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ViTs vs. CNNs for 3D Medical Image
Segmentation: Are Transformers All You Need?

P.X. Arregui Garcı́a
MSc Medical Imaging, Utrectht University

Abstract—The influence of Vision Transformers (ViTs) is
increasing in the field of medical image segmentation. In recent
years, several papers have presented ViT-based architectures that
outperform the previously state-of-the-art CNNs (such as nnU-
Net). An example of such is the Swin UNet Transformer (or
Swin UNETR), which, in combination with a self-supervised pre-
training scheme, has outperformed other CNN and ViT-based
architectures in multiple segmentation tasks. However, there are
certain design and configuration choices that may aid the ViT
to achieve this performance. In this paper, we perform an objec-
tive comparison between Swin UNETR and U-Net, comparing
both networks in an equal resource setting. We explore two
downscaling approaches to balance the parameter count of Swin
UNETR, making it closer to the U-Net in this aspect. We measure
the ViT’s performance loss due to downscaling, as well as the
gain obtained from using pre-trained weights for the encoder.
Additionally, we assess whether residual blocks aid the Swin
UNETR or U-Net to obtain superior performance. Our results
show that in the framework used in this study, both U-Net and
Swin UNETR show comparable results, with the CNN-based
network achieving a slightly superior (1%) DSC. The downscaled
ViT models show a decrease of 1.4% in DSC, while pre-training
improves the outcome of the original Swin UNETR by 1.6%.
Residual functionality proves to aid the pre-trained Swin UNETR
with an increase of 3.6% in DSC, while only improving U-Net’s
DSC by 0.8%. In the constrained resource setting of this study,
the U-Net proves to obtain similar performance to Swin UNETR,
while employing fewer GPU resources and improving inference
speed.

Index Terms—ViTs, CNNs, 3D U-Net, SwinUNETR, self-
supervised pretraining, model comparison

1. INTRODUCTION
Over the course of several years, convolutional neural net-

works (CNNs) have consistently emerged as the predominant
choice for medical image segmentation. In 2015, Ronnenberg
et al. [1] presented the U-Net architecture, a CNN used
to segment medical images. This architecture achieved high
performance, worked well with a limited amount of data,
and was computationally efficient. Since then, the U-Net has
dominated the field of medical image segmentation and has
been the object of multiple architectural modifications aiming
to boost its performance.

In 2021, Isensee et al. [2] presented the nnU-Net, a self-
configuring medical image segmentation algorithm that used
a standard U-Net as its architecture. In their work, the authors
showed that a simple and self-configured (referring to the
capacity of adapting its own configuration and parameters
automatically) U-Net was capable of achieving state-of-the-art

performance. Hence, all signs indicated that, as it happened
in general for computer vision, CNNs would perpetuate their
dominant role in the domain of medical image segmentation.

However, in 2020, Dosovitskiy et al. [3] presented a new
architecture for computer vision, i.e., the vision transformer
(ViT). This architecture was based on the Transformer pre-
sented by Vaswani et al. [4], which was adapted to solve
computer vision tasks by converting images into sequences
of patches. The main novelty behind this computer vision
architecture was that it no longer relied on convolutions
to extract features, but was mainly based on self-attention
mechanisms. The reason for using self-attention rather than
convolutions is that the first can better capture global features,
which aids when learning long-range dependencies in images.
Additionally, although transformers require larger amounts of
data, they excel when being pre-trained in a self-supervised
manner [5, 6], which further boosts their performance without
the burden of extra annotations. In this way, when pre-trained
on large-scale datasets, the ViT showed excellent performance
on image classification tasks.

Although the first ViTs were exclusively designed for image
classification, in 2021 Chen et al. presented the TransUNet [7],
a CNN-ViT-hybrid network that showed promising capabilities
for medical image segmentation. Subsequently, a multitude
of ViT-based segmentation networks have been introduced in
the field [8–13]. Among the various approaches that were
presented, the UNet TRansformer (UNETR) [10] demon-
strated state-of-the-art performance, surpassing the competing
networks (including nnU-Net) in the BTCV dataset [14].

Despite this, the UNETR has two limitations. First, it
only supports patches (or tokens) of a fixed scale, which
might be unsuitable for dealing with variable-scale features.
Secondly, the computational complexity of its self-attention
mechanism is quadratic to image size, which greatly affects
its efficiency when dealing with high-resolution images. To
deal with these shortcomings, Hatamizadeh et al. presented the
Swin UNet TRansformer (Swin UNETR) [15], an architecture
that used the novel Swin ViT [16] as its backbone. Unlike
conventional ViTs, Swin ViT’s computational complexity is
linear to image size, and it works with patches at multiple
scales. By employing this cutting-edge Swin ViT, and using
a self-supervised pre-training scheme on a large cohort of CT
scans [17], SwinUNETR surpassed the performance achieved
by its predecessor (UNETR) in the BTCV dataset.

In spite of the superior performance shown by Swin
UNETR, certain observations can be made concerning its
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configuration and design. Firstly, it is noteworthy that the
number of parameters in Swin UNETR is considerably greater
than its CNN-based counterparts, having three times as many
parameters as nnU-Net for the BTCV challenge. Secondly,
it is surprising that more than 80% of Swin UNETR’s total
parameters belong to its CNN-based decoder, which is consid-
erably larger than the decoder employed by a standard U-Net.
Consequently, Swin UNETR has a diminutive ViT encoder
and an extensive CNN decoder, which contradicts the notion
of the ViT encoder providing the network with an advantage
over CNNs. Thirdly, residual blocks have been added in the
skip connections, filtering the features that pass from encoder
to decoder, which is a design choice that sets this network
apart from both U-Net and UNETR. Finally, training Swin
UNETR as reported in [17] requires many more computational
resources than training a CNN like nnU-Net [2]. Thus, these
factors raise the question whether the greater performance of
Swin UNETR is genuinely a consequence of its Swin ViT
encoder’s superiority.

The purpose of this study is to perform an objective (equal
computational resources) comparison between a standard U-
Net and the novel Swin UNETR, to determine the comparative
advantage of Vision Transformers over Convolutional Neural
Networks in the context of medical image segmentation. Ad-
ditionally, we aim to compare these architectures in a similar
parameter number scenario, mainly focusing on reducing Swin
UNETR’s parameter count. Furthermore, we want to assess
the impact of downscaling on Swin UNETR’s performance,
as well as the effect of using pre-trained weights to initialize
its ViT encoder. Finally, we intend to understand the effect of
the decoder-related design choices that set Swin UNETR apart
from the U-Net. Thus, the main contributions of this work are:

1) We present a method for downscaling Swin UNETR,
which halves its parameter count, does not affect its ViT
encoder and enables the re-use of pre-trained encoder
weights. This downscaled model can potentially benefit
from the performance gain provided by a pre-trained
encoder without the need to repeat the time-consuming
pre-training process.

2) We perform a comparison between U-Net and the
original-sized Swin UNETR in a constrained resource
setting that is equal for both networks. Additionally,
we quantify the impact of downscaling Swin UNETR,
as well as provide a comparison between U-Net and
our downscaled Swin UNETR with approximately equal
parameter counts.

3) We quantify the performance provided by residual
blocks in the skip connections and decoder in Swin
UNETR. Furthermore, we also study the effect of im-
plementing such features in the U-Net.

4) We provide a comparison between U-Net and Swin UN-
ETR in terms of computational burden and efficiency,
determining which network is more cost-effective when
hardware resources are limited.

All experiments are conducted on the Pancreas Tumor

Dataset, taken from the Medical Segmentation Decathlon
(MSD) [18].

2. RELATED WORK
2.1. 3D self-supervised pre-training

Self-supervised representation learning consists of using
proxy tasks to facilitate neural network feature learning from
unlabelled data. When applied to medical images, this allows
neural networks to encode region-of-interest-aware informa-
tion, which increases their performance on downstream tasks
(such as segmentation). In [19], Taleb et al. presented the
first 3D self-supervised pre-training scheme for medical image
segmentation, which consisted of the solution of five proxy
tasks. Using this method, the authors pre-trained a 3D U-
Net-like encoder, which was posteriorly plugged into a U-Net
decoder in the fine-tuning stage.

In [17], Tang et al. used a similar method to pre-train Swin
UNETR’s Swin ViT encoder. In this case, the authors used
three proxy tasks (masked volume inpainting, image rotation,
and contrastive coding), and formulated the problem with a
multi-objective loss function. Again, for the solution of the
downstream segmentation tasks, a U-Net decoder was attached
to the pre-trained Swin ViT encoder.

2.2. Residual blocks in skip connections and decoder
In a U-Net, skip connections enable propagating the spatial

information that gets lost during the pooling (or downsam-
pling) operations. However, some works [20, 21] argue that
there is a large semantic gap between encoder and decoder
features, which causes these long-range skip connections to
be sub-optimal. To alleviate such a semantic gap, in [21], the
authors modified the skip connections of a U-Net by adding
a stack of residual convolutional blocks that processed the
features coming from the encoder before being concatenated
to the features at the decoder. These modified skip connections,
which were named as Respaths, enabled the U-Net to obtain
better results, as well as to converge faster.

Although it is not mentioned by the authors in [15], we
assume that the choice of adding the residual blocks in
Swin UNETR’s skip connections follows the same purpose.
Additionally, Swin UNETR also contains residual blocks in
the decoder (Resblocks). Such blocks have been introduced
into several deep learning models [22–24] to solve gradient
vanishing and explosion problems, and are considered to
smooth the loss surface and ease the training of deep neural
networks [25].

3. METHODS
3.1. Dataset and data splits

The dataset used in this work is the Pancreas Tumor Dataset
from the Medical Segmentation Decathlon (MSD) [18, 26].
This dataset contains 420 portal venous phase CT scans
of patients undergoing resection of pancreatic masses. The
images have a variable number of slices, with a slice thickness
of 2.5 mm and an in-plane resolution of 512 × 512. For each
scan, expert delineations of the pancreas and the tumor are
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provided, which are encoded in multi-label images. Thus, this
task consists of a 2-class segmentation problem (pancreas and
tumor).

In the MSD challenge, this dataset is divided into 281
images for training and 139 for testing. However, the labels
of the 139 images belonging to the test set are not publicly
available, which renders it impossible to compare models
statistically. In light of this, an internal split of the dataset was
created, dividing the 281 images that originally constituted the
training set into 160 images for training, 40 for validation, and
81 for testing. This way, the resulting 81-image test set was
used to perform quantitative evaluations among the models
utilized in this study.

3.2. Data preprocessing
Initially, images were cropped based on the patient’s body

contour. To achieve this, the images were binarized using Otsu
thresholding [27] considering two classes: foreground (body
contour) and background (air, scanner bed ...). Then, pixels
wrongly classified as foreground were removed using con-
nected component analysis and keeping the largest connected
component (which was assumed to be the body contour). Next,
a bounding box was applied to the borders, and the images
were cropped.

After cropping, all images were resampled to a target
spacing, corresponding to the median spacing of the images
on the training set. As images in the pancreas tumor dataset
are highly anisotropic (out-of-plane spacing is more than three
times greater than in-plane spacing), resampling was done in
two steps: first, it was applied in-plane with third-order spline
interpolation, and then out-of-plane using nearest neighbor
interpolation. By treating the out-of-plane axis separately,
resampling artifacts were suppressed [28].

Once resampled, images were normalized to a range of [-1,
1] before being fed to the network. Given that CT intensity
values are quantitative, and therefore reflect tissue-related
physical properties, it is advantageous to retain their infor-
mation. To achieve this, a global normalization scheme was
applied to all images, using the global (referring to the whole
training set) foreground mean and standard deviation. Then,
images were normalized by subtracting the mean and dividing
by the standard deviation. In addition, clipping was applied
with the 0.5 and 99.5 percentiles of the global foreground
voxels. The described process of resampling and normalization
follows the scheme proposed in [2, 28].

Furthermore, due to memory limitations of fitting an entire
3D image from the pancreas tumor dataset in the GPU
employed in this study, all networks were trained using fixed-
size image patches (cropped sub-volumes of the entire 3D
image). The choice for the patch sampling strategy, the number
of patches per image, and the selected patch size are discussed
in Section 3.4.2.

3.3. Network architectures
This section presents the two network architectures em-

ployed in this study, i.e., U-Net and Swin UNETR, as well
as the strategies used to downscale Swin UNETR.

Fig. 1: Dynamic U-Net architecture. It is practically equal to
a standard U-Net, except for the capacity to use anisotropic
kernels and strides. This implementation also includes the
possibility to substitute the standard convolutional blocks with
residual convolutional blocks.

3.3.1. U-Net
The U-Net model developed in this study adopts a dynamic

U-Net architecture. The dynamic U-Net was originally pro-
posed by Isensee et al. in [2] and stands out from the original
version due to its ability to handle kernels of anisotropic sizes
and strides. In this work, we utilize a version of the dynamic
U-Net from the open-source library MONAI [29], depicted in
Figure 1. This re-implementation of the architecture extends
its capabilities by enabling the use of residual connections in
its convolutional blocks.

Apart from the aforementioned modifications, the dynamic
U-Net can be considered a standard U-Net in practical terms.
The encoder functions as a conventional CNN, extracting
features and providing classification information [30]. Each
block within the encoder consists of two convolutional layers,
followed by instance normalization and an activation function.
The number of feature channels progressively doubles with
each depth level, reaching a maximum of 320. Unlike the
original U-Net architecture, downsampling is accomplished
by applying convolutions with a stride of 2, as opposed to
utilizing a 2-strided max-pooling operation.

The decoder employs the features extracted from the en-
coder to generate a segmentation in the original input spacing,
assigning each pixel to one of the classes. Each block in the
decoder comprises a transposed convolutional layer, followed
by concatenation with the corresponding feature map from
the encoder (obtained through skip connections), and two
convolutional layers, each followed by instance normaliza-
tion and an activation function. In this case, the transposed
convolutional layer reduces the number of feature channels
while upsampling the feature map. After the final decoder
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Fig. 2: Swin UNETR architecture, taken from [15]. It shares U-Net’s structure, but the convolutional encoder is replaced by a
Swin ViT encoder. This encoder contains the novel Swin transformer blocks. Within these blocks, W-MSA and SW-MSA refer
to regular and shifted window multi-head self-attention respectively, and MLP means multi-layer perceptron. The decoder is
similar to a U-Net’s, except for the substitution of conventional convolutional blocks with residual blocks. The skip connections
are also modified, by adding residual blocks before feature concatenation.

block, a 1x1x1 convolutional layer is applied to match the
number of feature channels to the desired number of structures
for segmentation. Finally, a softmax function is employed to
derive the probability of each pixel belonging to one of the
classes.

3.3.2. Swin UNETR
The Swin UNETR is a ViT-based architecture that was

developed by Hatamizadeh et al. [15]. The implementation
used in this work has been taken from MONAI [29]. As
shown in Fig. 2, Swin UNETR has the characteristic U-shaped
structure, replacing U-Net’s fully convolutional encoder with
its Swin ViT counterpart.

The encoder contains an initial patch partitioning layer that
divides the input into 2x2x2 3D patches, which will represent
the tokens (a term commonly used in natural language pro-
cessing). This is followed by four stages. The first stage begins
with a linear embedding layer that projects the patches into a
C-dimensional space. In [17], C is set to 48, and the pre-trained
weights shared by the authors are only compatible with this
embedding space size. The linear embedding layer is followed
by two Swin transformer blocks for feature transformation,
which employ the highly efficient window-based multi-head
self-attention mechanism proposed in [16]. After this, a patch-
merging layer performs downsampling and doubles the feature
channels. The subsequent three stages are identical to the first
stage, with the exception of the initial linear embedding layer.
To better understand the functionality of Swin ViTs, reading
[3, 16] is encouraged.

Concerning the decoder, its structure is similar to the
original U-Net architecture, although there are some modi-
fications. On the one hand, the conventional up-convolutional

blocks are replaced by residual up-convolutional blocks. On
the other hand, skip-connections are modified by including a
residual block before encoder-decoder feature concatenation,
comprising two 3x3x3 convolutions followed by instance
normalization. This way, the feature maps originated in the
encoder go through a sequence of convolutional layers before
being concatenated with the features in the decoder.

3.3.3. Downscaling Swin UNETR

Swin UNETR has approximately 62M parameters, which
doubles the parameter count of the U-Net architecture used
in this study. Moreover, while U-Net’s parameters are evenly
distributed between the encoder and decoder, Swin UNETR
holds more than 85% of its total parameters (around 54M ) in
its convolutional decoder. Taking these factors into account,
in this study, we aim to reduce the parameter number of Swin
UNETR, matching the U-Net in this aspect, with the additional
benefit of creating a ViT model that is less resource-intensive.
This was achieved in two different ways (one of which allows
to reuse the pre-trained weights in the downscaled model),
which are discussed in the following paragraphs.

Reducing the embedding space dimension

The most straightforward way of reducing Swin UNETR’s
parameters is to lower its embedding space dimension, a
method already used by [15, 17] to reduce Swin UNETR’s
parameter number.

As mentioned before, the linear embedding layer projects
the sequence of patches into a C-dimensional embedding
space. At each stage in the encoder, this embedding space
dimension is doubled, which causes an increase in the number
of parameters. Therefore, by reducing the dimensionality of
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the initial embedding space C, its dimensionality at each stage
will also become smaller, and the number of parameters of
both the encoder and decoder will be reduced. Originally,
C = 48, which results in 62M parameters. By setting C = 36,
the number of parameters is reduced to roughly 35M , enabling
a similar parameter number comparison between U-Net and
Swin UNETR. We will refer to this ”tiny” version of Swin
UNETR as Swin UNETRT .

However, reducing the network’s parameters in this way has
some disadvantages. Firstly, the number of parameters in the
already diminutive encoder is reduced, which may affect its
capabilities. Secondly, by using C = 36, the weights obtained
in [17] from self-supervised pre-training can no longer be
used, as they are only compatible with the encoder in the
original embedding space size C = 48. Having a pre-trained
downscaled model could be favorable, as it could benefit from
the performance boost provided by the pre-learned feature
embeddings while greatly reducing the computational burden
with respect to the original-sized model. Nevertheless, repeat-
ing the pre-training process is time-consuming, which is why
an additional downscaling method that exploits the possibility
of re-using the available pre-trained weights was developed.

Reducing the bottleneck dimension
The majority of Swin UNETR’s parameters are localized at

the bottleneck, specifically, in the residual block before the up-
convolution operation. This block consists of 2 convolutions,
each of which has N3×Cin×Cout = 33×768×768 ≈ 16M
parameters, where N is the kernel size and Cin and Cout are
the number of input and output feature channels respectively.
That is, in total, this block adds 32M parameters to the
network. However, by just halving the size of the feature
dimension at the bottleneck, the parameter number of this
block would be reduced by 4, resulting in a network with a
total of 38M parameters. Thus, the second method that we
propose to reduce the parameter number consists in doing
precisely this.

To achieve this without modifying the encoder, we added
a 1x1x1 convolutional block that processes the feature map
at the output of the encoder and halves the size of its feature
dimension from 768 to 384. As the encoder is left unchanged,
this downscaled version of Swin UNETR can benefit from
the pre-trained weights, while employing fewer computational
resources than the original size model. Besides, this approach
enables to downscale Swin UNETR without affecting the
capacity of its ViT encoder. We will designate this downscaled
version of Swin UNETR as Swin UNETRB .

3.4. Implementation details

3.4.1. Loss function
The loss function used for both parameter tuning and

training was the equally weighted sum of Dice loss and cross-
entropy loss (DiceCE). This loss function was developed to
reduce class and output imbalance [31], and it is commonly
used in medical image segmentation.

3.4.2. Parameters and configuration

Concerning the patch sampling strategy, the training patches
were sampled using a 1 to 1 foreground-to-background-class
ratio. Additionally, the number of patches sampled per image
was calculated by multiplying the batch size (2) by the number
of batches per epoch (fixed at 240) and dividing by the training
set length (160 images) 240 × 2/160 = 3. In this way, all
images in the training set are sampled at every epoch.

In addition, the tuning of the weight decay and learning rate
was done by running grid searches, using RayTune [32]. Each
parameter combination’s performance was evaluated based on
the DiceCE loss on the validation set. The weight decay did
not show much effect on network performance and was kept
to 10−5 for all models. For every model (see Appendix A), a
learning rate of 10−4 proved to be the best choice.

The rest of the parameters shown in Table I were set based
on the original configuration choices of nnU-Net [2] and Swin
UNETR [17] for the pancreas dataset of the MSD challenge. In
the case of Swin UNETR, although the original paper used a
larger batch size (exact number undisclosed), a batch size of 2
was chosen due to hardware constraints. For the U-Net, instead
of using the original patch size of (224, 224, 40) used for the
pancreas dataset, a patch size of (96, 96, 96) was used. This
was done to compare the efficiency of both models objectively,
as input size greatly affects the computational burden of a
model.

TABLE I: Model parameters and configuration.

Parameter U-Net Swin UNETR
Spacing (mm) 0.81, 0.81, 2.5 1, 1, 1
Batch size 2
Patch size 96, 96, 96
Optimizer Adam W
Activation L. ReLU GELU / L. ReLU
Normalization Instance Layer / Instance
Training batches 240
Validation batches 60
Data augmentation [2] [17]
Patch sampling 50% fg - 50% bg
Num. patch samples 3
Learning rate 10−4

Weight decay 10−5

3.4.3. Training and inference

All models were trained for 500 epochs, and no learning
rate scheduler or early stopping was used during training.
The reason for not employing a learning rate scheduler is
that a simple configuration was enough for the purpose of
this study, which is to perform a comparison between models.
Next, inference was performed on the test set using the weights
corresponding to the epoch with the highest validation Dice.
A sliding-window approach was used, keeping the window
size equal to the patch size used during training. An overlap-
ping of 0.5 between windows (or patches) was set and the
superimposed area was merged using Gaussian blending, to
limit the segmentation errors in the edges of the patch [2, 33,
34]. During parameter optimization, training, and inference, an
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NVIDIA GeForce RTX 2080 with 12 GB of VRAM is used,
and mixed precision was employed [35].
3.4.4. Postprocessing

After performing the sliding window inference and stack-
ing together the predicted patches, some postprocessing was
applied to the entire predicted image. As commonly done
in medical image segmentation, for each class, the largest
connected component was kept, and the rest of the smaller
objects were removed. Then, the image was converted to the
original spacing, and the borders were padded to match the
original image size.

3.5. Evaluation metrics
For the evaluation of model performance, the metrics used

were:
• Dice score (DSC) It quantifies the overlap between two

volumes, defined as twice the intersection of the volumes
divided by their union.

• Normalized surface distance (NSD) It measures the
overlap between two boundaries. Given the boundary of
the reference SA, the boundary of the prediction SB ,
and a tolerance value τ , we define the border regions
of the reference β

(τ)
A and prediction β

(τ)
B as the pixels

within a distance τ from the respective boundaries. Then,
according to [36], the NSD at a tolerance τ is defined as:

NSD(A,B)(τ) =
|SA ∩ β

(τ)
B |+ |SB ∩ β

(τ)
A |

|SA|+ |SB |
In this work, a tolerance of 5 mm is used, since it is the
value used in [18] for the pancreas tumor dataset.

• Hausdorff distance 95 percentile (HD95) Given the
95% percentile of all shortest distances for all points
from the reference boundary to the prediction boundary
d95(A,B) and vice-versa d95(B,A), the HD95 is calcu-
lated as [36]:

HD95(A,B) = max {d95(A,B), d95(B,A)}

This metric was calculated for completeness but reported
only as part of the appendix.

3.6. Experiments
After inferring and evaluating the models on the test set,

several experiments and model comparisons were conducted.
To evaluate the significance of all the performed comparisons,
the Wilcoxon signed-rank test [37] was used. This test was
chosen for two reasons: it is suitable for paired samples
(all models are inferred on the same test set), and it is
non-parametric (it does not assume that results are normally
distributed).
3.6.1. Performance of downscaled Swin UNETR

Firstly, Swin UNETRT and Swin UNETRB were compared,
to see which of the downscaled networks performed better
and validate the presented alternative method. Secondly, we
compared both of them with the original Swin UNETR,

in order to see the performance lost from downscaling the
models.
3.6.2. Effect of pre-training on Swin UNETR

The Swin UNETR models with a non-modified encoder
(Swin UNETRB and Swin UNETR) were run in two different
configurations: first training from scratch and then initializing
the encoder with the self-supervised pre-trained weights pro-
vided in [17]. To refer to the models run using pre-trained
weights, we will use the upper score PT (Swin UNETRPT

B

and Swin UNETRPT ). The performance gain provided by pre-
training was determined by comparing Swin UNETR models
with and without pre-training (for both the downscaled and
the original size model).
3.6.3. U-Net vs. Swin UNETR

We compared the downscaled Swin UNETR models to the
U-Net, in order to see how these two perform in a similar
parameter-number scenario. Additionally, we compared the
original Swin UNETR models to the U-Net (with and without
pre-trained encoders), to see if, in a resource-constrained
setting that is equal for both networks, the ViT is still superior
to the CNN-based network, as reported in [15, 17].
3.6.4. Effect of Respaths and Resblocks

We tested the effect of removing Swin UNETR’s Respaths
and substituting the decoder Resblocks with conventional con-
volutional blocks, assessing the impact of such design choices
on Swin UNETR’s performance. Additionally, we evaluated
whether the implementation of Resblocks (substituting all
convolutional blocks in the encoder and decoder) and the
addition of Respaths can boost the performance of the U-Net
used in this study.
3.6.5. Model complexity, resource utilization, and efficiency

In addition to all the aforementioned quantitative com-
parisons of model performance, these were compared based
on their complexity, resource utilization, and efficiency. For
such a comparison, we measured their number of parameters,
total size (GPU VRAM during training), FLOPs (number
of floating-point multiplication-and-addition operations), and
throughput (images processed by the network per second).
These last two were measured during inference. All measure-
ments were conducted using a batch size of 2, input image
patches with shape (96, 96, 96), and mixed precision [35].
Additionally, for Swin UNETR models, gradient checkpoint-
ing was used, which affects the FLOPs and the model size.

4. RESULTS
4.1. Performance of downscaled Swin UNETR

The results of this experiment are shown in Fig. 3a. First
of all, when comparing both downscaled models, no big
performance difference was observed. In terms of DSC, Swin
UNETRT performed statistically better (p < 0.05) than Swin
UNETRB for the pancreas (with a DSC of 0.755 vs. 0.735),
and no statistical difference was observed for the tumor class.
In the case of NSD, no statistically significant difference
in model performance was observed. Despite the difference
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(a) Performance of downscaled Swin UNETR.

(b) Effect of pre-training.

(c) U-Net vs. Swin UNETR.

Fig. 3: In each case, DSC (left) and NSD (right) are shown for both the pancreas and tumor. The black dashed line in each
boxplot represents the average. On top of each figure, the results of the Wilcoxon signed rank test used for model comparison
are shown. ”ns”: no statistically significant difference (p > 0.05) between compared models. ”→”: the model to the right is
significantly better than the model to the left with p < 0.05. ”←”: the model to the left is significantly better than the model
to the right with p < 0.05.
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TABLE II: Effect of Respaths and Resblocks on model performance. The numbers represent the average score of models for
a specific metric and class. Green represents an improvement of the model with residual functionality vs. the same model
without it. Red represents the opposite, i.e., that the model with Resblock and Respaths performs worse than the same model
without them. An asterisk (*) represents that the difference in performance is statistically significant (p < 0.05) according to
the Wilcoxon signed-rank test.

Metric DSC NSD
Class Pancreas Tumor Avg. Pancreas Tumor Avg.

Residual No Yes No Yes No Yes No Yes No Yes No Yes
Swin UNETRT 0.734 0.755* 0.421 0.385* 0.577 0.570 0.855 0.877 0.572 0.554 0.714 0.715
Swin UNETRB 0.748 0.735* 0.414 0.410 0.581 0.572 0.879 0.859 0.572 0.580 0.726 0.720
Swin UNETRPT

B 0.757 0.746 0.401 0.354 0.579 0.550 0.885 0.870 0.580 0.490 0.732 0.680
Swin UNETR 0.739 0.757 0.410 0.402 0.575 0.580 0.865 0.880 0.579 0.570 0.722 0.725
Swin UNETRPT 0.745 0.753* 0.362 0.424* 0.553 0.589* 0.875 0.880* 0.523 0.610* 0.699 0.745*
U-Net 0.754 0.746 0.435 0.452 0.594 0.599 0.892 0.885 0.599 0.614 0.746 0.749

Fig. 4: Visual comparison of models for two representative subjects of the test set. The pancreas is shown in blue and the
tumor is in red.

not being statistically significant, Swin UNETRB obtained a
higher average DSC and NSD than Swin UNETRT for the
tumor class. This was also visible in some representative cases
(Fig. 4), where it was observed that Swin UNETRT failed
to identify the tumor, as opposed to the other downscaled
model. Averaging the scores over both classes, Swin UNETRB

achieved a relative DSC 0.4% higher and an NSD 0.6% higher
than Swin UNETRT .

When comparing both downscaled models to the orig-
inal size Swin UNETR, it is clear that downscaling had
a weak impact on model performance. Compared to Swin
UNETRB , Swin UNETR showed a statistically significant
improvement in terms of DSC for the pancreas (0.735 vs.
0.757 respectively). However, no significant difference was
observed when comparing the original size model to Swin
UNETRT . Concerning the NSD, the performance comparison
between the downscaled and the original-sized models yielded
no significance. Overall, while downscaling almost halved the
models’ number of parameters, it only reduced the DSC and
NSD by 1.4% and 1% respectively.

4.2. Effect of pre-training on Swin UNETR
When assessing the impact of pre-training (Fig. 3b), it is

clear that its effect differs for the downscaled and original-
sized models. Regarding Swin UNETRB , pre-training did not

show a statistically relevant difference for any class and metric.
In fact, when averaging the scores over both classes and due
to the low performance for the tumor class, the pre-trained
model obtained a DSC 3.9% lower and an NSD 5.5% lower
than the one trained from scratch.

However, in the case of the original-sized Swin UNETR,
the picture is rather different. For this network, pre-training
showed a significant improvement for the tumor class in terms
of DSC and improved the NSD significantly for both classes.
The positive effects of pre-training can also be observed when
comparing both model predictions visually (Fig. 4), where
it is seen that the pre-trained version segmented the tumor
more accurately. In general terms, Swin UNETRPT achieved
a DSC and NSD 1.6% and 2.8% higher than its non-pre-trained
counterpart.

4.3. U-Net vs. Swin UNETR

Comparing all Swin UNETR models to the U-Net (Fig.
3c), it is observed that both architectures showed similar
performance.

Considering the downscaled models, their performance was
not far from the CNN’s, although the latter was superior.
On one side, the NSD obtained by Swin UNETRT was
significantly inferior to the U-Net for both classes. In terms
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TABLE III: Model complexity, resource utilization, and efficiency. Models are divided into two groups: original (unmodified
models) and modified (models where residual functionality has been pruned NoRB or added RB). The total size represents the
GPU memory footprint of the models during training. FLOPs and throughput are measured at inference. The throughput is not
based on the processing of full images but on the forward pass of image patches of the size (96, 96, 96). For Swin UNETR
models, gradient checkpointing is used, which affects the FLOPs and the total size.

Group Model Params (M) Total size (GB) FLOPs (G) Throughput (images/s)
U-Net 30.7 3.9 624.5 37.3
Swin UNETRT 35.1 6.3 353.9 14.6
Swin UNETRB 37.4 8.5 626.5 12.6Original

Swin UNETR 62.2 8.6 628.3 12.5
U-NetRB 41.6 7.0 910.3 23.4
Swin UNETRT−NoRB 33.4 5.1 321.1 15.8
Swin UNETRB−NoRB 34.4 6.8 568.2 14.4Modified

Swin UNETRNoRB 59.2 6.9 570.0 13.8

of DSC, the ViT was significantly inferior for the tumor
class (0.385 vs. 0.435). On the other side, Swin UNETRB

obtained a significantly lower DSC and NSD for the pancreas,
but there was no significant difference for the tumor class.
Swin UNETRPT

B was excluded from these comparisons, as
it was clearly inferior to the non-pre-trained version (as
seen in Section 4.2). Averaging the scores obtained for both
classes and both downscaled Swin UNETR models, the U-Net
obtained a DSC and NSD 4% and 3.8% higher than ViT-based
architectures.

With respect to the original-sized Swin UNETR models
(Swin UNETR and Swin UNETRPT ), their performance was
comparable to the CNN’s, with no statistically significant
differences for any class and metric. Despite this, the pre-
trained model obtained a higher average NSD (0.610) for the
tumor class. The conservative superiority in this metric can
also be observed in Fig. 4, where it is visible that the U-
Net over-segmented the tumor, while Swin UNETRPT tended
to under-segment this class. Averaging the scores over both
classes, U-Net was 2.6% superior to Swin UNETR in terms
of DSC (0.594 vs. 0.580) and 2.9% better in terms of NSD
(0.746 vs. 0.725). Compared to the pre-trained Swin UNETR,
U-Net’s average DSC was slightly higher (1%) and the average
NSD was almost the same for both (only 0.1% superior for
the CNN).

4.4. Effect of Respaths and Resblocks
Regarding the effect of Respaths and Resblocks on Swin

UNETR’s performance (Table II), there is a clear difference
between the downscaled and original size models. Residual
functionality negatively impacted the three downscaled mod-
els, reducing the average DSC for all of them. In terms
of average NSD, only Swin UNETRT benefited from this
design choice. Overall, the downscaled models with residual
functionality suffered a decrease of 2.6% in DSC and NSD.

However, for the original-sized models (Swin UNETR and
Swin UNETRPT ) Resblocks and Respaths increased model
performance for both averaged metrics. While the perfor-
mance gain was not statistically significant for the non-pre-
trained model, Swin UNETRPT was the ViT-based model
that benefited most from the addition, obtaining a statistically
significant improvement for all classes in both metrics. This

improvement was especially relevant for the tumor class, with
a relative increase in DSC and NSD of 17.1% and 16.6%
respectively. In general, this feature resulted in an increase
of 3.6% in DSC and 3.4% in NSD for original-sized Swin
UNETR models.

With respect to the U-Net, substituting its convolutional
blocks by Resblocks and adding residual blocks in the skip
connections marginally increased the average DSC (0.599)
and NSD (0.749) by 0.8% and 0.4%, although no statistically
significant improvement in performance was observed.

4.5. Model complexity, resource utilization, and efficiency
The complexity, resource utilization, and efficiency of the

different models are shown in Table III. Firstly, it is clear that
the downscaling of Swin UNETR to obtain Swin UNETRT

caused a considerable decrease in the model’s requirements
and efficiency, reducing the GPU memory footprint by 1.8 GB,
approximately halving the FLOPs and improving the inference
speed by 16.8%. However, the other downscaled model did
not benefit from any of these improvements with respect to
the original model, with the only significant difference being
the number of parameters itself.

Secondly, when comparing U-Net and Swin UNETR mod-
els, it is evident that the first employed 50% fewer GPU
memory, while being more than two times faster than Swin
UNETRT and almost three times faster than Swin UNETR
and Swin UNETRB at inference. However, the CNN also had
a higher FLOP-to-parameter ratio with respect to the ViTs,
roughly duplicating the latter in this aspect.

Finally, for Swin UNETR models, residual functionality
increased the parameter number and the model size by 6.3%
and 24.4% on average. Moreover, it caused an increase of
10% in the FLOP count, as well as an inverse effect in the
throughput, with a 10% reduction. For the U-Net, the changes
caused by Resblocks and Respaths were far more pronounced,
with an increase of 35.5%, 79.5%, and 45.76% in parameters,
model size, and FLOPs and a decrease of 37.3% in inference
speed.

5. DISCUSSION
In the paper published by Tang et al. [17], Swin UN-

ETR demonstrated state-of-the-art performance, surpassing the
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competing architectures. Although its advantage over CNNs
was attributed to the superiority of the Swin ViT encoder and
the newly proposed pre-training scheme, the authors of the
study did not consider differences in the respective resource
settings, design choices, and network parameter counts. In
this study, we aimed to compare Swin UNETR and U-Net
in an objective manner, trying to investigate the effect of
different design choices in the ViT. Two methods to balance
the parameter count of Swin UNETR with respect to the U-
Net were presented, one of which still allowed the re-use
of pre-trained weights for the encoder, and we quantified
the effect of pre-training in both original and downscaled
Swin UNETR models. Furthermore, we removed the residual
blocks in Swin UNETR’s decoder and assessed whether they
provided the network with an advantage. In addition, residual
functionality was included in the U-Net, to see if it provided
the network with some additional performance. Finally, we
compared both architectures in terms of computational over-
head and efficiency, providing some insight into which of both
networks to choose for 3D medical image segmentation tasks
in a constrained resource scenario.

Regarding the downscaling of ViTs, both models derived
from the presented approaches yielded comparable results
(although Swin UNETRT achieved a statistically significant
improvement for the pancreas), thereby affirming the ef-
fectiveness of the proposed alternative downscaling method,
which involved the inclusion of a 1x1x1 convolutional block
in the bottleneck. Notably, this downscaling technique not
only reduced the parameters but also facilitated the utilization
of a pre-trained encoder, eliminating the need to repeat the
time-consuming pre-training process. Remarkably, despite the
significant reduction in parameter count, both downscaled
ViTs demonstrated performance that was nearly comparable
with the original-sized models. In addition, Swin UNETRT

was more computationally efficient than the original model,
employing fewer GPU resources and accelerating inference
times. However, these benefits were not observed for Swin
UNETRB , which was as resource-intensive as its original size
counterpart. Despite this, having such a downscaled model
with a pre-trained encoder could be beneficial in some scenar-
ios where limited data is available and an over-parameterized
model would lead to overfitting.

In spite of the potential advantages of using a pre-trained
encoder in a downscaled Swin UNETR model, the perfor-
mance of Swin UNETRPT

B was inferior to its non-pre-trained
equivalent’s. This disparity could be attributed to the dimen-
sionality reduction applied to the feature embeddings learned
during pre-training (as these are projected from an original
feature space with 768 dimensions to a feature space with
384 dimensions), potentially impacting the quality of these
features. However, the results were different when considering
the original-sized Swin UNETR model, as pre-training exhib-
ited improvements in performance. This observed performance
enhancement of approximately 1.6% in DSC aligned with the
findings of [17] for the pancreas dataset, where the authors
reported a 1% improvement in DSC associated with the

utilization of a pre-trained encoder. It is worth mentioning
that in the original paper, the pancreas dataset was among
those that benefited the least from pre-training, which suggests
that, had we performed our experiments on another dataset, we
could have seen bigger effects from pre-training.

Concerning the comparison between U-Net and the original-
sized Swin UNETR models, both exhibited similar perfor-
mance, albeit with the CNN demonstrating a slight superiority
in terms of average DSC and NSD. These results seemingly
contradict the remarkable superiority shown by the pre-trained
Swin UNETR in [17], where it achieved a 5% improvement
in DSC over nnU-Net. In that study, the ViT-based network
obtained a DSC of 0.707, which strongly contrasts with the
DSC of 0.589 obtained in our work. However, it is worth
noting that this performance disparity was anticipated, as the
data splits used in our work are different from the original
study (we only train with 60% of the data, and use part of the
remaining data as the test set). Furthermore, the configuration
employed for our Swin UNETR implementation differs from
that described in the paper. To attain the state-of-the-art
results reported in [17], Swin UNETR was trained for more
epochs (exact number undisclosed), employing large batch
sizes (specifics undisclosed), and incorporating techniques
such as cross-validation with model ensembling, test time
augmentation, and the inclusion of additional partially or fully
annotated data not related to the challenge. However, our
study’s Swin UNETR configuration was based on a tutorial
repository provided by the authors, which did not include all
those techniques. The implementation of all those additional
features would have required more hardware resources, while
the scope of our work is comparing both networks (U-Net and
Swin UNETR) in a constrained resource setting, as objectively
as possible. In addition to the aforementioned, we showed
that the U-Net employed 50% less GPU memory while being
almost three times faster at inference, highlighting the resource
efficiency of the CNN.

When comparing the U-Net with the downscaled ViTs,
the CNN exhibited superior performance. This suggests that,
when matching the parameter count of Swin UNETR with
that of the U-Net, the latter holds an advantage. However,
it is important to approach this conclusion with caution, as
these results are specific to the configuration used in this
study, which differs from the original paper’s configuration, as
mentioned earlier. Additionally, the CNN’s memory footprint
was almost 40% smaller than Swin UNETRT ’s, as well as
being more than twice faster at inference, showing the high
speed and low hardware requirements of the CNN even when
balancing the parameter count of the ViT. However, compared
to Swin UNETRT , the FLOP count was almost two times
larger for the U-Net, which seems to contradict the fact that
the CNN is faster. In fact, we observed in our study that, while
an increment in FLOPs caused a decrease in throughput within
the same architecture, when comparing different architectures
this tendency did not hold. A possible explanation for this
discrepancy could be that the total number of FLOPs in a
model is an inconsistent predictor of real execution time, due
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to the highly parallel nature of tensor operations and hardware
accelerators [38].

With respect to the addition of Resblocks and Respaths,
these generally showed a negative effect on the downscaled
models’ performance. Although we are not sure of the reason
behind this unexpected outcome, a possible explanation could
be overfitting. We observed that residual blocks made Swin
UNETR models converge faster (see Appendix C). As no early
stopping is used, the training may continue after a plateau in
the validation loss and the weights used for inference may
be based on an overfitted model which does not perform
that well on the test set. This is only a hypothesis and
would require further research. For the original size ViTs,
residual functionality showed a positive influence, which was
especially significant for the pre-trained model, demonstrating
that this design choice had some impact on Swin UNETR
in [17]. In terms of computational overhead, residual Swin
UNETR models increased GPU memory usage by 24.4%, as
well as increased FLOPs and reduced inference speed by 10%.
On the other side, despite the increase in performance shown
by residual U-Nets in some studies [21, 39], our U-NetRB

did not obtain a significant improvement over the standard
model. While there are some examples of residual U-Nets
used for natural images in the literature, we did not find any
study reporting benefits of such networks for medical image
analysis. Thus, the potential benefits of using a residual U-Net
for 3D medical image segmentation are unclear. Furthermore,
the residual U-Net increased the GPU memory requirements
by 3.1 GB, while making the model almost 40% slower during
inference. Therefore, we consider that the marginal benefits
shown in performance (or any further potential benefits) do
not justify the utilization of the residual U-Net presented in
this work in favor of the standard U-Net.

Despite all the aforementioned, we acknowledge some lim-
itations in our study. First of all, the study of the effect of
matching U-Net’s and Swin UNETR’s parameters is only one-
sided, and the effect of upscaling the U-Net to match the ViT is
not investigated. Secondly, an alternative downscaling method,
which has not been exploited, would have been to remove the
bottleneck block in Swin UNETR. Although this might also
have some negative effects on the network’s performance, ex-
ploring this possibility might have been interesting, as it would
have allowed us to use pre-training weights without affecting
the dimensionality of the pre-learned feature embeddings.
Thirdly, to study the effect of Resblocks and Respaths, we
removed both of them at the same time. A possible alternative
could be to remove them individually, which would give a
better insight into their isolated contributions, and possibly
explain the reason behind their combined poor performance
on downscaled Swin UNETR models. All these three inves-
tigation lines could be the object of future research. Finally,
the use of cross-validation would have made our models less
subjective to random variations, contributing to the robustness
of the presented results, while a more extensive parameter
optimization or the use of a learning rate scheduler, could
have improved the outcome of some models.

6. CONCLUSION
In this study, we performed a comparison between the

CNN-based U-Net and the ViT-based Swin UNETR in the
context of medical image segmentation. To the best of our
knowledge, this was the first work in which these two net-
works were compared in a framework with equal hardware
resources, and matching design and configuration choices.
Furthermore, we presented two methods to approximate Swin
UNETR’s parameter count to the U-Net, one of which still
enabled the use of the pre-trained weights employed in the
larger model. In the used resource-constrained scenario, the
CNN and the original size pre-trained Swin UNETR ob-
tained comparable performance, with the former achieving
a subtle improvement of 1% in DSC. Despite downscaling
reducing the ViT’s parameter count almost by half, these
downsized models only suffered a loss of 1.4% in DSC.
However, when compared to the U-Net, their performance
was significantly lower. Concerning the effect of pre-training,
although it showed no benefit on the downscaled model, it
provided the original-sized network with an increase of 1.6%
in DSC. Regarding Respaths and Resblocks, we demonstrated
that these design choices play an important role in the original-
sized Swin UNETR’s performance, while they showed slight
but not significant improvements for the U-Net. Finally, we
proved that the U-Net is a less resource-intensive and more
efficient model, requiring less GPU memory and being up to
three times faster at inference. All in all, despite the fact that
with more parameters and hardware resources, Swin UNETR
may have an advantage over U-Net, the latter is nowadays
more accessible, while still achieving excellent performance.
Therefore, even if ViTs are rather promising, we think that it is
premature to dismiss CNN-based architectures in the context
of medical image segmentation.
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APPENDIX
A. Model characteristics and parameter counts

TABLE IV: Models compared in this study and their parameter count. T = Tiny, DS = Downscaled, RB = Resblocks +
Respaths, NoRB = No Resblocks and Respaths, and PT = Pre-trained.

Model Residual Pretrained Parameters

U-Net No No 30.7 M

U-NetRB Yes No 41.6 M

Swin UNETRT−NoRB No No 33.4 M

Swin UNETRT Yes No 35.1 M

Swin UNETRB−NoRB No No 34.4 M

Swin UNETRPT
B−NoRB No Yes 34.4 M

Swin UNETRB Yes No 37.4 M

Swin UNETRPT
B Yes Yes 37.4 M

Swin UNETRNoRB No No 59.2 M

Swin UNETRPT
NoRB No Yes 59.2 M

Swin UNETR Yes No 62.2 M

Swin UNETRPT Yes Yes 62.2 M

In this work, 8 different models were compared: U-Net, U-NetRB , Swin UNETRT , Swin UNETRT−NoRB , Swin UNETRB ,
Swin UNETRB−NoRB , Swin UNETR, and Swin UNETRNoRB .

The Swin UNETR models for which the encoder was not modified (Swin UNETRB , Swin UNETRB−NoRB , Swin UNETR,
and Swin UNETRNoRB) are run in two different configurations: first training from scratch and then initializing the encoder with
the self-supervised pre-trained weights provided in [17]. To specify when those models have been run using pre-trained weights,
we will use the upper score PT (Swin UNETRPT

B , Swin UNETRPT
B−NoRB , Swin UNETRPT , and Swin UNETRPT

NoRB). All
models and their characteristics are shown in Table IV.

B. Performance metrics for all models

TABLE V: Average results obtained by every model for all metrics, including HD95. For each metric and class, the model
with the highest average score is highlighted in bold.

Dice ↑ NSD ↑ HD95 (mm) ↓Group Model Pancreas Tumor Avg. Pancreas Tumor Avg. Pancreas Tumor Avg.
Swin UNETRT−NoRB 0.734 0.421 0.577 0.855 0.572 0.714 17.7 28.9 23.3
Swin UNETRB−NoRB 0.748 0.414 0.581 0.879 0.572 0.726 15.6 30.2 22.9
Swin UNETRPT

B−NoRB 0.757 0.401 0.579 0.885 0.580 0.732 14.6 36.8 25.7
Swin UNETRNoRB 0.739 0.410 0.575 0.865 0.579 0.722 17.7 33.0 25.3
Swin UNETRPT

NoRB 0.745 0.362 0.553 0.875 0.523 0.699 15.1 34.2 24.7

Non residual

U-Net 0.754 0.435 0.594 0.892 0.599 0.746 14.1 33.3 23.7
Swin UNETRT 0.755 0.385 0.570 0.877 0.554 0.715 15.9 33.3 24.6
Swin UNETRB 0.735 0.410 0.572 0.859 0.580 0.720 18.4 27.0 22.7
Swin UNETRPT

B 0.746 0.354 0.550 0.870 0.490 0.680 16.7 41.8 29.3
SwinUNETR 0.757 0.402 0.580 0.880 0.570 0.725 15.2 36.2 25.7
Swin UNETRPT 0.753 0.424 0.589 0.880 0.610 0.745 16.0 24.8 20.4

Residual

U-NetRB 0.746 0.452 0.599 0.885 0.614 0.749 15.9 26.2 21.1

Table V shows the results obtained for all models inferred on the test set. In terms of average DSC and NSD over both
classes, U-NetRB achieves the best scores, mainly due to its superior performance for the pancreas tumor class. However,
when considering HD95, the pre-trained Swin UNETR is the best-performing model, improving by 5.3mm the HD95 obtained
by its non-pre-trained equivalent. This shows again that in the original Swin UNETR model, pre-training has a notable impact.

C. Residual blocks and model convergence
Even if the addition of Resblocks and Respaths showed different effects for different models on test set performance, it

overall improved convergence for all models. As observed in Fig. 5, residual functionality made ViT-based models converge
faster, reducing the starting point of the validation loss and making it reach a lower value during training. In light of this, a
possible explanation for the low performance of the downscaled residual ViTs might be overfitting. That is, residual blocks
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(a) Swin UNETRT (b) Swin UNETRB

(c) Swin UNETRPT
B (d) Swin UNETR

(e) Swin UNETRPT (f) U-Net

Fig. 5: Validation loss against epoch for every model with (orange) and without (blue) residual functionality.
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make the model converge faster, after which the training continues but there is no further improvement. Hence, the weights
used for inference are based on an overfitted model, which does not perform that well on the test set. Some design choices
like the use of a learning rate scheduler or early stopping may help to prevent this. In any case, to prove any of this, further
research would be required.
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