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Abstract 
Technological development is driven by the recombination of related technological components 

and is occasionally disrupted through the introduction of uncommon combinations. These novel 

combinations can result in radically different technologies with profound economic and societal 

impact. However, the mechanisms through which technological novelty is created are not well 

understood. This complicates policy making in its aim to influence technological novelty. To 

address this research gap, this study measures the influence of proximities between R&D project 

partners on two types of technological novelty: (1) structural novelty, which involves the 

combination of disparate technological components and (2) functional novelty, which involves 

the introduction of technologies new to the system. We develop a text-based approach for 

quantifying technological novelty by utilizing GloVe word vectors obtained from energy R&D 

project abstracts. The novelty measures are validated and regressed against proximity 

characteristics of the R&D projects derived from Boschma’s (2005) proximity framework. We 

found mixed results. Organizational proximity was found to have a negative effect on structural 

novelty for some technologies but a positive effect on functional novelty for energy efficiency 

projects. Technological and geographical proximity were found to be negatively associated with 

functional novelty for solar and wind energy technologies respectively. The remaining tested 

relationships were not significant. Despite these mixed results, our study highlights the value of 

using a text-based approach to measuring technological novelty. This offers a potentially valuable 

tool for policy makers in their efforts to ex ante detect technological novelty.  
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1.  Introduction 

Technological novelty is considered a pivotal source of economic development and societal 

change (Schumpeter, 1934; Nelson, 1993). Developments in biotechnology, artificial intelligence 

and communication, among other fields, have drastically changed the way we live and have 

significantly contributed to economic growth. Past advancements support our aspirations for 

addressing contemporary societal challenges to substantially rely on technological development. 

As such, understanding the drivers of technological novelty is essential for policy makers in their 

aim to reap potential societal benefits. 

Despite alleged social and economic desirability, introducing novel technology is by no means 

self-evident. Technological development generally follows a rather predictable trajectory of 

incremental change. Only occasionally radically novel technologies are introduced that disrupt a 

prevailing paradigm (Dosi, 1982). The scarcity of technological discontinuity can be ascribed to 

the nature of technological search. During their search economic actors can benefit from 

knowledge previously accumulated in their technological domain (Nelson & Winter, 1982; 

Malerba, 1992), meaning that new R&D activities are generally closely related to prior search 

activities (Stuart & Podolny, 1996). This constrains technological advances towards incremental 

rather than radically novel technology, since radical inventions rely on inherently different 

combinations of knowledge and search strategies (Cohen & Levinthal, 1989; Ahuja & Lampert, 

2001; Schoenmakers & Duysters, 2010). Furthermore, it is evident that not every introduction of 

technological novelty can result in equally successful radical invention. In fact, search activities 

involving more radical combinations of knowledge are known to generate less useful inventions 

on average (Fleming, 2001). Even if successful, the societal and economic impact might be 

realized only after a long period or even by other inventors drawing on the initial design. This 

makes novel technological search a risky and costly endeavor, subject to high uncertainty of 

outcomes and appropriability (Nelson, 1959; Arrow, 1962; Fleming, 2001). 

Collaborative R&D projects during which actors jointly develop new technology can play an 

important role in this regard. In the course of technological trajectories, actors gain technological 

knowledge and acquire capabilities, constituting their present knowledge base and resources 

(Dosi, 1988; Cohen & Levinthal, 1990; Nieto & Santamaria, 2007). Collaborating allows actors to 

tap into each other’s knowledge base, thereby expanding recombinatorial opportunities during 

technological search (Singh & Fleming, 2010). Consequently, the result of collaborative R&D 

projects can be novel combinations of knowledge reaching beyond the knowledge previously 

accumulated within a technological paradigm (Nelson & Winter, 1982). From a societal and 

economic perspective this is desirable, since radical innovations strongly rely on combining 

specialist diverse knowledge (Fleming, 2001; Schoenmakers and Duysters, 2010; Castaldi et al., 

2015). Furthermore, collaborative R&D allows actors to confine the risks of highly uncertain 

novel technological search, by sharing resources and investments (Green et al., 1995). 

Not every R&D project yields similar results in terms of innovative output. Finding novel 

combinations entails a successful conjunction of complementary bodies of knowledge and the 

learning of new organizational routines (Henderson & Clark, 1990; Cohendet & Llerena, 1997). 

Depending on the conditions in which knowledge exchange takes place, these knowledge 

combinations can be more or less novel. The degree of proximity between collaborating partners 

is generally considered an important factor in this regard. It affects uncertainties, coordination 
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problems and knowledge exchange conditions, which in turn facilitate or hinder innovation and 

interactive learning (Gertler, 1995; Boschma, 2005; Nooteboom et al., 2007). Traditionally 

geographic proximity has received most attention in economic geography studies but more 

recently the importance of non-spatial proximity dimensions has been stressed (Knoben & 

Oerlemans, 2006). Boschma’s (2005) work, which distinguishes between cognitive, 

organizational, social, institutional and geographical proximity, has been particularly influential. 

He argues that with regard to effective collaboration, an optimal degree of proximity between 

partners exists. If proximity is too low (i.e., actors differ too greatly), collaborating might not be 

fruitful as it is not possible to internalize the skills or competencies of the other (Hamel, 1991; 

Boschma & Lambooy, 1999). On the other side, too much proximity between actors makes 

collaborating redundant as no new knowledge can be obtained. This way, the output of 

collaborative R&D projects is subjected to influences of proximity between actors. 

The influence of R&D partner proximity on project level technological novelty is not profoundly 

studied. One complicating factor is that technological novelty is typically measured ex post, after 

innovative output has become apparent in patent or product statistics. These statistics are often 

not available for pre-commercial R&D projects and as such many studies resort to different levels 

of analysis. On the firm level, strategic management literature is concerned with the influence of 

alliance portfolio proximity on individual firm performance (see: Branstetter & Sakakibara, 2002; 

Van Beers & Zand, 2014; Baum et al., 2000; Mouri et al., 2012; Miller, 2006). On the regional level, 

studies from economic geography focus on the relationship between proximities of economic 

actors and subsequent economic development of regions (Torre & Wallet, 2014). On a systemic 

level, studies from innovation systems literature emphasize the importance of R&D policy 

infrastructures and their implication for collaborating in novel technological search (Jacobsson & 

Bergek, 2004). However, none of these perspectives make explicit how the proximities in 

collaboration are related to project level technological novelty creation. As such, the relationship 

between proximities of R&D project partners and creation of technological novelty on the project 

level remains largely uncovered. This study aims to bridge that gap by answering the following 

research question:  

How does proximity between project partners relate to the creation of technological novelty in 

collaborative R&D projects? 

To answer the research question, we build hypotheses based on R&D partners’ distances on 

different proximity dimensions and on two measures of novelty: (1) structural novelty, which 

involves the combination of disparate technological components and (2) functional novelty, 

which involves the introduction of technologies new to the system. Employing a text-based 

machine learning approach, these hypotheses are empirically tested on Dutch R&D projects that 

received funding under the “Topsector energy policy” between 2012 and 2016. Technological 

novelty is particularly salient in the energy sector in light of sustainability challenges, such as 

resource scarcity, growing energy demand and anthropogenic global warming (Kemp, 1994; 

Sagar & Van der Zwaan, 2006). These challenges are deeply coupled with path dependencies and 

lock-ins (Unruh, 2000; Markard & Truffer 2006) to which optimizing prevailing paradigms 

through incremental inventions is insufficient (Geels, 2002; Markard et al., 2012). Rather, it 

requires radically novel combinations of knowledge to introduce technological breakthroughs 

that enable shifts in technological trajectories (Nelson & Winter, 1982; Dosi, 1982; Nemet, 2009). 

Regarding Dutch energy policy, the aim is however not to solely promote breakthrough energy 
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technology but also to retain the competitiveness of the Dutch energy sector, which can be 

realized through incremental innovation as well (Janssen et al., 2017). 

The contribution of this study is threefold. First, we provide insight in the creation of 

technological novelty by R&D projects in the Dutch energy sector. Secondly, we add to the existing 

proximities framework, by empirically examining the proximity-related mechanisms that 

underlie technological novelty. These insights are relevant to innovation scholars and may 

further allow policy makers to better direct technological novelty through public R&D funding. 

Thirdly, we propose a machine learning approach to measuring technological novelty based on 

textual content. Thereby we contribute to existing literature on the operationalization of radical 

invention. This can be relevant for innovation scholars, policy makers and innovation managers 

as it allows for ex ante identification of potential radical innovation. 

The remainder of this study proceeds as follows: In the theory section, technological novelty as 

well as other relevant theoretical concepts are conceptualized and hypotheses are formulated. 

Thereafter, in the methodology section these are operationalized. Then, the results section sets 

out descriptive statistics, after which the results for each hypothesis are discussed individually. 

Section 5 then discusses theoretical and societal implications of the study, after which final 

conclusions and an answer to the research question are formulated in section 6. 
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2. Theory and hypotheses 
This section sets out the concept of technological novelty as a process of recombination of existing 

technological components and describes two ways of defining it. We then hypothesize what 

proximity related mechanisms are expected to underlie technological novelty creation. 

 

2.1 Technological Novelty 

Technological novelty is introduced when economic actors successfully conduct technological 

search for novel combinations of complementary but previously existing components of 

technological knowledge (Schumpeter, 1934; Basalla, 1980; Nelson & Winter, 1982; Fleming, 

1999; Arthur, 2007). A component can be defined as a distinct physical portion of a technology, 

embodying a core design concept (Henderson & Clark, 1990). Examples are hydropower 

generators, consisting of a basin, turbines, a generator, and power transformers; or synthesizers 

consisting of oscillators, electronic filters and an amplifier. Every new combination that is 

invented adds a new element of technological knowledge to the existing universe of knowledge 

elements (Fleming and Sorensen, 2004; Ahuja & Lampert, 2001). 

 

The degree to which inventions introduce technological novelty is typically defined in terms of 

their radicality. Empirical studies in evolutionary economic literature commonly consider an 

invention to be radical based on its impact on future technological advances. In this vein, radical 

inventions can form the basis of new technological paradigms on which future technological 

trajectories are built (Dosi, 1982). In management literature, an invention is denoted radical 

based on its subsequent impact on markets and industries (Anderson & Tushmann, 1990, 

Utterback 1996). Radical inventions open new markets, thereby disrupting existing modes of 

operation which requires industries to drastically adapt their routines and competences.  

 

Defining technological novelty using impact related conceptualizations has a major drawback 

since it only takes into account those inventions that eventually developed into successful 

disrupting innovation. Due to high outcome variability (Fleming, 2001), radical invention 

measured ex post neglects those inventions that did not come to fruition, causing a research bias 

in understanding the conditions under which radical inventions are developed (Verhoeven et al., 

2016). To overcome this problem, we conceptualize radical invention in terms of its underlying 

technological characteristics, considering its structural components and functionality. We follow 

the work of Dosi (1998) and Arthur (2007), who define technology as a combination of 

components that fulfill a specific need or function in society (e.g., cars and trains satisfying 

transportation needs or gas and wind turbines fulfilling the function of electricity generation). 

Thus, technologies differ from each other in the way they combine these building blocks to fulfill 

a specific need. 

 

To this end, we distinguish between structural and functional technological novelty (Arthur, 

2007; Verhoeven et al., 2016). When defining the degree of novelty, one can map existing 

technological components on a technology space, in which related components are located close 

to one another (Jaffe, 1986; Silverberg & Verspagen, 2005; Novelli, 2015). Components are closer 

related when previous recombination has been proven successful. Economic actors conduct 

searches for new inventions by exploring this space and recombining different technological 

components, thereby creating technological novelty (Fleming, 2001). Evaluating to what extent a 

combination introduces technological novelty implies comparing new artefacts to existing 
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components in the technology space. Structural novelty is then defined as the degree to which 

technological combinations incorporate components located in distant parts of the technology 

space. This is a capability ‘broadening’ exercise, as it requires actors to combine previously 

unrelated knowledge domains (Argyres and Silverman, 2004). The concept of structural novelty 

is profoundly studied and considered to be an important driver of radical invention (Nooteboom, 

2000; Fleming, 2001; Nemet, 2009). 

 

Functional novelty entails novelty in functionality of a specific combination of technological 

components. It applies to a set of technologies and is therefore a macro-level concept (Paez-

Aviles, 2017). It is defined as the degree to which new combinations are different compared to 

other designs within a system (Van Rijnsoever et al., 2015; Strumsky & Lobo, 2015). Van 

Rijnsoever et al. (2015) study a similar concept referred to as technological diversity, defined as 

the increase in available alternatives to fulfill a specific need. The concept is also empirically 

studied by Carnabuci & Operti (2013), who refer to it as recombinant reuse. Functional novelty 

increases recombinatorial opportunities in innovation systems and inhibits the potential for 

technological lock-in (Dosi, 1982; Van Den Bergh, 2008). On the other hand, a lack of functional 

novelty increases the chance that superior combinations remain unexplored. Furthermore, it 

decreases a system’s technological resilience to unforeseen environmental fluctuations, 

particularly during the emerging phase of technologies (Negro et al., 2008). The introduction of 

functionally novel technologies can occur either through a novel combination that deviates from 

established practices or through the improvement of an existing combination fulfilling a specific 

function in a new way. The latter requires economic actors that improve technological 

combinations and find new application purposes, consequently ‘deepening’ their current 

capabilities (Argyres and Silverman, 2004). Examples of functionally novel technologies would 

be the use of hydroelectric dams for energy storage to solve intermittency problems of renewable 

energy generation or the use of gas pipe technologies for hydrogen transport. 

 

Structural and functional novelty are two orthogonal concepts. Christensen (1997) asserts that 

functional novelty can have a disruptive impact by opening new markets, even though initially 

structural novelty is only incremental. However, high functional novelty does not necessarily 

imply low structural novelty. An R&D project can be both combining previously unrelated 

components and also fulfill a societal function in a new way. Figure 1 below further illustrates the 

orthogonality of the concepts and provides examples. 
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 Structural Novelty 

Low High 

F
u

n
ct

io
n

a
l 

n
o

v
el

ty
 

H
ig

h
 

Combinations of technological elements that have 

been explored before (related components), but 

which deviate from previously existing 

technologies that fulfil the same function.  

 

Example:  

Concentrated solar power technology is well 

explored in the broader technology space but 

would diverge from existing practices when used 

to fulfill the function of energy production in in 

The Netherlands. 

Combinations of technological components that draw 

on knowledge from disparate regions of the technology 

space, and at the same time diverge from existing 

technologies within an innovation system.  

 

Example:  

The use of gas pipe technology to transport and store 

hydrogen. Hydrogen and LNG technologies are still 

relatively unrelated and their combined use would 

deviate from existing practices in The Netherlands to 

fulfill the function of energy transport and storage. 

L
o

w
 

 Combinations of technological components that 

are relatively familiar to the innovation system, 

drawing on knowledge from strongly related 

regions in the technology space. 

 

Example:  

Projects concerning technologies to improve 

refinery processes of conventional energy in The 

Netherlands. These combinations are previously 

explored by Dutch actors and are therefore 

stronger related to existing technologies in The 

Netherlands. 

Combinations of technological components which are 

not unprecedented in the innovation system but draw 

on knowledge from disparate areas of the technology 

space. 

 

Example:  

The combination of digesters and wastewater treatment 

technologies to provide district heating in The 

Netherlands. The combination is relatively new in the 

broader technology space but its contribution to 

novelty in The Netherlands might be limited as it is 

relatively well explored there. 

Figure 1: Technological novelty matrix with examples 

 

2.2 The proximity framework 

Engaging in collaborative R&D is often instrumental to joint knowledge development and 

organizational learning (Hamel, 1991; Teece & Pisano, 1994; Colombo, 2003). The proximities 

framework (Boschma, 2005) provides a useful tool for studying the factors influencing 

interorganizational R&D outcomes. Existing literature distinguishes between multiple, 

sometimes overlapping dimensions of proximity that play a role in interorganizational 

collaboration. Our proposed framework follows a seminal literature review by Knoben & 

Oerlemans (2006), who study ambiguity and overlap between conceptualizations of proximity. 

They conclude that three distinctive dimensions of proximity can be discerned with regard to 

inter-organizational collaboration: technological proximity, geographical proximity and 

organizational proximity. 

 

2.2.1 Technological proximity 

Technological proximity refers to the similarity between knowledge bases of participants in an 

inter-organizational collaboration (Knoben & Oerlemans, 2006). An organization’s knowledge 

base underlies its technologies and innovative solutions (Dosi, 1988). Dosi (1988, p. 1126) 

defines it as the “set of information inputs, knowledge and capabilities that inventors draw on 

when looking for innovative solutions”.  
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Innovation literature attributes great importance to the diversity of knowledge resources with 

regard to technological search (Nelson & Winter, 1982). Interorganizational R&D is seen as a 

means to increase the chances of innovative technological combinations (Prahalad and Hamel, 

1997; Ahuja, 2000). Since innovation is a process of recombining existing pieces of knowledge, 

higher diversity of knowledge bases in an R&D project increases the number of combinations that 

can potentially be tried. Empirically, knowledge base diversity is found to foster the innovation 

process by enabling participants in R&D projects to recognize innovative opportunities and build 

novel associations (Cohen & Levinthal, 1990; Nieto & Santamaria, 2007). Vice versa, if 

participants in R&D projects are specialized in identical technological domains, they tend to write 

off exploration of technological combinations outside their existing repertoire as an unnecessary 

risk (Levinthal and March, 1993). As such, too much technological proximity decreases the 

number of technological configurations to be considered and thus confines the scope for 

recombination (Galunic & Rodan, 1998). Although higher diversity increases recombinative 

potential, a minimum degree of technological proximity between partners is required for 

participants to learn from the collaborative party and use external knowledge to commercial ends 

(Cohen & Levinthal, 1990; Boschma, 2005). 

 

Previous studies highlight the importance of diverse knowledge for the creation of technological 

novelty. Hill & Rothaermel (2003) argue that knowledge required for radical technological 

invention tends to reside outside the boundaries of the organization’s knowledge base. Chandy & 

Tellis (1998) and Christensen (2013) show that the degree to which external knowledge is new 

to the actor’s knowledge base is deemed an important driver of radical invention.  Furthermore, 

Neffke et al. (2011) show that combining unrelated knowledge through cross-industry linkages 

is likely to induce radical innovation during technological search. Given the recombinant nature 

of innovation, we expect that converging more diverse knowledge bases (i.e., lower technological 

proximity between project partners) is reflected in higher structural technological novelty of the 

innovation projects they collaborate in. 

 

H1a: The technological proximity of R&D project partners is negatively associated with the project’s 

structural novelty. 

 

Introducing functional novelty likely requires knowledge from different technological disciplines. 

Paez-Aviles et al. (2017) indeed show that diversity of knowledge bases is positively associated 

with the creation of functional novelty. On the contrary, one can argue that technological search 

for functional novelty is hampered by low technological proximity as it is more difficult to 

exchange specialized knowledge when inventors are specialized in distant technological areas. 

However, Carnabuci & Operti (2013) find that diverse knowledge bases can enhance the ability 

to introduce both structural and functional novelty. Therefore, we hypothesize that technological 

proximity is negatively associated with a project’s functional novelty. 

 

H1b: The technological proximity of R&D project partners is negatively associated with the project’s 

functional novelty. 

 

  



10 

 

2.2.2 Geographical proximity 

Innovation is intimately bound up with tacit knowledge exchange, which is increasingly difficult 

to achieve at larger geographical distances (Cooke et al., 1997). Local knowledge networks allow 

for physical gatherings and interpersonal relationships which favours trust and interactive 

learning between project partners (Boschma, 2005). Strong interpersonal relationships induce 

knowledge spillovers that contribute to the diffusion of knowledge to neighbouring organizations 

in related industries (Cooke, 2008; Aghion & Jaravel, 2015). Empirically, Capaldo & Petruzzelli 

(2014) confirm this view, as they find a negative relationship between geographical distance and 

R&D project performance. Furthermore, Jaffe et al. (1993) find that patents tend to be cited in the 

same geographical area as where prior art was located. Consequently, knowledge is largely 

geographically bounded and differs substantially from region to region (Cooke 2001, Florida, 

2005). 

 

Despite contributing to local knowledge spillovers, geographical proximity also increases the 

potential for technological lock-in as geographically proximate actors tend to develop a shared 

knowledge context (Boschma, 2005). The shared context that exists among geographically highly 

proximate project partners could reinforce the belief in existing knowledge interlinkages, which 

would reduce the tendency of organizations to test different recombinations or new 

functionalities for existing technologies (Fleming, 2001). Regarding technological novelty, one 

can imagine that R&D projects subject to close geographical proximity might lack novelty as 

promising combinatorial opportunities outside their region might be overlooked (Capaldo & 

Petruzzelli, 2015). The likelihood of combining more disparate knowledge bases might indeed 

increase with lower geographical proximity and thereby yield more technological novelty in R&D 

projects. This was empirically substantiated by Bunduchi (2013) who finds that an over-reliance 

on geographically proximate partners leads to an emphasis on incremental innovation, 

hampering the ability to engage in radical innovation. Conversely, Phene et al. (2006), Sidhu et al. 

(2007) and Su (2022) find that combining knowledge from spatially distant locations creates an 

increased potential for novelty in R&D projects. However, too much spatial distance might 

hamper the accessibility of novel technological knowledge and interactive learning (Boschma, 

2005). Indeed, Nan et al (2018) find that geographical proximity has a U-shaped relationship with 

technological recombination in R&D projects. They argue that excessive geographical distance 

between R&D project partners limits the accessibility of knowledge novelty and therefore 

impedes the recombination of technological knowledge. As such, we hypothesize that 

geographical proximity between project partners has an inverted u-shaped relationship with 

structural novelty. 

 

H2a: The project partners’ geographical proximity has an inverted U-shaped relationship with the 

project’s structural novelty. 

 

Geographical distance between project partners can potentially result in specialized and tacit 

knowledge spillovers from one region to the other (Meyer-Krahmer & Reger, 1999). Since 

functional novelty is measured relative to an innovation system, knowledge residing outside that 

system potentially adds to functional novelty. As this study analyzes energy projects in the 

context of the Dutch innovation system, knowledge from foreign project partners might add to 

the functional novelty. This is increasingly likely when geographical proximity between 

participants is low. Paes-Aviles et al. (2017) indeed find that geographical distance between R&D 

project partners is positively associated with technological diversity, which is conceptually 
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similar to functional novelty. Similarly, Fitjar & Pose (2014) find that international cooperation 

appears as the main source of radical product and process innovation. We therefore hypothesize 

that higher geographical proximity is negatively related to an R&D project’s functional novelty. 

 

H2b: The project partners’ geographical proximity is negatively associated with the project’s 

functional novelty. 

 

2.2.3 Organizational proximity 

Organizational Proximity is known to suffer from conceptual ambiguity as it is studied at different 

levels of analyses. This study adopts the inter-organizational perspective as posed by Boschma 

(2005). In this light an organization is defined as a set of formal and informal rules and routines 

that depict behavior of members in particular professional situations (Rallet & Torre, 1999), 

referred to as organizational arrangement. Organizational proximity can therefore be understood 

as the degree to which two or more organizations differ regarding their organizational 

arrangement (Torre & Rallet, 2005; Knoben & Oerlemans, 2006). By sharing the same routines 

organizations can more easily interact which facilitates interactive learning (Boschma, 2005). 

Furthermore, proximate actors share innovation infrastructures such as labor markets for 

technically skilled personnel, which enhances knowledge integration (Mahmood & Mitchell, 

2004; Capaldo & Petruzzeli, 2014). A typical example of inter-organizational proximity is actors 

belonging to the same organizational group (e.g., Knowledge Institutes (KIs), Governmental 

Organizations or Industry), as each organization type represents a unique mode of organizational 

arrangement (Kirat and Lung, 1999; Shaw and Gilly, 2000; Nan et al, 2018). 

Differences in organizational arrangement have the potential to influence technological novelty 

of R&D projects as organization types each have a different search focus (Capaldo & Petruzelli, 

2015). Regarding structural novelty, Van Beers & Zand (2014) find that organizational diversity 

leads to a higher variety of knowledge intake in R&D projects. Involving KIs in R&D projects 

provides teams with access to tacit knowledge (Cockburn & Henderson, 1998) as well as codified 

knowledge, enabling teams to build upon state-of-the-art research (Fabrizio, 2009). KIs direct 

technological search by providing R&D project teams with an improved understanding of the 

technological space in which they search for solutions for technical problems (Rosenberg, 1990; 

Fleming and Sorenson, 2004; Du et al., 2014). Indeed, empirical research shows that universities 

are important sources of knowledge and engage more actively in knowledge discussions during 

collaborative R&D, which enhances the extent to which new ideas are developed (Belderbos et 

al., 2004a; Talab et al., 2020). Regarding functional novelty, collaboration with KIs is generally 

more targeted at developing innovations with the potential to open up new markets (Tether, 

2002). This was also highlighted by Belderbos et al. (2004b), who find collaboration with KIs to 

be an effective way of achieving innovation that opens up new market segments. 

Other types of organizational arrangement may also contribute to technological novelty in 

collaborative R&D. SMEs enjoy the advantage of less bureaucracy and fewer hierarchical layers. 

More informal communication allows for faster decision-making processes with fewer barriers 

to eliminate radically novel directions of search (Nooteboom, 1994). Therefore, small firms tend 

to explore new technological spaces often ignored by larger firms (Almeida & Kogut, 1997). 

Consequently, involvement of SMEs in collaborative R&D potentially contributes to widening of 

the search scope. On the other hand, innovative search by industry incumbents is typically 

strongly routinized resulting in reluctance towards exploring new areas of the technology space 
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(Utterback, 1996; Chandy & Tellis, 2000). The innovative inertia of firms increases with age and 

size and directs innovative search along the beaten tracks (Hannan & Freeman, 1984, 

Christensen, 1997). Furthermore, incumbent firms are embedded in an established industry 

network to which it is harder to properly value new technological opportunities (Hill & 

Rothaermel, 2003). Therefore, large firms dominate innovative activities in well-established 

areas of the technology space (Almeida & Kogut, 1997). To overcome inertia incumbent firms may 

resort to SME collaboration to derive functionally novel technological outcomes that expand their 

markets (Jang et al., 2017). 

Based on the above we hypothesize that collaborative R&D projects having organizationally 

diverse partners leads to (1) higher structural technological novelty through partners 

contributing their unique set of knowledge and skills; and (2) higher functional technological 

novelty through widening the search scope. 

H3a: Organizational proximity is negatively associated with the project’s structural novelty 

H3b: Organizational proximity is negatively associated with the project’s functional novelty 

2.3 Conceptual Model 

To summarize, the conceptual model depicted in Figure 2 visualizes the tested hypotheses. Each 

arrow represents a hypothesis, and its corresponding sign indicates the anticipated direction of 

the relationship. 

 
Figure 2: Conceptual model 
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3. Methodology 
This section describes the data collection, preparation and analysis as well as the 

operationalization of the variables (Table 1) through which we test our hypotheses. 

 

3.1 Research design 

The aim of the present study is to empirically test the relationship between proximity among 

actors in collaborative R&D projects and the project’s technological novelty. This relationship is 

quantitatively tested, taking collaborative energy R&D projects funded by the Dutch government 

as the unit of analysis. Thereby, this study adopts a quasi-experimental design in which the effects 

of non-randomly assigned independent variables on the dependent variable are estimated while 

controlling for confounding variables (Cook and Campbell, 1979). 

 

3.2 Case description and data collection 

Our data comprises 847 R&D projects that received funding under “Topsector energy policy” 

(TSE) policy between 2012 and 2016. Within TSE, funding is granted for different technology 

categories separately through tenders. The inclusion of technology categories is officially defined 

through ‘programmalijnen’ published in the Staatscourant1. Project data were obtained from 

innovation policy agency RVO and include the project abstracts, technology categories (IEA)2 and 

participant information. Project data from energy policies preceding the TSE were also included. 

Project abstracts are subject to standardization set by RVO, requiring the project’s motivation, 

description, objectives and results. In practice however, we find that not all project descriptions 

adhere to the proposed structure, resulting in a fairly high abstract length variety (Table 2). Any 

project descriptions in Dutch were translated to English using the Google Translate API. Any 

missing project abstracts were supplemented by data from the RVO website. Participant data 

were supplemented with industry classifications (SIC) obtained from the Chamber of Commerce. 

Out of all 847 R&D projects, 75 projects consist of only a single participant, which means that 

proximity statistics cannot be computed. These projects are therefore dropped from the analysis. 

 

3.3 Operationalization of variables 

Structural technological novelty (DV1) 

Technological novelty is a relative measure by definition and can therefore only be measured in 

relation to what existed before. Hence, we define a technology space consisting of all existing 

technological artifacts to compare new R&D projects against. To construct this technology space, 

we propose a text-based approach that uses words and similarities between them, captured 

through word embeddings. Word embeddings are numerical vectors positioned in a vector space. 

They quantify the meaning of words in such a way that related words have similar positions in 

the vector space. This study uses pre-trained GlobalVectors (GloVe) which are 300 dimensional 

vectors learned from co-occurences of 840 billion words in publicly available texts up until 2014 

(Peddington et al., 2014). Similar as to word combinations in texts, the extent to which knowledge 

elements are combined in technological artifacts specifies their relatedness (Ahuja & Lampert, 

2001). In this vein, we use the similarity of words in project abstracts as the basis for our 

structural novelty measure. 

 
1 A publication of the Dutch government in which generally binding regulations are published that have been established by 

ministerial regulation. 
2 International Energy Agency (IEA) distinguishes 24 subcategories of energy R&D. 

https://iea.blob.core.windows.net/assets/a2f370cf-873e-486f-935d-c2a117e14ba6/IEAGuidetoReportingEnergyRDDBudget-
ExpenditureStatistics.pdf 
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When combining similar technology domains, the purpose of collaborative R&D is usually to 

obtain a deeper understanding of those domains, also referred to as specialization. These 

combinations are likely to have been already explored and it is expected these will likely lead to 

incremental innovation (Katila & Ahuja, 2002). In the technology space, these projects would 

draw from knowledge fields that are closely located to one another. When combining disparate 

pieces of knowledge, on the other hand, technologically deviant projects can lead to previously 

nonexistent artifacts. This is found relevant in two ways. Firstly, these projects broaden the scope 

of research (Katila & Ahuja, 2002). Secondly, combining knowledge from disparate domains 

potentially delivers more radical inventions (Schoenmakers & Duysters, 2010). In the technology 

space, these projects would draw from knowledge fields scattered over different parts of the 

space. 

 

Structural technological novelty is computed by taking the average distance between pairwise 

combinations of TF-IDF weighted GloVe vectors of terms in a project’s abstract after stop words 

are removed (Equation 1, below). By using TF-IDF weighted terms, we add more weight to words 

that stronger characterize that project relative to other abstracts in the corpus. Example abstracts 

with high and low structural novelty are reported in Appendix A and were found to be intuitive. 

 

 

 

 
 

- M denotes the set of words 

- vi represents the index of word vector i in set M, vj represents the index of vectors other than i 

- tfidfi and tfidfj represent the tfidf weight of word vector i and j respectively 

- The normalization factor (M-1)2 avoids duplicate distance calculations for pairs (vi, vj) 

 

To verify the reliability of this measure a robustness check is performed that tests whether 

structural technological novelty is correlated with technological (dis)continuity of a project. 

Discontinuity is defined as whether a new technology is strongly related to technologies currently 

part of the technological regime. This measure is part of our data from RVO. We find that 

technologically discontinuous projects are associated with higher technological novelty, which is 

in line with what one would expect (Figure 3). A t-test on the average differences of technological 

novelty between discontinuous and continuous projects confirmed that the differences were 

statistically significant p < 0.001. 

Equation 1 
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Figure 3: Density plot of structural technological novelty: continuous vs discontinuous projects. 

 

Dependent variable 2: functional novelty 

Since we define functional novelty as the degree to which recombinations are novel compared to 

existing technological combinations that fulfil a certain function, a textual representation of 

existing technologies in the Dutch innovation system is needed. To this end, we collect project 

abstracts from energy policies preceding the TSE. These include all projects funded under the 

Energie Onderzoek Subsidie (EOS, 2005-2010) and InnovatieAgenda Energie (IAE, 2008-2012). 

The functional novelty of project i is then computed by taking the average distance between the 

dense vector representation of document i compared to all preceding documents (Equation 2). 

These document vectors are training by applying the PV-DBOW algorithm on all project abstracts 

using the doc2vec package in R3. The training objective of the algorithm is to obtain document 

vectors that best predict the words within a document  (Le & Mikolov, 2014). This way, it captures 

how documents differ from each other regarding their terminology. Just as for structural novelty, 

we tested whether a statistically significant difference between continuous and discontinuous 

projects existed for functional novelty, but such a relationship was not found. Section 4.2.2 further 

describes the validity of the functional novelty measure. 

 

 

 
- D denotes the set of documents 

- vdt represents the 300-dimensional document vector of focal document d, vj represents document 

vectors preceding document d 

- jt<dt indicates that all documents j precede d 

 

 

 
3 https://cran.r-project.org/web/packages/doc2vec/index.html 

Equation 2 
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Independent variable 1: Technological proximity 

Technological proximity is operationalized through a revealed relatedness measure between 

organizations that participate in collaborative R&D projects. The revealed relatedness concept 

was introduced by Neffke et al. (2016) who studied industry relatedness based on labour flows 

between 4-digit NACE codes. NACE presents a classification system used to categorize economic 

activities of organizations. Neffke et al. (2017) argue that the extent to which two industries hire 

workforces with similar knowledge and competences reveals their industry relatedness. In that 

vein a larger labour flow between industries indicates a higher proximity in terms of 

technological knowledge and vice versa. Our data describes pairwise industry labour flows in The 

Netherlands between 2009 and 2011 and was obtained via Utrecht University. The skill 

relatedness between industry i and j (SRij) is defined through Equation 3: 

 

 
 

Where Fij is the total labour flow from industry i to j, Fkj is the total inflow of workers to industry 

j, Fil is the total outflow of workforce from industry i and Fkl represents the total movement of 

workers reported during the period of 2009 to 2011. Neffke et al. (2017) demonstrate the validity 

of the measure defined by equation 3 as it is stable over time and very similar across workers in 

different occupations and wage groups. The resulting relatedness values are then normalized to 

the [-1,1] interval to correct for positive skewness of the variable (Equation 4). 

 

 
 

The revealed relatedness between industries is asymmetrical (i.e., the skill relatedness of i → j is 

different from j → i). To overcome this problem and reduce missing values, we symmetrize the 

measure by using the maximum relatedness value between industries i and j. 

 

The use of solely a skill relatedness measure based on industry similarity might neglect the 

additional knowledge that two partners from identical industries might bring. To that end, we 

leverage the skill relatedness measure by accounting for the variety and balance of project 

partners (Stirling, 2007), which is computed through Equation 5. 

 

 
 

Independent variable 2: Geographical proximity (IV2) 

Using Bing Maps geocoder, the geocodes (longitude, latitude) of participants were retrieved 

based on the participant addresses provided by RVO. The average geographical distance between 

partners in an R&D project was computed using the R geosphere package4, obtaining a value for 

the project’s geographical proximity. The resulting average distance was then log transformed to 

account for the right skew of the variable originating from trans-continental partnerships 

(Broekel & Boschma, 2012). 

 
4 https://cran.r-project.org/web/packages/geosphere/geosphere.pdf 

Equation 3 

Equation 4 

Equation 5 
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Independent variable 3: Organizational proximity / Organizational balance (IV3) 

A typical operationalization of organizational proximity relies on categorizing organizations 

based on their institutional arrangements (Kirat and Lung, 1999; Shaw and Gilly, 2000). To this 

end, we distinguish different actor types within an R&D project; Large Enterprises (LE), Small and 

Medium Enterprises (SMEs) and Knowledge Institutes (KI). These actor types are defined in RVO 

project data. Organizations providing funding advisory services are excluded. To obtain group 

level organizational proximity we measure the Shannon Entropy index (H), a widely accepted 

measure to quantify group or team level diversity (Harrison & Klein, 2007). It describes 

randomness in a population. When partners in a project share one type of organizational 

arrangement, the group is considered highly organized as it is not characterized by a large degree 

of randomness (Shannon & Weaver, 1964), indicating high organizational proximity. Vice versa, 

different institutional arrangements jointly in an R&D project are less organized and exhibit 

higher randomness and lower proximity. The Shannon entropy is measured through Equation 6. 

 

 
 

where pi denotes the proportion of organizational arrangement i in the project and n is the total 

number of organizational arrangements present in a collaborative R&D project. High entropy 

values indicate a more even distribution of project partners over organizational categories, 

implying a low degree of organizational proximity. Conversely, low entropy values denote a more 

uneven distribution of project partners over organizational categories, indicating higher 

proximity of organizational arrangements. For ease of interpretation, the organizational 

proximity variable is therefore renamed to organizational balance in the results section. 

 

3.4 Control variables 

Technology Readiness Level 

Inherent to higher technological novelty is a longer time-to-market period. A systematic way to 

assess the time-to-market of a particular technology is the technology readiness level system 

(TRL), developed by NASA (Mankins, 2009). It comprises 9 levels, ranging from: scientific 

research without any orientation towards a priori specified objectives (level 1), to: R&D 

concerning actual application and commercialization of a technology, focused towards specific 

objectives (level 9). Since our data set consists of projects from all TRL, ranging from 1-9, one 

might expect that TSE projects concerned with lower TRL levels score higher on technological 

novelty. We therefore include TRL as a control variable. 

 

Document length 

The probability of sampling semantically different words increases with the number of unique 

terms in a document, which thus likely influences the technological novelty measure. When 

measuring technological novelty of a random sample of 25,000 US energy patents, we indeed find 

such a relationship (Figure 4, R = 0.11). The number of unique terms used in a document is 

therefore added as a control variable in our analyses. 

 

 

Equation 6 
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Figure 4: Correlation number of unique terms and technological novelty in US patents 

 

Project starting year 

Another variable that could affect the novelty measurement of documents is the starting year of 

a project. A reliable measure of technological novelty should detect novelty regardless of the year 

in which a project was started. Similarity between words might however depend on the year in 

which one measures. The similarity between the words ‘battery’ and ‘vehicle’ for example could 

have become stronger over time due to the technologies becoming more related. The embeddings 

used in this study are created from a large training set containing documents up until 20145 and 

as such could underestimate the novelty of older projects and overestimate the novelty of newer 

projects. Interestingly, we do not find such a relationship when computing structural novelty over 

the sample of US energy patents (Figure 5). Here our measure of technological novelty is similar 

for different patent filing years. Another way in which project starting year could influence the 

variables is through updates in regulation. Annually, the eligibility criteria for obtaining funding 

are revised in De Staatscourant based on progressive insights. This can impact the formation of 

R&D consortia. To exclude any temporal effects on our regression results, we include the project 

starting year as a control variable in our analysis. 

Figure 5: Technological novelty of a random sample of 25,000 US energy patents. Patents show a 

constant novelty distribution over time. 

 

 

 

 

 

 
5 https://nlp.stanford.edu/projects/glove/ 
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Funding 

The amount of funding a project receives potentially allows agents to search more extensively 

through the technology space which increases the probability of finding novel combinations. 

Previous research has found that larger grants are likely to increase the R&D scope of firms 

(Aschhoff, 2009). It must be noted however that funding is granted based on research proposals 

that are evaluated on ‘innovativeness’, meaning that the causality could also be the other way 

round, e.g., novel proposals potentially receive more funding. To this end, we analyzed 

‘innovativeness’ scores assigned to proposals by industry experts during the proposal review 

phase. We indeed find significant positive correlations between proposal innovativeness and 

funding (Figure 6). Because of this existing relationship and the consensus in literature, we 

include funding as a control variable in our analysis. 

 

Figure 6: positive relationship between project funding and expert innovativeness rating 

 

3.5 Data analysis 

We started by removing any outliers from the data, based on the Cook’s distance (Cook & 

Weisberg, 2012). Data analysis then proceeded in two steps. First, aggregated multiple linear 

regression models were fit to test whether variance in our dependent variables can be explained 

by the independent variables. We iteratively added variables after control variables and verified 

whether the models’ Aikaike Information Coefficient (AIC) improved as a result. After the models 

were fit, we conducted further analysis to test whether the fitted models violated any of the 

multiple linear regression assumptions. For all models the variance inflation factors (VIFs) were 

calculated to determine whether our results were subject to multicollinearity (Cohen et al., 2003). 

Second, since funding is granted for different technology categories separately, we split data by 

IEA categories and repeated the analyses. This was done to uncover potentially masked 

relationships in the aggregated data. 
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Table 1: Operationalization of variables 

Variable  Concept Type  

unique_terms 
 

Unique terms in a project abstract ordinal 
 

funding 
 

Amount of funding in € awarded by Dutch government continuous 
 

year 
 

Project starting year ordinal 
 

trl_level 
 

The project’s technology readiness level (1-4) ordinal 
 

tech_proximity 
 Technological proximity between project partners based on similarity 

of SIC industry codes 
[0,1] 

 

log_distance_km 
 

Log of geographical distance in km between project partners Continuous 
 

org_balance 
 Inverse of organizational proximity measured by the evenness of 

distribution over partner type categories in a project 

Continuous 

[0,e] 

 

structural novelty 
 Relatedness of technological artifacts in a project’s abstract based on 

the similarity of tfidf weighted word vectors 

Continuous 

[0,1] 

 

functional 

novelty 

 The relatedness of a project’s abstract to previous projects based on 

the similarity of document vectors 

Continuous 

[0,1] 
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4. Results 

The results section starts by providing insights into the data through descriptive statistics. 

Descriptive statistics on the structural and functional novelty variables will be discussed 

separately in 4.2.1 and 4.2.2 respectively. Then the results of the linear regression models are 

discussed, again separately per dependent variable (sections 4.3 and 4.4). 

 

4.1 Descriptive Statistics 

This section describes any correlations between control, independent and dependent variables. 

Since our statistical analyses are also applied on individual energy R&D technology categories, 

we also provide statistics on the IEA level. These can be found in Appendix E. Correlations among 

variables are presented in Table 2. 

 
Table 2: Correlation table showing means, standard deviations, and correlations with confidence intervals 

 Variable M SD 1 2 3 4 5 6 7 

1 unique_terms 19.85 7.27               

                      

2 funding 588963.70 891086.66 .08             

        [-.00, .16]             

3 n_participants 4.32 3.13 -.02 .17**           

        [-.11, .06] [.10, .24]           

4 tech_proximity 0.09 0.42 .07 .05 -.09*         

        [-.02, .15] [-.03, .13] [-.16, -.01]         

5 log_distance_km 4.32 1.13 .02 .07 .20** .01       

        [-.07, .10] [-.01, .15] [.12, .27] [-.06, .09]       

6 org_balance 0.57 0.43 -.07 .11** .51** -.03 .13**     

        [-.15, .02] [.04, .18] [.46, .57] [-.10, .05] [.05, .21]     

7 structural_novelty 0.43 0.01 .44** .12** -.02 -.01 .02 .05   

        [.37, .50] [.04, .20] [-.11, .06] [-.10, .07] [-.07, .11] [-.04, .13]   

8 functional_novelty 0.43 0.02 .21** .13** .14** .01 .08 .14** .11** 

        [.13, .29] [.05, .20] [.07, .22] [-.07, .09] [-.00, .15] [.06, .21] [.03, .20] 

Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate 

the 95% confidence interval for each correlation. * indicates p < .05. ** indicates p < .01. 
 

 

Regarding the number of unique terms in a document and technological novelty we observe a 

strong significant positive correlation (p<0.001), confirming its added value as control variable. 

It is intuitive to posit that the number of project partners (n_participants) is correlated with the 

independent variables, since a higher number of participants contributes to more diversity and 

less relatedness within a project team. The independent variables under study, however, are not 

significantly correlated with one another indicating the absence of any multicollinearity issues in 

the data. 
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Figure 7: Structural novelty (left) and Structural novelty variance (right) for different Energy 

System Categories 

 

4.2.1 Descriptive statistics dependent variable: Structural Technological Novelty 

The boxplot in figure 7 (left) shows structural novelty for energy projects grouped by their energy 

system categories, sorted from highest to lowest median novelty score. Energy projects 

concerning Batteries score highest on technological novelty, followed by Combination, Drying 

and Heat Pump projects. Interestingly, the Combination category which concerns projects that 

combine different energy system components ranks high on the technological novelty measure. 

This illustrates that our technological novelty measure seems to capture the recombinant nature 

of technology, contributing to the measure’s validity. Lower ranked projects are more likely 

concerned with fossil fuels, such as Gas Engine, Combustion, Gasification, Pyrolysis and Cryogene 

(Liquified Natural Gas). Another remarkable observation is the difference in variance of 

technological novelty scores between system categories. Figure 7 (right) orders system 

categories from high to low variance, where low variance means categories with comparable 

technological novelty scores and vice versa. Overall, the lower variance categories seem to be 

associated with projects that involve more incumbent technologies, such as gas engine, pyrolysis 

and fossil fuels. On the other hand, higher variance seems to be associated with less technology 

specific categories such as Storage, (molecular) Separation and Electricity. This resembles the 

technological variety of for instance Storage projects as these might concern incumbent (gas & 

oil) as well as very novel energy carriers, such as hydrogen. 

 

4.2.2 Descriptive statistics dependent variable: Functional Technological Novelty 

The TSE abstracts’ document vectors used to compute functional novelty are visualized in the t-

sne plot (Maaten & Hinton, 2008) in figure 8. The visualization reveals some interesting insights 
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regarding the way TSE projects are semantically related to one another. Basic (generic) energy 

research is logically located in the centre of the space, coinciding with its non-specific nature. 

Energy storage projects (dark blue) are widely dispersed across the space, which is intuitive as 

energy storage has applications in multiple areas (e.g., buildings, vehicles, energy production). 

Wind Energy projects are located next to Oil & Gas, suggesting that similar knowledge might be 

needed for these technologies. This possibly concerns offshore projects that require drilling and 

platform technologies. Mobility is positioned between Oil & Gas and Biofuels, which makes sense 

as both energy production categories have applications in the mobility sector (biogas, bio-

ethanol). BioFuels is closely intertwined with industry energy efficiency. This resembles the 

programmatic intention of the Dutch government to stimulate bio-energy as an initial step 

towards industry sustainability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Document space visualizing the similarity between document vectors. Data points 

represent documents, coloured by their corresponding IEA category and size by functional novelty. 
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Taking a closer look at functional novelty we 

find that projects related to Energy 

Management Systems, Photovoltaic and 

Combination add the most novelty to the 

Dutch energy system on average (Figure 9). 

Gas technologies such as Cryogene (LNG 

storage) and Gasification add least novelty to 

the Dutch energy system. This is intuitive 

since The Netherlands historically has had a 

strongly developed gas sector and 

infrastructure. The ambition to increasingly 

replace gas technologies with electrical 

technologies such as PV or heat pumps seems 

reflected in this novelty score. When we 

categorize the projects into four buckets 

according to their functional novelty scores, 

an interesting pattern emerges. Projects 

associated with the terms 'fuel’, 'businesses,' 

and 'encouraging' are predominantly found in 

the lowest functional novelty bucket (Figure 10, left), whereas 'alternatives,' 'changing,' and 

'biogas' are predominantly present in the highest bucket (Figure 10, right). This juxtaposition of 

words, the former group indicating a shorter time-to-market and the latter group signifying a 

deviation from prevailing practices in The Netherlands, contributes to the validity of the 

functional novelty measure. 

 

 
Figure 10: Word clouds functional novelty from lowest to highest functional novelty. Since some 

categories consist of more projects, words related to those projects are stronger visualized in the 

word clouds. 

  

Figure 9: Functional novelty per energy system category 
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4.3 Regression results 

This section discusses regression results for our first dependent variable: structural technological 

novelty. Structural novelty captures the degree to which words used in R&D abstracts are distant 

to one another in the vector space. 

 

4.3.1 Regression results dependent variable I: structural novelty 

Table 3 reports the regression results with structural novelty as dependent variable. We start by 

fitting a base model with just the control variables (Model 0). We find control variables 

unique_terms, trl_level_squared (p<0.001), year (p<0.01) and funding, trl_level (p<0.05) to be 

statistically significant in the base model. The number of unique terms is strongly significant for 

all models, which shows that our measure of structural novelty is strongly influenced by the 

unique number of words in a document. This is intuitive since having more unique words 

increases the likelihood of an abstract containing words in distant parts of the vector space. We 

continue by adding the hypothesized predictor variables while verifying whether this leads to an 

improvement of the model. After adding the predictor variables (Model 1, 2 and 3) we find that 

the Akaike Information Criterion (AIC) increases compared to the base model (Model 0), 

indicating that adding predictor variables does not improve the model fit. We therefore find no 

evidence supporting our first set of hypotheses (1A, 2A, 3A). 

 
Table 3: Regression results using structural novelty as dependent variable 

Predictor 
Model 0 Model 1 Model 2 Model 3 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
-1.357* 

(6.130e-01) 

-8.154e-01 

(6.319e-01) 

-9.531e-01 

(6.254e-01) 

-9.827e-01 

(6.283e-01) 

unique_terms 
5.813e-04*** 
(5.542e-05) 

5.567e-04*** 
(5.612e-05) 

5.643e-04*** 

(5.523e-05) 

5.456e-04*** 

(5.585e-05) 

year 
8.795e-04** 
(3.046e-04) 

6.117e-04 
(3.140e-04) 

6.786e-04* 

(3.108e-04) 

6.922e-04* 

(3.122e-04) 

funding 
9.455e-10* 
(4.294e-10) 

7.427e-10 
(4.525E-10) 

9.120e-10* 

(4.398e-10) 

7.219e-10 

(4.510e-10) 

trl_level 
4.882e-03* 
(2.129e-03) 

4.523e-03* 
(2.236E-03) 

5.266e-03* 

(2.121e-03) 

4.792e-03* 

(2.206e-03) 

trl_level_squared 
-1.183e-03*** 

(3.349e-04) 
-1.167e-03*** 
(3.516E-04) 

-1.245e-03*** 

(3.340e-04) 

-1.184e-03*** 

(3.481e-04) 

tech_proximity  
-1.219e-03 

(9.862E-04) 

  

org_balance   
1.592e-03 

(9.361e-04) 
 

geo_distance    
1.068e-03 

(4.584e-04) 

geo_distance_sq    
4.747e-03* 

(1.836e-04) 

Fit R2  = .282** 

95% CI[.22,.33] 

R2  = .280** 

95% CI[.21,.33] 

R2  = .278** 

95% CI[.21,.33] 

R2  = .295** 

95% CI[.22,.35] 

AIC -3666.894 -3396.541 -3575.606 -3398.575 

* indicates p < .05. ** indicates p < .01. *** indicates p <.001 
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4.3.2 Structural novelty per IEA category 

A possible explanation for the absence of any significant relationships between our explanatory 

and dependent variables might be that the aggregated model fails to account for inter-group 

differences in the data. Since different technological fields have their own vocabulary, certain 

technologies score by default higher on technological novelty than others (see Figure X). 

Furthermore, the composition of industries differs between technologies. Oil & gas technologies 

are historically well developed in The Netherlands which could indicate that the oil and gas sector 

typically consists of incumbents, whereas PV technology is still in its growth phase and therefore 

allows more new entrants. This could introduce inter-group differences for the proximity related 

predictors as well. Aggregating these projects into one regression analysis might therefore mask 

some existing relationships. To rule out any inter-technological differences, our analysis is 

repeated for individual groups, taking the energy system IEA categories as group levels. We limit 

our analyses to those IEA categories that were identified by the Dutch government as having the 

most technological potential for The Netherlands based on expertise present in Dutch knowledge 

institutes and industries (Janssen et al., 2017). These categories are Solar, Wind, Biofuels and 

Energy Efficiency projects. We iteratively add variables for individual group level regressions, 

verifying after each addition whether the predictor leads to an improvement of model quality 

(AIC). For neither IEA category technological proximity nor geographical proximity improved the 

fitted models’ AIC after being added. For the significant models, a Breusch-Pagan test confirmed 

that the fitted models were not subject to heteroscedasticity of residuals. 

 

Table 4: Regression results Energy Efficiency Industry using structural novelty as dependent variable 

Predictor 
Efficiency Model 0A Efficiency Model 1A Efficiency Model 2A Efficiency Model 3A 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
-4.491e-01 

(3.423) 

1.838e-01 

(3.655) 

-1.412 

(3.091) 

1.475e-01 

(3.173) 

unique_terms 
2.133e-04 

(1.971e-04) 

2.233e-04 

(1.999e-04) 

1.178e-04 

(1.796e-04) 

7.134e-05 

(1.855e-04) 

year 
4.428e-04 

(1.699e-03) 

1.292e-04 

(1.814e-03) 

9.156e-04 

(1.534e-03) 

1.451e-04 

(1.575e-03) 

funding 
-1.416e-09 

(2.723e-09) 

-1.806e-09 

(2.845e-09) 

-2.632e-09 

(2.477e-09) 

-1.163e-09 

(2.576e-09) 

trl_level 
-4.872e-03 

(5.746e-03) 

-5.516e-03 

(5.926e-03) 

1.091e-05 

(5.391e-03) 

-4.413e-03 

(5.303e-03) 

trl_level_squared 
1.435e-04 

(9.326e-04) 

2.419e-04 

(9.597e-04) 

-5.003e-04 

(8.626e-04) 

-2.262e-05 

(8.569e-04) 

tech_proximity 
 -2.410e-03 

(4.525e-03)   

org_balance 
 

 
8.491e-03** 

(2.706e-03)  

geo_distance 
 

  
4.171e-03 

(2.455e-03) 

geo_distance_sq 
 

  
-5.646e-04* 

(2.445e-04) 

Fit 
R2 = .284* 

95% CI[.00,.42] 

R2 = .290* 

95% CI[.00,.41] 

R2 = .438** 

95% CI[.10,.55] 

R2 = .402** 

95% CI[.04,.50] 

AIC -293.1196 -291.4572 -301.5135 -292.2573 
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Table 5: Regression results Wind Energy projects, using structural novelty as dependent variable. 

Predictor 
Wind Model 0A Wind Model 1A Wind Model 2A Wind Model 3A 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
-1.020 

(2.169) 

-5.778e-01 

(2.200) 

1.182 

(2.002) 

-1.250 

(2.286) 

unique_terms 
4.099e-04* 

(1.585e-04) 

4.283e-04* 

(1.590e-04) 

3.875e-04** 

(1.394e-04) 

4.225e-04* 

(1.645e-04) 

year 
7.187e-04 

(1.074e-03) 

5.000e-04 

(1.089e-03) 

-3.729e-04 

(9.911e-04) 

8.324e-04 

(1.131e-03) 

funding 
-1.069e-09 

(2.573e-09) 

-1.202e-09 

(2.569e-09) 

-4.559e-09 

(2.461e-09) 

-9.562e-10 

(2.656e-09) 

trl_level 
5.783e-03 

(2.025e-02) 

4.233e-03 

(2.025e-02) 

-3.220e-03 

(1.797e-02) 

6.497e-03 

(2.091e-02) 

trl_level_squared 
-2.611e-03 

(4.308e-03) 

-2.279e-03 

(4.308e-03) 

1.993e-04 

(3.865e-03) 

-2.767e-03 

(4.456e-03) 

tech_proximity 
 -2.812e-03 

(2.565e-03)   

org_balance 
 

 
1.020e-02*** 

(2.849e-03)  

geo_distance 
 

  
9.924e-04 

(4.305e-03) 

geo_distance_sq 
 

  
-2.223e-04 

(6.499e-04) 

Fit 
R2 = .312**                                                                      

95% CI[.03,.44] 

R2 = .333*                                                                       

95% CI[.02,.45] 

R2 = .482**                                                                       

95% CI[.16,.58] 

R2 = .317*                                                                        

95% CI[.00,.42] 

AIC -314.0078 -313.4039 -325.0904 -310.3252 

 
 

Results for Energy Efficiency projects are shown in Table 4. We find a positive significant 

relationship between organizational balance and structural novelty (p<0.01), indicating that for 

Energy Efficiency projects having a balanced set of organization types in the consortium is 

positively associated with structural novelty. Although we find that the quadratic term of 

geographical distance is significantly correlated with the dependent variable (p<0.05), the same 

does not hold for the regular term. Hence, we do not find support for the hypothesized inverted 

u-shaped relationship between geographical proximity and structural novelty in Energy 

Efficiency projects. Table 5 presents the regression results for Wind Energy projects. Just as for 

Energy Efficiency projects, we find that organizational balance is significantly correlated to 

structural novelty (p<0.001), which suggests that structural novelty is positively associated with 

the evenness of organization types in Wind Energy projects. We therefore accept hypothesis 3A 

for Wind Energy and Energy Efficiency projects and reject hypotheses 1A and 2A 

 

To determine the added value of using an entropy-based measure for organizational proximity as 

a predictor we fit additional models, using dummies for consortia having an SME or a knowledge 

institute. We find that for Wind Energy projects having a knowledge institute is significantly 

related to structural novelty. The model’s AIC is slightly higher compared to using organizational 

balance. This suggests that using entropy based organizational balance does have a slight added 

value over using a dummy variable. Furthermore, we find that the number of knowledge institutes 

in a consortium is positively related to structural novelty (p<0.05). For Energy Efficiency projects 

we do not find any model improvements after using dummy variables, which indicates that a 
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balanced presence of different organizational arrangements in a consortium is of added value 

here as well. 

 

For Solar Energy (Table 6) and Biofuels projects (Table 7) neither of the hypothesized predictor 

variables improved model quality. For both categories, only the number of unique terms in the 

documents was found to be significantly correlated to structural novelty. This leads us to reject 

the hypothesized relationships 1A, 2A and 3A for both IEA categories. 

 

Table 6: Regression results Solar Energy projects, using structural novelty as dependent variable. 

Predictor 
Solar Model 0A Solar Model 1A Solar Model 2A Solar Model 3A 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
-5.033e-02 

(1.291) 

3.902e-01 

(1.363) 

1.653e-01 

(1.300) 

4.336e-02 

(1.316) 

unique_terms 
6.924e-04*** 

(1.237e-04) 

6.911e-04*** 

(1.237e-04) 

7.036e-04*** 

(1.237e-04) 

6.932e-04*** 

(1.251e-04) 

year 
2.351e-04 

(6.425e-04) 

1.626e-05 

(6.782e-04) 

1.298e-04 

(6.465e-04) 

1.915e-04 

(6.539e-04) 

funding 
2.485e-09 

(1.321e-09) 

2.461e-09 

(1.321e-09) 

2.197e-09 

(1.339e-09) 

2.384e-09 

(1.368e-09) 

trl_level 
-1.203e-04 

(1.137e-02) 

-3.025e-04 

(1.137e-02) 

-2.408e-04 

(1.134e-02) 

-6.669e-04 

(1.175e-02) 

trl_level_squared 
-4.835e-04 

(1.793e-03) 

-4.395e-04 

(1.793e-03) 

-5.070e-04 

(1.788e-03) 

-4.050e-04 

(1.845e-03) 

tech_proximity 
 2.427e-03 

(2.411e-03)   

org_balance 
 

 
-3.844e-03 

(3.147e-03)  

geo_distance 
 

  
-2.153e-03 

(4.041e-03) 

geo_distance_sq 
 

  
2.280e-04 

(4.042e-04) 

Fit 
R2 = .386** 

95% CI[.20,.49] 

R2 = .393** 

95% CI[.20,.49] 

R2 = .397**                                                              

95% CI[.20,.49] 

R2 = .388** 

95% CI[.18,.48] 

AIC -644.8722 -643.9602 -644.4706 -641.2212 
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Table 7: Regression results Biofuels projects, using structural novelty as dependent variable 

Predictor 
Biofuels Model 0A Biofuels Model 1A Biofuels Model 2A Biofuels Model 3A 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
-1.984 

(2.173) 

-1.960 

(2.192) 

-2.626 

(2.284) 

-2.882 

(2.285) 

unique_terms 
3.705e-04** 

(1.387e-04) 

3.648e-04* 

(1.422e-04) 

3.684e-04* 

(1.389e-04) 

3.788e-04** 

(1.392e-04) 

year 
1.189e-03 

(1.081e-03) 

1.177e-03 

(1.091e-03) 

1.509e-03 

(1.136e-03) 

1.638e-03 

(1.137e-03) 

funding 
-2.559e-10 

(6.843e-10) 

-2.779e-10 

(6.969e-10) 

-3.499e-10 

(6.927e-10) 

-2.496e-10 

(6.886e-10) 

trl_level 
1.398e-02 

(1.653e-02) 

1.453e-02 

(1.684e-02) 

1.144e-02 

(1.678e-02) 

1.117e-02 

(1.672e-02) 

trl_level_squared 
-2.956e-03 

(3.449e-03) 

-3.049e-03 

(3.501e-03) 

-2.394e-03 

(3.506e-03) 

-2.390e-03 

(3.492e-03) 

tech_proximity 
 5.250e-04 

(2.383e-03) 

 

  

org_balance 
 

 
1.978e-03 

(2.142e-03)  

geo_distance 
 

  
-1.482e-03 

(3.442e-03) 

geo_distance_sq 
 

  
2.191e-04 

(3.174e-04) 

Fit 
R2 = .164* 

95% CI[.00,.27] 

R2 = .165 

95% CI[.00,.26] 

R2 = .176 

95% CI[.00,.28] 

R2 = .188 

95% CI[.00,.28] 

AIC -466.8042 -464.8582 -465.7482 -464.738 

 

 

4.4 Regression results dependent variable II: functional novelty 

This part of the analysis focuses on the second dependent variable, functional novelty. Functional 

novelty pertains to the degree to which projects are different compared to preceding projects.  

 

4.4.1 Aggregated model 

The results for the aggregated model, in which a project's abstract is compared to all preceding 

projects, are presented in Table 8. We find that adding organizational distance as a predictor 

variable improves the model quality, whereas the other proximity dimensions do not. Therefore, 

we confirm hypothesis 3B and reject hypotheses 1B and 2B. Just as with structural novelty, the 

number of unique words in an abstract is significantly correlated with functional novelty. The 

opposite is true for the project’s starting year. This is intuitive since functional novelty of a 

document is measured in comparison to what documents existed before. When a project’s 

starting year is higher, it is measured against more preceding documents, limiting the probability 

that it adds novelty. 
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Table 8: Regression results using functional novelty as dependent variable 

Predictor 
Model 0B Model 1B Model 2B Model 3B 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
1.145*** 

(2.384e-01) 

- 1.410*** 

(2.460e-01) 

1.155*** 

(2.384e-01) 
1.182*** 

(2.376e-01) 

unique_terms 
2.879e-04*** 

(2.183e-05) 

3.005e-04*** 

(2.190e-05) 

3.017e-04*** 

(2.186e-05) 
3.040e-04*** 

(2.173e-05) 

year 
-3.487-04** 

(1.185e-04) 

-4.805e-04*** 

(1.222e-04) 

-3.543e-04** 

(1.185e-04)*** 
-3.678e-04** 

(1.181e-04) 

funding 
1.674e-10 

(1.831e-10) 

9.188e-11 

(1.797-10) 

1.348e-10 

(1.847e-10) 
1.381e-10 

(1.824e-10) 

trl_level 
3.260e-03*** 

(8.598e-03) 

3.370e-03 

(8.755e-04)*** 

3.418e-03*** 

(8.585e-04) 
3.409e-03*** 

(8.446e-04) 

trl_level_squared 
-5.902e-04*** 

(1.367e-04) 

-6.256e-04 

(1.378e-04)*** 

6.053e-04*** 

(1.368e-04) 
-6.175e-04*** 

(1.344e-04) 

tech_proximity  
-1.128e-03 

(6.154e-04) 

 

 

org_balance   
7.613e-04* 

(3.715e-04) 

 

geo_distance   
 2.750e-04 

(1.476e-04) 

Fit 
R2  = .314** 

95% CI[.24,.37] 

R2  = .347** 

95% CI[.27,.40] 

R2  = .327** 

95% CI[.25,.38] 

R2  = .351** 

95% CI[.28,.40] 

AIC -4191.975 -3991.085 -4209.359 -4164.073 

 
 

From the fitted models we find that organizational balance is significantly correlated with 

functional novelty (p<0.05), indicating that TSE projects carried out by a balanced set of 

organization types are associated with higher functional novelty. We further inspect this 

relationship by fitting (dummy) variants of organizational proximity, representing different 

aspects of organizational proximity. This allows us to gain insights into which specific factors are 

contributing to the observed relationship. We test the presence of an SME in the consortium, the 

presence of a knowledge institute and the number of knowledge institutes. We find that both 

including a knowledge institute and having more knowledge institutes significantly contributes 

to functional novelty (p<0.05). Including an SME was not found to significantly contribute to 

functional novelty. To further confirm the findings related to organizational proximity and 

functional novelty, we repeated the aggregated analysis using expert’s ratings of innovativeness 

as the dependent variable. Although expert ratings were only available for half of the projects, the 

analysis confirmed that there is a significant relationship between organizational balance and 

innovativeness (p<0.001), after controlling for year, funding, and TRL level. The results can be 

found in Appendix C. The other proximity dimensions were not found to be significantly related 

to expert innovativeness rating. Lastly, we performed a simpler operationalization of 

organizational balance by counting the number of unique organization types in a project. This 

confirmed the results and led to an even better model AIC. 

 

4.4.2 Functional novelty per IEA category 

Similar to structural novelty, we fit linear regression models for functional novelty per IEA 

category to uncover potentially masked relationships. To this end, we recompute functional 

novelty taking into account only the preceding projects within that IEA category to compare 
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newly introduced projects against. We discard any IEA categories smaller than 50 projects and 

remove outliers based on Cook’s distance. 

 

Table 9: Regression results Energy Efficiency Industry, using functional novelty as the dependent 

variable 

Predictor 
Efficiency Model 0B Efficiency Model 1B Efficiency Model 2B Efficiency Model 3B 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
-2.071 

(2.074) 

-2.116 

(2.151) 

-2.205 

(1.890) 

-1.830 

(2.139) 

unique_terms 
1.534e-04 

(1.115e-04) 

1.523e-04 

(1.136e-04) 

2.747e-04* 

(1.160e-04) 

1.812-04 

(1.148e-04) 

year 
1.251e-03 

(1.030e-03) 

1.273e-03 

(1.068e-03) 

1.319e-03 

(9.382e-04) 

1.131e-03 

(1.062e-03) 

funding 
-3.563e-09* 

(1.485e-09) 

-3.548e-09* 

(1.513e-09) 

-2.706e-09 

(1.416e-09) 

-3.927e-09* 

(1.528e-09) 

trl_level 
-7.330e-03* 

(3.421e-03) 

-7.244e-03 

(3.575e-03) 

-9.290e-03** 

(3.246e-03) 

-8.022e-03* 

(3.498e-03) 

trl_level_squared 
1.547e-03* 

(5.709e-04) 

1.529e-03* 

(6.058e-04) 

 1.757e-03** 

(5.340e-04) 

1.670e-03* 

(5.856e-04) 

tech_proximity 
 2.083e-04 

(2.069e-03) 
 

 

org_balance 
 

 
-5.702e-03** 

(1.770e-03) 
 

geo_distance 
 

  
1.248e-04 

(6.079e-04) 

Fit 
R2 = .367** 

95% CI[.05,.49] 

R2 = .367** 

95% CI[.03,.48] 

R2   = .538** 

95% CI[.21,.63] 

R2 = .393**                                                                                

95% CI[.05,.51] 

AIC -331.3266 -329.3388 -336.9222 -321.8289 

 

The results of the regression analysis for Energy Efficiency projects are presented in Table 9. The 

high R-squared value of the model suggests that a significant portion of the variance in functional 

novelty can be explained by the predictor variables. Interestingly, there is a significant negative 

correlation between organizational balance and functional novelty (p<0.01), indicating that 

projects from consortiums that are organizationally distant tend to have lower levels of functional 

novelty. This opposes our findings for structural novelty in Energy Efficiency projects (Table 4) 

and leads us to reject hypotheses 1B, 2B and 3B. Additionally, the relationship between TRL level 

and functional novelty is found to have a U-shaped pattern (p<0.01), which opposes the inverted 

U-shaped relationship observed in the aggregated model. Further analysis of the documents 

within the group reveals that projects involving Biorefinery, (molecular) Separation, and 

Chemical Catalytic Conversion contribute to low functional novelty scores at TRL 2 

(Development). 
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Table 10: Regression results Solar Energy, using functional novelty as the dependent variable 

Predictor 
Solar Model 0B Solar Model 1B Solar Model 2B Solar Model 3B Solar Model 4B  

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) B (Std. Error) 

(Intercept) 
1.697e-01 

(1.259) 

-7.855e-01 

(1.275e+00) 

-9.700e-02 

(1.238) 

1.646e-01 

(1.265) 

-9.17e-01 

(1.26) 

unique_terms 
-3.482e-05 

(1.183e-04) 

-3.184e-05 

(1.146e-04) 

-5.032e-05 

(1.160e-04) 

-3.095e-05 

(1.194e-04) 

-4.54e-05 

(1.13e-04) 

year 
1.279e-04 

(6.256e-04) 

6.042e-04 

(6.339e-04) 

2.590e-04 

(6.152e-04) 

1.293e-04 

(6.289e-04) 

6.68e-04 

(6.25e-04) 

funding 
-9.067e-10 

(1.021e-09) 

-8.652e-10 

(9.893e-10) 

-1.274e-09 

(1.014e-09) 

-9.255e-10 

(1.028e-09) 

-1.18e-09 

(9.89e-10) 

trl_level 
8.050e-03 

(1.543e-02) 

5.652e-03 

(1.497e-02) 

6.308e-03 

(1.512e-02) 

8.248e-03 

(1.552e-02) 

4.40e-03 

(1.48e-02) 

trl_level_squared 
-9.883e-04 

(2.526e-03) 

-6.018e-04 

(2.451e-03) 

-6.733e-04 

(2.476e-03) 

-1.004e-03 

(2.540e-03) 

-3.71e-04 

(2.42e-03) 

tech_proximity 
 -5.627e-03* 

(2.198e-03)   

-5.06e-03* 

(2.19e-03) 

org_balance 
 

 
6.526e-03* 

(3.001e-03) 
 

5.59e-03 

(2.95e-03) 

geo_distance 
 

  
3.760e-04 

(1.026e-03) 

 

Fit 
R2 = .047 

95% CI[.00,.10] 

R2 = .117 

95% CI[.00,.20] 

R2 = .099 

95% CI[.00,.17] 

R2 = .049                                                                                

95% CI[.00,.09] 

R2 = .154* 

95% CI[.00,.23] 

AIC -630.06 -634.8988 -633.0483 -628.2056 -636.7416 

 
 

For Solar Energy projects (Table 10), we find a significant negative relationship between 

technological proximity and functional novelty. This suggests that Solar Energy projects 

contribute more to functional novelty if project partners are technologically diverse. We 

therefore accept Hypothesis 1B for Solar Energy projects. We test whether this relationship also 

exists when using a more basic operationalization of technological proximity, i.e., the number of 

unique SIC codes in a project consortium. This relationship is not significant, which could indicate 

that using a continuous measure of differences between SIC codes captures additional 

information of technological relatedness between organizations compared to the unique SIC 

count (Stirling, 2007). We further find that organizational balance is significantly correlated in 

model 2B but loses significance (p=0.06) when we control for technological proximity (model 

4B). Potentially, the predictors technological proximity and organizational balance show slight 

multicollinearity for Solar Energy projects. However, the associated VIF value did not suggest 

significant multicollinearity. Due to the superior model fit of model 1B compared to model 2B, we 

reject hypothesis 2B for Solar Energy projects. Geographical distance is not found to be significant 

(model 3B), which leads us to reject hypothesis 3B for solar energy projects as well. 
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Table 11: Regression results Wind Energy, using functional novelty as the dependent variable 

Predictor 
Wind Model 0B Wind model 1B Wind Model 2B Wind Model 3B 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
-1.084e-01 

(2.003) 

-8.087e-01 

(1.957) 

-5.860e-01 

(2.073) 

3.012e-01 

(1.879) 

unique_terms 
-9.012e-05 

(1.368e-04) 

-9.273e-05 

(1.316e-04) 

-7.936e-05 

(1.376e-04) 

-1.017e-04 

(1.279-04) 

year 
2.642e-04 

(1.001e-03) 

6.12e-04 

(9.78e-04) 

5.047e-04 

(1.036e-03) 

5.671e-05 

(9.389e-04) 

funding 
-8.608e-09** 

(2.507e-09) 

-7.55e-09** 

(2.47e-09) 

-7.563e-09** 

(2.756e-09) 

-8.529e-09*** 

(2.343e-09) 

trl_level 
7.249e-03 

(2.418e-02) 

6.60e-03 

(2.33e-02) 

3.074e-03 

(2.465e-02) 

6.804e-03 

(2.260e-02) 

trl_level_squared 
-1.104e-03 

(4.455e-03) 

-9.94e-04 

(4.29e-03) 

-5.017e-04 

(4.512e-03) 

-1.096e-03 

(4.164e-03) 

tech_proximity 
 4.38e-03 

(2.17e-03)   

org_balance 
 

 
-2.808e-03 

(3.049e-03) 
 

geo_distance 
 

  
2.329e-03* 

(9.133e-04) 

Fit 
R2 = .294* 

95% CI[.01,.42] 

R2 = .364** 

95% CI[.04,.48] 

R2 = .310*                                                                                      

95% CI[.00,.43] 

R2 = .399**                                                                                   

95% CI[.07,.51] 

AIC -311.0587 -313.6669 -310.0557 -316.1829 

 

For Wind Energy projects (Table 11), we find geographical distance to be significantly correlated 

to functional novelty (p<0.05, model 3B). This suggests that higher geographical distance 

between R&D project partners contributes to higher functional novelty of wind energy projects. 

We therefore accept hypothesis 3B for Wind Energy projects. We further investigate this 

relationship by testing whether using a dummy variable indicating a foreign participant in the 

R&D project preserves the relationship’s significance. The significance was lost when repeating 

the analysis with a dummy. Other predictors were not found to be significant, meaning that we 

reject hypotheses 1B and 2B for wind energy projects. Interestingly, funding is strongly 

negatively associated with functional novelty. A potential explanation for this could be that 

projects exploring technologically safe directions with a higher probability of success are more 

likely to secure substantial funding. 
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Table 12: Regression results Biofuels, using functional novelty as the dependent variable 

Predictor 
Biofuels Model 0B Biofuels Model 1B Biofuels Model 2B Biofuels Model 3B 

b (Std. Error) b (Std. Error) b (Std. Error) b (Std. Error) 

(Intercept) 
5.666e-01 

(1.486) 

5.527e-01 

(1.494) 

2.373e-01 

(1.534) 

4.086e-01 

(1.580) 

unique_terms 
3.207e-04** 

(9.619e-05) 

3.103e-04** 

(9.815e-05) 

3.245e-04** 

(9.645e-05) 

3.230e-04** 

(9.721e-05) 

year 
-6.111e-05 

(7.388e-04) 

-5.439e-05 

(7.428e-04) 

1.025e-04 

(7.624e-04) 

1.721e-05 

(7.851e-04) 

funding 
6.522e-10 

(4.322e-10) 

6.056e-10 

(4.410e-10) 

5.888e-10 

(4.388e-10) 

6.509e-10 

(4.356e-10) 

trl_level 
-8.682e-03 

(7.779e-03) 

-8.392e-03 

(7.834e-03) 

-9.371e-03 

(7.830e-03) 

-9.150e-03 

(7.979e-03) 

trl_level_squared 
1.325e-03 

(1.564e-03) 

1.304e-03 

(1.572e-03) 

1.473e-03 

(1.575e-03) 

1.428e-03 

(1.609e-03) 

tech_proximity 
 9.442e-04 

(1.531e-03)   

org_balance 
 

 
1.242e-03 

(1.391e-03) 
 

geo_distance 
 

  
1.587e-04 

(5.052e-04) 

Fit 
R2 = .296** 

95% CI[.07,.41] 

R2 = .300** 

95% CI[.06,.41] 

R2 = .305**                                                                                

95% CI[.06,.41] 

R2 = .297**                                                                              

95% CI[.06,.41] 

AIC -504.7388 -503.1634 -503.6256 -502.8493 

 

 

For biofuels projects (Table 12), the addition of any hypothesized predictor variable leads to 

higher AIC values, indicating a decrease in model fit. We therefore reject hypotheses 1B, 2B and 

3B for biofuels projects. 
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5. Discussion 

This section outlines the findings as well as academic and practical implications of the conducted 

analyses. It concludes with the limitations of the methodology and suggestions for further 

research. 

 

5.1 Academic implications 

Structural novelty 

For Wind energy and Energy Efficiency technologies our results support the idea that the creation 

of structural novelty is a collaborative act that benefits from organizational balance in R&D 

projects. Thereby, we complement existing literature on university-industry-government 

relations, such as the National Innovation Systems (Lundvall, 1992) and Triple Helix thesis 

(Etzkowitz & Leydesdorff, 2000). Beyond the known societal benefits of university-industry 

linkages such as efficient transfer of technology and knowledge spillovers, our results indicate 

that university-industry linkages also contribute to increased technological novelty compared to 

inter-industry linkages. Thereby, our results seem to point in the same direction as Talab et al. 

(2020), who show that during interorganizational collaboration universities are most active in 

the development of new ideas. In the same vein, Tanner (2014) finds in her study on fuel cell 

technology that technological diversification heavily relies on knowledge from nonindustrial 

actors such as knowledge institutes and universities. 

 

The difference in accepted hypotheses between IEA categories might imply there is a fundamental 

difference between IEA subgroups. The question is whether this can be attributed to the inherent 

properties of those IEA subgroups or to an underlying confounding variable that is present for 

two of the groups and absent for the two other groups. An ad hoc explanation of these differences 

can be made based on Klepper's Industry Life Cycle (Klepper, 1997) that describes the different 

stages of industry development. As industries mature, the focus of innovative activities typically 

shifts from radical product innovation towards refining existing processes and improving 

efficiency. However, empirical studies have demonstrated that for many technologies there is no 

decline in product innovations over time (Gort & Klepper, 1982; Henderson et al., 1995; Lee & 

Berente, 2013). Between solar, biofuel and wind technology Huenteler et al. (2016) identify a 

strong difference regarding the shift in innovative activities. Specifically, they observe that in the 

wind energy sector the focus of innovation has shifted across various components of the product, 

rather than a transition towards process innovation. Biofuel and Solar technology on the other 

hand are characterized by a higher scale of production process and lower complexity of product 

architecture (Huenteler et al., 2016). These industries follow the more typical pattern where 

focus shifts from early product innovations to process innovations for solar cell mass production. 

The former cycle might also apply to Energy Efficiency technologies as this cycle is more credible 

for technologies with multiple potential applications and markets (Winskel et al., 2014). Given 

the difference in the nature of innovation, the role of organizational proximity in the creation of 

technological novelty may vary across different IEA groups. Another potential explanation could 

be the difference in knowledge bases between IEA subgroups. In the nano-biopharmaceutical 

field Zhang & Tang (2018) find that the effect of organizational balance on innovation 

performance is moderated by structural holes of knowledge elements from R&D partners and the 

degree centrality of an organization's knowledge elements. Energy Efficiency and Wind Energy 

projects might exhibit a higher degree of structural holes and degree centrality of knowledge 
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elements compared to solar and biofuels projects. Future research may focus on studying the 

impact of both industry life cycle types and structural holes on this relationship. 

 

We find no evidence for the effect of geographical proximity on structural novelty, which might 

seem surprising as it is one of the most widely studied concepts of the proximities framework. 

However, Boschma (2005) argues that geographical proximity is not a sufficient nor a necessary 

condition for knowledge creation to take place. It may create favorable conditions but other 

factors, such as shared interests, trust, social networks, and institutional support are more 

important. Furthermore, interactive learning is not the dependent variable in this study, which 

might explain the absence of any significant relationships. Another explanation for the absence of 

the relationship might be the limited size of The Netherlands or the limited participation of non-

Dutch organizations in R&D projects. 95% of the TSE projects were executed by Dutch 

organizations only (Appendix B). For solar technology, Li et al (2021) find that unrelated 

technologies are more likely combined when they originate from the same region compared to 

internationally. Potentially our data contained an insufficient number of internationally oriented 

projects to uncover such a relationship. 

 

Functional novelty 

We find evidence for a relationship between organizational proximity and functional novelty. 

These results are in line with findings by Nieto & Santamaria (2007), who find that collaborative 

networks comprising different partner types have a positive effect on functional novelty. 

Regarding the presence of research organizations in the consortium our results seem to confirm 

previous research that industry-university collaboration in R&D projects yields more novel 

outcomes (Cassiman et al., 2010). Our aggregated functional novelty measure is similar to the 

technological diversity measure proposed by Paez-Aviles et al. (2018), who also study its 

relationship to project team variables. Interestingly, our results deviate from theirs. We find that 

the balance of project partners in R&D collaboration is associated with higher functional novelty 

(Table 8), whereas they do not find support for this. On the other hand, they find strong evidence 

for the role of technological and geographical proximity, whereas we only find support for that in 

some IEA categories. A potential explanation could be the difference in focus of the two studies. 

Our focus is on energy technology whereas their focus is on nanotechnology projects. 

Furthermore, the discrepancy of results is possibly attributable to differences in 

operationalization. We compute a continuous novelty measure based on an abstract’s similarity 

to previously existing abstracts, whereas Paez Aviles et al. (2018) compute added technological 

diversity using a categorical based entropy measure. For knowledge base they take the number 

of patents whereas we again use a similarity measure based on relatedness of SIC codes. Further 

research could apply our methodology to their data or vice versa to verify whether 

operationalization differences can explain the deviations in results. 

 

Just as with structural novelty, our results show that the hypothesized relationships differ per 

IEA category for functional novelty as well. For Solar Energy, technological proximity is negatively 

associated with functional novelty. This is consistent with theory arguing that radical innovation 

likely emerges from the combination of unrelated knowledge bases (Janssen & Frenken, 2019). 

On the other hand, too much technological proximity between knowledge bases leads to more 

incremental technological novelty (Miguelez & Moreno, 2018). For wind energy projects 

geographical distance was found to be positively associated with functional novelty. This seems 

to indicate that larger distances between project partners help to develop technologies that 
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deviate from existing practices. Since foreign participation does not appear to contribute to this 

relationship, regional specialization within The Netherlands potentially enhances the functional 

novelty of wind energy projects. 

For Energy Efficiency Industry (EEI) projects, organizational proximity (balance) is positively 

(negatively) associated with functional novelty. The contradictory relationships between 

structural and functional novelty of organizational proximity in Energy Efficiency Industry 

projects might be attributed to the difference in nature between structural and functional novelty. 

Potentially, too much organizational balance poses challenges for generating functional novelty 

in EEI projects whereas it fosters structural novelty. As functional novelty is more oriented 

towards societal needs and market application (Argyres and Silverman, 2004; Arthur, 2007) too 

much organizational balance between project partners might hinder the convergence of their 

views towards a technological design that effectively addresses a societal need. An alternative 

explanation could be the technology-transcending nature of EEI projects, which can be observed 

from the dispersion of green data points in Figure 8. As EEI technologies can encompass multiple 

functionalities of the energy system, this IEA category might not lend itself well for a cross-

comparison of its projects. This difference between IEA categories can also be observed in Figure 

11. The two measures of technological novelty are positively correlated (p<0.001) for non-EEI 

projects, but this relationship is not present for EEI projects. Indeed, previous studies on 

functional novelty and its relationship with team characteristics take a more technology-narrow 

approach (e.g. Van Rijnsoever et al., 2015; Paez-Avlies et al., 2018 for biogas and nanotechnology 

respectively). 

Figure 11: Correlation structural and functional novelty: EEI projects (orange) vs other projects. 

5.2 Practical Implications 
Our results have implications for policy makers and practitioners in The Netherlands such as TKI 

managers6. Primarily, the hypothesized relationships between proximities and technological 

novelty were found to differ across energy technologies. Our findings therefore emphasize the 

necessity of tailoring energy innovation policy to individual technologies through bodies such as 

TKIs to account for intersectoral differences, rather than pursuing generic energy innovation 

policy.  

 

Regarding the role of organizational proximity, we find some evidence that supports current 

Dutch energy policy in its aim to bring together knowledge institutes and industry to foster 

 
6  TKI managers are in charge of agenda setting on behalf of government-industry-academia in The Netherlands. 
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energy innovation. Policy makers could consider involving multiple knowledge institutes in R&D 

projects to further enhance the generation of structural novelty in Wind and Energy Efficiency 

projects and functional novelty overall. For Energy Efficiency projects, however, this relationship 

was the opposite. For Solar Energy specifically, our results could assist TKI managers to 

coordinate the search for project participants. It may help to consider the technological distance 

between potential R&D partners if the aim is to increase a project’s functional novelty. In the same 

vein, one could consider the geographical distance among R&D project participants to enhance 

the creation of technological diversity in the field of wind energy, 

 

One should note however that while reducing participant proximities can foster technological 

novelty, some scholars argue that too much novelty has its disadvantages. On the neoclassical side 

of the academic arena, too much technological diversity is believed to impede (economic) 

efficiency. Higher diversity purportedly leads to increased production costs, lower economies of 

scale and hampers product standardization (Ricardo, 1817; Cohendet & Llerena, 1992). 

Furthermore, engaging in radically different activities introduces new routines that require 

learning which might cause coordination inefficiencies between economic actors (Cohendet & 

Llerena, 1997). These disadvantages of collaborative R&D are attributable to increased 

transaction costs (Williamson, 1987).  

 

Secondly, the text-based approach to measure technological novelty provided intuitive results. 

Our methodology could therefore serve as a tool for TKI managers or innovation policy 

consultants to quantify loosely defined government objectives such as “more innovation” 

(Janssen et al., 2017, p5). It allows for objectively assessing the relative novelty of R&D projects 

and could supplement expert ratings when determining eligibility for funding. In the same vein, 

the approach can be applied to evaluate R&D policy and assess the R&D projects’ contribution to 

technological novelty in the innovation system. Preferably, this would require accurate and 

standardized documentation of R&D project proposals and results. 

 

5.3 Limitations and further research 

This study has several limitations that are important to take into account when interpreting the 

results. First of all, regressing the proposed operationalizations of technological novelty against 

known measures of novelty provided only limited evidence for their validity. Regarding 

validation we find that the energy subgroups associated with high and low technological novelty 

are intuitive. Furthermore, we found that structural novelty is significantly correlated with the 

expert assessment of a project’s technological continuity; a binary variable indicating whether a 

project deviates from prevailing technological practices. For functional novelty however, we did 

not find such a relationship. A potential methodological explanation for this is that 

standardization of project descriptions changes over time, which results in larger differences 

between documents than desirable. For instance, some abstracts report on the consortium 

whereas others emphasize technological challenges. This creates undesirable discrepancies 

between descriptions and hampers obtaining the project’s true technological novelty. Further 

research could account for these discrepancies by using more standardized documents, such as 

patents. An interesting direction could involve regressing the novelty of patent claims against 

proximity. Alternatively, future research could aim to train a custom sentence or paragraph 

classifier that is able to distinguish technology related sections from non-technology related ones 

in R&D project descriptions. 

 



39 

 

Secondly, word vectors have a time dependency which influences the accuracy of our novelty 

measure. Technological artifacts become more or less related over time as a result of 

technological development. For instance, batteries and automotive technology have become 

increasingly related over the past 20 years. Although we control for time in the regression models, 

using point-in-time word vectors would provide a more accurate representation of technological 

novelty. This will ignore any knowledge that was published after the time of publication of the 

document that technological novelty is computed over. To solve this issue, we experimented with 

training custom word vectors for every project starting year in our dataset, based on a set of 2.5 

million US Energy patents. The number of patents however proved insufficient to cover enough 

vocabulary of the TSE project abstracts to be able to accurately compute technological novelty. 

Furthermore, the performance of our custom trained word vectors on validation tasks (analogy 

test and similarity test) was far below that of the pretrained GloVe model (see Appendix D). 

Future research could obtain accurate point-in-time word vectors by training over a much larger 

set of documents, covering sufficient vocabulary. 
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6. Conclusion 
Despite widespread consensus among scholars regarding the importance of technological novelty 

in driving economic development and addressing societal challenges, still very little is known 

about the drivers that underly its creation. Other studies in the field of evolutionary economics 

qualitatively explain case-specific trajectories of diversity in technological designs but do not 

empirically assess the drivers that have generated it (Cohendet & Llerena, 1997; Frenken & 

Leydesdorff, 2000). The present study quantitively examined the drivers of technological novelty 

in collaborative R&D projects. We developed a text-based approach to quantify technological 

novelty of energy R&D projects. We then applied this measure to analyse which proximity 

dimensions of project consortia predict technological novelty creation. In particular, we studied 

in what way technological, geographical and organizational proximity are associated with 

structural and functional technological novelty, through the following research question: 

 

How does proximity between project partners relate to the creation of technological novelty in 

collaborative R&D projects? 

 

Regarding the role of proximity dimensions on the creation of technological novelty we find 

mixed and in the case of Energy Efficiency projects seemingly contrasting results. We find some 

evidence that technological proximity and organizational proximity influence technological 

novelty, each in a separate way. For Wind and Energy Efficiency projects, organizational 

proximity was found to contribute to structural novelty. For Energy Efficiency projects, we found 

organizational proximity to have the opposite effect on functional novelty. For solar and wind 

energy projects we find that technological proximity and geographical proximity respectively are 

negatively associated with functional novelty.  

 

The research question can therefore not be answered unequivocally, also possibly due to the 

explorative nature of our research methodology. We illustrated the potential for using text-based 

analysis to detect technological novelty of innovation projects. When looking at projects with high 

and low novelty scores we find the results to be intuitive. Furthermore, the proposed structural 

novelty measure can be used to distinguish between continuous and discontinuous energy 

projects. We do however find that the proposed measures are strongly correlated with the 

number of unique words used in a document and that document standardization is critical. It 

would be interesting to keep developing the methodological approach using the latest 

advancements in NLP, thereby improve the quantification of technological novelty. 
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Appendix A 
 

Examples of project abstracts with high and low structural novelty 

 
Example 1 high structural technological novelty, combining lidar technology with wind turbines 

(nacelles). 

 

 
Example 2 high structural technological novelty, heat transport on water for heating residential 

areas 

 

 
Example 1 low structural technological novelty: new business models for energy efficiency 

 



47 

 

 
Example 2 low structural technological novelty: shale gas extraction research 

 

 
Example 3 low structural technological novelty: research hydraulic fracturing 

 

Examples of projects with high functional novelty 

- TKIZ01012, Roll-to-roll organics for PV, IEA Category C1. Solar Energy: The use of inkjet 

technology to improve the performance of organic photovoltaic modules7 

- DEI1160026, Energiebesparing door MCFA productie uit voedselresten, IEA Category A1. 

Energy efficiency: industry. The production of Medium-chain fatty acids (MFCA) from 

food scraps, rather than using conventional petrochemical based manufacturing8. 

- TESG113001, Smart Grid in Balans, IEA category F2. Electricity transmission and 

distribution: Creating a link between the supply of decentralized sustainable energy 

sources and the demand for sustainable energy from electric transport9. 

 

Examples of projects with low functional novelty 

- TEZG114006, Intelligente elektronica voor (fotovoltaïsche) zonnesystemen, IEA Category 

C1. Solar Energy: Develop and validate an electronic circuit that can be integrated into 

photovoltaic (PV) modules to improve energy harvesting10. 

- TEBG113001, Demonstration of a treatment plant utilizing anammox bacteria. IEA 

Category C4, Biofuels. This technology can potentially be applied to other (industrial) 

digesters in the future11 

 
7 https://projecten.topsectorenergie.nl/projecten/r2ro4pv-roll-to-roll-organics-for-pv-11956 
8 https://data.rvo.nl/subsidies-regelingen/projecten/energiebesparing-door-mcfa-productie-uit-voedselresten-plaats-van-olie 
9 https://projecten.topsectorenergie.nl/projecten/smart-grid-in-balans-16588 
10 https://projecten.topsectorenergie.nl/projecten/intelligente-elektronica-voor-fotovoltaische-zonnesystemen-in-gebouwde-
omgeving-18536 
11 https://projecten.topsectorenergie.nl/storage/app/uploads/public/5b7/acb/5c5/5b7acb5c56199091859691.pdf 
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Appendix B: Geographic locations of Dutch TSE participants 
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Appendix C 
Table 13 Regression results using expert innovativeness rating as dependent variable. 

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

sr2  

sr2  

95% CI 

[LL, UL] 

r Fit 

(Intercept) -11.37 [-64.98, 42.25]       

year 0.01 [-0.02, 0.03] 0.02 [-0.09, 0.14] .00 [-.00, .01] -.00  

funding 0.00* [0.00, 0.00] 0.14 [0.02, 0.25] .02 [-.01, .05] .12*  

trl_level -0.05 [-0.26, 0.15] -0.19 [-0.94, 0.55] .00 [-.01, .01] .05  

trl_level_squared 0.01 [-0.02, 0.04] 0.25 [-0.50, 1.00] .00 [-.01, .01] .06  

tech_proximity -0.05 [-0.18, 0.08] -0.05 [-0.16, 0.07] .00 [-.01, .01] -.05  

log_distance_km -0.00 [-0.03, 0.03] -0.00 [-0.12, 0.11] .00 [-.00, .00] .02  

org_balance 0.16** [0.08, 0.25] 0.23 [0.12, 0.35] .05 [.00, .09] .23**  

        R2   = .079** 

        95% CI[.01,.12] 

b represents unstandardized regression weights. beta indicates the standardized regression weights. sr2 

represents the semi-partial correlation squared. r represents the zero-order correlation. LL and UL indicate the 

lower and upper limits of a confidence interval, respectively. 

* indicates p < .05. ** indicates p < .01. 

 

Appendix D, training custom word vectors 
We apply GloVe (Global Vectors for Word Representation) to learn a word vector space on a 

training set, consisting of 2,356,000 patents. In the vector space energy related words are 

presented as n-dimensional vectors, representing the energy technology space. To arrive at an 

optimal number of dimensions given the data, different candidate numbers of dimensions were 

tested on a validation task. It was found that a model with 200 dimensions resulted in the best 

performance on the validation tasks. However, we only achieve an f1 of .25 on the accuracy test, 

which is far below the pretrained GloVe model. 

 

 
Figure 13: Validation tasks (analogy test and similarity test) 
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Appendix E 
 

 

 

 

 

 

 

 

 
Grouped by IEA Category we find that solar, wind and ocean energy projects exhibit on average 
the most structural novelty. Electronic appliances, basic research and electricity transmission & 
distribution projects are on average least novel. 

 


