, the findings suggested that software offered as a platform as
a service (PaaS) is possibly related to high future proof scores. The increased speed at which applications
can be developed with PaaS and the benefit of having all ESG-related data in one platform might result
in a higher future proof rating. Especially in the context of ESG, data handling is an important aspect,
and by hosting multiple business applications on one platform, ESG-related data is already available on
the platform and can be linked more easily for reporting purposes. These findings align with other
literature suggesting how PaaS leads to scalable and robust enterprise software (Braubach, et al., 2011).
No relationship has been observed for software as a service (SaaS).

Moreover, in this study, it was indicated that a low code, no code method possibly positively relates to
the flexibility of ESG software. The four cases that included low code, no code method all appeared to
score high for flexibility. Low code, no code methods improve the speed by which changes are made
due to limited coding and allows users to control more software aspects, which might relate to improved
flexibility for this software. These findings are also in line with a study performed by Rafi et al. (2022),
which argues that low code can speed up software development to meet customer needs. De Vries &
Stam (2019) also argue that low code, no code can contribute to more flexible and adaptable software.
Despite the small sample size, the findings suggest that flexibility can be increased through low code,
no code software. These observations align with other scientific research that acknowledges the
influence of low code, no code software on the flexibility of ESG reporting software and further
strengthens the existing literature on this matter.

Related to the offering, the study also found that both off-the-shelf and custom-developed software
consistently received high flexibility ratings and off-the-shelf high robustness scores. However, the
software, which only offered an off-the-shelf ESG solution, also scored high for flexibility and software
tools that allowed modification or customisation for robustness. This suggests that the presence of a
modifiable off-the-shelf or custom-development offering may relate to high flexibility, but the absence
of modifiable off-the-shelf or custom-developed software does not necessarily lead to inflexible
software. In terms of off-the-shelf, the presence of an off-the-shelf offering may positively relate to high
robustness, but the absence does not necessarily lead to low robustness. These findings are also in line
with literature that highlighted how organisations choose custom-developed or modifiable off-the-shelf
software for the flexibility, adaptability and configurability of the two options (Mousavidin & Silva, 2017;
Shahzad, et al., 2017; Singh & Pekkola, 2021). Other literature highlights the robustness and reliability
of off-the-shelf software as these software tools are tested and pre-made (Hutchinson, et al., 2003;
Spurrier & Topi, 2017).

5.1.3 Usability
Besides architecture, usability has been identified in other studies as an important quality characteristic
for ESG reporting software (Saher, et al., 2020). Most software scored medium for usability, and only
two software scored high for usability. None of the tools received a low score for usability. Again, this
could relate to the fact that most software tools are relatively renowned and would not be used by as
many organisations if this aspect was lacking. However, it is interesting to note that exclusively two out
of nine software tools scored high for usability.

A possible relation between flexibility and usability has been identified in the literature. Previous
literature mentioned how inflexible software leads to usability problems and affects the user’s
experience with the software tool (Mahrin, et al., 2008; Li & Nielsen, 2019; Rakovic, et al., 2020). Hence
the following proposition was proposed: A low flexibility rating and, thus, a low future-proof rating will
likely relate to low usability.

49

This proposition was not supported as none of the participating software vendors scored low for
flexibility. Three interesting findings did emerge. First, two out of seven software tools that scored high
for flexibility and two out of five that scored high for future proof also scored high for usability. However,
this did not indicate that all highly flexible tools related to high usability scores. Second, software that
scored high on future proof and flexibility in most cases received medium usability scores. Lastly, one
software that scored medium for flexibility also scored medium for usability, but as this was only one
case, no strong assumption can be made.

The first finding could suggest that high flexibility and high future proof ratings could result in high
usability. This finding aligns with existing literature that highlights how highly flexible software increases
the user-friendliness of software systems (Palanisamy, 2012; Li & Nielsen, 2019). In addition,
interviewees added how highly flexible software tools, in some cases, allow users to modify their users’
interfaces and adjust components to suit the organisation’s business processes. In this way, a software
tool would align with an organisation’s internal business processes, which eases the use of this software.

The second finding highlighted another possible impact of flexibility on usability. High flexibility scores
are related in multiple instances to medium usability scores. This finding would align with flexibility
challenges that were reported in existing studies. These studies suggested a trade-off between flexibility
and usability. Meaning that highly flexible software tools are likely to be more complex, which could
lead to lower usability ratings (Lidwell, et al., 2010). High complexity in software is perceived by users
as difficult to learn and understand. In this study, five out of seven software that scored high for
flexibility scored medium for usability. This might indicate that highly flexible ESG reporting software
scored lower for usability. Interviewees also identified how the increasing complexity of the software
increased with high flexibility, and this eventually impacted the user’s experience.

Another explanation for possible differences in the data and a possible reason why only two software
scored high for usability could be explained by the specific ESG context. ESG is fairly data-driven, and a
fast amount of data fields need to be added coming from different data sources and other systems. This
further influences the experience of eventual users of these tools. It has been noted by interviewees
how an extensive amount of data fields leads to more complex software. In the case of ESG reporting,
such as the CSRD, end-users will need to report on at least 1000 data points increasing complexity. Thus,
ESG software and the amount of data that needs to be handled can possibly lead to higher complexity
of software tools and lower usability ratings.

While the proposition suggesting a relationship between flexibility, future proof and usability ratings
was not supported in this study, several interesting findings and potential explanations for the
differences in results emerged.

5.2 Limitations and future research
Even though valuable insights can be derived from this thesis, there are various limitations that should
be considered and accompanying future research topics are discussed.

The research design of this study was primarily a qualitative design, and therefore, it was not expected
that a large amount of ESG software cases would participate. However, the specific sampling of this
study might have led to the low variation in future proof scores. The participating ESG software tools
were preselected and mostly renowned software with a large customer base. None of the software
received a low score for either future proof or usability. Therefore, these cases might not completely
represent the entire ESG reporting software tool market. Future research could include a larger sample
size, including renowned and less renowned software tools, to ensure a proper representation of the
full market. A consequence of this could relate to complexity in generalisation, as a larger heterogenous
variation could lead to even more conditions that influence the eventual future proof or usability ratings.

50

Furthermore, it can be questioned if software tools that score low on future proof would still be present
as they would likely be overruled by other software tools.

Secondly, the study is for one part based on interviews. This introduces the possibility of biased or
incomplete information, as the participants might provide favourable or selective information about
their software solutions. To avoid this, several data sources were used to provide information about the
software solutions, including an external research platform and the researcher's judgement. However,
not all cases included a software vendor, implementer or external research. As there was quite some
consistency between the various sources used, it is not expected that interviews with these additional
vendors and implementers would impact the eventual outcomes.

Thirdly, not all interviewees could answer all questions due to knowledge limitations. Certain vendors
or implementers did not implement a new regulation yet or did not experience a lot of bugs relating to
a change in the software. Thus, certain software tools only covered a part of the structured interview
questions, leading to a difference in the scope covered for each software tool. An average of the scores
that could be given was taken, but fewer subjects were included than for other cases. The
argumentation behind the scores was considered even more valuable for these specific cases.

Finally, although the factors were based on literature, some external factors were mentioned during the
interviews that related to flexibility, robustness and usability of the software. In certain cases, a pattern
emerged for these factors and in other cases, the interviewees referred to these factors, but no pattern
was visible in the current data. Future research could focus on a configurational approach to see if a
combination of these factors would lead to specific findings relating to flexibility, robustness or usability.
In this thesis, all factors were considered separately and at first glance, there did not seem to be one
specific combination of factors that led to high or medium scores. A larger number of cases in
combination with a configurational approach could examine if there would be a certain configuration
that does result in high or medium scores.

Various suggestions for future research will be provided relating to the three factors that did seem to
possibly relate to either future proof in general, flexibility or robustness. First, in the case of the various
cloud service methods, it seemed that PaaS related to high future proof ESG software tools in this study.
As only two cases were included in this study that used a PaaS cloud service, it would be interesting for
future research to explore if these findings relate to more ESG software tools that use a PaaS cloud
service. Second, software that used low code, no code as a coding method scored high for flexibility in
all four cases. It would be interesting to see if this would relate to a study with a larger number of cases.
Eventually, the offering of the software possibly related to flexibility, modifiable and custom-developed
software scored higher for flexibility. The offering also seemed to be related to robustness as off-the-
shelf software related to higher robustness scores. Future research could, with the use of a quantitative
study, examine if there are significant relations between offering, flexibility and robustness.

Other factors that did not show a clear pattern in this study were the heritage of the ESG software, the
cloud deployment model, the tenancy of the software and the maturity of the software in terms of the
time it had been on the market. Interviewees suggested that there were possible influences of these
factors on either flexibility or robustness. Future research could further examine with a configurational
approach whether there are configurations and the interplay among these factors that might affect
flexibility or robustness. A configurational approach could thus help analyse how the combination of
various factors influences the desired extent to which software tools are future proof.

5.3 Contribution to literature
The study contributes to the literature on ESG reporting software by exploring the concept of future
proof in the specific context of ESG reporting software. Previous literature emphasised the importance

51

of future-proof information systems, but this had not been studied in the specific ESG context. This
study fills that gap by focusing on the extent to which current ESG reporting software tools are future
proof and which factors relate to this.

Previous literature highlighted how architecture as a design feature is an important aspect that might
influence the extent to which an information system is future proof. The findings showed a difference
between previous assumptions regarding the relationship between architecture styles and future-proof
software. The study did not find clear patterns or support for the proposition that specific architecture
styles directly relate to future-proof software. The findings indicate that more design features might
relate to future proof ESG reporting software. This study highlights which factors could contribute to a
more flexible or robust software and that architecture on its own will not reach this for ESG reporting
software. Given that this research area was previously underexplored, the results of this thesis can
potentially contribute to future research by enhancing our understanding of the conditions in which
ESG reporting software can be flexible and robust and thus future proof.

Besides the future proof indication in relation to the design or architecture of the software, usability
was considered to be an important factor as well. Previous literature discussed various relations
between usability and flexibility. On the one hand, it was mentioned how low flexibility would relate to
low usability and, on the other hand, how highly flexible software might relate to lower usability due to
the complexity of the software. The findings seem to support the latter, as most software with high
flexibility scored medium in terms of usability. It must be noted that this was not the case for all software
solutions, as some scored high for both flexibility and usability, indicating that even though there might
be a trade-off, this does not relate to all software solutions. In addition, the complexity of ESG data
collection adds another component that could influence the eventual usability of the software tools.
Therefore, the contributions of this study might indicate that the relation between flexibility and
usability is more complex than what was initially expected, especially in the context of ESG reporting
software.

The study's findings contribute to the existing literature by uncovering the future proof degree within
the context of ESG reporting software. This highlights the need for further research to examine the
differences between general enterprise software and ESG-specific software, as well as the interplay
between design features, usability, and future-proof ratings. Overall, the study enhances the
understanding of possible factors that relate to future proof ESG reporting software, which opens
avenues for future research in this specific domain.

5.4 Conclusion
This study aimed to understand how various software architectures and system quality characteristics
relate to the flexibility and robustness of ESG reporting systems. A comparative case study analysis was
used to compare the various software and identify patterns in the data. Nine ESG software solutions
were included in the thesis. For each case, a combination of desk research and interviews was used. In
total, five different desk research approaches have been used, and fifteen interviews have been
conducted to answer the following research question:

How do system architecture and usability relate to ESG reporting software system’s ability to be future
proof?

This study’s findings suggest that architecture and the usability of software are not necessarily related
to the extent to which a software system is future proof.

It seemed that architecture on its own does not necessarily relate to future proof scores. Especially since
architecture styles were expected to relate to highly flexible and robust software tools, and thus future

52

proof software tools did not necessarily relate to high future proof ESG reporting software. Various
other factors were identified that could possibly relate to higher future proof ratings, such as the cloud
service, coding method and offering of the software. To start with, the specific cloud service PaaS was
considered to possibly relate to future proof software as it allows fast modification of applications on
the platform. Second, software including low code, no code methods seemed to enhance flexibility for
all software tools that included this coding method. The same accounted for modifiable off-the-shelf
and custom-developed software. These offering types possibly had a positive influence on the flexibility
of the software, whereas the offering type off-the-shelf is likely related to higher robustness.
Furthermore, it was observed that more specified ESG software scored a lower flexibility rating due to
the extensiveness and lack of customisation of these solutions.

Relating to usability, the findings did suggest that there might be a possible trade-off between flexibility
and usability. Most software tools that received high flexibility scores received medium usability scores
due to the increased complexity of the software. In addition, high future proof scores were also related
to high usability in other instances. Therefore, it might be possible that future proof and usability are
related in two ways. The specific ESG context seemed to also have an influence on the complexity of the
software tools due to the complexity of data collection and eventually impacted the usability of the
system.

Thus, the findings suggest that future proof software is not solely related to architecture or usability,
but many more factors influence the eventual extent to which ESG reporting software tools are future
proof.

5.5 Managerial implications
The findings of this study suggest practical implications for software vendors, system implementers and
end-users. Multiple design factors seem to relate to the extent to which an ESG software tool is future
proof, and therefore there is not a single blueprint for the most preferred software design. However,
some factors influenced the future proof ratings and should be considered.

To start with the implications for vendors. The research highlighted possible implications for
improvements of the current designs of ESG reporting software. In terms of the concept of future proof,
it seemed that the specific cloud service type PaaS related to highly future proof software. In addition,
the high flexibility of a software tool related to custom-developed or modifiable software and to
software that offered low code, no code coding methods. In terms of robustness, high robustness was
related to off-the-shelf software. Some suggestions that were provided relating to robustness issues
included increased testing of software, service locations in every content to continuously work on bugs
and setting boundaries in the number of modifications that users can make. These are some
characteristics that vendors can take into consideration when designing for future proof ESG software
tools. It must be mentioned that the absence of these factors did not necessarily lead to lower flexibility
or future proof ratings. The usability of the software can be compromised in highly customisable and
complex software. Some suggestions that have been provided to improve usability include increased
training sessions for users and increased participation of users as software vendors have limited
business knowledge.

Besides vendors, there are also various implications for implementers. The specific characteristics that
possibly enhance future proof ESG software can be taken into account by implementers when selecting
and comparing vendors for clients. Implementers usually act for their clients, and the first step for an
implementer would be to consider the end-user’s objectives. An implementer may opt for less future
proof, but more detailed ESG software if that matches the client’s objectives or a less future proof but
more complex software. An example of an implication for implementers could be a decision tree which

53

takes into account the various design features discussed in this study to eventually match an ESG
software tool to various clients.

End-users, in this sense, relate to the clients of implementers and organisations that need to report on
specific ESG principles. These organisations will likely be large-scale and subjected to mandatory
reporting. First of all, end-users can use the findings of this study on the extent to which the current
ESG software tools are future proof and factors that influence this when selecting a new software
vendor. In addition, end-users should consider that in cases of highly flexible software, a lot of
functionalities will need to be configured, and they will have to weigh up the extent to which they have
the in-house knowledge to make adjustments to a software solution. In cases of less technical
knowledge on a user’s end, it might be more interesting to hire a system implementer or opt for
software with low code, no code methods to adjust the software systems.

54

6 LITERATURE REFERENCES
Al-Debagy, O., & Martinek, P. (2018). A comparative review of microservices and monolithic

architectures. 2018 IEEE 18th International Symposium on Computational Intelligence and

Informatics (CINTI) (pp. 000149-000154). Budapest: IEEE.

Almagtome, A., Khaghaany, M., & Önce, S. (2020). Corporate governance quality, stakeholders'

pressure, and sustainable development: an integrated approach. International Journal of

Mathematical Engineering and Management Sciences, 5(6), 1077-1090.

Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D. (2021). From monolithic systems to microservices: An

assessment framework. Information and Software Technology, 137, 106600.

Bakarich, K. M., Castonguay, J. J., & O'Brien, P. E. (2020). The use of blockchains to enhance sustainability

reporting and assurance. Accounting Perspectives, 19(4), 389-412.

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microservices architecture enables devops:

migration to a cloud-native architecture. IEEE Software, 33(3), 42-52.

Barber, F., & Salido, M. A. (2015). Robustness, stability, recoverability, and reliability in constraint

satisfaction problems. Knowledge and Information Systems, 44(3), 719-734.

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice (3rd ed.). Boston: Addison-

Wesley.

Bauer, W., & Maurer, M. (2011). Future-proof interfaces: Systematic identification and analysis. 13th

International Dependency and Structure Modelling Conference, Dsm’11, (pp. 89-101).

Cambridge, Massachusetts.

Bhargava, H. K., & Gangwar, M. (2016). "Pay as you go" or" all you can eat"? pricing methods for

computing and information services. 49th Hawaii International Conference on System Sciences

(HICSS) (pp. 5239-5248). IEEE.

Braubach, L., Pokahr, A., & Jander, K. (2011). Jadexcloud-an infrastructure for enterprise cloud

applications. Multiagent System Technologies: 9th German Conference, MATES (pp. 3-15).

Berlin, Germany: Springer.

Bryman, A. (2012). The nature of qualitative research. In A. Bryman, Social research methods (4th ed.,

pp. 379-414). Oxford: Oxford University Press.

Calero, C., Bertoa, M. F., & Moraga, M. Á. (2013). A systematic literature review for software

sustainability measures. 2013 2nd international workshop on green and sustainable software

(GREENS) (pp. 46-53). San Francisco: IEEE.

Calero, C., Moraga, M. Á., Bertoa, M. F., & Duboc, L. (2014). Quality in use and software greenability.

Proceedings of CEUR Workshop (pp. 28-36). CEUR.

Carney, D., & Leng, F. (2000). What do you mean by COTS? Finally, a useful answer. IEEE software, 17(2),

83-86.

Cerny, T., Donahoo, M. J., & Trnka, M. (2018). Contextual understanding of microservice architecture:

current and future directions. ACM SIGAPP Applied Computing Review, 17(4), 29-45.

Chelawat, H., & Trivedi, I. V. (2016). The business value of ESG performance: the Indian context. Asian

journal of business ethics, 5(1), 195-210.

55

Chen, R. S., Sun, C. M., Helms, M. M., & Jih, W. J. (2009). Factors influencing information system

flexibility: an interpretive flexibility perspective. International Journal of Enterprise Information

Systems (IJEIS), 5(1), 32-43.

Chofreh, A. G., Goni, F. A., Klemeš, J. J., Malik, M. N., & Khan, H. H. (2020). Development of guidelines

for the implementation of sustainable enterprise resource planning systems. Journal of Cleaner

Production, 244, 118655.

Chofreh, A. G., Goni, F. A., Shaharoun, A. M., Ismail, S., & Klemeš, J. J. (2014). Sustainable enterprise

resource planning: imperatives and research directions. Journal of Cleaner Production, 71, 139-

147.

Commission of the European Communities. (2001). Promoting a European framework for corporate

social responsibilities. Brussels: COM.

Cruz, C. A., & Matos, F. (2023). ESG maturity: a software framework for the challenges of ESG data in

investment. Sustainability, 15(3), 2610.

De Vries, B., & Stam, D. (2019). Low-Code and the road to sustainable software. Compact, 2, 30-39.

Druzhaev, A. A., Isaev, D. V., & Ogurechnikov, E. V. (2019). Principles of managing development of EPM

systems. Бизнес-информатика, 13(2), 73-83.

Du, S., Bhattacharya, C. B., & Sen, S. (2010). Maximizing business returns to corporate social

responsibility (CSR): the role of CSR communication. International journal of management

reviews, 12(1), 8-19.

Dvořák, O., Pergl, R., & Kroha, P. (2017). Tackling the flexibility-usability trade-off in component-based

software development. Recent Advances in Information Systems and Technologies, 1(5), 861-

871.

Enghaug, M. M., & Hallan, R. L. (2022). The demand for specialised ESG reporting software in the

Norwegian ESG landscape (Bachelor's thesis). Trondheim: NTNU.

European Commission. (2021a). EU taxonomy, corporate sustainability reporting, sustainability

preferences and fiduciary duties: Directing finance towards the European Green Deal. Brussels:

European Commission.

European Commission. (2021b). Proposal for a directive of the European Parliament and of the council

amending Directive 2013/34/EU, Directive 2004/109/EC, Directive 2006/43/EC and Regulation

(EU) No 537/2014, as regards corporate sustainability reporting. Brussels: European Comission.

Opgeroepen op December 5, 2022, van https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:52021PC0189

Fernandez-Feijoo, B., Romero, S., & Ruiz, S. (2014). Effect of stakeholders’ pressure on transparency of

sustainability reports within the GRI framework. Journal of business ethics, 122(1), 53-63.

Fink, L., & Neumann, S. (2009). Exploring the perceived business value of the flexibility enabled by

information technology infrastructure. Information & Management, 46(2), 90-99.

Fortuna, F., Testarmata, S., Sergiacomi, S., & Ciaburri, M. (2020). Mandatory disclosure of non-financial

information: a structured literature review. Accounting, Accountability and Society: Trends and

Perspectives in Reporting, Management and Governance for Sustainability, 95-128.

Furrer, F. J. (2019). Future-proof software systems: A sustainable evolution strategy. Cham: Springer.

56

Garg, S. K., Versteeg, S., & Buyya, R. (2011). Smicloud: a framework for comparing and ranking cloud

services. 2011 Fourth IEEE International Conference on Utility and Cloud Computing (pp. 210-

218). Melbourne: IEEE.

Gebauer, J., & Schober, F. (2006). Information system flexibility and the cost efficiency of business

processes. Journal of the association for information systems, 7(3), 8.

Gillan, S. L., Koch, A., & Starks, L. T. (2021). Firms and social responsibility: a review of ESG and CSR

research in corporate finance. Journal of Corporate Finance, 66, 101889.

Götz, B., Schel, D., Bauer, D., Henkel, C., Einberger, P., & Bauernhansl, T. (2018). Challenges of

production microservices. Procedia CIRP, 67, 67-172.

Green, P., Robb, A., & Rohde, F. H. (2014). A model for assessing information systems success and its

application to e-logistics tracking systems. Pacific Asia Journal of the Association for Information

Systems, 6(4), 3.

Haoues, M., Sellami, A., Ben-Abdallah, H., & Cheikhi, L. (2017). A guideline for software architecture

selection based on ISO 25010 quality related characteristics. International Journal of System

Assurance Engineering and Management, 8(2), 886-909.

Hasselbring, W., & Steinacker, G. (2017). Microservice architectures for scalability, agility and reliability

in e-commerce. Proceedings International Conference on Software Architecture Workshops

(ICSAW) (pp. 243-246). Gothenburg: IEEE.

Helbig, R., von Höveling, S., Solsbach, A., & Marx Gómez, J. (2021). Strategic analysis of providing

corporate sustainability open data. Intelligent Systems in Accounting, Finance and

Management, 28(3), 195-214.

Hilpert, H., Kranz, J., & Schumann, M. (2014). An Information system design theory for green information

systems for sustainability reporting-integrating theory with evidence from multiple case studies.

Proceedings of the European Conference on Information Systems (ECIS) 2014. Tel Aviv:

Association for Information Systems.

Hoang, G., Molla, A., & Poon, P. L. (2016). How do environmental enterprise systems contribute to

substainability value? A practitioner-oriented framework. Wollongong, NSW: Australasian

Conference on Information Systems.

Hoang, G., Molla, A., & Poon, P. L. (2017). An exploratory study into the use and value of environmental

enterprise systems. Australasian Conference on Information Systems (p. 68). Hobart: ACIS.

Hoang, G., Molla, A., & Poon, P. L. (2019). Factors influencing the adoption of environmental enterprise

systems. PACIS 2019 Proceedings, (p. 196).

Hustad, E., & Olsen, D. H. (2021). Creating a sustainable digital infrastructure: the role of service-

oriented architecture. Procedia Computer Science, 181, 597-604.

Hutchinson, J. E., Kotonya, G., & Sawyer, P. (2003). Understanding the impact of change in COTS-based

systems. Software Engineering Research and Practice, 752-760.

IDC. (2023). International Data Corporation (IDC). Opgeroepen op January 6, 2023, van IDC:

https://www.idc.com/about

ISO. (2011). ISO/IEC 25010:2011 Systems and software engineering — Systems and software Quality

Requirements and Evaluation (SQuaRE) — System and software quality models. International

Organization for Standardization.

57

ISO/ IEC / IEEE. (2022). ISO/IEC/IEEE 42010:2022 Software, systems and enterprise — Architecture

description. ISO. Opgeroepen op January 6, 2023, van

https://www.iso.org/standard/74393.html

Jacome, L., Byrd, T. A., & Byrd, L. W. (2011). An examination of information systems flexibility.

International Journal of Information Processing and Management, 2(2), 69-77.

Jamous, N., Alwafaie, R., & Dahma, M. A. (2012). Corporate environmental management information

systems (CEMIS)-sustainability reporting tools for SMEs. EnviroInfo, 657-664.

Jiménez-Ramírez, A., Weber, B., Barba, I., & Del Valle, C. (2015). Generating optimized configurable

business process models in scenarios subject to uncertainty. Information and Software

Technology, 57, 571-594.

Kavis, M. J. (2014). Cloud service models. In Architecting the cloud (pp. 13-22). Hoboken: John Wiley &

Sons.

Knoll, K., & Jarvenpaa, S. L. (1994). Information technology alignment or “fit” in highly turbulent

environments: the concept of flexibility. Proceedings of the 1994 computer personnel research

conference on Reinventing IS: managing information in changing organizations (pp. 1-14).

Virginia: SIGCPR'94.

Koçak, S. A., Alptekin, G. I., & Bener, A. (2014). Evaluation of software product quality attributes and

environmental attributes using ANP decision framework. Proceedings of CEUR Workshop (pp.

37-44). CEUR.

Koziolek, H. (2011). Sustainability evaluation of software architectures: a systematic review. Proceedings

of the joint ACM SIGSOFT conference--QoSA and ACM SIGSOFT symposium--ISARCS on Quality

of software architectures--QoSA and architecting critical systems--ISARCS (pp. 3-12). Boulder:

QoSA-ISARCS.

Lakhai, V., & Bachynskyy, R. (2021). Investigation of serverless architecture. Advances in Cyber-Physical

Systems, 6(2), 134-139.

Lenhard, J., Harrer, S., & Wirtz, G. (2013). Measuring the installability of service orchestrations using the

square method. 2013 IEEE 6th International Conference on Service-Oriented Computing and

Applications (pp. 118-125). Koloa: IEEE.

Li, M., & Nielsen, P. (2019). Making usable generic software. A matter of global or local design? Tenth

Scandinavian Conference on Information Systems (SCIS2019). Nokia, Finland.

Lidwell, W., Holden, K., & Butler, J. (2010). Universal principles of design, revised and updated: 125 ways

to enhance usability, influence perception, increase appeal, make better design decisions, and

teach through design. Rockport Pub.

Littan, S. (2019). The COSO internal control framework and sustainability reporting. The CPA Journal,

89(7), 22-26.

Loeser, F., Recker, J., Brocke, J. V., Molla, A., & Zarnekow, R. (2017). How IT executives create

organizational benefits by translating environmental strategies into Green IS initiatives.

Information Systems Journal, 27(4), 503-553.

Losavio, F., Chirinos, L., Lévy, N., & Ramdane-Cherif, A. (2003). Quality characteristics for software.

Journal of Object Technology, 2(2), 133-150.

58

Mahinda, E., & Whitworth, B. (2004). Evaluating flexibility and reliability in emergency response

information systems. Proceedings ISCRAM2004, 93, 93-98.

Mahrin, M. N., Carrington, D., & Strooper, P. (2008). Investigating factors affecting the usability of

software process descriptions. Making Globally Distributed Software Development a Success

Story: International Conference on Software Process (pp. 222-233). Leipzig, Germany: Springer.

Martinsons, M., Davison, R., & Tse, D. (1999). The balanced scorecard: a foundation for the strategic.

Decision Support Systems, 25, 71–88.

McEwan, M., Shi, Y., & Van Toorn, C. (2021). Business analytics (BA)-powered transformation for

environmental sustainability in organisations: A dynamic capabilities perspective. ACIS 2021

Proceedings (p. 88). Sydney: ACIS.

Mietzner, R., Unger, T., Titze, R., & Leymann, F. (2009). Combining different multi-tenancy patterns in

service-oriented applications. IEEE International Enterprise Distributed Object Computing

Conference (pp. 131-140). IEEE.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Designing matrix and network displays. In

Qualitative data analysis - A method sourcebook (3rd ed., pp. 107-120). Sage Publications.

Mion, G., & Loza Adaui, C. R. (2019). Mandatory nonfinancial disclosure and its consequences on the

sustainability reporting quality of Italian and German companies. Sustainability, 11(7), 4612.

Mitropoulos, S., & Douligeris, C. (2011). The impact of new service oriented architectures technologies

in the new global market oriented enterprises. International Journal of Applied Systemic Studies,

4(1/2), 106-120.

Mousavidin, E., & Silva, L. (2017). Theorizing the configuration of modifiable off-the-shelf software.

Information Technology & People, 30(4), 887-909.

Muntes Mulero, V., Matthews, P., Omerovic, A., & Gunka, A. (2013). Eliciting risk, quality and cost

aspects in multi-cloud environments. Proceedings Fourth International Conference on Cloud

Computing, Grids, and Virtualization (CLOUD COMPUTING 2013) (pp. 238-243). IARIA.

Newman, S. (2015). Microservice. In Building microservices (pp. 1-12). Sebastopol: O'Reilly Media, Inc.

O'Meara, W., & Lennon, R. G. (2020). Serverless computing security: Protecting application logic. 31st

Irish Signals and Systems Conference (ISSC) (pp. 1-5). IEEE.

Odun-Ayo, I., Ananya, M., Agono, F., & Goddy-Worlu, R. (2018). Cloud computing architecture: a critical

analysis. 18th international conference on computational science and applications (ICCSA) (pp.

1-7). Melbourne: IEEE.

Oh, S. H., La, H. J., & Kim, S. D. (2011). A reusability evaluation suite for cloud services. 2011 IEEE 8th

International Conference on e-Business Engineering (pp. 111-118). Beijing: IEEE.

Oudshoorn, I. (2004). Development of packaged software. Amsterdam: Vrije Universiteit Amsterdam.

Palanisamy, R. (2012). Building information systems flexibility in SAP–LAP framework: a case study

evidence from SME sector. Global Journal of Flexible Systems Management, 13, 57-74.

Palanisamy, R., & Boyle, T. (2010). A framework for managing enterprise systems flexibility. Journal of

E-Technology, 1(3), 131-139.

59

Pan, S. L., Carter, L., Tim, Y., & Sandeep, M. S. (2022). Digital sustainability, climate change, and

information systems solutions: Opportunities for future research. International Journal of

Information Management, 63, 102444.

Pan, Y., & Hu, N. (2014). Research on dependability of cloud computing systems. 10th International

Conference on Reliability, Maintainability and Safety (ICRMS) (pp. 435-439). IEEE.

Papazafeiropoulou, A., & Spanaki, K. (2016). Understanding governance, risk and compliance

information systems (GRC IS): The experts view. Information Systems Frontiers, 18(6), 1251-

1263.

Pee, L. G., Pan, S. L., Wang, J., & Wu, J. (2021). Designing for the future in the age of pandemics: a future-

ready design research (FRDR) process. European Journal of Information Systems, 30(2), 157-

175.

Ponce, F., Márquez, G., & Astudillo, H. (2019). Migrating from monolithic architecture to microservices:

a rapid review. 2019 38th International Conference of the Chilean Computer Science Society

(SCCC) (pp. 1-7). Concepcion: IEEE.

Poth, A., Schubert, N., & Riel, A. (2020). Sustainability efficiency challenges of modern it architectures–

a quality model for serverless energy footprint. Systems, Software and Services Process

Improvement: 27th European Conference, EuroSPI 2020, Proceedings 27 (pp. 289-301).

Düsseldorf: Springer International Publishing.

Racicot, L., Cloutier, N., Abt, J., & Petrillo, F. (2019). Quality aspects of serverless architecture: an

exploratory study on maintainability. Proceedings of the 14th International Conference on

Software Technologies. Volume 1: ICSOFT, pp. 60-70. Cham, Switzerland: Springer.

Rafi, S., Akbar, M. A., Sánchez-Gordón, M., & Colomo-Palacios, R. (2022). DevOps practitioners’

perceptions of the low-code trend. (pp. 301-306). Helsinki, Finland: ESEM'22.

Rajan, R. A. (2018). Serverless architecture - a revolution in cloud computing. 2018 Tenth International

Conference on Advanced Computing (ICoAC), (pp. 88-93). Chennai, India.

Rakovic, L., Duc, T. A., & Vukovic, V. (2020). Shadow it and ERP: multiple case study in German and

Serbian companies. JEEMS Journal of East European Management Studies, 25(4), 730-752.

Reichert, M., & Weber, B. (2012). Flexibility issues in process-aware information systems. In Enabling

flexibility in process-aware information systems (pp. 43-55). Berlin: Springer.

Roca, J. L. (2019). Software reliability: a must. Buenos Aires.

Saher, N., Baharom, F., & Romli, R. (2020). Identification of sustainability characteristics and sub-

characteristics as non-functional requirement for requirement change management in agile.

International journal of Scientific & Technology Research, 9(3), 5727-5733.

Said, I. B., Chaabane, M., Bouaziz, R., & Andonoff, E. (2015). Flexibility of collaborative processes using

versions and adaptation patterns. 2015 IEEE 9th International Conference on Research

Challenges (pp. 400-411). Information Science (RCIS).

Salama, M., Bahsoon, R., & Lago, P. (2019). Stability in software engineering: survey of the state-of-the-

art and research directions. IEEE Transactions on Software Engineering, 47(7), 1468-1510.

Seethamraju, R., & Frost, G. (2016). Information systems for sustainability reporting-a state of practice.

AMCIS 2016 Proceedings, (p. 1). San Diego.

60

Sewak, M., & Singh, S. (2018). Winning in the era of serverless computing and function as a service. (pp.

1-5). Pune: 2018 3rd International Conference for Convergence in Technology (12CT).

Shahzad, B., Abdullatif, A. M., Ikram, N., & Mashkoor, A. (2017). Build software or buy: a study on

developing large scale software. IEEE Access, 5, 24262-24274.

Singh, C., & Pekkola, S. (2021). Packaged enterprise system customization–a systematic literature

review. Proceedings of the 54th Hawaii International Conference on System Sciences, (pp. 6743-

6750).

Slamaa, A. A., El-Ghareeb, H. A., & Saleh, A. A. (2021). A roadmap for migration system-architecture

decision by neutrosophic-ANP and benchmark for enterprise resource planning systems. IEEE

Access, 9, 48583-48604.

Speicher, M. (2015). What is usability? A characterization based on ISO 9241-11 and ISO/IEC 25010.

arXiv preprint arXiv:1502.06792.

Spurrier, G., & Topi, H. (2017). When is agile appropriate for enterprise software development?

Proceedings of the 25th European Conference on Information Systems (ECIS) (pp. 2536-2545).

Guimarães, Portugal: AIS Electronic Library (AISeL).

Subramanyam, R., Ramasubbu, N., & Krishnan, M. S. (2012). In search of efficient flexibility: effects of

software component granularity on development effort, defects, and customization effort.

Information. Systems Research, 23(3), 787-803.

Taibi, D., Spillner, J., & Wawruch, K. (2020). Serverless computing-where are we now, and where are we

heading? IEEE software, 38(1), 25-31.

Thambusamy, R., & Salam, A. F. (2010). Corporate ecological responsiveness, environmental

ambidexterity and IT-enabled environmental sustainability strategy. Proceedings of the 31st

International Conference on Information Systems (ICIS). Saint Louis: Association for Information

Systems.

Thuan, N. H., Phuong, H. A., George, M., Nkhoma, M., & Antunes, P. (2020). Toward an ontology for

improving process flexibility. International Conference on Future Data and Security Engineering

(pp. 411-428). Cham: Springer.

Tsai, W., Bai, X., & Huang, Y. (2014). Software-as-a-service (SaaS): perspectives and challenges. Science

China Information Sciences, 57(5), 1-15.

Venters, C., Lau, L., Griffiths, M., Holmes, V., Ward, R., Jay, C., . . . Xu, J. (2014). The blind men and the

elephant: towards an empirical evaluation framework for software sustainability. Journal of

Open Research Software, 2(1).

Verdantix. (2022). Research portal. Opgeroepen op January 6, 2023, van Verdantix:

https://www.verdantix.com/research-portal

Verdantix. (2023, March 24). Tech Roadmap: EHS Technologies 2023. Opgeroepen op March 26, 2023,

van https://www.verdantix.com/report/environment-health-safety/tech-roadmap-ehs-

technologies-2023

Wang, X., Cao, F., & Ye, K. (2018). Mandatory corporate social responsibility (CSR) reporting and financial

reporting quality: Evidence from a quasi-natural experiment. Journal of Business Ethics,, 152(1),

253-274.

61

Wu, C., Buyya, R., & Ramamohanarao, K. (2019). Cloud pricing models: taxonomy, survey, and

interdisciplinary challenges. ACM Computing Surveys (CSUR), 52(6), 1-36.

Zhang, G., Liu, L., & Guo, H. (2021). Investigating the impact of cloud computing vendor on the adoption

of cloud computing. Mobile Information Systems, 2021, 1-18.

62

APPENDICES

Appendix A Data sources

Table 19 Overview of data sources for each component

Name Offering Heritage ESG Type
Pricing
model

Deployment
model

Architecture
Quality

characteristics
Tenancy

Cloud
service

methods

Coding
methods

Founded
ESG
Module
added

Software 1 Interview

External
research
platform,
vendor
website

Interview,
vendor
website,
webinar

Interview,
vendor
website

Interview
Interview,
community
platform, email

Interview

Interview,
external
research
platform

Interview,
Vendor
website

Interview,
YouTube

Vendor
Website,
YouTube

Interview,
Vendor
website

Software 2 Interview Interview

Interview,
vendor
website,
webinar

Interview,
vendor
website

Interview

Interview,
vendor website,
community
platform

Interview
Vendor
website,
webinar

Interview
Vendor
website

Vendor
website

Vendor
website

Software 3 Interview Interview

Interview,
vendor
website,
webinar

Interview,
vendor
website

Vendor
website

Vendor website,
YouTube

Interview
Vendor
website

Vendor
website

Vendor
website

Vendor
website

Vendor
website

Software 4 Interview Interview
Interview,
vendor
website

Interview,
vendor
website

Interview
Interview,
YouTube

Interview
Vendor
website

Vendor
website

Interview
Vendor
website

Vendor
Website,
Interview

Software 5 Interview
Interview,
vendor
website

Interview,
vendor
website

Interview,
vendor
website

Interview,
vendor
website

Interview Interview Interview Interview Interview
Vendor
website

Vendor
website

Software 6 Interview
Vendor
website

Interview,
vendor
website

Interview,
vendor
website

Vendor
website

Interview,
YouTube

Interview

Vendor
website,
external
research
platform

Vendor
website,
interview

Vendor
website

Vendor
website

Vendor
website

Software 7 Interview Interview
Interview,
vendor
website

Interview,
vendor
website

Interview Interview Interview

Vendor
website,
external
research
platform

Vendor
website

 Vendor
website

Vendor
website

Vendor
website

63

Name Offering Heritage ESG Type
Pricing
model

Deployment
model

Architecture
Quality

characteristics
Tenancy

Cloud
service

methods

Coding
methods

Founded
ESG
Module
added

Software 8 Interview Interview
Interview,
vendor
website

Interview,
vendor
website

Vendor
website,
webinar

Interview,
webinar,
YouTube

Interview
Vendor
website,
webinar

Interview
 Vendor
website

Interview Interview

Software 9 Interview Interview
Interview,
vendor
website

Interview,
vendor
website

Interview,
email

Interview, email Interview

Vendor
website,
external
research
platform

Interview
 Vendor
website

Interview,
Vendor
website

Interview,
Vendor
website

64

Appendix B Interview guide

In this study, we want to learn about future-proof ESG reporting software. The purpose of the study is
to learn about the influence of architecture styles on flexibility, robustness, and usability. The study is
conducted by Fieke Dhondt, a student in the MSc programme Sustainable Business and Innovation at
the Department of Sustainable Development, Utrecht University.

Table 20 Interview guide

Interview section Question/ topic

Introduction

Vendor

 Can you introduce yourself and the ESG reporting
software tool you are working for?

 What type of business information systems did
Software x originally start with?

o Business performance management
system

o Enterprise resource planning system
o Governance, risk and compliance system
o Environmental, health and safety system
o ESG system

 What is the type of pricing model that Software x
uses?

o Subscription base
o Consumption base
o Pay-as-you go

 How is the solution offered to users?
o Off-the-shelf
o Modifiable off-the-shelf
o Custom developed

 What is the architecture style of Software x?
o Monolithic
o Service-oriented
o Microservice
o Serverless

 Is the software offered as on-premises or on the
cloud?

 Quality sub-characteristics

Analysability: Is the software tool able to
automatically detect a bug or reason for failure?

65

Interview section Question/ topic
Installability: How easy is it to install the
software?

Modularity: How does the software tool support
a modular design approach?

Replaceability: How does the software tool
handle the replacement of its components or
modules?

Reusability: Have components or modules from
the software been reused by other solutions?

Interoperability: How is the system integrated
with other system?

Implementer

 Can you introduce yourself and the ESG reporting
software tool?

 How many engagements have you worked on
with the tool?

 Quality sub-characteristics

Analysability: Is the software tool able to
automatically detect a bug or reason for failure?

Installability: How easy is it to install the
software?

Modularity: How does the software tool support
a modular design approach?

Replaceability: How does the software tool
handle the replacement of its components or
modules?

Reusability: Have components or modules from
the software been reused by other solutions?

Interoperability: How is the system integrated
with other system?

Section 1: How does the software system
respond to change when new sustainability
regulations or business needs were presented.

 Can you explain how it works if a new
sustainability regulation, such as the CSRD, is

66

Interview section Question/ topic
introduced and how the software adapts to
include the framework?

 How would you rank the following statement:
When a new sustainability regulation is
launched, the system can adjust easily

 How long does it typically take to implement a
new sustainability regulation? *

1- > 8 weeks
2- 7-8 weeks
3- 4-6 weeks
4- 2-3 weeks
5- 1 week

 Can you explain how it works if a customer
demands a new functionality, how does the
software tool adapt to include the framework?

 How would you rank the following statement:
When a new user demand is recognised, the
system can adjust easily

 How long does it typically take to implement a
new functionality following a user demand? *

1- > 1 year
2- 10-12 months
3- 7-9 months
4- 4-6 months
5- 1-3 months

 Are new functionalities added for all users or also
separately for specific users?

1. all
5. separately

Section 2: Bugs occurring after a change in the
system relating to a new sustainability regulation
or a user demand.

 How would you rank the following statements:

 How confident are you after changing the tool
about the system's - Accuracy

67

Interview section Question/ topic

 How confident are you after changing the tool
about the system's - Reliability

 Did bugs ever occur after a new regulation
framework was added?

How would you rank the following statement:
Unexpected bugs often occur after a change in
the system - For a new regulation framework

 Did bugs ever occur when a new functionality for
a user was added?

 How would you rank the following statement:
Unexpected bugs often occur after a change in
the system - To streamline to the user's business
process

 Did it ever happen that the software went down
after a new functionality was added?

How would you rank the following statement:
The system rarely experiences downtime or
outages after a change is implemented

Section 3: Recovering from bugs.

 Relating to recovering from bugs, how would you
rank the following statement:

The system can recover from failure or outages -
Effective

 On estimate, how long does it typically take to
resolve system issues or bugs following a change
in the system?

1- > a day
2- 9-23 hours
3- 6-9 hours
4- 3-6 hours
5- 1-3 hours

Section 4: Usability of the system

– only for implementers

 Learning to operate the system went quickly

 Learning to operate the system is easy

68

Interview section Question/ topic

 The system is easy to use

 The system is unnecessarily complex

 The system is easy to navigate through

 The system is easy to access

 The system is easy to implement in a client's
organisation

Note: From section 1 onwards all scores range from 1 strongly disagree to 5 strongly agree unless
indicate differently

69

Appendix C Coding tree

Table 21 Coding tree

Codes

Architecture

 Cloud provider

 PaaS

 Apps

 Platform of platforms

 SaaS

 Data architecture

 Data columns

 Microservice

 Cloud

 On-prem

 Monolithic

 Overarching

 Cloud

 On-prem

 Serverless

 Service-oriented

 Cloud

 On-prem

 Tenancy

 Single tenant

Competition

Flexibility

 Adjusting functionality

 Instant adjustable

 Paid add-ons

 Software enhancement

 Adjusting reporting

 Calculations

 Configured

 Drag and drop

 Partnership

 Set up base

 Template based

 Business value

 Visibility

70

Codes

 Configurable

 Dev Ops

 In-house admin

 System implementer

 Workflow

 Customisation

 Complexity

 Custom codes

 Proper design

 Setting boundaries

 Ledger

 Low code, no code

 no code configuration

 Scalable

Need

 Auditable workflow

 Business value

 Collecting data

 Linking frameworks

 Measure data

Price

 Pricing type

 Consumption based

 Pay-as-you-go

 Subscription base

Quality characteristics

 Analysability

 Installability

 Web-based

 Modularity

 Replaceability

 Reusability

 Interoperability

 API

 Not connected

Regulations

 CSRD

 Custom frameworks

 Agnostic approach

 Evolving landscape

71

Codes

 GRI

 Metric Management

 Out of the box

 PCAF

 SASB

 TCFD

Robustness

 Bugs

 Business processes

 Configuration issue

 Custom code

 Complexity

 Highly customised

 Data bug

 Error messages

 Regulations

 Software issue

 Testing

 Outages

 Architecture related

 Downtime

 Quality Control

 Accuracy

 Reliability

 Recovering from bugs

 Cloned environments

 Refactoring codes

 Updating calculations

 Troubleshooting

 Service

 SLA

 Releases

 Compatibility with
customisation

 Security

 User modification

 Testing

 Test environment

 Feature flag

 Scope environment

72

Codes

Software type

 BPM

 Carbon accounting

 EHS

 ESG add-on

 Acquired software

 Merged

 GRC

 LCA

 Overarching platform

 Sustainability &
Compliance

System offering

 Custom development

 New application

 Modifiable off the shelf

 Off the shelf

 SKU

 Out-of-the-box solutions

 In-house capabilities

Usability

 Accessibility

 Adoption

 Cultural change

 API

 External provider

 Assistance

 Complexity

 Client requests

 Deployment

 Implementation

 Implementation model

 Intuitive

 Customising

 Easy to use

 Navigating through

 Learning

 Training

 Mobile app

 Offered languages

73

Codes

 Onboarding

 Used as intended

 UX UI

74

Appendix D Overview of results

Table 22 Overview of results

Name Heritage ESG Type Offering

Pricing model
Deployment

model
Architecture

Quality
characteristics

Tenancy
Cloud
service

methods

Coding
methods

Founded
ESG
Module

added

Flexibility Robustness Future proof Usability

Software
1

GRC
ESG
Reporting
Software

Modifiable
off-the-
shelf &
Custom
developed

Subscription
Cloud, On-
premises

SOA, MSA All

Multi-
tenant
&
Single-
tenant

PaaS,
SaaS

Low
code, no
code

2004 2021 High High High High

Software
2

ESG
ESG
Reporting
Software

Off-the-
shelf

Consumption
based

Cloud
MSA,
Serverless

All
Multi-
tenant

SaaS 2004 2004 High High High High

Software
3

EHS
ESG
Reporting
Software

Modifiable
off-the-
shelf

Subscription Cloud
MSA,
Serverless

All
Multi-
tenant

SaaS 2000 2017 High High High Medium

Software
4

BPM
ESG
Reporting
Software

Modifiable
off-the-
shelf

Pay-as-you-go
Cloud, On-
premises

SOA All
Multi-
tenant

SaaS
Low
code, no
code

2005 2022 High High High Medium

Software
5

GRC
ESG
Reporting
Software

Modifiable
off-the-
shelf

Subscription
Cloud, On-
premises

SOA All
Single-
tenant

PaaS
Low
code, no
code

2008 2021 High High High Medium

Software
6

GRC
ESG
Reporting
Software

Modifiable
off-the-
shelf

Subscription
Cloud, On-
premises

Monolithic,
SOA, MSA &
Serverless

All
Single-
tenant

SaaS
Low
code, no
code

1999 2021 High Medium Medium Medium

Software
7

GRC
ESG
Reporting
Software

Modifiable
off-the-
shelf &
Custom
developed

Subscription
&
Consumption-
based

Cloud, On-
premises

SOA NA

Multi-
tenant
&
Single-
tenant

SaaS 2004 2022 High Medium Medium Medium

75

Software
8

ESG
Carbon
Management
Software

Off-the-
shelf

Subscription Cloud
MSA,
Serverless

All
Multi-
tenant

SaaS 2020 2020 Medium High Medium Medium

Software
9

ESG

Product
Lifecycle
Assessment
Software

Off-the-
shelf

Subscription Cloud MSA All

Multi-
tenant
&

Single-
tenant

Becoming
SaaS

 2001 2001 Medium High Medium NA

Note: MSA = Microservice architecture, SOA = Service-oriented Architecture

76

	1 Introduction
	1.1 Scientific and societal relevance

	2 Theoretical background
	2.1 Business information systems
	2.2 Future ready and future proof
	2.2.1 Flexibility
	2.2.2 Robustness

	2.3 Software design features
	2.3.1 System architecture
	2.3.1.2 Usability

	3 Methodological framework
	3.1 Research design
	3.2 Sampling strategy
	3.3 Data collection
	3.4 Operationalisation
	3.4.1 Future proof
	3.4.1.1 Flexibility
	3.4.1.2 Robustness

	3.4.2 Usability
	3.4.3 Matrix table
	3.4.4 Software design features

	3.5 Data analysis
	3.5.1 Desk research
	3.5.2 Interviews
	3.5.2.1 Semi-structured part
	3.5.2.2 Structured part

	3.6 Research quality indicators
	3.6.1 Reliability and validity

	4 Results
	4.1 Profile description software cases
	Software 1 originally started as a GRC system but has expanded over the years to fairly all types of business information systems, including an ESG reporting solution. The software is priced according to subscription bases and is offered to users in t...
	Software 2
	Software 2 started as ESG reporting software. The software is priced according to a consumption-based model and is offered to users as an off-the-shelf software. A combination of a microservice and serverless architecture is used for the tool in combi...
	Software 3
	Software 3 was originally an EHS software that added an ESG reporting solution to its software. The software is priced according to a subscription-based model and is offered to users as either an off-the-shelf or modifiable off-the-shelf software. A c...
	Software 4
	Software 7
	Software 7 started as a GRC system and added an ESG reporting solution to their current GRC software. The software is priced according to subscription bases and is offered to users in three ways: off-the-shelf, modifiable off-the-shelf and can be cust...
	Software 8
	Software 8 is an ESG software with a main focus on carbon accounting. The software is priced according to subscription bases and is offered to users as a completely off-the-shelf product. The software uses a serverless architecture with a multi-tenant...
	Software 9

	4.2 Future proof
	4.3 Software design features
	4.3.1 Architecture
	4.3.1.1 Future proof and architecture

	4.3.2 Additional features
	Within this section, additional influences that potentially relate to the concepts of this study are considered, providing a comprehensive understanding of the research findings. These findings emerged both through consultation with industry experts a...
	4.3.2.1 Cloud service methods
	4.3.2.2 Coding methods
	4.3.2.3 Offering
	4.3.2.4 ESG type
	4.3.2.5 Additional insights
	4.3.2.6 Summary of results

	4.3.2 Usability

	5 Discussion & conclusion
	5.1 Discussion
	5.1.1 Future proof
	5.1.2 Software design features
	5.1.2.1 Future proof and architecture
	5.1.2.2 Additional features

	5.1.3 Usability

	5.2 Limitations and future research
	5.3 Contribution to literature
	5.4 Conclusion
	5.5 Managerial implications

	6 Literature References
	Appendices
	Appendix A Data sources
	Appendix B Interview guide
	Appendix C Coding tree
	Appendix D Overview of results

