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Abstract

This study investigated the feasibility of weakly-supervised deep regression for predicting patient responses to neoadjuvant
chemotherapy (NAC) using Maximum Intensity Projection (MIP) images. We used radiological tumor volume ratio (RTVR) and
Residual Cancer Burden (RCB) to represent radiological and pathological responses to NAC, respectively. We conducted three
experiments, two with single-task regression of RTVR and RCB and one with multi-task regression. Each experiment involved
training a model based on a resnet14t architecture to minimize Batch Monte-Carlo (BMC) loss designed for imbalanced regression.
We evaluated the performance of each model using Spearman’s correlation and Bland–Altman analysis. Spearman’s correlation
coefficients were calculated for the hold-out test set and were ρ = 0.47 for the RTVR single-task model, ρ = 0.23 for the RCB
single-task model, and ρ = 0.61 and ρ = 0.34 for RTVR and RCB respectively, in the multi-task model. Despite the multi-task
model showing a slightly better correlation, we observed a statistically significant difference neither for predicting RTVR values
(P = 0.49) nor for RCB scores (P = 0.55). Deep SHapley Additive exPlanations (SHAP) provided insight into the models’
decision-making processes. The results indicated that the current method could not provide clinically meaningful outputs. We
discussed potential reasons for this poor performance and possible future research directions.

Index Terms
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I. INTRODUCTION

The use of neoadjuvant chemotherapy (NAC) to treat patients with breast cancer is on the rise. This strategy makes
breast-conserving surgery more feasible and allows for monitoring an individual patient’s response [1]. Recent research has
demonstrated that the pathological and radiological reactions to NAC can both yield important prognostic data. Achieving a
pathological complete response (pCR) is associated with improved survival [2]. And while radiologic complete response (rCR)
on contrast-enhanced MRI (CE-MRI) following NAC does not consistently predict pCR in early breast cancer, it strongly
correlates with recurrence-free and overall survival [3] [4]. Quantitative metrics exist to measure different levels of response
to NAC. The Residual Cancer Burden (RCB) score and its categorical counterpart, the RCB class, are utilized to quantify
the pathological response [5]. The radiological response, on the other hand, can be gauged by the changes visible on MRI.
Recent studies indicated that the change in primary tumor volume on MRI is positively associated with both recurrence-free
and overall survival, as is the RCB class [6] [7].

Deep learning-based segmentation can be an effective tool for the automated assessment of breast-cancer response to NAC
on breast MRI [8]. In case of incorrect segmentation, manual correction by an operator is possible. However, while the operator
can remove erroneously segmented structures, the ground truth remains unknown in clinical settings. Since segmentation is
not essential in predicting the response to NAC, one can skip it but still give an estimation, which a professional can check
and correct.

This study aims at assessing the feasibility of predicting the radiological and pathological responses on breast CE-MRI with
a weakly-supervised neural regression followed by an explainability step. The regression values are the residual tumor volume
ratio (RTVR) obtained from MR scans and the RCB score determined by a pathologist. We assume that the responses are
correlated and compare the performance of a multi-task model predicting both values with that of models for each score.

II. MATERIALS AND METHODS

A. Patients

This work utilizes data from the BOGOTA study, which included 147 female patients treated for Locally Advanced Breast
Cancer (LABC) with NAC between January 1, 2011, and December 1, 2019, with the mean age of diagnosis of 50 years
(range 25− 73 years) [8]. Having excluded 43 of them due to various reasons, we got left with 46 and 55 patients with left
and right laterality of cancer, respectively, and three patients with bilateral cancer. This resulted in 104 patients or 107 affected
breasts being available for this study.
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B. Magnetic Resonance Imaging

Throughout treatment, the patients underwent two MRI examinations, with the first before NAC and the second either
halfway through the chemotherapy schedule or right before the second-to-last cycle of chemotherapy, depending on the NAC
schedule [8]. The imaging was performed using 1.5 T and 3 T MRI units (Philips Ingenia or Achieva) with a dedicated breast
coil. Dynamic contrast-enhanced T1-weighted MRI series consisted of one pre-contrast scan and at least five post-contrast
scans after injection of a gadolinium-based contrast agent (Gadobutrol, 0.1 mmol/kg). The post-contract scans were acquired
at intervals between 60 s and 90 s. The ranges of the imaging parameters were: repetition time 3.3 ms to 7.1 ms, echo time
1.2 ms to 3.4 ms, flip angle 8° to 10°, field of view 340 mm to 426.7 mm, voxel volumes 0.75 × 0.75 × 0.90 mm3 to
0.97× 0.97× 1.30 mm3. All sequences employed fat suppression.

C. Maximum Intensity Projections

This work does not directly utilize the raw MR scans. Two-dimensional MIP images obtained by selecting the highest
intensity values along the transverse axis serve as input data instead. The images are aligned so that the sternum appears at
the sagittal center, and the coronal bottom point lies 5 cm below the sternum. To reduce the variation between different MR
scanners, we rescaled the MIP images to the modal resolution of approximately 0.89 mm per pixel in each direction. Then, we
used cropping or zero padding to achieve the field of view to 448 px and 224 px in sagittal and coronal directions, respectively,
while keeping the bottom center point fixed. We divided each image into two halves of size 224 px × 224 px and picked
the one with cancer. Patients with bilateral cancer yielded two images. The resulting right breast images underwent horizontal
flipping. Finally, we normalize each image to zero mean and unit variance.

D. Residual Tumor Volume Ratios

A dedicated Biomedical Engineer analyzed the original MR scans and manually delineated the lesions. We calculated tumor
volumes for each case by multiplying the number of nonzero voxels in each delineation by the size of one voxel in mm3.
Dividing the residual volumes by the initial ones yielded the ratios this study aims to predict. Their distribution is depicted
in Fig. 1. For the deep learning experiments, we normalized the values by dividing them with rounded to first decimal their
standard deviation in the training subset, which was 0.3.

E. Residual Cancer Burden

RCB scores were derived from the final resection specimens by a dedicated breast pathologist with 30 years of experience
(PJvD) [8], following the methodology described by [5]. The distribution of the RCB discretized as described in the literature
[5] is shown in Fig. 1. Similarly to the RTVR, we divided the scores by their standard deviation in the training subset rounded
to the first decimal, which was 1.2.

F. Data split

Before proceeding to divide the data into training and testing subsets, we initially isolated the three bilateral cases. We then
selected 80 of the remaining 101 patients for the training subset. To do this, we performed a stratified data split with four
classes. These classes corresponded to zero/zero, zero/nonzero, nonzero/zero, and nonzero/nonzero values of residual tumor
volumes and RCB scores, respectively. Finally, we included the initially set aside bilateral cases in the test subset, bringing it
to a total of 24 patients or 27 breasts.

G. Weakly Supervised Deep Regression

The model we use for all deep learning experiments consists of a convolutional backbone and a linear head. As the backbone,
we utilize a resnet14t from PyTorch Image Models (timm) library [9]. Its architecture corresponds to a residual network with
a bottleneck building block [10] modified with the ResNet-C tweak from [11]. This tweak replaces the input stem 7 × 7
convolution with three 3× 3 convolutions, which reduces the computational cost. We start each experiment with the weights
pre-trained on ImageNet-1k [12] following procedure C described in [13]. The head takes 2048-channel input and consists of
the three fully connected layers with 128, 128, and 1 channel outputs. A dropout precedes each fully connected layer, and a
rectified linear unit (ReLU) follows each except for the last one. In the case of multi-task learning, each task has its dedicated
head.

To tackle the data imbalance problem, we use the Batch-based Monte Carlo (BMC) loss function. This loss is one of the
Balanced MSE implementations proposed in [14]. The original paper claims it is the first general solution to one- or multi-
dimensional imbalanced regression. The chosen implementation is the only one that requires no prior knowledge of the target
distribution and better fits in our case of limited data. The loss contains a noise scale parameter σnoise jointly optimized in
the training process. However, this loss is hard to interpret, so we use another balanced metric to evaluate the performance.
This metric is the bin-based Euclidean distance between the output and the target values. The errors are averaged for the
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(a) Training Subset (b) Test Subset

Fig. 1: A joint histogram of the imbalanced regression targets. The RCB classes correspond to the continuous RCB scores
thresholded with 0, 1.36, and 3.28, which accords to the procedure from [5]. The bins for the RTVR values are arbitrarily
selected. The only exception is that zero and nonzero values are kept separate on purpose. The color represents the counts.
Only the counts presented on the joint histogram have a label.

targets in each bin from Fig. 1a, and the mean of the obtained per-bin scores serve as the final performance measure. For
one-dimensional regression, Euclidean distance equals L1 error.

We try to continue following procedure C from [13] used in pre-training. To optimize the model, we use SGD with
Nesterov’s momentum [15]. Adaptive Gradient Clipping (AGC) introduced in [16] applies to the convolutional backbone on
each optimization step. Weight decay (L2 penalty) serves the required regularization. We diverge from the procedure in the
batch size choice due to the small number of available training images. For the sake of ease, we also do not employ a cosine
learning rate decay.

The data augmentation we apply consists of three transformations. The first is contrast adjustment via gamma transformation
with gamma uniformly sampled from between 1 −∆γmax and 1 + ∆γmax. The second is adding Gaussian noise with zero
mean and variance uniformly selected from zero to σmax. Finally, we utilize bilinear downsampling to a random size between
smin× smin and 224× 224 followed by bilinear upsampling to the original size of 224× 224. We apply these transformations
in a random order, each with the probability of p. We normalize the intensities to zero minimum before the gamma correction.
After each transformation, we again set the mean and variance of the processed images to zero and one, respectively.

In all three experiments, we optimize the hyperparameters with Optuna [17]. We utilize the k-folds technique with four
folds, each consisting of 60 kth training/validation and 20 kth test samples. We stratify the splits with the four classes used for
the initial data split II-F. Each hyperparameter set is assigned a score of mean test error in the five runs. We prune a trial if the
kth test error is below 75th percentile of the kth test errors in the previous trials. Since we have no separate validation subset,
we use the non-augmented training data for early stopping in case of no improvement in the validation error for 15 epochs.
After 120 epochs, we stop training regardless of the validation error. We utilize TPESampler, which uses a Tree-structured
Parzen Estimator algorithm, for the following hyperparameters: learning rate, momentum, weight decay, AGC value, dropout
rate, initial σnoise for the BMC loss and its learning rate, the augmentation parameters ∆γmax, σmax, smin, and p. We try
500 hyperparameter sets per experiment. The batch size is fixed in all experiments and equals 20.

H. Statistical Analysis

Similarly to [18], we evaluated the performance of each trained model by comparing its RTVR and RCB predictions with the
ground truth values using Spearman’s correlation coefficient. In addition, we estimated the bias and variance of the algorithm
by implementing non-parametric Bland–Altman plots [19].

To further compare the performance of the two unidimensional regression models with that of the multi-task model, we
employed Bootstrap Resampling. This non-parametric method generated a confidence interval for the difference between
Spearman’s correlation coefficients calculated for the two models. After 1000 iterations, we established a distribution of these
differences and calculated a 95% confidence interval [20].

I. Shapley Additive Explanations

We used Deep SHapley Additive exPlanations (SHAP) to explain the model outputs [21]. In simple terms, SHAP measures
the impact of a feature on a particular prediction compared to the average for the dataset. It relies on the concept of Shapley
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values from cooperative game theory [18]. It individually treats the marginal contribution of every pixel to the predicted RTVR
or RCB score. These contributions can be positive and negative.

Utilizing Deep SHAP, we created a SHAP-values map for each test MIP image and each regression value. A pixel in this
map represents how this particular pixel contributed to the model’s output. Higher values indicate higher predictions, while
lower values correspond to lower predictions [18].

We used all 80 validation (non-augmented training) images to provide the required background signal for Deep SHAP
analysis [21].

III. RESULTS

A. Weakly Supervised Deep Regression

The optimal hyperparameter values shown in Table I were comparable among the three deep-learning experiments. Only the
RTVR predicting model required strong L2 regularization with optimal Weight Decay being 0.1. Only the multi-task regression
model performed better with no dropout. Optimal initial σnoise values for the BMC loss were close to zero, which makes the
loss similar to the basic MSE at the beginning of the training.

Experiments

Parameter Scale Lower Upper Step RTVR RCB Multi-task

Learning Rate log10 −4.0 −2.0 0.5 −3.5 −2.5 −3.5

Momentum 1 0.80 0.95 0.05 0.90 0.80 0.85

Weight Decay log10 −5.0 −1.0 0.5 −1.0 −4.5 −5.0

AGC Value log10 −5.0 −1.0 0.5 −2.5 −4.5 −2.5

Dropout Rate 1 0.0 0.2 0.1 0.2 0.2 0.0

Initial σnoise log10 −2.0 0.0 0.5 −2.0 −2.0 −1.5

Learning Rate for σnoise log10 −6.0 −4.0 0.5 −4.5 −5.5 −5.0

∆γmax 1 0.0 0.5 0.1 0.2 0.4 0.5

σmax 1 0.0 0.5 0.1 0.4 0.5 0.2

smin 1 56 224 28 140 56 196

p 1 0.0 1.0 0.1 0.6 0.5 0.5

TABLE I: Hyperparameter search settings and results for the three deep learning experiments. Logarithmic optimization is
used for some parameters, as indicated.

In the hold-out test set, the Spearman’s correlation between the predicted RTVR and the ground truth RTVR in single-
and multi-task regression experiments were ρ = 0.47 (P < 0.05) and ρ = 0.61 (P < 0.05), respectively (Fig. 2a). Bootstrap
Resampling showed no significant difference between the ρ values (P = 0.49). The ground truth RCB scores and those predicted
by single- and the multi-task models were less monotonically related, with Spearman’s ρ = 0.23 (P = 0.24) and ρ = 0.34
(P = 0.08), respectively (Fig. 2b). Bootstrap Resampling also indicated no significant difference between these ρ values (P
= 0.55).

Nonparametric Bland–Altman analysis showed that RTVR predicted by single- and multi-task models had mean biases of
−0.01 (95% limits of agreement = −0.52 to = 0.49) and −0.01 (95% limits of agreement = −0.50 to = 0.49), respectively,
compared to the ground truth RTVR (Fig. 3a). The predicted RCB had mean biases compared to the ground truth RCB higher
than did RTVR. They were 0.26 (95% limits of agreement = −1.59 to = 2.11) and −0.15 (95% limits of agreement = −1.80
to = 1.51) in uni- and multi-dimensional regression, respectively (Fig. 3b).

B. Shapley Additive Explanations

Explanations of the models’ outputs showed that tumor and tumor-related structures, such as adjacent vessels, strongly
influenced the predictions (Fig. 4). These structures in both input channels affected RTVR and RCB positively. More visible
tumor tissue on the pre-treatment MIP images led to smaller outputs only in the RTVR-predicting model. The multi-task model
did not focus on the volume ratios and made decisions based on other features. The explanations of the RCB-predicting model
were similar to those of the multi-task model predicting both scores.

IV. DISCUSSION

We demonstrated the performance of the resnet14t trained on limited and imbalanced data in a weakly-supervised deep
regression of RTVR and RCB values. We compared the predictive ability of the models trained with each of these values as
targets and that of the multi-task model. The Spearman’s correlation coefficients were relatively low, showing little monotonical
dependence between the predicted and ground truth values in all experiments. The multi-task model achieved a slightly better
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(a) RTVR Regression (b) RCB Regression

Fig. 2: The correlation between values predicted and ground truth values in the hold-out test set (N = 27). The images also
depict Spearman’s ρ and P in different experiments.

(a) RTVR Regression (b) RCB Regression

Fig. 3: Bland-Altman analysis shows mean biases and 95% limits of agreement (LoA) for RTVR and RCB values predicted
in uni-dimensional and multi-dimensional regressions compared to corresponding ground truth.

correlation in both regressions, but Bootstrap Resampling showed no statistically significant improvements. SHAP provided
additional interpretations of the models’ output.

We can infer a relatively poor performance of the proposed approach by comparing it to other weakly-supervised deep
learning methods for breast MRI. For example, van der Velden et al. [18] studied the feasibility of automatic volumetric breast
density estimation on MRI without segmentation and utilized SHAP to explain the estimated values. Despite our work having
a different objective, fewer training samples, and two-dimensional MIP images instead of three-dimensional MRI, we can still
compare the models’ predictive abilities and SHAP explanations. The Spearman’s correlation between the values predicted by
the proposed CNN and the ground truth breast densities was higher than that in all our experiments. Unlike the breast density
estimating model, our models did not erroneously base their predictions on the heart tissue present in the images. However,
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Fig. 4: Example of SHAP maps for RTVR and RCB predictions in uni-dimensional and multi-dimensional regressions. One can
notice that the tumor region and adjacent vessels are responsible for both increase (pink) and decrease (green) in predictions of
RTVR and RCB. The explanations in different experiments have almost no significant visual differences. Ground truth RTVR
is 0.52. RTVR predicted by single- and multi-task regression models are 0.20 and 0.34, respectively. Ground truth RCB is
2.98. RCB predicted by single- and multi-task regression models are 1.46 and 2.95, respectively.

our models yielded SHAP maps with positive and negative values mixed inside the region of interest, which van der Velden et
al. [18] did not observe. We can additionally compare the explanations to those presented in Verburg et al. [22] for the model
designed to classify between breasts with and without cancer. Similarly to our work, MIP images served as input for that
model. However, the training data used in that study was multi-institutional and not limited. Positive SHAP values attributed
to that model were homogeneous and coincided with the location of the lesions. Despite the presence of contrast-enhanced
blood vessels adjacent to the tumors, unlike in our work, only the lesions determined that model’s output.

Having proven the overall poor performance of the models trained to predict RTVR and RCB value, we can compare them
with each other. Interestingly, the RTVR predicting model, while having more meaningful homogeneous SHAP maps, required
high regularization for optimal performance. Speculating on the reasons for this, we assume that the other two models failed
to learn even the k training-validation subsets, with early stopping being deployed too early. Therefore, overfitting could be
the only way to train for the RCB predicting and multi-task models, requiring low regularization. Next, only the multi-task
model required no dropout for optimal performance. We can speculate that the reason for this could be the same size of the
network but twice more regression targets. Despite each task receiving a corresponding linear head, the convolutional body
remains unchanged in this experiment.

In this paper, we dealt with two data-related issues. We addressed the problem of imbalanced regression by using the BMC
loss and bin-based balanced metrics. As we conducted no ablation study, the effectiveness of this strategy remains unknown.
Relatively low optimal initial noise scales may indicate a problem to explore. Another data-related issue was the limited number
of available images. It influenced the chosen experiment design, arousing the need for cross-validation and preventing us from
using a separate validation subset.

Rather than exploring the limitation of this study, future research can focus on developing a more robust approach for the same
regression problem. First, one may consider the potential of designing a task-specific architecture, which remained untapped in
our work. For example, a multi-branch approach would be more suitable for two unregistered input images. In contrast to the
employed two-channeled one, it may prevent anatomical inconsistencies from negatively affecting the performance. Second,
securing access to a larger dataset or collaborating with other institutions to merge and utilize their data can significantly
increase the model’s capacity to predict the RTVR and RCB values. If this is not feasible, future research may experiment
with more augmentation strategies, including various spatial transforms, which remained unemployed in our study. Since MIP
images contain truncated information, one can use original three-dimensional MRI if hardware allows it. In that case, generative
AI can serve as an effective augmentation tool. For instance, one can consider training a VAEGAN [23] conditioned on the
lesion masks using SPADE [24]. That would allow for explicitly determining the tumor volumes in the generated images and,
therefore, be a suitable strategy for the RTVR regression. Finally, future research can incorporate techniques designed for
multi-task learning. For example, combining the loss weighting strategy proposed by Kendall et al. [25] with the BMC loss
would contribute to the method’s robustness.
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V. CONCLUSION

We investigated the feasibility of predicting patients’ responses to NAC directly from MIP images using a weakly-supervised
deep regression model. The regression targets were RTVR and RCB values, representing radiological response on MRI and
pathological response, respectively. We compared the predictive ability of single- and multi-task models utilizing Spearman’s
correlation coefficients. We observed no statistically significant difference between the models, although the multi-task one
showed better results in estimating both regression targets.

Numerical results and SHAP explanations indicate that the current method cannot produce clinically meaningful outputs.
Therefore, in its current form, the proposed method can not apply in clinical practice. Future work should consider refinement
of the current approach or exploring alternative ways to achieve better performance in the regression task.
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